

Department of Information Science and Technology

A Software-Defined Network Solution for

Managing Fog Computing Resources in Sensor

Networks

A Dissertation presented in partial fulfillment of the Requirements for the Degree of Master in

Telecommunications and Computer Engineering

by

Patrícia Galego Cardoso

Supervisors:

Prof. Dr. Rui Miguel Neto Marinheiro, ISCTE-IUL

Prof. Dr. José André Rocha Sá Moura, ISCTE-IUL

LISBON, OCTOBER 2019

Department of Information Science and Technology

A Software-Defined Network Solution for

Managing Fog Computing Resources in Sensor

Networks

A Dissertation presented in partial fulfillment of the Requirements for the Degree of Master in

Telecommunications and Computer Engineering

by

Patrícia Galego Cardoso

Supervisors:

Prof. Dr. Rui Miguel Neto Marinheiro, ISCTE-IUL

Prof. Dr. José André Rocha Sá Moura, ISCTE-IUL

LISBON, OCTOBER 2019

This page was intentionally left blank

No matter how many mistakes you make

or how slow you progress, you are still way

ahead of everyone who isn’t trying

Anthony Robbins

 VII

Acknowledgments

Completing my master’s degree was an important achievement for me and I would like to express

my never-ending gratitude to all who made it possible.

First and foremost, I offer my sincere gratitude to my supervisors, Professor José Moura and

Professor Rui Marinheiro, for all the support outlining and executing the work. Their knowledge,

availability and patience were crucial to the realization of this thesis.

A special thank you to Instituto de Telecomunicações (IT) for having me thorough the execution of

this thesis.

I take this opportunity to thank all my colleagues from CGI, for providing me with such a friendly and

supportive environment. I am thankful for everything I’ve learned from them and for all the

encouragement whilst finishing my degree.

To my friend Rita, since I am one of the luckiest people in the world to have you as a friend. You

have looked after me, supported me and I thank you so much.

Above all, I would like to thank my parents for always encouraging me in every single decision, this

one included. To my sisters, Márcia and Joana, for being my shelter and support. Thank you!

This page was intentionally left blank

 IX

Abstract

The fast growth of Internet-connected embedded devices raises new challenges for the traditional

network design, such as scalability, diversity, and complexity. To endorse these challenges, this

thesis suggests the aggregation of several emerging technologies: software-defined networking

(SDN), fog computing, containerization and sensor virtualization.

This thesis proposes, designs, implements and evaluates a new solution based on the emergent

paradigm of SDN to efficiently manage virtualized resources located at the network edge in scenarios

involving embedded sensor devices. The sensor virtualization through the containers provides agility,

flexibility and abstraction for the data processing, being possible to summarize the huge amount of

data produced by sensor devices. The proposed architecture uses a software-defined system,

managed by a Ryu SDN controller, and a websocket broker written from scratch that analyses the

messages sent to the controller and activates containers when required.

Performance and functional tests were performed to assess the time required from activating the

sensor containers to being able to communicate with them. The results were obtained by sending

four ICMP packets. The best time response results were obtained by the proactive controller behavior

mode, when compared to the hybrid and reactive modes.

This thesis contributed to fill the gaps in the area of IoT or sensor networks, concerning the design

and implementation of an architecture that performed on-demand activation of offline IoT fog

computing resources by using an SDN controller and sensor virtualization through containers.

Keywords: Software-defined Networking, Internet of Things, Fog Computing, Linux Container

This page was intentionally left blank

 XI

Resumo

O rápido crescimento de dispositivos embebidos conectados à Internet gera novos desafios para a

arquitetura de rede tradicional, tais como escalabilidade, diversidade e complexidade. Para resolver

estes desafios, esta tese sugere a agregação de diversas tecnologias emergentes: rede definida por

software (SDN), contentores, computação na periferia e virtualização de sensores.

Esta tese propõe, projeta, implementa e avalia uma nova solução baseada no paradigma emergente

do SDN para gerir, de forma eficiente, recursos virtualizados que se localizam na periferia da rede,

em cenários com sensores embebidos. A virtualização de sensores, através do uso de contentores,

fornece agilidade, flexibilidade e abstração para processamento de dados, sendo possível a

sumarização do grande volume de dados produzido pelos sensores. A arquitetura proposta usa um

sistema definido por software, gerido por um controlador SDN Ryu, e um websocket broker escrito

desde o zero, que analisa as mensagens enviadas ao controlador e ativa contentores quando

necessário.

Foram realizados testes funcionais e de desempenho de forma a ser possível avaliar o tempo

necessário desde a ativação de um contentor de sensores até ser possível a comunicação com

este. Os resultados foram obtidos através do envio de quatro pacotes ICMP. O melhor resultado foi

obtido pelo modo de comportamento proativo do controlador, quando comparado aos modos híbrido

e reativo.

Esta tese contribuiu para preencher as lacunas na área de IoT ou redes de sensores, no que diz

respeito ao desenho e implementação de uma arquitetura que executa a ativação sob pedido de

recursos computacionais e periféricos de IoT quando estes se encontram desligados, através do

uso de um controlador SDN e virtualização de sensores através de contentores.

Palavras-chave: Redes definidas por software, Internet das coisas, Computação na periferia,

Contentores Linux

This page was intentionally left blank

 XI

Nomenclature and abbreviations

API Application Programming Interface

AHP Analytical Hierarchy Process

ARP Address Resolution Protocol

BGP-LS Border Gateway Protocol Link-State

CoAP Constrained Application Protocol

CPU Central Process Unit

DTLS Datagram Transport Layer Security

EPL Eclipse Public License

ETSI European Telecommunications Standards Institute

GUI Graphical User Interface

GW Gateway

HP Hewlett-Packard

HTTP Hypertext Transfer Protocol

I/O Input/Output

IBM International Business Machines

ICMP Internet Control Message Protocol

IDC International Data Corporate

IETF Internet Engineering Task Force

IoT Internet of Things

IoTDM IoT Data Management

IP Internet Protocol

JSON JavaScript Object Notation

LACP Link Aggregation Control Protocol

LISP Locator/ID Separation Protocol

LXC Linux Container

M2M Machine-to-Machine

MAC Media Access Control

MB Megabyte

MCDM Multi-Criteria Decision Making

MQTT Message Queue Telemetry Transport

MQTT-SN Message Queue Telemetry Transport for Sensor Networks

ms Millisecond

NBI Northbound Interface

NETCONF Network Configuration Protocol

NFV Network Function Virtualization

ODL OpenDaylight

OF-CONFIG OpenFlow Management and Configuration Protocol

ONF Open Networking Foundation

OS Operating System

OSGI Open Services Gateway Initiative

OTP Open Telecom Platform

OVS Open vSwitch

QoS Quality of Service

REST Representational State Transfer

SB Southbound API

SCTP Stream Control Transmission Protocol

SDK Software Development Kits

SDN Software-defined Networking

SNMP Simple Network Management Protocol

SSL Secure Socket Layer

SVM Sensor Virtualization Module

TCP Transmission Control Protocol

UDP User Datagram Protocol

UI User Interface

URI Universal Resource Identifier

VM Virtual Machine

WAN Wide Area Netwoks

XML Extensible Markup Language

 XI

This page was intentionally left blank

 XIII

Table of Contents

Acknowledgments ... VII

Abstract... IX

Resumo .. XI

Nomenclature and abbreviations .. XIII

Table of Contents ... XI

List of Figures ... XI

List of Tables ... XII

Chapter 1 – Introduction .. 1

Chapter 2 – Literature Review ... 4

2.1. Internet of Things .. 4

2.1.1 IoT Platforms ... 5

2.1.2. IoT Communication Protocols .. 6

2.1.2.1. MQTT and MQTT-SN Protocols .. 6

2.1.2.2. CoAP ... 8

2.1.2.3. Comparison MQTT, MQTT-SN and CoAP .. 9

2.2. Virtualization ... 10

2.2.1. Hardware Virtualization .. 10

2.2.2. Operating System – Level Virtualization .. 11

2.2.3. Network Sensor Function Virtualization ... 15

2.3. Fog and Edge Computing ... 17

2.4. Software-Defined Networking ... 20

2.4.1. SDN Architecture.. 20

2.4.1.1. Network Elements ... 21

2.4.1.1.1. Controlling Example .. 24

2.4.1.2. SDN Controllers ... 24

2.4.1.2.1. OpendayLight .. 24

2.4.1.2.2. RYU ... 25

XIV

2.4.1.2.3. Comparison Amongst Several SDN Controllers ... 26

2.4.1.3. Northbound Management .. 27

2.4.2. Software-Defined Networking Virtualization ... 28

2.5. Related Work .. 29

Chapter 3 – Proposed Solution ... 32

3.1. Architecture ... 32

3.2. Deployment ... 33

Chapter 4 – Results and Discussion ... 39

4.1. Performance Tests .. 40

4.2. Functional Tests .. 47

Chapter 5 - Conclusions and Future Work .. 49

5.1. Conclusions .. 49

5.2. Future Work .. 50

Chapter 6 – References .. 51

 XV

List of Figures

Figure 1 - Traditional networking vs SDN [7] ... 1

Figure 2 - IoT Architecture [14] .. 4

Figure 3 - MQTT-SN Architecture [20] .. 7

Figure 4 - Transparent and Aggregating Gateways [20] ... 8

Figure 5 - CoAP ... 8

Figure 6 - Containers vs Virtual Machines [27] ... 11

Figure 7 - LXC Architecture ... 12

Figure 8 - Docker Architecture [31] ... 13

Figure 9 – ETSI Network Function Virtualization Architectural Framework [33] 15

Figure 10 - Sensor virtualization module architecture and usage scenario [36] 16

Figure 11 - Sensor data mash-up [36] ... 16

Figure 12 – Hierarchical architecture of fog computing [3] .. 17

Figure 13 – The architecture of edge computing [3] ... 18

Figure 14 – Comparison of fog computing and edge computing [39] ... 19

Figure 15 - General architectural framework for SDN [23] .. 21

Figure 16 - Main components of an OpenFlow switch [46] ... 22

Figure 17 - The operation of SDN (controller - switch) [5] ... 24

Figure 18 - Ryu Framework [55] .. 26

Figure 19 - IoT SDN/NFV Architecture [66] ... 31

Figure 20 - SDN architecture for IoT based on Fog computing [70] ... 31

Figure 21 - Proposed Architecture .. 32

Figure 22 – Detailed proposed architecture .. 34

Figure 23 - Network Topology Configuration... 34

Figure 24 - Network Topology ... 35

Figure 25 - Messages exchanged between Open vSwitch and Ryu Controller in the reactive mode .. 35

Figure 26 – Sequence diagram for hybrid mode ... 36

Figure 27 – Hexadecimal message and analysis .. 37

XVI

Figure 28 - MQTT-SN Scenario .. 38

Figure 29 - Architecture topology .. 39

Figure 30 - Reactive Mode - Scenario 1 and 2.. 41

Figure 31 - Packet-In and Packet Out ARP Messages (Scenario 2) .. 41

Figure 32 - ICMP traffic in the reactive mode (Scenario 2) ... 42

Figure 33 - Packet-In and Packet Out ICMP Messages (Scenario 2) ... 42

Figure 34 – Reactive Mode - Ping from LXC3 (control) to LXC1 (sensorTemp) and LXC2 (sensorHum)

 ... 42

Figure 35 – Hybrid Mode - Scenario 1 and 2, 1st packet ... 43

Figure 36 - Hybrid Mode - Scenario 1 and 2, 2nd to 4th packet .. 44

Figure 37 - Hybrid Mode - Ping from LXC3 to LXC2 and switch flow table rules 44

Figure 38 - Proactive Mode - Scenario 1 and 2, 1st packet .. 45

Figure 39 - Proactive Mode - Scenario 1 and 2, 2nd to 4th packet ... 46

Figure 40 - Message exchanged through MQTT-SN (LXC3 first publishes message) 47

Figure 41 - Message exchanged through MQTT-SN (LXC1 first subscribes topic) 48

List of Tables

Table 1 – Comparison between MQTT, MQTT-SN and CoAP [21] .. 9

Table 2 – Containers and Virtual Machines features comparison [25][26] ... 11

Table 3 – Container Implementation Comparison [25] .. 14

Table 4 – Similarities and differences between fog and edge computing [3] .. 20

Table 5 - Feature-based comparison of SDN controllers [42] ... 27

Table 6 - List of Related Research .. 29

Table 7 - Performance Tests Comparison .. 46

 1

Chapter 1 – Introduction

1.1. Motivation and Background

The concept of Internet of Things (IoT) was used for the first time in 1999 by Kevin Ashton, merging the

human’s communication network and the real world of things, such as devices, sensors and actuators,

that are linked together and connected to the Internet, having the ability to collect and transmit

environment information [1]. According to IDC (International Data Corporate), it is estimated that by the

end of 2020 there will be 212 billion of things connected to the Internet [2], thanks to the improvement

of the telecom sector, the cheaper Internet and the facility to produce smaller but more powerful

hardware. This exponential increase of IoT devices create challenges in terms of scalability, mobility,

heterogeneity and security. The enormous scale of devices connected, the management of the high

volume of data produced, the use of different communication protocols and different hardware and

software by manufacturers makes the use of traditional network architecture ineffective, being required

a more flexible and dynamic network’s architecture.

