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A NEW PERSPECTIVE ON THE QUATERNIONIC

NUMERICAL RANGE OF NORMAL MATRICES

LUÍS CARVALHO, CRISTINA DIOGO, AND SÉRGIO MENDES

Abstract. A new geometric proof of a known result characterizing the
quaternionic numerical range of normal matrices is proposed. Our proof
can be interpreted in probabilistic terms.

1. Introduction and Preliminaries

Let F ∈ {H,C}, where H and C stand, respectively, for the quaternionic
and the complex �elds. Let SFn = {x ∈ Fn : ‖x‖ = 1}. For a square matrix
A of size n > 1 over F, A ∈Mn(F), the set

WF(A) = {x∗Ax : x ∈ SFn}

is called the numerical range of A in F. Recall that every quaternionic normal
matrix is unitarily equivalent to a complex diagonal matrix A = diag(dk)

n
k=1,

where dk = hk+ski (sk ≥ 0) are the eigenvalues of A (see [1, p.178]). Hence,
we can write A = H + Si, where H and S are diagonal real matrices. Since
the numerical range is invariant under unitary equivalence (see [2, theorem
3.5.4]), we will consider normal matrices in diagonal form. We will also
assume, without loss of generality, that h1 = min{hk : k = 1, . . . , n} and,
until theorem 2.4, that sk > 0.

So, Thompson and Zhang ([1, Main Theorem, p.192]) proved that the
upper bild is the convex hull of the eigenvalues and certain real numbers,
constructed from pairs of non-real eigenvalues, named cone vertices. The
main idea of their proof was to de�ne an optimization problem with side
conditions and use Lagrange multipliers. In 1995, two independent proofs
were presented by Au-Yeung [3] and Zhang [7]. In this article, we propose a
new geometric proof of the same result, bearing inspiration from probability
theory.

We start by characterizing the elements in the quaternionic numerical
range. It is an easy exercise to show that any element in the quaternionic
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numerical range can be written as

z∗Az = x∗Ax+ y∗A∗y + x∗(A−A∗)yj, (1.1)

using the decomposition z = x + yj ∈ Hn, with x,y ∈ Cn. Taking into
account that A can be written as A = H+Si, withH = A+A∗

2 and S = A−A∗

2i ,
it follows that B(A) = WH(A) ∩ C, the bild of A, is given by (see [4]),

B(A) = {x∗Ax+ y∗A∗y : x∗x+ y∗y = 1, and x∗Sy = 0}.

For future reference denote the above conditions by:

x∗x+ y∗y = 1 (I)

x∗Sy = 0. (II)

Since

x∗x+ y∗y =

n∑
i=1

|xi|2 + |yi|2 = 1 and x∗Ax+ y∗A∗y =

n∑
i=1

di|xi|2 + d∗i |yi|2,

we conclude that B(A) ⊆ conv{D,D∗}, with D = {d1, . . . , dn}. As usual,
conv(S) denotes the convex combination of the elements of S. To �gure out
the shape of B(A) we need to know which convex combinations of D and
D∗ can be generated by pairs (x,y) that satisfy (I) and (II). For example,
WC(A) = conv{D} ⊆ B(A), generated with y = 0, and therefore (I) and (II)
are trivially satis�ed. Analogously, WC(A∗) ⊆ B(A), generated with x = 0.

It is useful to work instead with the upper bild B+(A) = B(A) ∩ C+

since this allows us to use convexity (see [5]). From equation (1.1), each
element ω ∈ B+(A) is a convex combination of elements ωx ∈WC(A) ⊆ C+

(because sk > 0) and ωy ∈WC(A∗) ⊆ C−, that is, ω = αωx+(1−α)ωy, with
α ∈ (0, 1]. Since there is a real ωr = βωx + (1−β)ωy, 0 < β < α, that lies in
the same segment [ωx, ωy], we conclude that ω is a convex combination of ωx
and ωr. Therefore, B

+(A) = conv{WC(A), B(A) ∩ R} and, since B(A) ∩ R
is a closed interval, B+(A) = conv{WC(A), v, v}, (see theorem 2.1) with

v = minB(A) ∩ R, v = maxB(A) ∩ R.

