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Resumo

Esta tese explora a repeated Richardson extrapolation technique quando aplicada a metodolo-
gias de replicação estáticas na avaliação de opções com barreira europeias utilizando o modelo
constant elasticity of variance (CEV) e o modelo jump to default extended constant elasticity of
variance (JDCEV).

A extrapolação de Richardson é uma ferramenta computacional usada para melhorar a
eficiência de vários métodos numéricos. Nesta tese os seus benefı́cios vão ser explorados ao ser
aplicada a métodos de replicação estática.

iii





Abstract

This thesis explores the Repeated Richardson extrapolation technique when applied to static
replication methodologies in the valuation of European-style barrier options under both the
constant elasticity of variance (CEV) model and the jump to default extended constant elasticity
of variance (JDCEV) model.

The Richardson extrapolation is a computational tool used throughout the literature in order
to improve the efficiency of numerous numerical methods. In this thesis is going to be studied
the benefits of its use when applied to static replication methods.

Keywords: Static replication; Richardson extrapolation; Option pricing; Barrier options; CEV;
JDCEV
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CHAPTER 1

Introduction

This thesis studies the improvement in efficiency of different static hedging methodologies when
applying the repeated Richardson extrapolation technique. It focuses exclusively on the pric-
ing of European-style barrier options under the constant elasticity of variance (CEV) model
proposed by Cox (1975) [14], and the jump to default extended constant elasticity of variance
(JDCEV) model offered by Carr and Linetsky (2006) [10].

Barrier options are path-dependent exotic options characterized by a strike level and one or
two barrier values. The payoff of a barrier option is similar to the one of a plain-vanilla option,
as it is described by the strike price. However, it is conditional on the underlying asset price
crossing the barrier. This barrier can be of knock-in type, and the contract is iniciated only if the
underlying price hits this level before maturity, or it can be of knock-out type and the contract is
terminated, instead of iniciated, if the underlying price ever hits the barrier during the life of the
option. Barrier options can have a single barrier level, in case of a single barrier option, or two
barrier levels, in case of a double barrier option. In this particular case they are both knock-out
or both knock-in barriers and the contract is either terminated or iniciated, depending on which,
if the underlying price hits either one of the barriers during the life of the option.

The valuation of a European-style barrier option is already studied under the geometric
Brownian motion (GBM) assumption, see for example Rich (1994) [29] for single barrier op-
tions, or Buchen and Konstandatos (2009) [6] for double barrier options. Although the GBM
diffusion process provides analytical formulas, the implied log-normal distributional assump-
tion fails to encompass some observable empirical findings, seen for example in Jackwerth and
Rubinstein (1996) [23]. The CEV diffusion model of Cox (1975) [14] can better accommo-
date both the leverage effect i.e., the existence of a negative correlation between the returns and
volatility of a stock, observed for example in Bekaert and Wu (2000) [1], as well as the implied
volatility skew, described by the inverse relation between the implied volatility and the strike
price of an option, addressed for example by Dennis and Mayhew (2002) [16].

This thesis will focus on valuation methodologies, that are contained in the static hedging
portfolio (SHP) approach which can be divided into two main distinct formulation ideas: the
first, proposed by Carr and Chou (1997) [8] and Carr et al. (1998) [9], constructs a SHP with
European-style plain-vanilla options with the same maturity as the target option but with dif-
ferent strike values, being known as the vertical replication strategy; the second proposed by
Derman et al. (1995) [17], constructs the SHP using again standard European-style options but
with different maturities and fixing the strike value to the barrier boundary to match the target
option price, also called the horizontal replication strategy, hereafter DEK method.
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The DEK method only matches the target option at n evenly spaced time points where the
underlying price equals the barrier. This discrete process generates some errors, while increas-
ing the time points will result in an increase of the accuracy of the approximation, increasing
the number of time points will also increase the computing time necessary to replicate the target
option price. The modified DEK method proposed by Chung et al. (2010) [12] aims to reduce
these replication errors and provides a faster convergence to the price of the option. The DEK
method and the modified DEK method are going to be the two methodolgies observed when
pricing single barrier options.

The SHP approach, proposed by Dias et al. (2015) [19], is going to be used for the valuation
of double barrier options. This methodology extends the modified DEK under the JDCEV
model and subsequently the CEV model as well. This thesis studies the improvement in terms of
efficiency of the Repeated Richardson Extrapolation Technique applied to these static hedging
methods, under the CEV and the JDCEV model following the work in Dias et al. (2015) [19].

The repeated Richardson extrapolation technique is a numerical method already used through-
out the literature to derive computationally efficient approximations for different kinds of pric-
ing methods. For example, Broadie et al. (1996) [5] and Heston et al. (2000) [22] apply the
Richardson extrapolation to binomial tree models in option pricing. Or, Bunch et al. (1992) [7]
and Chung et al. (2007) [11] in American-style option pricing. In this thesis, the Richardson
extrapolation is going to be used in order to try to improve the efficiency of static replication
methods when pricing European-style barrier options.

The rest of this thesis is structured as follows. Section 2 provides a summary of the JDCEV
model characteristics. Section 3 will describe the three SHP methods used and the analytical
formulae for pricing European-style plain-vanilla options and European-style cash-or-northing
binary options. Section 4 will outline the Richardson extrapolation technique that will be im-
plemented and tested in the numerical results in section 5. Finally, section 6 contains some
concluding remarks.
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CHAPTER 2

JDCEV framework

The current section provides a summary of the JDCEV modelling architecture, first proposed
by Carr and Linetsky (2006) [10] for the valuation of European-style standard options, and later
used for pricing their American counterparts by Nunes (2009) [27] and Ruas et al. (2013) [30].

It is assumed throughout that the financial market is arbitrage-free and frictionless, and that
trading takes place continuously on the time interval T B [t0,T ], for some fixed time T > t0.
The complete probability space (Ω,G,Q) represents uncertainty, where Q is taken as given as
the equivalent martingale measure associated to the numeráire ’money market account’.

The underlying asset price is represented by S t for t < ζ or zero otherwise, where ζ rep-
resents a random time of default and assuming that the equity holders receive no recovery in
the case of bankruptcy. The pre-default asset price is characterized by the following time-
inhomogeneous diffusion process under the risk-neutral measure Q:

dS t

S t
= [rt − qt + λ(S , t)]dt + σ(S , t)dWQ

t , (1)

where S t0 > 0, rt ∈ R represents the time-t riskless and short-term interest rate, qt ∈ R describes
the time-t dividend yield, λ(S , t) ∈ R+ denotes the hazard rate that compensates stockholders
for default, σ(S , t) ∈ R+ is the time-t instantaneous volatility of asset returns, and WQ

t ∈ R

corresponds to a standard Wiener process defined under measure Q generating the filtration
F = {Ft, t ≥ t0}.