Transferring all the IoT data to the cloud is also becoming a challenge, requiring a high bandwidth and

energy consumption. The addition of a fog layer between IoT devices and the cloud would increase the

performance, mobility and security, and reduce the data volume exchange and the latency [3]. However

the addition of this technology introduces some complexity and mobility issues.

Software-defined networking (SDN) has emerged as a network architecture that allows the management

of the complexity of Fog Computing environment and helps solving the IoT heterogeneity problem,

enabling the creation of independent features and protocols of manufacturers, overcoming the problems

related to the closed hardware and proprietary software [4]. In traditional networks, the control plane

and the data plane are located within the network elements, requiring a configuration on each device,

using a low-level and often vendor-specific commands. SDN, unlike the traditional network, and, as

shown in Figure 1, it separates the control plane from the data plane, having a centralized control that

provides an abstract overview of all the network topology [5]. Thus, it is possible to optimize traffic

management as well as support service requirement from a centralized user interface (UI), offering

greater agility, traffic programmability and the capability to implement network automation [6].

Figure 1 - Traditional networking vs SDN [7]

Chapter 1 - Introduction

2

The use of virtualization techniques applied to SDN and sensors can help facing the scalability and

heterogeneity issues. The use of sensors virtualization provides software abstraction, reducing the

number of physical devices needed and allowing their resources management through open APIs [8][9].

1.2. Research Questions and Objectives

Considering the above-mentioned gaps in the area of IoT or sensor networks and the opportunities that

SDN brings, there is a relevant question:

▪ Is it possible to efficiently perform on-demand activation of IoT computing resources using a

software-defined system?

As such, the main goal of this thesis consists on proposing an architecture that uses a software-defined

networking approach to efficiently activate fog computational resources on-demand, as required by IoT

or sensor networks applications.

1.3. Investigation Method

After identifying the problem and objectives and to proceed to the investigation proposed on this thesis,

an architecture was designed and evaluated, and the obtained results analyzed. This architecture is

composed by a virtual switch that communicates to a software-defined networking controller through the

southbound API. The controller communicates through the northbound API with an intelligent Broker

that was created to analyze messages and to request a container on-demand.

To test the efficiency of the proposed solution, performance and functional tests were performed. The

performance test was executed with three different SDN controller code versions to understand the time

required from activating the containers to being able to communicate with them. The functional test

consisted in the communication between containers through a very popular sensor protocol, i.e. MQTT-

SN. The final goal of this thesis in terms of design and implementation was the application of both tests

in simultaneous, i.e. the activation of containers and the immediate messages exchange through the

MQTT-SN protocol.

Overall, this thesis helps facing the IoT and sensor networks issues concerning the design and

implementation of an architecture that performed on-demand activation of offline IoT fog computing

resources by using an SDN controller, containerization and sensor virtualization.

 Chapter 1 - Introduction

 3

1.4. Dissertation Outline

The rest of this thesis is organized as follows. Chapter 2 discusses the literature review and describes

the different technologies used. Chapter 3 details the proposed solution, where the proposed

architecture and the implementation can be found. Chapter 4 discusses the obtained results. Finally,

the Chapter 5 presents the general conclusions about the work developed, as well as suggestions of

future work.

 4

Chapter 2 – Literature Review

2.1. Internet of Things

The Internet of Things (IoT) is a global network where things, like sensors, devices and actuators, are

connected to the Internet, sensing and collecting data, allowing the communication not just between

humans and things but also between humans themselves.

The IoT devices possess rigorous requirements in terms of hardware and software, making these

devices intelligent and autonomous, capable of performing tasks of detection, monitoring and interaction

with the environment. Their capability for collecting data allow these devices to change their state as

well as their context dynamically. The connectivity amongst IoT devices is essential as it contributes for

the global intelligence of the IoT network. However, this connectivity creates a challenge in terms of the

enormous scale of devices connected and the management of the high volume of data produced, being

required the use of a network capable of adapting in an efficient and immediate way [10][11]. Alongside

with scalability, IoT devices heterogeneity and security issues must also be taken into consideration.

IoT devices require security features to ensure, amongst others, authentication, confidentiality, privacy,

access control, anonymity and availability. With the intend of IoT to connect devices from different

vendors, with different characteristics and complexity, it is necessary the implementation of protocols

that support heterogeneous environments as well as security features [12][13].

web server

cloud

gateway

celular sensor

nodes

sensor

nodes

APPLICATION LAYER PROTOCOL

clients

APPLICATION LAYER PROTOCOL

Figure 2 - IoT Architecture [14]

 Chapter 2 - Literature Review

 5

2.1.1 IoT Platforms

Due to the scalability problem created by the Internet of Things, it is necessary the use of platforms that

provide communication protocols in order to connect the IoT devices to the network. These platforms

enable the connectivity, services and cloud for the devices and can be integrated with smartphones

allowing a real-time portable monitoring, optimizing costs and ensuring safety and reliability [15].

According to IoT Analytics [16], there are more than 300 IoT platforms, which can be divided based on

its level of technology depth. The first level is composed by the connectivity platform, that simply collects

the data from the devices while the second level refers to the action platforms, which manages the

connection and provides trigger actions based on specific events. Full-scale platforms are in the third

level of technology depth. These are the most advanced platforms that besides allowing connectivity

and action, also enable external interfaces such as APIs, SDKs and gateways, support various protocols

and standards and provide database solutions. Although this last level is the one with most features, the

major percentage of IoT platforms provided by companies are at level 1.

An IoT platform should be open, flexible, providing a perfect integration between heterogeneous devices

and using all kind of topologies and protocols. In addition, the IoT platform should be easy to use and

ensure software updates, provide storage for a huge data volume and a fast execution of actions based

on specific sensor data. In order to interact with the user, the data provided by devices should be

analyzed and displayed through graphics or diagrams. The IoT platform should also provide additional

tools like platform ecosystems apps, enabling the devices visualization, management and controlling,

as well as programming interfaces and software development kits (SDK).

Some of the most used platforms nowadays are Amazon AWS IoT1, Microsoft Azure IoT2, Google Cloud

IoT3, Cisco IoT Services4, Watson IoT (IBM) 5, ThingWorx (PTC) 6, amongst others.

1 https://aws.amazon.com/
2 https://azure.microsoft.com
3 https://cloud.google.com/
4 https://www.cisco.com/c/en/us/solutions/internet-of-things/overview.html
5 https://www.ibm.com/watson
6 https://www.ptc.com/en/products/iiot/thingworx-platform

Chapter 2 – Literature Review

6

2.1.2. IoT Communication Protocols

IoT uses lightweight communication protocols in order to produce a more efficient communication in

sensor networks. The main advantages are the following: small-size packets, less bandwidth, demand

a low demand of processing resources and decrease of energy consumption.

There are different communication protocols that can be used at diverse layers. However, most of these

protocols, such as HTTP and TCP/IP, require fast processing units and high-power. This resources and

capabilities are not available in embedded devices, being necessary the use of lightweight

communication protocols [18]. Thus, application-layer protocols are preferable in order to satisfy the

specifications of IoT devices as well as integrate a solution closer to end-users [17]. Three application-

layer protocols were used, including MQTT, MQTT-SN and CoAP.

2.1.2.1. MQTT and MQTT-SN Protocols

Message Queue Telemetry Transport (MQTT) was released by IBM and designed for machine-to-

machine (M2M) communication in IoT networks. It is a lightweight protocol that has in consideration the

latency, bandwidth and the devices with constrained resources.

MQTT is an asynchronous publish/subscribe protocol requiring a low amount of computational

resources and network bandwidth. It has a broker that contains topics, where clients publish messages

over a specific topic and subscribers receive them after every new update.

MQTT has three QoS (Quality of Service) levels, which defines the reliability in how a message is

received [17]:

▪ Level 1: Fire and Forget – A message is sent only once and no acknowledgment is required.

This is a best-effort delivery service.

▪ Level 2: Delivered at least once – A message is sent at least once and an acknowledgment is

required. This guarantees that a message is delivered at least one time to its destination.

▪ Level 3: Delivered exactly once – A handshake mechanism is used to ensure that only one

message is delivered to its destination.

MQTT uses TCP/IP which, in some cases, can be a heavy transport protocol for embedded devices

with low processing capacity and battery dependency.

MQTT for Sensor Networks (MQTT-SN) is a protocol similar to MQTT but more focused on the

characteristics of sensor networks. It is optimized for implementation on low-cost, battery-operated

devices with limited processing and storage capabilities and, unlike MQTT, the MQTT-SN operates on

any transport layer and has a smaller packet length to assure the resistance to transmission errors.

Instead of a topic name, that can have until 65535 bytes of size, the MQTT-SN uses topic ID with two-

byte long with the intention of reducing the packet’s header [19].

 Chapter 2 - Literature Review

 7

In the architecture of MQTT-SN, represented in Figure 3, there are three kinds of components:

▪ MQTT-SN clients – connect themselves to a MQTT broker via a MQTT-SN GW;

▪ MQTT-SN gateways (GW) – may or may not be integrated within a MQTT broker. The main

function of MQTT-SN Gateway is the translation of messages between MQTT-SN clients and

the MQTT Broker;

▪ MQTT-SN forwarders – MQTT-SN clients can access a GW via a MQTT-SN forwarder in the

scenario where the GW is not directly connected to the MQTT-SN clients. The MQTT-SN

forwarder encapsulates the MQTT-SN frames received on the wireless side and forwards the

received messages unaltered to the GW.

MQTT-SN
client ...

MQTT-SN
client

MQTT-SN
Gateway

MQTT
BrokerMQTT-SN

Gateway

MQTT-SN
client

MQTT-SN
ForwarderMQTT-SN

client

MQTT-S

MQTT-SN

MQTT-SN

MQTT-SN

MQTT

Figure 3 - MQTT-SN Architecture, based on [20]

Depending on how a GW performs the protocol translation between MQTT-SN clients and the MQTT

broker, one can enumerate two GW types, as shown in Figure 4. The first type is designated by

transparent GW and is responsible to maintain a MQTT connection between the MQTT-SN client and

the server. Thus, the GW has the same number of connections on both sides. The second GW type is

designated by the aggregating GW, which has only one MQTT connection to the server. In this case the

messages are exchanged amongst each MQTT-client and the aggregated GW via a specific connection.

Then, the GW decides the correct order for the messages to send through a single connection to the

server [20].

Chapter 2 – Literature Review

8

Transparent
GW

MQTT-SN
client

MQTT-SN
client

MQTT-SN
client

MQTT
Broker

MQTT-SN MQTT

Aggregating
GW

MQTT-SN
client

MQTT-SN
client

MQTT-SN
client

MQTT-SN

MQTT MQTT
Broker

Figure 4 - Transparent and Aggregating Gateways, based on [20]

2.1.2.2. CoAP

Constrained Application Protocol (CoAP) (RFC 7252) was designed by the Internet Engineering Task

Force (IETF) for peripheral devices with limited resources. It is a request/response protocol essentially

used for machine-to-machine (M2M) communication. It runs over UDP and is interoperable with HTTP,

using HTTP commands to allow the communication between client and server. This communication also

requires a gateway to adjust the transport logical connection of TCP (HTTP side) with the transport

connectionless session of UDP (COAP side). In addition, the CoAP uses Universal Resource Identifier

(URI) instead of topics as used by MQTT.

Considering the fact that CoAP does not depend on a reliable TCP connection, this implies that COAP

can operate in scenarios with low bandwidth and poor signal situations.

To achieve reliability, CoAP has two bits reserved in the header to indicate the type of message and the

QoS level [14]:

▪ Confirmable – a request message that requires an acknowledgement as a confirmation of its

reception

▪ Non-Confirmable – a message that doesn’t need an acknowledgement

▪ Acknowledgement – it confirms the reception of a confirmable request message

▪ Reset – it confirms the reception of a message that couldn’t be processed

CoAP
Server ...

CoAP
Clients

CoAP
Clients

CoAP
Clients

Figure 5 - CoAP

 Chapter 2 - Literature Review

 9

2.1.2.3. Comparison MQTT, MQTT-SN and CoAP

Hamdani et al. [17] compared the three MQTT QoS (Quality of Service) levels with CoAP, regarding

message delivery latency and network bandwidth usage. In terms of latency, the MQTT shows more

stability and the CoAP protocol evidences lower rates, whereas in terms of bandwidth the MQTT protocol

consumes more than the CoAP does. These results are due to the QoS of MQTT since CoAP messages

require fewer packet bytes while ensuring acknowledgement of the received messages.

Karagiannis et al. [14] evaluated the performance of CoAP and MQTT at different conditions using a

common middleware that allows a more suitable protocol to be used in specific network conditions.

