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Resumo

Durante o verão, os incêndios florestais constituem a principal razão do desflo-
restamento e dos danos causados às casas e aos bens das diferentes comunidades
de todo o mundo. A utilização de veículos aéreos não tripulados (VANTs), em
inglês denominados por Unmanned Aerial Vehicles (UAVs) ou Drones, aumentou
nos últimos anos, tornando-os uma excelente solução para tarefas difíceis como
a conservação da vida selvagem e prevenção de incêndios florestais. Um sistema
de deteção de incêndio florestal pode ser uma resposta para essas tarefas. Com
a utilização de uma câmara visual e uma Rede Neuronal Convolucional (RNC)
para processamento de imagem com um UAV pode resultar num eficiente sistema
de deteção de incêndio. No entanto, para que seja possível ter um sistema com-
pletamente autónomo, sem intervenção humana, para observação e deteção de
incêndios durante 24 horas, numa dada área geográfica, requer uma plataforma e
procedimentos de recarga automática. Esta dissertação reúne o uso de tecnologias
como RNCs, posicionamento cinemático em tempo real (RTK) e transferência de
energia sem fios (WPT) com um computador e software de bordo, resultando num
sistema totalmente automatizado para tornar a vigilância florestal mais eficiente
e, ao fazê-lo, realocando recursos humanos para outros locais, onde estes são mais
necessários.

Palavras-chave: Veículos Aéreos Não Tripulados, Rede Neuronal Convolu-
cional, Ambiente, Fogo Florestal, Deteção de fogo, Posicionamento Cinemático em
Tempo Real.
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Abstract

During the summer, forest fires are the main reason for deforestation and
the damage caused to homes and property in different communities around the
world. The use of Unmanned Aerial Vehicles (UAVs, and also known as drones)
applications has increased in recent years, making them an excellent solution for
difficult tasks such as wildlife conservation and forest fire prevention. A forest
fire detection system can be an answer to these tasks. Using a visual camera and
a Convolutional Neural Network (CNN) for image processing with an UAV can
result in an efficient fire detection system. However, in order to be able to have a
fully autonomous system, without human intervention, for 24-hour fire observation
and detection in a given geographical area, it requires a platform and automatic
recharging procedures. This dissertation combines the use of technologies such as
CNNs, Real Time Kinematics (RTK) and Wireless Power Transfer (WPT) with an
on-board computer and software, resulting in a fully automated system to make
forest surveillance more efficient and, in doing so, reallocating human resources to
other locations where they are most needed.

Keywords: Unmanned Aerial Vehicles, Convolutional Neural Network, Envi-
ronment, Autonomous, Forest Fire, Fire Detection, Real Time Kinematics.
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Chapter 1

Introduction

1.1 Motivation and Context

For a long time forests have always been a big part of our ecosystem. However,

humanity hasn’t always been very good at cleaning, protecting or ensuring its

prosperity. Forest fires, also known as wild fires, are uncontrolled fires that occur

in wild areas and can cause significant damage to natural and human resources.

These fires have the power to eradicate forests, burn infrastructures and may even

result in high human death toll near urban areas [1]. In 2017, 10 percent of the

Portuguese forest got burned down due to a number of reasons which included

natural disasters, criminal human activity and the lack of resources to fight these

disasters. Moreover, apart from Portugal there are other countries like The United

States of America, Indonesia or Canada that suffer from the same problem causing

the deforestation rate to increase rapidly.

A number of systems for automatic forest fire detection have been developed

based on different sensors [2]. Some of the first automatic forest fire detection

systems were based on infrared cameras capable of detecting the radiation emit-

ted by a fire [3]. Considering the technological era that the world is currently

facing, there should be other ways to automate the prevention of these types of

environmental catastrophes that do not rely solely on human resources.
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Following up to the presented problem, this project aims to create a system

based on UAV (Unmanned Aerial Vehicle) technology. This system would collect

real time data from a camera installed on an UAV to detect forest fires, alerting the

authorities on the moment of detection. This could be a big advantage when used

in remote places and isolated areas where human access is difficult and sometimes

almost impossible. The UAV would be programmed to fly over designated coor-

dinates from time to time while collecting data, and then autonomously return to

its base station where it would automatically land and recharge on a solar based

powered station. Once fully recharged it would again patrol the area to ensure the

absence of fires or report if any is detected.

It is expected that the development of such system would have a great positive

impact, not only because it could allow cost and time reduction in terms of human

resources, but also for having a much more efficient forest control system.

1.2 Goals

The purpose of this project is to create a fully automated system to make for-

est surveillance more efficient and by doing it so, reallocating human resources

to where they are most needed. The UAV for the study is being provided by

Instituto de Telecomunicações (IT-IUL) located in ISCTE-IUL, Lisbon, Portugal

establishing the start point for this research. The first and most important goal

is the development of the forest fire detection system, to deliver an early and

accurate fire detection alarm. The system will use an image processing artificial

intelligence algorithm running on the UAV’s companion computer to detect fire

pixels and then send a notification.

Secondly, to have a fully automated procedure, the UAV has to be able to

land autonomously at the recharging platform with high accuracy. This is a high-

risk procedure considering that sometimes winds can go up to 25 km/h making

it extremely hard to land. A Real Time Kinematic (RTK) GNSS system will be

2
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used to help with the take off and landing procedures providing the UAV with

highly accurate manoeuvres.

Lastly, there is the development of the wireless transfer solar powered station

where the UAV will dock and perform battery recharge. This station will use two

separated coils, one attached to the UAV and another at the recharging station.

Since the charging process is wireless, the need for both coils to be aligned is high,

therefore the necessity for a high precision landing. Apart from the coils, the

station will also have a battery that will be solar powered. In case of low solar

radiation, there is the possibility of this recharging station to be placed in the old

forest protection outposts that have a generator.

1.3 Research Questions and Methods

Before starting to develop this project, some questions need to be made regarding

the system. These questions target the problems that the project aims to solve

and the purpose for developing it. The questions are:

• How will the system improve the governmental fire surveillance system?

• Will the system meet the requirements needed for an accurate early forest

fire detection?

• Will the system be efficient for daily use and will the low budget materials

outweigh the performance needed?

In order to achieve the goals previously specified in section 1.2, some research

methods need to be applied. These methods will use quantitative variables to

recover data, which will then be used to test the system and afterwards evaluate it

and improve it if necessary. This data will also dictate the efficiency of the system,

answering the last research question about its performance and implementation.

3
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1.4 Main Contributions

This dissertation’s work has contributed for several entities as well as for the sci-

entific community. The dissertation’s application area promotes UAV applications

for institutions such as:

• Wildlife conservation institutes;

• Firefighters;

• Civil Protection Services.

To the scientific community this research’s contributions reveals the value this

technology can have for high precision UAV applications, automated recharging

platforms and image processing using CNNs. One of the result of this contributions

in this community was the submitted journal paper for IEEE Access:

C. Saraiva, A. Raimundo, P. Sebastião, "Autonomous Fire Detection System

supported By UAVs and Convolutional Neural Networks", IEEE Access.

1.5 Dissertation Structure

This section contains the dissertation’s structure. In total, it has 7 chapters and

each chapter contains the following topics:

• Chapter 1 – Introduction: Presents the introductory aspects related to the

subject of the dissertation;

• Chapter 2 – State of the Art: Contains all the methodology used and the

research done before this dissertation’s work;

• Chapter 3 – UAV Flight Automation: Details how the automatic procedures

of the UAV were planned and preformed;

4
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• Chapter 4 – Fire Detection Algorithm and Real-Time Detection: Describes

the development of the image processing algorithm and the tools used for

that purpose and how the algorithm was used to detect early fire;

• Chapter 5 – Base Station and Landing Procedure: Explains how the high

precision landing was achieved and how the recharging station was designed

and how it could be implemented;

• Chapter 6 – Results: Shows this dissertation’s results from different test

simulations, real life’s and algorithm’s performance evaluation;

• Chapter 7 – Conclusions and Future Work: Describes the conclusions ob-

tained during the dissertation and how it can be improved.

In addition to the previous chapters, the chapter "Appendices" was added, and

it contains all the supplementary information that can be used to complement the

dissertation’s comprehension.
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Chapter 2

State of the Art

2.1 Artificial Intelligence

Artificial Intelligence (AI) is the continuous study of intelligence behaviour dis-

played by machines. AI has two main branches: engineering and scientific. The

engineering branch is focused on building and developing intelligent machines,

while the scientific one is focused on developing the concept and the vocabulary

to help us understand intelligent behaviour. There are 3 type of AIs: analyti-

cal, human-inspired, and humanized artificial intelligence. With the evolution of

computers and algorithmic improvements, new methods of studying algorithms

emerged, evolving into today’s concepts such as machine learning and deep learn-

ing [4][5].

2.1.1 Machine Learning

Machine Learning is the scientific study of algorithms and statistical models that

computer systems use to perform a specific task without being programmed to

do so. By recreating the learning procedure that humans do, using mathematical

models based in "training data", computers can make predictions or decisions.

When training algorithms, computers use the training data to know which specific

7
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patterns to look for in data later used as input, the training procedure allows them

to identify and recognize specific objects or patterns. The more data is used to

train the computer the more accurate the detection will be. Machine learning is

used nowadays for a lot of different tasks such as email filtering, credit card fraud

detection and computer vision tasks [6][7].

2.1.2 Deep Learning

Nowadays, Deep Learning is the most used technique for implementing machine

learning. Deep learning evolved to solve the biggest problem in machine learning,

which was the ability to extract high-level features from raw data. As referred ear-

lier in Chapter 2.1.1, this concept is about the scientific study of algorithms, how-

ever deep learning is a lot more specific. Deep learning applies algorithms inspired

by the structure and function of the brain called artificial neural networks. These

structures are composed of multiple processing layers to learn representations of

data with several levels of abstraction. The learning process in these networks can

be supervised, semi-supervised or unsupervised [8][9][10][11]. Deep learning has

brought breakthroughs in the areas of processing images, video, speech and audio,

where other machine learning techniques have only shown some light on sequential

data such as text and speech.

2.1.3 Artificial Neural Networks

Artificial Neural Networks (ANN) also know as connectionist systems are inspired

by artificial representation of humans’ nervous system. ANNs are networks con-

nected by artificial neurons which are connected to each other, working just like

synapses in the human brain. These synapses have weights represented by real

numbers. They are able to receive, process and transmit signals between them.

An ANN has a number of layers and each layer is composed by a different number

of artificial neurons. The artificial neurons turn on or off as the input is passed

along the net. The output of each layer is simultaneously the subsequent layer’s
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input, with the initial layer receiving the input data as a starting point [12]. The

layers structure is shown in figure 2.1.

Figure 2.1: Artificial neural network (Source: [13]).

The neurons, also known as nodes, combine the input from the data with a set

of weights, that either increase or decrease the input. The product of the input and

weights are summed
∑n

i=1 xiwi and the result is passed through a node’s so called

activation function f(
∑n

i=1 xiwi), as shown in figure 2.2. The function calculates

if the signal should progress further through the network and the activation value.

If the signal passes through it becomes activated and affects the final outcome [14].

Figure 2.2: Artificial neuron.

There are many types of ANNs: autoencoder, probabilistic, time delay, and

convolutional (CNN). For this project the selected ANN will be the CNN because

not only is it faster to train but also displays more accurate results for image

processing [15].
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2.1.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN or ConvNets), are specific networks built

to detect and understand patterns. Understanding these patterns is what makes

CNNs so useful for image analysis. What differentiates convNets from a standard

multi-layer network is the CNN’s hidden convolutional layers, these layers are

composed of four different types:

• Image processing layer - it is an optional pre-processing layer of predefined

filters that remain fixed during training. Besides the raw input image pro-

vided to the network, other information such as edges and gradients are also

provided [16].

• Convolutional Layer - is the layer responsible for capturing the Low-Level

features such as edges, color, gradient orientation, etc. The architecture also

adapts to the High-Level features if more layers are added, improving the

network’s understanding of the images in the dataset.

• Pooling layer - this layer is in charge of reducing the computational power

required to process the data using dimensionality reduction. This layer is

also used while training the model for extracting dominant features such as

rotational and positional invariant. There are two types of Pooling: Max-

Pooling, which returns the maximum value from the portion of the image

covered by the Kernel, and Average Pooling which returns the average of

all the values. Max Pooling performs as a noise suppressant, discarding the

noisy activations and also removing the noise throughout the dimensionality

reduction. Average Pooling only provides dimensionality reduction as a noise

suppressing mechanism. Max Pooling usually provides better results than

Average Pooling.

• Fully-Connected layer - this layer learns the non-linear combinations of the

high-level features, represented by the output of the convolutional layer.
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After passing through all the layers the final output is flatten and fed to a

regular Neural Network for classification purposes. Afterwards the image is flatten

into a column vector. The flattened output is fed to a feed-forward neural network

and back-propagation is applied to every iteration of training. Over a series of

epochs (steps), the model is able to distinguish between dominating and certain

low-level features in images and label them using a classification technique [17].

The full architecture of a CNN is illustrated in figure 2.3.

Figure 2.3: Convolutional neural network (Source: [17]).

2.2 Unmanned Aerial Vehicles

The wide applications of Unmanned Aerial Vehicles (UAVs) along the years have

made this new technology part of our daily lives. A lot of companies have emerged

due to this technology, from surveillance to radioactive analysis, the applications

are infinite. Currently, the UAV performance is so high that it can make flights as

long as 8 hours with maximum stability and reliability. In order to communicate

with these UAVs, companies have created various open source software developed

by programmers and UAV enthusiasts.
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2.2.1 UAV Types

UAV types are distinguished by the altitude in which they operate and the dif-

ferent flight performance they have. Each one has its own operational process,

functionalities and purposes:

HALE (High Altitude Long Endurance) – These vehicles can fly over 15

km of altitude, they are known for their flight autonomy up to 24 hours and their

trans-global control range. They are controlled from fixed ground control stations

by governmental Air Forces and their main application is to execute long-range

military surveillance missions, reconnaissance and, if armed, aerial strikes in war

zones;

MALE (Medium Altitude Long Endurance) – Similar to HALE, these

are controlled from fixed ground stations, with a 500 km range. However, these

vehicles operate at short ranges and fly at low altitudes (5 km – 15 km).

TUAV (Medium range or Tactical UAV) – Controlled by simpler systems,

TUAVs are smaller than HALE and MALE, and they also operate at shorter

ranges (100 km – 300 km). Usually used by the military from naval or air force

ground bases. Their applications are more diverse being also used for power-line

inspection, ship-to-shore surveillance, crop-spraying and traffic monitoring.

MUAV or Mini UAV– Even smaller than TUAVs, these light-weighted UAVs

(20 kg of maximum weight) can be hand-launched and have even shorter ranges

(30 km). They are used for a wide range of civilian purposes.

MAVs or Micro UAVs – These vehicles are smaller and lighter than any

of the above, and can perform actions that no other UAV can. They can be

used for indoor flights because of their slow flight with precision direction. These

UAVs are commonly used for civilian purposes, because they are affordable, easily

controllable and can perform simple actions. These UAVs flight altitude and weight

is limited by local legislation.
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NAV (Nano Air Vehicles)- As the name suggests they are vehicles of the

size of a seed and they are most commonly used in swarm applications. They can

be used in lots of other applications but are limited by the size of the sensors that

they can use, like a camera.

In this dissertation, the focus will be on the applications of the most commonly

used UAVs, the Micro Air Vehicles (MAVs) [18].

2.2.2 Different UAV Architectures

UAVs have different applications, therefore their structure can also change accord-

ingly to their objective. Nowadays the most common MAVs are separated in two

types: fixed-wing and multi-rotor, each being explained below [18].

