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Resumo 

Com o aumento do poder de computação, juntamente com os avanços neste campo na forma de GANs 

e cGANs, as Redes Neurais tornaram-se numa proposta atrativa para a geração de conteúdos. Graças 

a estes avanços, abriram-se oportunidades para os algoritmos de Geração de Conteúdos 

Procedimentais (PCG) explorarem o poder generativo das Redes Neurais para a criação de ferramentas 

que permitam aos programadores remover parte da carga criativa e de desenvolvimento imposta em 

toda a indústria dos jogos, seja por parte dos investidores que procuram um retorno do seu 

investimento ou por parte dos consumidores que querem mais e melhor conteúdo, o mais rápido 

possível. Esta dissertação pretende desenvolver uma ferramenta de iniciativa mista PCG, alavancando 

cGANs, para criar terrenos 3D cocriados, permitindo aos utilizadores influenciarem diretamente o 

conteúdo gerado sem necessidade de terem formação formal sobre a criação de terrenos 3D ou 

interações complexas com a ferramenta para influenciar a produção generativa, opondo-se assim a 

algoritmos generativos comummente utilizados, que apenas permitem a geração de conteúdo 

aleatório ou que são desnecessariamente complexos. Um conjunto de testes feitos a 113 pessoas 

online e a 30 pessoas presencialmente, revelaram que é de facto possível desenvolver uma ferramenta 

que permita aos utilizadores, de qualquer nível de conhecimento sobre criação de terrenos, e com 

uma formação mínima na ferramenta, criar um terreno 3D mais realista do que os terrenos gerados a 

partir da solução de estado da arte, como o Perlin Noise, e de uma forma fácil.  

 

Keywords: Redes Neuronais, Geração Procedimental de Conteúdos, PCG, GAN, cGAN, Terrenos 3D, 

Perlin Noise. 
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Abstract 

With the increase in computation power, coupled with the advancements in the field in the form of 

GANs and cGANs, Neural Networks have become an attractive proposition for content generation. This 

opened opportunities for Procedural Content Generation algorithms (PCG) to tap Neural Networks 

generative power to create tools that allow developers to remove part of creative and developmental 

burden imposed throughout the gaming industry, be it from investors looking for a return on their 

investment and from consumers that want more and better content, fast. This dissertation sets out to 

develop a PCG mixed-initiative tool, leveraging cGANs, to create authored 3D terrains, allowing users 

to directly influence the resulting generated content without the need for formal training on terrain 

generation or complex interactions with the tool to influence the generative output, as opposed to 

state of the art generative algorithms that only allow for random content generation or are needlessly 

complex. Testing done to 113 people online, as well as in-person testing done to 30 people, revealed 

that it is indeed possible to develop a tool that allows users from any level of terrain creation 

knowledge, and minimal tool training, to easily create a 3D terrain that is more realistic looking than 

those generated by state-of-the-art solutions such as Perlin Noise. 

Keywords: Neural Networks, Procedural Content Generation, PCG, GAN, cGAN, 3D Terrain, Perlin 

Noise. 
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CHAPTER 1 

Introduction 

1.1 Motivation 

The video game industry is a growing one, boasting more than 2.5 billion players worldwide (Newzoo, 

2020). Trend analyses show a constant growth over the previous several years and projected to grow 

by a considerable margin in the next few years. It is safe to say that this industry is in very good shape. 

 

Figure 1 - Projected market growth by segment. (Newzoo 2019) 

 

 

 

 

 

 

Figure 1.1 - Projected market growth by segment (Newzoo 2019). 

In 2019, the video game market had an estimated value of $152.1 billion and by the end of this 

year (2020) it is expected to increase by 8.2 % to $164.6 billion, with all segments showing growth 

(Mobile leading, with consoles trailing behind and PC in third) with the exception of browser games 

due to the migration of the now dying genre to Mobile platforms and to boxed/downloadable PC 

games, as seen in Figure 1.1. To put this in perspective, the video game market is almost three times 

the size of the movie industry and music industry, combined (IFPI, 2019) (OppenheimerFunds, 2018). 

The entirety of the video game industry shows growth and is in a healthy state with compound annual 

growth rate of global games market, between 2018 and 2022, projected to be +9.0 % , with all major 

world regions remaining stable on their percentage of the revenues, as seen in Figure 1.2. 

Furthermore, if we analyze USA’s Entertainment Software Association (ESA) statistics1  regarding video 

game players demography, we are faced with values that completely dispel the notion that gaming is 

for young male adults (Yannakakis & Togelius, 2011). 

 
1 Using USA numbers, firstly because it’s the second biggest market in the world, closely following China ("Top 

Countries & Markets by Game Revenues | Newzoo", 2020), secondly because it’s more heavily surveyed thus 
having more statistical information freely available and finally because it’s the country with the biggest 
number of developer and publishing studios (www.gamedevmap.com, 2020). 
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Figure 1.2 - Regional breakdown of global game revenue (Newzoo, 2019). 

Of all American adults, 65 % play video games with the average male gamer age being 32 and 34 

for woman. Men represent 54% of the market and woman 46% (Theesa.com, 2019). Moreover, to 

further dispel this notion, the percentage of people playing video games below the age of 18 is the 

same as the percentage of people with 50, or more, playing video games, as seen in Figure 1.3 (Gough, 

2020). 

 

Figure 1.3 - Age Breakdown of video game player in the USA in 2019. 

Gone are the times where gamers were mostly young white males with technological interests. 

Today everybody plays video games meaning that the range of skills, preferences, preferred emotional 

elicitations is as wide as it can be (Yannakakis & Togelius, 2011). This means that developers now have 

a gigantic scope of possible game content to create, depending on the target demographic profile 
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leading to a fast growing necessity in creating more tailored video games and faster (Yannakakis & 

Togelius, 2011).  

Just like any other technological industry, gaming evolved along with hardware and so did the 

demands of the players. Better hardware meant more, better in quality and more regularly released, 

game content. Back in the 1990s, games like Wolfenstein 3D and Doom were created with one full-

time content developer in a developing team made of five to six people with budgets well below the 

million-dollar mark (Kushner, 2004). By early 2000s, developing teams were already in the hundreds 

(Krueger et al. 2005) with multi-million budgets. One example is World of Warcraft (WoW), a game 

with a scope never seen before (initial release date was 2004), had an estimated budget between $20 

million and $150 million (Johnson, 2006) and WoW is updated with more game content regularly for 

the past 16 years. Just 4 years later, GTA 4 is released and in an interview with TheTimes, GTA 4 

producer Leslie Benzies, confirmed that the Budget was approximately 100 million dollars and had 

more than 1000 people working on it (Androvich, 2008). 

ESA reports that quality of graphics and story/premise are two of the main reasons that drive a 

consumer to buy a game. (Theesa.com, 2019). Unfortunately for developers, even though video game 

technology has advanced significantly, allowing for the creation of games with increasing realism and 

complexity, game content creation is still largely manual, meaning that 2 of the main reasons 

consumers buy games represent the majority of time spent developing a game (Yannakakis & Togelius, 

2011) and a considerable chunk of the budget, nearing the 30%-40% mark (Hendrikx, Meijer, Van Der 

Velden, & Iosup, 2013b). This creates a bottleneck in the budget, time-to-market, but more 

importantly, it creates a risk aversion in investors that find taking multi-million-dollar risks to try out 

new concepts, business wise, a very bad idea (Yannakakis & Togelius, 2011) (Hendrikx et al., 2013b). 

 

 Ultimately, these monetary and time constraints leave game content creators in a creative 

bankruptcy. Required to meet deadlines, adapt to any scope or direction change but at the same time 

keep the quality fidelity that a multi-million-dollar project demands. This forces game content creators 

to rehash content to be able to meet the demands  of publishers and investors to remain at the peak 

of profitability, resulting in imitation and stagnation of the industry (Semuels, 2019)(White, 2009) 

(Katzenbach, Herweg, & Van Roessel, 2016).  

It is unmistakable that any technology that lessens the resources that go into content creation 

(especially graphical assets) and shortens the time necessary to tailor craft content to specific groups 

of players would be more than welcomed by all the participants involved, from developers to 

consumers. Following this logic, having a tool that allows to procedurally generate a game map, which 
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is a foundational element in any 3D game (Togelius, Preuss, & Yannakakis, 2010)  (Forbus, Mahoney, 

& Dill, 2002) (it sets the tone, entices players with its mysteries and drives gameplay forward (Wulff-

Jensen, Rant, Møller, & Billeskov, 2018)), would be something worth having, especially if the 

artist/designer can still manipulate several parameters of the creation procedure. To ease the creative 

and development burden brought in by rising consumer demands, several games in the past have used 

Procedural Content Generation (PCG) techniques. PCG consists in generating content algorithmically, 

which otherwise would be created by a human.      

Games such as Rogue (1980), Elite (1985) and The Sentinel (1985) all used PCG techniques mainly 

to reduce the size of the game files and not necessarily related to PCG. More recently, we have 

examples of commercial games that used PCG such as the Diablo Series (1997-2012), Dwarf Fortress, 

Civilization IV map generation (Togelius, Preuss, & Yannakakis, 2010), “.kkrieger” (Farbrausch Prod, 

2006), Spore, Spelunky (Hendrikx et al., 2013b), Tiny Wings (N. Shaker, Togelius, & Nelson, 2016) and 

the Borderlands series (2009-2019). All these games use one or more PCG techniques and not 

necessarily PCG map generation, given the indication that PCG is commercially viable and well received 

by consumers. 

Truly compelling games that exemplify the successful implementation of these technology are 

games such as Minecraft and No Man’s Sky. Both are commercial successes, both use PCG to create 

their game worlds and both have almost incomprehensible sizes:  1024x1012 blocks (Mojang, A B. 2013. 

Minecraft. Stockholm, Sweden.)  and 18x1018 plus planets (Cook, 2016), respectively. This size and 

scope for any game is beyond our wildest dreams if we stick strictly to manual content creation making 

these two games prime examples of how important map generation is and why we should be 

developing robust and fast map generation solutions: without an easily traversable and engaging map, 

the player will not be immersed enough to captivate user interest and attention, leaving the project in 

a position that might be financially non-viable (future downloadable content and/or monetization 

paths will not reach the user simply because it no longer is captivated by the title).  

Another argument for automatic map generation is game replayability (Sampath, 2004). Players 

stuck with the same map for the entirety of the game can get bored, master the map too quickly, in 

the case of the map being either to easy or to small, or dislike the map altogether. With an automatic 

map generator, we can change map presentation to the user and enable a fresh experience whenever 

the developer sees fit, for example, when a new campaign is started, when the player backtracks, to 

apply terrain deformations to convene map destruction tied to the narrative. This possibility would 

also help in taking game content creators away from potentially having to crunch ludicrous hours 

(Gilbert, 2019) and avoiding profit-driven creative bankruptcy. 
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Current algorithms to automatically generate 3D terrain and in-house developed methods for the 

same objective are either too time consuming, expensive, too flawed for today’s standards or a 

combination of these three. Such examples include Diamond Square (Fournier, Fussell, & Carpenter, 

1982), Perlin Noise (Perlin, 1985) (Perlin, 2002) and Midpoint Displacement (Fournier et al., 1982) (Koh 

& Hearn, 1992). Midpoint Displacement is a simple and fast implementation algorithm, but its 

generative simplicity is unsuitable for today’s high-profile games and it suffers from recurring patterns. 

Perlin Noise, a noise based heightmap and texture generator, is inefficient with higher dimensional 

noise creating directional artifacts (Miller, 1986) and, according to (Miller, 1986) “generate defects due 

to what is known as the 'creasing problem' which is the occurrence of creases or slope discontinuities 

along boundaries”. Finally, in-house developed algorithms like the ones proposed by Shaker et al. (N. 

Shaker et al., 2016) can require a lot of handcrafting and human resources to reach a desire quality 

threshold (Togelius, Preuss, & Yannakakis, 2010).  

To add to the above uses, gamified technology and complete games are frequently used in 

training, simulation scenarios, decision support in various sectors in our society and in education. 

Rescue operatives need to train their skills in a consequence free environment,  the military needs 

simulations to train their soldiers and pilots, industries ranging from logistics to customer service use 

simulations to train their workers (Yannakakis & Togelius, 2011). Nowadays, in Portugal, it is required 

to drive in the simulator for a pre-determined time before driving a real vehicle. Students would 

benefit from exposure to varied scenarios in which they can apply acquired knowledge in new and 

novel situations (Freiknecht & Effelsberg, 2017). The more realistic these scenarios are, allied with the 

potential voluminous output of new scenarios, the more effective, accurate and diverse is the training. 

Given the growth of the gaming industry, the importance of 3D terrain in games and the rising 

quality demands, both from producers and consumers regarding content quality and quantity, which 

place extra pressure on developers, there is a growing need for tools that remove part of the burden 

from the creative and development process. This dissertation sets out to contribute to the solution of 

these problems by tapping the PCG body of work for the development of a tool that allows its users to 

create 3D terrains, that is both easy to use and real-time but still produce realistic looking results. 

 

1.2 Context 

This dissertation contributes towards the used of Machine Learning (ML) algorithms, more specifically, 

Deep Neural Networks (DNNs) as the main generative engine in a PCG algorithm to mitigate 

development burden and its associated rising costs.  It is framed in three main areas: Machine Learning 

(ML), Computer Vision and Procedural Content Generation (PCG). The first related field, ML, is an 
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artificial intelligence branch, more specifically, a data analysis method that has its objective set in 

automating analytical model building. These systems are grounded on the idea that such systems can 

learn from data and be able to identify patterns and perform decisions with minimal human 

supervision. The second related field is Computer Vision, which is tasked with automatic extraction of 

high-dimensional data, analyzing and understanding the information contained within a single or 

sequence of images to produce numerical or symbolical information with the objective of creating 

theoretical and/or algorithmic data.  

  DNNs and Computer Vision algorithms are not something new and novel. In recent years, 

supervised DNNs have been experiencing success on the field of computer vision, partly because 

computation performance has gone up steadily since its inception, accordingly to Gordon E. Moore 

prevision (Schaller, 1997). One of those successes was the winner of the Imagenet Classification 

Challenge in 2012 that accomplished an improvement of 10% over the winner of the previous year 

(Krizhevsky, Sutskever, & Hinton, 2012) becoming state-of-the-art. 

Since then, several improvements and breakthroughs have been made, further advancing not only 

the classification percentage, but also DNNs versatility and a wider range of use cases. Several 

developments were made by different research teams, Goodfellow et al. gave us Generative 

Adversarial Networks (GAN) (I. J. Goodfellow et al., 2014), making this work one of the most influential 

in the generative image modeling field. Afterwards, several modifications and improvements were 

made to this design. For instance, Radford et al.  (Radford, Metz, & Chintala, 2016) presented deep 

convolutional generative adversarial networks with a more stable set of constraints to allow for a more 

stable GAN training. Arjovsky et al. (Arjovsky, Chintala, & Bottou, 2017) developed the Wasserstein 

GAN, which allows for better parameterization while training (Mirza & Osindero, 2014) that developed 

the Conditional GAN (cGAN) that allows the addition of a conditional label that enables the network 

to be directed in the generation process. This final DNN is the network used in this dissertation as the 

generative engine tasked with generating 3D terrain. More specifically the network developed by 

(Isola, Zhu, Zhou, & Efros, 2016) and translated to Tensorflow, an open-source software library used 

numerical computation and large scale machine learning, by Guérin et al. (Guérin et al., 2017). 

Lastly, there is PCG, which can be broadly defined as the algorithmic creation of content and assets 

for traditional and digital media such as games, movies and simulations requiring none to minimal user 

input, especially when compared with the hand-made content creation process (Freiknecht & 

Effelsberg, 2017). This includes any content that would be usually created by hand, such as maps, 

textures, sound effects, music, weapons, rules, and game mechanics. This dissertation focuses 

primarily on functional content, meaning content that impacts the user's interactive experience, rather 
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than cosmetic content, mainly because generative graphic and sound has been garnering plenty of 

attention in the past decades, while functional content generation is still considered a niche subject, 

especially when in regards of implementation in large commercial projects  (Freiknecht & Effelsberg, 

2017). 

PCG has been around for a few decades already (Peachey, 1985). Commercially viable PCG 

implementations date back to 1980, with Rogue, a dungeon crawler game in which levels are 

procedurally generated at the beginning of each playthrough that was so critically acclaimed it 

spawned, what is nowadays known as, Rogue-like games. Another noteworthy implementation is Elite, 

a space trading video game released in 1984, whose PCG implementation does not differ that much 

from No Man’s Sky: each galaxy, its planets and their contents were generated from a single seed 

number that ran through the algorithm, thus circumventing memory limitation and allowing for a far 

more expansive game if  the only option was to store all these assets in  memory (Freiknecht & 

Effelsberg, 2017)(Khaled, Nelson, & Barr, 2013)(N. Shaker et al., 2016)(Barriga, 2019).  

In each of these embryonic PCG implementations the goal was not to make it a game element but 

to beat a resource bottleneck (low available memory that prevented developers to add the necessary 

content for replayability) (Freiknecht & Effelsberg, 2017). Although there are several, more 

contemporary, examples of PCG implemented as a deliberate game mechanic, such as Diablo with its 

generated dungeons, The Elder Scrolls V: Skyrim generated quests and Borderlands generated guns 

(Freiknecht & Effelsberg, 2017)(Hendrikx et al., 2013b), there seems to be a growing need for more 

robust tools that allow developers to beat the creative bottleneck and development burden discussed 

in Section 1.1.  

 

Due to the performance increase in ML and NNs, the potential shown in image classification by 

these technologies and the popularization of GANs and others types of NNs, there is an increased 

interest in crossing PCG and ML so we can better leverage the power of both to create new content 

automatically, thus creating a new terminology for these kinds of algorithms: Procedural Content 

Generation via Machine Learning (PCGML) (Torrado et al., 2019). The tool proposed by this dissertation 

is inserted in this classification, as it aims to help streamline functional content generation, by showing 

that functional content generation has a place on the development process. 
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1.2  Research Questions  

As mentioned in Section 1.1, PCG algorithms are still not recurrently seen as solutions for time and 

economic constraints in development, despite showing promising prospects of helping development 

flow in a more streamlined fashion. Having this in mind, this dissertation set out to answer the 

following questions: 

 

 Q1 - Can we leverage machine learning to create a tool that allows users of varied fields of 

experience to create a realistic looking 3D terrain without requiring any formal training? 

 

 Q2 - Are the maps generate by the developed tool regarded as more realistic looking when 

compared to randomly generated terrain generated without user input? 

 

1.4 Objectives 

The main objective of this dissertation is to leverage Neural Networks (NN) algorithms, jointly with 

Procedural Content Generation (PCG) to create a generative tool that allows its users to create 

authored 3D terrains without any type of previous knowledge on 3D terrain creation. A NN will be used 

as the generative engine behind a PCG algorithm. This gives its users the opportunity to create more 

detailed 3D terrains when compared with industry established generative algorithms such as Perlin 

Noise, as well as giving the user the ability to directly influence the end result, which most broadly 

used generative algorithms do not allow. This notion will be achieved by comparing 3D terrains 

generated by the developed tool with terrains generated via a more regular algorithm, in this case, 

Perlin Noise. The tool will enable users from any experience level to create an authored terrain with 

more ease than handcrafting it, reducing the burden of development, and streamlining 3D terrain 

creation. 

 

1.5 Document Structure and Organization 

The remainder of this dissertation is divided in 6 chapters. Chapter 2 will address the existing body of 

work related with this dissertation, starting with Neural Networks, PCG and finishing with bodies of 

work more closely related with this dissertation. Chapter 3 will present the work that was done to be 

able to achieve the proposed objectives. Chapter 4 will present results regarding testing done to the 

work developed, as well as discussing the obtained results. Finally, in Chapter 6, the conclusions 

regarding this dissertation will be discussed. 
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CHAPTER 2 

Literature Review 

Before proceeding, a quick overview of how DNNs work is necessary to comprehend how this 

promising technology accomplishes its results. We start with a simplified explanation of how DNNs 

operate and after that we will explore specific bodies of work more closely related to this dissertation's 

theme, their achievements, and contributions.  Afterwards, an overview of PCGs history, concepts, 

tools, and taxonomies is given to better understand the research and impact this area has on the 

gaming industry. Finally, an overview of some PCG's legacy algorithms is presented, finishing on work 

that is directly related to this dissertation. 

 

2.1. Artificial Neural Networks (ANNs) 

ANNs are an information processing model and its development began in 1943, when 

neurophysiologist Warren McCulloch and mathematician Walter Pitts projected a binary threshold unit 

to translate a biological neuron into a computational model(McCulloch & Pitts, 1943) (Sarle, 1994). As 

we can see in Figure 2.1, this model is roughly similar to its biological counterpart, the brain (A. K. Jain, 

Mao, Road, & Jose, 1996). 

 

Figure 2.1 - McCulloch neuron. 

This neuron receives xi , i{1,2,…,n}, inputs (initial inputs or inputs from a previous layer), 

multiplies them by the weights wi , i{1,2,…,n} (that represent the connection strength), sums the 

results and passes them through an activation function to calculate the output (Sarle, 1994). Several 

of these neurons can be chained, stacked, and linked together to create a structure capable of solving 

problems and tasks without having to be explicitly programmed to do them, and excel at solving non-

linear problems. When neurons are chained, they become an ANN which receives inputs in the input 

layer, generally real numbers (Nielsen, 2018). An example of an ANN can be seen in Figure 2.2. 
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These inputs are passed to each neuron that can receive several at the same time and 

computations are made accordingly to each neuron programing and its output serves as input to the 

next layer. Note that each connection has a weight that is altered depending on the number of times 

the connection is used: heavy use means higher weight and vice-versa, just like real neurons work. This 

is repeated until we reach an output and final layer (Nielsen, 2018). 

 

Figure 2.2 - ANN example, Taken from (Nielsen, 2018). 