The underlying asset price process, akin to Carr and Linetsky (2006) [10], can either diffuse
or jump to default. In the case of diffusion, bankrupcy takes place at the first passage time of
the stock price to zero:

τ0 B inf{t > t0 : S t = 0}. (2)
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The stock price can also jump to a cemetery state if the integrated hazard rate

Λt B


∫ t

t0
λ(S , u)du , τ0 > t

∞ , τ0 ≤ t
(3)

is greater or equal to the level drawn from an exponential random variable Θ independent of
{WQ

t ; t ∈ τ} at the first jump time

ζ̂ B inf{t > t0 : Λt ≥ Θ}, (4)

of a doubly stochastic Poisson process with intensity λ(S , t). Therefore, the time of default is
simple given by:

ζ = τ0 ∧ ζ̂, (5)

and D = {Dt : t ≥ t0} is the filtration generated by the default indicator process Dt = 1{t>ζ}.
In summary, the default time ζ is decomposable in two parts: a predictable component, τ0,
whenever the asset price hits a zero barrier by diffusion; and, a totally inaccessible part, ζ̂,
associated to an unpredictable jump to default.

As in the classical CEV model of Cox (1975) [14], Carr and Linetsky (2006) [10] accomo-
date the leverage effect and the implied volatility skew by specifying the instantaneous stock
volatility as a power function:

σ(S , t) = atS
β̄
t , (6)

where β̄ < 0 is the volatility elasticity parameter and at > 0, ∀t, is a deterministic volatility
scale function. Furthermore, and to include a positive correlation between default probabilities
and equity volatility, Carr and Linetsky (2006) [10] also assume that the default intensity is an
increasing affine function of the instantaneous stock variance:

λ(S , t) = bt + cσ2(S , t), (7)

where c ≥ 0, and bt ≥ 0, ∀t, is a deterministic function of time.
The proposed modelling framework described by equations (1) − (5) encompasses several

well-known option pricing models as special cases, namely the standard GBM and the CEV
model, allowing the valuation framework to be compared with alternative methods available in
the literature for pricing barrier options under these two modelling assumptions.
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CHAPTER 3

The static hedging approach

This section describes the static replication approach proposed by Derman et al. (1995) [17],
DEK method, for valuing and hedging European barrier options, the modified DEK method of-
fered by Chung et al. (2010) [12], and the SHP approach provided by Dias et al. (2015) [19] for
efficiently pricing and hedging European double barrier knock-out and knock-in options. Be-
fore introducing these methods, the analytical formulae for pricing European standard options
and European cash-or-nothing binary options under the JDCEV modelling architecture will be
presented.

3.1. European-style standard options

For the time-homogeneous case, and assuming that ζ > t0, Carr and Linetsky (2006, Proposition
5.5) [10] show that the time-t0 price of a standard call (φ = −1) or put (φ = 1) option with strike
price K and expiry date T (≥ t0) condition on no default is given by:

v0
t0(S t0 ,K,T ; φ) = − φe−qτS t0Φ+1

(
0, ỹ(K, t0,T ); δ+, x̃(S t0 , t0,T )

)
+φe−(r+b)τKx̃(S t0 , t0,T )

1
2|β̄|Φ+1

(
−

1
2|β̄|

, ỹ(K, t0,T ); δ+, x̃(S t0 , t0,T )
)
,

(8)

where

τ = T − t0, (9)

δ+ B
2c + 1
|β̄|

+ 2, (10)

x̃(S t0 , t0,T ) B

(
1
|β̄|

S |β̄|t0

)2

θ
, (11)

ỹ(K, t0,T ) B

(
1
|β̄|

K |β̄|e−|β̄|(r−q+b)τ
)2

θ
, (12)

and

θ ≡ θ(t0,T ) B

a2(T − t0) , r − q + b = 0
a2

2|β̄|(r−q+b) (1 − e−2|β̄|(r−q+b)(T−t0)) , r − q + b , 0
. (13)
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The functions Φξ(p, y; v, λ) B Eχ
2(v,λ)(Xp1ξX≥ξy) as defined in Carr and Linetsky (2006,

Equations 5.11 and 5.12) [10] represent, for ξ ∈ {−1, 1}, the truncated p-th moments of a
noncentral chi-square random variable X with v degrees of freedom and noncentrality parameter
λ.

The value of the recovery part of the put option at t0 (note that the recovery part of the call
is zero) is given by:

vD
t0 (S t0 ,R,T ; 1,T ) = Re−r(T−t0)[1 − S P(S t0 , t0; T )], (14)

where

S P(S t0 , t0; T ) = e−b(T−t0)
(
χ2(S t0)
θ

) 1
2|β̄|

M

(
−

1
2|β̄|

; δ+,
χ2(S t0)
θ

)
(15)

is understood as the risk-neutral probability of surviving beyond time T > t0, with M(p; v, λ)
representing the p-th raw moment of a noncentral chi-square random variable X with v degrees
of freedom and noncentrality parameter λ. In the numerical analysis, the algorithm presented
in Dias and Nunes (2018) [18] is used, for valuing the truncated p-th moments Φξ(p, y; v, λ),
with ξ ∈ {−1, 1}, and the raw moments M(p; v, λ) using the identity shown in Carr and Linetsky
(2006, Equation 5.13) [10].

The theta of the standard call (φ = −1) or put (φ = 1) option conditional on no default at t0

is given by:

Θv0

t0 (S t0 ,K,T ; φ) B −
∂v0

t0(S t0 ,K,T ; φ)
∂τ

=φKe−(r+b)τ[x̃(S t0 , t0,T )]−p × Φ−φ(p, ỹ(K, t0,T ); δ+, x̃(S t0 , t0,T ))

×

[
(r + b) −

θ′(τ)
θ(τ)

(
p +

x̃(S t0 , t0,T )
2

)]
+φKe−(r+b)τ[x̃(S t0 , t0,T )]−p ×

θ′(τ)
θ(τ)

Φ̃−φ(p, ỹ(K, t0,T ); δ+, x̃(S t0 , t0,T ))

+Ke−(r+b)τ[x̃(S t0 , t0,T )]−p × 2pe−
ỹ(K,t0 ,T )

2 −
x̃(S t0 ,t0 ,T )

2

(
ỹ(K, t0,T )

2

) δ+
2 +p

×

[
2|β̄|(r − q + b) +

θ′(τ)
θ(τ)

]
H(x̃(S t0 , t0,T ), ỹ(K, t0,T ), δ+) − φS t0qe−qτ

×Φ−φ(0, ỹ(K, t0,T ); δ+, x̃(S t0 , t0,T ))

−S t0e
−qτ

{
ỹ(K, t0,T )p(ỹ(K, t0,T ); δ+, x̃(S t0 , t0,T ))

[
2|β̄|(r − q + b) +

θ′(τ)
θ(τ)

]
−x̃(S t0 , t0,T )p(ỹ(K, t0,T ); δ+ + 2, x̃(S t0 , t0,T ))

θ′(τ)
θ(τ)