Fixed-Wing: Similar to airplanes, this UAV can take advantage of the two

wings’ aerodynamics, allowing it to reach higher flying speeds and glide in the air.

This systems make it possible to save energy because of the low power consumption

needed to maintain altitude, increasing the flight’s duration. Also, fixed-wing

systems can be used to install solar panels allowing in-flight charging. This makes

it possible to achieve a higher mission duration making them an optimal choice

for applications such as surveillance missions. Also, due to its structure, take-off

and landing is done horizontally and can’t hover certain positions.

Figure 2.4: Fixed-Wing MAV.
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Multi-rotor: These UAVs are designed similarly to a helicopter capable of

hovering and standing still in mid-air. Due to a different structure and the in-

creased amount of propellers, their energy consumption is increased and the flight

duration drastically reduced. Even though the flight speed is low, it implicates

more flight control. There are also a variety of different multi-rotors such as Quad-

copters, Hexacopters and Octacopters. They lift off and land vertically which

makes them ideal for automated procedures.

Figure 2.5: Multi-Rotor MAV.

2.2.3 UAV’s Main Modules

An UAV requires different components in order to fly, since the used UAV is a

multi-rotor it requires specific modules, such as:

• Frame - is the UAV’s chassis which supports all payload (weight)[19];

• Rotor - are the UAV’s motors, and they are placed one each frame’s arm;

• Propellers - these are placed above the rotors and they are used to create a

downwards air flow allowing enough strength to lift the UAV [19];

• Electronic Speed Controllers (ESC) - these components are the bridge be-

tween rotors and the flight controller, and they control the rotor’s speed and

rotation direction [19];

14



Chapter 2. State of the Art

• Power supply - is the UAV’s battery source, and usually they are lithium

polymer batteries;

• Flight controller - is the UAV’s centralized control unit for all the procedures

that the UAV executes [19];

• GNSS sensor - is the UAV’s main navigation sensor, usually the sensor used

is the GPS and it allows to perform autonomous tasks, such as waypoint-

guided missions;

• Companion computer - is the intermediary companion hardware between

user’s command and the flight controller [19].

Figure 2.6 shows the different models used on this dissertation’s UAV, the

ESCs are not visible however they are under each arm.

Figure 2.6: UAV modules.
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2.3 Companion Computer and Flight Controller

An UAV’s onboard flight controller, besides being the centralized control unit, also

allows reading the sensors’ data, sending and receiving commands from and to the

Ground Control Stations (GCS). It is the UAV’s heart and it controls all of the

onboard electrical components like the motors and ESCs.

In order to be able to process all the information the flight controller receives,

it also needs a onboard computer. This computer, also known as companion

computer, is a low-powered computer that allows the UAV to take automated

procedures with customized scripts, extend communications by using different

protocols (such as 3G/4G) and even process algorithms based on the input received

by the sensor’s data. Both of these components are connected internally via serial

connection, and they exchange data between them, thus allowing to create an

automated system.

2.3.1 Hex Cube Pixhawk 2.1

The Hex Cube Pixhawk 2.1 controller is based on the Pixhawk-project FMUv3

open hardware design,as shown in figure 2.7. It was built to reduce the wiring,

improve reliability, and ease the assembly. Cube includes vibration isolation on two

of the Inertial measurement units (IMUs), which is composed by 3-axis gyroscope

and 3-axis accelerometer), with a third fixed IMU as a reference or for backup

making it a perfect fit to operate in hard conditions and where GPS signal is low

or non existent. Its main features are:

• 32bit STM32F427 Cortex-M4F core with FPU;

• 256 KB RAM;

• 32 bit STM32F103 fail-safe co-processor;

• Connectivity options for additional peripherals (UART, I2C, CAN);
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• Redundant power supply inputs and automatic fail-over;

• MicroSD card for high-rate logging over extended periods of time.

Figure 2.7: Pixhawk Cube 2.1 flight controller.

2.3.2 Raspberry Pi

Raspberry is a low cost single board computer, of about the size of a credit card, as

shown in figure 2.8. Raspberry Pi can run a wide range of Linux based Operating

Systems (OS) like Raspbian or Ubuntu that come with a user friendly graphical

interface and are installed on a Secure Digital (SD) card. The wide variety of

OSs allows this mini-computer to have lots of applications such as web server, a

personal cloud or even a media hub [20]. The version in use for this research, will

be the Raspberry Pi 3B which has a Quad Core 1.2GHz 64bit CPU, 1 GB of RAM,

Wi-fi, Bluetooth and other useful inputs, such as USB ports, HDMI port, RJ45

port, audio port and GPIO (General Purpose Input / Output) connectors. These

GPIO connectors are used to control sensors like reading buttons, and switches

and can control LEDs, relays or even motors.

In order to have it up and running, one should either buy an SD memory

card with an operating system pre-installed or download one’s own OS from rasp-

berrypi.org and install it on the SD card. After, one should add the required

additional packages, such as compilers and libraries [21].
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Figure 2.8: Raspberry Pi board.

The small size, light weight, low cost and power consumption, and the com-

munication capabilities are the biggest advantages of using the Raspberry Pi when

compared to other solutions. All these advantages make this mini-computer the

optimal choice to use in this dissertation.

2.3.3 Jetson TX2

Jetson TX2 just like Raspberry is a single board computer, however is not a low

cost solution for a companion computer. It is a high performance computer build

by the NVIDIA company to be a power-efficient embedded AI. It has a dual-core

NVIDIA Denver2 + quad-core ARM Cortex-A57 CPU, 8GB 128-bit RAM and

integrated 256-core Pascal GPU. Jetson TX2 runs on Linux OS and provides a

high compute performance with less than 7.5 W of power [22][23].

Figure 2.9: Jetson module TX2.
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This module is the best high budget option for deploying computer vision and

deep learning [23].

2.4 Communication Protocols

In UAV’s context, one of the the hardest choices is the communication protocol.

There are lots of protocols from which we can choose in order to fulfill the require-

ments for our system. However, these protocols have different characteristics such

as the speed to transfer data, power consumption or even security protocols that

they apply.

Table 2.1: Major wireless communication protocols characteristics

Feature Wi-Fi Bluetooth ZigBee LoRaWAN 4G
Based Data
Rate 11Mbps 1Mbps 250kbps 11kbps 100Mbps

Frequency 2,45GHz 2,45GHz 2,45GHz 868MHz 2600MHz
Range 1-100m 10m 10-100m 20km 50-150km*
Security WPA/WPA2 128 bit 128 bit 128 bit 128 bit

*From a single cell tower [24][25].

From table 2.1 it can be concluded that in order to be able to video stream live

images, the only available options would be Wi-Fi, 3G and 4G. However, due to

the systems objective to control the UAV remotely from a long range (20-70km)

ground control station (GCS), the only viable solution will be the 4G protocol.

Therefore, 4G will be the only telecommunication protocol referred in this section.

Since the UAV’s communication protocol for media transfer with GCS is al-

ready defined, the only protocol left to define is the one used to send and receive

commands from the ground station. This protocol is known as MAVLink and will

be explained below.
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2.4.1 4G

Mobile communications have evolved from the analog mobile radio system the 1st

Generation (1G), to the first digital mobile system the 2nd Generation (2G) and

finally evolving the digital system to handle broadband data known as 3rd Gener-

ation (3G). The latest stable full developed network technology that is used daily

by millions of people is the 4G or LTE (Long-Term Evolution). This technology

has improved the 3G network with better support for mobile broadband [26].

LTE networks bring fast and higher data rates or bandwidth, and offer packe-

tized data communications. Broadband is the basis of enabling multimedia com-

munications, including video that requires huge amounts of data. Due to the in-

creasing demand of this technology world wide, the charges dropped significantly

making it accessible to almost everyone. By being a mobile communication, 4G

networks cover almost all the territory making this telecommunication protocol

perfect due to its availability. Because its service is based on a ALL-IP network,

this makes it ideal for home-networking, live telemetry and sensor-network service

[27].

2.4.2 MAVLink Message Protocol

MAVLink (Micro Air Vehicle Link) is a header-only message protocol most com-

monly used to send data and commands between vehicles and ground stations

GCSs and also in the inter-communication of the subsystem of the vehicle. MAVLink

was first released in early 2009 by Lorenz Meier under LGPL license. There are two

types of MAVLink protocols, MAVLink1 and MAVLink2. MAVLink2 extends all

the features of MAVLink1 but allows new fields to be added to existing MAVLink1

messages and supports new types of MAVLink messages [28].

MAVLink messages are identified by the ID field on the packet. This ID is

unique for each vehicle and ground station. The payload contains the data from

the message. All messages are encrypted with sensor related content, however

messages are not guaranteed to be delivered which means the ground stations
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must often check the state of the UAV to determine if the command was executed.

Messages can contain a variety of commands like take off, raise or decrease altitude

(throttle increase or decrease, respectively). The messages’ size can go from 8 to

263 bytes as shown in figure 2.10 [29][30][31].

Figure 2.10: MAVLink message format (Source: [31]).

2.5 Flight Operating System

There are lot of already developed flight operating systems, and after a long re-

search the most significant was chosen to be studied.

ArduPilot

ArduPilot is an open source project software suite that consists of a naviga-

tion software and aims to enable the creation and use of trusted, autonomous,

unmanned vehicle systems. Although Ardupilot does not manufacture any type

of hardware. Their developed firmware works on many different boards to control

all types of unmanned vehicles. This tool for UAV enthusiasts and professionals

consists of 3 major features: the hardware compatibility allowing to run Ardupi-

lot in different flight controllers, the firmware itself that can control any vehicle

required and the software that is the interface to the controller, also known as

ground control station. The software can run on many different PCs or mobile

devices.

Using inputs from sensors, the flight controller is able to send outputs to elec-

tronic components such as ESCs, servos, gimbals, etc. The firmware is the code

running on the controller, by matching it to the mission and vehicle type (like a

Copter, Plane, Rover, Sub, or Antenna Tracker) it is then ready to execute flight

operations.
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Coupled with ground control software, vehicles running Ardupilot can have ad-

vanced functionality including real-time communication with operators. A GCS

allows users to set-up, configure, test, and tune the vehicle. Advanced packages

allow autonomous mission planning, operation, and post-mission analysis. Soft-

ware such as "Mission Planner" is one of these GCSs and it is fully compatible

with any of Ardupilot’s firmware. Figure 2.11 shows that it offers point-and-click

interaction with the hardware, custom scripting, mission planning and simulation

[32][33].

Figure 2.11: Mission Planner user interface.
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2.6 Sensors

The sensor system is composed by two major types: internal and external sensors.

The internal sensors are all the necessary sensors to the critical system operational-

ity, like the UAV’s IMU. The other type of sensors are the external sensors, which

are necessary to the rest of the features such as image processing and precision

landing.

2.6.1 Internal

The flight controller contains most of the internal sensors. In this case the flight

controller in use will be the Hex Cube Pixhawk 2.1 Flight Controller which contains

the major sensors for flight operations. The sensors are:

• ST Micro L3GD20H 16 bit gyroscope

• ST Micro LSM303D 14 bit accelerometer / magnetometer

• MPU-9250 Nine-Axis (Gyro + Accelerometer + Compass) MEMS Motion-

Tracking Device

• MEAS MS5611 barometer

ST Micro L3GD20H is a 16 bit low-power three-axis angular rate sensor. This

sensor is a device used for measuring or maintaining the orientation and angular

velocity of the UAV. With help from software this sensor helps the UAV maintain

its stability while in autopilot as well as manual mode, insuring that the propellers

compensate each other and the UAV’s angle stays horizontal [34][35][36].

ST Micro LSM303D is a 14 bit accelerometer / magnetometer. This sensor

contains 3 magnetic field channels and 3 acceleration channels. The magnetome-

ter or smart digital magnetometer is a 3-axis smart digital magnetometer that

detects the strength and direction of a magnetic field and communicates the x,
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y and z components. In UAV context it is the UAV’s own compass. The ac-

celerometer is used to measure the acceleration of an UAV. It works by sensing

the acceleration of gravity using the same technology which is also behind gyro-

scopes [37][38][39][40][41].

MPU-9250 is a multi-chip module (MCM) features three 16-bit analog-to-

digital converters (ADCs) for digitizing the gyroscope outputs, three 16-bit ADCs

for digitizing the accelerometer outputs, and three 16-bit ADCs for digitizing the

magnetometer outputs. MPU-9250 is also designed to interface with multiple non-

inertial digital sensors, such as pressure sensors, on its auxiliary I2C port. It is

used to precisely and accurately track the user both in fast and slow motions. This

is the main accelerometer and gyroscope. All the others offer higher accuracy [42].

MEAS MS5611 is a barometer, which measures the air pressure. This sensor

is optimized for altimeters and variometers with an altitude resolution of 10 cm.

It provides pressure and temperature values. In UAV context it provides essential

information of the UAV’s altitude [43][44].

2.6.2 External

The external sensors are the ones that are not necessary to make the UAV fly,

but instead are all the others that are needed to execute the designed features

(being the other features the fire detection algorithm and the autonomous landing

procedure). The only extra sensor necessary for these operations is the visual

camera and the GNSS sensor.

2.6.2.1 Camera

There are lots of different types of cameras for lots of different applications. In

UAV context, the visual cameras can be applied to photography, filming, to do

city surveillance, agriculture or even war zone strikes. For environmental purposes,

more precisely for forest surveillance, a variety of camera types can be used. The
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best types to be considered for fire detection algorithms are multispectral and

thermographic or infrared cameras.

Table 2.2: Camera types.

Specifications Thermal (FLIR Duo
Pro R)

Multispectral
(RedEdge-M)

Dimensions (mm) 87 x 82 x 69 94 x 63 x 46
Weight (g) 325 - 375 173
Spectral Bands (nm) 7500 - 13500 20 - 400
Power (W) 10 8
Field of View (◦) 56 47.2

Multispectral camera – This type of camera captures image data within spe-

cific wavelength ranges across the electromagnetic spectrum. These wavelengths

being so specific, they can be separated from each other by using filters or other

type of instruments that are sensitive to particular wavelength. Even light from

the beyond the visible range, like infrared and ultra-violet, can be detected and

analyzed. With such a detailed analysis a lot of information can be extracted from

the images, information that could not be detected by our eye sight like red, green

and blue levels. Although it seems as a viable option for fire detection, in case of

smoke surrounding the UAV, this analysis will fail [45][46].

Thermal camera – This type of cameras reads the Infrared spectrum to

detect heat coming from all surfaces and objects. By capturing the heat waves

coming from the objects, it creates images and videos. From the analysis of those

images, a fire can easily be spotted due to the high temperatures it emits, making

this type of camera suitable for forest surveillance [47].

From both types of cameras presented above we can conclude that the most

reliable and efficient camera to be used in this case is the thermal camera. However

due to the nature of the project, there is no reliable way of gathering enough data

to build a dataset for the analysed cameras. The camera to use in this project

will be a simple one, compatible with the Raspberry Pi, the Raspberry Pi Camera

Module v2.
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The Raspberry Pi Camera Module v2 (figure 2.12) features an ultra-high qual-

ity 8 megapixel Sony IMX219 image sensor, and a fixed focus camera lens. The

module is capable of 3280 x 2464 pixel static images, and also supports 1920 x

1080, 1280 x 720 and 640 x 480 video resolutions. It can be attached to the Rasp-

berry Pi using a 15 Pin Ribbon Cable, to the dedicated 15-pin MIPI Camera Serial

Interface (CSI), which was designed especially for interfacing with cameras. The

CSI bus is capable of extremely high data rates, and it exclusively carries pixel

data to the BCM2835 processor. The board itself is tiny, at around 25mm x 24mm

x 9mm, and weighs just over 3g, making it perfect for UAV applications where

size and weight are important [48].

Figure 2.12: Raspberry Pi camera module v2.