Several advancements where made in the field, such as the Perceptron (Rosenblatt, 1958), the 

representation of the threshold proposed by (McCulloch & Pitts, 1943) were converted in bias terms 

in (Widrow, 1960) and the rediscovery of backpropagation (Paul Werbos, 1974). Werbos et al. work 

played a key factor in the resurgence of interested in this area seen in the 80s because it enabled the 

possibility to efficiently train multi-layered networks. More complex layout pushed this area into 

blooming, with different neurons, different activation functions and new ways to train ANN, paving 

the way for an exponential growth in complexity and, consequentially, more possible applications. 

 

2.1.1 Deep Neural Networks (DNNs) 

Deep Learning (DL) was first used by (Dechter, 1986) in machine learning and applied to ANNs by 

(Aizenberg, 2000) to describe ANNs with several hidden layers. This type of network configuration is, 

operation wise, manifolds heavier than previous layouts, to such a degree that only recently they 

began to be attractive in real world solutions due to the steady increase of graphical processing units 

in GPUs, permitting that heavy parallel operations be carried out. Thanks to more computation, these 

networks can represent far more complex concepts and relationships between features (Nielsen, 

2018).  
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The network is aiming at learning an optimal mapping function that best describes the probability 

distribution present in the given dataset. This is achieved by trying to minimize a previously defined 

loss function that represents the distance between the prediction made by the network and the actual 

label. There are several loss functions, each better suited for the type of objective (Nielsen, 2018).

  

With each iteration, the parameters of the network are corrected depending on the values of the 

loss function, towards the global minimum. All these loss values are them compounded on a cost 

function, also referred to as regularization that represent the global error of the network. If this value 

is acceptable and we have learned an optimal mapping function, the training data is no longer 

necessary, and we are ready to input never seen before values and compute predictions based on this 

unknown distribution probability (Nielsen, 2018).  

 

2.1.2 DNN Architectures 

This section will shed some light on the different kinds of neural networks available nowadays, 

focusing on the most notable examples. 

2.1.2.1 Convolutional Neural Network (CNNs) 

The most notable examples of CNNs are Krizhevsky et al. that broke the record for ImageNet Large 

Scale Visual Recognition Challenge by a margin of error of less than 10% comparing to the runner-up 

(Krizhevsky et al., 2012) and Lecun et al., responsible for the network capable of recognizing 

handwritten digits (Yann Lecun, L´Eon Bottou, Yoshua Bengio, 1998), creator of the MNIST dataset and 

whose solution is still used nowadays. 

 

Figure 2.3 - Example of CNN (Saha, 2019). 

As by the given examples, this network excels at image classification and it is composed of three 

main parts: the convolution layers, the pooling layers and fully connected layers, as can be observed 
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in Figure 2.3. The role of all these layers is to reduce the input image into a more easily processable 

form without losing critical features that might influence the final prediction (Saha, 2019) (Stanford, 

2019).   

 

First, the network has a convolution layer and, as the name points out, it performs convolutions 

over the input volume with a specified kernel size. What this does is perform a matrix multiplication 

between the kernel and the volume inputted, transforming the area of the kernel in a single input on 

the convoluted layer. For example, a 5x5x1 matrix convoluted with a 3x3x1 kernel would output a 

3x3x1 feature. With this operation, high level structures, such as edges and orientation, are extracted 

(Stanford, 2019). After the convolution layer is the Pooling Layer. It decreases the spatial size of the 

convoluted layer further. This helps decreasing the computations needed to process the data and it 

extracts fixed dominant features (constant features that are immutable faced with rotations and 

positional variations). This can be achieved by using pooling techniques, such as Max Pooling, Average 

Pooling and Global Pooling (Stanford, 2019).  

 

 

  

 

 

Figure 2.4 - Max pooling example (Stanford, 2019). 

In the first case, a kernel size is defined and traverses the full length and width of the previously 

convoluted layer picking the maximum value present on that area. An example of this method can be 

seen on Figure 2.4, where a 2x2 kernel finds the maximum value on its 2x2, every time it moves.  

Average Pooling is similar, but instead of choosing the maximum value, an average between all the 

values is computed. Lastly, Global Pooling, that allows for entire feature map to be reduced to a single 

value, which helps reduce overfitting and can replace the Fully Connected layer (Lin, Chen, & Yan, 

2014), which is the last layer. This layer is fully connected to the outputs of the previous layer, just like 

in any regular NN, and it serves as the de facto classifier of the information previously computed (Saha, 

2019) (Stanford, 2019).
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2.1.2.2 Recurrent Neural Networks (RNNs) 

The most notable example of RNNs are Long short-term memory (LSTM) networks developed by 

(Hochreiter & Schmidhuber, 1997) but for simplicity sake this subchapter will address how RNNs 

operate and not LSTMs.  

 

One of the differences between RNNs and other ANNs is how data is inputted. On regular ANNs, 

data is fed to the input layers at the same time, travels from left to right and something is outputted 

by the AAN. In RNNs data input is sequential, meaning that the first neuron's output is taken in 

consideration when the second neuron is receiving its input (Olah, 2019). This means that the previous 

output will influence the output of the next neuron. Additionally, each neuron has a hidden state that 

is updated with information that the neuron should remember, which increases the complexity of the 

network.. 

 

Figure 2.5 - RNNs information flow (Olah, 2019). 

As we can see in Figure 2.6 this is achieved by using Gated Recurrent Units. Inside these gates, the 

output of the previous neuron activation value is multiplied by the sigmoid of the current data being 

fed to the neuron. If the sigmoid value is 0 then the previous state is remembered and if it is 1 the 

remembered value is updated to the current one (Olah, 2019).  

 

 Figure 2.6 - Comparison between regular RNN and Gated Recurrent Units (Olah, 2019).  
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2.1.2.3 Generative Adversarial Networks (GANs) 

The third DNN architecture and the most relevant one for this dissertation are GANs, because it is the 

architecture used in this dissertation. This type of DNN is proficient in image generation. Given a 

training set, this type of DNN can learn the underlying distribution and be able to generate images 

similar to the ones it was trained on (Salimans et al., 2016). Until Goodfellow et al. (I. J. Goodfellow et 

al., 2014), deep generative models did not had much impact on the ML scene, especially when 

compared to the discriminative models, due to the difficulty of estimating hard to control probabilistic 

calculations that arise in the strategies usually used in the generative context, like in maximum 

likelihood estimation (I. J. Goodfellow et al., 2014). Another problem that arises when generating 

content is how do you distinguish between the quality of two generated images. A common method 

is measuring the distance between the output of the ANN and the nearest dataset neighbor, e.g., BLEU 

score (Papineni et al. , 2002), used commonly in language translation. These methods become 

inefficient when the amount of data goes from a simple sentence to an image where each pixel can 

have several different colors, simply because of the sheer number of possible configurations even the 

smallest image can have. The solution is to pit two neural networks against one another: one, the 

Generator (G), generates the content and the other, the Discriminator (D), evaluates whether the 

output is generated by G or if comes from the training dataset, classifying as fake any input it assumes 

fake, low quality, or real (from the dataset), if it has enough quality to fool D. The general GAN 

architectural outline can be seen in Figure 2.7. 

 

Figure 2.7 - Vanilla GAN architecture (Carey, 2019). 
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This model essentially works like a “Catch Me If You Can” game, a police versus counterfeiter 

scenario if you will. G generates an image, that is passes to D that tries to discern if the image comes 

from the training set or if it is a generated image, a fake.  With each iteration, D gets better at spotting 

fakes but at the same time G becomes better at generating seemingly indistinguishable images when 

compared to the training set, until we reach a point (ideally) where D does not have more than a 50 % 

chance of spotting a fake and our G is ready to generate images without the need of adjustment.  

 

 Equation 2.1 represents the loss function of a vanilla GAN as seen in (I. J. Goodfellow et al., 2014). 

G is trying to minimize the right hand part of the equation and D is trying to maximize the left hand 

side of the equation which means that, fundamentally, these two networks are locked in a minimax 

two player game (I. J. Goodfellow et al., 2014).  

 

𝑚𝑖
𝐺

𝑛 𝑚𝑎
𝐷

𝑥 𝑉 (𝐷, 𝐺) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎
(𝑥) [log 𝐷(𝑥)] + 𝔼𝑧~𝑝𝑑𝑎𝑡𝑎

(𝑧) [log(1 − 𝐷(𝐺(𝑧)))]  (2.1) 

Training is done as any other ANN, but with a key difference: G and D are updated asynchronously. 

Since both are trying to optimize in different directions you first need to train D with real images, then 

generate fakes with G so that D can classify them as real or fake and then finally, use Ds prediction to 

train G so it can learn how to fool D.  

 

2.1.2.4  Types of GAN 

After GANs where first proposed by Goodfellow et al. (I. J. Goodfellow et al., 2014), several 

advancements where made in the field, such as Batch Normalization (and all its variations) and the All 

Convolutional Net (Springenberg, Dosovitskiy, Brox, & Riedmiller, 2014), inspired (Radford et al., 2016) 

to create the Deep Convolutional Generative Adversarial Networks (DCGAN) architecture to achieve a 

more stable training and avoid the problems described in the body of work created until then. 

 

 

 

 

 

 

 

Figure 2.8 - DCGAN Generator architecture. Network input is a 100x1 noise vector (z) and its mapped to a G(z) 

output of 64x64x3 (Radford et al., 2016) 
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In regard to architecture, in DCGANs (see Figure 2.8), the Generator network (G) is a four-layer 

deconvolution network that has as input a vector z with one hundred random values that pass through 

the 4 hidden layers and end in a 64x64x3 pixel image (Radford et al., 2016). The Discriminator (D) is 

also a four-layer deep convolutional network that receives as input the output from G, pass it through 

the network, transforming it into a 4x4x512 feature map, which is then passed to a fully connect output 

neuron that will output either 1 for an image from the dataset or a 0 for a generated image. 

 

In order to achieve a more stable architecture, Radford et al. replaced the pooling layers in D in 

lieu of strided convolutions and in G with fractional-strided convolutions, applied Batch Normalization 

to both G and D, removed fully connected layers in hidden layers. Radford et al., then trained this 

architecture with three different datasets, Large-scale Scene Understanding (LSUN), Imagenet-1k and 

the Faces dataset and demonstrated that a much more stable GAN architecture is possible (Radford et 

al., 2016).  

 

The next relevant GAN architecture are Conditional Generative Adversarial Networks (cGAN), first 

introduced by Mirza et al. (Mirza & Osindero, 2014). cGAN is a simple yet powerful expansion of GAN 

training. Instead of feeding the GAN with x (in the case of D) and with z (in the case of G), the GAN is 

fed with its specific input and a conditional information y that can take the form of a class label or any 

other information that might condition the generative process. 

 

When comparing Equation 2.2 and 2.1, it is possible to see that the loss function of the cGAN (2.2) 

is extremely akin to the loss function of the vanilla GAN, 2.1, with the only exception being label y been 

fed to both the G and D to steer the generative process in the desired direction. This difference can be 

seen in Figure 2.9. The architecture is similar to vanilla GANs with the key difference being the 

simultaneous input of an image from the dataset and a label for G and the output of G and a label for 

D.  

 

𝑚𝑖
𝐺

𝑛 𝑚𝑎
𝐷

𝑥 𝑉 (𝐷, 𝐺) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎
(𝑥) [log 𝐷(𝑥|𝑦)] + 𝔼𝑧~𝑝𝑑𝑎𝑡𝑎

(𝑧) [log(1 − 𝐷(𝐺(𝑧|𝑦)))] (2.2) 

 

In their work, Mirka and Osindero (Mirza & Osindero, 2014) also showed for the possibility of 

multi-modal labels, further increasing the description power that labels have on generation. This 

opened the doors for further investigation which led to the creation of the much famous Image-to-

Image Translation with Conditional Adversarial Networks by Isola et al. which is one of the key-works 

for this dissertation 
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Figure 2.9 - cGAN architecture example (Mirza & Osindero, 2014). 

2.1.2.5 Image-to-Image Translation by Isola et al. (pix2pix) 

Isola et al. work is explored in this dissertation with more detail due to the fact that the GAN used in 

this work was originally developed by Isola et al. (Isola et al., 2016). Isola et al. set out to corroborate 

the concept that cGAN are an effective general purpose solution for image translation, which consists 

in translating one possible representation of an image into another, given sufficient training data (Isola 

et al., 2016), e.g., translate a picture in a painting of that same picture but with a specific painting style. 

Image translation hinges on the differentiating factor that the loss learned by a cGAN is a structured 

loss, a loss that takes in account the combined structure of the output, instead of treating each pixel 

of the output space as independent from each other. This confers cGAN the possibility of being applied 

to any structure (Isola et al., 2016). 

 

The first differentiating factor of this GAN is the objective function, that instead of mixing the GAN 

objective with L2 regularization (the sum of the squared loss for each data point), Isola et al. mixes it 

with L1 regularization (sum of absolute differences between the target and predicted values), resulting 

in less blurry outputs. 

   

                                             𝐺∗ = arg 𝑚𝑖
𝐺

𝑛 𝑚𝑎
𝐷

𝑥 ℒ𝑐𝐺𝐴𝑁 (𝐺, 𝐷) +  𝜆ℒ𝐿1 (𝐺).                                             (2.3) 

 



18 
 

This resulting objective function can be seen in Equation 2.3, where ℒ𝑐𝐺𝐴𝑁 (𝐺, 𝐷) is the same as 

in Equation 2.2 and  𝜆ℒ𝐿1(𝐺) is the multiplication of a constant, 𝜆, that can be manually set, multiplied 

by L1 regularization.  

 

Another particularity of this GAN design is that the Generator (G) is not provided with noise as an 

input like previous GAN designs. The authors noticed that G simply learned to ignore the noise. Instead, 

noise is introduced in both G and the Discriminator (D) in several layers, both in training and testing in 

an attempt to increase output stochasticity, with weak stochasticity improvements (Isola et al., 2016). 

 

Isola et al. also differ from vanilla GANs in the Generator and Discriminator structure which is 

based on the work of Radford et al. (Radford et al., 2016). The Generator architecture chosen was a U-

Net based on (Ronneberger, Fischer, & Brox, 2015). This is a Fully Convolutional network, with a 

contracting side and an expansive side giving it its distinct “U” shape. Additionally, no noise is provided 

to the generator. This was substituted with dropout, which switches off hidden and visible units at 

random, in several layers of the generator, to prevent over-fitting.    

 

The contracting side is a convolutional network with convolution layers, ReLu activation layers and 

pooling layers, that use max pooling. The contracting side learns feature information, then the 

expansive side combines these features with spatial information using up-convolutions and 

concatenations (Ronneberger et al., 2015) (Isola et al., 2016). 

 

 

 

 

 

 

Figure 2.10 - Left - Auto-Encoder. Right - Pix2Pix U-Net (Nayak, 2019). 

The rationality for this choice was that, in the context of image-to-image translation, the input and 

output are both high resolution grids that have the same underlying structure, making the 

Input/output structure be somewhat aligned. Previous works in this area used an Auto-Encoder 

solution, which exhibited the following problem: looking at the left network of Figure 2.10 we can see 

a bottleneck in the middle, because all information must invariably pass through the center 
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(Ronneberger et al., 2015) (Isola et al., 2016). To circumvent the problem of having a bottleneck in the 

middle and making use of the notion that on image translation there is a considerable volume of low 

level information that is shared between input and output, skips are added to the Unet, between layers 

so this information can jump between layers and free up space on the center for information that 

needs to invariably flow through the center. Layers where skipping is possible, perform a 

concatenation of channels from layer i with channels from layer n-i (Isola et al., 2016).  

 

As for the Discriminator of this GAN, a CNN (Isola, 2017) is used, named PatchGAN, whose 

architecture is seen in Figure 2.11. By using L1 regularization, the network is already being encouraged 

to accurately assess low frequency features so D needs to be restricted to only model high frequency 

structures (Isola et al., 2016). To achieve this, PatchGAN only penalizes high frequency structures at 

the level of individual patches. Instead of mapping from the full input to a single scalar output that 

dictates whether the image is fake or real, D traverses the input images and classifies each N x N patch 

of the image as real or not and then all results are averaged to produce the final output. This makes D 

smaller, faster, requires less parameters and can be applied to any size of image because its evaluating 

high frequency structures at a N x N patch scale rather than considering the whole image as the high 

level structure (Li & Wand, 2016) (Isola et al., 2016). 

 

 

 

 

 

Figure 2.11 - PatchGAN Discriminator, and its patch-by-patch evaluation (Ku, 2019). 

2.2 Procedural Content Generation Definition 

The definition of Procedural Content Generation (PCG) in the context of computer games has been 

subject to change in scope rather than in its definition itself, mostly because of a lack of agreement 

between practitioners regarding what is considered content that should be generated by PCG 

algorithms (Togelius, Kastbjerg, Schedl, & Yannakakis, 2011). 
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Togelius et al. define PCG “as the algorithmical creation of game content with limited or indirect 

user input.” (Togelius, Kastbjerg, et al., 2011) and go a step further by contrasting what PCG is, what is 

not and what might be, defining that, for example, PCG is not something created by the user, even if 

it is via procedural methods (Togelius, Kastbjerg, et al., 2011). 

 

Later, Hendrikx et al. defined PCG as “the application of computers to generate game content, 

distinguish interesting instances among the ones generated, and select entertaining instances on 

behalf of the players” (Hendrikx et al., 2013b), seeing PCG as technology suitable to replace hand-

crafted content design, but making clear that a degree of parameterization is required so that content 

can be influenced by the designer’s needs (Hendrikx et al., 2013b). Hendrikx et al. are also responsible 

for coining the term Procedural Content Generation for Games (PCG-G), which further departs PCG-G 

from PCG methods employed in other fields, such as simulation and movie animation (Freiknecht & 

Effelsberg, 2017). 

 

Lastly, Shaker et al., added to the definition provided by Togelius et al. a consideration that the 

content generated can be automatically generated or in conjunction with the designer. Furthermore, 

Shaker et al. specify their definition of content as including almost everything that is present in a game, 

excluding the game engine and non-player character behavior, which they do not consider to be 

content, although even this is a point of contention, if we take in consideration promising  behavioral 

generation (Barreto, Cardoso, & Roque, 2014). 

 

2.2.1 Brief History of PCG in Commercial Games 

The earliest recorded commercial use case of PCG was Beneath Apple Manor by Don D. Worth, which 

dates to 1978. Developed for Apple II personal computer, it used procedural generation to randomize 

its dungeons, featuring 5 to 10 different rooms each, and all of this on only 16 KB of memory (Risi & 

Togelius, 2019) (Torrado et al., 2019) (Freiknecht & Effelsberg, 2017). 

 

In 1980, Rogue was released to much critical acclaim, so much so that it spawned its own 

subgenre, Roguelike games. Similar to Beneath Apple Manor, Rogue’s dungeons were procedurally 

generated but with an added feature, permanent death.  Rogue spawned several free-to-play variants 

such as NetHack, Moria, Ancient Domains of Mystery (ADOM), Angband and others (Hendrikx et al., 

2013b) (N. Shaker et al., 2016). Commercially speaking, Rogue inspired the critically acclaimed 

dungeon crawler series, Diablo, with its third installment, Diablo III, released in 2012. Another 

paradigm setting game was 1984s Elite, a space exploration and trading game with fully procedurally 

generated galactic composition, economy and galaxy composition: eight galaxies in total, each with 
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256 unique planets (N. Shaker et al., 2016), everything fitting in 64 kilobytes of memory (Risi & Togelius, 

2019). Its developers were able to achieve this by storing the seeds of each system that, upon entry, 

were then fed to a Pseudo-Random Number Generator (PRNG) (Hendrikx et al., 2013b) (Risi & Togelius, 

2019). Just like Rogue, Elite had a strong impact that led to not only sequels, 1993s Frontier: Elite II and 

1995s Frontier: First Encounter,  but also spiritual successors suck as Elite: Dangerous, a crowdfunded 

game that released in 2014, and inspiration for other games, such as No Man’s Sky (Risi & Togelius, 

2019) and EVE Online (Hendrikx et al., 2013b). 

 

All these games have one thing in common: none of them implemented PCG solely for its intrinsic 

value. Aside from replayability, all of them implemented PCG to resolve memory issues due to the 

sheer scope of the games (Freiknecht & Effelsberg, 2017) (Risi & Togelius, 2019). This tendency, 

nowadays, has been mostly shifted. With growing hardware capabilities and the increase in budget, 

PCG moved from a technology to overcome hardware restrictions to a means to add replay value 

without bank breaking additional costs and to a technology that reduces development time (Barreto 

et al., 2014).  

 

As these technologies and methods matured, their application and usage went from a way to 

circumvent hardware bottlenecks to a purposeful implementation as a game element. Early high-

profile examples include X-Com: UFO Defense, released in 1994, Diablo, The Elder Scrolls II: Daggerfall, 

both released in 1996 and Command and Conquer: Red Alert 2, released in 2000. All these game series 

are still in existence and sequels are still being released (Freiknecht & Effelsberg, 2017).  

 

More recent examples include the previously mentioned EVE Online, a massively online game  

from 2003 that generates planets visuals, universe and scenarios akin to Elite, resorting to modeling 

and simulation of complex systems for universe generation and PRNG to place hand crafted elements 

(Hendrikx et al., 2013b). Minecraft, released in 2009, uses PCG techniques to generate its world (N. 

Shaker et al., 2016), more specifically, scaled 3D Perlin noise with linear interpolation (Persson, 2011) 

to create structures and a Whittaker Diagram (Whittaker, 1962) to populate the world with diverse 

biomes ("Biome", n.d.). 
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Another recent game series that generates game space procedurally, is Civilization, which uses 

similar techniques to EVE Online to generate resources and place them on the generated map 

(Hendrikx et al., 2013b).  In 2011, Elder Scrolls V: Skyrim was released and contained a scenario 

generation system called Radiant ("Skyrim:Radiant - The Unofficial Elder Scrolls Pages (UESP)", n.d.), 

which created quest based of templates that are completed according to existing game conditions 

(Hendrikx et al., 2013b). Even more recent, and more heavily centered on PCG, is No Man’s Sky. 

Released in 2016, it features a procedurally generated deterministic universe, with over 18 quintillion 

planets, each with generated ecosystems with distinctive forms of flora and fauna, of which some is 

sentient and can be engaged by player for various purposes, including combat, trade, and linguistic 

training (Cook, 2016).  