MQTT messages experienced lower delays than CoAP for low packet loss and higher delays for higher

packet loss. When messages have a small size and low loss rate, CoAP generates less extra traffic

than MQTT to ensure the transmission reliability of data messages.

Silva et al. [19] compared the MQTT and MQTT-SN protocol regarding memory consumption by

messages header. Considering only the header size plus a payload of the collected temperature, MQTT-

SN presented a better performance when compared to the MQTT in approximately 50% due to its

shorter packet’s header. The fact that MQTT-SN uses a topic ID instead of a string helps decreasing

the messages’ size.

Thus, CoAP and MQTT-SN can be considered as good options in situations with a low level of available

bandwidth. However, in scenarios where the bandwidth is not an issue and reliability is needed, the

MQTT is the best solution.

Table 1 details the comparison between the three IoT application-layer protocols discussed in this sub-

section.

Table 1 – Comparison between MQTT, MQTT-SN and CoAP [21]

 MQTT MQTT-SN CoAP

Year 1999 2007 2010

Architecture Client/Broker
Client/Gateway

Client/Forwarder
Gateway/Broker

Client/Server or
Client/Broker

Abstraction Publish/Subscribe Publish/Subscribe
Request/Response or

Publish/Subscribe

Header Size 2 bytes 2 bytes 4 bytes

Message Size
Small and Undefined (256 MB

maximum size)
Maximum size 65535 bytes

Small and Undefined (normally
small to fit in single IP datagram)

Semantics /
Methods

Connect, Disconnect, Publish,
Subscribe, Unsubscribe,

Close

Defines 27 type of control
message, such as Connect,

Publish, Unsubscribe,
Disconnect

Get, Post, Put, Delete

Quality of Service
(QoS)

QoS 0 – At most once
(fire-and-forget)
QoS 1 – At least once
QoS 2 – Exactly once

QoS -1 (within Publish
messages sent by a client)
 QoS 0 – At most once
QoS 1 – At least once
QoS 2 – Exactly once

Confirmable Message
Non-confirmable Message

Standards OASIS, Eclipse Foundations
MQTT-SN is not standardized.

It is a copyright of IBM
IETF, Eclipse Foundation

Transport Protocol TCP UDP UDP, SCTP

Security TLS/SSL DTLS DTLS, IPSec

Licensing Model Open Source Open Source Open Source

Organizational
Support

IBM, Facebook, Eurotech,
Cisco, Red Hat, Software AG,
Tibco, ITSO, M2Mi, Amazon

AWS, InduSoft, Fiorano

IBM
Large Web Community Support,

Cisco, Contiki, Erika, IoTivity

Chapter 2 – Literature Review

10

2.2. Virtualization

The exponential increase of IoT devices connected to the Internet leads to security weaknesses in local

edge networks. Furthermore, the communication between these local devices and the remote cloud

incurs in high delays and a high consumption of bandwidth resources. An approach to enhance the

mitigation of these issues introduces by IoT devices is to use virtualization layers [22]. A virtualization

layer allows better automation and the possibility to segment units in the network, making it possible to

separate, for example, the control layer from the network topology.

Using virtualization breaks the connection between a service or application and the network topology,

creating a network resource abstraction, encouraging application development and its easier

deployment. In addition, virtualization isolates, supports configuration and management of virtual

instances, allowing network resources to share common features in a more efficient and flexible way

[23].

There are three types of virtualization: hardware virtualization, operating system – level virtualization

and network virtualization. These diverse types of virtualization are discussed in the next sub-sections.

2.2.1. Hardware Virtualization

The hardware virtualization consists in running multiple and independent virtual machines (VMs). Each

of these VMs operates as an emulated standalone physical machine. Hence, it is necessary to use a

software that creates and deploys the VMs, each one with their own computing and networking devices,

operating system (guest OS), and their own applications. Using this type of virtualization, it’s possible

to eliminate some eventual incompatibilities between applications and operating systems as well as to

take advantage of the full capacity of the computer, optimizing the use of its physical resources, space

and associated cost.

The hypervisor is the software already mentioned in the previous paragraph. It provides an abstraction

of hardware resources and decides how they should be virtualized, offering to each VM its own

processing and networking resources. There are two types of hypervisors. The type-I hypervisors don’t

need an operating system, running directly on top of the hardware. This allows them to be more efficient,

scalable and with a convenient performance. Some examples of type-I hypervisors are Hyper-V,

vSphere1 and ESXi2 developed by VMWare and XenServers3. The type-II hypervisors run upon the

physical host operating system, having the possibility to use more configurable hardware. Another

advantage of this type of hypervisor is that it can be installed on a regular desktop system. Examples of

type-II hypervisors include VMWare Player4 and VirtualBox5.

1 https://www.spherestandards.org/
2 https://www.vmware.com/products/esxi-and-esx.html
3 https://xenserver.org
4 https://www.vmware.com/products/workstation-player.html
5 https://www.virtualbox.org/

 Chapter 2 - Literature Review

 11

Although the hypervisor allows running multiple and different operating systems at the same time, it

demands for a suitable amount of physical computing resources such as CPU and memory. In the case

the physical resources available are not enough for the entire set of VMs, the complete system could

have a very low level of computing performance [23].

2.2.2. Operating System – Level Virtualization

The OS-level virtualization provides containers that are lightweight operating systems isolated from each

other but sharing the kernel resources provided by the physical host. This fact limits the flexibility of the

containers but allows a better virtualization performance when compared to the virtual machines.

Sharing the kernel makes disk images used by containers smaller than the ones used by hypervisors

that run full operating systems in VMs [24]. Thus, containers remove the overheads associated to the

guest OS, offering better performance than virtual machines. Another advantage of containers when

compared to VM’s is the lower booting up time as they use the kernel of the physical host [23].

Table 2 and Figure 6 show the main differences between containers and VMs, regarding their

architecture and features.

Table 2 – Containers and Virtual Machines features comparison [25][26]

APP 1

Hypervisor

Bins/Libs

Guest OS

Host Operating System

Infrastructure

Container Engine

Operating System

Infrastructure

APP 2

Bins/Libs

Guest OS

APP 3

Bins/Libs

Guest OS

APP 1

Bins/Libs

APP 2

Bins/Libs

APP 3

Bins/Libs

Figure 6 - Containers vs Virtual Machines, based on [27]

Parameter Containers Hypervisor-Based VM

Choice of Operating

System

Variant of host OS, as it shares the same

kernel
Any

Startup Time
Containers can be booted up in a few

seconds
VMs take a few minutes to boot up

Hardware Abstraction and

Device Emulation
No Yes

Disk Image Small Large

Storage
Containers take lower amount of storage as

the base OS is shared

VMs take much more storage as the whole

OS kernel and its associated programs have

to be installed and run

Density High Low

Security Not mature and complex
Mature Security models depending on the

implementation of Hypervisor

Chapter 2 – Literature Review

12

Linux Container

The Linux Container (LXC) is an open source container platform, which provides a lightweight

virtualization environment that can be used on Linux-based systems.

LXC uses Linux namespaces allowing the creation of multiple isolated Linux virtual environments with

its own network devices and a restricted access to file systems. Hence, each container runs

independently of each other and it does not get compromised by processes running inside another

container. LXC also uses Control Groups (cgroups) to manage and limit the resources consumed by its

processes such as CPU, memory, disk I/O [28]. Figure 7 details the LXC architecture.

Using LXC enhances the creation of a virtual environment as close as a standard Linux installation, with

the advantage of avoiding a separate kernel. Hence, Linux users can easily create and manage systems

or application containers [29]. Some of the images available by LXC are Ubuntu1, CentOs2, Fedora3,

Debian4, amongst others.

LXC Userspace Tools

Linux Kernel

Infrastructure

 Containers Containers

namespaces cgroups

drivers

Bins/LibsBins/Libs

Figure 7 - LXC Architecture

1 https://ubuntu.com/
2 https://www.centos.org/
3 https://getfedora.org/
4 https://www.debian.org/index.pt.html

 Chapter 2 - Literature Review

 13

Docker

Docker extends from LXC and implements an isolated and protected environment to run an application

designated as a container. One of its advantages is the possibility to start with a simple image and add

the features needed and desirable to run the application, making it not just an easy and faster way to

deploy IoT applications but also a good solution to solve the heterogeneity amongst IoT devices.

The Docker containers help developing, distributing, testing and deploying applications, being these

containers managed by the Docker platform.

The Docker architecture is represented in Figure 8. A Docker container is created by a Docker image,

which is the basis of a Docker container. This container is the unit where the application services resides

and is created and executed by the Docker engine/daemon that manages not only containers, but also

images, networks and volumes. The images are built manually or automatically by reading the

commands from a Docker file and each given command forms a new layer on top of the previous one.

With Docker Cloud and Docker Datacenter is possible to register Docker images and to manage Docker

hosts, which can be run on different cloud platforms, thanks to the use of Docker Machine [30] [31].

Figure 8 - Docker Architecture [31]

Chapter 2 – Literature Review

14

The container technology is in expansion and it’s possible to find a large set of choices, e.g. OpenVZ1,

Linux Container2, Docker3 and Rocket (CoreOs rkt) 4.

Table 3 compares the different features between the mentioned containers.

Table 3 – Container Implementation Comparison [25]

Both OpenVz and Linux Container are full operating system containers, allowing to run multiple

applications in a single container but, unlike OpenVZ, LXC has updated release versions as well as an

active community around it. Docker and rkt are optimized for application containers, running only

individual processes per container.

All the container technologies create a virtualized isolated process and use similar kernel features like

namespaces and cgroups. However, LXC allows a better environment for developers, as it authorizes

multiple services to run inside a container. This last feature is not possible for Docker or rkt, making

them heavier technologies, in terms of physical resources consumption, when compared to LXC.

1 https://openvz.org/
2 https://linuxcontainers.org/
3 https://www.docker.com/
4 https://coreos.com/rkt/

Parameter OpenVZ LXC Docker CoreOS rkt

Year 2005 2008 2013 2014

Latest Version

Release
25th July 2016

LXC 3.2.1

24th July 2019

Version 19.03.3

08th October 2019

Version 2275.1.0

09th October 2019

App or Full-System

Container
Full-System Full-System App App

Supported

Platforms

Linux (only Virtuozzo

Linux)
Linux

Linux, Windows,

macOS, Microsoft

Azure, AWS

Linux, Windows,

macOS

Process Isolation Uses pid namespace Uses pid namespace Uses pid namespace Uses pid namespace

Resource Isolation Uses CGroups Uses CGroups Uses CGroups Uses CGroups

Network Isolation Uses net namespace Uses net namespace Uses net namespace Uses net namespace

Filesystem Isolation Using chroot Using chroot Using chroot Using chroot

Container Lifecycle
Uses vzctl to manage

container lifecycle

Tools lxc-create,

lxc-stop, lx-start to

create, start, stop a

container

Uses Docker daemon

and a client to

manage the

container

Container build tool

based on shell

scripting, leveraging

familiar unix tools

 Chapter 2 - Literature Review

 15

2.2.3. Network Sensor Function Virtualization

According to IoT Analytics [32], in 2018 the number of connected devices exceeded 17 billion, 7 billion

of which were IoT devices. The number of active IoT devices is expected to grow to 10 billion by 2020,

and therefore the software abstraction of these devices becomes crucial as well as implementing

virtualized functions in order to distribute intelligence in a more optimized way.

The Network Functions Virtualization (NFV) is an initiative of the European Telecommunications

Standards Institute (ETSI) and allows the separation of the software from the hardware, enabling the

evolution of both in an independent way (Figure 9). With the NFV is possible to create and manage

network services through network function abstraction. The NFV enables generic servers to achieve

scaling goals, such as the capability of dynamic scaling. To do so, NFV allows network functions to be

developed and deployed as software instances running on standard servers [23].

Figure 9 – ETSI Network Function Virtualization Architectural Framework [33]

Considering the scalability, reliability and implementation problems of physical sensors, the sensor

virtualization allows the access to the physical properties of physical measurement sensors through

virtual sensors [34]. The virtual sensors can aggregate the tasks executed by the diverse physical

sensors e.g. sensing, processing, communicating and storing. Thus, the virtualization of sensors allows

a more abstracted, scalable and flexible interaction between the physical sensors and applications [35].

One of the approaches proposed by JeongGil Ko et al. [36] consists in the introduction of the Sensor

Virtualization Module, which solves the limitation problem of applications that use IoT resources. Thus,

a software abstraction is provided through open APIs, allowing better data management given by the

diverse proposed objects.

Through the SVM engine is made a discovery of IoT devices profiles in the local network, being the

characteristics of each device stored in object handles that can be then advertised to the applications.

This helps applications selecting the IoT devices with which they want to interact. Hence, SVM enhances

the operation of IoT network because it not only simplifies the development of APIs that use IoT devices,

but it also exposes these devices that have been found in the local network to the cloud, allowing their

management remotely.