2.6.2.2 GNSS sensor

For UAV navigation, a GNSS sensor was used. It’s considered to be an internal

sensor, but in the Hex Cube Pixhawk 2.1 Flight Controller is considered to be an

external sensor. It is one of the most important sensors in order to keep track of

the UAV and plan the desired mission.

The Global Positioning System (GPS) is the most globally known GNSS con-

stellation. Also know as GPS, is a radio-navigation based system owned and

developed by the United States government. It provides geolocation data, such as

latitude, longitude, altitude, and time information to the receiving GNSS sensor
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anywhere on Earth. Obstacles such as mountains and buildings cause significant

GPS signals losses. In UAV’s there is a lot of concern regarding this matter be-

cause once the GPS signal is lost, UAVs may actually crash because they lose

the ability to react. However, some measures will be presented later in order to

prevent such disasters [49].

The model used in this project will be the HERE2 GNSS GPS (figure 2.13).

With a built-in STM32F302 microprocessor. It runs ChibiOS (a real-time operat-

ing system), which enables user-defined features. HERE2 supports standard serial

port + I2C transmission data and also supports CAN bus on the way. CAN is

the most commonly used communication protocol in the automotive industry, and

has many advantages such as strong real-time data communication, high reliabil-

ity, flexible application, and redundant structure. CAN allows for a distributed

Autopilot system by placing components at their optimal position on an airframe

without worrying about signal degradation. HERE2 utilizes the UAVCAN bus

protocol specifically developed for UAV applications. UAVCAN has high data

throughput, low latency and is suitable for application scenarios with high real-

time requirements. A complete IMU including an accelerometer, compass and

gyroscope can meet the diverse needs of the user for navigation. Combining barom-

eter and GPS data, users could potentially run a separate Extended Kalman Filter

(EKF) navigation system inside HERE2 to implement navigation tasks that are

completely independent of flight control [50][51].

2.7 UAV Automatic Procedures

To design a fully automated procedure, the UAV has to be able to follow a flow of

operations that complete the system’s operability. From the mission planning to

the in-flight operations and the automatic landing, they all complete each other

making all the UAV operations fully automated.
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Figure 2.13: HERE2 GNSS GPS module.

2.7.1 Mission Planning

Due to Ardupilot, creating mission scripts became relatively easy. Using python

programming language and state of the art compilers, simple commands like take-

off, land or go to waypoint (intermediate point on a route) became accessible with

a simple line of code. Mission planning will consist on creating a python script to

automate the UAV to takeoff, go to the waypoint, run the fire prediction algorithm

and, if nothing is detected, return to base. All these procedures will be explained

below.

2.7.2 Decision Making

The behaviour/procedures of the UAV need to be set in by order to make mission

execution flawless and complete. The takeoff requirements are all the necessary

diagnostics to make sure the mission is completed with success. The flight proce-

dures are the operating decisions the UAV needs to execute the mission while on

the air.

The take-off requirements shown in figure 2.14 make sure that the system and

all the sensors are working properly and if there is enough battery to proceed with

the mission. This is the first task: making sure the battery levels are full for take

28



Chapter 2. State of the Art

off, otherwise the UAV will stay at the base recharging. After running the battery

levels and performing the full diagnostic, the UAV will be ready for take-off.

Figure 2.14: UAV’s procedure for take-off diagram.

The flight procedures shown in figure 2.15 begin after take-off, where the UAV

will fly to the designated coordinate and take the sensors’ data to run the fire

detection algorithm. Afterwards, in case of a fire detected, it will notify the user

and return to base, otherwise it will check if it is the last coordinate and if not,

it will continue to carry out the rest of the mission. When the last coordinate is

reached and no fire has been detected, the UAV will return to its base to recharge

and wait to execute its next mission.

2.8 Fire Detection Algorithm

To detect a fire in the forest, the surveillance range needs to bee quite high. To

cover such space, the information collected from each position needs to be wide.

The only way such a system would work would be using an UAV at a high altitude

to gather a large amount of information at once. The most effective way to gather

that much data would be using a sensor that could cover a hide area, taking us to
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Figure 2.15: UAV’s flight procedure diagram.

the visual camera. By analyzing image frames for a few seconds, the amount of

information needed will be enough to determine if a fire exists or not. The process

of analyzing images is called image processing.

Digital Image Processing

Digital image processing is about processing images to a digital format with a

digital computer. It involves digital image analysis, which is being able to retrieve

information from the pictures, reading it and gather it. In many cases, digital

image processing tends to replicate human vision functions.

There are 3 levels of digital image processing: low-level, intermediate-level and

high-level. Low-level image processing algorithms are simple algorithms that re-

ceive an image as input and then output the same image with the desired changes.

Intermediate-level algorithms are algorithms that also have as input images but

as output may have a variety of image related features such as object contours.

High-level algorithms are algorithms that use symbolic representation for both

input and output. common applications are: object detection and classification

such as the ones that will be used in this project [52].
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2.9 Related Work

Nowadays the approach to forest fire detection is based on manned aerial vehicle,

ground-based equipment, or satellite surveillance [53]. However, this solution is

expensive and makes use of a lot of human resources, threatening many human

lives. Therefore, the use of small UAVs for fire detection is an obvious and reliable

option [54]. UAVs can be extremely useful, providing wide area coverage even

with cloudy weather, working day and night providing 24 hour coverage and in

case of incidents, they are easy to recover and relatively inexpensive. In case of

battery-powered UAVs, they can also be more environmentally friendly and can

use energy sources like solar panels [55], [56], and most importantly, they can

execute missions autonomously without the need for human pilots or operators.

Vision based solutions have big advantages and provide real-time information.

They have a wide detection range and have become the key component in the

UAVs forest fire detection system applications [57]. During the last years, vision

based solutions for forest fire detection have used a lot of different segmentation

methods. Vision based fire detection techniques typically make use of three dom-

inant features: color motion and geometry [58]. The color is the more relevant

visual feature of fire and it is why most methods take advantage of the discrim-

inative properties in color space to obtain fire regions in the images [59], [60].

Some researchers used color and motion features based on red-green-blue (RGB)

model to extract real fire and smoke in video sequences [61]. Others proposed

real-time algorithm that combines motion and color clues with fire flicker analysis

on wavelength domain to detect fire in video sequences [62]. In [63] the fire detec-

tion system is a combination of a generic color model based on RGB color space,

motion information, and Markov process enhanced fire flicker analysis. In [64], a

different approach is used making use of a rule based generic color model for flame

pixel classification. Experimental results show that the detection performance is

significantly improved. To detect both fire and smoke areas together, a solution

based on video image segmentation is presented in [65] [66].
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In order to be able to recharge the UAV autonomously, the concept of recharg-

ing the UAV during the mission has been about increasing flight time and providing

the ability for longer missions [67],[68]. At the University of Southern California,

a ground robot that can autonomously recharge on a stationary “charging dock”

was developed [69]. Another similar application is the development of a battery

swapping station for small coaxial helicopters [70]. For ground robots there are

already some successful applications, however for UAV a mainstream application

has not yet been successfully deployed. Researchers at the Massachusetts In-

stitute of Technology [67],[68] and ETH Zurich [71] have been working towards

persistence missions with autonomous recharging stations for UAVs, nonetheless

all these works use a contact based charging station. The negative side of these

applications is that they require a high precision landing without margin for error

and its mechanical design and implementation increases the manufacturing cost

and the design complexity [72].

To solve this problem, a technology called Wireless Power Transfer (WPT) is

proposed. WPT is a famous technique being used in many low-power charging

applications for smart-phones and other electronic devices [73],[74]. Nowadays, the

strongly coupled magnetic resonant induction for WPT allows efficient and high

power transmission to distances up to 2 m [73]. Magnetic resonant induction-

based WPT has little interference and disturbance with its environment, and it

is omnidirectional characteristic motivated for the application to UAVs [74],[75].

A more recent approach made by [76] reveals a affordable solution to increase

flight time for outdoor UAVs using a wireless charging station without any human

intervention.
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UAV Flight Automation

3.1 Pre-Flight Procedures

As referred in section 2.4.2, MAVLink can be used not only to send messages

between the vehicle and the ground station but also in the inter-communication

between vehicle subsystems. Using this principle, MAVLink commands can be

used to make an UAV land or take-off by itself without having to use a Radio

Controlled (RC) transmitter. A large variety of methods can be created, using

different programming languages that will send multiple commands and wait for

an acknowledge response in return. By creating different methods and combining

them, coding libraries can be composed and published, being accessible for every-

one to use, in order to facilitate the mission’s automation. For this project, two

python libraries known as Dronekit and Pymavlink will be used.

3.1.1 Vehicle Connection

To establish the program’s connection to the UAV, Ardupilot already has a default

User Datagram Protocol (UDP) port defined (14550). This port is always listening

on a standby status waiting for commands. When creating the script for the

UAV’s automation, the connection command needs to be structured with the
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correspondent arguments. The argparse library is a helpful tool to use for this

purpose as it helps adding the connection arguments, such as the default port.

parser.add_argument(’--connect ’, default = ’127.0.0.1:14550 ’)

Afterwards, the connection method is used to send the connection arguments,

the communication speed and another parameter "wait-ready", that defines if the

program waits for for an acknowledge or proceeds without it.

vehicle = connect(args.connect , baud =57600 , wait_ready=True)

3.1.2 Pre-Flight System Analysis

The pre-flight system analysis is the UAV’s self analysis that determines if the UAV

is ready to run automated missions or not. It will log all the system’s parameters

before flight and check the status of some of them such as:

• Battery status

• Vehicle EKF

• Vehicle armable state

• Vehicle system status state

First of all, the battery level is checked since it must be at 100% in order for

the UAV to start the mission, otherwise the procedure will abort and the program

will disconnect from the UAV correctly. Then it will check the EKF algorithm,

which is used to estimate vehicle position, velocity and angular orientation based

on rate gyroscopes, accelerometer and other sensors. The program will wait until

all the sensors used by the EKF are ready and check every 2 seconds if they are

not. After confirming if all the previous parameters are correct, the last check

before arming the UAV is to verify the vehicle’s state and the system’s status. If
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the system’s status returned variable equals "STANDBY" that means the UAV

is grounded on standby, and it can be launched at anytime. However the system

status verification can return other states such as:

• UNINIT - System not initialized and the state is unknown.

• BOOT - System is booting up;

• CALIBRATING - System is calibrating and is not flight-ready;

• ACTIVE - System is active and might be already airborne. Motors are

engaged;

• CRITICAL - System is in a non-normal flight mode but it can still navigate;

• EMERGENCY - System is in a non-normal flight mode and it has lost control

over parts or over the whole airframe. It is in mayday and going down;

• POWEROFF - System just initialized its power-down sequence and will shut

down [77].

The full pre-flight system analysis depicted in figure 3.1 take a small amount

of time to fully execute. However, they are crucial and extremely important for

mission success.

After logging all the parameters and making sure the vehicle is ready to fly,

the take-off sequence begins.

3.1.3 Take-off

When dealing with UAVs and other types of air vehicles, the motors must be armed

in order to initialize take-off. In the present study scenario, arming motors means

the UAV is ready to fly and the motors can then spin when one applies throttle.

What is often called throttle (in an aviation context) is also called a thrust lever

and it is used to control the thrust output of the aircraft’s engines [78][79].
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Figure 3.1: Pre-flight system analysis diagram.

In Ardupilot, there are different flight modes that can be used according to the

type of mission to be executed. These flight modes can be different on the various

Ardupilot firmwares (p.ex, ArduCopter flight modes are different from ArduRover)

In this case, and since ArduCopter firmware is used, "GUIDED" flight mode will

be used because it is the adequate mode to navigate to single points autonomously.

The mode selection is required, since in order to arm the vehicle a flight mode must

be defined.

After defining the flight mode, the command to arm the vehicle is sent and

the program waits for the acknowledge in order to use the take-off command.

The take-off requires the altitude input and in case this input is different from

a number, the program will print the following message "Altitude was NaN or

Infinity. Please provide a real number" and end the program. When the right

input is correctly given, the UAV will takeoff and print with 1 second intervals the

current altitude, until it reaches 95% of the desired altitude. At this point, the
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"Reached target altitude" message will be presented and the UAV will wait for

following instructions [77].

3.2 Mission Planning

To plan an autonomous mission for UAVs, several variables need to be taken into

account. In order to define those variables a logical flow of events was established:

• Define Flight Duration;

• Define Total Coverage;

• Define a Route;

• Add Route to Script.

3.2.1 Defining Flight Duration

Using the average case scenario, a multi-rotor’s flight time will be about 10 min-

utes. With a flight speed of about 5 m/s ( 18 km/h) the maximum mission distance

the UAV can achieve will be 5 · 60 · 10 = 3000 m, per flight. However, the UAV

has to do pre-flight procedures, has to take-off, has to land and after reaching a

waypoint, it also has to wait for 10 seconds for the image processing algorithm

to run, thus leaving approximately 4:54 minutes for continuous flight time (this

values where taken in consideration according to simulation experiments). The

need for the UAV to hover above each waypoint for 10 seconds is to increase the

image processing algorithm’s accuracy, and also to allow saving battery - the im-

age processing algorithm consumes a lot of the companion’s computer resources

increasing battery drain.
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3.2.2 Defining Total Coverage

The UAV’s total coverage depends on three factors: flight duration, which is

already defined, camera specifications and mission’s altitude. According to the

Portuguese legislation, an UAV can fly up to 120 m high without having to ask

for special permission from the Portuguese Civil Aviation Authority (ANAC) [80].

Flying at an altitude of 120 m and using the Raspberry Pi camera module v2 as the

main camera, it is possible to calculate the amount of ground coverage per picture.

In these calculations, the knowledge of Photogrammetry is needed, which is the

science of taking measurements from photographs. The first step is to calculate

the Ground Sampling Distance (GSD), the distance between two consecutive pixel

centers measured on the ground [81][82][48]. The GSD value is given by:

GSD =
Sw ×H

FR× imW
(3.1)

where Sw is the sensor width of the camera (in millimeters), FR the focal length of

the camera (in millimeters), H the flight’s height (in meters) and imW the image

width (in pixels). The camera specifications such as focal length and sensor’s

width can be found in appendix C. Considering the respective values the following

equation is obtained:

GSD(cm/px) =
6.35× 120× 100

3.04× 1920
(3.2)

This way, the GSD will be equal to 13.06 (centimeter/pixel). The second step

is to calculate the ground distance that can be seen from the picture using:

Dw(m) =
GSD × imW

100
(3.3)

DH(m) =
GSD × imH

100
(3.4)
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where Dw is the footprint width, which is the distance covered on the ground

by one image in width direction, DH the footprint height, which is the distance

covered on the ground by one image in height direction and imH is the image

height in pixels. The relation between the previous parameters can be seen in

figure 3.2.

Figure 3.2: Representation of the camera calculations.

The real distance in meters of each picture is: Dw = 251 m and DH = 141

m. This means one picture will cover a total area of 35391 m2 ≈ 3.54 hectares.

With the picture size calculated, the easiest approach to define the total area

coverage is to define the number of pictures to take according to the maximum

distance the UAV can travel. In section 3.2.1, it has concluded that 4:54 minutes

was the maximum continuous flight time of the UAV, if the UAV’s velocity is

multiplied with the flight time, that leaves exactly 5 · ((60 · 4) + 0.54) = 1470 m

maximum distance per flight. By simulating a combination of different number of

pictures, arranged in different ways, with different routes, the result of 8 pictures

was achieved. To scan this area, the UAV has to fly over 141 · 6 + 251 · 2 = 1348

m, therefore passing the maximum distance per flight requirement. The pictures

disposition can be seen in figure 3.3.
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Figure 3.3: Mission planning diagram.

