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Abstract  

The fast growth of Internet-connected embedded devices raises new challenges for the traditional 

network design, such as scalability, diversity, and complexity. To endorse these challenges, this 

thesis suggests the aggregation of several emerging technologies: software-defined networking 

(SDN), fog computing, containerization and sensor virtualization.  

This thesis proposes, designs, implements and evaluates a new solution based on the emergent 

paradigm of SDN to efficiently manage virtualized resources located at the network edge in scenarios 

involving embedded sensor devices. The sensor virtualization through the containers provides agility, 

flexibility and abstraction for the data processing, being possible to summarize the huge amount of 

data produced by sensor devices. The proposed architecture uses a software-defined system, 

managed by a Ryu SDN controller, and a websocket broker written from scratch that analyses the 

messages sent to the controller and activates containers when required. 

Performance and functional tests were performed to assess the time required from activating the 

sensor containers to being able to communicate with them. The results were obtained by sending 

four ICMP packets. The best time response results were obtained by the proactive controller behavior 

mode, when compared to the hybrid and reactive modes. 

This thesis contributed to fill the gaps in the area of IoT or sensor networks, concerning the design 

and implementation of an architecture that performed on-demand activation of offline IoT fog 

computing resources by using an SDN controller and sensor virtualization through containers. 

 

 

 

Keywords: Software-defined Networking, Internet of Things, Fog Computing, Linux Container 
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Resumo  

O rápido crescimento de dispositivos embebidos conectados à Internet gera novos desafios para a 

arquitetura de rede tradicional, tais como escalabilidade, diversidade e complexidade. Para resolver 

estes desafios, esta tese sugere a agregação de diversas tecnologias emergentes: rede definida por 

software (SDN), contentores, computação na periferia e virtualização de sensores.  

Esta tese propõe, projeta, implementa e avalia uma nova solução baseada no paradigma emergente 

do SDN para gerir, de forma eficiente, recursos virtualizados que se localizam na periferia da rede, 

em cenários com sensores embebidos. A virtualização de sensores, através do uso de contentores, 

fornece agilidade, flexibilidade e abstração para processamento de dados, sendo possível a 

sumarização do grande volume de dados produzido pelos sensores. A arquitetura proposta usa um 

sistema definido por software, gerido por um controlador SDN Ryu, e um websocket broker escrito 

desde o zero, que analisa as mensagens enviadas ao controlador e ativa contentores quando 

necessário. 

Foram realizados testes funcionais e de desempenho de forma a ser possível avaliar o tempo 

necessário desde a ativação de um contentor de sensores até ser possível a comunicação com 

este. Os resultados foram obtidos através do envio de quatro pacotes ICMP. O melhor resultado foi 

obtido pelo modo de comportamento proativo do controlador, quando comparado aos modos híbrido 

e reativo. 

Esta tese contribuiu para preencher as lacunas na área de IoT ou redes de sensores, no que diz 

respeito ao desenho e implementação de uma arquitetura que executa a ativação sob pedido de 

recursos computacionais e periféricos de IoT quando estes se encontram desligados, através do 

uso de um controlador SDN e virtualização de sensores através de contentores. 

 

 

 

Palavras-chave: Redes definidas por software, Internet das coisas, Computação na periferia, 

Contentores Linux 
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Chapter 1 – Introduction 

1.1. Motivation and Background 

The concept of Internet of Things (IoT) was used for the first time in 1999 by Kevin Ashton, merging the 

human’s communication network and the real world of things, such as devices, sensors and actuators, 

that are linked together and connected to the Internet, having the ability to collect and transmit 

environment information [1]. According to IDC (International Data Corporate), it is estimated that by the 

end of 2020 there will be 212 billion of things connected to the Internet [2], thanks to the improvement 

of the telecom sector, the cheaper Internet and the facility to produce smaller but more powerful 

hardware. This exponential increase of IoT devices create challenges in terms of scalability, mobility, 

heterogeneity and security. The enormous scale of devices connected, the management of the high 

volume of data produced, the use of different communication protocols and different hardware and 

software by manufacturers makes the use of traditional network architecture ineffective, being required 

a more flexible and dynamic network’s architecture. 

Transferring all the IoT data to the cloud is also becoming a challenge, requiring a high bandwidth and 

energy consumption. The addition of a fog layer between IoT devices and the cloud would increase the 

performance, mobility and security, and reduce the data volume exchange and the latency [3]. However 

the addition of this technology introduces some complexity and mobility issues.  

Software-defined networking (SDN) has emerged as a network architecture that allows the management 

of the complexity of Fog Computing environment and helps solving the IoT heterogeneity problem, 

enabling the creation of independent features and protocols of manufacturers, overcoming the problems 

related to the closed hardware and proprietary software [4]. In traditional networks, the control plane 

and the data plane are located within the network elements, requiring a configuration on each device, 

using a low-level and often vendor-specific commands. SDN, unlike the traditional network, and, as 

shown in Figure 1, it separates the control plane from the data plane, having a centralized control that 

provides an abstract overview of all the network topology [5]. Thus, it is possible to optimize traffic 

management as well as support service requirement from a centralized user interface (UI), offering 

greater agility, traffic programmability and the capability to implement network automation [6]. 

 

Figure 1 - Traditional networking vs SDN [7] 
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The use of virtualization techniques applied to SDN and sensors can help facing the scalability and 

heterogeneity issues. The use of sensors virtualization provides software abstraction, reducing the 

number of physical devices needed and allowing their resources management through open APIs [8][9]. 

 

1.2. Research Questions and Objectives 

Considering the above-mentioned gaps in the area of IoT or sensor networks and the opportunities that 

SDN brings, there is a relevant question: 

▪ Is it possible to efficiently perform on-demand activation of IoT computing resources using a 

software-defined system? 

As such, the main goal of this thesis consists on proposing an architecture that uses a software-defined 

networking approach to efficiently activate fog computational resources on-demand, as required by IoT 

or sensor networks applications. 

 

1.3. Investigation Method 

After identifying the problem and objectives and to proceed to the investigation proposed on this thesis, 

an architecture was designed and evaluated, and the obtained results analyzed. This architecture is 

composed by a virtual switch that communicates to a software-defined networking controller through the 

southbound API. The controller communicates through the northbound API with an intelligent Broker 

that was created to analyze messages and to request a container on-demand.  

To test the efficiency of the proposed solution, performance and functional tests were performed. The 

performance test was executed with three different SDN controller code versions to understand the time 

required from activating the containers to being able to communicate with them. The functional test 

consisted in the communication between containers through a very popular sensor protocol, i.e. MQTT-

SN. The final goal of this thesis in terms of design and implementation was the application of both tests 

in simultaneous, i.e. the activation of containers and the immediate messages exchange through the 

MQTT-SN protocol.  

Overall, this thesis helps facing the IoT and sensor networks issues concerning the design and 

implementation of an architecture that performed on-demand activation of offline IoT fog computing 

resources by using an SDN controller, containerization and sensor virtualization. 
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1.4. Dissertation Outline 

The rest of this thesis is organized as follows. Chapter 2 discusses the literature review and describes 

the different technologies used. Chapter 3 details the proposed solution, where the proposed 

architecture and the implementation can be found. Chapter 4 discusses the obtained results. Finally, 

the Chapter 5 presents the general conclusions about the work developed, as well as suggestions of 

future work.    
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Chapter 2 – Literature Review 

2.1. Internet of Things 

The Internet of Things (IoT) is a global network where things, like sensors, devices and actuators, are 

connected to the Internet, sensing and collecting data, allowing the communication not just between 

humans and things but also between humans themselves.  

The IoT devices possess rigorous requirements in terms of hardware and software, making these 

devices intelligent and autonomous, capable of performing tasks of detection, monitoring and interaction 

with the environment. Their capability for collecting data allow these devices to change their state as 

well as their context dynamically. The connectivity amongst IoT devices is essential as it contributes for 

the global intelligence of the IoT network. However, this connectivity creates a challenge in terms of the 

enormous scale of devices connected and the management of the high volume of data produced, being 

required the use of a network capable of adapting in an efficient and immediate way [10][11]. Alongside 

with scalability, IoT devices heterogeneity and security issues must also be taken into consideration. 

IoT devices require security features to ensure, amongst others, authentication, confidentiality, privacy, 

access control, anonymity and availability. With the intend of IoT to connect devices from different 

vendors, with different characteristics and complexity, it is necessary the implementation of protocols 

that support heterogeneous environments as well as security features [12][13].  

 

web server 

cloud

gateway

celular sensor 

nodes

sensor 

nodes

APPLICATION LAYER PROTOCOL

clients

APPLICATION LAYER PROTOCOL

 

Figure 2 - IoT Architecture [14]  
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2.1.1 IoT Platforms 

Due to the scalability problem created by the Internet of Things, it is necessary the use of platforms that 

provide communication protocols in order to connect the IoT devices to the network. These platforms 

enable the connectivity, services and cloud for the devices and can be integrated with smartphones 

allowing a real-time portable monitoring, optimizing costs and ensuring safety and reliability [15]. 

According to IoT Analytics [16], there are more than 300 IoT platforms, which can be divided based on 

its level of technology depth. The first level is composed by the connectivity platform, that simply collects 

the data from the devices while the second level refers to the action platforms, which manages the 

connection and provides trigger actions based on specific events. Full-scale platforms are in the third 

level of technology depth. These are the most advanced platforms that besides allowing connectivity 

and action, also enable external interfaces such as APIs, SDKs and gateways, support various protocols 

and standards and provide database solutions. Although this last level is the one with most features, the 

major percentage of IoT platforms provided by companies are at level 1. 