}
,

(16)
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where Φ̃ξ(p,w; v, λ), for ξ ∈ {−1, 1}, is described in Ruas et al. (2013, Equations 37 and 35) [30],
p(w; v, λ) represents the probability density function of a noncentral chi-square distribution with
v degrees of freedom and noncentrality parameter λ,

p B −
1

2|β̄|
, (17)

and

H(x, y, z) B
∞∑

i=0

(
xy
4

)i

i!Γ( z
2 + i)

. (18)

The theta of the recovery part of the put option is given by:

ΘvD

t0 (S t0 ,R,T ; 1) B −
∂vD

t0 (S t0 ,R,T ; 1)
∂τ

= − Re−rτ
{
S P(S t0 , t0; T ) ×

[
(r + b) −

θ′(τ)
θ(τ)

(
p +

x̃(S t0 , t0,T )
2

)]
− r

}
−Re−(r+b)τ[x̃(S t0 , t0,T )]−p θ

′(τ)
θ(τ)

× M̃(p, ỹ(K, t0,T ); δ+, x̃(S t0 , t0,T )),

(19)

with

M̃(p,w; v, λ) B Φ̃−1(p,w; v, λ) + Φ̃+1(p,w; v, λ). (20)

3.2. European-style cash-or-nothing options

Assuming that ζ > t0, and under the financial model described by equations (1)− (5), the time-t0

value of a cash-or-nothing call (φ = −1) or put (φ = 1) option with strike price K, expiry date
T (≥ t0) and fixed compensation amount X, conditional on no default is given by:

Bin0
t0(S t0 ,K,T, X; φ) B Xe−(r+b)τ[x̃(S t0 , t0,T )]−p × Φ−φ(p, ỹ(K, t0,T ); δ+, x̃(S t0 , t0,T )). (21)

Regarding the recovery part of the put option, its value is achieved as:

BinD
t0 (S t0 ,K,T ; 1) = vD

t0 (S t0 ,K,T ; 1). (22)
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The theta of the cash-or-nothing call (φ = −1) or put (φ = 1) conditional on no default at t0

is given by:

ΘBin0

t0 (S t0 ,K,T, X; φ) B −
∂Bin0

t0(S t0 ,K,T, X; φ)
∂τ

=Xe−(r+b)τ[x̃(S t0 , t0,T )]−p × Φ−φ(p, ỹ(K, t0,T ); δ+, x̃(S t0 , t0,T ))

×

[
(r + b) −

θ′(τ)
θ(τ)

(
p +

x̃(S t0 , t0,T )
2

)]
+Xe−(r+b)τ[x̃(S t0 , t0,T )]−p ×

θ′(τ)
θ(τ)

Φ̃−φ(p, ỹ(K, t0,T ); δ+, x̃(S t0 , t0,T ))

+φXe−(r+b)τ[x̃(S t0 , t0,T )]−p × 2pe−
ỹ(K,t0 ,T )

2 −
x̃(S t0 ,t0 ,T )

2

(
ỹ(K, t0,T )

2

) δ+
2 +p

×

[
2|β̄|(r − q + b) +

θ′(τ)
θ(τ)

]
× H(x̃(S t0 , t0,T ), ỹ(K, t0,T ), δ+).

(23)

The theta of the recovery part of the cash-or-nothing put option, ΘBinD

t0 (S t0 , X,T ; 1), is given
by equation (19) with R = X.

3.3. DEK method

The static replication approach proposed by Derman et al. (1995) [17] aims to formulate a static
hedge portfolio of standard European options with different maturities to match the terminal and
boundary conditions of a target barrier option. To correspond the value of the portfolio to the
target option at the barrier before maturity at n evenly spaced time points, t0 = 0, t1, ..., tn−1,
DEK adds Wi units of a standard option, maturing at time ti+1 and with a strike price equal to
the barrier, to the portfolio. The weight is then computed using a value-matching condition. By
working its way backwards, the DEK method can establish the amount of standard options used
and, therefore, it replicates the payoffs of the target barrier option.

3.3.1. Single barrier options

The replication method begins by analysing the expiration date, composing a starting portfolio
which value matches the value of the target option when assuming the barrier is never hit. Then,
working backwards, new options are added to the replicating portfolio in order to match both
values along the barrier at each time-step.

Let us first consider a knock-out single barrier (SB) option, that consists of a standard option
if the barrier is never hit, or zero otherwise. The replication method begins with a portfolio
consisting of a European-style call or put option, depending on the target option being a SB call
or put, with the same contract characteristics as the target option.

In the case of a knock-in SB option, when assuming the barrier is never hit until maturity its
value will be zero, or that of a standard option if touched. Hence, the starting portfolio will be
empty, again, by assuming the barrier is never touched until maturity.

Next, moving back one time-step T − h (with h = ∆t), we can add to the starting portfolio
a position in an ordinary call option with expiration at T and strike equal to the barrier, in case

8



of an up barrier. If it is a down barrier, the position added is an ordinary put. The weight of the
new position must be such that when multiplied to the theoretical value of the new option and
added to the theoretical value of the portfolio, both at the barrier and at time T − h, will yield
the value of the target SB (0 in case of a knock-out, or the value of a standard option with the
same characteristics as the target option in the case of a knock-in).

Following up by going one time-step further (T − 2h) and, in the same way, adding another
position to the replicating portfolio, this time with expiration T −h, to ensure that it matches the
target SB value at the boundary at T − 2h. Continuing this backward process until t0 completes
the static replicating portfolio in such manner that it has the same value as the target SB at all
time-steps. The new positions expire out of the money if the barrier is never touched (since their
strike is equal to the barrier) and therefore they do not alter the cash position of the portfolio
that already replicate the target option at that specific point in time.

Considering an up-and-out call (UOC) as the target option, the starting portfolio would
contain a single call option with a contract with the same characteristics as the UOC. The value
of the replicating portfolio at the barrier (B) and at time ti will be equal to C(B,K,T − ti) +∑n−1

j=i w jC(B, B, t j+1 − ti), for i = n − 1, n − 2, ..., 0. So, the value matching condition at each
time-step is:

C(B,K,T − ti) +

n−1∑
j=i

w jC(B, B, t j+1 − ti) = 0. (24)

When computing the DEK method, we solve the above equation at each time-step to com-
pute the weight values, as the only unknown variable is Wi. To list another example, consider
a down-and-in put as the target option. The starting portfolio will be empty, at each time-
step a new put is added and the value of the portfolio at the barrier and at time ti is equal to∑n−1

j=i W jP(B, B, t j+1 − ti). At the barrier, the target option will be equivalent to a standard put
option with the same contract specifications, so, the value matching condition in this case is
given by:

n−1∑
j=i

w jP(B, B, t j+1 − ti) = P(B,K,T − ti). (25)

In order to increase the accuracy of the DEK method, the number n of evenly spaced discrete
points can be increased, which will result in a speed-accuracy trade-off that is analyzed in
section 5.