Chapter 2 – Literature Review

16

Figure 10 shows a scenario where the SVM running on a mobile device manages its local IoT devices

and exposes them to the cloud through the SVM application server. Thus, the IoT devices as well as

the virtual IoT devices can be accessed by remote applications running on different Internet platforms.

Figure 10 - Sensor virtualization module architecture and usage scenario [36]

The SVM also allows sensor data mash-up. Using this approach, it is possible to combine data from

different IoT devices and create a new data group, as shown in Figure 11. Thus, the user doesn’t need

to connect directly to the physical sensor or retrieve data individually from each device.

Figure 11 - Sensor data mash-up [36]

Combining both network functions and virtualized sensors ensures running services strictly when

necessary, such as, when a client needs to connect to sensors in order to collect data or just start and

stop services. Without using virtualization, the access and management of the data and resources

provided by IoT devices could be severely restricted due to the manufacturer’s software.

 Chapter 2 - Literature Review

 17

2.3. Fog and Edge Computing

Fog computing was proposed in 2012 by Cisco and is a geographically distributed computing

architecture, where different devices at the edge of the network are connected to provide computation,

networking, decision making, data management and storage services. It is an extension of the cloud

service to the edge of the network and it is located closer to the end-users in order to provide them

location-based services with minimum access latency.

It is composed by fog nodes, which includes network edge devices, like routers, gateways, switches,

etc., and management systems within these devices. These fog nodes are distributed between the

devices and the cloud, where they might be static or mobile, which is an important fact in mobile

scenarios like smartphones or vehicles. They store temporarily the received data generated by the

devices, and process some of those data, transferring the rest to the cloud. Hence, there is a reduction

on the data volume exchange through the network infrastructure, helping to reduce the latency.

The fog architecture, represented in Figure 12 is composed by the terminal layer, containing the different

IoT devices and sensors responsible to receive data and transmit this to the upper layer. In addition,

there is the fog layer, which is located at the network edge and is formed by diverse fog nodes. Adding

this extra layer between the IoT devices and the cloud increases the performance, mobility and security,

by encrypting and isolating data. At least, there is the cloud layer, which contains high-performance

servers and storage devices and provides application services [3].

Internet Internet Internet

Fog Nodes Fog Nodes Fog Nodes

V
V

Cloud data
center

Cloud

Fog

Terminal

Core

Edge

Figure 12 – Hierarchical architecture of fog computing, based on [3]

Chapter 2 – Literature Review

18

The communication between the devices and the fog nodes, including the intercommunication between

these nodes, is made essentially by wireless access technologies. The nodes are linked to the cloud by

IP core network.

Edge computing is a computing model that also extends cloud services to the edge mobile devices. This

model is also commonly designated as multi-access edge computing [37]. It enhances management,

storage and the processing power of data generates by connected devices.

As seen in Figure 13, the edge computing architecture is composed by edge nodes and devices, like

smart sensors, smartphones, etc., that make decisions, process and storage data when they have the

capacity to do so. The edge nodes can create local edge networks or communicate with the cloud

through the core network. In this model, when end devices need services, they request them from the

cloud. In addition, the end devices can provide services to other requesting devices.

Edge computing helps reducing the latency and the amount of traffic between the mobile devices and

the cloud. It also provides services, security and privacy protection [3].

Cloud Data Center

Core Network Core Network

VV

Edge
nodes

Edge
devices

Figure 13 – The architecture of edge computing, based on [3]

 Chapter 2 - Literature Review

 19

Puliafito et al. [38] presented a survey on how fog computing can support IoT devices and services.

They discuss the main outcomes offered by fog computing, including six IoT application domains that

benefit from using this paradigm. Fog computing extends the cloud towards the network edge, where

fog services can be distributed anywhere along the cloud-of-things continuum. Depending on its

requirements, a fog service may be resource-rich end devices (e.g. video surveillance cameras),

advanced edge nodes (e.g. switches, gateways) and specialized core networks routers.

A. Yousefpour et al. [39] compared fog computing with other related computing paradigms such as edge

computing (see Figure 14). It mentions the OpenFog Consortium [40] that considers fog computing as

“a horizontal, system-level architecture that distributes computing, storage, control and networking

functions closer to the users along a cloud-to-thing continuum”, whereas edge computing is more likely

to be limited to processing at the edge. Thus, fog computing is considered a more general and

comprehensive definition scope, being suitable for many cases in the IoT environment. This article also

provides a taxonomy of research topics in fog computing.

V

IoT DEVICES

EDGE COMPUTING

FOG COMPUTING (CORE) CLOUDS

INTERNET

ACCESS NETWORK METRO NETWORK CORE NETWORK

Figure 14 – Comparison of fog computing and edge computing, based on [39]

Chapter 2 – Literature Review

20

Table 4 lists some relevant similarities and differences between fog and edge computing.

Table 4 – Similarities and differences between fog and edge computing [3]

2.4. Software-Defined Networking

The Software-Defined Networking (SDN) is a network architecture that enables the creation of

independent features and protocols of manufacturers, overcoming the problems related to the closed

hardware and proprietary software [41].

2.4.1. SDN Architecture

The SDN allows a separation of the control plane from the data plane. The data plane is where the traffic

flows are physically exchanged. It is composed by network elements, such as routers and switches, that

expose their capabilities and resource status to the control plane.

This architecture has a centralized control commanded by the SDN controller. The SDN system can

also manage the network resources through SDN applications. The SDN controller has an overview of

the network topology as well as the network resource status, allowing it to improve and adapt the packet

routing rules as well as face the challenges of scalability, performance and security. This way, the

network devices in the data plane take actions by following the rules established by the controller [41].

 Fog Computing Edge Computing

Architecture Hierarchical, decentralized, distributed Hierarchical, decentralized, distributed

Proximity to end devices
Near (single network hop or few network

hops)
Located in end devices

Latency Low Low

Bandwidth costs Low Low

Resource Limited More limited

Computation and storage
capabilities

Limited More limited

Mobility Supported Supported

Scalability High High

Energy consumption High Low

Service Virtualization Virtualization

Location of data collection,
processing, storage

Near-edge and core networking, network
edge devices and core networking devices

Network edge, edge devices

Handling multiple IoT
applications

Supported Unsupported

Resource contention Slight Serious

Focus Infrastructures level Things level

 Chapter 2 - Literature Review

 21

The controller also translates the SDN applications policies to low-level control instructions, and

therefore they can be executed by the network devices on the data plane. It also enables the

programmability in the network through an Application Programing Interfaces (API) that allows the SDN

applications to inform the controller about their network service requests.

Thus, the SDN can be organized into three planes: the data plane, control plane and application plane,

as can be seen in Figure 15. The SDN typically has two interfaces. The first interface exists between

data and control planes and is designated as the Southbound API. The second interface exists between

each application and the SDN controller and is designated as the Northbound API [23].

SDN Application SDN Application

SDN Controller

Network
Element

Network
Element

Network
Element

Northbound
API

Southbound
API

Application
Plane

Control
Plane

Data
Plane

Figure 15 - General architectural framework for SDN, based on [23]

2.4.1.1. Network Elements

The lowest layer of SDN architecture is composed by the data plane that communicates with the SDN

controller through the Southbound API, enabling the elements to update the controller about their

capabilities and status of their resources. Therefore, the controller can have a global view of the network

and thus send this information to the application plane. The controller can also instructs the data plane

by configuring rules in the network elements [42].

The most used Southbound API protocol is the OpenFlow. It was released in December 2009 and is

managed by the Open Networking Foundation (ONF) [43].

The OpenFlow is a standard protocol that allows the communication between the SDN controller and

the network infrastructure devices, whether they are physical or software-based. It is used by the SDN

controller to discover the network topology and modify data flow rules in the flow tables of switches [44].

There are two types of OpenFlow switches. The pure switches only support OpenFlow and have no

legacy features or on-board control, depending completely on the SDN controller for performing

decisions about how to forward the traffic through the data plane. The hybrid switches support the

Chapter 2 – Literature Review

22

OpenFlow protocol as well as other legacy algorithms or networking protocols [45]. The Open vSwitch

is an example of a hybrid software-based switch. The main components of an OpenFlow switch are

represented in Figure 16.

Figure 16 - Main components of an OpenFlow switch [46]

An OpenFlow switch contains at least three parts [44]:

▪ A pipeline of flow tables, which performs packet lookups and execute a set of instructions or

actions that determine how to handle the packets;

▪ Secure Channel, that enables the communication between the switch and the controller,

allowing the packets flow and instructions;

▪ The client side of the OpenFlow Protocol.

Open vSwitch

Open vSwitch (OVS) is managed by The Linux Foundation and is a multilayer software licensed under

the open source Apache 2 license. It is the most popular virtual switch implementation and it can be

used as virtual switch in virtualized environments and as a general software switch.

The major part of the code is written in platform-independent C and is easily ported to other

environments. OVS supports common standards protocols such as OpenFlow, LACP, etc [47][48].

The support of the OpenFlow protocol makes Open vSwitch a great addition to any SDN-based network.

 Chapter 2 - Literature Review

 23

OpenFlow Messages

The OpenFlow protocol has three types of messages [45]:

▪ Controller-to-switch, that are initiated by the controller to set and query configuration

parameters in the switch, to collect statistics and manage the state of the switch, being used to

add /delete or modify flow table entries, and to send packets out of a determined port.

▪ Symmetric, that are initiated by the controller or the switch, like Hello or Echo messages to

discover the latency, bandwidth and heartbeat.

▪ Asynchronous, that are initiated by the switch to inform the controller about switch state

changes, packet arrival and error messages. When an idle timeout value is indicated, the entry

should be removed according to that value and / or a flow removal message should be sent to

the controller.

A Packet-In message is asynchronous, being sent from the switch to the controller for further processing.

Wherever there is no matching flow entry and there is a default entry with a send to controller action, a

Packet-In message is sent to the controller. This message transports a copy of the received message

in the switch.

When the controller receives a Packet-In message, it adds an action list field, containing a list of actions

that defines how the switch should handle the packet received in the initial Packet-In message. The

previous list of actions is sent to the switch, using a Packet-Out message. If the controller does not know

the localization where the destination host of the initial received packet is attached to the network

topology, the controller sends to the switch a Packet-Out to perform flooding.

The Modify-State messages, also called ‘flow mod’, are messages sent by the controller to manage the

state of the switches as well as add, delete or modify flow table entries.

OpenFlow Controller Behavior

There are two types of controller behavior: the reactive mode and the proactive mode.

In the reactive approach, the first flow packet received by the switch triggers the controller to insert flow

entries in each OpenFlow switch of the network. Despite being an efficient use of the flow table memory,

every time a new flow is introduced, it adds an additional setup delay in the system operation, due to

the Round-Trip Time between the switch and the SDN controller. Another disadvantage is the

dependency on the controller which in case of a connection loss between the switch and the controller

forces the switch to drop flow packets with unknown local rules to apply to.

In the proactive behavior, the controller previously fills the flow table in each switch, avoiding the

additional flow setup time of the reactive mode. Having the forward rules in the flow table makes the

switch less dependent on the controller, having eventually no traffic disruption in the case of a

temporarily connection loss between the controller and the switch [49].

Chapter 2 – Literature Review

24

2.4.1.1.1. Controlling Example

Figure 17 shows an example of SDN controlling. In SDN, when the switch receives the first packet from

a new flow (step 1), it checks if there is a forwarding rule matching some of the header fields of that

received message in the local OpenFlow table (step 2). If it finds a match entry, the instruction (i.e.

action) is executed, being the packet forwarded to the receiver (step 5). However, if there is no match

in the flow table, a flow request (packet_in message) is sent to the controller (step 3) asking in which

action should be taken. The controller then responds with a flow-entry that contains the switch output

port from where the packet should be forwarded (step 4). The switch adds, delete or update the flow

table depending on the flow control message sent by the controller. Once it has added a new entry in

the switch, it is now capable to send the packet to the receiver (step 5) [5].

Figure 17 - The operation of SDN (controller - switch) [5]

2.4.1.2. SDN Controllers

2.4.1.2.1. OpendayLight

OpenDayLight (ODL) is an open source SDN project created in 2013 by the Linux Foundations with

nearly 50 major corporate members, including Cisco, HP, IBM, Juniper and VMWare. These companies

have contributed with the necessary resources to support the creation of an SDN platform. In addition,

ODL is available under the Eclipse Public License (EPL), increasing the compatibility with the expansive

environment of libraries and third-party components. Thus, ODL is a modular open source platform for

SDN, implemented in Java programming language and operated through an open and active community

[50].

 Chapter 2 - Literature Review

 25

OpenDayLight was the first controller entering the IoT domain with the Lithium release in June of 2015.

The IoT Data Management (IoTDM) module was implemented, enabling authorized applications to

retrieve IoT data uploaded by any device. In addition, the IoTDM also acts as a oneM2M compliant,

which is the global standardization body for IoT that prepares, approves and maintains the necessary

functions of IoT technologies.