In other words, B+(A) = conv{d1, . . . , dn, v, v} and, in order to determine
the shape of B+(A) we just need to obtain the minimum and maximum
reals (we will focus on v) in the numerical range. For this matter, it is
important to characterize the real elements in the bild. It follows from (1.1)
and the decomposition A = H + Si, that a further condition on (x,y) must
be satis�ed:

x∗Sx = y∗Sy. (III)

Together with (I) and (II), the three conditions are necessary and su�cient
for an element of the form (1.1) to belong to the real part of the numerical
range. Some of these real elements are given by ci,j = [di, d

∗
j ] ∩ R. That is,

ci,j = αi,jdi + (1− αi,j)d∗j (1.2)

= αi,jhi + (1− αi,j)hj ,
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where αi,j ∈ (0, 1), satis�es

αi,jsi − (1− αi,j)sj = 0. (1.3)

We now de�ne the relevant values of ci,j for future use,

c = min{ci,j : i 6= j}, c = max{ci,j : i 6= j}.
If we take x =

√
αi,jei and y =

√
1− αi,jej (ek denotes the k-th

canonical unit vector) which satisfy (I) � (III), when i 6= j, we see that
ci,j ∈ B(A) ∩ R. Therefore, v ≤ c. Notice that, since ω ∈ conv{D,D∗} and
d1 = h1 + s1i with h1 ≤ hj ,∀j 6= 1, we have c ∈ [d1, d

∗
k], for some k 6= 1.

Above, we proved that c1,j ∈ W (A), for any j 6= 1. Since any other ω must
be a convex combination of elements of D and D∗, the only possible real
value smaller than all c1,j would be c1,1. However, as we will prove, c1,1 does
not belong to the numerical range, as it is obtained from a pair (x,y) which
does not satisfy conditions (I) � (III).

In order to motivate our approach we now introduce some concepts in a
heuristic way. A convex combination can be seen as the expected value of
a probability distribution. For instance, ci,j ∈ [di, d

∗
j ] ∩ R is the expected

value of a probability distribution over {di, d∗j}, with αi,j the probability of
di and 1− αi,j the probability of d∗j . The argument of our proof is partially
supported on this observation. In particular, we will interpret an element
from the B(A)∩R as the expected value of the probability distribution γ =
(x||,y||) over D ∪ D∗, where (x,y) ∈ SC2n , with x|| = (|x1|2, . . . , |xn|2) and

y|| = (|y1|2, . . . , |yn|2). However, we will look at this probability distribution
di�erently. Namely, we will use the probability distribution that arises from
the process of �rst choosing randomly a pair (di, d

∗
j ), using a probability

θ ∈ ∆(D×D∗), and then choosing randomly one element from that pair, di
with probability αi,j and d

∗
j with probability 1−αi,j . Here, ∆(S) denotes the

set of probability distributions over S. This process creates a new probability
distribution α(θ) over D∪D∗, i.e. α(θ) ∈ ∆(D∪D∗). The choice of θ should
be coherent with the initial probability γ, in the sense that α(θ) = γ.

Using the law of total probability we have that the probability α(θ) for
the element di is

αdi(θ) = prob(di) =
∑
k

prob
(
di, d

∗
k

)
prob

(
di|(di, d∗k)

)
=
∑
k

θi,kαi,k. (1.4)

Analogously, for the element d∗j , we have αd∗j (θ) = prob(d∗j ) =
∑

k θk,jαj,k.

In this way, we de�ne the function α : (D∪D∗)×∆(D∪D∗)→ [0, 1]. We say
that a probability distribution θ ∈ ∆(D×D∗) is coherent with γ ∈ ∆(D∪D∗)
if αd(θ) = γ(d), for all d ∈ D ∪D∗. Accordingly, we de�ne ΘD(γ) to be the
set of probability distributions θ ∈ ∆(D×D∗) coherent with γ ∈ ∆(D∪D∗),
that is,

ΘD(γ) =
{
θ ∈ ∆(D ×D∗) : α(θ) = γ

}
. (1.5)

