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A NEW PERSPECTIVE ON THE QUATERNIONIC
NUMERICAL RANGE OF NORMAL MATRICES

LUIS CARVALHO, CRISTINA DIOGO, AND SERGIO MENDES

ABSTRACT. A new geometric proof of a known result characterizing the
quaternionic numerical range of normal matrices is proposed. Our proof
can be interpreted in probabilistic terms.

1. INTRODUCTION AND PRELIMINARIES

Let F € {H, C}, where H and C stand, respectively, for the quaternionic
and the complex fields. Let Spn = {x € F" : ||z|| = 1}. For a square matrix
A of size n > 1 over F, A € M,,(F), the set

Wr(A) = {x*Ax : € Spn }

is called the numerical range of A in F. Recall that every quaternionic normal
matrix is unitarily equivalent to a complex diagonal matrix A = diag(dy)}_;,
where dj, = hy,+ skt (si > 0) are the eigenvalues of A (see [1, p.178|). Hence,
we can write A = H + Si, where H and S are diagonal real matrices. Since
the numerical range is invariant under unitary equivalence (see [2), theorem
3.5.4]), we will consider normal matrices in diagonal form. We will also
assume, without loss of generality, that hy = min{hy : £k = 1,...,n} and,
until theorem that s > 0.

So, Thompson and Zhang ([I, Main Theorem, p.192|) proved that the
upper bild is the convex hull of the eigenvalues and certain real numbers,
constructed from pairs of non-real eigenvalues, named cone vertices. The
main idea of their proof was to define an optimization problem with side
conditions and use Lagrange multipliers. In 1995, two independent proofs
were presented by Au-Yeung [3] and Zhang [7]. In this article, we propose a
new geometric proof of the same result, bearing inspiration from probability
theory.

We start by characterizing the elements in the quaternionic numerical
range. It is an easy exercise to show that any element in the quaternionic
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2 L. CARVALHO, CRISTINA DIOGO, AND S. MENDES

numerical range can be written as
2¥Az = " Ax + y* A*y + ¥ (A — A")yj, (1.1)

using the decomposition z = x + yj € H", with =,y € C". Taking into
account that A can be written as A = H+.S%, with H = # and § = AEZA*
it follows that B(A) = Wi (A) N C, the bild of A, is given by (see [4]),

B(A) ={x* Az + y*" A%y : 2"z + y*y = 1, and =" Sy = 0}.

)

For future reference denote the above conditions by:
rr+y'y=1 (I)
x*Sy =0. (1)

Since

n n
T +y'y=> |wl*+ |yl =1and " Az + y* Ay =Y dilnil” + d} il
i=1 i=1
we conclude that B(A) C conv{D,D*}, with D = {di,...,d,}. As usual,
conv(S) denotes the convex combination of the elements of S. To figure out
the shape of B(A) we need to know which convex combinations of D and
D* can be generated by pairs (x,y) that satisfy and (D). For example,
We(A) = conv{D} C B(A), generated with y = 0, and therefore () and
are trivially satisfied. Analogously, Wc(A*) C B(A), generated with = 0.
It is useful to work instead with the upper bild BT(4) = B(A)NC*
since this allows us to use convexity (see [5]). From equation (L.1)), each
element w € BT (A) is a convex combination of elements w, € W¢(A4) C CT
(because s > 0) and w, € W (A*) C C™, that is, w = aw, + (1 — a)w,, with
a € (0,1]. Since there is a real w, = fw, + (1 — Bwy, 0 < B < a, that lies in
the same segment [w, wy|, we conclude that w is a convex combination of w,
and w,. Therefore, B*(A) = conv{W¢(A), B(A) NR} and, since B(4A) NR
is a closed interval, BT(A) = conv{W¢(A),v,v}, (see theorem with

v =min B(A) NR, v =max B(4) NR.

In other words, BT(A) = conv{dy,...,d,,v,v} and, in order to determine
the shape of BT (A) we just need to obtain the minimum and maximum
reals (we will focus on v) in the numerical range. For this matter, it is
important to characterize the real elements in the bild. It follows from (1.1))
and the decomposition A = H + Si, that a further condition on (x,y) must
be satisfied:

x*Sx = y*Sy. (I1I)
Together with and , the three conditions are necessary and sufficient
for an element of the form to belong to the real part of the numerical

range. Some of these real elements are given by ¢; ; = [d;, dj] N R. That is,

Cij = Oé@jdi + (1 — Ct@j)d; (1.2)
= aijhi + (1 - ij)hj,
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where a; ; € (0, 1), satisfies
OziJSi — (1 — Ozz"j)Sj =0. (13)
We now define the relevant values of ¢; ; for future use,
c=min{¢;; : 1 # j}, ¢ =max{c; 1 # j}.