3.2.3 Defining a Route

In order to plan the route for the UAV to autonomously follow, a software simulator

was used (explained in subsection 6.1). Different types of routes were taken into

consideration and the resulting route was also the most efficient and battery saving

option. With the altitude and the number of smaller areas (pictures) defined, the

mission can now be planned using the middle of each smaller area as a waypoint.

By using 8 different waypoints and the ground station as the home waypoint, the

final route can now be calculated for the UAV to follow.

When dealing with UAVs flying in an autonomous mode, special attention to

the UAV’s orientation is required. Since the camera does not move, the perspective

of the picture depends on which side the UAV is facing. Whenever the UAV is

flying and has to change direction to go to the next waypoint, firstly it rotates

facing forward to the waypoint, and only then it starts moving in the desired

direction. For example, taking figure 3.4 and imagining the UAV needs to go from

waypoint 4 to 5. When it reaches the fifth waypoint, the front of the UAV will
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Figure 3.4: Initial waypoints position diagram.

be faced towards the direction of the followed route instead of facing forward to

the route it has to follow next. Thus resulting in the image of the fifth waypoint

having to be rotated in a 90◦ angle, which will reduce the covered area. In order

to avoid this situation, two more waypoints were added: one before waypoint 5

facing north and another before waypoint 1 facing south because when the UAV

travels from waypoint 8 to 1 the same situation will occur. This extra waypoint

before waypoint 1 will be the home waypoint from where the UAV will take-off and

land. This solution will solve the previous problem, maintaining the image aspect

ratio with a 180◦ angle rotation from the previous images. The extra waypoints

will only differ in a five meter distance from the desired waypoint. The final route

waypoints are illustrated in figure 3.5.

3.2.4 Adding Route to Script

After planning the route, each waypoint must now be defined in the program and

sent individually to the flight controller as a MAVLink command. To begin, a

function is used to get the global position of the ten final waypoints positioned

to form the rectangular surveillance area. Using the size of the rectangle as the
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Figure 3.5: Final waypoints position diagram.

only input, a route can be created. The 10 waypoints will have the following

coordinates:

Table 3.1: Waypoints coordinates

Point ID x (m) y (m)
1 0 0
2 5 0
3 5 + a 0
4 5 + 2 · a 0
5 5 + 3 · a 0
6 10 + 3 · a 0
7 5 + 3 · a b
8 5 + 2 · a b
9 5 + a b
10 5 b

where x is the distance from the ground station to north, y the distance from the

ground station to east, a the height of the rectangle, b the width of the rectangle.

If for different purposes the same route has to be adjusted to different rectangle

sizes the only parameters that would need changing would be the picture’s height,

and width. The waypoint’s altitude will be the same as the designated altitude

command on takeoff.
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Once the waypoint’s coordinates are calculated, they can now be added to the

commands that are to be sent to the UAV. A dummy waypoint is also added to

notify the user when the last destination has been reached.

As a safety measure, all commands are cleared so as to empty the command

queue before the take-off command is sent. This ensures that, if any of the previous

commands were given, they will be ignored. In case the UAV does not receive the

previous take-off command, a fail safe is implemented to make sure the UAV

proceeds with the take-off anyway. The go to command will be similar to the code

right below in all of the ten waypoints.

cmds.add(Command( 0, 0, 0,mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT

,mavutil.mavlink.MAV_CMD_NAV_WAYPOINT , 0, 0, 0, delay , 0, 0, point1.lat

, point1.lon , altitude ))

After adding all the commands with the waypoints to the queue, the mission

is uploaded to the UAV. In order to keep track of the mission’s status along the

waypoints, two functions are created: one to give the ground distance, in meters,

between two locations and another to get the global position between the current

location and the next waypoint. By using these two functions together the program

can print every 1 second the distance to the next waypoint, thus keeping track of

the current mission status. At the end of the mission, in order to make the UAV

return to the base, the previously referred dummy waypoint is used. By creating

a simple "if" statement, the next waypoint is checked and if it corresponds to the

last one, the mission is terminated. When the mission ends, a command is sent

to the UAV to switch to the Return To Launch (RTL) mode that makes the UAV

return to the home position and stay hovering. If no altitude is set in the RTL

command the UAV will reach the DroneKit’s library default altitude (15 m), or

maintain the current altitude if the current altitude is higher than the default.

After getting to the home position, the UAV will start to descend until it reaches

the altitude and location where it was armed [83].

Following the designated route, the mission will have a total distance of 141 ·

6 + 251 · 2 + 5 · 2 = 1358 m, and the total flight time will depended on the type of
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UAV and flight speed. However having by default the previous mentioned values

the mission duration will be 9:07 minutes.

3.3 Flight Altitude vs Processing Time

To demonstrate the efficiency of the chosen altitude, a study was conducted to

show how many hectares can be processed in 1 hour, using different altitudes. In

order to perform the study, some of the calculations made in the previous section

3.2.2 were applied, changing the ground captured area and the altitude. To obtain

more accurate results, simulations were made each 10 m of altitude. Repeating

the previous calculations for 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and 110 m,

the following values were calculated for the distance covered on the ground by one

image’s height and width.

Table 3.2: Relation between UAV’s altitude and picture real dimensions.

A (m) Dw (m) DH (m)
10 21 12
20 42 23
30 62 35
40 84 47
50 104 59
60 125 70
70 146 82
80 167 94
90 188 106
100 209 117
110 230 129

where A is the UAV’s altitude (m). When the distance covered on the ground

by one image changes, the total ground area covered per flight and the total flight

time will also change. So to obtain the number of hectares processed per hour,

the following formula was used:

N =
Total area covered (hectares)

Total flight time (hours)
(3.5)
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where N is number of hectares processed per hour. Using the previous values of

altitude, the resulting chart demonstrates the number of hectares processed per

hour for each altitude.
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Figure 3.6: UAV’s altitude vs hectares processed per hour

In conclusion, the advantage of using the maximum altitude allowed (120 m)

it is noticeable and clearly the best available option.

3.4 Decision Making and User Notification

In this system, User Notification is a fundamental aspect and should be taken

into serious consideration. Nowadays, notifications can be sent in the form of

emails, text messages, phone calls or others. For someone who is responsible for

the surveillance of forests and other natural preserved areas getting cell phone

signal can sometimes be challenging since cell towers may be located along great

distances. With such distances between the towers and the user’s phone and all

the obstacles along the way, any chances of notification systems using internet are

unreliable, therefore the only two options would be phone calls and text messages.

However, if the signal strength is low the phone call will be hard to understand,

thus making text messages the most reliable notification system to use. Even
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though it appears to be the best communication system, one should bear in mind

that phone calls and text messages are paid services that can only be used by

paying a specific fee to a national telecommunications service provider. Picking

up on the chosen solution the service used will be TextMagic which is a business

text-messaging service for sending notifications, alerts, reminders, confirmations

and SMS marketing campaigns [84]. By using TextMagic, creating text messages

will be a simple task, since this solution already integrates a python library known

as TextMagic library. To create a text message the steps are: authenticate the user

(with security token), specify the destination phone number and fill the message

content, as shown below.

message = client.messages.create(phones ="91*******" ,

text="FIRE ALERT:" + "\n" + str(vehicle.location.global_frame ))

Due to the variety of functionalities inside DroneKit python library, getting

the global location of the UAV is about finding the right method. In this case,

the method "vehicle.location.global_frame". By using this method, an object is

obtained containing the current position (with latitude, longitude and altitude

values) of the UAV. Finally, the object is deconstructed and written in a way

which is easy to read and copy the content. If the user has access to the internet

he can also take advantage of the Google Maps URL which is also obtained from

the deconstruction of the global position object. An example of the fire alert

notification message can be seen in figure 3.7.

The only step remaining in the notification system, is when to notify the user.

This final step is achieved by adding a trigger to the image processing algorithm

which is activated every time a fire is detected.

46



Chapter 3. UAV Flight Automation

Figure 3.7: Fire alert notification message.
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Fire Detection Algorithm and

Real-Time Detection

4.1 Image Recognition and Object Detection

Nowadays image recognition and object detection are considered basic concepts,

with self driving cars and image processing technologies. However, there is a great

difference between the two of them: in image recognition, the image is received as

an input and the output is the class label to which the image belongs ( ex: car,

bike, dog, etc...). Object detection also receives an image as input, but the output

is the combining result of the class label to which the image belongs and image

localization (the location of the object). Object detection not only identifies the

object class but also locates the object, surrounding it with a bounding box [85].

In order to be able to detect these objects and classify them, machine learning

algorithms, such as convolutional neural networks can be used even though it

requires training. For this purpose, tools such as Tensorflow was used.
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4.1.1 TensorFlow

TensorFlow is an open-source interface for experimenting and implementing ma-

chine learning algorithms. It can be executed in a large variety of heterogeneous

systems with little or no change at all. This system can be used from mobile de-

vices such as phones or tablets to large-scale distributed systems with hundreds of

machines and thousands of computational devices such as CPU and GPU cards.

TensorFlow is known for its flexibility because it can be used to express a wide va-

riety of algorithms including training algorithms for deep neural network models.

This system is owned by Google and it is the result of the Google Brain project that

started in 2011 to evolve the knowledge of very-large-scale deep neural networks,

not only to use in other Google products but also for research [86].

TensorFlow predecessor was DistBelief, the first-generation scalable distributed

training and inference system. DistBelief was used for unsupervised learning, lan-

guage representation, image classification and object detection, video classifica-

tion, speech recognition and many others. When compared to DistBelief, Tensor-

Flow’s programming module is more flexible, its performance is better, it supports

training and uses a wider range of models in a great variety of heterogeneous hard-

ware platforms.

TensorFlow uses a structure known as data flow graphs to represent computa-

tion. A data flow graph has two basic units: a node that represents a mathematical

operation and an edge representing a multi-dimensional array, known as a tensor.

This high-level abstraction reveals how the data flows between operations and can

be easily represented in figures, such as in figure 4.1 where the b, w, x represent

the tensors, c represents the output and the other elements represent the nodes.

Users typically create a computational graph using one of the supported languages:

Python or C++.

To interact with TensorFlow, the applications created by the users create a

Session. In order to create a computation graph, the Session interface supports an
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Figure 4.1: TensorFlow graph (Source: [87]).

extended method to augment the current graph managed by the session with ad-

ditional nodes and edges. The other extended operation supported by the session

is Run. This operation takes a set of output names that need to be computed,

as well as an optional set of tensors to be fed into the graph in place of certain

outputs of nodes. After setting up a Session with a graph once, the Run call can be

used to execute a graph or subgraphs as many times as the users wants. Because

TensorFlow graphs can run multiple times, the only way to save the tensors across

executions is to use Variables. These variables are a special kind of operation that

returns a handle to a persistence mutable tensor that survives across executions

of the graph.

When the applications created by the users, the client, communicates with

TensorFlow, the master, it creates one or more worker processes that will be

responsible for the arbitrary access to one or more computational devices and for

executing graph nodes on those devices as instructed by the master. There are

two ways to implement TensorFlow: the local implementation or the distributed

implementation. In the local implementation all the components such as the client,

master and workers run on the same operating system process. The distributed
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implementation is almost the same as the local with the difference of supporting

an environment where master, client and workers operate in different machines.

The difference between both implementations can be seen in figure 4.2.

Figure 4.2: TensorFlow local vs distributed implementation (Source: [87]).

As referred earlier in section 2.1.2 deep neural networks have achieved break-

through performance on computer vision tasks [44]. These tasks are one of the

main applications for TensorFlow at Google. Training a network to achieve high

accuracy values requires a large amount of computation, and TensorFlow has the

purpose to scale out this computation across a cluster of GPU enabled servers. In

this project, TensorFlow will be used to train a CNN to detect a fire using image

processing techniques.

TensorFlow also comes with a powerful tool to help users understand the struc-

ture of their computation graphs and the overall behavior of machine learning

models, TensorBoard. The graph analysis for deep neural networks can be quite

complex, due to the size and topology of this graphs, normal visualization tech-

niques often result in cluttered and overwhelming diagrams. In order to help users

see the underlying organization of the graphs, the algorithms in TensorBoard break

nodes into high-level blocks so as to point up groups with identical structures. This

technique results in reduced clutter and focuses attention on the core sections of

the computation graph. TensorBoard is user-friendly and offers real-time updates

on the state of the various aspects of the model [87], has can be seen in figure 4.3.
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Figure 4.3: TensorBoard interface.

4.1.2 TensorFlow API

An Application Programming Interface, also know as API, allows system integra-

tion and information exchange between systems with different programming lan-

guages. Has many advantages such as data protection and security, performance

optimization and process automation. This interface adds a set of standards, rou-

tines and programming functions defined through software that enables the use

of application functionalities for the use of services without the need for their

involvement in overly complex implementation processes. In short, an API is a

connector interface that interconnects different applications systems with different

programming languages quickly and safely.

TensorFlow provides an API for developers to use for both Python and C++

languages. It provides the user with the possibility to specify the subgraph that

should be executed and also to select zero or more edges to feed input tensors into

the dataflow, and one or more edges to fetch from the output tensors. Every invo-

cation of the API is called a step, and TensorFlow supports multiple concurrent

steps on the same graph. Steps can share data and synchronize when necessary. A

typical training application can have multiple subgraphs that execute concurrently
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and interact through shared variables and queues. The core training subgraph de-

pends on a set of model parameters and on a queue of input batches that update

the model, to implement data-parallel training. The input queue is filled with sev-

eral concurrent pre-processing steps that transform individual input records and a

separate I/O subgraph reads records from a distributed file system. A checkpoint

subgraph runs periodically to check for fault tolerance and to save execution state

[87]. The training process is illustrated in figure 4.4.

Figure 4.4: TensorFlow API training diagram (Source: [87]).

4.1.3 OpenCV

OpenCV is a open source computer vision library written in C and C++ that

runs in multiple platforms. Computer vision means using still or real time video

to make decisions or new representations based on the video input. OpenCV

focus is exactly in real-time video applications. This type of applications are

usually computationally expensive because they require advantage of multi-core

processors. Besides containing over 500 functions that can be used in many areas

such as security and medical imaging, it also contains a Machine Learning Library

(MLL). This library is where this project will focus its attention on. OpenCV

MLL allows statistical pattern recognition and clustering [88].

In this project OpenCV will be used with the custom pre-trained model created

with TensorFlow, to identify and classify with localization a fire using real-time

video captured by Raspberry Pi’s camera. Once the fire is detected this will allow

the fire alert notification to be sent, with the fire coordinates, to the user.
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4.2 Training a Custom Object Detector

To train a custom model object detector, the TensorFlow API will be used. How-

ever, in order to train a model to detect fire, a custom dataset must first be created.

The dataset is a collection of data that is normally associated with database sce-

narios. This fire dataset is a gathering of data to compose the database for this

project. The only difference is, instead of values and strings, it will be a collection

of pictures.

There are plenty of datasets already created for a lot of object types. However,

because this project uses a specific angle of fire images and it is supposed to

detect fires in the forest, the dataset has to be really specific and there is no

available reliable datasets online. Therefore, to automatically detect a forest fire,

a custom dataset must be created. When creating a dataset, the main dataset is

split in 2 subsets which are called the "training" and "test" datasets. And one

of the most important things to be aware of is the train/test dataset ratios: the

training dataset trains the model and the testing dataset evaluates it. This ratio

is very important, otherwise the model may end up overfitting or underfitting.

Overfitting is the production of an analysis that corresponds too closely or exactly

to a particular set of data, and may therefore fail to fit additional data or predict

future observations reliably [89]. Underfitting occurs when a statistical model

cannot adequately capture the underlying structure of the data. An underfitted

model is a model where some parameters or terms that would appear in a correctly

specified model are missing [90]. The ratio used for this dataset is of 90% of images

for training and 10% for testing. The model for this project will have a total of

266 images, 240 (90.2%) for training and 26 (9.8%) for testing.