OpenDayLight supports a layered architecture. The Network Applications & Orchestrations layer on the

top consists on business and network logic applications that use the controller to implement self-

adaptive management actions over the network infrastructure. These applications also run algorithms

to perform data analytics in order to orchestrate new and more efficient control rules to manage the

resources of the network infrastructure. The middle layer, the Controller Platform, is the framework which

enables SDN abstraction. The controller exposes northbound APIs to the application layer, using the

Open Services Gateway Initiative (OSGI) framework and bidirectional REST API. To implement

protocols for command and control of the physical hardware within the network, the controller uses the

southbound API, that supports multiple protocols like OpenFlow, NETCONF, BGP-LS, SNMP, LISP,

etc. The bottom layer consists of the physical and virtual devices, such as switches, routers, open

vSwitches etc [51].

OpenDaylight is one of the most featured controllers, being able to be used in any operating system,

claiming extensive compatibility support from vendors, presenting a good GUI feature and

documentation. [52]

2.4.1.2.2. RYU

Ryu means “flow” in Japanese and is a component-based and open source software defined by a

network framework. It is written completely on Python, and provides well-defined Application Program

Interfaces (APIs), allowing developers to create new network management and control applications in

an easy way. All the code is available under the Apache 2.0 license and can be found on GitHub, which

is provided and managed by the Ryu community. Developers can modify existing code or implement

their own from scratch.

Ryu controller supports various southbound protocols for managing network devices, such as Network

Configuration Protocol (NETCONF), OpenFlow Management and Configuration Protocol (OF-config),

OpenFlow, which is the most popular southbound protocol, up to the latest available OpenFlow version,

i.e. 1.5 [53].

Ryu applications (python scripts) listen to events that handles the received messages. The

app_manager.py is the file that loads the Ryu applications, which can be used individually or in an

integrated way [54].

Chapter 2 – Literature Review

26

Control
Layer

SDN
apps

SDN
apps

SDN
apps

Ryu SDN framework

OpenFlow
switch

OpenFlow
switch

OpenFlow
protocol

API

Event dispatcher

Ryu built-in app
app_manager

Ryu app Ryu app...

Libraries

OpenFlow Parser /
Serializer

Protocol support

Application
Layer

Figure 18 - Ryu Framework, based on [55]

Considering the fact that Ryu has a fair number of features, uses Python and it has an exclusive support

for Linux OS, makes Ryu a good choice for small scale SDN deployments and research applications

[52].

2.4.1.2.3. Comparison Amongst Several SDN Controllers

Recently, there have been several works that contributed to an accurate benchmark of different SDN

controllers.

Shalimov et al. [56] performed a comparison regarding throughput and latency, scalability, reliability and

security. In terms of security, Ryu was the one who best coped four of the five tests. Erickson et al. [57]

mentions the importance of the programing language used by an SDN controller, claiming Java as a

good choice as it runs across platforms and it supports multithreading, whereas Python has an inability

to support multithreading. The results publicly available in Khondoke et al. [58] show that Ryu was the

best controller using a Multi-Criteria Decision Making (MCDM) method called Analytical Hierarchy

Process (AHP). In addition, OpenDayLight got the next better results. In [59], OpenDayLight was one of

the controllers with good documentation and flexibility. Rowshanrad et al. [60] shows that OpenDayLight,

when compared to Floodlight, has the best latency results under low traffic loads. In [52], Salman et al.

measured latency and throughput performances under a different number of switches and threads,

concluding that OpenDayLight was a good choice as a full-featured controller. Mamushiane et al. [42]

performed tests based on latency and throughput.

 Chapter 2 - Literature Review

 27

Table 5 presents a brief comparison amongst the diverse SDN controllers that we have just discussed

in the current sub-section.

Table 5 - Feature-based comparison of SDN controllers [42]

2.4.1.3. Northbound Management

The Northbound API is used to allow the communication between the SDN controller and the SDN

services and applications running at the topmost architecture layer. It provides an abstraction of network

functions, enabling applications to program the network and implement functionalities regardless of the

underlying layers. The Representational State Transfer (REST) API is currently the most used API by

SDN controllers [42].

REST API improves system extensibility by allowing clients to download and execute code after

deployment. It uses HTTP requests to post, read and delete data through GET, POST, PUT and

DELETE methods. GET request is used to obtain information, e.g. get the switch id, POST and PUT

request to update an existing resource, e.g. get all flow entries, and DELETE to delete resources, e.g.

delete all flow entries of the switch. In the case of the POST method, its body is used to transfer data

structured in JSON or XML [61].

 RYU Floodlight OpenDayLight ONOS

Southbound
API

OF 1.0, 1.2, 1.3, 1.4,
1.5

NETCONF,
OFCONFIG, OVSDB

OF 1.0, 1.1, 1.2, 1.3,
1.4, 1.5

OF1.0, 1.3, 1.4, 1.5
NETCONF/YANG,

OVSDB, PCEP,
BGP/LS, LISP, SNMP

OF1.0, 1.3, 1.4, 1.5
NETCONF

REST API Yes (For SB only) Yes Yes Yes

GUI Yes (Initial phase) Web / Java-based Web-based Web-based

Modularity Medium Medium High High

Orchestrator
Support

Yes Yes Yes No

OS Support
Most supported on

Linux
Linux, Windows, and

MAC
Linux, Windows, and

MAC
Linux, Windows, and

MAC

Partner
Nippo Telegraph
And Telephone

Corporation (NTT)
Big Switch Networks

Linux Foundation With
Memberships Covering
Over 40 Companies,

Such as Cisco, IBM, NEC

ON.LAB, At&T,
Ciena,Cisco,

Ericsson,Fujitsu,
Huawei,Intel,
Nec,Nsf.Ntt

Comunnication, Sk
Telecom

Documentation Medium Good Very good Good

Programming
Language

Python Java Java Java

Multi-threading
Support

Yes Yes Yes Yes

TLS Support Yes Yes Yes Yes

Virtualization Mininet and OVS Mininet and OVS Mininet and OVS Mininet and OVS

Application
Domain

Campus Campus
Data center and

Transport-SDN WAN
Data center and

Transport-SDN WAN

Distributed /
Centralized

Centralized Centralized Distributed Distributed

Chapter 2 – Literature Review

28

2.4.2. Software-Defined Networking Virtualization

As mentioned in previous chapters, the number of IoT devices is growing continuously, making

traditional network infrastructures inadequate to handle all the produced data. Besides, the manual

configuration of network devices could lead to errors with the increase of devices [62].

Through the use of SDN and NFV it is possible to have an abstract view of physical network

infrastructures as well as an easier operation and maintenance, allowing to reach the necessary

scalability and flexibility. Although SDN and NFV are different in terms of concept, architecture and

functions, they complement each other, extracting the full potential when they coexist. NFV allows the

migration of controllers to optimal locations and the virtualization of physical network devices, such as

routers and firewalls. Whereas SDN provides programmable network under a central control, allowing

a quicker and dynamic installation of policies in order to enable service functions [23] [63] [64] .

Ojo et al. [65] and L. Valdivieso et al. [66] proposed different architectures with the application of SDN

with NFV in order to address the challenges of IoT. These articles are discussed in the next section.

 Chapter 2 - Literature Review

 29

2.5. Related Work

In this section, the relevant literature that relates to the technologies explored in this thesis are

discussed.

Table 6 - List of Related Research

Research’s Title SDN Virtualization
Fog / Edge

Comp.
IoT Advantages / Disadvantages

SDN-based architecture
challenging the IoT
heterogeneity (I. Bedhief,
M. Kassar, and T. Aguili,
2016) [67]

Yes
Yes

(Containers)
No Yes

+ tests the connectivity between
containers, managed by an SDN
controller

- no use case; doesn’t consider
fog/edge options

Enabling Data Processing
at the Network Edge
through Lightweight
Virtualization
Technologies (R. Morabito
and N. Beijar, 2016) [68]

Yes
Yes

(Containers)

Yes
(Edge

computing)
Yes

+ practical use case working
with containers; network
management and data
processing at the edge

SDN docker: Enabling
application auto-
docking/undocking in edge
switch (Y. Xu, V.
Mahendran, and S.
Radhakrishnan, 2016) [69]

Yes
Yes

(NFV /
Containers)

Yes
(Edge

Switches)
Yes

+ practical use case working
with containers; different SDN
controller, created specifically for
the tested scenario; use of
MQTT protocol;
docking/undocking capability

A SDN-IoT architecture
with NFV implementation
(M. Ojo, D. Adami, and S.
Giordano, 2016) [65]

Yes
Yes

(NFV)

Yes
(Edge nodes)

Yes

+ SDN/NFV edge nodes that
allow fast deployment of new
services

- doesn’t use containers

SDN/NFV Architecture for
IoT Networks (L.
Valdivieso, et. al, 2018)
[66]

Yes
Yes

(NFV)

Yes

(Edge
Switches)

Yes

+ virtualization layer;
orchestration and management
layer

- doesn’t use containers;
scenario emulated in mininet

Software-Defined Fog
Network Architecture for
IoT (S. Tomovic, K.
Yoshigoe, I. Maljevic, and
I. Radusinovic, 2017) [70]

Yes

Yes

(Hypervisor /
Containers)

Yes

(Fog)
Yes

+ practical use cases; SDN
controller modification to
orchestrate fog nodes;
containers / VMs with IoT
services

Chapter 2 – Literature Review

30

As can be seen in Table 6, all the researches included SDN as part of the proposed

designs/architectures applied to IoT scenarios. SDN is an important network architecture for all the

technologies mentioned in this thesis, due to its flexibility, scalability, security and dynamic properties.

Bedhief et al. [67] proposed an architecture based on SDN and Docker techniques to manage devices

and networks heterogeneity. This architecture was designed so the IoT devices could use its network

interface to communicate through an SDN-based system, which is composed by diverse SDN-based

switches and a POX SDN controller. They have tested three scenarios, i.e. the communication between

two IoT devices, the communication between a device and a docker, and the communication amongst

dockers. Observing the TCP and UDP traffic, and despite being possible to establish communication in

all three scenarios, the highest delay was recorded between dockers, resulting on the fact that docker

needs more control than hosts defined in Mininet. Morabito et al. [68] also proposed a design using

container-based virtualization technologies in order to create an IoT gateway that allows the

management of different services. These services are included inside a Docker container and to be able

to attribute a container to a specific user and ensure its isolation, they used Open vSwitch and an SDN

Controller (not mentioned which one) that resides in the IoT platform, i.e. at the edge computing. In

addition, they have an orchestrator that determines the software used to process the sensors data and

if it is more suitable to deploy in the gateway or in a data center. Another approach involving SDN and

container-based technology is the one described by Xu et al. [69] which proposed an SDN architecture

with an in-house controller to enable auto-docking / undocking of applications at the edge switches. In

the study it was tested the connection capability between the SDN docker switch and a remote end-host

for application download. Thus, an automatic deployment framework was created for analyzing incoming

packets received from the end-user, getting the necessary applications from a central repository that

stores the binary images, and then installed or uninstalled in the switch.

In order to help solving the different challenges in IoT environments, other virtualization technologies,

other than containers, are used. Ojo et al. [65] presented an SDN-IoT architecture with network function

virtualization (NFV). The combination of these two technologies can help solving problems such as

interoperability of heterogeneous devices, scalability, discoverability, security, management and

application specific requirements. They used SDN/NFV edge nodes to allow the fast deployment of new

services allowing them to deliver services such as ultra-low latency and high bandwidth to IoT

applications. L. Valdivieso et al. [66] proposed an alternative approach using an architecture that

integrates SDN and NFV focusing on IoT environments. As shown in Figure 19, the architecture has

four layers as follows : the Infrastructure Layer that includes the hardware and basic software to forward

the traffic; the Control and Virtualization Layer, which is composed by the control plane and virtualized

elements; the Application Layer, where the different NFV applications are located; and the Orchestration

and Management Layer, that manages the other different layers of the infrastructure, which is required

when the data and control plane are separated.

 Chapter 2 - Literature Review

 31

Figure 19 - IoT SDN/NFV Architecture [66]

In previous researches, SDN, virtualization and edge computing were applied to IoT scenarios. Tomovic

et al. [70] proposed a system model of IoT architecture taking advantage of SDN and fog computing

paradigm in order to support a high level of scalability, real-time data delivery and mobility. The use of

SDN allows a fog orchestration delegated to SDN controller. Hence, combination of these two

technologies enhances the ability to handle a large volume of fog nodes as SDN controller can delegate

tasks to fog nodes. The system structure is represented in Figure 20 and involves end devices, SDN

controllers, heterogeneous fog infrastructure and cloud in the network core.

Figure 20 - SDN architecture for IoT based on Fog computing [70]

 32

Chapter 3 – Proposed Solution

This chapter discusses the system architecture of the proposed solution, including some implementation

details.

3.1. Architecture

As seen in the previous chapters, different technologies can be chosen in order to face the challenges

enforced by IoT.