If we take & = Vi j€i and y = /1 —q;e; (ex denotes the k-th
canonical unit vector) which satisfy - , when i # j, we see that
¢i,j € B(A) NR. Therefore, v < c. Notice that, since w € conv{D,D*} and
di = hi + s11 with hy < hj,Vj # 1, we have ¢ € [dy,d}], for some k # 1.
Above, we proved that ¢; ; € W(A), for any j # 1. Since any other w must
be a convex combination of elements of D and D*, the only possible real
value smaller than all ¢; ; would be ¢1,1. However, as we will prove, ¢1,1 does
not belong to the numerical range, as it is obtained from a pair (x,y) which
does not satisfy conditions - .

In order to motivate our approach we now introduce some concepts in a
heuristic way. A convex combination can be seen as the expected value of
a probability distribution. For instance, ¢;; € [d;, d] N R is the expected
value of a probability distribution over {d;,d}}, with «; ; the probability of
di and 1 — «; ; the probability of d7. The argument of our proof is partially
supported on this observation. In particular, we will interpret an element
from the B(A) NR as the expected value of the probability distribution v =
(z||,y)) over DUD*, where (z,y) € Sczn, with x| = (|lz1)?%, ..., |2zn|?) and
Y| = (ly11%, ..., |yn]?). However, we will look at this probability distribution
differently. Namely, we will use the probability distribution that arises from
the process of first choosing randomly a pair (d;,d), using a probability
0 € A(D x D*), and then choosing randomly one element from that pair, d;
with probability «;,; and dj with probability 1—a; ;. Here, A(S) denotes the
set of probability distributions over §. This process creates a new probability
distribution (@) over DUD*, i.e. a(0) € A(DUD*). The choice of 6 should
be coherent with the initial probability -, in the sense that «(0) = ~.

Using the law of total probability we have that the probability «(@) for
the element d; is

agq,(0) = prob(d Zprob dudk)prob(d |(d;, dk ZGZ k. (1.4)

Analogously, for the element d;, we have ad;,(a) = prob(d}f) = pOrjajk.
In this way, we define the function . : (DUD*) x A(DUD*) — [0, 1]. We say
that a probability distribution @ € A(DxD*) is coherent with v € A(DUD*)
if ag(0) = v(d), for all d € DUD*. Accordingly, we define Op(+) to be the
set of probability distributions 8 € A(D x D*) coherent with v € A(DUD*),
that is,

Op(v) = {eeA(pr*):a(e) :7}. (1.5)

We will show that the set of coherent probability distributions is non
empty (see lemma [2.2). Moreover, we will find out that, if (z,y) satisfies
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(I) — (III), there is a coherent @ such that 6(dq,d}) = 61,1 = 0, meaning
that this distribution gives probability zero to the pair (di,d}), see lemma
. Using - on , a real element in the bild can be written
as h = z*Hx + y*Hy. Rewriting h as a convex combination of ¢; ;’s, h =
Zi,j 0;jcij, we find that h > ¢, since 611 = 0. This is the content of the
main result of the paper, see theorem [2.4] We finalize by observing that
the ideal case where v = h; is not attainable and the minimum is, morally
speaking, the second best case.

2. NUMERICAL RANGE OF NORMATL MATRICES

We begin with a characterization of the upper bild in terms of the complex
numerical range and two real values.

Theorem 2.1. Let A = diag(dy)}_, € M,(C), with di, = hy + sii and
sk > 0. Then,
BT (A) = conv{W¢(A),v,v}.

Proof. According to equation (L.1]), for any w € B*(A) thereisw, € W¢(A) =
conv{dy,...,dp}, w, € Wc(A*) and a € (0, 1], such that w = aw,+(1—a)w,.

Then, there are (x,y) € Sc2n, satisfying () and such that w, = x5 Axs

and wy, = ysA*ys, where xs and ys are unitary vectors in C" with = =

|zl|lzs and y = [|ly[lys.