An IoT platform should be open, flexible, providing a perfect integration between heterogeneous devices 

and using all kind of topologies and protocols. In addition, the IoT platform should be easy to use and 

ensure software updates, provide storage for a huge data volume and a fast execution of actions based 

on specific sensor data. In order to interact with the user, the data provided by devices should be 

analyzed and displayed through graphics or diagrams. The IoT platform should also provide additional 

tools like platform ecosystems apps, enabling the devices visualization, management and controlling, 

as well as programming interfaces and software development kits (SDK). 

Some of the most used platforms nowadays are Amazon AWS IoT1, Microsoft Azure IoT2, Google Cloud 

IoT3, Cisco IoT Services4, Watson IoT (IBM) 5, ThingWorx (PTC) 6, amongst others. 

 

 

 

 

 

 

 

 

________________________________ 

1 https://aws.amazon.com/ 
2 https://azure.microsoft.com 
3 https://cloud.google.com/ 
4 https://www.cisco.com/c/en/us/solutions/internet-of-things/overview.html 
5 https://www.ibm.com/watson 
6 https://www.ptc.com/en/products/iiot/thingworx-platform 
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2.1.2. IoT Communication Protocols 

IoT uses lightweight communication protocols in order to produce a more efficient communication in 

sensor networks. The main advantages are the following: small-size packets, less bandwidth, demand 

a low demand of processing resources and decrease of energy consumption. 

There are different communication protocols that can be used at diverse layers. However, most of these 

protocols, such as HTTP and TCP/IP, require fast processing units and high-power. This resources and 

capabilities are not available in embedded devices, being necessary the use of lightweight 

communication protocols [18]. Thus, application-layer protocols are preferable in order to satisfy the 

specifications of IoT devices as well as integrate a solution closer to end-users [17]. Three application-

layer protocols were used, including MQTT, MQTT-SN and CoAP. 

 

2.1.2.1. MQTT and MQTT-SN Protocols 

Message Queue Telemetry Transport (MQTT) was released by IBM and designed for machine-to-

machine (M2M) communication in IoT networks. It is a lightweight protocol that has in consideration the 

latency, bandwidth and the devices with constrained resources. 

MQTT is an asynchronous publish/subscribe protocol requiring a low amount of computational 

resources and network bandwidth. It has a broker that contains topics, where clients publish messages 

over a specific topic and subscribers receive them after every new update. 

MQTT has three QoS (Quality of Service) levels, which defines the reliability in how a message is 

received [17]: 

▪ Level 1: Fire and Forget – A message is sent only once and no acknowledgment is required. 

This is a best-effort delivery service. 

▪ Level 2: Delivered at least once – A message is sent at least once and an acknowledgment is 

required. This guarantees that a message is delivered at least one time to its destination. 

▪ Level 3: Delivered exactly once – A handshake mechanism is used to ensure that only one 

message is delivered to its destination. 

MQTT uses TCP/IP which, in some cases, can be a heavy transport protocol for embedded devices 

with low processing capacity and battery dependency.   

 

MQTT for Sensor Networks (MQTT-SN) is a protocol similar to MQTT but more focused on the 

characteristics of sensor networks. It is optimized for implementation on low-cost, battery-operated 

devices with limited processing and storage capabilities and, unlike MQTT, the MQTT-SN operates on 

any transport layer and has a smaller packet length to assure the resistance to transmission errors.  

Instead of a topic name, that can have until 65535 bytes of size, the MQTT-SN uses topic ID with two-

byte long with the intention of reducing the packet’s header [19]. 
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In the architecture of MQTT-SN, represented in Figure 3, there are three kinds of components:  

▪ MQTT-SN clients – connect themselves to a MQTT broker via a MQTT-SN GW; 

▪ MQTT-SN gateways (GW) – may or may not be integrated within a MQTT broker. The main 

function of MQTT-SN Gateway is the translation of messages between MQTT-SN clients and 

the MQTT Broker; 

▪ MQTT-SN forwarders – MQTT-SN clients can access a GW via a MQTT-SN forwarder in the 

scenario where the GW is not directly connected to the MQTT-SN clients. The MQTT-SN 

forwarder encapsulates the MQTT-SN frames received on the wireless side and forwards the 

received messages unaltered to the GW. 

 

MQTT-SN 
client ...

MQTT-SN 
client

MQTT-SN 
Gateway

MQTT 
BrokerMQTT-SN 

Gateway

MQTT-SN 
client

MQTT-SN 
ForwarderMQTT-SN 

client

MQTT-S

MQTT-SN

MQTT-SN

MQTT-SN

MQTT

 

Figure 3 - MQTT-SN Architecture, based on [20] 

 

Depending on how a GW performs the protocol translation between MQTT-SN clients and the MQTT 

broker, one can enumerate two GW types, as shown in Figure 4. The first type is designated by 

transparent GW and is responsible to maintain a MQTT connection between the MQTT-SN client and 

the server. Thus, the GW has the same number of connections on both sides. The second GW type is 

designated by the aggregating GW, which has only one MQTT connection to the server. In this case the 

messages are exchanged amongst each MQTT-client and the aggregated GW via a specific connection. 

Then, the GW decides the correct order for the messages to send through a single connection to the 

server [20]. 
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Transparent 
GW

MQTT-SN 
client

MQTT-SN 
client

MQTT-SN 
client

MQTT
Broker

MQTT-SN MQTT

Aggregating 
GW

MQTT-SN 
client

MQTT-SN 
client

MQTT-SN 
client

MQTT-SN

MQTT MQTT 
Broker

 

Figure 4 - Transparent and Aggregating Gateways, based on [20] 

 

2.1.2.2. CoAP 

Constrained Application Protocol (CoAP) (RFC 7252) was designed by the Internet Engineering Task 

Force (IETF) for peripheral devices with limited resources. It is a request/response protocol essentially 

used for machine-to-machine (M2M) communication. It runs over UDP and is interoperable with HTTP, 

using HTTP commands to allow the communication between client and server. This communication also 

requires a gateway to adjust the transport logical connection of TCP (HTTP side) with the transport 

connectionless session of UDP (COAP side). In addition, the CoAP uses Universal Resource Identifier 

(URI) instead of topics as used by MQTT. 

Considering the fact that CoAP does not depend on a reliable TCP connection, this implies that COAP 

can operate in scenarios with low bandwidth and poor signal situations. 

To achieve reliability, CoAP has two bits reserved in the header to indicate the type of message and the 

QoS level [14]: 

▪ Confirmable – a request message that requires an acknowledgement as a confirmation of its 

reception 

▪ Non-Confirmable – a message that doesn’t need an acknowledgement 

▪ Acknowledgement – it confirms the reception of a confirmable request message  

▪ Reset – it confirms the reception of a message that couldn’t be processed  

CoAP 
Server ...

CoAP 
Clients

CoAP 
Clients

CoAP 
Clients

 

Figure 5 - CoAP 
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2.1.2.3. Comparison MQTT, MQTT-SN and CoAP 

Hamdani et al. [17] compared the three MQTT QoS (Quality of Service) levels with CoAP, regarding 

message delivery latency and network bandwidth usage. In terms of latency, the MQTT shows more 

stability and the CoAP protocol evidences lower rates, whereas in terms of bandwidth the MQTT protocol 

consumes more than the CoAP does. These results are due to the QoS of MQTT since CoAP messages 

require fewer packet bytes while ensuring acknowledgement of the received messages. 

Karagiannis et al. [14] evaluated the performance of CoAP and MQTT at different conditions using a 

common middleware that allows a more suitable protocol to be used in specific network conditions. 

MQTT messages experienced lower delays than CoAP for low packet loss and higher delays for higher 

packet loss. When messages have a small size and low loss rate, CoAP generates less extra traffic 

than MQTT to ensure the transmission reliability of data messages. 

Silva et al. [19] compared the MQTT and MQTT-SN protocol regarding memory consumption by 

messages header. Considering only the header size plus a payload of the collected temperature, MQTT-

SN presented a better performance when compared to the MQTT in approximately 50% due to its 

shorter packet’s header. The fact that MQTT-SN uses a topic ID instead of a string helps decreasing 

the messages’ size. 

Thus, CoAP and MQTT-SN can be considered as good options in situations with a low level of available 

bandwidth. However, in scenarios where the bandwidth is not an issue and reliability is needed, the 

MQTT is the best solution. 

Table 1 details the comparison between the three IoT application-layer protocols discussed in this sub-

section. 

Table 1 – Comparison between MQTT, MQTT-SN and CoAP [21] 

  

 MQTT MQTT-SN CoAP 

Year 1999 2007 2010 

Architecture  Client/Broker 
Client/Gateway 

Client/Forwarder 
Gateway/Broker 

Client/Server or  
Client/Broker 

Abstraction Publish/Subscribe Publish/Subscribe 
Request/Response or 

Publish/Subscribe 

Header Size 2 bytes 2 bytes 4 bytes 

Message Size 
Small and Undefined (256 MB 

maximum size) 
Maximum size 65535 bytes 

Small and Undefined (normally 
small to fit in single IP datagram) 

Semantics / 
Methods 

Connect, Disconnect, Publish, 
Subscribe, Unsubscribe, 

Close 

Defines 27 type of control 
message, such as Connect, 

Publish, Unsubscribe, 
Disconnect 

Get, Post, Put, Delete 

Quality of Service 
(QoS) 

QoS 0 – At most once 
(fire-and-forget) 
QoS 1 – At least once 
QoS 2 – Exactly once 

QoS -1 (within Publish 
messages sent by a client) 
 QoS 0 – At most once  
QoS 1 – At least once 
QoS 2 – Exactly once 

Confirmable Message 
Non-confirmable Message 

Standards OASIS, Eclipse Foundations 
MQTT-SN is not standardized. 