We will show that the set of coherent probability distributions is non
empty (see lemma 2.2). Moreover, we will �nd out that, if (x,y) satis�es
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(I) � (III), there is a coherent θ such that θ(d1, d
∗
1) = θ1,1 = 0, meaning

that this distribution gives probability zero to the pair (d1, d
∗
1), see lemma

2.3. Using (I) � (III) on (1.1), a real element in the bild can be written
as h = x∗Hx + y∗Hy. Rewriting h as a convex combination of ci,j 's, h =∑

i,j θi,jci,j , we �nd that h ≥ c, since θ1,1 = 0. This is the content of the
main result of the paper, see theorem 2.4. We �nalize by observing that
the ideal case where v = h1 is not attainable and the minimum is, morally
speaking, the second best case.

2. Numerical range of normal matrices

We begin with a characterization of the upper bild in terms of the complex
numerical range and two real values.

Theorem 2.1. Let A = diag(dk)
n
k=1 ∈ Mn(C), with dk = hk + ski and

sk > 0. Then,

B+(A) = conv{WC(A), v, v}.

Proof. According to equation (1.1), for any ω ∈ B+(A) there is ωx ∈WC(A) =
conv{d1, . . . , dn}, ωy ∈WC(A∗) and α ∈ (0, 1], such that ω = αωx+(1−α)ωy.
Then, there are (x,y) ∈ SC2n , satisfying (I) and (II) such that ωx = x∗SAxS
and ωy = y∗SA

∗yS, where xS and yS are unitary vectors in Cn with x =
‖x‖xS and y = ‖y‖yS.

On the other hand, there is β ∈ (0, α) such that ωr = βωx+(1−β)ωy ∈ R.
Thus, ωr ∈ B+(A) ∩ R, since the vector (

√
βxS,

√
1− βyS) also satis�es (I)

and (II).

It is easy to see that ω = ψωx + (1 − ψ)ωr, with ψ = α−β
1−β . That is, any

ω ∈ B+(A) also belongs to conv{WC(A),WH(A) ∩R}. Since, B(A) ∩R 6= ∅
(see [6, Corollary 3.3]), by convexity and compactness of the upperbild, the
setB(A)∩R is a closed interval, and so ω ∈ conv{WC(A), v, v}. We then have
that B+(A) ⊆ conv{WC(A), v, v}. The converse inclusion follows trivially
from the convexity of the upperbild. �

To characterize the reals v and v, we need some technical lemmas. We
start by noticing that the set ΘD(γ) of probability distributions over D×D∗
coherent with γ = (x||,y||) (see (1.5)) is, under mild conditions, non empty.
This result is a special case of a more general lemma that we prove in the
appendix.

Lemma 2.2. For any (x,y) satisfying (III), ΘD(x||,y||) 6= ∅.

Next result shows that there exists a coherent distribution θ with θ1,1 = 0,
that is, the probability given to the pair (d1, d

∗
1) is, in this case, zero. This

means that choosing the segment joining d1 with d∗1 is not compatible with
restrictions (I) � (III).

Lemma 2.3. Let (x,y) satisfying (I) � (III). Then, there exists θ ∈ ΘD(x||,y||)
with θ1,1 = 0.
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Proof. We start by noting that

s1|x1|2 >
n∑
i=2

si|yi|2 and s1|y1|2 >
n∑
i=2

si|xi|2, (2.1)

implies x∗Sy 6= 0.
In fact, if (2.1) holds, by Holder's and triangle's inequalities we have

s21|x1|2|y1|2 >
( n∑
i=2

si|yi|2
)( n∑

i=2

si|xi|2
)
≥
( n∑
i=2

si|yi||xi|
)2
≥
∣∣∣ n∑
i=2

siyix
∗
i

∣∣∣2.
Thus, s1x

∗
1y1 6= −

∑n
i=2 siyix

∗
i , and x

∗Sy 6= 0. Therefore, if (II) holds, then

s1|x1|2 ≤
n∑
i=2

si|yi|2 or s1|y1|2 ≤
n∑
i=2

si|xi|2. (2.2)

From (III), which can be written as
∑n

i=1 si(|xi|2 − |yi|2) = 0, the two
conditions in (2.2) are equivalent. We can assume that s1|x1|2 ≤

∑
i≥2 si|yi|2,

and pick K ∈ {2, . . . , n} such that

K−1∑
i=2

si|yi|2 ≤ s1|x1|2 ≤
K∑
i=2

si|yi|2.