3.3.2. Double barrier options

Implementing the DEK method to replicate double barrier options is similar to the process
described above. Using two, instead of just one value matching condition, one for each barrier,
the portfolio is constituted by standard European options to match the value of the target option
on both the upper (U) and lower (L) barriers. To hedge the upper barrier we add standard call
options with strike price at the upper barrier, while at the lower barrier we hedge by adding
standard put options with the lower barrier as the strike price.

9



Under the JDCEV framework the possibility of jump to default has to be accounted for.
Taking a double barrier knock-out option, assuming the barrier is never touched before the
maturity date implies that there is no jump to default. Furthermore, the jump to default would
trigger the knock-out event and bring the value of the target option to zero. So, the replication
is made by adding standard options conditional on no default.

In case of a double barrier knock-in option, its value is equal to a standard option at both
barriers. Assuming the barriers are never reached until the maturity date, indicates again that
there was no jump to default and the value of the target option is zero. If a jump to default
occurs during the life of the target option, in case of a put, its value is going to be equal to the
recovery component with the same contract characteristics as the DB option, and for that reason
the replicating porfolio will start with one unit of the recovery component, and the hedging is
continued by adding standard options conditional on no default.

Considering a double barrier knock-out call option, the starting portfolio is constituted by
one unit of standard call option with the same contract characteristics as the target option. Next,
to ensure a zero value at both barriers, we use the two following value matching conditions at
each time step:

C(U,K,T − ti) +

n−1∑
j=i

w jC(U,U, t j+1 − ti) +

n−1∑
j=i

g jP(U, L, t j+1 − ti) = 0, (26)

C(L,K,T − ti) +

n−1∑
j=i

w jC(L,U, t j+1 − ti) +

n−1∑
j=i

g jP(L, L, t j+1 − ti) = 0. (27)

The first condition matches the value of the replicating portfolio to the value of the target
option at time ti at the upper barrier, while the second matches the values at the lower barrier.
There are only two unknown variables, wi and gi which correspond to the weights attached to
the new call and put options added to the portfolio and are calculated by solving both equations.

3.4. Modified DEK method

The hedging performance of the DEK method, although theoretically attractive, when applied
discretely might not be so accurate. Due to this discrete implementation, the value of the repli-
cating portfolio does not match the value of the target option at the barrier except at those
discrete time points, being this the major source for replication errors. Chung et al. (2010) [12]
perceived that the DEK portfolio may be sensitive to the change of time, i.e. theta different from
zero, which result also in replicating errors. To address this issue of large theta values on the
barrier, Chung et al. (2010) [12] propose a modified static hedge portfolio.

The intention of the modified DEK method is to construct a portfolio which has not merely
the same value but also the same theta on the barrier as the target option at the discrete time
points. To meet both goals, positions in cash-or-nothing binary options are also added to the
portfolio along with standard options.

The process is very similar to the DEK method: the starting portfolio is constructed in the
same manner, but when calculating the weights of the new options in addition to the single value
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matching condition the modified DEK method also has a theta matching condition. At each
time-step the weights of the new standard option and binary option are computed by solving
both matching conditions.

To match the value and theta conditions on the barrier before maturity at n evenly spaced
time points, t0 = 0, t1, ..., tn−1, wi units of a standard option and ŵi units of a binary option
maturing at ti+1 with a strike price equalling to the barrier are added to the portfolio. The
modified DEK method, just as the DEK method, continues this backward process to complete
the replication in the same way.

Considering an up-and-out put (UOP) as the target option, the starting portfolio would con-
tain a single put option with a contract with the same characteristics as the UOP. The value
of the replicating portfolio at the barrier (B) and at time ti will be equal to P(B,K,T − ti) +∑n−1

j=i w jC(B, B, t j+1 − ti), for i = n − 1, n − 2, ..., 0. So, the two matching conditions at each
time-step are given by:

P(B,K,T − ti) +

n−1∑
j=i

w jC(B, B, t j+1 − ti) +

n−1∑
j=i

ŵ jBinc(B, B, t j+1 − ti) = 0, (28)

Θp(B,K,T − ti) +

n−1∑
j=i

w jΘc(B, B, t j+1 − ti) +

n−1∑
j=i

ŵ jΘBinc(B, B, t j+1 − ti) = 0. (29)

The first condition matches the value of the replicating portfolio to the value of the target
option at time ti at the barrier, while the second matches their corresponding thetas. There are
only two unknown variables, wi and ŵi which correspond to the weights attached to the new
standard call and binary call options added to the portfolio and are calculated by solving both
equations.

In the case of double barrier options the SHP approach offered by Dias et al. (section
4.2, 2015) [19] describes the same process outlined above, but, following Chung et al. (2013)
[13] also adds cash-or-nothing options to the replicating portfolio just before the maturity of the
target option. Hence, the four matching conditions are defined as shown in Dias et al. (equations
47-50, 2015) [19].
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CHAPTER 4

Repeated Richardson extrapolation

Consider the problem of calculating an unknown value, a0, which can be approximated by a
calculable function f (h), depending on a step-size h > 0 and provided by some numerical
scheme, such that f (0) = limh→0 f (h) = a0. In order to approximate the unknown quantity
a0, the Richardson extrapolation technique can be implemented provided that the complete
expansion of the truncation error about f (h) is known. Based on the previous statement, it is
assumed that f (h) can be written as:

f (h) = a0 + a1hp1 + a2hp2 + a3hp3 + · · · + akhpk + O(hpk+1), (30)

with known exponents 0 < p1 < p2 < · · · < pk+1, but unknown parameters a0, a1, · · · , ak,
where O(hpk+1) denotes a quantity whose size is proportional to hpk+1 , or possibly smaller, and
h ∈ [0,H] for some basic step H > 0.

The intention behind the Richardson extrapolation technique is to improve the accuracy of
the approximation via a linear combination of two different step sizes. the function f (h) can
be successively computed using each time smaller step sizes, h1 > h2 > · · · > 0. To ad-
dress the possible problem of non-uniform convergence, Omberg (1987) [28] and Chang et al.
(2007) [11] suggest using geometric-spaced time points achieved by continuously doubling the
number fo uniformly-spaced exercise dates for compound and American options. The Romberg
sequence is going to be applied when implementing the repeated Richardson extrapolation tech-
nique in response to this issue. Therefore, we carry out the following progression of step-sizes:
h1 = T/8 and hi+1 = hi/2 for {i = 1, 2, 3, · · · , n − 1}, where T is the time to maturity of the
target barrier option. By using the Romberg sequence, the possible non-uniform convergence
is overcame as it allows the nesting of the previous replication set, meaning that the time steps
observed in f (h2) include all the time steps in f (h1) and so forth, ensuring that every new ap-
proximation is at least as good as the last one. According to Schmidt (1968) [31], the following
algorithm when pm = p × m,m = 1, · · · , k can be formulated.
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Algorithm:
For i ≥ 2 and j = 1, 2, 3, · · · , i − 1, the Richardson extrapolation technique and its repeated

version are defined by

fi, j = fi, j−1 +
fi, j−1 − fi−1, j−1( hi− j

hi

)p
− 1

, (31)

where fi,0 = f (hi) represents the price of a barrier option computed by either the DEK or the
modified DEK method with a step size of hi, and fi, j its approximated value obtained from the
repeated Richardson extrapolation computed j times using step sizes of hi, hi+1, · · · , hi+ j. We set
p = 1, which is one of the commonly used extrapolation schemes. The extrapolation, stopped
at the n-th order, can be represented in the following arrangement:

f (h1) = f1,0

f (h2) = f2,0 f2,1

f (h3) = f3,0 f3,1 f3,2
...