It is a copyright of IBM 
IETF, Eclipse Foundation 

Transport Protocol TCP UDP UDP, SCTP 

Security TLS/SSL DTLS DTLS, IPSec 

Licensing Model Open Source Open Source Open Source 

Organizational 
Support 

IBM, Facebook, Eurotech, 
Cisco, Red Hat, Software AG, 
Tibco, ITSO, M2Mi, Amazon 

AWS, InduSoft, Fiorano 

IBM 
Large Web Community Support, 

Cisco, Contiki, Erika, IoTivity 
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2.2. Virtualization 

The exponential increase of IoT devices connected to the Internet leads to security weaknesses in local 

edge networks. Furthermore, the communication between these local devices and the remote cloud 

incurs in high delays and a high consumption of bandwidth resources. An approach to enhance the 

mitigation of these issues introduces by IoT devices is to use virtualization layers [22]. A virtualization 

layer allows better automation and the possibility to segment units in the network, making it possible to 

separate, for example, the control layer from the network topology. 

Using virtualization breaks the connection between a service or application and the network topology, 

creating a network resource abstraction, encouraging application development and its easier 

deployment. In addition, virtualization isolates, supports configuration and management of virtual 

instances, allowing network resources to share common features in a more efficient and flexible way 

[23]. 

There are three types of virtualization: hardware virtualization, operating system – level virtualization 

and network virtualization. These diverse types of virtualization are discussed in the next sub-sections. 

 

2.2.1. Hardware Virtualization 

The hardware virtualization consists in running multiple and independent virtual machines (VMs). Each 

of these VMs operates as an emulated standalone physical machine. Hence, it is necessary to use a 

software that creates and deploys the VMs, each one with their own computing and networking devices, 

operating system (guest OS), and their own applications. Using this type of virtualization, it’s possible 

to eliminate some eventual incompatibilities between applications and operating systems as well as to 

take advantage of the full capacity of the computer, optimizing the use of its physical resources, space 

and associated cost.  

The hypervisor is the software already mentioned in the previous paragraph. It provides an abstraction 

of hardware resources and decides how they should be virtualized, offering to each VM its own 

processing and networking resources. There are two types of hypervisors. The type-I hypervisors don’t 

need an operating system, running directly on top of the hardware. This allows them to be more efficient, 

scalable and with a convenient performance. Some examples of type-I hypervisors are Hyper-V, 

vSphere1 and ESXi2 developed by VMWare and XenServers3. The type-II hypervisors run upon the 

physical host operating system, having the possibility to use more configurable hardware. Another 

advantage of this type of hypervisor is that it can be installed on a regular desktop system. Examples of 

type-II hypervisors include VMWare Player4 and VirtualBox5. 

________________________________ 

1 https://www.spherestandards.org/ 
2 https://www.vmware.com/products/esxi-and-esx.html 
3 https://xenserver.org 
4 https://www.vmware.com/products/workstation-player.html 
5 https://www.virtualbox.org/ 
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Although the hypervisor allows running multiple and different operating systems at the same time, it 

demands for a suitable amount of physical computing resources such as CPU and memory. In the case 

the physical resources available are not enough for the entire set of VMs, the complete system could 

have a very low level of computing performance [23]. 

 

2.2.2. Operating System – Level Virtualization 

The OS-level virtualization provides containers that are lightweight operating systems isolated from each 

other but sharing the kernel resources provided by the physical host. This fact limits the flexibility of the 

containers but allows a better virtualization performance when compared to the virtual machines. 

Sharing the kernel makes disk images used by containers smaller than the ones used by hypervisors 

that run full operating systems in VMs [24]. Thus, containers remove the overheads associated to the 

guest OS, offering better performance than virtual machines. Another advantage of containers when 

compared to VM’s is the lower booting up time as they use the kernel of the physical host [23]. 

Table 2 and Figure 6 show the main differences between containers and VMs, regarding their 

architecture and features. 

 
Table 2 – Containers and Virtual Machines features comparison [25][26] 

 

APP 1

Hypervisor

Bins/Libs

Guest OS

Host Operating System

Infrastructure

Container Engine

Operating System

Infrastructure

APP 2

Bins/Libs

Guest OS

APP 3

Bins/Libs

Guest OS

APP 1

Bins/Libs

APP 2

Bins/Libs

APP 3

Bins/Libs

 

Figure 6 - Containers vs Virtual Machines, based on [27] 

Parameter Containers Hypervisor-Based VM 

Choice of Operating 

System 

Variant of host OS, as it shares the same 

kernel 
Any 

Startup Time 
Containers can be booted up in a few 

seconds 
VMs take a few minutes to boot up 

Hardware Abstraction and 

Device Emulation 
No Yes 

Disk Image Small Large 

Storage 
Containers take lower amount of storage as 

the base OS is shared 

VMs take much more storage as the whole 

OS kernel and its associated programs have 

to be installed and run 

Density High Low 

Security Not mature and complex 
Mature Security models depending on the 

implementation of Hypervisor 
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Linux Container 

The Linux Container (LXC) is an open source container platform, which provides a lightweight 

virtualization environment that can be used on Linux-based systems.  

LXC uses Linux namespaces allowing the creation of multiple isolated Linux virtual environments with 

its own network devices and a restricted access to file systems. Hence, each container runs 

independently of each other and it does not get compromised by processes running inside another 

container. LXC also uses Control Groups (cgroups) to manage and limit the resources consumed by its 

processes such as CPU, memory, disk I/O [28]. Figure 7 details the LXC architecture. 

Using LXC enhances the creation of a virtual environment as close as a standard Linux installation, with 

the advantage of avoiding a separate kernel. Hence, Linux users can easily create and manage systems 

or application containers [29]. Some of the images available by LXC are Ubuntu1, CentOs2, Fedora3, 

Debian4, amongst others. 

LXC Userspace Tools

Linux Kernel

Infrastructure

 Containers  Containers

namespaces cgroups

drivers

Bins/LibsBins/Libs

 

Figure 7 - LXC Architecture 

 

 

________________________________ 

1 https://ubuntu.com/ 
2 https://www.centos.org/ 
3 https://getfedora.org/ 
4 https://www.debian.org/index.pt.html 
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Docker 

Docker extends from LXC and implements an isolated and protected environment to run an application 

designated as a container. One of its advantages is the possibility to start with a simple image and add 

the features needed and desirable to run the application, making it not just an easy and faster way to 

deploy IoT applications but also a good solution to solve the heterogeneity amongst IoT devices. 

The Docker containers help developing, distributing, testing and deploying applications, being these 

containers managed by the Docker platform. 

The Docker architecture is represented in Figure 8. A Docker container is created by a Docker image, 

which is the basis of a Docker container. This container is the unit where the application services resides 

and is created and executed by the Docker engine/daemon that manages not only containers, but also 

images, networks and volumes. The images are built manually or automatically by reading the 

commands from a Docker file and each given command forms a new layer on top of the previous one. 

With Docker Cloud and Docker Datacenter is possible to register Docker images and to manage Docker 

hosts, which can be run on different cloud platforms, thanks to the use of Docker Machine [30] [31]. 

 

 

Figure 8 - Docker Architecture [31] 
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The container technology is in expansion and it’s possible to find a large set of choices, e.g. OpenVZ1, 

Linux Container2, Docker3 and Rocket (CoreOs rkt) 4.  

Table 3 compares the different features between the mentioned containers. 

 

Table 3 – Container Implementation Comparison [25] 

 

Both OpenVz and Linux Container are full operating system containers, allowing to run multiple 

applications in a single container but, unlike OpenVZ, LXC has updated release versions as well as an 

active community around it. Docker and rkt are optimized for application containers, running only 

individual processes per container.  

All the container technologies create a virtualized isolated process and use similar kernel features like 

namespaces and cgroups. However, LXC allows a better environment for developers, as it authorizes 

multiple services to run inside a container. This last feature is not possible for Docker or rkt, making 

them heavier technologies, in terms of physical resources consumption, when compared to LXC.  

________________________________ 

1 https://openvz.org/ 
2 https://linuxcontainers.org/ 
3 https://www.docker.com/ 
4 https://coreos.com/rkt/ 

  

Parameter OpenVZ LXC Docker CoreOS rkt 

Year 2005 2008 2013 2014 

Latest Version 

Release 
25th July 2016 

LXC 3.2.1 

24th July 2019 

Version 19.03.3 

08th October 2019 

Version 2275.1.0 

09th October 2019 

App or Full-System 

Container 
Full-System Full-System App App 

Supported 

Platforms 

Linux (only Virtuozzo 

Linux) 
Linux 

Linux, Windows, 

macOS, Microsoft 

Azure, AWS 

Linux, Windows, 

macOS 

Process Isolation Uses pid namespace Uses pid namespace Uses pid namespace Uses pid namespace 

Resource Isolation Uses CGroups Uses CGroups Uses CGroups Uses CGroups 

Network Isolation Uses net namespace Uses net namespace Uses net namespace Uses net namespace 

Filesystem Isolation Using chroot Using chroot Using chroot Using chroot 

Container Lifecycle 
Uses vzctl to manage 

container lifecycle 

Tools lxc-create,  

lxc-stop, lx-start to 

create, start, stop a 

container 

Uses Docker daemon 

and a client to 

manage the 

container 

Container build tool 

based on shell 

scripting, leveraging 

familiar unix tools 
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2.2.3. Network Sensor Function Virtualization 

According to IoT Analytics [32], in 2018 the number of connected devices exceeded 17 billion, 7 billion 

of which were IoT devices. The number of active IoT devices is expected to grow to 10 billion by 2020, 

and therefore the software abstraction of these devices becomes crucial as well as implementing 

virtualized functions in order to distribute intelligence in a more optimized way. 