On the other hand, there is 8 € (0, &) such that w, = fw,+(1—F)w, € R.
Thus, w, € BY(A) NR, since the vector (v/Bxs, 1 — Bys) also satisfies (I)
and .

It is easy to see that w = Yw, + (1 — Y)w,, with ¢ = % That is, any
w € BT(A) also belongs to conv{W¢(A), W (A) NR}. Since, B(A)NR # ()
(see [6, Corollary 3.3]), by convexity and compactness of the upperbild, the
set B(A)NR is a closed interval, and so w € conv{W¢(A),v,v}. We then have
that BT(A) C conv{W¢(A),v,v}. The converse inclusion follows trivially
from the convexity of the upperbild. |

To characterize the reals v and U, we need some technical lemmas. We
start by noticing that the set ©p(7y) of probability distributions over D x D*
coherent with v = (|, y)|) (see (1.5))) is, under mild conditions, non empty.
This result is a special case of a more general lemma that we prove in the
appendix.

Lemma 2.2. For any (x,y) satisfying , Op (), y)) # 0.

Next result shows that there exists a coherent distribution 8 with 6; 1 = 0,
that is, the probability given to the pair (di,d}) is, in this case, zero. This
means that choosing the segment joining d; with dj is not compatible with

restrictions (IJ) — (TTI).

Lemma 2.3. Let (x,y) satisfying ([]]) - . Then, there ezists @ € Op(z||,y))
with 9171 = 0.
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Proof. We start by noting that
n n
s1]x1)? > Zsi\yi\z and sy |* > Zsi]xi\Q, (2.1)
i=2 i=2

implies «*Sy # 0.
In fact, if (2.1) holds, by Holder’s and triangle’s inequalities we have

e Pl > (D sill?) (D siel?) = (D silwillat)” = | Y- siwia
=2 =2 =2 =2

1= 1=

Thus, s12jy1 # — Y i s sivizs, and *Sy # 0. Therefore, if holds, then
n n

stlza? < silyil® or sy P < silwil. (2.2)
=2 =2

From , which can be written as Y 1, si(|z:]* — |yi|*) = 0, the two

conditions in 1} are equivalent. We can assume that s1|21|> < 3o silyil?,
and pick K € {2,...,n} such that

K-1 K
Y silul? < sl <Y siluil®
=2 =2

If K = 2 the left hand side is zero. For i =2,..., K — 1, set

|yl stlz1? — Zz>2 silyil?
K=

1—ay, ’ sk (1 —a1k)

All the others 6; ; are zero. From (1.3) we have sy ; = s;(1 — a1,;). Hence

K K
51 E 01001, = g 61,i5:(1 — o 3)
i=2 =2

01, =

)

K-1
= silyil® + (91,K8K(1 - al,K)) = sifa1/*.
=2

We then easily conclude that 8 € Op(wg), with

slerf - SIS sl 0)

Wy = <|$1|270a"'aOaOa‘y2|2a-"a‘yK—1’27 SK

We should stress that 61,1 = 0. Let & = w — wy € R, with w = (z)],y))-
Notice that Z?:l S; (d}z—d}n+z) == 0, since Z?:l S; (wi—wnH) = Z?:l S; (wm—
Wz nti) = 0. Then, lemma implies the existence of € Op(w). Since
adl(é) =w; =0, from it follows that 91 11,1 = 0. On the other hand
since s1 > 0, a1 = 1/2, and thus 91,1 =0. Then @ = 0+0 ¢ Op(wz+@) =

Op (|, y))), is such that 67 ; = 0. [ ]

We may now prove the main result of the article.
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Theorem 2.4. Let A= H + Si € M,(C

) be a ormal matric with eigen-
values dy, of the form di = hy + sit, sx >0, k =

..,n. We have:

v=c¢c and TUV=C.

Proof. First suppose that S > 0. Let h € Wu(A)NR. Thereis (x,y) € Scan
such that h = x*Hx +y* Hy = > 1| hi(Vi +Yn+i), with v = (), y)|). Note
that (x,y) satisfy ([)-(LII).

From lemma , we can take 8 € Op(x|,y)|), with 611 = 0. Therefore,
using ([1.2) and the definition of o, (@) one easily shows that >ijbijcij ="
and Z” i,j = 1. Since min{c;; : (¢,7) # (1,1)} = ¢, we have h 2 c. As we
proved in the introduction, ¢ € Wg(A). Therefore, v = c.