. . .

f (hn−1) = fn−1,0 fn−1,1 fn−1,2 fn−1,3 · · · fn−1,n−2

f (hn) = fn,0 fn,1 fn,2 fn,3 · · · fn,n−2 fn,n−1

The first columnm, terms fi,0, are calculated by one of the methods that will be presented
in the next section, while the following columns, terms fi, j, are computed through the recursion
shown in equation 31. The two-point Richardson extrapolation technique is then repeated to
achieve a fast numerical scheme that can provide an increase to the accuracy observed in two
different ways: while going up the i axis we get a decrease in the step-size value, while going up
the j axis we get a better aproximation as a result of the repetion of the Richardson extrapolation
technique, implying that the quantity fn,n−1 is the most accurate approximation.
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CHAPTER 5

Numerical results

This section compares the static replication performance of the DEK, the modified DEK and
the repeated Richardson extrapolation applied to both techniques, under the CEV model and
the general JDCEV framework. Accuracy is measured by the mean absolute percentage error
(MAPE) relative to a benchmark value and efficiency is obtained by the total CPU time (in
seconds) necessary to replicate the target option.

First, the performance of each method is going to be tested under the CEV model in both
single barrier and double barrier type options. Secondly, only the performance of the replication
of double barrier options is going to be tested using the general JDCEV modelling framework.
To compare the replication of double barrier options in both modelling frameworks the paper of
Dias et al. (2015) [19] is going to be followed.

5.1. CEV model

The CEV model of Cox (1975) [14], as previously shown by Carr and Linetsky (2006) [10], can
be nested into the general framework described by equations (1)-(5) as a result of the following
conditions: rt = r, qt = q, λ(S , t) = 0, and σ(S , t) = δS β/2−1

t , with δ ∈ R+ and β ∈ R. Thus,
β̄ = β/2 − 1.

The analytical formulas for computing the standard options value and respective thetas
needed for the modified DEK method are shown in Larguinho et al. (2013) [24]. To achieve
closed-form solutions for the cash-or-nothing options under the CEV model would be straight-
forward following the same line of thought. The computation of the complementary distribution
function of a noncentral chi-square random variable Qχ2(v,λ)(x) with v degrees of freedom and
noncentrality parameter λ is made with the algorithm proposed by Benton and Krishnamoorthy
(2003) [2].

Considering a European up-and-out call option, the following table compares the DEK
method, proposed by Derman et al. (1995) [17], and the repeated Richardson extrapolation
employed in the DEK method.

The first column indicates the guideline i which represents the step sizes (∆t = hi = T/2i+2)
used in the same row. The second column displays the values obtained by employing the regular
DEK method. The third column reports the computed values obtained by the implementation
of the repeated Richardson extrapolation technique only once ( j = 1), the subsequent colomuns
follow by employing the Richardson extrapolation twice, three times, until j times. The values
in parentheses represent the CPU computing time to replicate the target option in seconds.
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Table 1. Repeated Richardson Extraplotion em-
ployed in the DEK method under the CEV model

fi, j DEK Repeated Richardson Extrapolation of DEK
i j = 0 1 2 3 4 5

1 1.2218
(0.0156)

2 1.0413 0.8607
(0.0156) (0.0192)

3 0.9546 0.8679 0.8704
(0.0469) (0.0477) (0.0481)

4 0.9123 0.8700 0.8707 0.8708
(0.1081) (0.1095) (0.1103) (0.1122)

5 0.8915 0.8706 0.8708 0.8708 0.8708
(0.2272) (0.2274) (0.2281) (0.2336) (0.2351)

6 0.8811 0.8708 0.8708 0.8708 0.8708 0.8708
(0.4083) (0.4106) (0.4127) (0.4160) (0.4209) (0.4233)

Note: This table employs the repeated Richardson extrapolation tech-
nique in the DEK method in the static replication of a European up-and-
out call option with the following contract characteristics: S t0 = 100,
K = 100, barrier value of 120, T − t0 = 1 year, β = 0, δS β/2−1

0 = 0.25,
r = 0.10, and q = 0. The benchmark value of the target option is com-
puted by the transformed trinomial tree of Boyle and Tian (1999) [4]
with 100,000 time steps and is equal to 0.8708.

As observed, the use of the repeated Richarson extrapolation in the DEK method generates
superior results. While we achieve the benchmark value of 0.8708 with the Richardson extrap-
olation in f4,3, with the DEK method the best approximation in 0.8811 in f6,0 needing more than
double the amount of CPU computing time.

To investigate this result even further, we can look at the reduction in the replication error.
We have f3,1 = f3,0 + ( f3,0− f2,0)/(2−1) = 0.8679, after employing the Richardson extrapolation
once, that represents a reduction of (| f3,0−a0| − | f3,1−a0|)/| f3,0−a0| = 96.54%. By employing it
twice, we get f3,2 = 0.8704 and a reduction of 99.52% in the replication error when comparing
to f3,0.

In the succeeding table we make a similar comparison by computing the static replication
of the same European up-and-out call option employing the modified DEK method, proposed
by Chung et al. (2010) [12] and Tsai (2014) [32], and the repeated Richardson extrapolation
applied to the modified DEK method.

Similar to Table 1, the first column indicates the number of step sizes (∆t = hi = T/2i+2)
used within the same row. The second column displays the values obtained by the modified
DEK method. The third column reports the computed values by the implementation of the
repeated Richardson extrapolation technique only once ( j = 1), and the subsequent collumns
follow by employing the Richardson extrapolation twice, three times, until j times. The values
in parentheses represent the CPU computing time to replicate the target option in seconds.
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Table 2. Repeated Richardson Extrapolation employed
in the modified DEK method under the CEV model

fi, j Mod. DEK Repeated Richardson Extrapolation of Mod. DEK
i j = 0 1 2 3 4 5

1 0.9023
(0.0275)

2 0.8827 0.8631
(0.0555) (0.0607)

3 0.8752 0.8678 0.8693
(0.0836) (0.1231) (0.1266)

4 0.8725 0.8697 0.8703 0.8704
(0.1681) (0.2443) (0.2492) (0.2516)

5 0.8714 0.8704 0.8707 0.8707 0.8707
(0.3427) (0.5045) (0.5072) (0.5080) (0.5100)

6 0.8711 0.8707 0.8708 0.8708 0.8708 0.8708
(0.7195) (0.9848) (0.9850) (0.9889) (0.9911) (0.9955)

Note: This table employs the repeated Richardson extrapolation technique
in the modified DEK method in the static replication of an European up-
and-out call option with the following contract characteristics: S t0 = 100,
K = 100, barrier value of 120, T − t0 = 1 year, β = 0, δS β/2−1

0 = 0.25, r =

0.10, and q = 0. The benchmark value of the target option is computed by
the transformed trinomial tree of Boyle and Tian (1999) [4] with 100,000
time steps and is equal to 0.8708.