The Network Functions Virtualization (NFV) is an initiative of the European Telecommunications 

Standards Institute (ETSI) and allows the separation of the software from the hardware, enabling the 

evolution of both in an independent way (Figure 9). With the NFV is possible to create and manage 

network services through network function abstraction. The NFV enables generic servers to achieve 

scaling goals, such as the capability of dynamic scaling. To do so, NFV allows network functions to be 

developed and deployed as software instances running on standard servers [23]. 

 

Figure 9 – ETSI Network Function Virtualization Architectural Framework [33] 

 

Considering the scalability, reliability and implementation problems of physical sensors, the sensor 

virtualization allows the access to the physical properties of physical measurement sensors through  

virtual sensors [34]. The virtual sensors can aggregate the tasks executed by the diverse physical 

sensors e.g. sensing, processing, communicating and storing. Thus, the virtualization of sensors allows 

a more abstracted, scalable and flexible interaction between the physical sensors and applications [35]. 

One of the approaches proposed by JeongGil Ko et al. [36] consists in the introduction of the Sensor 

Virtualization Module, which solves the limitation problem of applications that use IoT resources. Thus, 

a software abstraction is provided through open APIs, allowing better data management given by the 

diverse proposed objects. 

Through the SVM engine is made a discovery of IoT devices profiles in the local network, being the 

characteristics of each device stored in object handles that can be then advertised to the applications. 

This helps applications selecting the IoT devices with which they want to interact. Hence, SVM enhances 

the operation of IoT network because it not only simplifies the development of APIs that use IoT devices, 

but it also exposes these devices that have been found in the local network to the cloud, allowing their 

management remotely. 
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Figure 10 shows a scenario where the SVM running on a mobile device manages its local IoT devices 

and exposes them to the cloud through the SVM application server. Thus, the IoT devices as well as 

the virtual IoT devices can be accessed by remote applications running on different Internet platforms. 

 

Figure 10 - Sensor virtualization module architecture and usage scenario [36] 

 

The SVM also allows sensor data mash-up. Using this approach, it is possible to combine data from 

different IoT devices and create a new data group, as shown in Figure 11. Thus, the user doesn’t need 

to connect directly to the physical sensor or retrieve data individually from each device. 

 

Figure 11 - Sensor data mash-up [36] 

 

Combining both network functions and virtualized sensors ensures running services strictly when 

necessary, such as, when a client needs to connect to sensors in order to collect data or just start and 

stop services. Without using virtualization, the access and management of the data and resources 

provided by IoT devices could be severely restricted due to the manufacturer’s software.   
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2.3. Fog and Edge Computing 

Fog computing was proposed in 2012 by Cisco and is a geographically distributed computing 

architecture, where different devices at the edge of the network are connected to provide computation, 

networking, decision making, data management and storage services. It is an extension of the cloud 

service to the edge of the network and it is located closer to the end-users in order to provide them 

location-based services with minimum access latency. 

It is composed by fog nodes, which includes network edge devices, like routers, gateways, switches, 

etc., and management systems within these devices. These fog nodes are distributed between the 

devices and the cloud, where they might be static or mobile, which is an important fact in mobile 

scenarios like smartphones or vehicles. They store temporarily the received data generated by the 

devices, and process some of those data, transferring the rest to the cloud. Hence, there is a reduction 

on the data volume exchange through the network infrastructure, helping to reduce the latency. 

The fog architecture, represented in Figure 12 is composed by the terminal layer, containing the different 

IoT devices and sensors responsible to receive data and transmit this to the upper layer. In addition, 

there is the fog layer, which is located at the network edge and is formed by diverse fog nodes. Adding 

this extra layer between the IoT devices and the cloud increases the performance, mobility and security, 

by encrypting and isolating data. At least, there is the cloud layer, which contains high-performance 

servers and storage devices and provides application services [3]. 

Internet Internet Internet

Fog Nodes Fog Nodes Fog Nodes

V
V

Cloud data 
center

Cloud

Fog

Terminal

Core

Edge
 

Figure 12 – Hierarchical architecture of fog computing, based on [3] 
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The communication between the devices and the fog nodes, including the intercommunication between 

these nodes, is made essentially by wireless access technologies. The nodes are linked to the cloud by 

IP core network. 

 

Edge computing is a computing model that also extends cloud services to the edge mobile devices. This 

model is also commonly designated as multi-access edge computing [37]. It enhances management, 

storage and the processing power of data generates by connected devices. 

As seen in Figure 13, the edge computing architecture is composed by edge nodes and devices, like 

smart sensors, smartphones, etc., that make decisions, process and storage data when they have the 

capacity to do so. The edge nodes can create local edge networks or communicate with the cloud 

through the core network. In this model, when end devices need services, they request them from the 

cloud. In addition, the end devices can provide services to other requesting devices. 

Edge computing helps reducing the latency and the amount of traffic between the mobile devices and 

the cloud. It also provides services, security and privacy protection [3]. 

 

Cloud Data Center

Core Network Core Network

VV

Edge 
nodes

Edge 
devices

 

Figure 13 – The architecture of edge computing, based on [3] 
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Puliafito et al. [38] presented a survey on how fog computing can support IoT devices and services. 

They discuss the main outcomes offered by fog computing, including six IoT application domains that 

benefit from using this paradigm. Fog computing extends the cloud towards the network edge, where 

fog services can be distributed anywhere along the cloud-of-things continuum. Depending on its 

requirements, a fog service may be resource-rich end devices (e.g. video surveillance cameras), 

advanced edge nodes (e.g. switches, gateways) and specialized core networks routers. 

A. Yousefpour et al. [39] compared fog computing with other related computing paradigms such as edge 

computing (see Figure 14). It mentions the OpenFog Consortium [40] that considers fog computing as 

“a horizontal, system-level architecture that distributes computing, storage, control and networking 

functions closer to the users along a cloud-to-thing continuum”, whereas edge computing is more likely 

to be limited to processing at the edge. Thus, fog computing is considered a more general and 

comprehensive definition scope, being suitable for many cases in the IoT environment. This article also 

provides a taxonomy of research topics in fog computing. 

 

 

V

IoT DEVICES

EDGE COMPUTING

FOG COMPUTING (CORE) CLOUDS

INTERNET

ACCESS NETWORK METRO NETWORK CORE NETWORK
 

Figure 14 – Comparison of fog computing and edge computing, based on [39] 
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Table 4 lists some relevant similarities and differences between fog and edge computing. 

 

Table 4 – Similarities and differences between fog and edge computing [3] 

 

 

 

 

2.4. Software-Defined Networking 

The Software-Defined Networking (SDN) is a network architecture that enables the creation of 

independent features and protocols of manufacturers, overcoming the problems related to the closed 

hardware and proprietary software [41]. 

 

2.4.1. SDN Architecture 

The SDN allows a separation of the control plane from the data plane. The data plane is where the traffic 

flows are physically exchanged. It is composed by network elements, such as routers and switches, that 

expose their capabilities and resource status to the control plane. 

This architecture has a centralized control commanded by the SDN controller. The SDN system can 

also manage the network resources through SDN applications. The SDN controller has an overview of 

the network topology as well as the network resource status, allowing it to improve and adapt the packet 

routing rules as well as face the challenges of scalability, performance and security. This way, the 

network devices in the data plane take actions by following the rules established by the controller [41].  

 Fog Computing Edge Computing 

Architecture Hierarchical, decentralized, distributed Hierarchical, decentralized, distributed 

Proximity to end devices 
Near (single network hop or few network 

hops) 
Located in end devices 

Latency Low Low 

Bandwidth costs Low Low 

Resource Limited More limited 

Computation and storage 
capabilities 

Limited More limited 

Mobility Supported Supported 

Scalability High High 

Energy consumption High Low 

Service Virtualization Virtualization 

Location of data collection, 
processing, storage 

Near-edge and core networking, network 
edge devices and core networking devices 

Network edge, edge devices 

Handling multiple IoT 
applications 

Supported Unsupported 

Resource contention Slight Serious 

Focus Infrastructures level Things level 
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The controller also translates the SDN applications policies to low-level control instructions, and 

therefore they can be executed by the network devices on the data plane. It also enables the 

programmability in the network through an Application Programing Interfaces (API) that allows the SDN 

applications to inform the controller about their network service requests. 

Thus, the SDN can be organized into three planes: the data plane, control plane and application plane, 

as can be seen in Figure 15. The SDN typically has two interfaces. The first interface exists between 

data and control planes and is designated as the Southbound API. The second interface exists between 

each application and the SDN controller and is designated as the Northbound API [23]. 

 

 

SDN Application SDN Application

SDN Controller

Network 
Element

Network 
Element

Network 
Element

Northbound 
API

Southbound 
API

Application 
Plane

Control 
Plane

Data
Plane

 

Figure 15 - General architectural framework for SDN, based on [23] 

 

 

2.4.1.1. Network Elements 

The lowest layer of SDN architecture is composed by the data plane that communicates with the SDN 

controller through the Southbound API, enabling the elements to update the controller about their 

capabilities and status of their resources. Therefore, the controller can have a global view of the network 

and thus send this information to the application plane. The controller can also instructs the data plane 

by configuring rules in the network elements [42]. 

The most used Southbound API protocol is the OpenFlow. It was released in December 2009 and is 

managed by the Open Networking Foundation (ONF) [43]. 

The OpenFlow is a standard protocol that allows the communication between the SDN controller and 

the network infrastructure devices, whether they are physical or software-based. It is used by the SDN 

controller to discover the network topology and modify data flow rules in the flow tables of switches [44]. 