In this thesis it is proposed an architecture (Figure 21) in fog computing, using a system that combines

SDN with virtualization, which is going to be used in an IoT scenario. As mentioned in the Literature

Review, the SDN is organized into three planes: data plane, control plane and application plane. The

data plane, composed by a switch, communicates with an SDN Controller through the Southbound API.

In the application plane there is a Broker created to analyze messages and to request a container, that

is started up when necessary. This Broker communicates with the controller through the Northbound

API.

In the beginning, the container is not running in order to enhance the system sustainability and the

energy efficiency. Whenever the system detects traffic to a certain container, it needs to guarantee that

the container is started up, so it can receive and process messages.

SDN Controller

Broker

Network Datapath

Containers Hypervisor

Computing Infrastructure

Southbound API

Northbound API

On-demand
request a container

Container start up

Networking Computation

Figure 21 - Proposed Architecture

 Chapter 3 – Proposed Solution

 33

3.2. Deployment

As seen in chapter two, there are different SDN controllers, as well as containers and IoT communication

protocols. This thesis is mainly focused on the Ryu controller. Many of its advantages include the support

of numerous southbound protocols, comprising the latest version of OpenFlow, but mainly the possibility

to write a Ryu application from scratch using Python. Three Ryu applications were written to allow the

study of the different controller’s behavior – reactive, hybrid and proactive mode. In each application,

there is a websocket connection to a Broker, which was also written from the beginning and in Python

to analyze messages and start the containers. Regarding containerization, Linux containers were

chosen as they are a lightweight option. They allow the creation of a virtualized environment as closed

as a standard Linux installation and authorize various applications to be installed and used in a single

container. For the communication between containers, MQTT-SN is the most suitable application-layer

protocol for this scenario, since it was created for being applied in sensor network, for using UDP and

thus not requiring the establishment of a session, and for having a low message and header size. This

protocol is yet not highly adopted, however it brings an opportunity since it has an offline keep-alive that

allows devices to go to a sleeping state when they are not required, and then the messages are received

afterwards, when they are activated.

Figure 22 represents the proposed architecture in detail. This architecture is composed by three linux

containers, one Ryu Controller and a Websocket Broker. The LXC1 and LXC2 simulates IoT sensors

and, as said in the previous section, in the beginning they are not running. The LXC3 is the container

which has installed the MQTT-SN Broker. This container is always running as it simulates client that

wants to request values from the sensors. Thus, the LXC3 sends an MQTT-SN message to one of the

LXC1 or LXC2 sensors (step 1). When the OVS s1 receives the packet, it will check if there is a

forwarding rule in the OpenFlow Table. If it finds a match entry, it will send the packet to the destination

container (step 2). However, if there is no match in the flow table, a packet_in message is sent to the

controller asking which action should be taken (step 2). Through a websocket connection, the Ryu

controller sends the message to the Broker (step 3) so it can analyze and activate the correspondent

container (step 4). Once it receives the feedback notifying that the container is running (step 5), the

Broker informs the controller (step 6) so it can send a flow-entry to the OVS s1 containing the switch

output port from where the packet should be forwarded (step 7). At least, the OVS s1 sends the packet

to the correspondent sensor container.

Chapter 3 – Proposed Solution

34

lxcbr1lxcbr0

SDN Controller
RYU

1

Websocket
Communication

7

SouthBound API

data

control

Websocket
client / Broker

36

5

8

2

LXC1

4

LXC1 LXC2

2 2 8

OVS s1

lxcbr3

LXC3
MQTT-SN

Figure 22 – Detailed proposed architecture

Open vSwitch

Figure 23 and Figure 24 represent the network topology created through a shell script wrote with network

namespaces, bridge control and Open vSwitch commands. The network topology is composed by one

Open vSwitch (OVS s1), 2 namespace hosts (h1, h2) and links / bridges. The hosts were created with

the intent to test the Ryu applications, mainly the switch flow entries, through ping and iperf commands.

Even tough containers were previously created, it was necessary to connect them to the Open vSwitch

through linux bridges. At last, the OVS s1 was configured with a static datapath-id (1), OpenFlow

protocol with version 1.3 and a connection to the Ryu controller in the port TCP/6633, which corresponds

to the default port of OpenFlow.

Figure 23 - Network Topology Configuration

 Chapter 3 – Proposed Solution

 35

lxcbr3

lxcbr1lxcbr0

Ryu Controller

LXC1
LXC1 LXC2

OVS s1

h1 h2

h1-veth h2-veth

Linux namespaces

LXC3
MQTT-SN

Figure 24 - Network Topology

Switch and Ryu’s Controller Communication

As described above, three different Ryu applications were written. In the reactive mode, when the Ryu

controller is started, a flow rule is installed into the switch to send a packet-in message to the controller

whenever the switch receives a packet. It was used the class OFPActionOutput and the flag

OFPP_FLOOD in the packet-out message, to specify the switch port that the packet should be

forwarded, in this case, with this flag, the packet is forwarded to all ports except the one used to receive

the packet.

Figure 25 - Messages exchanged between Open vSwitch and Ryu Controller in the reactive mode

Chapter 3 – Proposed Solution

36

In the hybrid mode (Figure 26) the system behaves, in the beginning, in a similar way when compared

to the reactive mode. The flow rule to send always a packet-in message to the controller is the only one

installed into the switch when the Ryu controller is started. However, this only happens for the first packet

of a specific flow. In this case, an out_port flag was used, so the Ryu controller could indicate through

what port the packet should be forwarded. This new rule is installed into the switch flow table, avoiding

future flooding and allowing a faster and more efficient transmission of the packets of the same flow by

the switch.

Figure 26 – Sequence diagram for hybrid mode

The proactive mode was written to install into the switch not only the “ask the controller” rule, but also

the rules that indicate the port where the flow should be forwarded to reach pre-defined Linux containers.

Using this application is expected to exist a lower number of packet-in / packet-out messages between

the switch and the controller, allowing even better results when compared to the hybrid mode.

 Chapter 3 – Proposed Solution

 37

Broker

Every time the controller receives a packet, it sends a copy in a hexadecimal format to the Broker

through a websocket connection. The Broker then analyses the message and extracts information about

the source and destination IP and mac-address, ethertype, IP protocol and the port used. Figure 27

shows the hexadecimal messages and analysis made by the Broker.

Figure 27 – Hexadecimal message and analysis

Each Linux container has a static IP address as well as a MAC-address. When an ARP message is

identified, and the destination IP address matches one of the LXC, the container is started. An

information message appears if the container is already running or if the IP does not match any of the

pre-defined containers.

MQTT-SN

In order to exchange MQTT-SN messages between the containers, it was necessary the installation of

a Message Broker and a MQTT-SN Client. The Broker EMQ1 was selected due to its versatility

supporting several IoT protocols, such as MQTT, MQTT-SN and CoAP. It consists on an open source

IoT MQTT message broker based on Erlang/OTP platform. To access the features of MQTT-SN, it is

required the use of the EMQ-SN plugin2. EMQ recommends several MQTT-SN Clients, from which the

MQTT-SN Tools3 was chosen. These tools support some MQTT-SN features, e.g. as QoS -1, 0 and 1,

publishing retained messages, short topic IDs, amongst others, having the disadvantage of not allowing

the QoS 2.

A scenario, represented in Figure 28, was created where the LXC3 publishes messages under the topic

“askTemp” and subscribes until it receives a message under the topic “sendTemp”. When the LXC

sensor receives a message requesting the temperature value, it then publishes in under the topic

“sendTemp”. Figure 28 shows the described scenario.

1 https://docs.emqx.io/broker/v3/en/getstarted.html
2 https://docs.emqx.io/broker/v2/en/mqtt-sn.html#emq-sn-plugin
3 https://github.com/njh/mqtt-sn-tools

Chapter 3 – Proposed Solution

38

askTemp
 What is the temperature?

topic: sendTemp

BROKER

LXC1
TEMPERATURE SENSOR

MQTT-SN BROKERLXC3
CLIENT

sendTemp
(waiting response)

2

3

topic: askTemp

publish

subscribe

6

askTemp
 What is the temperature?

askTemp
(waiting question)

4

1

sendTemp
 20 degrees

5
sendTemp

 20 degrees

Figure 28 - MQTT-SN Scenario

 39

Chapter 4 – Results and Discussion

This chapter describes all the performed tests that had aimed to evaluate the time required from

activating the sensor containers to being able to communicate with them as well as the possibility of two

containers to communicate with each other through MQTT-SN protocol. All the configuration,

implementation and tests were developed in a Xubuntu VM hosted on VirtualBox.

The testing environment consists of a network topology, managed by a Ryu controller, and a Websocket

Broker (represented in Figure 29). The network topology was built through a shell script with network

namespaces, bridge control and Open vSwitch commands, leading to the creation of an Open vSwitch

with OpenFlow v1.3 and two hosts with the respective connections. A logical TCP connection was also

created between the OVS and the Ryu controller. Linux containers were previously created with Ubuntu

OS through lxc commands and configured with a static IP and MAC-address and the indication on which

Linux bridge they connect. LXC3, which is the container implemented with the MQTT-SN Broker, is the

only container that is started up with the network topology script.

A Broker script was written in Python to decode hexadecimal messages and to extract essential

information from the packet’s header. When an ARP message is sent to the Broker and the destination

IP matches one of the container’s IP address, that container is started through the execution of lxc

commands inside the script. The controller sends messages to the Broker through a websocket

connection established between them.

lxcbr3

lxcbr1lxcbr0

Ryu Controller

LXC1
LXC1 LXC2

OVS s1

h1 h2

h1-veth h2-veth

LXC3
MQTT-SN

Websocket
Broker

Figure 29 - Architecture topology

Chapter 4 – Results and Discussion

40

Performance and functional tests were executed and analyzed to evaluate the activation of the sensor

containers and the communication between them through MQTT-SN protocol.

4.1. Performance Tests

As mentioned in the previous chapter, three Ryu controller’s applications were written to assess the

impact of the controller's behavior on the time required to process messages and start up the containers

until they start communicating with each other. Each application is related to a controller’s behavior.

The Ryu controller’s applications were applied in two scenarios:

1. Communication between a network namespace and a container

2. Communication between containers

The results for these two scenarios were obtained by sending four ICMP packets. In the first scenario,

the host h1 sends ICMP packets to the sensor’s containers (LXC1 and LXC2), whereas in the second

scenario this communication is started by the LXC3. A sample of 50 results was collected for each

sensor container within each behavior mode.

Reactive Mode

In the reactive mode, a flow rule is installed into the switch with the indication to send a packet-in

message to the controller whenever the switch receives a packet, i.e., each time the host1 and LXC3

ping the sensor containers, a packet-in message is sent to the controller. In this case, no rule is installed

into the switch flow table.

Observing Figure 30, it is possible to see that, in general, the first scenario had better response times

than the second one. This is due to network namespaces being a Linux kernel feature that provides

resource isolation, whereas Linux containers have yet a management interface, that interacts with the

kernel components and provides tools for containers creation and management. It is still possible to

highlight that the average response time of the first packet in both scenarios is higher when compared

to the other three. This is due to the fact that in the first packet, not only the ICMP request and reply

packets are considered, but also the ARP messages and the Linux container startup, which differs this

packet from the others. As it is possible to see in Figure 31, the first ARP message (first packet-in and

packet-out) lasted 506ms, whereas the second ARP message lasted 109ms. The overtime expressed

by the first ARP message is associated with the activation of the Linux container, which in average

launches in approximately 150 to 350ms. Only after the websocket Broker script starts the container,

the ICMP packet can reach its destination.

 Chapter 4 – Results and Discussion

 41

Figure 30 - Reactive Mode - Scenario 1 and 2

Figure 31 - Packet-In and Packet Out ARP Messages (Scenario 2)

As mentioned above, every time a packet arrives at the switch, a packet-in message is sent back to the

controller, which in turn responds with a packet-out message indicating the port from where the packet

should be sent. Thus, for every ICMP packet sent, a respective packet-in and packet-out is generated,

as represented in Figure 31 and Figure 33, which is also the reason why packets 2 to 4 have high

response time. The ICMP messages were exchanged during approximately 270ms.

416.56

22.028 16.837 17.8656

565.94

48.574 34.04 30.524

329.24

34.246 15.054
14.74

660.18

58.806 51.658 33.14

0

100

200

300

400

500

600

700

800

900

1000

PKT #1PKT #2PKT #3PKT #4PKT #1PKT #2PKT #3PKT #4PKT #1PKT #2PKT #3PKT #4PKT #1PKT #2PKT #3PKT #4

Host 1 -> LXC1 LXC3 -> LXC1 Host1 -> LXC2 LXC3 -> LXC2

[ms]
Reactive Mode

AVG

Scenario 1 Scenario 2 Scenario 1 Scenario 2

Chapter 4 – Results and Discussion

42

Figure 32 - ICMP traffic in the reactive mode (Scenario 2)

Figure 33 - Packet-In and Packet Out ICMP Messages (Scenario 2)

Figure 34 – Reactive Mode - Ping from LXC3 (control) to LXC1 (sensorTemp) and LXC2 (sensorHum)

 Chapter 4 – Results and Discussion

 43

Hybrid Mode

As mentioned in the previous chapter, when the Ryu-hybrid mode application is executed, a rule is

installed in the switch, with the indication to send a packet-in message to the controller if there is no

match in the switch flow table. In Figure 35 it is possible to observe that the response time of the 1st

ICMP packets is similar to the ones obtained in the reactive mode, as both have started with that only

rule in the flow table.