Firstly, we observe that the modified DEK method exceeds in performance relatively to the
DEK method: it produces a far more accurate estimation in f3,0 = 0.8752, than the f6,0 = 0.8811
observed in Table 1, while requiring less computing time.

Applying the Richardson extrapolation in the modified DEK method, just like in Table 1,
also improves its efficiency. Looking at f3,0 = 0.8752, we get a reduction in the replication error
of 31.82% after employing the Richardson extrapolation once, with f3,1 = 0.8678. Employing
it twice, f3,2 = 0.8693, results in a reduction of 65.91% relatively to f3,0 = 0.8752.

Although employing the Richardson extrapolation in the modified DEK method improves
its results, it can be preferable its application to the DEK method, which has greater benefits.
For example, f3,2 = 0.8704 of Table 1 is a more accurate estimation than f3,2 = 0.8693 of Table
2, requiring only 0.0481 seconds to the 0.1266 seconds required when using the Richardson
extrapolation in the modified DEK method.

The next four tables value an up-and-in call and a down-and-in put in order to understand
if the results obtained are consistent for other types of single barrier options. These tables are
modelled after the previous two, i.e. the first column indicates the guideline i which represents
the step sizes (∆t = hi = T/2i+2) used within in the same row. The second column presents the
values obtained by either the modified DEK or the DEK method. The last columns show the
values computed by the Richardson extrapolation employed in the method considered before,
and follow as already explained above. The values in parentheses represent the CPU computing
time to replicate the target option in seconds.
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Table 3. Numerical results of up-and-in call prices
under the CEV model based on the DEK method

fi, j DEK Repeated Richardson Extrapolation of DEK
i j = 0 1 2 3 4 5

1 13.7804
(0.0115)

2 13.9609 14.1415
(0.0240) (0.0253)

3 14.0476 14.1342 14.1318
(0.0510) (0.0537) (0.0540)

4 14.0899 14.1322 14.1315 14.1314
(0.1141) (0.1147) (0.1151) (0.1153)

5 14.1107 14.1316 14.1314 14.1314 14.1314
(0.2287) (0.2456) (0.2471) (0.2472) (0.2490)

6 14.1211 14.1314 14.1314 14.1314 14.1314 14.1314
(0.4723) (0.4975) (0.4977) (0.5058) (0.5061) (0.5069)

Note: This table employs the repeated Richardson extrapolation tech-
nique in the DEK method in the static replication of an European up-
and-in call option with the following contract characteristics: S t0 = 100,
K = 100, barrier value of 120, T − t0 = 1 year, β = 0, δS β/2−1

0 = 0.25,
r = 0.10, and q = 0. The benchmark value of the target option is com-
puted by the transformed trinomial tree of Boyle and Tian (1999) [4]
with 100,000 time steps and is equal to 14.1314.

Table 3 values a European-style up-and-in call option using the DEK method. As seen
before the performance of the method is enhanced when employing the Richardson extrapo-
lation, which achieves the benchmark value at the position f4,3. Taking more than double the
computing time, the standard DEK method did not produce the correct value.
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Table 4. Numerical results of up-and-in call prices un-
der the CEV model based on the modified DEK method

fi, j Mod. DEK Repeated Richardson Extrapolation of Mod. DEK
i j = 0 1 2 3 4 5

1 14.0999
(0.0525)

2 14.1195 14.1391
(0.1053) (0.1098)

3 14.1270 14.1344 14.1329
(0.2166) (0.2270) (0.2281)

4 14.1297 14.1325 14.1319 14.1318
(0.4453) (0.4639) (0.4641) (0.4753)

5 14.1308 14.1318 14.1315 14.1315 14.1315
(0.8646) (0.9859) (0.9862) (0.9864) (0.9886)

6 14.1311 14.1315 14.1314 14.1314 14.1314 14.1314
(1.9153) (2.0722) (2.0733) (2.0750) (2.0751) (2.0772)

Note: This table employs the repeated Richardson extrapolation technique
in the modified DEK method in the static replication of an European up-
and-in call option with the following contract characteristics: S t0 = 100,
K = 100, barrier value of 120, T − t0 = 1 year, β = 0, δS β/2−1

0 = 0.25, r =

0.10, and q = 0. The benchmark value of the target option is computed by
the transformed trinomial tree of Boyle and Tian (1999) [4] with 100,000
time steps and is equal to 14.1314.

Table 4 values the same up-and-in call option but using the modified DEK method. Using
the Richardson extrapolation the benchmark value is obtained in about 2 seconds, in the position
f6,2. Compared to the up-and-out call seen before, both attained the benchmark at the same
position, although this example takes 1 second more.

The repeated Richardson extrapolation technique, when employed to the DEK method,
clearly not only improves the speed-accuracy trade-off of the replication but also produces better
results than when employed in the modified DEK method.
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Table 5. Numerical results of down-and-in put prices
under the CEV model based on the DEK method

fi, j DEK Repeated Richardson Extrapolation of DEK
i j = 0 1 2 3 4 5

1 5.3633
(0.0095)

2 5.3975 5.4317
(0.0200) (0.0203)

3 5.4141 5.4307 5.4303
(0.0420) (0.0443) (0.0445)

4 5.4222 5.4303 5.4302 5.4302
(0.0876) (0.0913) (0.0919) (0.0923)

5 5.4262 5.4302 5.4302 5.4302 5.4302
(0.1521) (0.1919) (0.1924) (0.1931) (0.1936)

6 5.4282 5.4302 5.4302 5.4302 5.4302 5.4302
(0.2216) (0.4164) (0.4168) (0.4177) (0.4181) (0.4188)

Note: This table employs the repeated Richardson extrapolation tech-
nique in the DEK method in the static replication of an European down-
and-in put option with the following contract characteristics: S t0 = 100,
K = 100, barrier value of 90, T − t0 = 1 year, β = 0, δS β/2−1

0 = 0.25,
r = 0.10, and q = 0. The benchmark value of the target option is com-
puted by the transformed trinomial tree of Boyle and Tian (1999) [4]
with 100,000 time steps and is equal to 5.4302.