 

2.2.2 PCG Tools 

Just like there are PCG solutions for games there are also some tools for asset creation that are worth 

mentioning. The first mention is SpeedTree ("SpeedTree - 3D Vegetation Modeling and Middleware", 

n.d. First released in 2002, it is the most widely used PCG middleware in game development (Togelius 

et al., 2013) and its purpose is to create organic vegetation, from bushes to trees. It achieves this by 

treating the tree as an interactive generative material, allowing the designer to deform the tree as one 

sees fit without it ever disrupting the tree's integrity (N. Shaker et al., 2016). SpeedTree also made the 

jump from a game only middleware, to become available for cinema and television productions since 

2009 ("SpeedTree - 3D Vegetation Modeling and Middleware", n.d.). On the same generative subject, 

there is also Xfrog (Xfrog, n.d.), also with a generative approach to create plants. First released in 1996 

and, nowadays, available for Maya and CINEMA 4D. 

 

Texture generation tools can also be augmented by procedural methods. One early example is 

DarkTree, “an advanced procedural shader authoring tool” ("Darkling Simulation’s", n.d.). This tool 

allows the user to connect several small procedural algorithms to create a new final texture (Roden & 

Parberry, 2004). Blender also offers the possibility of generating textures ("Procedural Textures — 

Blender Manual", 2017). Another texture generator is the Substance Suite of products ("Substance | 

The leading software solution for 3D digital materials", n.d.), with Painter being geared towards real-

time texturing and Designer focused on texture creation. Both have tools at the user’s disposal to paint 

and create textures using procedural methods ("The Substance Art of Rogelio Olguin", 2016) 

("Substance Designer", 2017). 
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L3DT is a terrain generator that also generates textures ("L3DT", 2017). It uses Perlin noise or 

Fractal algorithms for the map creation and allows parameter manipulation ("L3DT documentation", 

2017). It is also capable of placing water on the map, calculating surface normal, light maps, and others. 

CityEngine aims at generating several different buildings automatically trough procedural modeling 

from a limited rule set or user created content ("Advanced 3D City Design Software | Esri CityEngine", 

n.d.) (Hendrikx et al., 2013b). 

 

Moving to gameplay oriented tools, the first example is Sentient Sketchbook (Liapis, Yannakakis, 

& Togelius, 2013), a real-time game level generator that produces levels through designer sketches 

(Barreto et al., 2014). This generator presents to the user several alternatives possible, taking into 

account the current design, tests created levels automatically and displays navigable paths (N. Shaker 

et al., 2016). 

 

Ropossum (M. Shaker, Shaker, & Togelius, 2013) is also another authoring tool that generates and 

tests levels for Cut the Rope, a physics-based puzzle game. This tool allows for automatic generation 

of solvable levels, the ability to merge user’s designs with automatically generated ones, as well as 

checking for playability and optimizing designs accordingly (N. Shaker et al., 2016). 

 

Tanagra (Smith, Whitehead, & Mateas, 2011) is a tool for level design that allows for the designer 

to rapidly view several possible levels that meet a set of specified constraints. A reactive level 

generator guarantees that all created levels are playable. Moreover, designers can refine created levels 

by moving level geometry as intended, based on their own intuition or based on tool's suggestions 

(Barreto et al., 2014) (Smith et al., 2011). Tanagra levels fit a theory of “rhythmic patterns in platformer 

games” (N. Shaker et al., 2016), which can also be modified by the designer, leading to a recalculation 

of the portions that are affected by the changes.   

 

A final example is SketchaWorld (Smelik, Tutenel, De Kraker, & Bidarra, 2010), a PCG tool that 

allows the user to create a fully integrated virtual world, from topology of the landscape to positioning 

of vegetation, roads, building, and water courses. The user interactively sketches high level terrain 

features in a 2D layout map, which is a coloring grid that contains elevation and soil material 

information. Then, on a second stage, the user adds information about urbanization and river features 

(N. Shaker et al., 2016). The final representation is 3D and for this to be possible the tool possesses 

blending and local adaptation steps to ensure logic placement of features, such as removing a 

misplaced tree from a generated road (N. Shaker et al., 2016). 
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2.2.3 PCG Taxonomies 

Procedurally generated game content has been classified and categorized with different approaches, 

mainly by Hendrikx et al. (Hendrikx et al., 2013b) and by Togelius et al. (Togelius, Yannakakis, Stanley, 

& Browne, 2011), and later expanded by Shaker et al. (N. Shaker et al., 2016). In the first work, the 

approach was to classify according to what content can be generated, while the latter categorizes 

techniques according to morphology and application (Barreto et al., 2014). 

 

Hendrikx et al. (Hendrikx et al., 2013b) divided procedurally generated game content in six classes, 

each with a subdivision that represents the specific type of content that can be generated in each class. 

The first class, Game Bits, includes the most basic structure present in games. When considered 

individually, separated from their over-arching composition, game bits typically do not interact with 

the user (Hendrikx et al., 2013b). There are six types of game bits: textures, sound, vegetation, 

buildings, behavior, and graphical effects, such as fire, water, stone and clouds (Hendrikx et al., 2013b) 

(Barreto et al., 2014) (Barriga, 2019). 

 

The second class, Game Space, refers to the virtual spaces in which the game will unfold. These 

spaces are filled with game bits and they play a big role in immersing the user and elicit personal 

interpretations regarding the game (Hendrikx et al., 2013b). Game space is further divided in Indoor 

Maps, Outdoor Maps, and Bodies of Water (Hendrikx et al., 2013b). This distinction is made because, 

aesthetically and thematically speaking, outdoor maps are more consistent, which is not observed with 

indoor maps, that can be heavily influenced by the cultural setting. Implementation wise, the 

algorithms used to generate an indoor location are completely different from outdoor maps (Hendrikx 

et al., 2013b) (Barreto et al., 2014)(Barriga, 2019).  If evaluated according to this categorization, this 

dissertation will produce an artifact that falls in this class, more specifically, an Outdoor Map.  

 

The third class are Game Systems. This classification class refers to complex systems theory and 

modeling that simulate and generate complex environments that grant games more believability and 

appeal (Hendrikx et al., 2013b) (Barreto et al., 2014). These game systems can be ecosystems, road 

networks, urban Environments, and entity behavior. The latter mainly refers to Non-Playable 

Characters (NPC) (Hendrikx et al., 2013b).  

 

The fourth class, Game Scenarios, pertains to story and content related to how the game unfolds, 

its logical progression (Hendrikx et al., 2013b). Its subcategories are Puzzles, Storyboard, Story, and 

Levels (Hendrikx et al., 2013). 
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The fifth class, Game Design, refers to what can be done, what the player is trying to achieve, that 

is, rules and goals. It also includes rules regarding game design, i.e., overarching rules regarding 

thematic and general setting and tone (Hendrikx et al., 2013b). This class is subdivided into System 

Design and World Design. Lastly, the sixth class, Derived Content, is defined as “content that is created 

as a side-product of the game world” (Hendrikx et al., 2013b). This means generating auxiliary content 

that can be described as “meta content”, which can be used outside or inside the game itself, helping 

the user to further immerse themselves in the game. The two types of derived content are “News and 

Broadcasts” and “Leaderboards”. 

 

As mentioned, Togelius et al. (Togelius, Yannakakis, et al., 2011) classifies procedurally generated 

game content based on morphology and application, initially creating a five-group taxonomy, which 

Shaker et al. (N. Shaker et al., 2016) later expanded to a seven-group taxonomy. The first group is 

Online versus Offline. Game content can be generated online (in-game), while the game is being played, 

allowing extended replayability and the possibility of creating content that is adapted to the player or 

it can be generated offline (off-game), either during development or before the user starts a new 

session (N. Shaker et al., 2016) (Togelius, Yannakakis, et al., 2011).  

 

The second group refers to Necessary versus Optional content. The main distinction being that 

necessary content is mandatory for the completion of the game and, thus, it needs to always be correct 

and functional. On the other hand, optional content, being content that the player does not need to 

obligatorily interact with to complete the game and has the choice to ignore, does not need to be 

always correct (Togelius, Yannakakis, et al., 2011). An example of necessary content is a Diablo 

dungeon, which needs to be traversable in its entirety to be beatable. An example of optional content 

is a No Man’s Sky planet generated with aggressive weather conditions and fauna, so much so that it 

renders any gameplay on that planet impossible. However, since there are many planets on the game, 

the player can simply ignore it and go to the next planet. 

 

The third group pertains to Degree and Dimensions of Control, also known as Random Seeds versus 

Parameter Vectors. Another difference regarding procedural content generation according to Togelius 

et al. and Shaker et al. is to what degree the algorithm can be parameterized to allow varying degrees 

of control. Considering control as a spectrum, on one end we have Seed Generation, which allows for 

a specific generation to be regenerated, but it does not allow for its parameterization ("Seed (level 

generation)", n.d.), as in Minecraft. On the other end of the spectrum, we have any generator that 

accepts as input a vector with several parameters to control the unfolding  of the generative process 

(N. Shaker et al., 2016)(Togelius, Yannakakis, et al., 2011). 
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Fourthly, the Generic versus Adaptive group refers to content that is generated without taking into 

account user behavior or proclivities. This content generation method is diametrically opposed to 

adaptive generation, in which user interaction is analyzed and taken into account when generating 

new content (N. Shaker et al., 2016). The fifth group considers Stochastic Versus Deterministic 

Generation. As the names imply, in deterministic generation, given the same initialization point, it is 

possible to regenerate the same content, as opposed to stochastic generation, in which the exact same 

content is not possible to regenerate (N. Shaker et al., 2016). An example of deterministic generation 

would be Minecraft seed generation. In some cases a totally deterministic algorithm can be 

understood as a form of data compression, as in .kkrieger (Togelius, Yannakakis, et al., 2011) or in No 

Man’s Sky. 

 

The sixth group regards Constructive versus Generate-and-Test. Constructive PCG refers to 

content that is generated once, without any form of verification regarding input parameters or 

playability of what was generated. To mitigate creating content that is broken or unplayable, the 

algorithm only performs operations that are proven to only generate content that is playable and 

desirable (Togelius, Yannakakis, et al., 2011). For generate-and-test techniques, a loop between 

generating and testing is formed. Once a contender is generated, it is tested according to some 

previously determined criteria so as to assure that the produced content is playable (Togelius, 

Yannakakis, et al., 2011). 

 

Finally, the last group compares Automatic Generation versus Mixed Authorship. As the name 

implies, automatic generation allows for no or very limited user input regarding generation 

parameters. However, a bigger involvement of the designer is often desirable. Mixed authorship 

emphasis the participation of a human designer that cooperates with the algorithm in order to fine-

tune and modify the generated content, allowing for a more personalized outcome (N. Shaker et al., 

2016).  Examples of such tools and algorithms are presented in Section 2.2.2. The tool developed in 

this dissertation falls on the mixed initiative categorization.  

 

Even though these taxonomic classifications focus on different aspects of the generative 

algorithms, one according to what content can be generated and the other according to morphology 

and application, they are not mutually exclusive and in fact they complement each other (Barreto et 

al., 2014).  This taxonomic crossover can be seen in Table 2.1, where this dissertations’ proposed tool 

is classified according to the taxonomic classes proposed by Togelius et al. and Hendrikx et al. To start, 

this tool creates a terrain of the game space type, more specifically, an outdoor map. This terrain then 
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falls, according to Togelius et al. taxonomic classification, in several taxonomic groups. It falls in the 

offline category because it is created before the game starts. It is also a necessary asset because a 

terrain is central to any game, without it there would be nowhere for the player to go. Following that, 

it falls in the generic category because there are no adaptive capabilities in the tool. The tool does not 

take in consideration player behavior. It is also deterministic because the same input generates the 

same output every time. To finish, the proposed tool also belongs to the mixed authorship group, as 

the tool’s user is able to heavily influence the generative process.  

 

 

 

 

 

 

 

 

Table 2.1 - Taxonomic crossover table for dissertation tool classification. 

2.2.4 PCG Methods and Approaches 

Similar to the taxonomies present in Section 2.6, there are also taxonomies that group the methods 

used to generate content by algorithms or by approach. One such taxonomy was proposed by Hendriks 

et al., (Hendrikx et al., 2013b) that separates generative techniques in six different groups with the 

goal of identifying fundamental methods that would be core to a generic content generator.  They are 

as follows: Pseudo-Random Number Generators (PRNG), Generative Grammars, Image Filtering, 

Spatial Algorithms, Modeling and Simulation of Complex Systems and Artificial Intelligence (Hendrikx 

et al., 2013b).  Likewise, Gillian Smith (Smith, 2014) also categorized PCG techniques, focusing more 

on algorithms and approaches that allow for the generation of content with which the player will 

interact with as part of the gameplay, focusing more on what a level designer would create rather than 

a writer or a game designer. The defined categories are: Simulation Based, Constructionist, Grammars, 

Optimization, and Constraint Driven. 

 

The following sections present the key PCG methods, organized according to the simplified 

categorization methods presented in (Risi & Togelius, 2019) and (Barriga, 2019), in which PCG methods 

Game Space

Online versus Offline Offline

Necessary versus Optional Necessary

Random Seeds versus Parameter Vectors N/A

Generic versus Adaptive Generic

Stochastic Versus Deterministic Generation Deterministic

Constructive versus Generate-and-Test N/A

Automatic Generation versus Mixed Authorship Mixed Authorship
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are divided in three major groups: Traditional methods, Search-Based methods, and ML methods. 

 

2.2.4.1 Traditional PCG methods 

Generally speaking, this group of methods is the most commonly found in games and are of 

constructive nature, meaning these methods execute on fixed time and perform a singular iteration 

without any kind of search regarding the validity of its output (Risi & Togelius, 2019). The first example 

of traditional methods are Pseudo-random number generators, which are characterized by being 

initialized by a seed, a pseudo-random value, and outputting a sequence of numbers that appear 

random to the observer. 

 

One of the most widely used algorithmic classes and notable examples of PRNG, are noise-based 

functions, which are especially convenient due to their apparent randomness and lack of structure 

when detail without structure is needed (Lagae et al., 2010). Inside this family, one of the most 

prominent examples is Perlin Noise, developed by Ken Perlin in 1985 (Perlin, 1985). Both noise function 

and Perlin Noise will be further analyzed in Section 2.3.1 and Section 2.3.1.1, respectively. 

 

Another noteworthy mention is the Midpoint Displacement algorithm by (Fournier et al., 1982). 

Simply put, the algorithm starts with a square array, whose four corners are attributed a random value. 

Then, a midpoint is set for each edge existent in the grid with an average value of the two containing 

edge points plus a random value. Afterwards, a midpoint is set between the four obtained midpoints, 

using the average of the previous four points calculated plus a randomized value (Fournier et al., 1982). 

 

The second group of traditional methods are Generative Grammars, a class of algorithms that 

originated from Noam Chomsky’s study of languages (Hendrikx, Meijer, Van Der Velden, & Iosup, 

2013a). These methods are composed of sets of rules that operate on finite pools of words and are 

only able to generate grammatically correct sentences. Generative Grammars, for the purpose of 

procedural generation, differ from the regular linguist Grammars in that, instead of using words, they 

use terminal nodes and shapes that are encoded as letters or words, giving the designer a visual 

language to model the Grammars (Fêo, Santos, & Santana, 2017) (Van Der Linden, Lopes, & Bidarra, 

2014). The most predominant examples of Generative Grammars are L-Systems and Graph Grammars 

(N. Shaker et al., 2016). The first method is used to generate branching system such as vegetation or 

cave systems (Risi & Togelius, 2019), whereas the latter is more appropriate to generate more complex 

and non-linear game spaces and missions (N. Shaker et al., 2016). 
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As last example, Simulation of Complex Systems, which entails imitating, in the case of Complex 

Systems, a set of large interconnected elements/individuals that interact with the environment and 

between themselves in a nonlinear fashion, making it difficult to ascertain properties of the whole 

system at a glance (Aziza, Borgi, Zgaya, & Guinhouya, 2016). Due to the impracticality of predicting the 

global behavior of this kind of systems with mathematical equations, simulations can be run to 

understand and predict the relations between the individual sums of the system. One predominant 

example is Cellular Automata, a discrete and abstract computational system, in which a group of cells 

on a grid, bound to the same set of rules, evolve in accord to the rules and based on states found on 

neighboring cells at discrete time steps (Berto & Tagliabue, 2017) (Hendrikx et al., 2013a). 

 

2.2.4.2 Search-Based PCG methods 

Search-Based methods are stochastic search/optimization algorithms that fall under the category of 

generate-and-test methods, typically comprised of three components: a search algorithm, a content 

representation and an evaluation function (N. Shaker et al., 2016). They are used for searching desired 

content given a content representation and instead of accepting or rejecting a candidate, a separate 

evaluation function scores candidates and, until an evaluation criteria is met, content will keep being 

generated (Risi & Togelius, 2019) (Barriga, 2019). Newly generated candidates are always conditioned 

by the previously generated content with the higher evaluation score, in an effort to generate content 

that will have an higher score than the previous candidate (Togelius, Yannakakis, et al., 2011). The 

search algorithm is responsible for the generation of the content and normally an evolutionary 

algorithm is used (Togelius, Yannakakis, et al., 2011), although other metaheuristics are possible (N. 

Shaker et al., 2016). The content representation is what is going to be generated, consequently 

defining and limiting what content can be generated (N. Shaker et al., 2016). Finally, we have one or 

more evaluation functions, each measuring different metrics, such playability and aesthetic appeal. 

These functions produce a score representing the quality of the generated content (N. Shaker et al., 

2016). 

2.2.4.3 Machine Learning methods 

The resurgence of Neural Networks and the use of Machine Learning for model training based on big 

data datasets (Krizhevsky et al., 2012), has led to an enormous increase in use and capabilities of these 

methods, leading to an increase in its application in several areas such as music, speech recognition, 

and image processing (Summerville et al., 2018), and also for content generation (Summerville et al., 

2018). 
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Driven by the increasing importance PCG is having in aiding developers creating new and 

increasingly higher quality content, either with human participation or not, new generation paradigms 

are being explored and one of them is Procedural Content Generation via Machine Learning (PCGML). 

The term was coined by Summerville et al.  “the generation of game content using machine learning 

models trained on existing content.” (Summerville et al., 2018). In other words, PCGML is an approach 

for regulating content generation trough preexisting examples, supplied by artists and designers, 

which are then used to train statistical models (Karth & Smith, 2019).   

 

PCGML sets itself apart from search-based algorithms in the way content is generated. Search-

based algorithms generate content by searching content space and afterwards subjecting the 

candidate content to an evaluation process. In PCGML solutions, the content is generated directly from 

the learned model, the output of a PCGML algorithm is the content itself (Summerville et al., 2018). 

 

Examples of PCGML applications include platformer game level generation trough Long Short-

Term Memory recurrent neural networks (LSTMs) (Summerville & Mateas, 2016), Autoencoders (R. 

Jain, Isaksen, Holmgård, & Togelius, 2016) and Markov models (Snodgrass & Ontañón, 2017). The 

development of Generative Adversarial Networks (GAN) (I. Goodfellow, 2016) has also been employed 

in various previous work, in which the relation between two images was learned (Isola et al., 2016) 

and  digital images were generated and completed (Mirza & Osindero, 2014). 

 

2.6 Previous and Related Work in Procedural Terrain Generation 

This section addresses and explains relevant previous work in terrain generation, as well as it addresses 

more closely related and relevant work for this dissertation. 

 

2.3.1 Recursive Subdivision 

Recursive Subdivision is a class of fractal algorithms (J. P. Lewis, 1987) in which a geometric object is 

recursively subdivided based on a previously defined norm until the target criteria is met (E. Catmull, 

1978). This family of algorithms was previously known as “Fractal Subdivision” (J. P. Lewis, 

1987)(Fournier et al., 1982). 

 

The diamond-square algorithm was an improvement over the earlier Midpoint Displacement (see 

Section 2.2.4.1). Developed by (Miller, 1986), it sets out to solve the directional artifacts found in the 

original work of Fournier et al. that stem from using two points to calculate the edge midpoints and 

four to calculate the center point (Archer, 2011). 
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Four corners are initialized just like in Midpoint Displacement, then a midpoint is set for each 

square existent in the grid with an average value of the four corner points plus a random value, the 

diamond step. Then, for each diamond that is in the array, a midpoint of the diamond is set with a 

value equal to the average of the four points that make up the diamond plus a randomized value, the 

square step (Miller, 1986) (Archer, 2011). 

 

Although this algorithm is attributed to Fournier et al. and the algorithmic class majorly attributed 

to Catmull et al., there is one historical figure that in an ad-hoc fashion derived the midpoint 

displacement method: Archimedes. He calculated the area between a parabola and a chord AB (Heinz- 

Barnsley, M. F.  et al. , 1988). 

 

2.3.2 Noise 

Noise algorithms are repeatable pseudo-random functions of their input, which are n-dimensional. 

Being pseudo-random, given the same input, the generated noise level is always the same (Ebert et 

al., 2003). Ideally, procedural noise is continuous, multi-resolution, meaning being able to create 

samples at any resolution, non-periodic, parametrizable, thus allowing for the generation of several 

different noise patterns and randomly accessible, allowing for the evaluation of any given point in 

constant time and without being depended of previous evaluations (Lagae et al., 2010). When 

addressing non-periodicity, it is noted that noise is in fact periodic but on a scale so large it is not 

evident when applying it (Ebert et al., 2003). 

  

When it comes to heightmap generation, noise functions are regarded as the workhorse of 

methods (Hyttinen, 2017). Several methods have been created, each addressing different challenges, 

which can be combined and differently parametrized allowing for a vast amount of distinct results. 

 

One of the most notable examples of PRNG, and arguably one of the most famous and more widely 

used noise function, is Perlin Noise, a lattice based gradient noise algorithm that instead of generating 

random values for each corner of the lattice’s cells, generates a gradient which is, in turn, interpolated. 