If K = 2 the left hand side is zero. For i = 2, . . . ,K − 1, set

θ1,i =
|yi|2

1− α1,i
and θ1,K =

s1|x1|2 −
∑K−1

i≥2 si|yi|2

sK(1− α1,K)
.

All the others θi,j are zero. From (1.3) we have s1α1,i = si(1− α1,i). Hence

s1

K∑
i=2

θ1,iα1,i =

K∑
i=2

θ1,isi(1− α1,i)

=

K−1∑
i=2

si|yi|2 +
(
θ1,KsK(1− α1,K)

)
= s1|x1|2.

We then easily conclude that θ ∈ ΘD(ωx), with

ωx =

(
|x1|2, 0, . . . , 0, 0, |y2|2, . . . , |yK−1|2,

s1|x1|2 −
∑K−1

i≥2 si|yi|2

sK
, 0, . . . , 0

)
.

We should stress that θ1,1 = 0. Let ω̂ = ω − ωx ∈ R2n
+ , with ω = (x||,y||).

Notice that
∑n

i=1 si(ω̂i−ω̂n+i) = 0, since
∑n

i=1 si(ωi−ωn+i) =
∑n

i=1 si(ωx,i−
ωx,n+i) = 0. Then, lemma 2.2 implies the existence of θ̂ ∈ ΘD(ω̂). Since

αd1(θ̂) = ω̂1 = 0, from (1.4) it follows that θ̂1,1α1,1 = 0. On the other hand

since s1 > 0, α1,1 = 1/2, and thus θ̂1,1 = 0. Then θ′ = θ+θ̂ ∈ ΘD(ωx+ω̂) =
ΘD(x||,y||), is such that θ′1,1 = 0. �

We may now prove the main result of the article.
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Theorem 2.4. Let A = H + Si ∈ Mn(C) be a normal matrix with eigen-
values dk of the form dk = hk + ski, sk ≥ 0, k = 1, . . . , n. We have:

v = c and v = c.

Proof. First suppose that S > 0. Let h ∈WH(A)∩R. There is (x,y) ∈ SC2n

such that h = x∗Hx+y∗Hy =
∑n

i=1 hi(γi+γn+i), with γ = (x||,y||). Note
that (x,y) satisfy (I)�(III).

From lemma 2.3, we can take θ ∈ ΘD(x||,y||), with θ1,1 = 0. Therefore,
using (1.2) and the de�nition of αdi(θ) one easily shows that

∑
i,j θi,jci,j = h

and
∑

i,j θi,j = 1. Since min{ci,j : (i, j) 6= (1, 1)} = c, we have h ≥ c. As we

proved in the introduction, c ∈WH(A). Therefore, v = c.
We will now consider the case where S ≥ 0. Let A = A1 ⊕ A2, where

Aj = Hj +Sji (j = 1, 2) with S1 = 0 and S2 > 0. Without loss of generality,
we may assume A1 = [ai,j ]i,j=1,...,k and A2 = [aij ]i,j=k+1,...,n. It is clear that
WH(A1) ⊆ R and that

WH(A) =
{
αa1 + (1− α)a2 : a1 ∈WH(A1), a2 ∈WH(A2), α ∈ [0, 1]

}
.

Then, if a = αa1 + (1 − α)a2 ∈ WH(A) ∩ R, necessarily a2 ∈ WH(A2) ∩ R.
Let vj = minWH(Aj)∩R, j = 1, 2. Since aj ≥ vj we have v = minWH(A)∩
R ≥ min{v1, v2}. On the other hand, v1, v2 ∈ WH(A). Therefore v =
min{v1, v2}. We know that v1 is the smallest entry on the diagonal of A1.
From the previous case, since S2 > 0, we have v2 = min{ci,j : i 6= j, i, j ∈
{k + 1, . . . , n}}. Taking into account (1.2) and (1.3), ci,j = hi ≥ v1 when
1 ≤ i ≤ k and k + 1 ≤ j ≤ n, and the conclusion that v = min{ci,j : i 6=
j} = c follows. The proof for the maximum goes along the same lines. �

Appendix A.