After collecting the dataset and dividing it, the next step is to classify all the

images present in the training dataset. This process is called "image labeling". In

order to teach TensorFlow what "the real aspect of fire is" and let it learn from

each image, the fire object (technically referred as "fire" class) must be identified in

every image with a specific location and size. For labelling every image, LabelImg

will be used. This application creates a .xml file for each image that will contain
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the location and size of the fire object to let TensorFlow locate the pattern it needs

to learn. An example of the labelling process is shown in figure 4.5.

Figure 4.5: Fire classification using LabelImg.

To train a model, TensorFlow also requires a label map, which namely maps

each of the used labels to an integer value. This label map is afterwards used for

both training and detection processes.

item {

id: 1

name: ’fire ’

}

After creating the label map, a choice has to be made on the pre-trained

model to use. Using a pre-trained model will simplify the task ahead because a

lot of experiments are needed in order to build a proper CNN architecture. There

are lots of models provided by TensorFlow. Since the Raspberry Pi has a weak

processor, the model to use will be ssd_mobilenet_v2_cocoo and because it takes

less processing power. Even though the model will run faster, it comes with the

disadvantage of having lower accuracy. After choosing the pre-trained model and

labeling all the images, the training of the custom model can begin [91].
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INFO:tensorflow:Starting Queues.

INFO:tensorflow:global_step/sec: 0

INFO:tensorflow:global step 1: loss = 13.8886 (12.339 sec/step)

INFO:tensorflow:global step 2: loss = 16.2202 (0.937 sec/step)

INFO:tensorflow:global step 3: loss = 13.7876 (0.904 sec/step)

INFO:tensorflow:global step 4: loss = 12.9230 (0.894 sec/step)

INFO:tensorflow:global step 5: loss = 12.7497 (0.922 sec/step)

INFO:tensorflow:global step 6: loss = 11.7563 (0.936 sec/step)

INFO:tensorflow:global step 7: loss = 11.7245 (0.910 sec/step)

(..)

INFO:tensorflow:Recording summary at step 64.

The previous program output demonstrates the output of the model while

running the training process. The training time can variate according to the

hardware specifications (either CPU or GPU). TensorFlow saves the state of the

learning procedure every 1 minute. The model finishes training when it reaches

a TotalLoss of at least 1 or lower for more accurate results. The TotalLoss value

represent the model’s accuracy to detect the desired pattern, in order to monitor it

as well as other metrics, while the model is training, TensorBoard, will be used to

analyze the performance of the generated model. Figure 4.6 shows it took 60000

steps to get to TotalLoss value of 0.4, to train the model.

Figure 4.6: TotalLoss graph output.

Once the training process is completed, the frozen inference graph can be

extracted. The frozen inference graph contains all of the required parameters

(graph, weights, etc.) of the trained model, and it will be later used to perform

the object detection using Raspberry Pi.
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4.3 Detect Objects Using Real Time Video

In order to use the trained model to detect the fire object using real-time video,

some hardware components are required: Raspberry Pi and Raspberry Pi cam-

era module v2. Due to the fact that Raspberry Pi will be continuously used for

extended periods of time, some heatsinks will be applied in order to avoid Rasp-

berry Pi’s CPU to become too hot. These heatsinks are necessary due to all the

processing required to run the real-time video detection. High CPU temperatures

will crash the Raspberry Pi’s system and in more dangerous scenarios it can even

burn the SD card resulting in a fire. Maintaining the CPU at lower temperatures

is one top priority. To help with air circulation a small fan is also applied on top

of the CPU. The Raspberry Pi’s final customization is depicted in figure 4.7. The

OS used with Raspberry is Raspbian, a specific Linux distribution for Raspberry

Pi.

Figure 4.7: Customized Raspberry Pi 3.

With the hardware and the OS set up, the next step is setting up the Tensor-

Flow environment. TensorFlow’s object detection applications usually use mat-

plotlib python library to display images. However, in this case OpenCV will be

used, since it’s more user friendly. At last, the installation of Protobuf, it is used
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by the TensorFlow object detection API and it is a Protocol Buffer data format.

Protocol buffers is a method of serializing structured data in order to let devel-

oping programs communicate with each other over a wire or for storing data [92].

Currently there is no easy way to install Protobuf on the Raspberry Pi, the only

way being to compile it from source and then install it. Lastly the previously

custom trained model is used to create the fire detection script [93].

4.4 Fire Detection Script

The fire detector script was created using only the tools described before: OpenCV,

TensorFlow, TextMagic API and two other python libraries called Keyboard and

PiCamera. The script uses the model previously trained and its label map to

detect fire. Firstly the label map and the TensorFlow model are loaded into the

memory, then the size of the image to process is defined, which in this case it is

the camera’s resolution: 1280x720 pixels. To process the real-time video feed, the

PiCamera library is used, because it returns frames that can later be processed

accordingly using the OpenCV library. The average number of frames per second

(FPS) processed are about 1.2 per second. This value is the optimal value for

test experiences, due to Raspberry Pi’s CPU processing limitations. Now, with

the frames as input, a function can be created to process these frames. In this

function named fire_detector() a trigger is created which uses the number of the

class defined in the label map. In case of the number of the class is detected

inside 8 frames the trigger will become active and send a text message to the user

notifying him of the fire. The 8 frames are used to make sure the UAV gets an

accurate result of fire detection, avoiding errors. This notification can be sent

using the TextMagic API described in section 3.4. The trigger is activated using a

frame counter, and afterwards, the Keyboard library is used to simulate pressing

the ’q’ key and the program exits and closes all threads and windows.
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Base Station and Landing Procedure

5.1 Automated Precision Landing

The Global Navigation Satellite System (GNSS) has evolved in the last decades

and now new improved methods like Galileo have emerged and are used globally

in all types of devices. These systems, like GPS, use radio frequencies to connect

to satellites and from the obtained answer a global position can be calculated.

Even though this solution is sufficient for a daily basis use, for other fields such as

industry, high accuracy solutions are required. This need for higher accuracy has

driven scientists to invent new solutions for this problem, one of those solutions

being the Differential Global Navigation Satellite System (DGNSS).

5.1.1 Differential GPS

GPS is the most common known GNSS system and in the case of DGNSS tech-

nology it is the Differential GPS.

Differential GPS system is composed of two stations: a base station that is the

reference point with its exact known 3D coordinates and a user station (known as

rover). An antenna for receiving signals from GPS satellites is installed at each

station [94]. The base station requires a minimum of four satellite connections and
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receives the positioning signal transmitted by the satellites continuously. Compar-

ing the measured position coordinates (or pseudo range) with the known reference

position coordinates (or pseudo range data) the difference is the corresponding dif-

ferential correction. Once the corrections are calculated in the DGPS base station,

the station sends a broadcast to all user stations in its corresponding region with

the corrections by data link. Combining the user station’s own positioning data

and the corresponding differential corrections, the compensation operations are

executed so as to improve the positioning accuracy of the user station, resulting

in more accurate positioning results [95]. The DGPS accuracy is in the order of 1

m and the base station covers a range between 1 m to 150 km. A global view of

a differential GPS can be seen in figure 5.1.

Figure 5.1: Differential GPS diagram.
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5.1.2 RTK System

Real Time Kinematics (RTK) is also a DGNSS technique which is similar to DGPS.

However because 1 meter accuracy was not sufficient, RTK solutions were devel-

oped and applied for several systems. An RTK base station covers a service area

spreading about 10 or 20 km, and a real time communication channel is needed

for connecting base and user station. The range is delimited by the difficulties to

fix the carrier phase ambiguities as the distance between base and rover increases

[96]. The main differences of RTK over DGPS are the increased accuracy, the

decreased range, the faster and bigger data transmission, and the fact that RTK

requires a minimum of 5 satellites [97]. This can change results from meter-lever

accuracies to centimetre-level accuracies [98].

5.1.3 RTK System Architecture and Implementation

In order to implement the RTK GNSS system, several options were considered.

However, the decision was simple since there was already available material. The

RTK module and base station used for this project were Reach RS+ as a base

station and Reach M+ as the UAV onboard module. Both products were directly

acquired from the Emlid company.

The Reach M+, shown in figure 5.2, is a RTK GNSS module for precise navi-

gation and UAV mapping. This module is mounted on the UAV and connects to

the Pixhawk controller. The input voltage is 4.75 - 5.5 V and the average current

consumption is 200 mA. It supports various constellations, such as GPS/QZSS

L1, GLONASS G1, BeiDou B1, Galileo E1, SBAS and the update rate is 14 Hz

/ 5 Hz. It receives the corrections errors via LoRa 868/915 MHz communication

protocol, has internal storage of 8 GB and reads the correction input in both

RTCM2 and RTCM3 protocols. This module has two types of operating modes:

transmitter and receiver. The user can even connect directly to the module via

Wi-Fi or Bluetooth [99].
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Figure 5.2: Reach M+ module.

The Reach RS+, shown in figure 5.3, is the designated base station, which is

where the differential corrections are calculated. Multiple rovers can be connected

to one base station at the same time. This module is configured in transmitter

mode which is connected to the LoRa antenna and to a battery supply that can

work up to 30 hours. The GNSS characteristics are the same as in the Reach

M+ module and it has the same internal storage as well. The Reach RS+ mea-

sures its exact 3D location before the transmission of the differential correction

starts. Afterwards, it sends this correction via LoRa 868/915 MHz. As previously

mentioned, the user can also connect directly to the base station via Wi-Fi or

Bluetooth and extract the logs or follow the UAV’s location. This base station

has its own app and it is available on Goggle Play and App Store [100].

In addition to the Reach M+, the HERE2 GPS module was also used, resulting

in a so called GPS redundancy: the duplication of critical components or func-

tions of a system with the intention of increasing reliability of the system. In this

situation, the GPS redundancy will not only be used as a performance improve-

ment but also as a fail-safe when there is a failure of signal loss in one of the GPS

modules. UAVs with dual GPS sensor can be used in situations with electromag-

netic interference or in case of having interference from objects along the GPS’

signal path (ex: concrete walls). This feature is useful in cases such as powerline
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Figure 5.3: Reach RS+ base station.

inspections, monitoring mining works and other environments with strong elec-

tromagnetic fields which may cause electromagnetic interference [101][102]. This

system’s RTK architecture and all it’s tools are illustrated in figure 5.4.

Figure 5.4: RTK system architecture diagram.

With all the modules, tools and different possibilities this system can provide,

it results in a complete and versatile option to consider for other types of projects
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such as machinery guidance, UAV mapping and precise point data collection.

5.1.4 Configuration

In order to integrate Reach RS+ base station into the system, several basic con-

figurations must be applied. To configure the base station any Android or iPhone

mobile device can be used. The application to manage both modules settings is

called ReachView.

Firstly, the base station must be powered up and the smartphone must be

connected to the Wi-fi hotspot created by the base station. To perform a successful

connection, after opening the app, the desired module is selected, as shown in figure

5.5.

Figure 5.5: ReachView vehicle connection.

When already connected to the base station Wi-fi hotspot, its configuration

must be changed and the base station must connect to another Wi-fi network with

internet access in order see if there is any need for updates to be made in the base

station’s firmware and eventually reboot it. The same procedure is repeated for

the Reach M+ module. Afterwards, the Rover <-> Base Station connection via

Lora is ready to be configured [103].

Since both rover and base station have the same name, to start setting up

the connection the first thing to do will be to change the names of the modules.

The base station will be called reach-base and the rover will be called reach-rover.

Starting with the reach-base station settings, one will first configure the RTK

settings and the communication between base and rover. When changing the

RTK settings, all the GNSS systems need to be enabled and the update rate must

be set to 1 Hz, in similarity to figure 5.6.

66



Chapter 5. Base Station and Landing Procedure

Figure 5.6: ReachView RTK settings.

After configuring the RTK settings, the next step is setting up the LoRa radio

on Reach RS+ base station to broadcast RTK corrections. In the list of RTCM3

messages the outputs GPS L1, GLONASS L1 and GALILEO observations must

be set to 1 Hz and the ARP station coordinates to 0.1 Hz. The output power

value will be 20 dBm and air rate will be at 9.11 kb/s. After the previous steps

the RTK settings must match the one’s in figure 5.7.

Having all reach-base settings done, the reach-rover follows. After connecting

to it, in the RTK settings, the positioning mode is changed to Kinematic option,

GPS Ambiguity resolution mode to Fix-and-hold option and GLONASS Ambi-

guity resolution mode to ON option. Then the same GNSS systems as for the

reach-base are enabled and the update rate will be 5 Hz. After configuring the

LoRa radio on the reach-rover unit to receive the corrections, in the Correction

input tab the Base corrections frequency and the air rate settings must match
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Figure 5.7: ReachView base mode settings.

what was configured on the reach-base [104].

Having concluded all the main settings, the only required procedure is to set

the mode which the base station will run on.

Figure 5.8: ReachView base station precision.

The mode defined in "Coordinates input mode" in figure’s 5.8 defines the

precision of the RTK corrections. The different modes are shown in figure 5.9.
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Figure 5.9: ReachView RTK precision levels.

In the app and in the Status tab on the reach-rover’s central panel, the precision

of the corrections can be tracked and the Solution status describes the rover’s

precision in real time, as shown in figure 5.10.

The Solution status can have three modes:

• Single means that rover has found a solution relying on its own receiver and

base corrections are not applied. Precision in standalone mode is usually

meter-level;

• Float means that the base corrections are now taken into consideration;
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Figure 5.10: ReachView RTK precision level on rover.

• Fix status means all ambiguities are resolved and RTK solution is centimetre-

level accurate [104].

5.2 Recharging Station

An UAV, to become completely autonomous, requires a way to recharge without

the help of human intervention. Since the UAV’s typical recharging procedure

requires for the user to remove the battery and manually plug it into a charger

that option becomes completely impracticable. A more easy and approachable

solution would be to use a technology that is used in hundreds of mobile devices,

70



Chapter 5. Base Station and Landing Procedure

like our phones, which is called Wireless Power Transfer (WPT). This option does

not require wires and does not involve removing the battery which makes it more

suitable. The only problem in this system is that it requires a high precision

contact between both charger and mobile device. Also the high power charger

creates electromagnetic interference causing GPS signal failures. However since

the UAV uses a RTK receiver and another GPS, the high precision problem is

solved as well as for the electromagnetic interference with the GPS redundancy.

This section reports a case study since no test fields were made.

5.2.1 Wireless Power Transfer

Wireless Power Transfer (WPT) is the transmission of electrical energy from a

power source to an electrical load, without any connectors, across the air. A

wireless power system is based on a two coil system, a transmitter coil and a

receiver. These coils transfer energy using a oscillating magnetic field.

In order for this phenomenon to happen, Direct Current (DC) supplied from

the power source is converted into high-frequency Alternating Current (AC) by

specific electronics built into the transmitter. Then the AC current energizes a

copper wire coil in the transmitter, resulting in a generated magnetic field. When

another coil is placed within the proximity of the magnetic field, the field induces

AC current in the receiving coil. The AC current is then converted again into the

DC current by specific electronics.

WPT’s main objective is in DC manipulation, to energize the coil at the trans-

mitter end, the DC input must be converted to AC output because the mutual

induction only happens with AC. For this purpose, there is a need for an inverter

design which converts the DC input to the AC output. The DC power for the

magnetic induction uses coupled inductors at a certain resonant frequency, in or-

der to manipulate the frequency a resonator is used. After successful WPT, the

transferred AC is rectified via a bridge circuit. The noise filtration of the recti-

fied DC current allows the usage of wirelessly transferred power for an output load

71



Chapter 5. Base Station and Landing Procedure

such as a multicopter’s battery. Figure 5.11 represents the WPT system as a block

diagram.