For this algorithm to return a real value, instead of gradient vectors, given a point, directions are 

calculated between each corner of the lattice's cell and the point being sampled. As a last step, a dot 

product is calculated between the gradient at the corner of the cell and a directional vector from the 

corner to the desired point (Perlin, 1985). This results in smoother changes in the noise field, when 

compared to non-gradient based solutions, making the end result look more organic and the whole 

method is more efficient in term of memory and computation due to the use of lattices (N. Shaker et 
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al., 2016). On top of this, it is possible to combine multiple layers of Perlin noise and manipulate layer 

features in order to obtain more intricate results (Hendrikx et al., 2013a). 

 

2.3.3 Evolutionary Algorithms 

Evolutionary algorithms (EA) are a subset of Evolutionary Computation and bio-inspired computing 

methods and, thus, a branch of search based methods (Raffe, Zambetta, & Li, 2012)(Vikhar, 2017). This 

algorithmic group draws inspiration from nature and solves problems utilizing processes similarly to 

how living organisms behave and evolve. They are heavily inspired on Darwinian Evolution and, just 

like in Darwinian Evolution, fitter solutions tend to proliferate and pass their characteristics to the next 

solution generation, while unfit options tend to be discarded (Coello, 2005). 

Roughly speaking, EAs have four overall steps, which can be seen in Figure 2.12, as well as the 

logic recursive flow of the algorithm. Initialization is where the initial population is generated, 

randomly or seeded to areas of more optimal solution presence's likelihood. Then, a selection is made, 

or in other words, a fitness function is evaluated, and the best solutions are selected to reproduce a 

new generation. Thirdly, crossover and mutation operators are applied to pick parent solutions for 

subsequent breeding of new solutions exhibiting shared characteristics from the parent solutions. 

Finally, when a pre-determined condition being met, the selection-reproduction loop is terminated 

(Coello, 2005) (Eiben & Smith, 2003).  

 

 

Figure 2.12 - EA logic flow (Soni, 2020). 

As previously stated, EAs may employ a single fitness function responsible for the selection of 

solutions that will pass their characteristics to the next generation. But EAs can be extended to have 

multiple fitness functions, each with its own attributed weight, allowing for a set of optimal points to 

be found, called the Pareto frontier. These Pareto optimal solutions are the best possible solutions 

given the fitness functions and the characteristics of the solutions presented on the current 

generation. Meaning that outside the pareto front there are no other solutions that are equal or better 
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in any of the dimensions. These solutions can then be plotted to a graph for visual or automated 

evaluation of the solutions, allowing for undesired tradeoffs to be easily spotted and vice-versa 

(Togelius, Yannakakis, et al., 2011). This greatly enhances the authoring possibilities of content 

(Togelius, Preuss, Beume, et al., 2010) (Togelius, Preuss, & Yannakakis, 2010). 

 

Togelius et al. proposes the use of a MOEA approach, more specifically the SMS-EMOA (Togelius, 

Yannakakis, et al., 2011),  to create maps for strategy games. The overall goal is to create a playable 

map, which includes the placement of gameplay elements and objectives. These elements have a (x,y) 

direct representation on the map (Togelius, Preuss, Beume, et al., 2010). The terrain itself is a sub-

component of the global goal and it is created from a flat heightmap where “representation, positions, 

Standard Deviation (SD) and heights of several two-dimensional Gaussians are evolved” (Togelius, 

Yannakakis, et al., 2011), and subsequently the terrain height is calculated based on these parameters 

(Togelius, Preuss, & Yannakakis, 2010). 

 

2.3.4 Procedural Brushes 

Carpentier et al. introduced the concept of Procedural Brushes, where the user sculpts directly on a 

3D height field by using brushes that apply traditional operations in addition to GPU-based operations 

that generate various different types of noise (e.g., Perlin noise, directional noise, and erosion noise), 

allowing for local control for detailed sculpting and algorithmic generation of larger features (De 

Carpentier & Bidarra, 2009). 

Procedural Brushes achieve their real time performance by employing procedural synthesis 

algorithms. Instead of simulating natural processes, they approximate the fractal-like semi-random 

patterns found in natural processes, allowing for a much faster generation since they do not need 

several iterations as it would be required in a simulation scenario (De Carpentier & Bidarra, 2009). 

 

2.3.5 Software Agents 

Software Agents are computer programs that work in a dynamic environment, cooperatively or 

competitively, towards a goal, on the behalf of another entity, without direct control and supervision. 

These entities display flexibility, and some creativity, when making decisions that are based on data 

obtained from other agents and the environment (Nareyek, 2001). 

Doran et al. (Doran & Parberry, 2010) employed software agents that, given a featureless terrain, 

are able to work in tandem to create a visually appealing terrain. Five types of agents were included, 

each assigned to a different task. A coastline agent is the first agent to start working, and depending 

on the size of the terrain, can multiply itself to accelerate the task. As the name implies, it creates the 
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outline of the terrain. Smoothing agents are responsible for averaging out heights. Beach agents create 

flat areas near coastlines. Mountain agents create mountain chains and, finally, river agents erode the 

terrain to carve out rivers (Doran & Parberry, 2010) (N. Shaker et al., 2016). According to the authors, 

this approach is more controllable than fractal generation, and it is highly parameterizable: the 

mountain agent alone has twelve possible parameters (Doran & Parberry, 2010) (Frade, de Vega, & 

Cotta, 2012). 

 

2.3.6 Terrain Generation using Generative Adversarial Networks 

As stated in Section 1.2 and Section 2.1.5, GANs have been shown to be very proficient in image related 

workloads, including terrain generation. In this section we will approach other previous works in the 

terrain generation field, all of them using real world data as their primary source of data for training 

the neural networks, with the main difference between them being the amount of authoring possible. 

 

2.3.6.1 Using real world data without authoring 

In the quest to achieve greater and more realistic detail on map generation without the requiring 

manual programming, a part of the terrain generation research community focused on the application 

of GANs to the task at hand.  These neural networks are often trained with datasets composed of real-

world satellite imagery. This allows the network to learn real world terrain distributions, instead of 

trying to mimic real terrain, which is the case of other algorithmic-driven implementations. 

 

Beckham and Pal (Beckham & Pal, 2017) proposed a two GANs pipeline for terrain generation: one 

DCGAN responsible for generating the heightmap itself and a pix2pix GAN responsible for creating the 

textures depending on the corresponding height of the terrain. Both these NN had no modifications 

done, so the descriptions on Section 2.1.5.2 and 2.1.5.4 apply. To train the networks, a sliding window 

is passed through two high resolution images of the Earth, taken from NASA’s “Visible Earth” project. 

One of the images contain height information, whereas the other contains texture information. The 

DCGAN is then fed with the height data and the pix2pix GAN with the texture data. The discriminator 

receives a pair composed of the heightmap data and the texture data. The low resolution of the images 

utilized in the dataset can contain several biomes, confusing the GAN during training. To improve the 

texture generation, a reference texture was chosen, desert. Pairs are chosen from the texture 

collection based on a Euclidean distance between the base texture and all others on the collection. 

Textures with a low Euclidean distance are then chosen, limiting the textures to desert biomes. A 

resulting terrain can be seen in Figure 2.13. 

 

 

https://visibleearth.nasa.gov/
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Figure 2.13 - Beckham et al. resulting terrain (Beckham & Pal, 2017). 

Wulff-Jensen et al. (Wulff-Jensen et al., 2018) propose the use of DCGANs as a means to expand 

the algorithmic pool of terrain generation, citing the versatility of GANs regarding possible outputs 

depending on the training done. This opens the possibility to influence outputs while still retaining 

diversity and randomness, problems that are present in popular solutions such as Perlin Noise. No 

modifications to the DCGAN architecture were made, so the description in Section 2.1.5.2 applies.   

 

The dataset used was retrieved from viewfinderpanoramas and consisted of images from the Alps. 

These images were then cut into 64x64 to fit in the input of the discriminator network (D). This resulted 

in 360,000 images. The resulting heightmaps were then rendered in Unity3D and textured using a built-

in tool (Wulff-Jensen et al., 2018).  

 

Several tests were made, including diversity tests between the generated images and Perlin Noise. 

These tests are used to measure the similarity between two images. These tests were done using Mean 

Square Error (MSE) and Structured Similarity Index (SSIM) to measure image pixel-based diversity. 

Usability tests were performed with only three participants. Diversity tests were positive, but usability 

tests were somewhat negative. According to the authors, the users were unable to separate the 

texturing and the lack of features, such as trees and grass, from the map topology, which was the focus 

of the test. This led to the conclusion that all these elements are intertwined, and further aesthetic 

addition are important to increase the perceived usability (Wulff-Jensen et al., 2018). One of the 

renders shown to test participants can be seen in Figure 2.14. 
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Figure 2.14 - Example of final render shown to test participants (Wulff-Jensen et al., 2018). 

Spick et al. (Spick, Cowling, & Walker, 2019) proposed a new approach to  generate heightmaps 

similar to the regions that were used to train the network, giving the user the ability to choose what 

kind of terrain they want based on the training. Each training session of the Generator used a 

1400x1400 region, equivalent to a one hundred squared kilometers. This approach uses Spatial GANs 

(SGAN) (Jetchev, Bergmann, & Vollgraf, 2017). SGANs are similar to DCGANs, but they differ on a few 

key aspects. Firstly, fully connected layers are removed, allowing for a more robust learning of features 

and, secondly, the generator is inputted with a tensor of latent noise instead of the single noise vector 

used in DCGANs. The generator network's depth was set to six 6 after some experimentation, whereas 

the discriminator network's depth was set to 3. The resulting terrain and its corresponding generations 

can be seen in Figure 2.15.  

 

The employed dataset was taken from Shuttle Radar Topography Mission 30m (SRTM), an open-

source elevation map dataset that provides thirty meters to one pixel of resolution of the world’s 

topology. An automated script was developed to extract terrain patches, given a latitude and 

longitude. Result-wise, Spick et al. presents positive results, especially when comparing SGAN outputs 

to Perlin Noise, claiming that this solution boasts far more structured and controlled output and with 

possibility of control depending on the inputs fed to the network. An online test was done where 

participants were shown a pool of twenty samples, each of them with four possible regions from which 

the generation was derived from. Each participant was asked to identify which original training region 

more closely resembled the presented generated sample. Testers were able, with a high interval of 

confidence, to positively identify the areas from which the generation was derived (Spick et al., 2019). 
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Figure 2.15 - Spick et al. resulting heightmaps and 3D renders of three different generation of training. 

2.3.6.2 Using real world data with authoring 

As previously mentioned, there is a need for controllable generative tools that fill the void left by 

automatic, low parameterization, and overly complex tools. Such complexity, at times, is more of a 

detraction than a benefit for designers. As such, a mixed initiative framework can mitigate some of 

these problems by combining the machine’s learned distribution and the human's creative drive 

(Guzdial, Liao, & Riedl, 2018). Bearing this in mind, Guérin et al. (Guérin et al., 2017) set out to create 

an authoring tool, with simple users’ sketches used as inputs, highly controllable, in real time and with 

realistic outputs. Figure 2.16 depicts various possible authoring inputs and the resulting generated 

terrains. Users have three colors at their disposal, red to draw ridges, blue to draw “rivers”, meaning 

depressions, and green to dot the sketch with altitude cues, which are peak points of altitude on the 

map. Users have several ways of generating terrain (Levelset-to-terrain, erasing parts of the terrain to 

be regenerated and erosion), but for this dissertation, only sketch-to-terrain method is relevant. This 

method takes a users’ sketches and transforms them in terrains, as seen in Figure 2.16. 

 

 

 

 

 

 

Figure 2.16 - Guérin et al. different inputs and their corresponding outputs (Guérin et al., 2017). 
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To train the cGAN, a pair is needed. In this case, one part of the pair is a generated sketch 

representing a real-world terrain and the other part of the pair is the real-world terrain. The real-world 

terrains are a collection of Digital Elevation Maps (DEM), taken from USGS Earth Explorer 

(EarthExplorer, n.d.), composed of thirty-five 3600x3600 patches of one square degree with a precision 

of one arc-second from NASA’s SRTM. These DEMs are also used by a dedicated algorithm to 

automatically generate their sketch counterparts. The sketch is generated in three different phases. In 

the first phase, and using a real-world terrain taken from the collection, water flow is simulated 

utilizing a modified steepest descent D8 algorithm, followed by generating the river network using an 

algorithm inspired by Tarboton et al. (Guérin et al., 2017). Ridges are then detected by inverting the 

terrain and using the same method used for river detection, followed by detecting altitude cues, which 

are defined by points where the water flow accumulated (Guérin et al., 2017). This generates a sketch 

similar to the ones found on the top part of figure 2.16, that represents a real-world terrain, which will 

then create a pair for the dataset used to train the cGAN.  

 

When it comes to results, the authors obtained positive feedback. The method produced more 

realistic and detailed results than its counterparts. Human testing (five subjects) revealed simple 

usability and satisfaction with the produced terrains. Participants were asked to draw three terrains 

described in text. Almost all participants being queried responding very positively, with one sole 

participant reporting they did not find easy to express their goal when drawing. These results and the 

work done by Guérin et al. are extremely exciting for the prospect of creating usable yet powerful 

mixed-authorship tools capable of creating believable terrains, one of the central assets of many 

games. Although, in their tool, Guérin et al. provides more than one way to generate a terrain, the pre-

trained sketch-to-terrain NN provided on the authors personal page is powerful enough to be able to 

provide the users with the tools necessary to author their own terrains, as it is also the most intuitive 

of the ones present in Guérin et al. Adding functionality to ease the creation process, as well as extra 

color option to expand on the possible ways to add rich terrain variation to the users sketches should 

give users a good authoring experience.  

 

The work of Guérin et al. used the previously explained cGAN (see Section 2.1.5.3), as the 

workhorse for the generative and discriminatory processes. Unet and PatchGAN architectures were 

used for the generator and discriminator networks, respectively (see Section 2.1.5.4). The networks 

training also follows the original work of Isola et al., with the addition of horizontal and vertical flipping 

to add more variation to the training data. 
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CHAPTER 3 

Tool’s Design and Implementation 

This chapter presents what was developed in order to satisfy the objectives outlined in Section 1.4 and 

the research questions enumerated in Section 1.3. The development has been divided in three major 

parts: the first being research and experiment, where a suitable NN capable of outputting the desired 

heightmaps needed to be found and tested to corroborate if indeed it had the desired outputs and the 

capabilities of being used in a mixed initiative setting, and furthermore, test it to verify whether there 

was a possibility of finding unused latent information to enrich the application. The second part was 

the development of the application itself, where a NN would need to be integrated with a graphical 

engine to achieve the necessary results and seemingly streamline the drawing process and the NN 

processing without having to step out of the application. And finally, developed testing capable of 

assessing the application for usability and the outputs appearance, when compared to other outputs 

from other methods, which will be further discussed in Chapter 4 

 

3.1 Tool Component Overview  

The developed 3D terrain tool is composed of two components. These components, and their 

interactions, can be seen in Figure 3.1. The first component is the tool’s UI developed with Unity3D 

graphical engine, where the user interacts with the tool itself. It is in the tool’s UI where the user 

sketches their input and visualizes their generated terrain. When the user concludes a sketch, it is sent 

to the NN, the second component of this tool, where it will be processed and transformed into a 

grayscale heightmap. A heightmap is a raster image where each pixel has a value that is interpreted as 

value for displacement on a 3D mesh, often visualized as luma of a grayscale. Black represents the 

minimum height possible and white the maximum heigh possible. The values of each individual pixel 

of the heightmap are then loaded into Unity3D, thanks to a developed method, which will then pass 

its values to another developed method tasked with displacing points in a flat mesh according to each 

pixel’s grayscale values. This results in a 3D terrain that is rendered by Unity3D using the heightmap 

processed by the NN with the users sketch as input. The NN used in this dissertation is a pre-trained 

model of the cGAN used in Guérin et al. work (Guérin et al., 2017), capable of taking user’s sketches 

and generating a heightmap based on the drawn user sketch.  This allows users to author terrains with 

ease, thanks to the labelling capabilities of the cGAN that allow for users to influence the generative 

process with their sketch, which are inputted as labels to the cGAN that sees the sketches as labels to 

guide the terrain generation. More details on cGANs are present in subsection 2.1.2.4.  
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Figure 3.1 - Tool component diagram. 

This tool was developed using Unity3D as the graphical engine, written in C# and in Ubuntu 18.04, 

as per recommendation of the NN authors. When searching engines suitable for this project, it was 

concluded that using an established enough platform and with a strong and mature community was 

best. This way early life cycle issues newer engines may have are avoided and having a strong and 

mature community from which to tap knowledge would be beneficial to solve any problems that 

eventually arise. This reasoning can also be applied to the selected language, C#. Widely used in 

graphical development, with considerable documentations and use cases, makes it a strong candidate. 

 

From these prerequisites two possible candidates emerged: Godot Engine (Godot Engine, 2020) 

and Unity3D (Unity, 2020). Pros and cons to both engines can be seen in Table 3.1. It was decided that 

having a mature platform was more important for the development of this project as a stable and well-

known engine is less prone to unforeseen errors and problems, as well as any roadblock can be more 

easily researched and a solution more probable to be learned. For these reasons Unity3D was chosen.    

Unity3D Godot Engine 

C# support (among others) C# support (among others) 

At the time non-native Linux support Native Linux support 

Proprietary but with free personal use plan Open-source MIT License 

Mature community Small but growing community 

A plethora of learning material Comparatively less learning material 
Table 3.1 - Unity3D and Godot Engine pros and cons comparison  
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3.1.1 Neural Network System Requirements 

In terms of hardware requirements for this tool to run and be able to make use of the NN, a NVIDIA 

GPU with CUDA cores is needed. Without a NVIDIA environment, the NN will not be able properly 

function and scripting alterations are needed for it to be able run from the CPU. While this will allow 

users without NVIDIA GPUs to be able to compute input images, sub-optimal performance will be the 

best a CPU will achieve when compared to the performance offered by a GPU. This is especially notable 

if any training is necessary, as GPUs are more parallelized than CPUs and their superior bandwidth 

capabilities enable GPUs to deal with vastly bigger amounts of data more efficiently. A GPU is strictly 

needed to train the network, but in the case of a pre-trained network, a CPU will work for production 

purposes, although a GPU is still recommended due to its architecture and the highly parallelized 

workload.  

 

Software-wise, a NVIDIA driver compatible with the GPU being used is necessary. Afterwards, and 

since this development was made on a Linux platform, to make use of CUDA cores, we must install 

CUDA dependencies for Ubuntu 18.04 or no CUDA cores will be detected ("Installation Guide Linux : 

CUDA Toolkit Documentation", 2020).  After this, Docker is needed to run the NN on a container where 

all the remaining dependencies are installed automatically or, if the preference is to run the NN outside 

a container, Tensorflow 1.4.1 must be installed, plus NVIDIA CUDA® Deep Neural Network library 

(cuDNN), a GPU-accelerated library of primitives for DNNs, is also necessary. Additionally, although 

not strictly necessary, it is recommended the installation of nvidia-docker, which allows the container 

to have access to the GPUs driver installed on the host computer, permitting access to the GPU from 

inside the container without being necessary to exactly match the driver installed on the host machine 

with the driver installed inside the container (Olson, Calmels, Abecassis & Rogers, 2016).   

 

It is necessary to have two versions of Python installed if you are running the NN inside a docker 

container, Python 2, and Python 3. The latter, Python 3, is needed to run the Docker script provided 

by Guérin et al., responsible for setting up the container and specifying what is installed inside said 

container, and Python 2 is necessary to then run the NN script inside the newly created Docker 

container.  

 

In this development, we opted to use Docker and run the docker file made available by developers 

of the NN used, as it streamlined the requirement installation phase and avoids the compatibility issues 

between required software that normally arise in environments such as these when trying to install all 

dependencies directly on the host machine. 
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3.1.2 Tool Flow 

Figure 3.2 depicts the tool pipeline and its flow, from user input, to final NN output and respective 

rendered 3D terrain. The users start by drawing a low-level input, representative of their desired 

terrain, exemplified on Figure 3.3. Similarly to Guérin et al. (see Section 2.3.6.2), the user has the same 

three colors to choose from, plus another three color variations, one for each one of the original colors 

(further detailed in Section 3.2). When satisfied, the user presses the Play button (further detailed in 

Section 3.5), which triggers the beginning of the generative and automatic sequence responsible for 

the terrain generation.  Then, the users’ input is saved in the image log (further detailed in Section 3.6) 

and a NN script (further detailed in Section 3.3) is called and passed the user's sketch as input for the 

NN to generate a heightmap using the users sketch as conditioning for its generative process. 

 

Figure 3.2 - Application Pipeline. 
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When the NN finishes its generative process, it outputs a grayscale heightmap. An example of such 

heightmap can be seen on the right side of Figure 3.3. Then, the pixel values of this heightmap are 

passed to the tool, which will use this output to displace a mesh to create the corresponding 3D terrain 

render. Immediately after the 3D terrain is rendered, a screenshot of the terrain is taken from a top-

down angle and associated to the users’ input to give them a preview of what their input produced 

when they browse through the Input Log (further detailed in Section 3.6). 

Figure 3.3 - User Input/NN output pair. Left: Potential user input. Right: Corresponding grayscale heightmap 

generated by the NN using the user input as conditioning. 

3.2 Single Input Preparation  

To be able to execute the NN, be it for the sensitivity tests and regular use by users, the NN had to be 

able to accept a single, unpaired image. As previously explained in Section 2, cGANs are trained utilizing 

a pair of images: one a generative target and the other a user input that should led to the generation 

of the target. Having access to a pre-trained model, meant no training was necessary, but exporting 

the model was still necessary for it to be production ready: to freeze the network’s parameters and 

remove any data relevant for training only.   

 

Checkpoints are merely saved states of the NN, in which the weights, training configurations such 

as loss, epochs and optimizer state are stored. This is a good practice to avoid loss of training in case 

of failure. From checkpoints training can be resumed or inference itself can be done, although not 

ideal. Exporting removes unnecessary and irrelevant metadata to the inferencing process, reduces 

model size and increases inference speed, since all that is needed for inference is the model and the 

weights. This was done using an existing export mode in the original NN script. 
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From all the operation modes provided in the original NN script (e.g. train mode  and test mode), 

none gave a way to use the model in a production setting, meaning all the modes were either for 

training or testing and were expecting a paired image (a generative target and an input).  One of the 

solutions was generating an image pair with the user input and a blank target and run the NN in test 

mode but this workaround was deemed insufficient, as the objective was to change the script in order 

for it to accept a single image as input. A similar issue to ours had already appeared in the past and the 

solution was made available by (Barbosa Anda, 2019). The script was based on a previously available 

script that made use of exported models and allowed for single image inference. With this and after 

some minimal changes to the script, a NN script capable of accepting a single image as input was 

developed. 