Figure 35 – Hybrid Mode - Scenario 1 and 2, 1st packet

However, looking at Figure 36, the next ICMP packets response time are very low when compared to

the reactive mode. This is due to the installation of a rule by the controller into the switch with the

indication of the port from where the traffic should be forwarded (represented in Figure 37). Thus, from

the second packet forward, the switch doesn’t have to send a message to the controller as it already

knows the port, sending the packet straight to the port where the destination container is connected.

316.140

549.340

300.540

572.540

0

100

200

300

400

500

600

700

800

900

PKT #1 PKT #1 PKT #1 PKT #1

Host 1 -> LXC1 LXC3 -> LXC1 Host1 -> LXC2 LXC3 -> LXC2

[ms] Hybrid Mode - 1st Packet

AVG

Scenario 1 Scenario 2 Scenario 1 Scenario 2

Chapter 4 – Results and Discussion

44

Figure 36 - Hybrid Mode - Scenario 1 and 2, 2nd to 4th packet

Figure 37 - Hybrid Mode - Ping from LXC3 to LXC2 and switch flow table rules

0.049
0.052 0.055

0.061
0.067 0.066 0.067

0.055 0.054
0.062 0.062

0.067

0.000

0.020

0.040

0.060

0.080

0.100

0.120

PKT #2 PKT #3 PKT #4 PKT #2 PKT #3 PKT #4 PKT #2 PKT #3 PKT #4 PKT #2 PKT #3 PKT #4

Host 1 -> LXC1 LXC3 -> LXC1 Host1 -> LXC2 LXC3 -> LXC2

[ms] Hybrid Mode - 2nd to 4th Packet

AVG

Scenario 1 Scenario 2 Scenario 1 Scenario 2

 Chapter 4 – Results and Discussion

 45

Proactive Mode

To the proactive mode application, a function was added in order to add rules into the switch flow table.

Thus, when the Open vSwitch is created and is connected to the Ryu controller, those rules are pre-

installed in it, indicating the port to where the traffic should be forwarded. This added function was

required to avoid unnecessary messages going to the controller, however, ARP messages rules could

not be installed into the switch as they are needed to activate the containers. When the Broker script

identifies an ARP message, it analyses the destination container and starts it up. The installation of

these type of rules prevents the message to reach the Broker and therefore, makes it impossible to start

the containers.

In Figure 38 it is possible to notice a huge improvement from the scenario 1 since the average response

time of the 1st packet decreased from approximately 300ms to 200ms. Good response time results were

expected in this proactive mode when compared to the hybrid mode, as the installation of forwarding

rules reduces the number of messages exchanged between the switch and the controller.

Figure 38 - Proactive Mode - Scenario 1 and 2, 1st packet

201.700

521.660

206.260

528.840

0

100

200

300

400

500

600

700

800

900

1000

PKT #1 PKT #1 PKT #1 PKT #1

Host 1 -> LXC1 LXC3 -> LXC1 Host1 -> LXC2 LXC3 -> LXC2

[ms] Proactive Mode - 1st Packet

AVG

Scenario 1 Scenario 2 Scenario 1 Scenario 2

Chapter 4 – Results and Discussion

46

Figure 39 - Proactive Mode - Scenario 1 and 2, 2nd to 4th packet

Results Comparison

Table 7 details the comparison between the three controller’s behavior: reactive, hybrid and proactive.

Table 7 - Performance Tests Comparison

0.042 0.042 0.041

0.062

0.074

0.064

0.041 0.043
0.043

0.064 0.062 0.064

0.000

0.020

0.040

0.060

0.080

0.100

0.120

PKT #2 PKT #3 PKT #4 PKT #2 PKT #3 PKT #4 PKT #2 PKT #3 PKT #4 PKT #2 PKT #3 PKT #4

Host 1 -> LXC1 LXC3 -> LXC1 Host1 -> LXC2 LXC3 -> LXC2

[ms]
Proactive Mode - 2nd to 4th Packet

AVG

Controller's

Behavior
PKT

Scenario 1 Scenario 2

Host 1 -> LXC1 Host 1 -> LXC2 LXC3 -> LXC1 LXC3->LXC2

Reactive

1 416.560 329.240 565.940 660.180

2 22.028 34.246 48.574 58.806

3 16.837 15.054 34.040 51.658

4 17.866 14.740 30.524 33.140

Hybrid

1 316.140 300.540 549.340 572.540

2 0.049 0.067 0.061 0.062

3 0.052 0.055 0.067 0.062

4 0.055 0.054 0.066 0.067

Proactive

1 201.700 206.260 521.660 528.840

2 0.042 0.041 0.062 0.064

3 0.042 0.043 0.074 0.062

4 0.041 0.043 0.064 0.064

Scenario 1 Scenario 2 Scenario 1 Scenario 2

 Chapter 4 – Results and Discussion

 47

Observing Table 7, it is possible to notice that the proactive mode obtained the best time response

results. Looking at the first packet, there is a time decrease from the hybrid mode to the proactive mode,

especially in scenario 1. This is due to the pre-installation rules in the Open vSwitch that reduces the

number of exchanged messages between the switch and the controller. Regarding the second, third

and fourth packets, it is possible to observe that both the proactive and hybrid modes obtained similar

results, as the packets were forwarded directly to the sensor container. Overall, it is possible to see that

the worst time response results were obtained by the reactive mode in all four packets. Having only the

rule to send packets to the controller, leaded to an increase of flow messages, as all the packets had to

be analyzed by the controller so they could be forwarded to the intended container.

4.2. Functional Tests

The functional tests consisted in the communication between containers using the MQTT-SN protocol.

Two scripts were written with the purpose to run inside the LXC3 and sensor containers. The LXC3

simulates the client that requests values from the sensors. Thus, the askTemperature.py simulates the

question from the client “What is the temperature?” and publishes this question into the topic with the

name askTemp.

The containers then wait for the answer. In the sensor’s containers, e.g. LXC1, the script simulates the

IoT sensor sending the value requested by the LXC3. Hence, the sendTemperature.py was written to

subscribe the topic askTemp and to publish the temperature value in the sendTemp. This topic is already

being subscribed by the LXC3 and when the LXC1 sends the value, the LXC3 immediately received it.

Figure 40 represents publishing a message by the LXC3 and then the followed response, whereas in

Figure 41, the LXC1 first subscribes the topic and then the LXC3 publishes the message.

Figure 40 - Message exchanged through MQTT-SN (LXC3 first publishes message)

Chapter 4 – Results and Discussion

48

Figure 41 - Message exchanged through MQTT-SN (LXC1 first subscribes topic)

The main intention of this test was to activate containers by sending an MQTT-SN message. However

due to implementation problems and time issues, this was not accomplished and therefore in this case,

the LXC3 first sends an ICMP to activate the container and then the scripts are executed.

 49

Chapter 5 - Conclusions and Future Work

5.1. Conclusions

The main goal of this thesis was the design and evaluation of an architecture that used a software-

defined networking approach to efficiently activate fog computational resources on demand, whenever

required by IoT or sensor networks applications.

The exponential increase of IoT devices creates new challenges such as scalability, mobility,

heterogeneity and security. Traditional networks have become inefficient to deal with these issues as

well as the huge volume of data. Thus, software-defined networking has emerged as being flexible and

scalable, providing a centralized logical control of the network devices and solving complexed

technologies such as fog computing.

To address these challenges, this thesis suggested the use of several emerging technologies including

software-defined networking, containerization, fog computing, and sensor virtualization. For this

purpose, a software-defined system was implemented, which activates the containers when required,

managed by a Ryu SDN Controller and an intelligent Broker. This Broker decodes hexadecimal

messages sent by the Controller through a websocket connection and extracts information from the

packet’s header. When it receives an ARP message and the destination IP matches one of the

container’s IP address, the Broker starts that container.

Performance and functional tests were performed to evaluate the time required from activating the

sensor containers to being able to communicate with them as well as the time required for the

communication between the containers through the MQTT-SN protocol.

The performance test was executed with three different SDN controller code versions in order to know

how long it takes for the container to start communicating. This was achieved by evaluating the time

response of four ICMP packets sent by Host 1 and LXC3 to the sensor containers. The best time

response results were obtained by the proactive mode; for instance, when analyzing the first packet, it

was possible to conclude that the response time decreased from the hybrid mode to the proactive mode,

due to pre-installation rules in the Open vSwitch. Regarding the second to the fourth packets, similar

results were obtained for both the proactive and hybrid modes. Overall, it was possible to conclude that

the worse time response results were obtained by the reactive mode in all four packets. This was caused

by the fact that the Open vSwitch only had the rule to send packets to the Controller, leading to an

increase of flow messages. All the obtained results were within an acceptable range concerning an IoT

environment, considering the relatively low delay on the response times observed under these tests.

The functional test consisted in the communication between containers through the MQTT-SN protocol.

This protocol was chosen over the MQTT as it uses UDP, which is essential to the communication with

offline IoT computational resources. It has been demonstrated that it is possible for the LXC3 to publish

a message while the sensor’s containers are offline, and the message subscription when the containers

are activated. However, one of the main goals in terms of its implementation was based on the

Chapter 5 – Conclusions and Future Work

50

application of both tests simultaneously, i.e. the activation of containers though an MQTT-SN message

and the immediate messages exchanged. This goal was not possible to accomplish during this thesis

due to time related issues for its implementation.

The proof-of-concept study entailed the following question, which served as bases for this thesis:

“Is it possible to efficiently perform on-demand activation of IoT computing resources using a

software-defined system?”

Overall, this thesis helped contributing to fill the gaps in the area of IoT or sensor networks, concerning

the design and implementation of an architecture that performed on-demand activation of offline IoT fog

computing resources by using an SDN controller, containerization and sensor virtualization.

5.2. Future Work

This thesis opens the way for further research featuring software-defined networking solutions for

managing fog computing resources in sensor networks. Proposed future research includes the study

and possible change of the current designed architecture or scripts in order to activate the containers

by publishing an MQTT-SN message. Another suggestion is the exploration of MQTT-SN quality-of-

service, which was not approached in this thesis. The MQTT-SN client was used with the QoS default

value of 0, i.e. at most once. The utilization of real sensors could be implemented in this architecture, in

order to obtain more accurate results and to study values of energy consumption.

 51

Chapter 6 – References

[1] R. Rangel, “Inovação em Pauta: Certificação digital, um caminho sem volta,” pp. 4–7, 2014.

[2] C. MacGillivray, V. Turner, and D. Lund, “Worldwide Internet of Things (IoT) 2013–2020

Forecast: Billions of Things, Trillions of Dollars,” 2013.

[3] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: architecture, key technologies,

applications and open issues,” Journal of Network and Computer Applications, vol. 98, pp. 27–

42, 2017.

[4] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How Can Edge Computing Benefit from Software-

Defined Networking: A Survey, Use Cases , and Future Directions,” IEEE Communications

Surveys & Tutorials, vol. 19, no. 4, pp. 2359–2391, 2017.

[5] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen, M. Miller,

and N. Rao, “Are we ready for SDN? Implementation challenges for software-defined networks,”

IEEE Communications Magazine, vol. 51, no. 7, pp. 36–43, 2013.

[6] C. Aggarwal and K. Srivastava, “Securing IOT devices using SDN and edge computing,” in

Proceedings on 2016 2nd International Conference on Next Generation Computing

Technologies, NGCT 2016, 2017, pp. 877–882.

[7] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky, and

S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proceedings of the IEEE,

vol. 103, no. 1, pp. 14–76, 2015.

[8] K. Ogawa, K. Kanai, K. Nakamura, H. Kanemitsu, J. Katto, and H. Nakazato, “IoT Device

Virtualization for Efficient Resource Utilization in Smart City IoT Platform,” in 2019 IEEE

International Conference on Pervasive Computing and Communications Workshops, PerCom

Workshops 2019, 2019.

[9] R. Buyya and A. V. Dastjerdi, Internet of Things: Principles and Paradigms. 2016.

[10] K. K. Patel and S. M. Patel, “Internet of Things-IOT: definition, characteristics, architecture,

enabling technologies, application & future challenges,” International Journal of Engineering

Science and Computing, vol. 6, no. 5, pp. 6122–6131, 2016.

[11] T. Guarda, M. Leon, M. F. Augusto, L. Haz, M. De La Cruz, W. Orozco, and J. Alvarez, “Internet

of Things challenges,” in Iberian Conference on Information Systems and Technologies, CISTI,

2017.