Figure 5.11: Block diagram for WPT.

Non-resonant coupled inductors, such as typical transformers, need a magnetic

core and require the magnetic field to be covered by the secondary wire in a

sufficiently short range. Non-resonant induction is highly inefficient in scenarios

with larger distances and when the primary coil has high resistive losses, which

discards the majority of power to transfer to the secondary coil. In order to

solve this problem, resonant coupling can be used to help the coils improving the

efficiency. A basic resonant circuit uses an LC circuit consisting of an inductor

(coil) and a capacitor that can be used on both transmitter and receiver sides. If

both coils are resonant at the same frequency, the power transferred between them

can increase significantly. The space between the coils can then increase to be a

few times higher than the coil’s diameter, maintaining a reasonable efficiency.

A big part of the described resonant circuit is the design of the coils. The power

transfer efficiency is affected by the shape of the coils because their inductance

changes according to the shape, the optimal coil shapes are represented in figure

5.12 [75].

5.2.2 WPT System Architecture and Implementation

The system is composed of a solar panel, 2 lithium batteries and the wireless

charging system, just as in figure 5.13. The batteries store the electrical power

coming from the solar panel.
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Figure 5.12: WPT coils.

Figure 5.13: Base station 3D model.

For a 250 watts (W) solar panel using 4 hours of full sun (250W · 4h) that

results in 1 kWh (1.000 W hour) per panel, in one day. Multiplying 1 kWh per

panel by an average of 30 days in a month, then each 250 W rated panel produces

about 30 kWh in a month.

Battery capacity is measured by Ah (ampere hour). A 12 V lithium battery

storage can go from 7 Ah to 300 Ah, if the selected capacity is 40 Ah and both

batteries are connected in parallel then a total capacity of 80 Ah is achieved. A

UAV spends at maximum the totality of its battery, which is 10.000 mAh (10 Ah).
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A station fully charged has enough power to fully charge an UAV 8 times. A view

of the recharging system with the wiring and battery disposition is shown in 5.14.

Figure 5.14: Base station 3D model with wiring configuration.

The selected charging kit is the Power Management IC Development Tools

Wireless Power 200 W Development Kit made by Wurth Elektronik. At the ideal

conditions with a maximum output of 200 W (10 A, 24 V) and if the UAV’s battery

is 10.000 mAh (24 V) then the UAV takes approximately 1 hour and 13 minutes

to charge. Nevertheless, the charger does not always transfer the same amount

of energy because it adapts to the lithium power cells’ needs. Thus the charging

procedure takes more than 1 hour and 13 minutes. It is however impossible to

affirm the exact time without real life testing.

In a study made about wireless charging for UAVs, it has been proven that

the magnetic field is really strong around the transmitter and receiving coil [105].

Nonetheless by creating a simple support to separate the receiving coil from the

UAV’s skeleton, as shown in the figure 5.15, the magnetic field is reduced sub-

stantially. The coils in the development kit are half the receiving coil and 8 times

smaller than the transmitter coil also resulting in a reduced magnetic field. This

alteration also comes with a cost: because the coils are smaller, the distance be-

tween them needs to be smaller, that is why in the base station the transmitter

74



Chapter 5. Base Station and Landing Procedure

coil needs to be elevated to make perfect contact with the receiving coil, as in

figure 5.16. The offset of these coils is 10 mm which is equivalent to 1 cm, in

order to recharge at maximum transfer power. Even so the RTK system provides

a centimetre accuracy making it a perfect solution for the system.

Figure 5.15: UAV’s WPT coil application.

Figure 5.16: UAV and base WPT recharging system.
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Results

6.1 Flight Automation Simulation

In order to test the flight automation script the best available option is to use a

simulator. When uploading a mission and different commands to a flight controller,

lots of errors can occur. When testing scripts in a real life situation, a malfunction

could happen during the flight and the UAV would probably crash. In order to

avoid any critical damage, a simulator known as SITL is used as it allows to

simulate a Pixhawk-like flight controller and run ArduPilot firmware directly on

a PC, without any special hardware.

When running in SITL the sensor data comes from a flight dynamics model in

a flight simulator. ArduPilot has a wide range of vehicle simulators built in and

can interface to several external simulators allowing ArduPilot to be tested on a

very wide variety of vehicle types, such as in this case a multi-rotor aircraft [106].

For a more accurate and easier way to track the mission, a GCS with a user

interface, Mission Planner, previously referred in section 2.5 is used. MAVProxy

which is an UAV ground station software package for MAVLink based systems is

also used to help keeping track of the UAV systems [107].
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Firstly, the UAV emulation is initiated using a script provided by SITL. Then,

the MAVProxy console pops up and the Mission Planner is connected to the UAV,

resulting in the mission ready to start. The mission environment is shown in figure

6.1.

Figure 6.1: Simulation environment.

In order to start the mission, the mission’s script is executed using the com-

mand line. The first output the script provides is the UAV’s connection and the

system’s status as referred in section 3.1.2. Afterwards, any existing commands

are erased and a new mission is uploaded to the controller, the UAV will then

start the take-off procedure. Figure 6.2 represents the pre-flight log output, the

full log file of the simulation can be found in section A.

When the take-off procedure ends, the mission is executed and the mission

status can be followed in the command line, as in figure 6.3.

After the mission completes, a summary can be seen in the MAVProxy console

where the most important events are registered, such as the flight duration and

battery percentage left. A small part of the MAVProxy console of the testing

simulation can be found in figure 6.4.
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[INFO]: Connecting to vehicle on: 127.0.0.1:14550
[INFO]: Connected
[DEBUG]: Starting system analysis
[INFO]: Global Location: LocationGlobal:lat=0.0,lon=0.0,alt=None
[INFO]: Global Location (relative altitude ):
[INFO]: LocationGlobalRelative:lat=0.0,lon=0.0,alt =0.0
[INFO]: Local Location: LocationLocal:north=None ,east=None ,down=None
[INFO]: Attitude:
[INFO]: Attitude:pitch = -0.000112996094686 , yaw = -0.329702675343 ,
roll =0.000109214859549
[INFO]: Velocity: [0.0, 0.0, 0.0]
[INFO]: GPS: GPSInfo:fix=0,num_sat =0
[INFO]: Gimbal status: Gimbal: pitch=None , roll=None , yaw=None
[INFO]: Battery: Battery:voltage =0.0, current =0.0, level =100
[INFO]: EKF OK?: False
[INFO]: Last Heartbeat: 0.75
[INFO]: Rangefinder: Rangefinder: distance=None , voltage=None
[INFO]: Rangefinder distance: None
[INFO]: Rangefinder voltage: None
[INFO]: Heading: 341
[INFO]: Is Armable ?: False
[INFO]: System status: ACTIVE
[INFO]: Groundspeed: 0.0
[INFO]: Airspeed: 0.0
[INFO]: Mode: STABILIZE
[INFO]: Armed: False
[INFO]: Vehicle EKF not ok
[DEBUG]: Waiting EKF
[INFO]: Create a new mission (for current location)
[DEBUG]: Clear any existing commands
[DEBUG]: Define/add new commands.
[DEBUG]: Uploading new commands to vehicle
[DEBUG]: Starting takeoff

Figure 6.2: Pre-flight log output.

Figure 6.3: Mission script outputs.

Finally, the script saves the log file to a log directory and names the file with

the date and hour of when the script was initialized. The log distinguishes DEBUG

from INFO procedures in order to make the log easier to read and to define which

statements are more relevant.
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Figure 6.4: MAVProxy console flight log.

6.2 Fire Detection System

To test the fire detection system, two types of tests were developed: a test with

the objective to assess the custom trained algorithm in various environments and

situations and another test that aims to assess the developed script. These tests

need to be done separately because in order to do them together it requires a real-

life situation testing which is impossible due to the possibility of damaging the

equipment. The fire detection script is tested using a real-life situation, however

separated from the UAV, due to the previous motives.

6.2.1 Algorithm Accuracy

In order to test this algorithm, a tool known as Jupyter Notebook is used. This

tool is an open-source web application that allows the creation of documents that

contain live code, equations, visualizations and narrative text. It is used for a

variety of purposes, however in this case it is used for implementation of machine

learning techniques [108].
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Figure 6.5: Jupyter Notebook browser view.

The tool uses the custom trained model to detect objects in images, more

specifically fire. By using the exported inference graph, the label map and testing

images, the model can be tested using the images as input. The program then

loads all the variables and prints out all the given images with the fire object

classified and located. An example of these testing outputs is shown in figure 6.6

and 6.7. The full notebook file and the image output can be found in section B.

Figure 6.6: Fire detection first image output.

To test the algorithm even further, more images were added to the testing

set, and the final results revealed a positive outcome from the 60 different images

81



Chapter 6. Results

Figure 6.7: Fire detection second image output.

tested, against the 26 images previously defined. The graph in figure 6.8 shows

that in 48 images the fire was classified correctly even if sometimes with over-

classification (several fires detected where there is only one fire object). In 9

images, the fire was not detected when it should have (false negatives) and in 3

images the fire was detected incorrectly (false positives). This result revealed that

the custom trained model detects fire successfully with about 80% accuracy.

Figure 6.8: Fire detection statistical graph.

This results led to the conclusion that the algorithm fails in the detection of

fire in situations where the fire is located across long distances, behind the smoke,
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where the forest environments are non-existing and where instead of one there are

multiple small fires. The previous results can be improved by using a larger dataset

with the specific scenarios. However, the final outcome is favorable considering

the detection success rate.

6.2.2 Script Testing

In similarity to the testing done in section 6.1, the only way to test a program is to

execute it and simulate the conditions where it is used. However, since recreating

a forest fire is not possible and considered illegal at the time being, a small fire

was created in an outside terrain and a camera was positioned at an altitude of 3

meters.

Figure 6.9: Executing the fire detection program.

In order to simulate the program’s execution, when the command is written,

the UAV’s location is given as input in the command line. The input is written in

a specific order, latitude, longitude and altitude. In this case, the location is the
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last waypoint of the flight simulation in section 6.1. The command in figure 6.9

start the program.

Figure 6.10: Fire detection simulation environment.

When the program is running and, in case of the real-time video feed detecting

fire, the fire object will be classified and located in the video output, as shown in

figure 6.11.

Figure 6.11: Successful fire detection.
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If it is detected for more than 8 frames the notification via text message is sent

to designated phone number.

Figure 6.12: Fire detection during simulation.

In case no fire is detected for more than 10 seconds, the program ends and kills

all threads and existing processes.

The simulation was successful however, the program did not detect the fire at

all times, which was expected because in sub-section 6.2.1 it was concluded that

the algorithm performance is not optimal in situations with small fires. During

the simulation, false positives were also detected. Such errors can be avoided by

adding more unclassified images of fire to the dataset which will help the algorithm

differentiate unclassified images from the classified ones.

6.3 High Precision Landing

In order to verify the possibility of integrating RTK technology for high precision

landing, real-life tests are performed using the described components in section

5.1.3. The objective is to prove that during the landing procedure the UAV can in

fact dock in the station with the maximum error of 3 cm. To test the components

an UAV was assembled and the final set up is shown in figure 6.13.

Since the recharging station was not implemented, the landing pad is signaled

with the heliport sign as in figure 6.14, that illustrates one of landing attempts.

85



Chapter 6. Results

Figure 6.13: Final UAV build.

Figure 6.14: High precision landing testing.

During the experiment, a centimeter precision was achieved as can be seen in

figure 6.15.

The experiment revealed that the UAV lands with a maximum error of 2.1

cm. Therefore the outcome of the experiment reveals that the RTK technology is

accurate enough for high precision landing validating the final result of the whole

system.

86



Chapter 6. Results

Figure 6.15: Reach precision output during experiment.

87





Chapter 7

Conclusion and Future Work

7.1 Main Conclusion

The purpose of this dissertation was to develop a fully autonomous system to

surveil forests assuring its safety against forest fires using UAVs. The first goal,

the flight automation, was successfully achieved using scripts written in python,

with use of several different libraries. It has proven to be reliable after being

tested in a flight simulator several times. The second and most important goal,

the development of the forest fire detection system to deliver an early and accurate

fire detection alarm, was also successful and it combined the use of convolutional

neural networks and its training procedures with real-time video applications.

This feature was successfully tested both in a real environment and with testing

tools to provide an insight of the feature’s accuracy and limitations. The final

goal, the development of the wireless transfer solar powered station where the

UAV would perform recharging procedures, was also achieved with the use of

wireless power charging and RTK technology. This final step was only partially

tested, proving the possibility of integrating the RTK technology for high accuracy

landing. Throughout the development of this system several conclusions were

taken:
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• The use of python turned out to be advantageous for UAV automation due

to the facility of finding useful python libraries;

• The fire detection algorithm proved to fail in situations where forest envi-

ronments are non-existing and where instead of one there are multiple small

fires;

• With the results presented and the use of low cost materials proved that

proposed system was worth of applying for real environment situations;

• The RTK technology proved to be successful when used for high accuracy

procedures;

• The low budget material proved to decrease performance in fire detection

and in flight performance.

7.2 Future Work

After concluding this dissertation’s research, some improvements can be considered

and also future functionalities can be added to the system:

• The fire detection algorithm can be improved, not only by using a larger

dataset but also integrating other sensors that allow for a more accurate

detection;

• The companion computer, the Raspberry Pi, should be replaced by the Jet-

son TX board to allow for continuous detection and higher performance;

• The camera module should also be replaced in order to have higher image

quality, therefore increasing the detection accuracy;

• A UAV with higher flight duration should also be used in order to increase

mission radius;

• Optimize the UAV deployment by implementing an extra system to calculate

the forest fire risk index and to predict the fire’s advance;
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• Implementation of swarm technology for UAV’s coordinated behaviours in

order to being able to use UAVs to patrol several areas simultaneously, en-

abling the use of nearby recharging stations.
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Appendix A

Flight Simulation Log File

[INFO]: Connecting to vehicle on: 127.0.0.1:14550

[INFO]: Connected

[DEBUG]: Starting system analysis

[INFO]: Global Location:

[INFO]: LocationGlobal:lat=0.0,lon=0.0,alt=None

[INFO]: Global Location (relative altitude):

[INFO]: LocationGlobalRelative:lat=0.0,lon=0.0,alt=0.0

[INFO]: Local Location:

[INFO]: LocationLocal:north=None,east=None,down=None

[INFO]: Attitude:

[INFO]: Attitude:pitch=-0.000112996094686,

yaw=-0.329702675343,roll=0.000109214859549

[INFO]: Velocity: [0.0, 0.0, 0.0]

[INFO]: GPS: GPSInfo:fix=0,num_sat=0

[INFO]: Gimbal status: Gimbal: pitch=None, roll=None, yaw=None

[INFO]: Battery: Battery:voltage=0.0,current=0.0,level=100

[INFO]: EKF OK?: False

[INFO]: Last Heartbeat: 0.75

[INFO]: Rangefinder: Rangefinder: distance=None, voltage=None

[INFO]: Rangefinder distance: None
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[INFO]: Rangefinder voltage: None

[INFO]: Heading: 341

[INFO]: Is Armable?: False

[INFO]: System status: ACTIVE

[INFO]: Groundspeed: 0.0

[INFO]: Airspeed: 0.0

[INFO]: Mode: STABILIZE

[INFO]: Armed: False

[INFO]: Vehicle EKF not ok

[DEBUG]: Waiting EKF

[INFO]: Vehicle EKF not ok

[DEBUG]: Waiting EKF

[INFO]: Vehicle EKF not ok

[DEBUG]: Waiting EKF

[INFO]: Vehicle EKF not ok

[DEBUG]: Waiting EKF

[INFO]: Vehicle EKF not ok

[DEBUG]: Waiting EKF

[INFO]: Vehicle EKF not ok

[DEBUG]: Waiting EKF

[INFO]: Vehicle EKF not ok

[DEBUG]: Waiting EKF

[INFO]: Vehicle EKF not ok

[DEBUG]: Waiting EKF

[INFO]: Vehicle EKF not ok

[DEBUG]: Waiting EKF

[INFO]: Vehicle EKF not ok

[DEBUG]: Waiting EKF

[INFO]: Create a new mission (for current location)

[DEBUG]: Clear any existing commands

[DEBUG]: Define/add new commands.
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[DEBUG]: Uploading new commands to vehicle

[DEBUG]: Starting takeoff

[DEBUG]: Arming motors

[DEBUG]: Waiting for arming...