 

3.3 Neural Network Sensitivity Analysis 

As previously mentioned, what allows us to generate heightmaps from the users input is a NN. The NN 

used in this dissertation is a TensorFlow translation, of the work accomplished by Isola et al., done by 

Guérin et al., and its explanation and details can be found in Section 2.1.5.4 and 2.3.6.2.   

This dissertation used part of the work of Guérin et al. The author provides, under MIT license, not 

only the NN used on their work (Guérin, 2018), but also the training data and a pre-trained model 

(Guérin, 2018b). Given the hardware constraints (the only CUDA core enabled GPU accessible was a 

portable edition GPU with only 902Mhz frequency and two gigabytes of graphical memory) we opted 

to use the pre-trained model, which came with a validation dataset. Previously mentioned in Section 

2.3.6.2, the dataset is composed of Digital Elevation Maps (DEM), taken from USGS Earth Explorer 

(EarthExplorer, n.d.), composed of thirty-five 3600x3600 patches of one square degree with a precision 

of one arc-second from NASA’s SRTM. These DEMs are then used by a dedicated algorithm to 

automatically generate their sketch counterparts, which are paired with the real terrain counterpart 

to create training pair for the cGAN. The three original colors were maintained with their original RGB 

values: Red, that produces elevations, was kept at RGB (255,0,0), Blue, responsible for depression on 

the terrain, was kept at RGB (0,0,255) and Green, to be drawn solely as dots that translate in to altitude 

cues, was kept at RGB (0,255,0). After setting up the NN, the validation dataset was ran to make sure 

everything was running as intended. 

 

After a couple positive validation runs, it was verified that the validation dataset did not test edge 

cases (e.g., inputs with sparse information or with too much information) this did not cover the full 

length of behaviors one might expect from the NN.  It was decided to run some behavioral tests to 

better grasp how the network would react to less conventional inputs (an example of a conventional 
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input sketch can be seen on the left side of Figure 3.3), such as inputs with minimal lines, and check if 

those inputs translated to outputs that could be somewhat predicted by the user. Given that a pre-

trained model is being used and being treated as a black-box component, it is necessary to better 

understand how the NN would react, not only to more complex inputs but also to sparse inputs. This 

is important because potential users could have a diminished experience if they sketched an input that 

would not be correctly processed by the NN due to not being trained for that particular input. It is also 

important to understand how the NN reacts so it can be better understood what kinds of additional 

features (beyond just sketching with the pre-trained colors) have the potential to be added to the tool. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 - Initial test inputs and their corresponding output. Top right input is a singular blue dot, and bottom 

left a singular red dot. It is possible to see in these two test examples that when faced with sparse input data, 

the NN fills in the voids with a recurring pattern. 
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Figure 3.4 shows some of the tests that were done. Starting from the two left most examples, 

singular line inputs are well handled by the NN, with the blue line displaying a lot more freedom to fill 

areas without input information as it sees fit. This is happening due to the geographical areas used for 

the dataset having more areas that contain elevation surrounding areas with a deeper depression than 

the other way around.   Another detail unfolds when we analyze the inputs that are composed of only 

a single dot. When faced with so little sketch input information, the NN populates the heightmap with 

a regular pattern. Preferably, the NN would produce a completely random heightmap but when faced 

with a blank input, the NN defaults to an artifact resulting of the cGAN training (Guérin et al., 2017). 

On the bottom two right most pairs, something interesting happened: the NN ignored the red line in 

the middle and gave all its height weight to the red circle with the green dot in the center. Not only 

that but the overall median color of the empty portion is darker, hence deeper, on the output with the 

red line than in the one without. This led us to believe that, when it comes to height, the NN will always 

try to make green the highest part of the map. This was further substantiated when testing with Dark 

Green, as seen in Figure 3.5. 

 

We then continued to feed the NN some more intended and unintended inputs. An unintended 

input is any input that causes the NN to output an heightmap that has other colours other than a 

grayscale. These inputs can be green lines, high color saturation shapes and thick sketch lines. 

Examples of such inputs can be seen in Figure 3.5 and 3.6, as well as in Annex A. In Figure 3.5, the top 

two inputs are a simple pixel color conversion, from blue to red, and the results are as expected: areas 

without sketches are the opposite of the surrounding inputs: if the surrounding is Red, there is a 

tendency to deepen the areas without information and if the surroundings are blue, the NN tends to 

raise the areas without information.  

 

When experimenting with formats supposedly not supported by the NN, in this case green lines, 

at first the outputs were what we expected: corrupted, unsupported, showing colors others than on a 

grayscale. But if the opacity of the brush being used to draw the lines was reduced, meaning there was 

a color bleeding from the background into the color being used, the output became usable. By the 

documentation this should not be possible as Green is supposed to be used strictly as dots. This led us 

the believe there was some latent representation information that could potentially be leveraged to 

expand the application. 
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Figure 3.5 - More test inputs and their resulting heightmaps. On the top we have a color conversion between 

blue and red. Same input drawing but different color. Corresponding outputs display an expected result. On the 

bottom right we have a corrupted output due to green being used as a line instead of a dot. Subsequent inputs 

have a lower opacity then the initial input. The last input has a 50% opacity, and the output presented no 

corruption. 

It was initially decided to explore the potential implementation of brush patterns. Several patterns 

and combinations were attempted, from solid patterns, to patterns with changing opacity, as seen in 

Figure 3.6, to having brush thickness control, seen in Figure 3.7. We conclude that opaque blue brush 

(terrain depressions) patterns tend to corrupt the outputs more than opaque red brush (terrain 

elevations) patterns, and that blue shapes add no extra intricacies to the shape of the terrain, mostly 

just limiting themselves to adding a shapeless depression in the terrain, as exemplified in Figure 3.6. 

Adding to that, we also conclude that red patterns (terrain elevations) did not have as much 

predictability as lines, resulting in terrains not reflective of user expectation, contributing to a potential 

feeling of lack of control by the user. Furthermore, giving the user opacity control leads to a lot of 

inputs being unfit for the NN due to high color saturation, resulting in a diminished experience and a 
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lot of red tapping to make sure no non supported inputs were drawn, e.g. input that lead to an overflow 

of the NN neurons and result in outputs that cannot be properly transformed in heightmaps. 

 

Figure 3.6 - Pattern testing with different opacities. Top row are inputs and bottom row are corresponding 

heightmaps. On the two left most outputs, we can see green in the shape of the input. This means the NN was 

unable to process the input due to the high color saturation on the input. 

Moreover, we also note that increasing line stroke width is an hit and miss situation, either, adding 

little variation to the output or being dependent on opacity control in order to produce a viable, 

uncorrupted output, as it be seen by the two input/output pairs on the right side of Figure 3.7. We 

made the decision of not implementing this feature to keep the outputs from becoming corrupted and 

to avoid having a feature such as line stroke width but needing to limit it to a point that it might as well 

not be available. 

 

Figure 3.7 - More pattern testing with different opacities. Top row are the inputs and bottom row their 

corresponding outputs. Third output from the left is corrupted as it presents colors other than the ones present 

in a grayscale. 
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Although brush patterns and line stroke width control did not produce the expected results, color 

variation is still a possibility due to the results seen in Figure 3.5: a green line produced a viable output 

when it was not supposed to (the NN was never trained from origin to recognize green lines as an 

input, only green dots), as long as the color saturation was reduced, effectively transforming it in a 

different green than the original.  

Figure 3.8 - Color variation testing. Original pattern on top left corner. Subsequent Inputs have the same 

pattern but with different colors. Second output from the left presents some corruption due to the blue being 

used having a to strong green component. 

After some experimentation with colors other than variations of the originals, some of which can 

be seen in Figure 3.8, we conclude that there is indeed space in the generative process to add new 

color variations to the application, bringing the total to six colors, but only if the colors are variations 

of the original three colors. For completely new colors, a new training dataset would have to be put 

together and new colors would have to be tied to a new terrain structure other than those already 

paired. Additionally, to the original red, blue and green colors with which the NN was trained, three 

new color variations were added: Dark Red, RGB (127,0,0), which produces more constant height 

elevations and generally less pronounced heights, Medium Blue, RGB (0,127,255), produces less 

pronounced depressions. Dark Green, RGB (0,94,0), that produce elevations like red but, due to the 

weight the NN attributed to green, are always the tallest elevations, even when red is present in the 

input sketch. Some examples of these tests can be seen in Figure 3.9 and in the Appendix A.  
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Figure 3.9 - Dark green and red weight difference. Note how the red line is ignored on the right output when a 

solid dark green line is present in the sketch. The NN always tries to make green inputs the highest. 

3.4 Software Structure and Terrain Generation Logic 

Figure 3.10 presents the class Inheritance diagram of the tool. As we can see, most classes inherited 

from MonoBehaviour. This is the base class of Unity3D engine, and it needs to be inherited if any 

method present in the class is attached to an object inside of Unity3D or if any sort of communication 

between engine and code is necessary, such as listening to an input event, accessing the state of any 

given object in the scene, or updating states from frame to frame. The remaining classes are either 

static, meaning they are sealed and cannot be instantiated, inherited, inherit, or are utility/helper 

classes which are not directly called by the engine, only by other classes. The only exception to this is 

the MapGeneratorEditor class, which extends the Unity3D Editor Class, that allows developers to 

create custom editor changes. 

 A summary of each class role is necessary to better understand Figure 3.10. Starting from the 

top left, the CameraMovement class is responsible for camera movements as well as color changes on 

the camera command labels found on the tool’s UI, which will be presented in Section 3.5. The 

Drawable class is responsible for everything brush related, from tracking mouse movement to painting 

the appropriate pixels. It also controls the copy/paste function as well as saving the user’s sketch to 

the filesystem and naming it. The class also is responsible for starting a console process and passing 

the NN script run command to the console, with the previously saved sketch as the input. Related to 

this class, there is DrawingSettings, a class with helper methods that are used to set drawing settings, 

such as brush color and other brush settings not accessible by the user, such as width and 

transparency. ImageLoader is the class that loads the stored sketches into the image log. MapDisplay 
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is the class that renders the 3D terrain on the screen, as well as the colored texture. In the 

MapGenerator class, information regarding texture and heightmap values are centralized and passed 

to the appropriate methods for mesh displacements and texture application, as well as height 

multiplier, what shading to use, and other attributes related to mesh creation. The Noise class creates 

a two-dimensional array with Perlin Noise values that can be used to generate 3D terrains and it is also 

responsible for getting the NN generated heightmap values from the filesystem and placing them in a 

two-dimensional array, just like the noise values. The PanelScript class is responsible for managing the 

panels in which a tutorial is presented to the user. The PrefabButton class is tasked with placing on the 

canvas the clicked sketch from the image log as well as drawing on a preview window the associated 

3D terrain when sketches on the image log are hovered with the mouse. The SaveMeshInEditor simply 

listens to a key press and loads the existing 3D terrain to an object. The ScreenshotHandler class is 

tasked with taking a screenshot of the generated 3D terrain, naming it accordingly and, storing it in 

the filesystem to be later displayed as a preview of the sketches stored in the image log. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 - Class Inheritance graph. 

As mentioned, not all classes inherit Monobehaviour. For instance, the MapGeneratorEditor class 

does not. The sole purpose of this class is to add a button to the editor that generates the 3D terrain. 

This allows the generation of terrains without the need of launching the tool, hence why it inherits the 
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Editor class from Unity3D. MeshData class is the class that contains data pertinent to the terrain mesh. 

In this class, triangles that compose the mesh polygons are calculated, their normal mapping 

calculated, to allow for a coherent lighting of the terrain, as well as UV mapping (a 3D modelling 

process of projecting a 2D texture to a 3D model's surface) that allow for the defined color mapping to 

be applied correctly. Following this, there is the MeshGenerator class, which is the class that actually 

displaces the mesh vertices to the values found in the NN generated heightmap. It also sets the 

terrain’s UVs so that the texture can be correctly applied. The ObjExporter class is used solely by the 

SaveMeshInEditor class. Its function is to take the terrain that was store in an object and transform it 

into an actual .obj file stored in the filesystem and name it. The TerrainType class is in fact a struct that 

was serialized, meaning its defined fields can be changed inside Unity3D, and its contained fields define 

the name, the color and the height interval in which they should be applied on the 3D terrain. The 

TextureGenerator class builds the texture, with the appropriate colors, to be placed on the 3D terrain. 

Finally, the Utils class is responsible for the creation of a visual delineator of the area being selected 

when the user is performing a selection of the sketch to copy. 

 

Figure 3.11 presents the GenerateMap function call graph. This is the function that is called 

whenever its necessary to generate a new terrain, be it because the user drawn another input and a 

completely new terrain mesh is necessary or because the user moved the height slider that increases 

or decreases the terrain’s height, further detailed in Section 3.5. This method is called after the NNs 

output image is saved on the file system. Given its importance, a brief explanation of the call flow and 

what is happening in each call is pertinent. 

 

 

 

 

 

 

 

 

Figure 3.11 - GenerateMap function call graph. The methods DrawTexture and TextureFromHeightMap are 

debug methods used to make sure the proper noise map and texture were being correctly assembled. 
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To start, the output needs to be taken from the NN into the engine, more specifically, we want to 

have, inside the engine, the color information of each pixel of the output image. For this the tool calls 

the GetImageFromFolder method, whose job is to search for the output image on the filesystem, run 

through it and store in a two-dimensional array the linear interpolated color value of each pixel, which 

ranges from zero to one thanks to the interpolation. This is done so we can have a translation between 

color and height and additionally it allows for height multipliers, allowing for some customization. 

 

With the height values now available to the tool, the next thing done by GenerateMap is a simple 

color assignment, achieved by comparing the height values with a defined height interval for each 

color. For example, every pixel in the mesh with a value equal to or lower than zero point one has its 

color set to dark blue. These color regions are stored inside an array of the type TerrainType, a custom 

struct, whose values are pre-defined and outside user’s reach. With these two elements ready, the 

tool can start building the terrain mesh with the height values and colors obtained previously but we 

still need to build and display the mesh. For drawing the terrain mesh, the tool calls DrawMesh, the 

method responsible for drawing the mesh on screen and passes as arguments two methods. The first 

method passed as argument, GenerateTerrainMesh, oversees the displacement of the vertices with 

the height values previously stored and associates each three vertices in triangles, so we can have an 

actual mesh. For this, two helper methods are called, AddTriangle, which groups the modified vertices 

in triangles and the ProcessMesh, that marks the triangles to be shaded with flat shading. A flat shading 

was picked as to not interfere with the perception of the terrain: the objective is to produce 

morphologically real looking 3D terrains and not realistic looking textures. As second argument, we 

pass TextureFromColorMap, whose purpose is to transform the colors obtained for each pixel 

previously and transform them in a texture, ready to be placed on top of the mesh, with each pixel in 

the texture coinciding with a vertex of the mesh. After all this is done, CreateMesh is called and the 

terrain mesh is ready and finally passed onto the engine by DrawMesh. 

 

3.5 Interface version 1 

Figure 3.12 shows the first iteration of the applications’ interface out of two existing ones. On the left 

side of the screen, we have our terrain visualizer. This is the area where the user can preview the 

generated mesh, in any angle they see fit: they can zoom in, pan, rotate, and reset its position to the 

original top/down view. The possible movements and their respective key combinations are always 

displayed on the top left corner of the screen, labeled with the number 1.  This text changes to yellow 

if that combination is being pressed, to signify with some visual feedback that a successful combination 

of keys is being pressed.  



54 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 - First iteration of the interface, with a red numeric overlay. 1 – Camera movement control 

combinations label. 2 – Image log. 3 – Drawing Canvas. 4 – Action buttons. 5 – Drawing tools, eraser, and 

tutorial button. 6 – Terrain mesh heigh slider and eraser thickness control. 

We opted for having this information always visible for clarity sake. Some people might have some 

previous 3D visualization experience and are familiar with the workings and combinations of key 

presses these types of interfaces have. Other users might have absolutely no previous experience at 

all and might feel either lost or frustrated if they have to randomly guess key combinations or go 

through the tutorial again to be able to pre-visualize the terrain they just created. 

 

Going to the right side of Figure 3.12, the interface displays the drawing canvas and all the tools 

necessary to interact with the canvas. Starting from the top, with number 2, we have our Log menu, 

where all inputs and their subsequent previewable results are stored. Below that, with number 3, the 

interface’s black canvas, where the user will be drawing their sketch inputs. The canvas is a Sprite with 

the same size as the input for the NN (256 x 256), with a black texture applied to it. The canvas is black 

because input images for the NN have a black background and this way we save CPU clocks in 

converting the background to black from any other chosen color when inputting to the NN. We opted 

for a Sprite instead of a Unity3D Texture because Sprites, in Unity3D, are innately 2D and have no 

structures that prepare them to be applied to a 3D object, such as mipmaps and normal mapping. Since 
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our canvas is meant to be strictly 2D and have no perspective, this seemed like the appropriate choice 

to save CPU resources. 

 

Figure 3.13 - Interface detail: action buttons. 

Figure 3.13 presents a detail of the action buttons, which are labeled on Figure 3.12 with the 

number 4. Starting from the top left, the Play button is responsible for initiating the generative process' 

chain of events. Upon pressing the button, the contents of the canvas are scanned and encoded to an 

image file. This file is then saved in a specific folder and with the correct size accepted by the NN. After 

this is completed, the NN is initiated with the saved image file as the input.  

 

After the NN processing is complete, which is indicated with the console closing, the user clicks on 

the “Generate!” button to update the mesh on the Terrain Visualizer on the left side and display the 

resulting terrain, which uses the newly outputted heightmap. The “Generate!” button, when clicked, 

triggers the GenerateMap() method, whose flow was explained in Section 3.4. Following that, it is 

necessary to update the Log, and for that the user needs to click the “Update Log” button. This simply 

checks to see if there is any alteration in the number of files in the folder the Log images are store. If 

there is, a new object is created inside the Log menu and the image is added as its texture so the user 

can identify what specific image is being represented in the Log. 

 

Below the “Update Log” button, the “Reset Canvas” button, which, as the name implies, resets 

the drawing canvas to its original empty state. This allows the user to fully clear the canvas in one go, 

instead of having to painstakingly erase everything with the eraser. 

Finally, the “.obj” button. If pressed, the current terrain on display is stored to the file system as a 

.obj format file that can be later opened with any application that supports that file format and further 

worked on and modified. This export feature is important because it allows users to not be limited to 

this single application. Exporting allows users to export the terrain to another application and, for 
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example, add textures or any other 3D object they wish. This allows users to integrate any terrain 

generated here in any project that needs a terrain. Exporting the terrain to .obj is also possible by 

pressing the F12 key on the keyboard. Table 3.2 summarizes what each action button does and their 

corresponding image. 

Button image Button function 

 Play button, responsible for initiating the NN with user’s 
sketch as input. 

 Generate button, responsible for updating the terrain 
after the NN finishes processing the user’s sketch. 

 Update Image Log button, responsible for updating the 
image log with the new user’s sketch and resulting 
terrain preview. 

 Reset canvas button, cleans the entire canvas of any 
lines. 

 
Export button, exports the terrain to .obj file. 

Table 3.2 - Action button table. 

In the bottom-right side are the drawing tools, labeled with the number 5 in Figure 3.12 and a 

detailed view can be seen in Figure 3.14. In the top row of Figure 3.14, we have three buttons 

representing the original colors the NN was trained on, plus an eraser that can be used to erase 

anything drawn on the canvas, mainly used to erase errors or lines that are no longer useful, opposing 

the “Reset Canvas” button. In the bottom row of Figure 3.14 are the three new colors added by us and 

a button with a question mark, which opens an in-depth tutorial of how the application works, ranging 

from a simple explanation on how the NN works, what kind of inputs are expected to what each color 

does and how to control the map visualizer. Any doubts the user has regarding the application are 

addressed in the tutorial. 

 

Figure 3.14 - Interface detail: drawing tools. 

Each color button was assigned a minimalistic design of what they produce in the context of the 

application, as explained in Section 3.3: Both reds draw elevation but dark red outputs more altitude 

constant mountain ranges when compared to red. Green outputs a singular elevation point, as 

opposed to a whole mountain range, so it has one single triangle to try to convey that. Dark green 
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produces a more varied altitude range and its always the biggest elevation on the terrain, so we gave 

it a big triangle on the front and smaller ones on the back. Finally, Blue, responsible for depressions on 

the map, has a minimalistic looking depression on its button, and Light Blue, as a slightly less 

pronounced depression to indicate that is outputs more shallow depressions. 

 

Finally, there are two sliders between the action buttons and the drawing tools. The bottom one, 

as the name implies, further modulates the mesh height by multiplying a value with the Z axis of each 

vertex on the mesh, giving the user a more direct control of the mesh height. Lastly, the second slider, 

“Eraser Width” controls the size of the eraser, to facilitate erasing bigger parts of the drawing faster. 

Button image Button function 

 
Outputs variable elevations. Meant to be drawn as a line 

 

Outputs elevation cues, elevates an area around where 
it was drawn. Meant to be drawn as a single dot. 

 

Outputs depressions on the terrain. Meant to be drawn 
as a line. 

 

Outputs elevations that are more constant trough their 
length. Meant to be drawn as a line. 

 

Outputs more shallow depressions on the terrain when 
compared to dark blue. Meant to be drawn as a line. 

 

Outputs elevations that have more height variation than 
red. Elevations done with dark green will always be taller 
than those drawn with red. Meant to be drawn as a line. 

 
Eraser with fixed size. Used to erase sketches partially. 

 
Opens the tutorial.  

Table 3.3 - Drawing tools summary. 