There are two types of OpenFlow switches. The pure switches only support OpenFlow and have no 

legacy features or on-board control, depending completely on the SDN controller for performing 

decisions about how to forward the traffic through the data plane. The hybrid switches support the 
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OpenFlow protocol as well as other legacy algorithms or networking protocols [45]. The Open vSwitch 

is an example of a hybrid software-based switch. The main components of an OpenFlow switch are 

represented in Figure 16. 

 

 

Figure 16 - Main components of an OpenFlow switch [46] 

 

An OpenFlow switch contains at least three parts [44]: 

▪ A pipeline of flow tables, which performs packet lookups and execute a set of instructions or 

actions that determine how to handle the packets; 

▪ Secure Channel, that enables the communication between the switch and the controller, 

allowing the packets flow and instructions; 

▪ The client side of the OpenFlow Protocol. 

 

 

Open vSwitch 

Open vSwitch (OVS) is managed by The Linux Foundation and is a multilayer software licensed under 

the open source Apache 2 license. It is the most popular virtual switch implementation and it can be 

used as virtual switch in virtualized environments and as a general software switch.  

The major part of the code is written in platform-independent C and is easily ported to other 

environments. OVS supports common standards protocols such as OpenFlow, LACP, etc [47][48]. 

The support of the OpenFlow protocol makes Open vSwitch a great addition to any SDN-based network. 
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OpenFlow Messages 

The OpenFlow protocol has three types of messages [45]: 

▪ Controller-to-switch, that are initiated by the controller to set and query configuration 

parameters in the switch, to collect statistics and manage the state of the switch, being used to 

add /delete or modify flow table entries, and to send packets out of a determined port. 

▪ Symmetric, that are initiated by the controller or the switch, like Hello or Echo messages to 

discover the latency, bandwidth and heartbeat. 

▪ Asynchronous, that are initiated by the switch to inform the controller about switch state 

changes, packet arrival and error messages. When an idle timeout value is indicated, the entry 

should be removed according to that value and / or a flow removal message should be sent to 

the controller.  

A Packet-In message is asynchronous, being sent from the switch to the controller for further processing. 

Wherever there is no matching flow entry and there is a default entry with a send to controller action, a 

Packet-In message is sent to the controller. This message transports a copy of the received message 

in the switch. 

When the controller receives a Packet-In message, it adds an action list field, containing a list of actions 

that defines how the switch should handle the packet received in the initial Packet-In message. The 

previous list of actions is sent to the switch, using a Packet-Out message. If the controller does not know 

the localization where the destination host of the initial received packet is attached to the network 

topology, the controller sends to the switch a Packet-Out to perform flooding. 

The Modify-State messages, also called ‘flow mod’, are messages sent by the controller to manage the 

state of the switches as well as add, delete or modify flow table entries.  

 

OpenFlow Controller Behavior 

There are two types of controller behavior: the reactive mode and the proactive mode. 

In the reactive approach, the first flow packet received by the switch triggers the controller to insert flow 

entries in each OpenFlow switch of the network. Despite being an efficient use of the flow table memory, 

every time a new flow is introduced, it adds an additional setup delay in the system operation, due to 

the Round-Trip Time between the switch and the SDN controller. Another disadvantage is the 

dependency on the controller which in case of a connection loss between the switch and the controller 

forces the switch to drop flow packets with unknown local rules to apply to. 

In the proactive behavior, the controller previously fills the flow table in each switch, avoiding the 

additional flow setup time of the reactive mode. Having the forward rules in the flow table makes the 

switch less dependent on the controller, having eventually no traffic disruption in the case of a 

temporarily connection loss between the controller and the switch [49]. 
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2.4.1.1.1. Controlling Example 

Figure 17 shows an example of SDN controlling. In SDN, when the switch receives the first packet from 

a new flow (step 1), it checks if there is a forwarding rule matching some of the header fields of that 

received message in the local OpenFlow table (step 2). If it finds a match entry, the instruction (i.e. 

action) is executed, being the packet forwarded to the receiver (step 5). However, if there is no match 

in the flow table, a flow request (packet_in message) is sent to the controller (step 3) asking in which 

action should be taken. The controller then responds with a flow-entry that contains the switch output 

port from where the packet should be forwarded (step 4). The switch adds, delete or update the flow 

table depending on the flow control message sent by the controller. Once it has added a new entry in 

the switch, it is now capable to send the packet to the receiver (step 5) [5]. 

 

Figure 17 - The operation of SDN (controller - switch) [5] 

 

 

2.4.1.2. SDN Controllers 

2.4.1.2.1. OpendayLight 

OpenDayLight (ODL) is an open source SDN project created in 2013 by the Linux Foundations with 

nearly 50 major corporate members, including Cisco, HP, IBM, Juniper and VMWare. These companies 

have contributed with the necessary resources to support the creation of an SDN platform. In addition, 

ODL is available under the Eclipse Public License (EPL), increasing the compatibility with the expansive 

environment of libraries and third-party components. Thus, ODL is a modular open source platform for 

SDN, implemented in Java programming language and operated through an open and active community 

[50]. 
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OpenDayLight was the first controller entering the IoT domain with the Lithium release in June of 2015. 

The IoT Data Management (IoTDM) module was implemented, enabling authorized applications to 

retrieve IoT data uploaded by any device. In addition, the IoTDM also acts as a oneM2M compliant, 

which is the global standardization body for IoT that prepares, approves and maintains the necessary 

functions of IoT technologies. 

OpenDayLight supports a layered architecture. The Network Applications & Orchestrations layer on the 

top consists on business and network logic applications that use the controller to implement self-

adaptive management actions over the network infrastructure. These applications also run algorithms 

to perform data analytics in order to orchestrate new and more efficient control rules to manage the 

resources of the network infrastructure. The middle layer, the Controller Platform, is the framework which 

enables SDN abstraction. The controller exposes northbound APIs to the application layer, using the 

Open Services Gateway Initiative (OSGI) framework and bidirectional REST API. To implement 

protocols for command and control of the physical hardware within the network, the controller uses the 

southbound API, that supports multiple protocols like OpenFlow, NETCONF, BGP-LS, SNMP, LISP, 

etc. The bottom layer consists of the physical and virtual devices, such as switches, routers, open 

vSwitches etc [51]. 

OpenDaylight is one of the most featured controllers, being able to be used in any operating system, 

claiming extensive compatibility support from vendors, presenting a good GUI feature and 

documentation. [52] 

 

2.4.1.2.2. RYU 

Ryu means “flow” in Japanese and is a component-based and open source software defined by a 

network framework. It is written completely on Python, and provides well-defined Application Program 

Interfaces (APIs), allowing developers to create new network management and control applications in 

an easy way. All the code is available under the Apache 2.0 license and can be found on GitHub, which 

is provided and managed by the Ryu community. Developers can modify existing code or implement 

their own from scratch.  

Ryu controller supports various southbound protocols for managing network devices, such as Network 

Configuration Protocol (NETCONF), OpenFlow Management and Configuration Protocol (OF-config), 

OpenFlow, which is the most popular southbound protocol, up to the latest available OpenFlow version, 

i.e. 1.5 [53]. 

Ryu applications (python scripts) listen to events that handles the received messages. The 

app_manager.py is the file that loads the Ryu applications, which can be used individually or in an 

integrated way [54]. 
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Figure 18 - Ryu Framework, based on [55] 

 

Considering the fact that Ryu has a fair number of features, uses Python and it has an exclusive support 

for Linux OS, makes Ryu a good choice for small scale SDN deployments and research applications 

[52]. 

 

2.4.1.2.3. Comparison Amongst Several SDN Controllers 

Recently, there have been several works that contributed to an accurate benchmark of different SDN 

controllers. 

Shalimov et al. [56] performed a comparison regarding throughput and latency, scalability, reliability and 

security. In terms of security, Ryu was the one who best coped four of the five tests. Erickson et al. [57] 

mentions the importance of the programing language used by an SDN controller, claiming Java as a 

good choice as it runs across platforms and it supports multithreading, whereas Python has an inability 

to support multithreading. The results publicly available in Khondoke et al. [58] show that Ryu was the 

best controller using a Multi-Criteria Decision Making (MCDM) method called Analytical Hierarchy 

Process (AHP). In addition, OpenDayLight got the next better results. In [59], OpenDayLight was one of 

the controllers with good documentation and flexibility. Rowshanrad et al. [60] shows that OpenDayLight, 

when compared to Floodlight, has the best latency results under low traffic loads. In [52], Salman et al. 

measured latency and throughput performances under a different number of switches and threads, 

concluding that OpenDayLight was a good choice as a full-featured controller. Mamushiane et al. [42] 

performed tests based on latency and throughput.  
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Table 5 presents a brief comparison amongst the diverse SDN controllers that we have just discussed 

in the current sub-section. 

Table 5 - Feature-based comparison of SDN controllers [42] 

 

 

2.4.1.3. Northbound Management 

The Northbound API is used to allow the communication between the SDN controller and the SDN 

services and applications running at the topmost architecture layer. It provides an abstraction of network 

functions, enabling applications to program the network and implement functionalities regardless of the 

underlying layers. The Representational State Transfer (REST) API is currently the most used API by 

SDN controllers [42]. 

REST API improves system extensibility by allowing clients to download and execute code after 

deployment. It uses HTTP requests to post, read and delete data through GET, POST, PUT and 

DELETE methods. GET request is used to obtain information, e.g. get the switch id, POST and PUT 

request to update an existing resource, e.g. get all flow entries, and DELETE to delete resources, e.g. 

delete all flow entries of the switch. In the case of the POST method, its body is used to transfer data 

structured in JSON or XML [61]. 