[DEBUG]: Taking off!

[DEBUG]: Altitude: 0.003

[DEBUG]: Altitude: 0.003

[DEBUG]: Altitude: 0.033

[DEBUG]: Altitude: 1.458

[DEBUG]: Altitude: 3.577

[DEBUG]: Altitude: 5.834

[DEBUG]: Altitude: 8.173

[DEBUG]: Altitude: 10.564

[DEBUG]: Altitude: 12.991

[DEBUG]: Altitude: 15.443

[DEBUG]: Altitude: 17.909

[DEBUG]: Altitude: 20.381

[DEBUG]: Altitude: 22.859

[DEBUG]: Altitude: 25.343

[DEBUG]: Altitude: 27.831

[DEBUG]: Altitude: 30.32

[DEBUG]: Altitude: 32.807

[DEBUG]: Altitude: 35.3

[DEBUG]: Altitude: 37.793

[DEBUG]: Altitude: 40.286

[DEBUG]: Altitude: 42.786

[DEBUG]: Altitude: 45.281

[DEBUG]: Altitude: 47.775

[DEBUG]: Altitude: 50.271

[DEBUG]: Altitude: 52.769

[DEBUG]: Altitude: 55.265
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[DEBUG]: Altitude: 57.761

[DEBUG]: Altitude: 60.257

[DEBUG]: Altitude: 62.755

[DEBUG]: Altitude: 65.253

[DEBUG]: Altitude: 67.75

[DEBUG]: Altitude: 70.25

[DEBUG]: Altitude: 72.752

[DEBUG]: Altitude: 74.628

[DEBUG]: Altitude: 77.167

[DEBUG]: Altitude: 79.667

[DEBUG]: Altitude: 82.168

[DEBUG]: Altitude: 84.667

[DEBUG]: Altitude: 87.168

[DEBUG]: Altitude: 89.668

[DEBUG]: Altitude: 92.17

[DEBUG]: Altitude: 94.673

[DEBUG]: Altitude: 97.175

[DEBUG]: Altitude: 99.679

[DEBUG]: Altitude: 102.183

[DEBUG]: Altitude: 104.688

[DEBUG]: Altitude: 107.781

[DEBUG]: Altitude: 109.656

[DEBUG]: Altitude: 112.154

[DEBUG]: Altitude: 114.651

[DEBUG]: Reached target altitude

[INFO]: Take off complete

[INFO]: Starting mission

[DEBUG]: Distance to waypoint (0): None

[INFO]: Running fire dection script at lat=-35.3632607

lon=149.1652293 alt=698.66

[DEBUG]: Distance to waypoint (2): 131.195474933
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[DEBUG]: Distance to waypoint (2): 129.258487301

[DEBUG]: Distance to waypoint (2): 127.232487179

[DEBUG]: Distance to waypoint (2): 125.139696346

[DEBUG]: Distance to waypoint (2): 122.980114879

[DEBUG]: Distance to waypoint (2): 122.980114879

[DEBUG]: Distance to waypoint (2): 119.807534959

[DEBUG]: Distance to waypoint (2): 117.547768357

[DEBUG]: Distance to waypoint (2): 115.254606961

[DEBUG]: Distance to waypoint (2): 112.950314544

[DEBUG]: Distance to waypoint (2): 110.61262749

[DEBUG]: Distance to waypoint (2): 108.252677732

[DEBUG]: Distance to waypoint (2): 105.881597197

[DEBUG]: Distance to waypoint (2): 103.488254147

[DEBUG]: Distance to waypoint (2): 101.094912339

[DEBUG]: Distance to waypoint (2): 97.3212839615

[DEBUG]: Distance to waypoint (2): 94.9056836266

[DEBUG]: Distance to waypoint (2): 92.4678214323

[DEBUG]: Distance to waypoint (2): 90.0299611256

[DEBUG]: Distance to waypoint (2): 87.5809710961

[DEBUG]: Distance to waypoint (2): 85.1319185334

[DEBUG]: Distance to waypoint (2): 82.6717995142

[DEBUG]: Distance to waypoint (2): 80.2005513252

[DEBUG]: Distance to waypoint (2): 77.7293059785

[DEBUG]: Distance to waypoint (2): 75.2580637556

[DEBUG]: Distance to waypoint (2): 72.7868249739

[DEBUG]: Distance to waypoint (2): 70.3044583154

[DEBUG]: Distance to waypoint (2): 67.8221772251

[DEBUG]: Distance to waypoint (2): 65.3398226616

[DEBUG]: Distance to waypoint (2): 62.8574736488

[DEBUG]: Distance to waypoint (2): 60.3639993062

[DEBUG]: Distance to waypoint (2): 57.8816636026
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[DEBUG]: Distance to waypoint (2): 55.3882043931

[DEBUG]: Distance to waypoint (2): 52.8947543838

[DEBUG]: Distance to waypoint (2): 50.4013149419

[DEBUG]: Distance to waypoint (2): 47.896756375

[DEBUG]: Distance to waypoint (2): 45.4033434468

[DEBUG]: Distance to waypoint (2): 42.9099472394

[DEBUG]: Distance to waypoint (2): 40.4164344066

[DEBUG]: Distance to waypoint (2): 37.9119417462

[DEBUG]: Distance to waypoint (2): 35.4186077124

[DEBUG]: Distance to waypoint (2): 32.9253074182

[DEBUG]: Distance to waypoint (2): 30.4209186505

[DEBUG]: Distance to waypoint (2): 27.927713946

[DEBUG]: Distance to waypoint (2): 25.4234483893

[DEBUG]: Distance to waypoint (2): 22.9304047297

[DEBUG]: Distance to waypoint (2): 20.4260936194

[DEBUG]: Distance to waypoint (2): 17.9333168145

[DEBUG]: Distance to waypoint (2): 15.4296653015

[DEBUG]: Distance to waypoint (2): 12.9597886765

[DEBUG]: Distance to waypoint (2): 10.5689322873

[DEBUG]: Distance to waypoint (2): 8.27889665931

[DEBUG]: Distance to waypoint (2): 6.16969424305

[DEBUG]: Distance to waypoint (2): 4.28758102529

[DEBUG]: Distance to waypoint (2): 2.68313362062

[INFO]: Running fire dection script at lat=-35.3619731

lon=149.1652346 alt=704.01

[DEBUG]: Distance to waypoint (3): 115.268291138

[DEBUG]: Distance to waypoint (3): 112.941731304

[DEBUG]: Distance to waypoint (3): 110.604040357

[DEBUG]: Distance to waypoint (3): 108.255264715

[DEBUG]: Distance to waypoint (3): 105.884180911

[DEBUG]: Distance to waypoint (3): 103.490884102
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[DEBUG]: Distance to waypoint (3): 101.086460123

[DEBUG]: Distance to waypoint (3): 98.681986538

[DEBUG]: Distance to waypoint (3): 96.2663825203

[DEBUG]: Distance to waypoint (3): 93.8285163916

[DEBUG]: Distance to waypoint (3): 91.3906519126

[DEBUG]: Distance to waypoint (3): 89.3312700617

[DEBUG]: Distance to waypoint (3): 86.8822772119

[DEBUG]: Distance to waypoint (3): 84.4221546887

[DEBUG]: Distance to waypoint (3): 81.9620344715

[DEBUG]: Distance to waypoint (3): 79.5019167753

[DEBUG]: Distance to waypoint (3): 77.0306017366

[DEBUG]: Distance to waypoint (3): 74.5593558661

[DEBUG]: Distance to waypoint (3): 72.0769815049

[DEBUG]: Distance to waypoint (3): 69.5945368505

[DEBUG]: Distance to waypoint (3): 67.1121673593

[DEBUG]: Distance to waypoint (3): 64.6186704474

[DEBUG]: Distance to waypoint (3): 62.1363099936

[DEBUG]: Distance to waypoint (3): 59.6427391278

[DEBUG]: Distance to waypoint (3): 57.1603864656

[DEBUG]: Distance to waypoint (3): 54.6669087763

[DEBUG]: Distance to waypoint (3): 52.1734386497

[DEBUG]: Distance to waypoint (3): 49.6799772237

[DEBUG]: Distance to waypoint (3): 47.1866322376

[DEBUG]: Distance to waypoint (3): 44.6931985921

[DEBUG]: Distance to waypoint (3): 42.1997795005

[DEBUG]: Distance to waypoint (3): 39.7063777037

[DEBUG]: Distance to waypoint (3): 37.2131348758

[DEBUG]: Distance to waypoint (3): 34.7086580835

[DEBUG]: Distance to waypoint (3): 32.2153450373

[DEBUG]: Distance to waypoint (3): 29.7109423166

[DEBUG]: Distance to waypoint (3): 27.2177225647
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[DEBUG]: Distance to waypoint (3): 24.7134408344

[DEBUG]: Distance to waypoint (3): 22.2203803861

[DEBUG]: Distance to waypoint (3): 19.7163165821

[DEBUG]: Distance to waypoint (3): 17.2235624813

[DEBUG]: Distance to waypoint (3): 14.731080088

[DEBUG]: Distance to waypoint (3): 12.2835308188

[DEBUG]: Distance to waypoint (3): 9.91455443863

[DEBUG]: Distance to waypoint (3): 7.69135794599

[DEBUG]: Distance to waypoint (3): 5.66121617438

[DEBUG]: Distance to waypoint (3): 3.88021506499

[DEBUG]: Distance to waypoint (3): 2.39418609838

[INFO]: Running fire dection script at lat=-35.3607038

lon=149.1652347 alt=704.01

[DEBUG]: Distance to waypoint (4): 113.868243554

[DEBUG]: Distance to waypoint (4): 111.541721264

[DEBUG]: Distance to waypoint (4): 109.19293873

[DEBUG]: Distance to waypoint (4): 106.82189623

[DEBUG]: Distance to waypoint (4): 104.439725921

[DEBUG]: Distance to waypoint (4): 102.046428116

[DEBUG]: Distance to waypoint (4): 99.6308197124

[DEBUG]: Distance to waypoint (4): 97.2152654395

[DEBUG]: Distance to waypoint (4): 94.7885291236

[DEBUG]: Distance to waypoint (4): 92.3507195412

[DEBUG]: Distance to waypoint (4): 89.9128561273

[DEBUG]: Distance to waypoint (4): 87.4638628048

[DEBUG]: Distance to waypoint (4): 85.0037397641

[DEBUG]: Distance to waypoint (4): 82.543618984

[DEBUG]: Distance to waypoint (4): 80.0835006711

[DEBUG]: Distance to waypoint (4): 77.6122533231

[DEBUG]: Distance to waypoint (4): 75.1409388809

[DEBUG]: Distance to waypoint (4): 72.6696954476
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[DEBUG]: Distance to waypoint (4): 70.1761920901

[DEBUG]: Distance to waypoint (4): 67.7048800829

[DEBUG]: Distance to waypoint (4): 65.211382108

[DEBUG]: Distance to waypoint (4): 62.7178087891

[DEBUG]: Distance to waypoint (4): 60.2243174361

[DEBUG]: Distance to waypoint (4): 57.7308317377

[DEBUG]: Distance to waypoint (4): 55.2373524585

[DEBUG]: Distance to waypoint (4): 52.7550120626

[DEBUG]: Distance to waypoint (4): 50.2504169806

[DEBUG]: Distance to waypoint (4): 47.7680946582

[DEBUG]: Distance to waypoint (4): 45.2635207527

[DEBUG]: Distance to waypoint (4): 42.7812229941

[DEBUG]: Distance to waypoint (4): 40.2878096234

[DEBUG]: Distance to waypoint (4): 37.7944151782

[DEBUG]: Distance to waypoint (4): 35.3010436686

[DEBUG]: Distance to waypoint (4): 32.7965693997

[DEBUG]: Distance to waypoint (4): 30.3032613456

[DEBUG]: Distance to waypoint (4): 29.045492685

[DEBUG]: Distance to waypoint (4): 25.3054685726

[DEBUG]: Distance to waypoint (4): 22.8125334534

[DEBUG]: Distance to waypoint (4): 20.2972514552

[DEBUG]: Distance to waypoint (4): 17.8043788006

[DEBUG]: Distance to waypoint (4): 15.3002817925

[DEBUG]: Distance to waypoint (4): 12.8416823497

[DEBUG]: Distance to waypoint (4): 10.4500818554

[DEBUG]: Distance to waypoint (4): 8.18241214838

[DEBUG]: Distance to waypoint (4): 6.08372673857

[DEBUG]: Distance to waypoint (4): 4.22536633168

[DEBUG]: Distance to waypoint (4): 2.65574542218

[INFO]: Running fire dection script at lat=-35.3594396

lon=149.1652346 alt=704.02
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[DEBUG]: Distance to waypoint (5): 274.269157542

[DEBUG]: Distance to waypoint (5): 271.352597819

[DEBUG]: Distance to waypoint (5): 268.413602482

[DEBUG]: Distance to waypoint (5): 265.44121616

[DEBUG]: Distance to waypoint (5): 262.468830564

[DEBUG]: Distance to waypoint (5): 259.474006739

[DEBUG]: Distance to waypoint (5): 256.468052429

[DEBUG]: Distance to waypoint (5): 253.450967637

[DEBUG]: Distance to waypoint (5): 250.422752377

[DEBUG]: Distance to waypoint (5): 247.383228553

[DEBUG]: Distance to waypoint (5): 244.35483547

[DEBUG]: Distance to waypoint (5): 241.304358981

[DEBUG]: Distance to waypoint (5): 238.264835455

[DEBUG]: Distance to waypoint (5): 235.214181607

[DEBUG]: Distance to waypoint (5): 232.163527976

[DEBUG]: Distance to waypoint (5): 229.101744016

[DEBUG]: Distance to waypoint (5): 226.051090839

[DEBUG]: Distance to waypoint (5): 223.000437907

[DEBUG]: Distance to waypoint (5): 219.949785229

[DEBUG]: Distance to waypoint (5): 216.876871662

[DEBUG]: Distance to waypoint (5): 213.826394273

[DEBUG]: Distance to waypoint (5): 210.753480841

[DEBUG]: Distance to waypoint (5): 207.702828845

[DEBUG]: Distance to waypoint (5): 204.641046559

[DEBUG]: Distance to waypoint (5): 201.579264571

[DEBUG]: Distance to waypoint (5): 198.506352292

[DEBUG]: Distance to waypoint (5): 195.444570945

[DEBUG]: Distance to waypoint (5): 192.382789944

[DEBUG]: Distance to waypoint (5): 189.321181155

[DEBUG]: Distance to waypoint (5): 186.248269767

[DEBUG]: Distance to waypoint (5): 183.186489381
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[DEBUG]: Distance to waypoint (5): 180.124709397