We will now consider the case where S > 0. Let A = A; & Ay, where
Aj=H;+S;i(j =1,2) with S; = 0 and S > 0. Without loss of generality,
we may assume Ay = [a; j]; j=1,. k and Ao = [ai;li j=k+1,..n- It is clear that
Wu (A1) C R and that

Win(A) = {aal F(1—a)ag: a1 € Wi(Ay), a2 € Wia(As),a € [0, 1]}.

Then, if a = aa; + (1 — a)az € Wi(A) NR, necessarily az € Wi(A2) NR.
Let v; = min Wi(A;)NR, j =1,2. Since a; > v; we have v = min Wu(A)N
R > min{v;,v5}. On the other hand, v;,vy € Wg(A). Therefore v =
min{v;,vy}. We know that v, is the smallest entry on the diagonal of A;.
From the previous case, since Sy > 0, we have vy = min{c¢;j : ¢ # j, 4,j €
{k+1,...,n}}. Taking into account and (L.3), ¢;; = hi > v; when
1 <i<kand k+1 < j <n, and the conclusion that v = min{c;; : i #
j} = c follows. The proof for the maximum goes along the same lines. W

APPENDIX A.

We will now prove a technical lemma which contains lemma(2.2|as a special
case.
For a given a € RY such that ajas...ayn #0,let Jy ={i:a; >0} and
J_ ={i:a; <0}. For each (i,j) € Jy x J_ define a; ; € [0,1] by
aijai + (1 = aij)a; = 0.

As before, A(J; x J_) is the set of probability distributions over J x J_.
For a given 8 € A(Jy x J_) let

0s(0) = 4 2gea Bigeig, i € Ty
/L o . .
Zjeu Oji0j, ifieJ_.
Lemma A.1. Let v € ]Rf and a € RN be such that ajas...ayn £ 0. If

Zi]\il a;yi = 0 then there is a @ € A(Jy X J_) such that o;(0) = ;, for any
i=1,...,N.

Proof. We will prove this result inductively. For N = 2, assume without
loss of generality that a; > 0. From definition of «;; and the hypothesis,
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we conclude that a2 = 711172. Then, the result holds with 612 = 1 + 2.
We will now assume the result holds for N — 1. Pick 7 with the smallest
|a;yi| and assume, without loss of generality, that ¢ = N and ay is positive.
Since fo:l aryr = 0, there is a j € J_ such that a;v; + ayyny < 0. Let
6c A(J; x J_) be such that éN,jaNJ = vy, and ép’k =0, for any (p, k) #
(N, 7). Clearly, o;(8) = 4; with 4 given by Ax = n, ¥; = éN,j(l — an;)
and 45 = 0, for k # j, N. From sz\il a;y; = 0, we get

0= Z apyi + (ajv; + anyw)

i#j,N
= Z a;y; + (aj (’yj — éN’j(l — OzNJ)) + HANJ(QN’jan + (1 - OZNJ)CLJ‘) )
i#5,N ~
N-1
=Y avitai(y - On;(1—any) = > aii,
i#j,N i=1

where v; = ; for i # j, N and v; = (v; —QANJ(l —ap,j)). Notice that v; >0

since we know that ay,; = % and
J
5 1 INAN _ —7jaj
9N,j(1_04N,j):’YN<7—1> = < —LL =,
an,j —a; T —aj

By induction hypothesis there is a 8’ € A((J+ \{N}) x J_) such that
a;(0") = ~}. Extend 0’ € A((J+\{N}) X J_> to 8" € A(Jy x J_) by setting
Nx =0, for any k € J_. Thus, a;(6") = 7/, where v € RY extends
¥ € Rffl putting vy = 0. Let 8 = 0” + 6 and notice thaty” +% = ~. By
linearity of a;(.), we have oy (8" + 0) = ,. [ |

To see that lemma [2.2] follows from the above result, it is enough to con-
sider v = (x|, y)|) € Sgy and a = (s, —5) € RY with N = 2n. In particular,
condition 1) can be written as > 1 s;|z;|> = Py sjly;|?. A simple com-

putation shows that this is equivalent to Zf\il a;y; = 0.
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