Table 5 values a European-style down-and-in put option using the DEK method. The results
are consistent to what was shown before: the Richardson extrapolation applied to the DEK
method highly improves its performance. The benchmark value is obtained first at the position
f4,2 with 0.09 seconds of computing time while the best estimation of the DEK method, with
the same computing time, is 5.4222 at position f4,0.
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Table 6. Numerical results of down-and-in put prices
under the CEV model based on the modified DEK
method

fi, j Mod. DEK Repeated Richardson Extrapolation of Mod. DEK
i j = 0 1 2 3 4 5

1 5.4225
(0.0460)

2 5.4270 5.4315
(0.0931) (0.0983)

3 5.4290 5.4311 5.4309
(0.1891) (0.2017) (0.2023)

4 5.4298 5.4305 5.4303 5.4302
(0.3913) (0.4268) (0.4277) (0.4279)

5 5.4300 5.4303 5.4302 5.4302 5.4302
(0.7785) (0.8723) (0.8725) (0.8733) (0.8738)

6 5.4301 5.4302 5.4302 5.4302 5.4302 5.4302
(0.7915) (1.1648) (1.1888) (1.2088) (1.2108) (1.2148)

Note: This table employs the repeated Richardson extrapolation technique
in the modified DEK method in the static replication of an European down-
and-in put option with the following contract characteristics: S t0 = 100,
K = 100, barrier value of 90, T − t0 = 1 year, β = 0, δS β/2−1

0 = 0.25, r =

0.10, and q = 0. The benchmark value of the target option is computed by
the transformed trinomial tree of Boyle and Tian (1999) [4] with 100,000
time steps and is equal to 5.4302.

Table 6 uses the modified DEK method to replicate the same target option as Table 5. In
this example too the Richardson extrapolation converges faster to the benchark when employed
to the DEK method. Using the modified DEK method it takes about 0.43 seconds contrasting
with the 0.09 of the DEK.

Next, the application of the Richardson extrapolation technique is used on the replication of
European-style double barrier options in order to understand its impact on the speed-accuracy
trade-off of the DEK method and of the SHP approach formulated in Dias et al. (2015) [19] to
extend the modified DEK method to double barrier options.
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Figure 1 compares the speed-accuracy trade-off of three methods: the SHP approach, the
Richardson extrapolation employed to the DEK method, and the Richardson extrapolation em-
ployed to the SHP approach. The standard DEK method is not used in this figure since to
achieve the same levels of accuracy it would take a much higher number of time steps and
therefore a substantial amount of computing time.

Figure 1. The figure compares the speed and accuracy of the SHP approach, the
Richardson extrapolation employed in the DEK method and in the SHP approach when
valuing European-style double knock-out calls under the CEV model.

Figure 1 is computed with a subset (1696) of a random sample of 2000 calls (those with a
value bellow 0.5 were excluded) whose parameters were generated from a uniform distribution
and within the following ranges: strike price values between 70 and 130, instantaneous volatility
between 10% and 60%, β < 2, time to maturity within 0.1 and 1 years with a probability of 75%
and within 1 and 3 years otherwise, risk free rate ranging from 0% to 10%, dividend yield also
between 0% and 10% but only with a probability of 80% or equal to 0%, the upper barrier value
between 110 and 140, the lower barrier value ranging from 60 to 90. The inicial spot value is
fixed with a value of 100.

The MAPE is computed against a benchmark value, obtained by the transformed trinomial
tree of Boyle and Tian (1999) [4] with 100,000 time steps, and are presented multiplied by a
factor of 103. The speed corresponds to the number of option prices calculated per second.

The SHP approach is calculated with 32, 64, 128 and 256 time steps. The Richardson
extrapolation employed in the DEK method and in the SHP approach are computed using a
starting column of 3, 4, 5 and 6 elements (numbers shown in the figure), which are used to
apply the Richardson extrapolation repeated two, three, four and five times respectively.

Figure 1 reinforces what was shown before and clearly highlights the fact that the Richard-
son extrapolation when employed to the DEK method is able to achieve high levels of accuracy
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faster, as its curve is always to the left of the other two, meaning that for the same level of
accuracy, this method has a higher speed.

Altough the improvement the Richardson extrapolation provides to the SPH approach is not
as significative as the one seen when employed to the DEK method, it is observable that its
curve is always above and to the left of the SHP approach without it.

Table 7 is an extension of Table 1 in Dias et al. (2015) [19], comparing the efficiency of the
SHP approach against the implementation of the repeated Richardson extrapolation technique
employed in the DEK method, based on the previous results only the DEK method is going to be
considered with the Richardson extrapolation. It values knock-out double barrier call options,
following the same model parameters as in Davydov and Linetsky (2001, Table 1) [15].

Table 7. European double barrier knock-out call prices under the CEV model

SHP Approach Richardson extrapolation

K β δ Boyle & Tian 100 200 1000 4 5 6

95 1 2.50E+00 1.8805 1.8802 1.8804 1.8805 1.8801 1.8804 1.8805
95 0 2.50E+01 2.0799 2.0797 2.0799 2.0800 2.0796 2.0799 2.0799
95 -2 2.50E+03 2.5528 2.5526 2.5527 2.5528 2.5525 2.5527 2.5528
95 -4 2.50E+05 3.1294 3.1292 3.1293 3.1294 3.1292 3.1294 3.1294
95 -6 2.50E+07 3.8088 3.8084 3.8086 3.8088 3.8086 3.8087 3.8088

100 1 2.50E+00 1.0957 1.0954 1.0956 1.0957 1.0956 1.0957 1.0957
100 0 2.50E+01 1.2383 1.2380 1.2382 1.2383 1.2381 1.2383 1.2383
100 -2 2.50E+03 1.5798 1.5795 1.5797 1.5798 1.5797 1.5798 1.5798
100 -4 2.50E+05 2.0021 2.0018 2.0020 2.0021 2.0020 2.0021 2.0021
100 -6 2.50E+07 2.5059 2.5055 2.5057 2.5059 2.5058 2.5059 2.5059

105 1 2.50E+00 0.5125 0.5122 0.5124 0.5125 0.5125 0.5125 0.5125
105 0 2.50E+01 0.5944 0.5941 0.5943 0.5944 0.5944 0.5944 0.5945
105 -2 2.50E+03 0.7960 0.7956 0.7958 0.7960 0.7959 0.7960 0.7960
105 -4 2.50E+05 1.0535 1.0531 1.0533 1.0535 1.0534 1.0535 1.0535
105 -6 2.50E+07 1.3696 1.3693 1.3695 1.3696 1.3696 1.3697 1.3697

CPU time (seconds) 218.53 0.34 0.68 3.93 0.23 0.46 0.93
MAPE (×103) 0.2899 0.1010 0.0062 0.1054 0.0207 0.0046

Note: This table values European knock-out double barrier call options under the CEV model, using
the same model parameters as in Davydov and Linetsky (2001, table 1) [15], i.e. S t0 = 100, lower
barrier price of 90, upper barrier price of 120, T − t0 = 0.5 years, r = 10% and q = 0% but with
β ∈ {1, 0,−2,−4,−6}.
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Table 7 extends the cases for β < 2 of Dias et al. (2015, Table 1) [19]. The benchmark values
are computed by the transformed trinomial tree of Boyle and Tian (1999) [4] with 100,000
time steps and are reported in the forth column. The next three columns represent the prices
computed by the SHP approach described in Dias et al. (2015, section 4.2) [19], using 100, 200
and 1000 time steps respectively.