[DEBUG]: Distance to waypoint (5): 177.063100286

[DEBUG]: Distance to waypoint (5): 173.990189961

[DEBUG]: Distance to waypoint (5): 170.92841072

[DEBUG]: Distance to waypoint (5): 167.855332557

[DEBUG]: Distance to waypoint (5): 164.793723012

[DEBUG]: Distance to waypoint (5): 161.731945265

[DEBUG]: Distance to waypoint (5): 158.670168072

[DEBUG]: Distance to waypoint (5): 155.597260766

[DEBUG]: Distance to waypoint (5): 152.535484783

[DEBUG]: Distance to waypoint (5): 149.462578736

[DEBUG]: Distance to waypoint (5): 146.400804112

[DEBUG]: Distance to waypoint (5): 143.328063372

[DEBUG]: Distance to waypoint (5): 139.798634549

[DEBUG]: Distance to waypoint (5): 139.798634549

[DEBUG]: Distance to waypoint (5): 136.737024499

[DEBUG]: Distance to waypoint (5): 130.613479825

[DEBUG]: Distance to waypoint (5): 130.613479825

[DEBUG]: Distance to waypoint (5): 124.935330864

[DEBUG]: Distance to waypoint (5): 121.873561672

[DEBUG]: Distance to waypoint (5): 118.800662829

[DEBUG]: Distance to waypoint (5): 115.739052998

[DEBUG]: Distance to waypoint (5): 112.666155548

[DEBUG]: Distance to waypoint (5): 109.593415027

[DEBUG]: Distance to waypoint (5): 106.531650034

[DEBUG]: Distance to waypoint (5): 103.458755756

[DEBUG]: Distance to waypoint (5): 100.385863198

[DEBUG]: Distance to waypoint (5): 97.3131234828

[DEBUG]: Distance to waypoint (5): 94.2402332127

[DEBUG]: Distance to waypoint (5): 91.1786249605

[DEBUG]: Distance to waypoint (5): 88.1057374234
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[DEBUG]: Distance to waypoint (5): 85.0441299153

[DEBUG]: Distance to waypoint (5): 81.9711011995

[DEBUG]: Distance to waypoint (5): 78.8983643502

[DEBUG]: Distance to waypoint (5): 75.8254863782

[DEBUG]: Distance to waypoint (5): 72.7637432428

[DEBUG]: Distance to waypoint (5): 69.7020044217

[DEBUG]: Distance to waypoint (5): 66.6402705029

[DEBUG]: Distance to waypoint (5): 63.556279792

[DEBUG]: Distance to waypoint (5): 60.4946839543

[DEBUG]: Distance to waypoint (5): 57.4218341923

[DEBUG]: Distance to waypoint (5): 54.3601239489

[DEBUG]: Distance to waypoint (5): 51.2872921206

[DEBUG]: Distance to waypoint (5): 48.2256032556

[DEBUG]: Distance to waypoint (5): 45.1639284016

[DEBUG]: Distance to waypoint (5): 42.1022706123

[DEBUG]: Distance to waypoint (5): 39.0295897661

[DEBUG]: Distance to waypoint (5): 35.9679696763

[DEBUG]: Distance to waypoint (5): 32.8952498698

[DEBUG]: Distance to waypoint (5): 29.8337036173

[DEBUG]: Distance to waypoint (5): 26.7610817289

[DEBUG]: Distance to waypoint (5): 23.6996882956

[DEBUG]: Distance to waypoint (5): 20.6272385747

[DEBUG]: Distance to waypoint (5): 17.5661112129

[DEBUG]: Distance to waypoint (5): 14.4941330112

[DEBUG]: Distance to waypoint (6): 12.5703001955

[DEBUG]: Distance to waypoint (6): 10.0194751381

[DEBUG]: Distance to waypoint (6): 7.85858158935

[DEBUG]: Distance to waypoint (6): 6.10591790313

[DEBUG]: Distance to waypoint (6): 4.76903804325

[DEBUG]: Distance to waypoint (6): 3.7402907689

[DEBUG]: Distance to waypoint (6): 2.85856282386
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[INFO]: Running fire dection script at lat=-35.3593908

lon=149.1679985 alt=704.02

[DEBUG]: Distance to waypoint (7): 117.205955361

[DEBUG]: Distance to waypoint (7): 114.923797479

[DEBUG]: Distance to waypoint (7): 112.608346967

[DEBUG]: Distance to waypoint (7): 110.270429848

[DEBUG]: Distance to waypoint (7): 107.921584716

[DEBUG]: Distance to waypoint (7): 105.550374894

[DEBUG]: Distance to waypoint (7): 103.168136322

[DEBUG]: Distance to waypoint (7): 100.785898918

[DEBUG]: Distance to waypoint (7): 98.336874089

[DEBUG]: Distance to waypoint (7): 95.9212450646

[DEBUG]: Distance to waypoint (7): 93.5058376391

[DEBUG]: Distance to waypoint (7): 91.0790835511

[DEBUG]: Distance to waypoint (7): 88.6414322419

[DEBUG]: Distance to waypoint (7): 86.2036747621

[DEBUG]: Distance to waypoint (7): 83.7437879712

[DEBUG]: Distance to waypoint (7): 81.2949201084

[DEBUG]: Distance to waypoint (7): 78.8239344147

[DEBUG]: Distance to waypoint (7): 76.3641012843

[DEBUG]: Distance to waypoint (7): 73.8930139011

[DEBUG]: Distance to waypoint (7): 71.4220925999

[DEBUG]: Distance to waypoint (7): 68.9399098066

[DEBUG]: Distance to waypoint (7): 66.457745095

[DEBUG]: Distance to waypoint (7): 63.975772043

[DEBUG]: Distance to waypoint (7): 61.482526568

[DEBUG]: Distance to waypoint (7): 59.0004377901

[DEBUG]: Distance to waypoint (7): 56.5183785333

[DEBUG]: Distance to waypoint (7): 54.0363528647

[DEBUG]: Distance to waypoint (7): 51.5432357426

[DEBUG]: Distance to waypoint (7): 49.0501633195
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[DEBUG]: Distance to waypoint (7): 46.5571427778

[DEBUG]: Distance to waypoint (7): 44.0641829225

[DEBUG]: Distance to waypoint (7): 41.5710307858

[DEBUG]: Distance to waypoint (7): 39.0782110087

[DEBUG]: Distance to waypoint (7): 36.5851952232

[DEBUG]: Distance to waypoint (7): 34.0925767077

[DEBUG]: Distance to waypoint (7): 31.610893774

[DEBUG]: Distance to waypoint (7): 29.1185794306

[DEBUG]: Distance to waypoint (7): 26.626497741

[DEBUG]: Distance to waypoint (7): 24.1240420594

[DEBUG]: Distance to waypoint (7): 21.6433537794

[DEBUG]: Distance to waypoint (7): 19.1531165645

[DEBUG]: Distance to waypoint (7): 16.662585267

[DEBUG]: Distance to waypoint (7): 14.1849809803

[DEBUG]: Distance to waypoint (7): 11.7537980341

[DEBUG]: Distance to waypoint (7): 9.39143384147

[DEBUG]: Distance to waypoint (7): 7.17842750819

[DEBUG]: Distance to waypoint (7): 5.15953057788

[DEBUG]: Distance to waypoint (7): 3.39501095383

[DEBUG]: Distance to waypoint (7): 1.94780587042

[INFO]: Running fire dection script at lat=-35.3606668

lon=149.1680018 alt=704.01

[DEBUG]: Distance to waypoint (8): 114.424558865

[DEBUG]: Distance to waypoint (8): 112.109009024

[DEBUG]: Distance to waypoint (8): 109.782327708

[DEBUG]: Distance to waypoint (8): 107.422251725

[DEBUG]: Distance to waypoint (8): 105.051044254

[DEBUG]: Distance to waypoint (8): 102.668705292

[DEBUG]: Distance to waypoint (8): 100.27532323

[DEBUG]: Distance to waypoint (8): 97.8597692046

[DEBUG]: Distance to waypoint (8): 95.444126321
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[DEBUG]: Distance to waypoint (8): 93.0174466598

[DEBUG]: Distance to waypoint (8): 90.5795435662

[DEBUG]: Distance to waypoint (8): 88.1306077758

[DEBUG]: Distance to waypoint (8): 85.6816773138

[DEBUG]: Distance to waypoint (8): 83.2216211894

[DEBUG]: Distance to waypoint (8): 80.7616796633

[DEBUG]: Distance to waypoint (8): 78.3016403123

[DEBUG]: Distance to waypoint (8): 75.8304775056

[DEBUG]: Distance to waypoint (8): 73.3594442842

[DEBUG]: Distance to waypoint (8): 70.8771728975

[DEBUG]: Distance to waypoint (8): 69.6416069128

[DEBUG]: Distance to waypoint (8): 65.9237959276

[DEBUG]: Distance to waypoint (8): 63.4417035294

[DEBUG]: Distance to waypoint (8): 60.9483598152

[DEBUG]: Distance to waypoint (8): 58.4661651528

[DEBUG]: Distance to waypoint (8): 57.2195098979

[DEBUG]: Distance to waypoint (8): 54.7373469415

[DEBUG]: Distance to waypoint (8): 52.2440782632

[DEBUG]: Distance to waypoint (8): 49.750838466

[DEBUG]: Distance to waypoint (8): 47.25763212

[DEBUG]: Distance to waypoint (8): 44.7644648146

[DEBUG]: Distance to waypoint (8): 42.2713434576

[DEBUG]: Distance to waypoint (8): 39.7782766886

[DEBUG]: Distance to waypoint (8): 37.2850344146

[DEBUG]: Distance to waypoint (8): 34.8029698613

[DEBUG]: Distance to waypoint (8): 32.3101062604

[DEBUG]: Distance to waypoint (8): 29.8173585849

[DEBUG]: Distance to waypoint (8): 27.3244387229

[DEBUG]: Distance to waypoint (8): 24.8319987105

[DEBUG]: Distance to waypoint (8): 22.3509331297

[DEBUG]: Distance to waypoint (8): 19.8590837152
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[DEBUG]: Distance to waypoint (8): 17.3566036879

[DEBUG]: Distance to waypoint (8): 14.8771014506

[DEBUG]: Distance to waypoint (8): 12.4320988442

[DEBUG]: Distance to waypoint (8): 10.0778555398

[DEBUG]: Distance to waypoint (8): 7.83676924953

[DEBUG]: Distance to waypoint (8): 5.79893003811

[DEBUG]: Distance to waypoint (8): 4.00222568433

[DEBUG]: Distance to waypoint (8): 2.49430287438

[INFO]: Running fire dection script at lat=-35.3619279

lon=149.1680009 alt=704.01

[DEBUG]: Distance to waypoint (9): 115.11608645

[DEBUG]: Distance to waypoint (9): 112.811677872

[DEBUG]: Distance to waypoint (9): 110.473944756

[DEBUG]: Distance to waypoint (9): 108.125080044

[DEBUG]: Distance to waypoint (9): 105.753881107

[DEBUG]: Distance to waypoint (9): 103.371621097

[DEBUG]: Distance to waypoint (9): 100.978301343

[DEBUG]: Distance to waypoint (9): 99.7760038148

[DEBUG]: Distance to waypoint (9): 96.1581245982

[DEBUG]: Distance to waypoint (9): 93.7314137485

[DEBUG]: Distance to waypoint (9): 91.2934973758

[DEBUG]: Distance to waypoint (9): 88.8556587737

[DEBUG]: Distance to waypoint (9): 86.406691809

[DEBUG]: Distance to waypoint (9): 85.1822096643

[DEBUG]: Distance to waypoint (9): 82.7333329127

[DEBUG]: Distance to waypoint (9): 80.2732466003

[DEBUG]: Distance to waypoint (9): 77.8020334284

[DEBUG]: Distance to waypoint (9): 75.3308254868

[DEBUG]: Distance to waypoint (9): 72.8484917816

[DEBUG]: Distance to waypoint (9): 70.3772960045

[DEBUG]: Distance to waypoint (9): 67.8949758319
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[DEBUG]: Distance to waypoint (9): 65.4126636051

[DEBUG]: Distance to waypoint (9): 62.9303602634

[DEBUG]: Distance to waypoint (9): 60.4369355644

[DEBUG]: Distance to waypoint (9): 57.9546535179

[DEBUG]: Distance to waypoint (9): 55.461253031

[DEBUG]: Distance to waypoint (9): 52.9789984119

[DEBUG]: Distance to waypoint (9): 50.4856294583

[DEBUG]: Distance to waypoint (9): 48.0034110013

[DEBUG]: Distance to waypoint (9): 45.5100841866

[DEBUG]: Distance to waypoint (9): 43.0167840338

[DEBUG]: Distance to waypoint (9): 40.5235154642

[DEBUG]: Distance to waypoint (9): 38.0302846896

[DEBUG]: Distance to waypoint (9): 35.5370996641

[DEBUG]: Distance to waypoint (9): 33.0551006414

[DEBUG]: Distance to waypoint (9): 30.5620412145

[DEBUG]: Distance to waypoint (9): 28.0690701487

[DEBUG]: Distance to waypoint (9): 25.5762132821

[DEBUG]: Distance to waypoint (9): 23.072379875

[DEBUG]: Distance to waypoint (9): 20.5798813957

[DEBUG]: Distance to waypoint (9): 18.0876746568

[DEBUG]: Distance to waypoint (9): 15.5958995172

[DEBUG]: Distance to waypoint (9): 13.1376257622

[DEBUG]: Distance to waypoint (9): 10.0808384039

[DEBUG]: Distance to waypoint (9): 8.480676772

[DEBUG]: Distance to waypoint (9): 6.38298361538

[DEBUG]: Distance to waypoint (9): 4.51206526061

[DEBUG]: Distance to waypoint (9): 2.91503088543

[DEBUG]: Distance to waypoint (9): 1.64284659915

[DEBUG]: Distance to waypoint (9): 0.786232321484

[DEBUG]: Distance to waypoint (9): 0.534765072211

[DEBUG]: Distance to waypoint (9): 0.593682626936
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[DEBUG]: Distance to waypoint (9): 0.612537150277

[DEBUG]: Distance to waypoint (9): 0.578633873118

[DEBUG]: Distance to waypoint (9): 0.539415886783

[DEBUG]: Distance to waypoint (9): 0.527946651012

[DEBUG]: Distance to waypoint (9): 0.545744546681

[DEBUG]: Distance to waypoint (9): 0.558513933201

[DEBUG]: Distance to waypoint (9): 0.58277793585

[DEBUG]: Distance to waypoint (9): 0.593841648196

[DEBUG]: Distance to waypoint (9): 0.603812446962

[DEBUG]: Distance to waypoint (9): 0.60292060704

[DEBUG]: Distance to waypoint (9): 0.602233249089

[DEBUG]: Distance to waypoint (9): 0.590625713663

[DEBUG]: Distance to waypoint (9): 0.590344003789

[DEBUG]: Distance to waypoint (9): 0.590344003789

[DEBUG]: Distance to waypoint (9): 0.590272134364

[DEBUG]: Distance to waypoint (9): 0.590272134364

[DEBUG]: Distance to waypoint (10): 0.590272134364

[INFO]: Running fire dection script at lat=-35.3632161

lon=149.1680001 alt=704.01

[INFO]: Exit ’standard’ mission

[INFO]: Return to launch

[DEBUG]: Close vehicle object
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Appendix C

Raspberry Pi v2 Camera Module

Specifications

Size Around 25 x 24 x 9 mm
Weight 3g
Still resolution 8 Megapixels
Video modes 1080p30, 720p60 and 640 x 480p60/90
Linux integration V4L2 driver available
C programming API OpenMAX IL and others available
Sensor Sony IMX219
Sensor resolution 3280 x 2464 pixels
Sensor image area 3.68 x 2.76 mm (4.6 mm diagonal)
Pixel size 1.12µm /x 1.12 µm
Optical size 1/4"
Focal length 3.04 mm
Horizontal field of view 62.2 degrees
Vertical field of view 48.8 degrees
Focal ratio (F-Stop) 2.0

[48]
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