3.6 Interface version 2 

Although this version was only developed after testing with users, in part prompted by some results, 

which will be further discussed in Chapter 4, we are showing it now. As we can see in Figure 3.15, the 

flow for getting a terrain on the terrain visualizer is simpler. The two intermediate buttons to update 

the mesh and the Log were removed. These two buttons just contributed to add unnecessary 

complexity and created some confusion. The user only has to press the Play button, and everything 

will be automatically done, from displaying the generated terrain to auto updating the Log, no extra 
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clicks necessary, just the one. This simplification translates in better results as will be seen in the next 

chapter, were results for testing will be presented. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 - Version two of the Interface. 

The main reason for these modifications were the results obtained in the first Usability test results 

(detailed in Section 4.4). It became apparent that the UI was not refined for the final user, instead 

closely following the logic and the task sequence present in the subjacent code classes. This resulted 

in a more complex and cluttered UI than desirable, in particular for first-time users. When 

implementing the new changes, it was necessary to figure out a work-around for an unforeseen 

problem: the event system handler regarding processes not working on Linux the same way it does on 

Windows. Since .NET is developed for a Windows environment and not Linux, and even though it works 

on Linux, some internal Classes do not react the same way to Linux process event triggers as they do 

in Windows. Finding a way to fire all the other methods responsible for updating the interface contents 

once the NN finished running allowed us to effectively act upon the results obtained from the tests 

done with the first interface version and improve upon our design. 
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Other changes include the positioning of the color buttons and the “Reset Canvas” button and an 

increase in size of the “Export” button. Thanks to the gained space from removing the unnecessary 

clutter, we were able to make the button bigger and much more obvious regarding function. Further 

explanations will be given once we go through the test results in the next chapter.  

 

3.7 Image Log and Copy/Paste 

In order to allow users to have more creative options and more leeway when creating terrain, it was 

decided to add more options to the workflow of the application alongside the ones previously 

presented. 

 

Figure 3.16 - At the top of the interface, Log menu, with generated terrain preview 

To enable a more creative design process, something that kept track of what the user did while 

using this application was necessary. An image Log was the final choice, shown in Figure 3.16, instead 

of the more traditional History, like for example what Photoshop has. The intricacies of the drawing 

made with this application are not that detailed to the point that such a fine control is justifiable and 

in case of a NN crash, the user drawing is salvaged and work can be resumed easily.  

 

In the course of using the application, every drawing that is sent to the NN to be processed is 

stored in the file system of the machine the tool is running on and accessible through the Log menu, 

alongside a preview of the generated terrain, which is shown when the user hovers their mouse over 
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each specific drawing in the Log. This allows for a more complete preview as the user can see the 

drawing and its resulting terrain. Additionally, if the user clicks on one of the stored inputs, that input 

is reloaded to the drawing area and can be either regenerated or it can be altered and then generated 

with the new addition, facilitating iterative work on chosen terrains and reutilization without having 

to redraw everything. 

Figure 3.17 - Copy/Paste loop 

Another feature that allows for more leeway when sketching is the ability to copy parts of the 

stored input onto the current drawing. Instead of regenerating a previous drawing, the user can opt to 

copy an area of the chosen drawing by right click and drag to select and pasting that section of the 

drawing in their current drawing area. This facilitates the extraction and incorporation of design 

features of previous input in the current drawing, as can be seen in Figure 3.17, further facilitating 

iterative work. All these features closely resemble the ones found in traditional paint style editors, 

features which most users will be somewhat familiar with. This is expected to promote and facilitate 

reusability of drawing and drawing iteration without alienating less terrain editor tool savvy users. 

 

3.8 Perlin Noise generator  

Although not accessible to the end user, the developed tool can generate Perlin Noise heightmaps. 

This is possible through the Unity3D editor, as seen in Figure 3.18, and it is used as a comparative 

method. This enables us to compare the solutions generated by the NN with a method that is more 

widely used and maintain terrain presentation style. Having to style variation helps by reducing 

subjective variability because the coloring style or texturing style were different in both methods. A 

quick overview of the noise parameters is necessary to better understand the variables in play that 

allow us to elevate the quality and controllability of the generated noise. 
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Figure 3.18 - Perlin Noise editor fields. 

The first parameter field is Noise Scale, that serves to change the scale of the noise, at what 

distance we are seeing the noise. Octaves control the number of layers that are generated and then 

added to themselves, so we can have more detail in the noise sample. Persistence controls how much 

each octave contributes to the final noise output, it controls the amplitude reduction of each octave. 

The bigger the persistence the more the lower layers of octaves influences the top ones. Lacunarity is 

a frequency multiplier, meaning it influences the distance between octaves, resulting in a control over 

the details that are added to each octave. The Seed value is used so that we can regenerate any given 

noise map. And finally, offset is used to simply tile the noise manually.   

 

Figure 3.19 - Perlin Noise comparison. Right image is a sample of noise generated by Mathf.PerlinNoise. Left 

noise sample is from the developed application. 

Unity3D has a basic Perlin noise generator, but the resulting noise is far too simple to be 

considered a quality candidate to generate heightmaps, due to not having any controls over the noise 

aside from scale and coordinates. All these fields and variables are all transformative, they use the 

base value calculated by Mathf.PerlinNoise ("Unity - Scripting API: Mathf.PerlinNoise", 2020) and the 

added octaves and the control over the influence, distance and persistence of the noise layers 

attributes allows us to have a much bigger control over the generated noise and a better quality when 

compared to the vanilla generator included in Unity3D. This difference in detail can be seen in Figure 

3.19, where the right side presents a lot more variation in the noise structures, with more clearly 
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defined lighter areas and smoother transitions to the darker areas. This added noise detailed translates 

in more detailed 3D terrains when compared to vanilla Perlin Noise, and example of which can be seen 

in Figure 3.20.  

 

Figure 3.20 - Perlin noise terrain example. 3D terrain generated using Perlin Noise instead of an heightmap 

generated by the NN. 
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CHAPTER 4  

Experimental Results 

In this Chapter, the testing methodology and the obtained results will be detailed. In total, three tests 

were carried out across two phases. The first test conducted was an online survey, with 113 

participants, was used to compare terrains produced by the developed tool, using the NN as the 

generator, with terrains generated with a traditional alternative, i.e., Perlin Noise. Following the online 

test, a test with 30 participants was conducted to assess the tool's usability. These users utilized the 

developed tool in a guided test to ascertain its usability and intuitiveness.  

 

After altering the interface according to the results obtained from the first testing phase, a second 

testing phase was initiated. The goal was to assess the impact of the introduced changes. For this 

phase, a smaller participant pool, with 5 individuals, was considered and the usability test was 

conducted again to evaluate the changes done to the UI. 

 

4.1 Terrain Generation Comparison Test 

This first test aimed to understand the perception user might have regarding the realism of the terrains 

produced by the NN. The goal was to assess whether users of the developed tool would find the 

resulting terrains to be pleasant to look at, and more importantly, if they were, morphologically 

speaking, more realistic when compared to another widely used method, namely, Perlin Noise. This 

test was carried out using thirty randomized image pairs, each pair composed of a terrain generated 

with the NN and another one generated using Perlin Noise. An example of one of these pairs can be 

depicted in Figure 4.1. 

 

Figure 4.1 - Example of terrain pair used in the Comparison Test, where A is a PN terrain and B is a NN terrain. 

Terrains generated with Perlin Noise were parameterized with a wide variety of values to obtain 

a broad representation of all types of terrain this method can output. For the terrains representing the 



64 
 

NN, we chose thirty random inputs from the testing dataset and used them as inputs for the NN and 

rendered the resulting heightmaps using the herein presented. Terrains were then randomly joined to 

form a pair and to avoid choice patterns and inserted in the online questionnaire at random. This was 

done to avoid any choice pattern (e.g., all NN terrains being the A option).  

 

The online questionnaire was hosted in Google Forms and the link to access it was disseminated 

in two online communities dedicated to ML: r/neuralnetworks and r/learnmachinelearning, both 

Reddit communities. The rationale for this decision stemmed in part from related work in this field, 

which also used these and similar platform to reach a testing audience with success and because there 

was a bigger chance for better engagement and hence, more responses, with an audience that is 

already interested in these topics (Spick et al., 2019). Users were given no information beyond that the 

application was a terrain generator and a comparison between two methods was being evaluated for 

perceived realism. They were also made aware that there were no correct or incorrect answers. Please 

refer to Appendix B for a detailed presentation of the thirty generated terrain pairs. 

 

4.2 Usability Test 

The second test had as objective gauging if users managed to understand the function associated to 

each element of the interface, without any explanation or previous knowledge regarding the 

application, and, assessing if users were able to use the application in a productive fashion, meaning, 

if they were able to use it in order to express their design wishes. This test was worded and organized 

in a way that mimics a real session with the application. Instead of being asked direct questions, the 

user was placed in a situation mimicking a real-life session and asked what buttons they would click, 

or which actions would they perform to solve the current situation they are being placed in. Each 

subsequent question follows a flow that mimics a real-life session. Every user action was timed and 

registered. This test was based on the testing done by Guérin et al. to users, as well as on the work of 

Dix et al. whose works focus on how to deliver efficient experimental methods involving user 

participation (Dix, Finlay, Abowd, & Beale, 2004). General guidelines on how to apply the tests were 

based on the work of Lewis et al. (C. Lewis & Rieman, 1993). 

 

The test was divided in five phases. In Phase zero, the participants were briefed with a very basic 

notion of what to expect. We started by explaining what the application was used for and how an input 

sketch, drawn by the user, could look like, how a generated terrain might look like and where the user 

will be allowed to draw and where the terrain will show up. No information regarding any button or 

feature was given in this phase. 
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Phase one served the purpose of determining whether users were able to identify the function of 

each button. When starting the first group of questions, users were prefaced with what was to be 

tested, in this case, interface intuitiveness, and that they should imagine they were in the middle of a 

real drawing session and that questions were to be posed as such. Users were made aware that there 

were no wrong answers and that they should not feel pressured to answer correctly or quickly. The 

goal was to ascertain if buttons presenting atomic actions were clear enough to be identified without 

explanation, as well as slightly more complex actions but still integral to the navigation and usability of 

the application. As such, participants only had one opportunity to answer the posed question. This 

phase was composed of thirteen questions in total. Phase one was divided in four groups. Group one 

tested if users were able to recognize what type of structure each drawing tool button (seen in Figure 

3.13) allowed to generate. This group was composed of the following four questions: 

 

• Question 1a): “Imagine that you want to draw a mountain range, in which button would 

you press?”. 

• Question 1b): “Now imagine that you want to draw a depression on your terrain, which 

button would you choose?”. 

• Question 1c): “And to draw a single elevation?”. 

• Question 1d): “Imagine that you made a mistake, and you want to erase part of what you 

did, which button would you choose?”. 

 

The second group tested user comprehension regarding the generation flow (see Figure 3.12), 

such as the ability to determine what buttons and in which order should they be pressed to generate 

a terrain.  This group was composed of the following five questions: 

 

• Question 2a): “Now imagine that you are feeling satisfied with the drawing you did and 

you want the drawing in your drawing area to be used to generate a terrain, where would 

you press?”. 

• Question 2b): “Now you would like to see, in the visualization area, your terrain. Where 

would you press?”. 

• Question 2c): “Now that you have your terrain on the screen, you would like to refresh the 

image Log menu so that your newly created drawing is stored in the log for future 

reutilization, where would you press?”. 
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• Question 2d): “Imagine that in the middle of drawing your next terrain, you decided that 

your drawing wasn’t what you wanted at all and decide to completely clean the drawing 

area, where would you press?”. 

• Question 2e): “Finally, you’ve drawn something of your liking and your think the terrain 

should be stored. In which button would you press to export your terrain?”.  

 

 

Group three only has one question, and it tests users in whether they were able to make use of 

the Log menu and retrieve a specific image from its structure. The question posed to participants is as 

follows: 

 

• Question 3a): Imagine that you started a new session and decide to make alterations in 

the terrain I showed you in the beginning. What actions would you take?”. 

 

Finally, group four, tested user comprehension about camera control, concretely, if they were able 

to perform the basic camera movement operations within the developed tool. This group was 

composed of the following three questions:  

 

• Question 4a): “You took notice of a detail in your terrain and decide to zoom in on that 

part. How would you do it?”. 

• Question 4b): “Now you want to see the same detail, but from another perspective, how 

would you do it?”. 

• Question 4c): “Finally, you want to see the map from a top down view, where would you 

press?”. 

 

In phase two, participants were asked to read the tool’s tutorial that is present in the developed 

tool from start to finish. This was done, to mimic to the fullest how a real-world user would interact 

with the tool. This tutorial explains every aspect of how to operate the application, what each button 

does and how to use the existing features. This serves to normalize every participant. Even if they were 

unable to successfully answer previous questions, when moving to the last phase of testing, everyone 

is on equal footing.  Having read the tutorial, users were informed that they were allowed to use the 

application in a non-supervised fashion for ten minutes. They were free to do as they pleased, including 

drawing anything, and using any part of the application as they saw fit. This had the objective of 
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allowing users to organically familiarize themselves with the application, to allow them to experiment 

with the caveats of NN generation and to explore for themselves what they have just learned.  

 

After the non-supervised practicing, participants moved to the fourth testing phase, composed of 

seven questions. In this phase, participants were asked to perform actions that mimic a real-life user 

session, from atomic actions to complete actions, following the entirety of the tool workflow. This 

served to test if users understood how the application works. They are asked to do complex actions 

that require understanding of how the application works and a basic understanding of how the NN 

interprets their input drawings. Just like in phase one, users are timed but with a key difference: they 

had three chances to complete these actions, although no extra information is given between tries 

other than if they failed or succeeded. Times for each try were added together to give one single time 

measurement. Three chances were given because users have a small timeframe to accustom 

themselves to the tool, and sometimes the NN does not output a 3D terrain that corresponds exactly 

to the participant’s expectations. Participants might sketch an input using the correct design logic but 

simply because the lines, for example, were not long enough, the output comes out differently than 

what the test is asking, even though the user had the correct design logic applied to the sketch. It also 

served to add granularity to the test results: a participant that fails three times in a row for that specific 

question is different from a participant that fails the first time but got it at the second time, or from a 

participant that gets it right in the first try. Phase 4 questions are as follows: 

 

• Question 1 Phase 4): “Draw a mountain range that crosses the terrain diagonally from left 

to right”. 

• Question 2 Phase 4): “Draw a valley with mountains surrounding it”. 

• Question 3 Phase 4): “Draw a single elevation in the middle of the terrain without anything 

around”. 

• Question 4 Phase 4): “Position your camera up close to the tallest point of your terrain”. 

• Question 5 Phase 4): Users are asked to clear the canvas before proceeding to this 

question. “You decide that you want to add something to your previously created terrain”. 

• Question 6 Phase 4): “After the added details you conclude that your terrain could be a bit 

higher and decide to increase its altitude”. 

• Question 7 Phase 4): “Finally the terrain is to your liking and you decide to export the 

terrain”. 
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4.3 Terrain Generation Comparison Test Results 

Figure 4.2 shows the bar graph with the results of the terrain comparison test, in which we had 113 

responses for the duration of time that the link was active. 

 

 

 

 

 

 

 

 

 

Figure 4.2 - Participant choice distribution between NN and PN by pair 

In the horizontal axis, the bar graph has the number of image pairs, out of the thirty, that had the 

represented percentage distribution of choice between Perlin Noise (PN) and the NN seen in the 

vertical axis. Green represents the percentage of NN picks and red the percentage of PN picks. To 

clarify the data shown in Figure 4.2, if we look at the leftmost bar, we conclude that in five of the thirty 

terrain generated pairs in the test, everybody of the one hundred and thirteen answers picked the NN 

output as being the most realistic. The graph also shows that in one terrain generated pair, out of the 

thirty, 92.5 % of people chose the NN output as being the most realistic between the two, leaving a 

remainder 7.5 % that chose the PN output as the most realistic one.  

 

In Figure 4.2, only two pairs out of thirty have more than 5 % of participants choosing PN as the 

more realistic option, the remaining 28 pairs are all below the 5 % mark, with the mode being 1.8 % of 

participants choosing PN as the most realistic case in eight pairs. Nine out of thirty pairs have 

participants picking PN at a rate below 1 % and out of these nine, five have a 0 % PN pick rate. To put 

this in total numbers, there was a total of 3390 comparisons, 113 participants responding to thirty 

questions each, and out of these only 77 responses were PN. This equates to 2.27 % of answers being 

PN. These results show a clear preference for the 3D terrains produced by the developed tool, showing 

that, in the majority of cases, the terrains produced by the tool were found to be more realistic looking 

when compared with the terrains produced by a PN algorithm.  
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Figure 4.3 - Box plot distribution of NN pick percentage 

Figure 4.3 depicts a box plot representing the percentage distribution and skewness of NN picks. 

Presenting a median of 98.2 %, a mean of 97.7 %, with an outlier of 92.5 %, a minimum of 93.8 % and 

maximum of 100 %. First quartile presents a value of 96,5 %, third quartile a value of 99.1 %. The total 

range is 7.5 and the interquartile range is 2.6. Standard Deviation (SD) came at 1.797. In Figure 4.3, we 

get a better sense of the answer’s distribution. The total range of NN picks only varies by 7.5 %, this by 

itself is already a tight variation, but when looking at the value of interquartile range, obtained by 

subtracting the third quartile with the first, we have a range of 2.6. This indicates that the bottom 25 

% percentile only diverges 2.6 % of the top 75 % percentile, indicating a high level of agreement 

between participants regarding which option is more realistic. The relative position of the box also 

leads to another illation. By being more towards the positive end of the axis, and by having a shorter 

upper whisker, this indicates a stronger agreement and less variation in participants responses at the 

upper NN pick percentages. This tells us participants are more inclined to choose, at a higher rate, the 

NN over PN. With this said, it is apparent that the participant base of this questionnaire found the 

terrain options produced by the NN to be more realistic when compared to PN, produced by the same 

graphical engine, and found it so with confidence, given the answer distribution found in Figure 4.3.  
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4.4 Usability Test Results  

This section presents the results obtained in the usability test. The complete test applied to the 

participants can be found in the Appendix C. There are twenty question in total, which were answered 

by thirty participants, with an average age of 22,5 years old and a gender distribution of 56.6 % being 

male and 43 % female. Most participants were students at ISCTE-IUL. To our knowledge no one had 

ML experience. Has for any other related experience, e.g., gaming, we did not ask. We found that 

having gaming experience would not impact the perception of reality of the terrains. As explained in 

Section 4.2, Phase 1 is divided in four groups: drawing tool buttons comprehension; generation flow 

intuitiveness; log menu usability; and camera control. Questions regarding drawing tools and 

generation flow expect a concrete answer, so they are either correct or incorrect, and the 

corresponding graph data is distributed by answer given. Question pertaining the log menu and camera 

control do not expect a concrete answer, rather a small set of actions and key presses, which will be 

successful or will fail, so graph data referring to these questions is distributed by success or failure. The 

vertical axis represents the percentage of testers that gave the answers found on the horizontal axis. 

Both types of data distribution are color coded, being green the correct answer or success and red 

being an incorrect answer or failure. 

 

 

 

 

 

 

 

 

Figure 4.4 - Results for Phase 1 Group 1 question 1a) “Imagine that you want to draw a mountain range, in 

which button would you press?” (left) and Phase 1 Group 1 1b) “Now imagine that you want to draw a 

depression on your terrain, which button would you choose?” (right). 
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Figure 4.5 - Results for Phase 1 Group 1 question 1c) “And to draw a single elevation?” (left) and Phase 1 Group 

1 question 1d) “Imagine that you made a mistake, and you want to erase part of what you did, which button 

would you choose?” (right).  

Starting with the first group of questions, where users are tested about drawing tools 

comprehension, fairly good results were obtained. In question 1a) (see Figure 4.4) all participants 

correctly answered Light Red, followed by a smaller sample of participants who answered Dark Red 

and only one person answered that both could be used to form mountain ranged. These results show 

that participants had no trouble identifying the button’s functionality and it was obvious to them what 

the button did. In question 1b) (see Figure 4.4) the majority chose Dark Blue as the button they would 

pick for drawing a terrain depression, but more participants answered that both colors could be used 

for depression drawing when compared to participants that chose Light Blue. One participant 

answered incorrectly by choosing Light Green. Even though one participant answered incorrectly, the 

majority of participants still found it easy to identify the correct button, showing that they had no 

troubles identifying the correct button.  In question 1c) (see Figure 4.5), participants had no problem 

identifying Light Green as the button to produce single elevations on the terrain, with only one person 

failing to properly answer, showing that participants found no problems with this button’s functionally 

as well. In question 1d), (see Figure 4.5), all participants positively identified the eraser as the correct 

answer. 
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In Table 4.2, we can see the average times for the first group of question. Answer time averages 

were low, varying between 1,5 seconds (s) to 5,6 s, with SD between 1,15 and 6,64 s. These times 

imply, as well as the percentage of correct answers, that participants were confident in their answers, 

were quick to analyze the interface and, with more correct answers than incorrect, the design choices 

for the drawing tools were successful in conveying their purpose.  

 

Figure 4.6 - Results for Phase 1 Group 2 question 2a) “Now imagine that you are feeling satisfied with the 

drawing you did, and you want the drawing in your drawing area to be used to generate a terrain, where would 

you press?” (left) and Phase 1 Group 2 question 2b) “Now you would like to see, in the visualization area, your 

terrain. Where would you press?” (right).  
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Figure 4.7 - Results for Phase 1 Group 2 question 2c) “Now that you have your terrain on the screen, you would 

like to refresh the image Log menu so that your newly created drawing is stored in the log for future 

reutilization, where would you press?”. (top left), Phase 1 Group 2 question 2d) “Imagine that in the middle of 

drawing your next terrain, you decided that your drawing wasn’t what you wanted at all and decide to 

completely clean the drawing area, where would you press?” (top right) and Phase 1 Group 2 question 2e) 

“Finally, you’ve drawn something of your liking and your think the terrain should be stored. In which button 

would you press to export your terrain?”.(bottom center). 