We will now prove a technical lemma which contains lemma 2.2 as a special
case.

For a given a ∈ RN such that a1a2 . . . aN 6= 0, let J+ = {i : ai > 0} and
J− = {i : ai < 0}. For each (i, j) ∈ J+ × J− de�ne αi,j ∈ [0, 1] by

αi,jai + (1− αi,j)aj = 0.

As before, ∆(J+ × J−) is the set of probability distributions over J+ × J−.
For a given θ ∈ ∆(J+ × J−) let

αi(θ) =

{ ∑
j∈J− θi,jαi,j , if i ∈ J+∑
j∈J+ θj,iαi,j , if i ∈ J−.

Lemma A.1. Let γ ∈ RN+ and a ∈ RN be such that a1a2 . . . aN 6= 0. If∑N
i=1 aiγi = 0 then there is a θ ∈ ∆(J+ × J−) such that αi(θ) = γi, for any

i = 1, . . . , N .

Proof. We will prove this result inductively. For N = 2, assume without
loss of generality that a1 > 0. From de�nition of αi,j and the hypothesis,
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we conclude that α1,2 = γ1
γ1+γ2

. Then, the result holds with θ1,2 = γ1 + γ2.

We will now assume the result holds for N − 1. Pick i with the smallest
|aiγi| and assume, without loss of generality, that i = N and aN is positive.

Since
∑N

k=1 akγk = 0, there is a j ∈ J− such that ajγj + aNγN ≤ 0. Let

θ̂ ∈ ∆(J+ × J−) be such that θ̂N,jαN,j = γN , and θ̂p,k = 0, for any (p, k) 6=
(N, j). Clearly, αi(θ̂) = γ̂i with γ̂ given by γ̂N = γN , γ̂j = θ̂N,j(1 − αN,j)
and γ̂k = 0, for k 6= j,N . From

∑N
i=1 aiγi = 0, we get

0 =
∑
i 6=j,N

aiγi +
(
ajγj + aNγN

)
=
∑
i 6=j,N

aiγi +

(
aj
(
γj − θ̂N,j(1− αN,j)

)
+ θ̂N,j

(
αN,jan + (1− αN,j)aj

)︸ ︷︷ ︸
=0

)

=
∑
i 6=j,N

aiγi + aj
(
γj − θ̂N,j(1− αN,j)

)
=

N−1∑
i=1

aiγ
′
i,

where γ′i = γi for i 6= j,N and γ′j = (γj− θ̂N,j(1−αN,j)). Notice that γ′j ≥ 0

since we know that αN,j =
−aj

aN−aj and

θ̂N,j(1− αN,j) = γN

( 1

αN,j
− 1
)

=
γNaN
−aj

≤ −γjaj
−aj

= γj .

By induction hypothesis there is a θ′ ∈ ∆
(

(J+ \ {N}) × J−
)
such that

αi(θ
′) = γ′i. Extend θ

′ ∈ ∆
(

(J+\{N})×J−
)
to θ′′ ∈ ∆(J+×J−) by setting

θ′′N,k = 0, for any k ∈ J−. Thus, αi(θ
′′) = γ′′i , where γ

′′ ∈ RN+ extends

γ′ ∈ RN−1+ putting γ′N = 0. Let θ = θ′′ + θ̂ and notice thatγ′′ + γ̂ = γ. By

linearity of αi(.), we have αi(θ
′′ + θ̂) = γi. �

To see that lemma 2.2 follows from the above result, it is enough to con-
sider γ = (x||,y||) ∈ SRN and a = (s,−s) ∈ RN with N = 2n. In particular,

condition (III) can be written as
∑n

i=1 si|xi|2 =
∑n

j=1 sj |yj |2. A simple com-

putation shows that this is equivalent to
∑N

i=1 aiγi = 0.
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