 

 RYU Floodlight OpenDayLight ONOS 

Southbound 
API 

OF 1.0, 1.2, 1.3, 1.4, 
1.5 

NETCONF, 
OFCONFIG, OVSDB 

OF 1.0, 1.1, 1.2, 1.3, 
1.4, 1.5 

OF1.0, 1.3, 1.4, 1.5 
NETCONF/YANG, 

OVSDB, PCEP, 
BGP/LS, LISP, SNMP 

OF1.0, 1.3, 1.4, 1.5 
NETCONF 

REST API Yes (For SB only) Yes Yes Yes 

GUI Yes (Initial phase) Web / Java-based Web-based Web-based 

Modularity Medium Medium High High 

Orchestrator 
Support 

Yes Yes Yes No 

OS Support 
Most supported on 

Linux 
Linux, Windows, and 

MAC 
Linux, Windows, and 

MAC 
Linux, Windows, and 

MAC 

Partner 
Nippo Telegraph 
And Telephone 

Corporation (NTT) 
Big Switch Networks 

Linux Foundation With 
Memberships Covering 
Over 40 Companies, 

Such as Cisco, IBM, NEC 

ON.LAB, At&T, 
Ciena,Cisco, 

Ericsson,Fujitsu, 
Huawei,Intel, 
Nec,Nsf.Ntt 

Comunnication, Sk 
Telecom 

Documentation Medium Good Very good Good 

Programming 
Language 

Python Java Java Java 

Multi-threading 
Support 

Yes Yes Yes Yes 

TLS Support Yes Yes Yes Yes 

Virtualization Mininet and OVS Mininet and OVS Mininet and OVS Mininet and OVS 

Application 
Domain 

Campus Campus 
Data center and 

Transport-SDN WAN 
Data center and 

Transport-SDN WAN 

Distributed / 
Centralized 

Centralized Centralized Distributed Distributed 



Chapter 2 – Literature Review  

 

28  
 

2.4.2. Software-Defined Networking Virtualization 

As mentioned in previous chapters, the number of IoT devices is growing continuously, making 

traditional network infrastructures inadequate to handle all the produced data. Besides, the manual 

configuration of network devices could lead to errors with the increase of devices [62].  

Through the use of SDN and NFV it is possible to have an abstract view of physical network 

infrastructures as well as an easier operation and maintenance, allowing to reach the necessary 

scalability and flexibility.  Although SDN and NFV are different in terms of concept, architecture and 

functions, they complement each other, extracting the full potential when they coexist. NFV allows the 

migration of controllers to optimal locations and the virtualization of physical network devices, such as 

routers and firewalls. Whereas SDN provides programmable network under a central control, allowing 

a quicker and dynamic installation of policies in order to enable service functions [23] [63] [64] .  

Ojo et al. [65] and L. Valdivieso et al. [66] proposed different architectures with the application of SDN 

with NFV in order to address the challenges of IoT. These articles are discussed in the next section. 
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2.5. Related Work 

In this section, the relevant literature that relates to the technologies explored in this thesis are 

discussed. 

 

Table 6 - List of Related Research 

 

 

 

 

 

Research’s Title SDN Virtualization 
Fog / Edge 

Comp. 
IoT Advantages / Disadvantages 

SDN-based architecture 
challenging the IoT 
heterogeneity (I. Bedhief, 
M. Kassar, and T. Aguili, 
2016) [67] 

Yes 
Yes 

(Containers) 
No Yes 

+ tests the connectivity between 
containers, managed by an SDN 
controller 

- no use case; doesn’t consider 
fog/edge options 

Enabling Data Processing 
at the Network Edge 
through Lightweight 
Virtualization 
Technologies (R. Morabito 
and N. Beijar, 2016) [68] 

Yes 
Yes 

(Containers) 

Yes 
(Edge 

computing) 
Yes 

+ practical use case working 
with containers; network 
management and data 
processing at the edge 

SDN docker: Enabling 
application auto-
docking/undocking in edge 
switch (Y. Xu, V. 
Mahendran, and S. 
Radhakrishnan, 2016) [69] 

Yes 
Yes 

(NFV / 
Containers) 

Yes 
(Edge 

Switches) 
Yes 

+ practical use case working 
with containers; different SDN 
controller, created specifically for 
the tested scenario; use of 
MQTT protocol; 
docking/undocking capability 

A SDN-IoT architecture 
with NFV implementation 
(M. Ojo, D. Adami, and S. 
Giordano, 2016) [65] 

Yes 
Yes 

(NFV) 

Yes 
(Edge nodes) 

Yes 

+ SDN/NFV edge nodes that 
allow fast deployment of new 
services 

- doesn’t use containers 

SDN/NFV Architecture for 
IoT Networks (L. 
Valdivieso, et. al, 2018) 
[66] 

Yes 
Yes 

(NFV) 

Yes 

(Edge 
Switches) 

Yes 

+ virtualization layer; 
orchestration and management 
layer 

- doesn’t use containers; 
scenario emulated in mininet 

Software-Defined Fog 
Network Architecture for 
IoT (S. Tomovic, K. 
Yoshigoe, I. Maljevic, and 
I. Radusinovic, 2017) [70] 

Yes 

Yes 

(Hypervisor / 
Containers) 

Yes 

(Fog) 
Yes 

+ practical use cases; SDN 
controller modification to 
orchestrate fog nodes; 
containers / VMs with IoT 
services 
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As can be seen in Table 6, all the researches included SDN as part of the proposed 

designs/architectures applied to IoT scenarios. SDN is an important network architecture for all the 

technologies mentioned in this thesis, due to its flexibility, scalability, security and dynamic properties.  

Bedhief et al. [67] proposed an architecture based on SDN and Docker techniques to manage devices 

and networks heterogeneity. This architecture was designed so the IoT devices could use its network 

interface to communicate through an SDN-based system, which is composed by diverse SDN-based 

switches and a POX SDN controller. They have tested three scenarios, i.e. the communication between 

two IoT devices, the communication between a device and a docker, and the communication amongst 

dockers. Observing the TCP and UDP traffic, and despite being possible to establish communication in 

all three scenarios, the highest delay was recorded between dockers, resulting on the fact that docker 

needs more control than hosts defined in Mininet. Morabito et al. [68] also proposed a design using 

container-based virtualization technologies in order to create an IoT gateway that allows the 

management of different services. These services are included inside a Docker container and to be able 

to attribute a container to a specific user and ensure its isolation, they used Open vSwitch and an SDN 

Controller (not mentioned which one) that resides in the IoT platform, i.e. at the edge computing. In 

addition, they have an orchestrator that determines the software used to process the sensors data and 

if it is more suitable to deploy in the gateway or in a data center. Another approach involving SDN and 

container-based technology is the one described by Xu et al. [69]  which proposed an SDN architecture 

with an in-house controller to enable auto-docking / undocking of applications at the edge switches. In 

the study it was tested the connection capability between the SDN docker switch and a remote end-host 

for application download. Thus, an automatic deployment framework was created for analyzing incoming 

packets received from the end-user, getting the necessary applications from a central repository that 

stores the binary images, and then installed or uninstalled in the switch. 

In order to help solving the different challenges in IoT environments, other virtualization technologies, 

other than containers, are used. Ojo et al. [65] presented an SDN-IoT architecture with network function 

virtualization (NFV). The combination of these two technologies can help solving problems such as 

interoperability of heterogeneous devices, scalability, discoverability, security, management and 

application specific requirements. They used SDN/NFV edge nodes to allow the fast deployment of new 

services allowing them to deliver services such as ultra-low latency and high bandwidth to IoT 

applications. L. Valdivieso et al. [66] proposed an alternative approach using an architecture that 

integrates SDN and NFV focusing on IoT environments. As shown in Figure 19, the architecture has 

four layers as follows : the Infrastructure Layer that includes the hardware and basic software to forward 

the traffic; the Control and Virtualization Layer, which is composed by the control plane and virtualized 

elements; the Application Layer, where the different NFV applications are located; and the Orchestration 

and Management Layer, that manages the other different layers of the infrastructure, which is required 

when the data and control plane are separated. 
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Figure 19 - IoT SDN/NFV Architecture [66] 

 

In previous researches, SDN, virtualization and edge computing were applied to IoT scenarios. Tomovic 

et al. [70] proposed a system model of IoT architecture taking advantage of SDN and fog computing 

paradigm in order to support a high level of scalability, real-time data delivery and mobility. The use of 

SDN allows a fog orchestration delegated to SDN controller. Hence, combination of these two 

technologies enhances the ability to handle a large volume of fog nodes as SDN controller can delegate 

tasks to fog nodes. The system structure is represented in Figure 20 and involves end devices, SDN 

controllers, heterogeneous fog infrastructure and cloud in the network core.  

 

Figure 20 - SDN architecture for IoT based on Fog computing [70] 
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Chapter 3 – Proposed Solution 

This chapter discusses the system architecture of the proposed solution, including some implementation 

details. 

 

3.1. Architecture   

As seen in the previous chapters, different technologies can be chosen in order to face the challenges 

enforced by IoT. 

In this thesis it is proposed an architecture (Figure 21) in fog computing, using a system that combines 

SDN with virtualization, which is going to be used in an IoT scenario. As mentioned in the Literature 

Review, the SDN is organized into three planes: data plane, control plane and application plane. The 

data plane, composed by a switch, communicates with an SDN Controller through the Southbound API. 

In the application plane there is a Broker created to analyze messages and to request a container, that 

is started up when necessary. This Broker communicates with the controller through the Northbound 

API.  

In the beginning, the container is not running in order to enhance the system sustainability and the 

energy efficiency. Whenever the system detects traffic to a certain container, it needs to guarantee that 

the container is started up, so it can receive and process messages. 