In the second group of questions, where participant comprehension of generation flow is tested, 

results were mostly negative. In question 2a) (see Figure 4.6), only 30 % of participants answered 

correctly, showing that participants were unable to properly identify the button’s functionality. This 

leads to question 2b) (see Figure 4.6) also having poor results. Once participants got the first button 

wrong, most of them also answered incorrectly to question 2b), with the majority switching the order 
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between the play and the generate button. The data shows that if a participant got question 2a) right, 

they would also get 2b) right, with both questions having 30 % of participants answering correctly, 

meaning they understood the order in which buttons had to be pressed from the start or realized they 

were mistaken and answered 2b) with that in mind. Regardless, what was consistent was participants 

switching the order between the play button and generate button. Question 2c) (see Figure 4.7), 

presents some better results but nonetheless far from acceptable, with 36,66 % of participants giving 

the export button as answer instead of the log update button, once again showing that the buttons 

are not clear on their intended purpose, leading participants to guess and giving incorrect answers on 

other buttons. Both question 2d) and 2e) (see Figure 4.7) had all participants answering correctly. Even 

though 36.66 % of participants answered export in question 2c), all of them realized their error and 

corrected the answer when asked question 2e). This is due to both questions being easy to understand, 

using language similar to the names and functions of the buttons in question and, in the case of the 

export button, having a symbol similar to other application symbols for that function. 

 

When analyzing time averages for group two of questions in Table 4.2, especially the first three 

questions, it becomes more obvious that participants struggled with this part of the test. Although 

time averages are higher than the previous group, what further cements the bad results for this group 

of questions are the Standard Deviation. Question 2a) has a SD of 6.6 s, which is the same as question 

1a), but when analyzing SD for 2b) and 2c), the apparent low time averages gain a new interpretation. 

Question 2b) has a SD of 11.9 s and 2c) of 14.6 s. This reveals that participants were confident when 

answering the first question, but when realizing they answered incorrectly, they were forced to 

reassess their assumptions, not only leading to more wrong answers but also a higher Standard 

Deviation. Time averages and Standard Deviation for 2d) and 2e) are in the expected range, with both 

questions getting a low average time and an even lower SD time. This group of question revealed a 

clear problem with the interface: having these many buttons to press just to be able to put the 

generated terrain in the screen, as well as have all the UI’s components updated, is detrimental to the 

understanding of the interface. Adding to that, the nomenclature used to identify these buttons is not 

the clearest possible. With such a complex button press sequence, naming should be clearer to help 

guide the users with the need of explicit training 
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Figure 4.8 - Results for Phase 1 Group 3 Question 3a) “Imagine that you started a new session and decide to 

make alterations in the terrain I showed you in the beginning. What actions would you take?”. 

 

Group three only has one question, 3a) (see Figure 4.8), and it is regarding the image log. 

Participants were asked to retrieve a specific sketch from the log menu and only one participant was 

unable to do so (the participant gave up 17.6 s after starting). Average time was 40.6 s (SD = 34.4 s), as 

presented in Table 4.2. Participants had some difficulty finding the asked for image. Reasons for this 

high average time might be due to participants not being able to immediately understand how the 

image log worked but also having trouble visualizing the small details of the sketch representation 

inside the log menu. Some users understood what was asked but clicked through all the images in the 

log before finding the one they wanted. This indicates that the feature either needs to be better placed 

and modified in form but also that details of the sketches inside it need to be more noticeable.   
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Figure 4.9 - Results for Phase 1 Group 4 questions 4a) “You took notice of a detail in your terrain and decide to 

zoom in on that part. How would you do it?” (top), 4b) “Now you want to see the same detail, but from another 

perspective, how would you do it?” (bottom left) and 4c) “Finally, you want to see the map from a top-down 

view, where would you press?”. (bottom right).  

Moving to the fourth group of question of phase one, participants were tested regarding camera 

control. Both question 4a) (see Figure 4.9), had 100 % of participants being able to execute the 

necessary controls. There was only one participant that failed in question 4b), bottom left Figure 4.9. 

Looking at the times for each question in Table 4.2, time averages and Standard Deviation were high, 

44.5 s (SD = 38.5 s) for question 4a) and 34.8 s (SD = 28.1 s) for question 4b). Given that camera controls 

were displayed in the screen at all time, it is safe to assume that they were not evident enough to the 

participants, that some key combination might be unintuitive and  that the questions might not be well 

formulated or obvious enough. As for question 4c), with an average answer time of 2.4 s (SD = 3.1 s), 

participants found no trouble in utilizing the correct key to reset the terrain position in the visualizer. 

Note that this information was on the same place as the other camera controls. 
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Before presenting Phase 4 results, a small note regarding graph interpretation: since users were 

given three chances to achieve the wanted goal, each chance could be either a success (S) or a failure 

(F). For example, a user that failed twice but had success on their last try, would have their result shown 

in the graph as F|F|S. There is a special case, which initially was going to be discarded, but it occurred 

enough times to warrant an entry in the data. S* means that the tester had success in the previous try 

but explicitly asked to retry the entry because they thought they could do better.   

 

 

 

 

 

 

 

Figure 4.10 - Results for Phase 4 question 1 “Draw a mountain range that crosses the terrain diagonally from 

left to right” (left) and Phase 4 question 2 “Draw a valley with mountains surrounding it” (right). 

After reading the tutorial and interacting freely with the tool, participants were initiated in the 

fourth phase of testing, which aimed at understanding if participants grasped how the tool worked in 

all its workflow and if they were able to materialize, in a terrain, what was described in the question. 

Starting with Phase 4 question 1 (see Figure 4.10), in which only one participant failed on the first try, 

while 83.3 % of participants were able to successfully complete the task on the first try. The remaining 

13.33 % of user were able to also complete the task on the first try but felt like they could achieve a 

better result and asked for another try. In Table 4.3, question 1 has a 29.8 second average answer time 

(SD = 12.9 s). This time accounts for the entire process, from sketching, clicking on the appropriate 

buttons to initiate the NN and waiting for it to finish. Participants seemed to have little problems with 

this question, being able to produce the wanted terrain quickly. The vast majority on the first try and 

with a SD that shows low variability between participants. Since only one participant failed on the first 

try, average tries are nearly one and its SD is negligible. 

 

In Phase 4 question 2, (see Figure 4.10), 10 % of participants did not manage to complete the task 

after three tries. A total of 33.33 % succeeded on the first try, plus 10 % that succeeded on the first try 

but asked to repeat the task because they were not satisfied with the result. From all participants, 
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16.66 % failed on the first try but succeeded on the second try, plus 6.66 % that failed on the first try, 

succeeded on the second but felt unsatisfied with the result and asked to repeat. A total of 23.33 % of 

participants required two attempts before succeeding. This gives a total of 43.33 % of participants that 

succeeded on the first try, 23.32 % that succeeded on second try, 23.33 % that succeed only at the 

third try, and 10 % that failed completely.  

 

Looking at Table 4.3, there is a much higher time average and Standard Deviation comparatively 

with the previous question, 69.8 s (SD = 39.1 s). On average, participants required 1.90 tries (SD = 0885) 

to answer correctly. This question was more complex than the previous one. The terrain asked to draw 

was more complex and required more lines to achieve a proper result than the sketch required to 

achieve success in the first question. Participants clearly had more difficulty on this question 

comparatively with the previous one but still only 10 % did not manage to succeed. Part of the reason 

this time average is so much higher than question one can be in part attributed to the processing time. 

It is not instantaneous and since participants required more tries in general to achieve success, this 

will eventually add up. Needing more tries to succeed also led to a higher SD, since each try time is 

added to form a total time. On a general way, participants managed to achieve the desired terrain. 

This shows that even if unable to achieve success on the first try, the tool is understandable enough to 

allow users to siphon knowledge from their previous try and modify their approach on the second try, 

and in fewer cases, even on the third try and still achieve success. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 - Results for Phase 4 question 3 “Draw a single elevation in the middle of the terrain without 

anything around” (left) and Phase 4 question 4 “Position your camera up close to the tallest point of your 

terrain” (right). 
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Moving on to question 3 (see Figure 4.11), 90 % of participants only needed one try and only 10 

% required a second try. No one failed completely. Participants were fairly quick to finish the task, with 

an average answer time of 24 s (SD = 18.2 s) as presented in Table 4.3. On average user needed 1,1 

tries (SD = 0.305 tries), according to table 4.3. These values indicate that participants had no trouble 

in succeeding in this task and were confident in how to do it. The sketch required to succeed on this 

question was extremely simple but required from participants a full understanding of how the original 

green button worked. Any sketch with anything other than a green dot on the middle was not 

acceptable, and only 10 % of participants were unable to achieve it on the first try. 

 

In Phase 4 question 4 (see Figure 4.11), none of the participants failed. Every participant was able 

to maneuver the terrain camera in order to place it in the asked position on the first try. In Table 4.3 it 

is possible to see that the average time for this task was 23.5 s (SD = 17.7 s). Participants already had 

experience with the camera control in question 4a) and 4b), where the average time and SD were 

higher than in this question. This is indicative of participants struggling initially with camera controls 

simply because they did not know what button combinations were supposed to be pressed, instead of 

inherent difficulty. This highlights that the camera controls present in the top left corner of the 

interface, seen in Figure 3.14, are not obvious enough to be pick up immediately by participants. 

 

  

  

 

 

 

 

 

Figure 4.12 - Results for Phase 4 question 5 “You decide that you want to add something to your previously 

created terrain” (left) and Phase 4 question 6 “After the added details you conclude that your terrain could be a 

bit higher and decide to increase its altitude” (right).  
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Phase 4 question 5 (see Figure 4.12), is another question where no participants failed. This 

question served to retest participants regarding the image log usage. Time average was slightly higher 

comparatively with question 3a), averaging at 50.6 s (SD = 41.38 s), as per Table 4.3. Considering that 

users had to slightly alter the image retrieved from the log menu and generate a terrain, the values for 

this question were on par with question 3a), highlighting that the problem might actually be because 

of the feature itself and not because of the participants unfamiliarity with it. Further testing is needed 

to pinpoint the exact issue with the feature. 

 

In Phase 4 question 6 (see Figure 4.12), 73.33 % of participants succeeded in the first try, while 20 

% needed two tries and 6.66 % needed two tries to achieve success. It is possible to see in Table 4.3 

that the time average was 28.2 s (SD = 40.0 s). Average tries for this question are 1.37 (SD =0.6 tries). 

The task needed to succeed at this question was simple, it only required participants to move the mesh 

height slider to change terrain height. Given this time disparity between participants and relative 

easiness of the task, there is only one conclusion possible: the slider’s name is not clear. Throughout 

the test the terrain generated is never addressed as “mesh” expect on the mesh height slider. This is 

unintuitive and confusing for the participants, that might not even know what mesh means. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 - Results for Phase 4 question 7 “Finally the terrain is to your liking and you decide to export 

the terrain”. 

 

 Finally, Phase 4 question 7 (see Figure 4.13), none of the participants failed or required more 

than one try to achieve success. Answer time average was 2,9 s (SD = 2 s), as per Table 4.3, meaning 

all participants were confident on what do to achieve what was asked of them and that the export 

button is clear on its function. 
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Adding to the graphs and timetables for each question, there is also the frequency of which 

participants used the tool’s features. This information was retrieved while participants were 

performing tasks. In terms of extra colors, 19 out of 30 participants used extra colors throughout the 

test. Dark red was used 28 times, with 16 different users using it.  Light blue was used 16 times, with 

10 out of 30 participants using it. Dark green was used 6 times by 5 out of 30 participants. The image 

log was used by everyone but only 4 participants used it outside of the required question, for a total 

of 8 extra uses. The copy and paste feature was used only by one participant and in the training session. 

The eraser was used by 8 participants, with a total of 11 times. The reset canvas button was used by 

29 out of 30 users, for a total of 70 uses. This information is summarized in Table 4.1. 

 

Implemented features Unique participant uses Total uses 

Dark red 16 out of 30 28 

Light blue 10 out of 30 16 

Dark Green 5 out of 30 6 

Image log 4 out of 30 8 

Copy/Paste 1 out of 30 1 

Eraser 8 out of 30 11 

Reset canvas 29 out of 30 70 
Table 4.1 - Implemented features usage by participant and total uses 

 

Going through these test results, one thing becomes evident: the major flaw in this tool is the 

generation flow. The amount of button presses necessary to get a terrain on the screen and update all 

structures is detrimental to users experience and tool usability. The tool’s intuitiveness can be 

improved by reducing the number of clicks to reach the desired result. Aside from that, the majority 

of participants had little to no trouble identifying what the drawing buttons did nor had trouble with 

the log menu, although, improvements are necessary to reduce visual clutter and make the log menu 

functionality clearer. As for extra colors, there seems to be use cases for them, as participants found 

uses for them throughout this test. The same cannot be said for the copy paste functionality. In 

fairness, there were not many moments in which copying a piece of another sketch was strictly 

necessary or made sense. Perhaps in a real setting, this feature would be more used, but for now it 

seems to be seldomly used.  In phase 4, most participants were able to produce the asked terrains and 

were able to express their design ideas without problems, indicating that participants understood how 

the tool works. These results, especially the results regarding generation flow, prompted a revision of 

the UI (detailed in Section 3.5.1) and subsequent smaller batch of tests to verify if changes had an 

impact on the problematic areas. 
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Table 4.2 shows the average times for each individual question of the four groups of questions in 

phase 1, calculated from each participant time to answer the question, starting from when the tester 

ended the question, as well as Standard Deviation (SD). Considerations regarding these times are done 

near the appropriate graphical information for each question.  

 

 

 

 

 

 

 

 

 

 

 

  

Table 4.2 - Phase 1 Questions Average Times and Standard Deviation 

Table 4.3 shows the time averages, their corresponding standard deviations as well as average 

tries for each question and their SD for the question in phase four of test one. Considerations regarding 

these times and deviations are done near the graphical results. 

 

Table 4.3 - Phase 5 Questions Average Times, respective Standard Deviation and average tries and respective 

Standard Deviation.  

4.5 Second Usability Test Results 

As mentioned, a second Usability Test was done after the new interface was implemented. The 

objective was to assess if a less cluttered and more direct generation flow translated in a better ease 

of use for the user. In this test, only Phase one of the first usability test was applied. Phase one 

questions (see Section 4.4) were not altered in their contents, but question 2b) and 2c) were removed 

 Question 
Response Time (s) 

Average Standard Deviation 

1a) 5,6 6,643 

1b) 3,1 2,034 

1c) 2,8 2,305 

1d) 1,5 1,154 

2a) 5 6,611 

2b) 8,1 11,945 

2c) 8,3 14,67 

2d) 1,8 1,282 

2e) 1,9 1,356 

3a) 40,6 34,442 

4a) 44,5 38,539 

4b) 34,8 28,124 

4c) 2,4 3,151 

Question 
Response Time (s) Tries 

Average Standard Deviation Average  Standard Deviation  

Phase 4 Question 1 29,8 12,948 1,03 0,183 

Phase 4 Question 2 69,8 39,105 1,90 0,885 

Phase 4 Question 3 24,0 18,238 1,10 0,305 

Phase 4 Question 4 23,5 17,702 1 0,000 

Phase 4 Question 5 50,6 41,381 1 0,000 

Phase 4 Question 6 28,2 40,933 1,37 0,615 

Phase 4 Question 7 2,9 2,059 1 0,000 
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because the corresponding buttons no longer exist. This change in the UI also required reordering of 

some questions, namely: question 2d) became question 2b) and question 2e) became question 2c). 

Check the Appendix D for the complete altered test document. Only five participants were tested, four 

males and one female, with an age average of 22.4 years old. None of these participants had any 

knowledge or participated on any of the two previous tests.  

 

 

 

 

 

 

 

 

Figure 4.14 - Results for question 1a) “Imagine that you want to draw a mountain range, in which button would 

you press?” (left) and 1b) “Now imagine that you want to draw a depression on your terrain, which button 

would you choose?” (right), second usability test.  

 

 

 

 

 

 

 

Figure 4.15 - Results for question 1c) “And to draw a single elevation?” (left) and 1d) “Imagine that you made a 

mistake, and you want to erase part of what you did, which button would you choose?” (right), second usability 

test.  
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In question 1a) (see Figure 4.14), 100 % of participants answered correctly, although this time, no 

one picked more than one color as their answer. Participants had a time average of 3.3 second (SD = 

1.8 s). Moving to question 1b) (see Figure 4.14), again 100 % of participants answered correctly, with 

40 % picking dark blue, 20 % light blue and 40 % answering that both light blue and dark blue could be 

used to produce depression on the terrain. For this question, participants had a time average of 2.4 s 

(SD = 1.6 s). In question 1c) (see Figure 4.15), again 100 % of participants chose the correct answer and 

their time average was 1.8 second (SD = 0.3 s), according with Table 4.4. In question 1d) (see Figure 

4.15), 100 % of participants answered correctly as well. Participants had a time average of 1.5 s (SD = 

0.7 s), as seen in Table 4.4. These results do not askew from the results obtained in the previous test, 

reiterating that participants have no trouble identifying the drawing tools button’s functionality. 

 

 

 

 

 

 

 

 

Figure 4.16 - Results for question 2a) “Now imagine that you are feeling satisfied with the drawing you did, and 

you want the drawing in your drawing area to be used to generate a terrain, where would you press?” (left) and 

2b) “Imagine that in the middle of drawing your next terrain, you decided that your drawing wasn’t what you 

wanted at all and decide to completely clean the drawing area, where would you press?”. (right), second 

usability test. 
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Figure 4.17 - Results for question 2c) “Finally, you’ve drawn something of your liking and your think the terrain 

should be stored. In which button would you press to export your terrain?” (left) and 3a) “Imagine that you 

started a new session and decide to make alterations in the terrain I showed you in the beginning. What actions 

would you take?” (right), second usability test.  

In question 2a) (see Figure 4.16), 100 % of users correctly identified the play button as the button 

that initiates the generative process, averaging 1.6 s to answer (SD = 1 second), according to Table 4.4. 

This is a massive improvement over the previous test. What once was achieved with 3 button click is 

now achieved with just one click, reducing the amount of time needed to go from sketch to 3D terrain 

as well as reducing the complexity of having to click another two buttons to be able to see a resulting 

terrain and update ethe image log. Question 2b (see Figure 4.16), 100 % of participants correctly 

identified the reset button as the button that clear the canvas of any sketches. Time average for this 

question was 1.7 s (SD = 1 second), as seen in table 4.4. This result does not differ from the initial test 

results, no participant has issues identifying the reset button previously and this test was not an 

exception. In question 2c) (see Figure 4.17), again, 100 % of participants answered correctly and 

averaged 0.9 s (SD = 0.2 s), as seen in table 4.2. Just like question 2b), no participant had trouble 

correctly identifying the export button function, on the previous interface and on the newly created 

one. Question 3a) (see Figure 4.17), tests the image log. 100 % of participants answered correctly and 

had a 16.5 second time average (SD = 6 s), as seen in Table 4.3.  
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Figure 4.18 - Results for question 4a) “You took notice of a detail in your terrain and decide to zoom in on that 

part. How would you do it?” (top left), 4b) “Now you want to see the same detail, but from another perspective, 

how would you do it?” (top right) and 4c) “Finally, you want to see the map from a top down view, where would 

you press?” (bottom) of second usability test.  

Question 4a) (see Figure 4.18), 100 % of participants managed to control the camera successfully, 

with a time average of 18.3 s (SD = 12.5 s). In question 4b) (see Figure 4.18), again, 100 % of participants 

were able to complete the rest of camera control actions successfully, averaging 18.3 s (SD = 5,6 s). 

And finally, question 4c) (see Figure 4.19), 100 % of participants were able to reset the terrain position 

on the terrain visualizer. Time average was 1.4 s (SD = 0.8 s), as seen in Table 4.4. 

 

When looking at these results and comparing them with the same questions on the previous test, 

it can be concluded that the UI changes had an impact on overall clarity and usability. For the first 

group of questions, 1a) trough 1d), results were similar, in terms of correct answer percentage and 

time averages. Although time averages are slightly lower, but this can be attributed to the smaller 
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sample size. The second group of questions, however, is where we see the biggest impact. No 

participants switched button functionality and every participant answered correctly. The biggest 

change, even though the sample size is small, is the times. Participants went from averaging 5 s to 

answer 2a) to 1.6 s and since the other two buttons, the generate and update log buttons, no longer 

exist, the impact is even bigger. Participants took approximately 8 s on average to answer what buttons 

had the functions of updating the terrain and updating the log menu, since those two do not exist 

anymore and their functions are all condensed in one button, the play button, our time gain is much 

bigger than just the direct difference. Now the full generative flow requires one single click.   

 

On question 3a), participants took less time on average than on the first test. Since no major 

changes were made to the image log, this time improvement can be a result of the small sample size. 

There is also the possibility that the streamlining of the generative flow made things less cluttered, 

enough for users to focus more of their attention in the image log and not on the group of buttons 

that used to be on the bottom left. The same can be said for questions 4a) and 4b). Nothing was 

changed on the camera controls that can justify the big-time average difference. A bigger sample size 

would be needed to find out if indeed the uncluttering of the UI had impact on unaltered parts of it. 

Question 4c) is had similar results to the initial test. We can safely say that this interface is more usable 

than the original interface. Less clutter and confusing names led to a much more concise and usable 

interface. Just as in the first Usability test, each tester’s time to answer the questions posed were 

clocked and time averages and SD were compiled. Considerations regarding these results are done in 

the previous section. 

 

Questions 
Response time (s) 

Average Standard Deviation 

1a) 3,3 1,864 

1b) 2,4 1,694 

1c) 1,8 0,353 

1d) 1,5 0,736 

2a) 1,6 1,004 

2b) 1,7 1,045 

2c) 0,9 0,289 

3a) 16,5 6,023 

4a) 18,3 12,509 

4b) 14,8 5,62 

4c) 1,4 0,86 
Table 4.4 - Second Usability Test Time Averages and Standard Deviation. 
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CHAPTER 5 

Conclusions 

The tool presented in this dissertation, is a mixed initiative tool that allows its users to produce realistic 

3D terrains without formal terrain design training, leveraging a NN, trained in real terrain, as its 

generative engine.  