The results of the Richardson extrapolation applied in the DEK method are presented in the
last three columns. The first represents the prices computed with the Richardson extrapolation
repeated three times over a starting column of four elements (prices computed by the DEK
method, with 8, 16, 32, and 64 time steps respectively). The prices shown in the eighth column
are equivalent to the position f4,3 in Table 1, the ninth column are equivalent to the position f5,4,
and the tenth to the f6,5 position.

The last two rows present the CPU time (in seconds) needed to compute the target option
prices and the MAPE respectively, which is computed against the benchmark value and is shown
multiplied by a factor of 103.

Table 7 shows that in terms of accuracy the Richardson extrapolation applied to the DEK
method can, at least, match the SHP approach. When taking the speed into account, it can be
observed that the Richardson extrapolation applied to the DEK method can outperform the SHP
approach. The first column of the Richardson extrapolation can be compared to the second
column of the SHP approach in terms of error but takes half the computing time. The second
column of the Richardson extrapolation technique while not matching the error of the SHP
approach with 1000 time steps, it is much smaller than the one observed in the SHP approach
when the computing times are equal. Both methods are comparable in terms of accuracy in the
respective last columns, but the Richardson extrapolation needing less computing time.

Comparing the last row as well as the values between both methods, it can be observed
that the Richardson extrapolation outperform the SHP approach, matching the same accuracy
needing less time.

There are a few cases where the price achieved with the Richardson extrapolation does not
completely match the benchmark value, this fact could raise some concerns. When making
an analysis with the exact values computed, it is observable that the MAPE of the Richardson
extrapolation matches the one of the SHP approach.
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5.2. JDCEV model

This subsection compares the performance of the SHP approach, proposed in Dias et al. (2015)
[19], and the Richardson extrapolation employed in the DEK method for valuing double barrier
options under the time-homogeneous JDCEV model.

Table 8 is an extension of Table 2 in Dias et al. (2015) [19], comparing the efficiency of the
SHP approach against the implementation of the repeated Richardson extrapolation technique
employed in the DEK method. It compiles the prices of 45 double barrier put options with
different contract specifications.

The table is divided in three panels, the first corresponding to the nested CEV model with
b = c = 0, the second with b = 0 but c = 1 and the last where the prices are computed with the
parameter b equalling to 0.02 and parameter c equalling to 0.5. The fourth and fifth columns
present the different components of a put option price computed by the equations 8 and 14
respectively, and the sixth column shows their sum.

Columns seven, eight and nine implement the SHP approach, discussed in Dias et al. (2015)
[19], for pricing knock-out double barrier put options using 100, 200 and 1000 time steps re-
spectively. The tenth column reports the prices of a knock-in double barrier put options com-
puted by the same SHP approach with 1000 time steps.

The last four columns present prices calculated by the Richardson extrapolation applied in
the DEK method. The first three, represent the prices computed with the Richardson extrapo-
lation repeated three, four and five times over a starting column of four, five and six elements,
respectively. These columns are respective to the prices of knock-out double barrier put options
while the last, presents the prices of knock-in double barrier put options using the Richardson
extrapolation repeated five times over a starting column six elements.
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Table 8 illustrates the efficiency of both methods for valuing double barrier options under the
JDCEV model, and more clearly the improvement that the repeated Richardson extrapolation
technique can bring to the DEK method. With the Richardson extrapolation the DEK method
is able to achieve the same accuracy levels while improving the time needed to compute the
double barrier option prices, surpacing in performance the SHP approach.
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CHAPTER 6

Conclusions

In this thesis, the repeated Richardson extrapolation technique was employed in static hedging
methodologies in order to study its improvement in efficiency. This study is focused solely on
the valuation of European-style single and double barrier options under the CEV model, Cox
(1975) [14], and the more general JDCEV model, Carr and Linetsky (2006) [10].

First, under the CEV model, the Richardson extrapolation was employed in the DEK and
the modified DEK models. With the valuation of an up-and-out call, an up-and-in call and a
down-and-in put it is clear that the Richardson extrapolation has the potential to improve the
performance of the two static hedging methods. The modified DEK method is an improvement
of the plain DEK method, achieving this by not only matching the value of the target option
but also its theta along the barrier, while this provides a faster and more accurate method it also
implies more calculations needed. In the results this extra calculations injure the performance
of the method when used with the Richardson extrapolation, making the DEK method preferred
in comparison.

The three examples of different types of single barrier options show that the repeated Richard-
son extrapolation increases the speed-accuracy trade-off of both methods tested. In order to
understand if the results are also valid for double barrier options this thesis followed the work
of Dias et al. (2015) [19] using the SHP approach proposed, instead of the modfied DEK.

Figure 1 presents 1696 different double knock-out call contracts computed with the SHP
approach, the Richardson extrapolation employed in SHP approach and in the DEK method.
The plain DEK method was also computed but to obtain the same levels of accuracy it needed
a substantial amount of extra computing time, for that reason it is not shown. In addition to
Figure 1, the Table 1 of Dias et al. (2015) [19] was reproduced to accomodate the Richardson
extrapolation. The results were coherent in the valuation of both single and double barrier
options, although the repeated Richardson improved both methods it provides a more significant
outcome when employed in the DEK method.

29



This thesis also extends its scope by testing the valuation of double barrier options under the
JDCEV model. Table 8 adds to Table 2 of Dias et al. (2015) [19] the Richardson extrapolation
employed in the DEK method in contrast with the SHP approach. Looking at the table presented
the repeated Richardson technique does not show significant levels of improvement, in lower
orders of accuracy, but as the accuracy increases so does the Richardson extrapolation efficiency,
as it can be seen in the last two columns.

Given the previous results in the CEV model, only the Richardson extrapolation employed
in the DEK was considered under the JDCEV framework, to further explore the Richardson
could also be applied to the SHP approach and compare its improvement in relation with the
one obtained under the CEV model. Aside from double barrier options, there single barrier
counterparts could also be tested.

Overall, the Richardson can improve the efficiency of the static hedging methodologies
considered it proved to have better results when pared with the DEK method, the extra com-
putations of theta and cash-or-nothing options seem to take some of that performance away.
Another aspect worth noting is that the code used for the Richardson extrapolation could be
better optimized, leading to even better results in the future.

The Repeated Richardson extrapolation technique is a valuable computational tool and
proved to enhance the performance of the methodologies observed. Another point where it
can be useful is through the estimation of the error in the approximation. Chang et al. (2007)
[11] uses Schmidt’s (1968) [31] inequality to specify the accuracy of the Richardson extrapo-
lation approximation, and Farasi et al. (2010) [20] also provide step-size control by evaluating
the approximation error.
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