[12] H. Aldowah, S. Ul Rehman, and I. Umar, “Security in internet of things: Issues, challenges and

solutions,” in Advances in Intelligent Systems and Computing, 2019, pp. 396–405.

[13] N. N. Srinidhi, S. M. Dilip Kumar, and K. R. Venugopal, “Network optimizations in the Internet of

Chapter 6 - References

52

Things: A review,” Engineering Science and Technology, an International Journal, vol. 22, no. 1,

pp. 1–21, 2019.

[14] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-Zarate, “A Survey on

Application Layer Protocols for the Internet of Things,” Transaction on IoT and Cloud Computing,

vol. 3, no. 1, pp. 9–18, 2015.

[15] Kaa Project, “What is the Internet of Things Platform,” 2015. [Online]. Available:

https://www.kaaproject.org/what-is-iot/. [Accessed: 18-Aug-2019].

[16] K. L. Lueth and J. Kotzorek, “IoT Platforms - The central backbone for the Internet of Things,”

2015.

[17] S. Hamdani and H. Sbeyti, “A Comparative study of COAP and MQTT communication protocols,”

in 7th International Symposium on Digital Forensics and Security (ISDFS), 2019.

[18] V. Tirupathi and K. Sagar, “A Research on Interoperability Issues in Internet of Things at

Application Layer,” International Journal of Recent Technology and Engineering, vol. 8, no. 1S4,

pp. 785–788, 2019.

[19] E. F. Silva, B. Jose Dembogurski, A. B. Vieira, and F. Henrique Cerdeira Ferreira, “IEEE P21451-

1-7: Providing More Efficient Network Services over MQTT-SN,” in SAS 2019 - 2019 IEEE

Sensors Applications Symposium, Conference Proceedings, 2019.

[20] A. Stanford-Clark and H. L. Truong, “MQTT for sensor networks (MQTT-SN) protocol

specification,” IBM. 2013.

[21] N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and

HTTP,” in 2017 IEEE International Symposium on Systems Engineering, ISSE 2017 -

Proceedings, 2017.

[22] C. Moratelli, S. Johann, F. Hessel, and M. Neves, “Embedded virtualization for the design of

secure IoT applications,” in Proceedings of the 2016 27th International Symposium on Rapid

System Prototyping: Shortening the Path from Specification to Prototype, RSP 2016, 2016.

[23] Q. Duan and M. Toy, Virtualized Software-Defined Networks and Services. Norwood: Artech

House, 2017.

[24] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight virtualization: A performance

comparison,” in Proceedings - 2015 IEEE International Conference on Cloud Engineering, IC2E

2015, 2015.

[25] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization to support PaaS,” in

Proceedings - 2014 IEEE International Conference on Cloud Engineering, IC2E 2014, 2014, pp.

610–614.

[26] Intel, “Container and Kernel-Based Virtual Machine (KVM) Virtualization for Network Function

Virtualization (NFV),” 2015.

[27] D. Bernstein, “Containers and cloud: From LXC to docker to kubernetes,” IEEE Cloud

 Chapter 6 - References

 53

Computing, vol. 1, no. 3, pp. 81–84, 2014.

[28] Linux, “Linux Containers - LXC.” [Online]. Available: https://linuxcontainers.org/lxc/introduction/.

[Accessed: 21-Jul-2019].

[29] Á. Kovács, “Comparison of different linux containers,” in 2017 40th International Conference on

Telecommunications and Signal Processing, TSP 2017, 2017, pp. 47–51.

[30] Docker, Docker for the Virtualization Admin. 2016.

[31] Docker, “Docker overview.” [Online]. Available: https://docs.docker.com/engine/docker-

overview/#what-can-i-use-docker-for. [Accessed: 24-Jul-2019].

[32] “State of the IoT 2018: Number of IoT devices now at 7B,” IoT Analytics, 2018. [Online].

Available: https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-

now-7b/. [Accessed: 03-Jun-2019].

[33] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba, “Network function

virtualization: State-of-the-art and research challenges,” IEEE Communications Surveys and

Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[34] T. Kovacshazy, G. Wacha, T. Daboczi, C. Erdos, and A. Szarvas, “System architecture for

Internet of Things with the extensive use of embedded virtualization,” in 4th IEEE International

Conference on Cognitive Infocommunications, CogInfoCom 2013 - Proceedings, 2013, pp. 549–

554.

[35] S. Bose, A. Gupta, S. Adhikary, and N. Mukherjee, “Towards a Sensor-Cloud Infrastructure with

Sensor Virtualization,” in MSCC ’15 Proceedings of the Second Workshop on Mobile Sensing,

Computing and Communication, 2015, pp. 25–30.

[36] J. Ko, B.-B. Lee, K. Lee, S. G. Hong, N. Kim, and J. Paek, “Sensor Virtualization Module:

Virtualizing IoT Devices on Mobile Smartphones for Effective Sensor Data Management,”

International Journal of Distributed Sensor Networks, vol. 2015, pp. 1–10, 2015.

[37] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient Multi-User Computation Offloading for Mobile-Edge

Cloud Computing,” IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[38] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog computing for the Internet of

Things: A survey,” ACM Transactions on Internet Technology, vol. 19, no. 2, 2019.

[39] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, and J. P. Jue,

“All one needs to know about fog computing and related edge computing paradigms: A complete

survey,” Journal of Systems Architecture, vol. 98, pp. 289–330, 2019.

[40] OpenFog Consortium Architecture Working Group, “OpenFog Reference Architecture for Fog

Computing,” 2017.

[41] P. Martinez-Julia and A. F. Skarmeta, “Empowering the Internet of Things with Software Defined

Networking,” Geneva, Switzerland, 2014.

Chapter 6 - References

54

[42] L. Mamushiane, A. Lysko, and S. Dlamini, “A comparative evaluation of the performance of

popular SDN controllers,” in IFIP Wireless Days, 2018, pp. 54–59.

[43] “Open Networking Foundation.” [Online]. Available: https://www.opennetworking.org/.

[Accessed: 09-May-2019].

[44] H. A. Eissa, K. A. Bozed, and H. Younis, “Software Defined Networking,” in 19th International

Conference on Sciences and Techniques of Automatic Control and Computer Engineering, STA

2019, 2019, pp. 620–625.

[45] S. Azodolmolky, Software Defined Networking with OpenFlow. Birmingham, Mumbai: Packt

Publishing Ltd., 2013.

[46] Open Networking Foundation, “OpenFlow Switch Specification (Version 1.5.1).” 2015.

[47] Linux Foundation, “Open vSwitch.” [Online]. Available: http://www.openvswitch.org/. [Accessed:

15-May-2019].

[48] P. Krongbaramee and Y. Somchit, “Implementation of SDN Stateful Firewall on Data Plane using

Open vSwitch,” in Proceeding of 2018 15th International Joint Conference on Computer Science

and Software Engineering, JCSSE 2018, 2018, pp. 1–5.

[49] M. P. Fernandez, “Comparing OpenFlow controller paradigms scalability: Reactive and

proactive,” in Proceedings - International Conference on Advanced Information Networking and

Applications, AINA, 2013, pp. 1009–1016.

[50] The Linux Foundation, “OpenDaylight.” [Online]. Available: https://www.opendaylight.org/.

[Accessed: 22-Apr-2019].

[51] Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of OpenDaylight SDN controller,”

in Proceedings of the International Conference on Parallel and Distributed Systems - ICPADS,

2014, pp. 671–676.

[52] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “SDN controllers: A comparative study,” in

Proceedings of the 18th Mediterranean Electrotechnical Conference: Intelligent and Efficient

Technologies and Services for the Citizen, MELECON 2016, 2016, pp. 1–6.

[53] S. Asadollahi, B. Goswami, and A. Gonsai, “Software Defined Network, Controller Comparison,”

Ijircce, vol. 5, no. 2, pp. 211–217, 2017.

[54] C. Fernandez and J. L.Muñoz, Software Defined Networking (SDN) with OpenFlow 1.3, Open

vSwitch and Ryu. 2016.

[55] Ryu SDN Framework Community, “Ryu Documentation.” [Online]. Available:

http://osrg.github.io/ryu/resources.html#documentation. [Accessed: 02-Jun-2019].

[56] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky, “Advanced study of

SDN/OpenFlow controllers,” in CEE-SECR ’13 Proceedings of the 9th Central & Eastern

European Software Engineering Conference in Russia, 2013, pp. 1–6.

 Chapter 6 - References

 55

[57] D. Erickson, “The Beacon OpenFlow controller,” in HotSDN 2013 - Proceedings of the 2013 ACM

SIGCOMM Workshop on Hot Topics in Software Defined Networking, 2013, pp. 13–18.

[58] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-based comparison and selection

of Software Defined Networking (SDN) controllers,” in 2014 World Congress on Computer

Applications and Information Systems, WCCAIS 2014, 2014, pp. 1–7.

[59] M. B. Al-Somaidai, “Survey of Software Components to Emulate OpenFlow Protocol as an SDN

Implementation,” American Journal of Software Engineering and Applications, vol. 3, no. 6, pp.

74–82, 2014.

[60] S. Rowshanrad, V. Abdi, and M. Keshtgari, “Performance evaluation of sdn controllers: Floodlight

and OpenDaylight,” IIUM Engineering Journal, vol. 17, no. 2, pp. 47–57, 2016.

[61] P. V. Tijare and D. Vasudevan, “The Northbound APIs of Software Defined Networks,”

International Journal of Engineering Sciences & Research Technology, vol. 5, no. 10, pp. 501–

513, 2016.

[62] S. Demirci and S. Sagiroglu, “Optimal placement of virtual network functions in software defined

networks: A survey,” Journal of Network and Computer Applications 147, vol. 147, 2019.

[63] Y. Li and M. Chen, “Software-defined network function virtualization: A survey,” IEEE Access,

vol. 3, pp. 2542–2553, 2015.

[64] M. Alenezi, K. Almustafa, and K. A. Meerja, “Cloud based SDN and NFV architectures for IoT

infrastructure,” Egyptian Informatics Journal, vol. 20, no. 1, pp. 1–10, 2019.

[65] M. Ojo, D. Adami, and S. Giordano, “A SDN-IoT architecture with NFV implementation,” in 2016

IEEE Globecom Workshops, GC Wkshps 2016 - Proceedings, 2016, pp. 1–6.

[66] L. Valdivieso, P. Ludeña-González, R. Torres, and L. Barona, “SDN/NFV Architecture for IoT

Networks,” in Proceedings of the 14th International Conference on Web Information Systems

and Technologies, 2018, pp. 425–429.

[67] I. Bedhief, M. Kassar, and T. Aguili, “SDN-based architecture challenging the IoT heterogeneity,”

in 2016 3rd Smart Cloud Networks and Systems, SCNS 2016, 2016, pp. 1–3.

[68] R. Morabito and N. Beijar, “Enabling Data Processing at the Network Edge through Lightweight

Virtualization Technologies,” in 2016 IEEE International Conference on Sensing, Communication

and Networking, SECON Workshops 2016, 2016, pp. 1–6.

[69] Y. Xu, V. Mahendran, and S. Radhakrishnan, “SDN docker: Enabling application auto-

docking/undocking in edge switch,” in Proceedings - IEEE INFOCOM, 2016, pp. 864–869.

[70] S. Tomovic, K. Yoshigoe, I. Maljevic, and I. Radusinovic, “Software-Defined Fog Network

Architecture for IoT,” Wireless Personal Communications, vol. 92, no. 1, pp. 181–196, 2017.

	Acknowledgments
	Abstract
	Resumo
	Nomenclature and abbreviations
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 – Introduction
	Chapter 2 – Literature Review
	2.1. Internet of Things
	2.1.1 IoT Platforms
	2.1.2. IoT Communication Protocols
	2.1.2.1. MQTT and MQTT-SN Protocols
	2.1.2.2. CoAP
	2.1.2.3. Comparison MQTT, MQTT-SN and CoAP

	2.2. Virtualization
	2.2.1. Hardware Virtualization
	2.2.2. Operating System – Level Virtualization
	2.2.3. Network Sensor Function Virtualization

	2.3. Fog and Edge Computing
	2.4. Software-Defined Networking
	2.4.1. SDN Architecture
	2.4.1.1. Network Elements
	2.4.1.1.1. Controlling Example

	2.4.1.2. SDN Controllers
	2.4.1.2.1. OpendayLight
	2.4.1.2.2. RYU
	2.4.1.2.3. Comparison Amongst Several SDN Controllers

	2.4.1.3. Northbound Management

	2.4.2. Software-Defined Networking Virtualization

	2.5. Related Work

	Chapter 3 – Proposed Solution
	3.1. Architecture
	3.2. Deployment

	Chapter 4 – Results and Discussion
	4.1. Performance Tests
	4.2. Functional Tests

	Chapter 5 - Conclusions and Future Work
	5.1. Conclusions
	5.2. Future Work

	Chapter 6 – References