 

The performed literature survey in Chapter 2 revealed that NNs, although not novel, have come a 

long way, especially when it comes to image generation. GANs opened up generative possibilities that 

were not possible in the past. When considering cGANs, these further enhanced the possibility of 

guiding GANs towards desired representations, allowing for a bigger refinement of the learned 

distribution. These refinements paved the way for PCG to use this technology as its main generative 

engine. PCG, likewise NNs, has come a long way, especially when it comes to industry adoption, where 

we see a growing number of big content creation studios, more specifically, gaming studios, adopting 

PCG solutions. These solutions started as being implemented as a solution for hardware shortcomings 

and evolved to solutions that enable developers to reduce time and resources in content creation as 

well as allowing them to produce massive amounts of content, that would otherwise be humanly 

impossible to create, given the timeframe. But even with this coming of age of PCG, there is still a lack 

of intuitive, simple and controllable tools that allow developers to create the assets they need, with 

the necessary authoring level to avoid bland and repetitive content. The literature review revealed a 

lack of tools with these characteristics: mixed-authorship tools with a simple design language and 

removing the necessity of in-depth training, wasting manhours in learning the tool instead of 

producing with it. Even more so, it revealed the lack of these kinds of tool for 3D terrains, arguably one 

of the cornerstones of any game genres and one that requires a lot of time investment to create. This 

dissertation was therefore developed to address this lack of mixed-authorship tools for 3D terrain 

generation by contributing with a new tool based on Neural Networks (NN) and by assessing its actual 

utility and usability. This is achieved by refining the existing work of Guérin et al. (Guérin et al., 2017), 

allowing user to have a finer authoring control over the generated 3D terrains.  

 

To validate the implemented mixed-authorship tool, a set of two different tests was run. The first 

test was an online questionnaire that compared 3D terrains using Perlin Noise, a widely used 

algorithmic solution for terrain generation, with terrains generated by the tool’s NN. All terrains were 

rendered inside the tool to maintain visual coherence. This test had as objective understanding if 

potential users found the solution generated with the NN to be more realistic looking than those 

generated with Perlin Noise. The second test was done in-person to participants that accepted 
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participating in this test. The objective was to gauge whether uninformed users would be able to 

understand the tool without in-depth training and if they would be able to operate it without in-depth 

training. Participants were guided through the test that tried to mimic how a real session would be, 

being tests from interface comprehension to actual 3D terrain production.  

 

The online questionnaire, in which 113 participants answered which terrain looked more realistic 

between 30 pairs of terrains produced by Perlin Noise and with terrains produced by the Neural 

Network, yielded positive results. Most participants choose the terrain generated by the Neural 

Network as the most realistic looking terrains. This effectively answers this dissertation’s second 

research question, that questioned whether users would find the terrains produced by this tool to be 

more realistic when compared to randomly generated terrain generated without user input.  

 

The second test, in which 30 participants were tests regarding the tools usability and utility, 

produced mixed results. Most participants found the interface buttons’ representations to be intuitive 

and clear. Still on the second test, in the group of questions where participants were tested regarding 

their comprehension of buttons necessary to press to obtain a 3D terrain based on their sketch and to 

update all existing structures (generation flow), the majority of users was unable to understand which 

buttons were necessary to press, and in which order. After a normalizing tutorial reading and a non-

supervised familiarization session, participants were tested in complete terrain generation tasks using 

the tool. Positive results were obtained in this part of the second test, with the majority of the 

participants being able to express their terrain design intentions based on what was being asked. 

 

Although these results already answered this dissertation’s first research question, which asked if 

it is possible to leverage Machine Learning (ML) to create a tool that allows users of varied fields of 

experience to create a realistic looking 3D terrain without requiring any formal training, the results on 

the generative flow section of the second test prompted for an interface revision. The interface was 

streamlined, with all superfluous buttons taken out and all their functions being condensed in a single 

button.  A smaller second round of testing was performed, to gauge if the changes had any impact on 

usability. The results were positive, with all five participants being able to now identify every part of 

the interface with problems and without previous explanation. This further cements the answer for 

the first research question: it is in fact possible to leverage machine learning to create a tool that allows 

users from all experience levels to create a realistic looking 3D terrain without formal training. Given 

the test results and the overall positive reception by participants regarding the developed tool, we can 

conclude that it is indeed possible to create a mixed-authorship tool that is easy to use and powerful 

enough to generate better results than broadly used random generative methods.  
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Even though the results are positive, there are still several steps needed to further improve the 

developed tool in order to make it more useful to use in a production setting. The outputted terrain 

size needs to be controllable, in order to be possible to scale terrains for any project, large or small. 

Having more NNs to choose from, each trained in specific terrain types, could also broaden the 

authorship of the terrains as well as allow for a more biome-oriented generation. An integration with 

a texture generator would greatly increase productivity and terrain realism, as well as an erosion 

engine to further refine the terrain. The addition of 3D water would also be a feature that would greatly 

improve terrain realism. There is still a long way to go for mixed-authorship tools, but there is indeed 

a valid use for this technology. 
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ANNEX 

Annex A NN Behavioral Test Pairs 

 

 

 

 
 

Figure A.1 - Input/Output testing pair. Right side is the input and left side is the output.  Output presents 
corruption due to over exposure of colors in the input. 

 

 

 

 

 

 

 

 

Figure A.2 - Input/Output testing pair. Right side is the input and left side is the output 
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Figure A.3 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 

Figure A.4 - Input/Output testing pair 

 

 

 

 

 

 

 

 

Figure A.5 - Input/Output testing pair. Right side is the input and left side is the output. Over exposed side of 
the output is give more weight in the output, making the left structure disappear from the output. 
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Figure A.6 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 

 

Figure A.7 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 

 

Figure A.8 - Input/Output testing pair. Right side is the input and left side is the output 
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Figure A.9 - Input/Output testing pair. Right side is the input and left side is the output  

 

 

 

 

 

 

 

 
Figure A.10 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 

 

Figure A.11 - Input/Output testing pair. Right side is the input and left side is the output 
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Figure A.12 - Input/Output testing pair. Right side is the input and left side is the output. Black input will always 
output the heightmap present in the right side of the Figure. 

 

 

 

 

 

 

 

 

Figure A.13 - Input/Output testing pair. Right side is the input and left side is the output 
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Figure A.14 - Input/Output testing pair. Right side is the input and left side is the output. Output presents 
output corruption. Transforming this output in a 3D terrain would result in a uniform spike patters in the 

center of the terrain 

 
 
 

 

 

 

 

 

 

Figure A.15 - Input/Output testing pair. Right side is the input and left side is the output 
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Figure A.16 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 
 

Figure A.17 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 

 

Figure A.18 - Input/Output testing pair. Right side is the input and left side is the output 
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Figure A.19 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 

 

Figure A.20 - Input/Output testing pair. Right side is the input and left side is the output. Green used has 50% 
opacity comparatively with the original green. 
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Figure A.21 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 

 

Figure A.22 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 

Figure A.22 - Input/Output testing pair. Right side is the input and left side is the output 
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Figure A.23 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 

Figure A.24 - Input/Output testing pair. Right side is the input and left side is the output. As possible to observe, 

the output is focused on the higher exposure areas of the input, making the output unpredictable when using 

patterns 
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Figure A.24 - Input/Output testing pair. Right side is the input and left side is the output. Right edge of the 

pattern presents a lot of unpredictability. 

 

 

 

 

 

 

 

Figure A.25 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 

Figure A.26 - Input/Output testing pair. Right side is the input and left side is the output 
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Figure A.27 - Input/Output testing pair. Right side is the input and left side is the output. Original green with 

lines corrupts the output. It is possible to see the pixelated effect. 

 

 

 

 

 

 

 

Figure A.28 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 

Figure A.29 - Input/Output testing pair. Right side is the input and left side is the output. Even with smaller 

green lines, the output gets corrupted. 
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Figure A.30 - Input/Output testing pair. Right side is the input and left side is the output. Blue patters present 

less detail than red patterns. Yet another layer of unpredictability.  

 

 

 

 

 

 

 

Figure A.31 - Input/Output testing pair. Right side is the input and left side is the outpu 

 

 

 

 

 

 

 

Figure A.31 - Input/Output testing pair. Right side is the input and left side is the output 
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Figure A.32 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 

Figure A.33 - Input/Output testing pair. Right side is the input and left side is the output 

 

Figure A.34 - Input/Output testing pair. Right side is the input and left side is the output 



118 
 

 

Figure A.35 - Input/Output testing pair. Right side is the input and left side is the output 

 

 

 

 

 

 

 

Figure A.36 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.37 - Input/Output testing pair. Right side is the input and left side is the output. Possible to see that 

the NN fills spaced without input with what it sees fit given the input present in the sketch. 

 

 

 

 

 

 

 

Figure A.38 - Input/Output testing pair. Right side is the input and left side is the output

 

Figure A.39 - Input/Output testing pair. Right side is the input and left side is the output 
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Figure A.40 - Input/Output testing pair. Right side is the input and left side is the output 

 

Figure A.41 - Input/Output testing pair. Right side is the input and left side is the output 
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Figure A.42 - Input/Output testing pair. Right side is the input and left side is the output. Input with minimal 

information will be extremely similar to the output of A.12 

 

 

 

 

 

 

 

Figure A.43 - Input/Output testing pair. Right side is the input and left side is the output. Input with minimal 

information will be extremely similar to the output of A.12 
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Figure A.44 - Input/Output testing pair. Right side is the input and left side is the output.  

 

Figure A.45 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.46 - Input/Output testing pair. Right side is the input and left side is the output 
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Figure A.47 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.48 - Input/Output testing pair. Right side is the input and left side is the output. It is possible to see 

that the NN attributes a bigger weight to green, because it ignores the majority of the input in favor of 

attributing the entire of height to the structure that has a green dot. 
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Figure A.49 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.50 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.51 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.52 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.53 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.54 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.55 - Input/Output testing pair. Right side is the input and left side is the output. Corrupted output due 

to overexposure of the blue color. 

 

Figure A.56 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.57 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.58 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.59 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.60 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.61 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.62 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.53 - Input/Output testing pair. Right side is the input and left side is the output. Corrupted output due 

to color overexposure. 

 

Figure A.54 - Input/Output testing pair. Right side is the input and left side is the output. Clear corruption due 

to green overexposure. 



130 
 

 

Figure A.55 - Input/Output testing pair. Right side is the input and left side is the output. Corrupted output. 

Note the pixilation of the colors. 

 

Figure A.56 - Input/Output testing pair. Right side is the input and left side is the output. Corrupted output. 

Note the pixilation of the colors. 
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Figure A.57 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.57 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.58 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.59 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.60 - Input/Output testing pair. Right side is the input and left side is the output. A.60 to A.62 use the 

same red color value. This output seems to be the most heavily corrupted of the three, due to the abrupt color 

shift from deep blue to bright red. 
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Figure A.61 - Input/Output testing pair. Right side is the input and left side is the output. Corrupted output. 

 

Figure A.62 - Input/Output testing pair. Right side is the input and left side is the output. Corrupted output. 

 

Figure A.63 - Input/Output testing pair. Right side is the input and left side is the output. 



134 
 

 

Figure A.64 - Input/Output testing pair. Right side is the input and left side is the output. Corrupted output. 

 

Figure A.65 - Input/Output testing pair. Right side is the input and left side is the output. Corrupted output. 

 

Figure A.66 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.67 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.68 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.69 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.70 - Input/Output testing pair. Right side is the input and left side is the output. Corrupted output 

 

Figure A.71 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.72 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.73 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.74 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.75 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.76 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.77 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.77 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.78 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.79 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.80 - Input/Output testing pair. Right side is the input and left side is the output. Corrupted output. 

Yellow did not work as a new color. Retraining necessary. 

 

Figure A.81 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.82 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.83 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.84 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.85 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.86 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.87 - Input/Output testing pair. Right side is the input and left side is the output. 
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Figure A.88 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.89 - Input/Output testing pair. Right side is the input and left side is the output. 

 

Figure A.90 - Input/Output testing pair. Right side is the input and left side is the output. 
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Annex B Terrain Comparison Test Pairs 

 

Figure B.1 - Terrain Comparison Pair 

 

Figure B.2 - Terrain Comparison Pair 

 

Figure B.3 - Terrain Comparison Pair 
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Figure B.4 - Terrain Comparison Pair 

 

Figure B.5 - Terrain Comparison Pair 

 

Figure B.6 - Terrain Comparison Pair 
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Figure B.7 - Terrain Comparison Pair 

 

Figure B.8 - Terrain Comparison Pair 

 

Figure B.9 - Terrain Comparison Pair 
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Figure B.10 - Terrain Comparison Pair 

 

Figure B.11 - Terrain Comparison Pair 

 

Figure B.12 - Terrain Comparison Pair 
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Figure B.13 - Terrain Comparison Pair 

 

 

Figure B.14 - Terrain Comparison Pair 

 

Figure B.15 - Terrain Comparison Pair 
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Figure B.16 - Terrain Comparison Pair 

 

Figure B.17 - Terrain Comparison Pair 

 

Figure B.18 - Terrain Comparison Pair 
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Figure B.19 - Terrain Comparison Pair 

 

Figure B.20 - Terrain Comparison Pair 

 

Figure B.21 - Terrain Comparison Pair 
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Figure B.22 - Terrain Comparison Pair 

 

Figure B.23 - Terrain Comparison Pair 

 

Figure B.24 - Terrain Comparison Pair 
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Figure B.25 - Terrain Comparison Pair 

 

Figure B.26 - Terrain Comparison Pair 

 

Figure B.27 - Terrain Comparison Pair 
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Figure B.28 - Terrain Comparison Pair 

 

Figure B.29 - Terrain Comparison Pair 

 

Figure B.30 - Terrain Comparison Pair 
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Fase 0  

Introdução à aplicação. 

Nesta fase inicial o utilizador recebe uma breve explicação sobre o 

objetivo e utilização da aplicação. 

 

“Esta aplicação tem como objectivo permitir ao utilizador gerar terrenos 

3D de forma automática. Ao contrário de outros métodos alternativos, 

este permite que o utilizador influencie o formato dos terrenos gerados 

pelo algoritmo através de linhas e pontos com cores específicas 

desenhados pelo próprio.” 

 

*mostrar ao utilizador a imagem presente em baixo* 

 

“Este é o género de input que é possível fazer e à direita é o tipo de 

resultados que se pode esperar deste método. A área de desenho vai ser 

do teu lado direito e o terreno vai ser gerado do lado esquerdo.” 
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Fase 1 

Ações Atómicas. 

Nesta fase o objectivo é entender qual o grau de compreensão que o 

utilizador tem da interface e das suas acções atómicas. 

Para isso o utilizador é colocado num cenário que emula uma sessão 

real e são simuladas acções para testar a intuição da interface. 

 

“Nesta primeira fase vou apenas testar a intuição da interface. Para isso 

vamos imaginar que te encontras a meio de uma sessão real e que as 

perguntas que te faço são ações que tu queres fazer na aplicação” 

 

1. Botões de Desenho 
a) “Imagina que queres desenhar uma cordilheira de 

montanhas, em que botão carregarias?”. 
 

b) “Agora imagina que querias desenhar uma depressão no teu 

terreno, que botão escolherias?”. 
 

c) “E para desenhar uma elevação singular?”. 

 

d) “Imagina que te enganaste e queres apagar parte do que 

fizeste, em que botão escolherias?”. 
 

2. Botões de Geração 
a) “Imagina agora que te sentes satisfeito com o desenho que 

fizeste e queres que o que esta na área de desenho seja 

utilizado para gerar o teu terreno, onde carregarias?” 

 

b) “Agora gostarias de ver na área de visualização o teu terreno, 

em que botão carregarias?” 
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c) “Agora que já tens o teu terreno no ecrã, gostarias de 

atualizar o teu histórico de imagens de maneira a que o 

desenho que criaste anteriormente fique no histórico para 

futuramente o poderes reutilizar, onde carregarias?” 

 

d) “Imagina agora que estavas a desenhar o teu próximo 

terreno, mas a meio decidiste que não era nada disto que 

querias e decides limpar por completo a tua área de desenho, 

onde carregarias?” 

 

e) “Finalmente desenhaste algo do teu agrado e achas que o 

terreno que tens devia ser guardado. Em que botão vais 

carregar para exportar o teu terreno para fora da aplicação?” 

 

 

3. Compreensão e Navegação do Log 
a) “Imagina agora que iniciaste uma nova sessão e decides que 

gostarias de alterar o terreno que te mostrei no início do 

teste para criar um terreno ligeiramente diferente. Que ações 

tomarias?” 

 

 

4. Controlos de Visualização  
a) “Apercebeste-te de um pormenor no teu terreno e decides 

fazer zoom nessa parte do terreno. Como o farias?” 

b) “Agora queres ver a mesma zona, mas de outra perspetiva, 

que farias?” 

 
 *certificar que o utilizador utiliza todos os controlos de navegação* 

      c) “Finalmente queres voltar a ver o terreno visto de cima,  

  em que tecla pressionavas?” 
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Fase 2 

Leitura do Tutorial. 

Nesta fase os utilizadores irão ler na totalidade o tutorial presente na 

aplicação de forma a ficarem a conhecer na totalidade todas as 

funcionalidades da aplicação. 

 

Fase 3 

Interacção não supervisionada. 

O utilizador é informado que depois da leitura na integra do tutorial tem 

5-10 minutos de interacção não supervisionada com a aplicação para 

proporcionar uma familiarização o mais orgânica possível. 

 

Fase 4 

Interacção de Alto Nível. 

Nesta fase final o utilizador será desafiado a fazer acções completas 

que tentam emular o fluxo de tarefas que se seriam realizadas caso a 

sessão fosse real. 

“Nesta fase do teste vou descrever um resultado final, ou seja, um terreno, 

e deverás, por qualquer método que aches apropriado, reproduzir esse 

resultado final, utilizando qualquer funcionalidade, cor ou método. 

Deverás seguir todo o fluxo descrevido no tutorial desde o desenho até à 

atualização do histórico.” 
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Durante esta fase, irei recolher informação referente ao uso por parte do utilizador das 

funcionalidades implementadas: Uso ou não das cores extra, uso ou não da borracha, do 

Log e da funcionalidade de copiar e alterar inputs previamente guardados. 

 

1. “Desenha uma cordilheira de montanhas que atravessa o 

terreno diagonalmente da esquerda para a direita.” 

2. “Desenha um vale com montanhas que o circundam.” 

3. “Desenha uma elevação singular no meio do terreno, sem 

mais nada a volta” 

4. “Coloca a câmara de modo a ficar a olhar de perto para o 

pico mais alto do terreno que esta no ecrã.” 

5. “Decidiste que queres adicionar algo mais ao terreno que 

criaste ainda agora.” 

6. “Depois de adicionados os detalhes desejados, achas que o 

teu terreno poderia ser mais alto e decides aumentar a sua 

altura.” 

7. “Finalmente achas que o resultado está do teu agrado e 

decides exportar o terreno para fora da aplicação.” 

 

 

 

 

 

 

 

 

 

 



160 
 

Annex D Second Usability Test Guide 

 

Instituto Universitário de Lisboa 

Departamento de Ciências e Tecnologias da Informação 

 

Masters in Computer Engineering 

 

Second App Intuitiveness Test 

Rodrigo de Matos Pires Tavares de Almeida 

 

Supervisor 

PhD. Pedro Figueiredo Santana 

ISCTE-IUL 

 

October 2019 

 



 

161 
 

Fase 0  

Introdução à aplicação. 

Nesta fase inicial o utilizador recebe uma breve explicação sobre o 

objetivo e utilização da aplicação. 

 

“Esta aplicação tem como objectivo permitir ao utilizador gerar terrenos 

3D de forma automática. Ao contrário de outros métodos alternativos, 

este permite que o utilizador influencie o formato dos terrenos gerados 

pelo algoritmo através de linhas e pontos com cores específicas 

desenhados pelo próprio.” 

 

*mostrar ao utilizador a imagem presente em baixo* 

 

“Este é o género de input que é possível fazer e à direita é o tipo de 

resultados que se pode esperar deste método. A área de desenho vai ser 

do teu lado direito e o terreno vai ser gerado do lado esquerdo.” 
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Fase 1 

Ações Atómicas. 

Nesta fase o objectivo é entender qual o grau de compreensão que o 

utilizador tem da interface e das suas acções atómicas. 

Para isso o utilizador é colocado num cenário que emula uma sessão 

real e são simuladas acções para testar a intuição da interface. 

 

“Nesta primeira fase vou apenas testar a intuição da interface. Para isso 

vamos imaginar que te encontras a meio de uma sessão real e que as 

perguntas que te faço são ações que tu queres fazer na aplicação” 

1. Botões de Desenho 
a) “Imagina que queres desenhar uma cordilheira de 

montanhas, em que botão carregarias?”. 
 

b) “Agora imagina que querias desenhar uma depressão no teu 

terreno, que botão escolherias?”. 
 

c) “E para desenhar uma elevação singular?”. 

 

d) “Imagina que te enganaste e queres apagar parte do que 

fizeste, em que botão escolherias?”. 
 

2. Botões de Geração 
a) “Imagina agora que te sentes satisfeito com o desenho que 

fizeste e queres que o que esta na área de desenho seja 

utilizado para gerar o teu terreno, onde carregarias?” 

 

b) “Imagina agora que estavas a desenhar o teu próximo 

terreno, mas a meio decidiste que não era nada disto que 

querias e decides limpar por completo a tua área de desenho, 

onde carregarias?” 
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c) “Finalmente desenhaste algo do teu agrado e achas que o 

terreno que tens devia ser guardado. Em que botão vais 

carregar para exportar o teu terreno para fora da aplicação?” 

 

 

3. Compreensão e Navegação do Log 
a) “Imagina agora que iniciaste uma nova sessão e decides que 

gostarias de alterar o terreno que te mostrei no início do 

teste para criar um terreno ligeiramente diferente. Que ações 

tomarias?” 

 

 

4. Controlos de Visualização  
a) “Apercebeste-te de um pormenor no teu terreno e decides 

fazer zoom nessa parte do terreno. Como o farias?” 

b) “Agora queres ver a mesma zona, mas de outra perspetiva, 

que farias?” 

 
 *certificar que o utilizador utiliza todos os controlos de navegação* 

      c) “Finalmente queres voltar a ver o terreno visto de cima,  

  em que tecla pressionavas?” 

 

 

 