SDN Controller

Broker

Network Datapath

Containers Hypervisor

Computing Infrastructure

Southbound API

Northbound API

On-demand 
request a container

Container start up

Networking Computation

 

Figure 21 - Proposed Architecture 
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3.2. Deployment  

As seen in chapter two, there are different SDN controllers, as well as containers and IoT communication 

protocols. This thesis is mainly focused on the Ryu controller. Many of its advantages include the support 

of numerous southbound protocols, comprising the latest version of OpenFlow, but mainly the possibility 

to write a Ryu application from scratch using Python. Three Ryu applications were written to allow the 

study of the different controller’s behavior – reactive, hybrid and proactive mode. In each application, 

there is a websocket connection to a Broker, which was also written from the beginning and in Python 

to analyze messages and start the containers. Regarding containerization, Linux containers were 

chosen as they are a lightweight option. They allow the creation of a virtualized environment as closed 

as a standard Linux installation and authorize various applications to be installed and used in a single 

container. For the communication between containers, MQTT-SN is the most suitable application-layer 

protocol for this scenario, since it was created for being applied in sensor network, for using UDP and 

thus not requiring the establishment of a session, and for having a low message and header size. This 

protocol is yet not highly adopted, however it brings an opportunity since it has an offline keep-alive that 

allows devices to go to a sleeping state when they are not required, and then the messages are received 

afterwards, when they are activated. 

Figure 22 represents the proposed architecture in detail. This architecture is composed by three linux 

containers, one Ryu Controller and a Websocket Broker. The LXC1 and LXC2 simulates IoT sensors 

and, as said in the previous section, in the beginning they are not running. The LXC3 is the container 

which has installed the MQTT-SN Broker. This container is always running as it simulates client that 

wants to request values from the sensors. Thus, the LXC3 sends an MQTT-SN message to one of the 

LXC1 or LXC2 sensors (step 1). When the OVS s1 receives the packet, it will check if there is a 

forwarding rule in the OpenFlow Table. If it finds a match entry, it will send the packet to the destination 

container (step 2). However, if there is no match in the flow table, a packet_in message is sent to the 

controller asking which action should be taken (step 2). Through a websocket connection, the Ryu 

controller sends the message to the Broker (step 3) so it can analyze and activate the correspondent 

container (step 4). Once it receives the feedback notifying that the container is running (step 5), the 

Broker informs the controller (step 6) so it can send a flow-entry to the OVS s1 containing the switch 

output port from where the packet should be forwarded (step 7). At least, the OVS s1 sends the packet 

to the correspondent sensor container. 
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Figure 22 – Detailed proposed architecture 

Open vSwitch 

Figure 23 and Figure 24 represent the network topology created through a shell script wrote with network 

namespaces, bridge control and Open vSwitch commands. The network topology is composed by one 

Open vSwitch (OVS s1), 2 namespace hosts (h1, h2) and links / bridges. The hosts were created with 

the intent to test the Ryu applications, mainly the switch flow entries, through ping and iperf commands. 

Even tough containers were previously created, it was necessary to connect them to the Open vSwitch 

through linux bridges. At last, the OVS s1 was configured with a static datapath-id (1), OpenFlow 

protocol with version 1.3 and a connection to the Ryu controller in the port TCP/6633, which corresponds 

to the default port of OpenFlow. 

 

Figure 23 - Network Topology Configuration 
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Figure 24 - Network Topology 

 

 

Switch and Ryu’s Controller Communication 

As described above, three different Ryu applications were written. In the reactive mode, when the Ryu 

controller is started, a flow rule is installed into the switch to send a packet-in message to the controller 

whenever the switch receives a packet. It was used the class OFPActionOutput and the flag 

OFPP_FLOOD in the packet-out message, to specify the switch port that the packet should be 

forwarded, in this case, with this flag, the packet is forwarded to all ports except the one used to receive 

the packet. 

 

Figure 25 - Messages exchanged between Open vSwitch and Ryu Controller in the reactive mode 
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In the hybrid mode (Figure 26) the system behaves, in the beginning, in a similar way when compared 

to the reactive mode. The flow rule to send always a packet-in message to the controller is the only one 

installed into the switch when the Ryu controller is started. However, this only happens for the first packet 

of a specific flow. In this case, an out_port flag was used, so the Ryu controller could indicate through 

what port the packet should be forwarded. This new rule is installed into the switch flow table, avoiding 

future flooding and allowing a faster and more efficient transmission of the packets of the same flow by 

the switch. 

 

 

Figure 26 – Sequence diagram for hybrid mode 

 

 

The proactive mode was written to install into the switch not only the “ask the controller” rule, but also 

the rules that indicate the port where the flow should be forwarded to reach pre-defined Linux containers. 

Using this application is expected to exist a lower number of packet-in / packet-out messages between 

the switch and the controller, allowing even better results when compared to the hybrid mode. 
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Broker 

Every time the controller receives a packet, it sends a copy in a hexadecimal format to the Broker 

through a websocket connection. The Broker then analyses the message and extracts information about 

the source and destination IP and mac-address, ethertype, IP protocol and the port used. Figure 27 

shows the hexadecimal messages and analysis made by the Broker. 

 

 

Figure 27 – Hexadecimal message and analysis 

 

Each Linux container has a static IP address as well as a MAC-address. When an ARP message is 

identified, and the destination IP address matches one of the LXC, the container is started. An 

information message appears if the container is already running or if the IP does not match any of the 

pre-defined containers. 

 

 

MQTT-SN 

In order to exchange MQTT-SN messages between the containers, it was necessary the installation of 

a Message Broker and a MQTT-SN Client. The Broker EMQ1 was selected due to its versatility 

supporting several IoT protocols, such as MQTT, MQTT-SN and CoAP. It consists on an open source 

IoT MQTT message broker based on Erlang/OTP platform. To access the features of MQTT-SN, it is 

required the use of the EMQ-SN plugin2. EMQ recommends several MQTT-SN Clients, from which the 

MQTT-SN Tools3 was chosen. These tools support some MQTT-SN features, e.g. as QoS -1, 0 and 1, 

publishing retained messages, short topic IDs, amongst others, having the disadvantage of not allowing 

the QoS 2.  

A scenario, represented in Figure 28, was created where the LXC3 publishes messages under the topic 

“askTemp” and subscribes until it receives a message under the topic “sendTemp”. When the LXC 

sensor receives a message requesting the temperature value, it then publishes in under the topic 

“sendTemp”. Figure 28 shows the described scenario. 

 

________________________________ 

1 https://docs.emqx.io/broker/v3/en/getstarted.html 
2 https://docs.emqx.io/broker/v2/en/mqtt-sn.html#emq-sn-plugin 
3 https://github.com/njh/mqtt-sn-tools 
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Figure 28 - MQTT-SN Scenario 
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Chapter 4 – Results and Discussion 

This chapter describes all the performed tests that had aimed to evaluate the time required from 

activating the sensor containers to being able to communicate with them as well as the possibility of two 

containers to communicate with each other through MQTT-SN protocol. All the configuration, 

implementation and tests were developed in a Xubuntu VM hosted on VirtualBox. 

The testing environment consists of a network topology, managed by a Ryu controller, and a Websocket 

Broker (represented in Figure 29). The network topology was built through a shell script with network 

namespaces, bridge control and Open vSwitch commands, leading to the creation of an Open vSwitch 

with OpenFlow v1.3 and two hosts with the respective connections. A logical TCP connection was also 

created between the OVS and the Ryu controller. Linux containers were previously created with Ubuntu 

OS through lxc commands and configured with a static IP and MAC-address and the indication on which 

Linux bridge they connect. LXC3, which is the container implemented with the MQTT-SN Broker, is the 

only container that is started up with the network topology script. 

A Broker script was written in Python to decode hexadecimal messages and to extract essential 

information from the packet’s header. When an ARP message is sent to the Broker and the destination 

IP matches one of the container’s IP address, that container is started through the execution of lxc 

commands inside the script. The controller sends messages to the Broker through a websocket 

connection established between them. 
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LXC1 LXC2
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Figure 29 - Architecture topology 
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Performance and functional tests were executed and analyzed to evaluate the activation of the sensor 

containers and the communication between them through MQTT-SN protocol. 

 

4.1. Performance Tests 

As mentioned in the previous chapter, three Ryu controller’s applications were written to assess the 

impact of the controller's behavior on the time required to process messages and start up the containers 

until they start communicating with each other. Each application is related to a controller’s behavior.  

The Ryu controller’s applications were applied in two scenarios:  

1. Communication between a network namespace and a container 

2. Communication between containers  

The results for these two scenarios were obtained by sending four ICMP packets. In the first scenario, 

the host h1 sends ICMP packets to the sensor’s containers (LXC1 and LXC2), whereas in the second 

scenario this communication is started by the LXC3. A sample of 50 results was collected for each 

sensor container within each behavior mode. 

 

Reactive Mode 

In the reactive mode, a flow rule is installed into the switch with the indication to send a packet-in 

message to the controller whenever the switch receives a packet, i.e., each time the host1 and LXC3 

ping the sensor containers, a packet-in message is sent to the controller. In this case, no rule is installed 

into the switch flow table. 

Observing Figure 30, it is possible to see that, in general, the first scenario had better response times 

than the second one. This is due to network namespaces being a Linux kernel feature that provides 

resource isolation, whereas Linux containers have yet a management interface, that interacts with the 

kernel components and provides tools for containers creation and management. It is still possible to 

highlight that the average response time of the first packet in both scenarios is higher when compared 

to the other three. This is due to the fact that in the first packet, not only the ICMP request and reply 

packets are considered, but also the ARP messages and the Linux container startup, which differs this 

packet from the others. As it is possible to see in Figure 31, the first ARP message (first packet-in and 

packet-out) lasted 506ms, whereas the second ARP message lasted 109ms. The overtime expressed 

by the first ARP message is associated with the activation of the Linux container, which in average 

launches in approximately 150 to 350ms. Only after the websocket Broker script starts the container, 

the ICMP packet can reach its destination. 
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Figure 30 - Reactive Mode - Scenario 1 and 2 

 

 

Figure 31 - Packet-In and Packet Out ARP Messages (Scenario 2) 

 

 

As mentioned above, every time a packet arrives at the switch, a packet-in message is sent back to the 

controller, which in turn responds with a packet-out message indicating the port from where the packet 

should be sent. Thus, for every ICMP packet sent, a respective packet-in and packet-out is generated, 

as represented in Figure 31 and Figure 33, which is also the reason why packets 2 to 4 have high 

response time. The ICMP messages were exchanged during approximately 270ms. 
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Figure 32 - ICMP traffic in the reactive mode (Scenario 2) 

 

 

Figure 33 - Packet-In and Packet Out ICMP Messages (Scenario 2) 

 

 

Figure 34 – Reactive Mode - Ping from LXC3 (control) to LXC1 (sensorTemp) and LXC2 (sensorHum) 
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Hybrid Mode  

As mentioned in the previous chapter, when the Ryu-hybrid mode application is executed, a rule is 

installed in the switch, with the indication to send a packet-in message to the controller if there is no 

match in the switch flow table. In Figure 35 it is possible to observe that the response time of the 1st 

ICMP packets is similar to the ones obtained in the reactive mode, as both have started with that only 

rule in the flow table.  

 

  

Figure 35 – Hybrid Mode - Scenario 1 and 2, 1st packet 

 

However, looking at Figure 36, the next ICMP packets response time are very low when compared to 

the reactive mode. This is due to the installation of a rule by the controller into the switch with the 

indication of the port from where the traffic should be forwarded (represented in Figure 37). Thus, from 

the second packet forward, the switch doesn’t have to send a message to the controller as it already 

knows the port, sending the packet straight to the port where the destination container is connected. 
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Figure 36 - Hybrid Mode - Scenario 1 and 2, 2nd to 4th packet 

 

 

 

Figure 37 - Hybrid Mode - Ping from LXC3 to LXC2 and switch flow table rules 
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Proactive Mode  

To the proactive mode application, a function was added in order to add rules into the switch flow table. 

Thus, when the Open vSwitch is created and is connected to the Ryu controller, those rules are pre-

installed in it, indicating the port to where the traffic should be forwarded. This added function was 

required to avoid unnecessary messages going to the controller, however, ARP messages rules could 

not be installed into the switch as they are needed to activate the containers. When the Broker script 

identifies an ARP message, it analyses the destination container and starts it up. The installation of 

these type of rules prevents the message to reach the Broker and therefore, makes it impossible to start 

the containers. 

In Figure 38 it is possible to notice a huge improvement from the scenario 1 since the average response 

time of the 1st packet decreased from approximately 300ms to 200ms. Good response time results were 

expected in this proactive mode when compared to the hybrid mode, as the installation of forwarding 

rules reduces the number of messages exchanged between the switch and the controller.    

 

 

 

Figure 38 - Proactive Mode - Scenario 1 and 2, 1st packet 
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Figure 39 - Proactive Mode - Scenario 1 and 2, 2nd to 4th packet 

 

Results Comparison  

Table 7 details the comparison between the three controller’s behavior: reactive, hybrid and proactive. 

Table 7 - Performance Tests Comparison 
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2 22.028 34.246 48.574 58.806 
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Hybrid 

1 316.140 300.540 549.340 572.540 

2 0.049 0.067 0.061 0.062 

3 0.052 0.055 0.067 0.062 

4 0.055 0.054 0.066 0.067 
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1 201.700 206.260 521.660 528.840 

2 0.042 0.041 0.062 0.064 

3 0.042 0.043 0.074 0.062 

4 0.041 0.043 0.064 0.064 
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Observing Table 7, it is possible to notice that the proactive mode obtained the best time response 

results. Looking at the first packet, there is a time decrease from the hybrid mode to the proactive mode, 

especially in scenario 1. This is due to the pre-installation rules in the Open vSwitch that reduces the 

number of exchanged messages between the switch and the controller. Regarding the second, third 

and fourth packets, it is possible to observe that both the proactive and hybrid modes obtained similar 

results, as the packets were forwarded directly to the sensor container. Overall, it is possible to see that 

the worst time response results were obtained by the reactive mode in all four packets. Having only the 

rule to send packets to the controller, leaded to an increase of flow messages, as all the packets had to 

be analyzed by the controller so they could be forwarded to the intended container.  

 

 

4.2. Functional Tests 

The functional tests consisted in the communication between containers using the MQTT-SN protocol. 

Two scripts were written with the purpose to run inside the LXC3 and sensor containers. The LXC3 

simulates the client that requests values from the sensors. Thus, the askTemperature.py simulates the 

question from the client “What is the temperature?” and publishes this question into the topic with the 

name askTemp.  

The containers then wait for the answer. In the sensor’s containers, e.g. LXC1, the script simulates the 

IoT sensor sending the value requested by the LXC3. Hence, the sendTemperature.py was written to 

subscribe the topic askTemp and to publish the temperature value in the sendTemp. This topic is already 

being subscribed by the LXC3 and when the LXC1 sends the value, the LXC3 immediately received it. 

Figure 40 represents publishing a message by the LXC3 and then the followed response, whereas in 

Figure 41, the LXC1 first subscribes the topic and then the LXC3 publishes the message. 

 

 

Figure 40 - Message exchanged through MQTT-SN (LXC3 first publishes message) 
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Figure 41 - Message exchanged through MQTT-SN (LXC1 first subscribes topic) 

 

The main intention of this test was to activate containers by sending an MQTT-SN message. However 

due to implementation problems and time issues, this was not accomplished and therefore in this case, 

the LXC3 first sends an ICMP to activate the container and then the scripts are executed.  
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Chapter 5 - Conclusions and Future Work 

5.1. Conclusions 

The main goal of this thesis was the design and evaluation of an architecture that used a software-

defined networking approach to efficiently activate fog computational resources on demand, whenever 

required by IoT or sensor networks applications.  

The exponential increase of IoT devices creates new challenges such as scalability, mobility, 

heterogeneity and security. Traditional networks have become inefficient to deal with these issues as 

well as the huge volume of data. Thus, software-defined networking has emerged as being flexible and 

scalable, providing a centralized logical control of the network devices and solving complexed 

technologies such as fog computing. 

To address these challenges, this thesis suggested the use of several emerging technologies including 

software-defined networking, containerization, fog computing, and sensor virtualization. For this 

purpose, a software-defined system was implemented, which activates the containers when required, 

managed by a Ryu SDN Controller and an intelligent Broker. This Broker decodes hexadecimal 

messages sent by the Controller through a websocket connection and extracts information from the 

packet’s header. When it receives an ARP message and the destination IP matches one of the 

container’s IP address, the Broker starts that container. 

Performance and functional tests were performed to evaluate the time required from activating the 

sensor containers to being able to communicate with them as well as the time required for the 

communication between the containers through the MQTT-SN protocol.  

The performance test was executed with three different SDN controller code versions in order to know 

how long it takes for the container to start communicating. This was achieved by evaluating the time 

response of four ICMP packets sent by Host 1 and LXC3 to the sensor containers. The best time 

response results were obtained by the proactive mode; for instance, when analyzing the first packet, it 

was possible to conclude that the response time decreased from the hybrid mode to the proactive mode, 

due to pre-installation rules in the Open vSwitch. Regarding the second to the fourth packets, similar 

results were obtained for both the proactive and hybrid modes. Overall, it was possible to conclude that 

the worse time response results were obtained by the reactive mode in all four packets. This was caused 

by the fact that the Open vSwitch only had the rule to send packets to the Controller, leading to an 

increase of flow messages. All the obtained results were within an acceptable range concerning an IoT 

environment, considering the relatively low delay on the response times observed under these tests. 

The functional test consisted in the communication between containers through the MQTT-SN protocol. 

This protocol was chosen over the MQTT as it uses UDP, which is essential to the communication with 

offline IoT computational resources. It has been demonstrated that it is possible for the LXC3 to publish 

a message while the sensor’s containers are offline, and the message subscription when the containers 

are activated. However, one of the main goals in terms of its implementation was based on the 
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application of both tests simultaneously, i.e. the activation of containers though an MQTT-SN message 

and the immediate messages exchanged. This goal was not possible to accomplish during this thesis 

due to time related issues for its implementation. 

The proof-of-concept study entailed the following question, which served as bases for this thesis: 

“Is it possible to efficiently perform on-demand activation of IoT computing resources using a 

software-defined system?” 

Overall, this thesis helped contributing to fill the gaps in the area of IoT or sensor networks, concerning 

the design and implementation of an architecture that performed on-demand activation of offline IoT fog 

computing resources by using an SDN controller, containerization and sensor virtualization. 

 

5.2. Future Work 

This thesis opens the way for further research featuring software-defined networking solutions for 

managing fog computing resources in sensor networks. Proposed future research includes the study 

and possible change of the current designed architecture or scripts in order to activate the containers 

by publishing an MQTT-SN message. Another suggestion is the exploration of MQTT-SN quality-of-

service, which was not approached in this thesis. The MQTT-SN client was used with the QoS default 

value of 0, i.e. at most once. The utilization of real sensors could be implemented in this architecture, in 

order to obtain more accurate results and to study values of energy consumption. 
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