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Abstract 

Advancements in mobile computing are attracting traditional device users to transition 

toward mobile platforms to fulfil their data processing needs. Among these, the Android 

platform is the most popular, holding the majority of the market share due to its open-source 

policy and ability to install applications from different application stores. This fact, coupled 

with the amount of sensitive data these devices now store, makes it attractive for malware 

authors to attack the Android platform, causing a large influx of malicious applications in the 

ecosystem. Traditional malware detection methods cannot effectively control and prevent this 

influx, demanding an automatic and intelligent approach such as machine learning. In this 

thesis, three machine learning algorithms, XGBoost, SVM and K-NN were trained with several 

features, with a focus on Android permissions , to measure the 

effectiveness of applying machine learning techniques to combat the proliferation of malware. 

Given goodware to malware ratio of 99/1, four experiments with an under-sampled 

version of the dataset with a ratio of 70/30 were conducted to test different subsets of the feature 

space as well as feature elimination and aggregation before training the algorithms with the full 

set of features using feature normalization across two distinct scenarios. This approach showed 

promising results, with XGBoost, SVM and K-NN distinguishing between malware and 

goodware with a score of 90 % (Area Under the Receiver Operating Curve values). 
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Resumo 

Os avanços na computação móvel estão a atrair utilizadores de dispositivos tradicionais a 

transitar para as plataformas móveis para atender às suas necessidades de processamento de 

dados. Entre estas, a plataforma Android é a mais popular, detendo a maioria da quota de 

mercado devido à sua política open-source e capacidade de instalar aplicações através de várias 

lojas de aplicações. Este facto, conjuntamente com a quantidade de dados sensíveis que estes 

dispositivos agora armazenam, torna o ataque à plataforma Android atraente para os autores de 

malware, causando um grande fluxo de aplicações maliciosas no ecossistema. Os métodos 

tradicionais de deteção de malware não conseguem controlar e prevenir este fluxo eficazmente, 

exigindo uma abordagem automática e inteligente, como a aprendizagem automática. Nesta 

tese, três algoritmos de aprendizagem automática, XGBoost, SVM e K-NN, foram treinados 

com diversas características, focando-se nas permissões Android e características estáticas das 

aplicações, para medir a eficácia da aplicação de técnicas de aprendizagem automática no 

combate à proliferação de malware. Dado o rácio de goodware para malware de 99/1 do 

conjunto de dados, realizaram-se quatro experiências com uma versão subamostrada do mesmo 

com um rácio de 70/30 para testar diferentes subconjuntos do espaço de características bem 

como eliminação e agregação de características antes de treinar os algoritmos com o conjunto 

completo de características usando normalização de características em dois cenários. Esta 

abordagem apresentou resultados promissores, com XGBoost, SVM e K-NN distinguindo entre 

malware e goodware com um score de 90 % (valores Area Under the Receiver Operating 

Curve). 
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1. Introduction 

1.1. Motivation 

Malicious software, or malware, has been a part of computing ever since the first ever 

documented computer virus, albeit experimental, in 1970. From this point forward, malware 

has not only grown from a diversity standpoint  having the need to categorize malware 

applications based on their proliferation method and/or how it affects its victim such as viruses, 

worms, trojans, spyware, ransomware, etc   but also from a volume standpoint, with AV-TEST 

registering 1081.61 million total malware as of August 13th 2020 [1]. The former is due to the 

never-ending battle between security professionals which are constantly creating new forms of 

malware protection and prevention, and malware developers which in turn innovate through the 

discovery of new attack vectors and proliferation methods, whereas the latter is due to 

technological advances such as the Internet, the emergence of smartphones, etc. As the Internet 

became more accessible to the general public [2], it also became an important tool to perform 

a variety of tasks remotely such as home banking, communication via e-mail/social media, etc. 

These tasks involve sensitive information that is very attractive to attackers. The Internet is also 

a very effective vehicle for malware developers to disseminate malicious software to obtain 

such information [3]. 

Although the majority of attacks target desktop computers, the emergence of smartphones 

and their subsequent rise in popularity quickly turned these mobile devices into an appealing 

attack vector for malware developers [3]. They are so popular in fact, that Statista forecasts the 

number of mobile and smartphone users worldwide will reach 7.33 billion in 2023 and 3.8 

billion in 2021 [4] [5]. This is due to their portability, high computational power, ability to 

connect ubiquitously to the Internet and to acquire additional functionality through the 

installation of applications provided by application stores. 

Among the most used mobile platforms (Android and iOS), Android is the most popular, 

holding 74.6% of the mobile Operating System (OS) market share due to its open-source 

approach, providing a free Integrated Development Environment (IDE), without any hardware 

restrictions as well as an application approval policy that is more lenient than its main 

competitor iOS, which in turn is very strict and extensive [6]. Furthermore, to publish iOS 

applications, it is necessary to pay a yearly subscription fee, creating an additional barrier of 

entry which also contributes to Android . The Android OS also allows the 

installation of applications from third-party application stores and unverified sources.  
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These factors make Android an appealing platform for malware authors to instrument their 

attacks, resulting in the rapid growth of Android malware, both in quantity and sophistication 

[7]. This lowers the effectiveness of Android application stores  malware detection methods 

because they cannot cope with the volume of malware that is being developed. 

These stores usually have an application review process in order to determine if a submitted 

application is accepted into the store. For example, the Google Play Store

process consists of reviewing if it achieves Android base-level security, followed up by an 

automated review and a manual review in addition to having developer policies that application 

developers must adhere to if they want their application to be distributed. If these policies are 

violated, the application is not published, and the developer is notified with information about 

the violation and after it addresses these issues it can be resubmitted for review. The application 

can also be suspended due to violations of the developer policies. Repeated violations, such as 

malware, can also lead to the termination of the accounts that are owned by the developer. Once 

the review process is completed and the application is published into the Google Play Store, it 

is verified continuously through Google Play Protect, which uses machine learning techniques 

to detect malicious applications and activities such as impersonation and fraud while also 

protecting Android devices [8] [9]. 

Given that malware detection is an important deciding factor of Android application  

application approval process, it is important to research methods that could enable the 

development of intelligent and automated Android malware detection methods, namely using 

machine learning techniques, in order to combat the rampant proliferation of malware. 

To address this problem, Aptoide  a reputable and popular open-source third-party 

Android application store without geo-restrictions which provides an user-generated content 

platform where every user can create their own application stores  in partnership with ISCTE-

IUL proposed the AppSentinel project  which this thesis is integrated on  with the aim of 

researching and developing a cloud-based malware detection system using machine learning 

techniques that will be implemented in its current security system [10]. Using both static and 

dynamic analysis, this system will use applications from multiple sources to discover their 

patterns and test future applications that are introduced to its store. Additionally, the extraction 

of static and dynamic characteristics will be used to aid the comprehension of a

mobile top 10 mobile risks [11]. Afterwards, the combination of these two components are used 

to create a profile for each application and together with user feedback a threat level will be 
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determined. The system also aids the developer by sending good software practices according 

to the vulnerabilities found during the analysis. 

In this thesis, several machine learning algorithms that are fed with features that are 

extracted through the employment of static analysis to a large quantity of Android applications 

provided by Aptoide will be tested, in order to conclude if this approach can help mitigate 

Android malware proliferation in application stores. Additionally, Aptoide shared valuable 

insights and knowledge about the malware detection and machine learning domains throughout 

this thesis. 

1.2. Research Questions 

This work aims to answer the following research question: 

 How effective can machine learning techniques be, using only static data, when applied 

to malware detection in a real-world scenario? 

1.3. Objectives 

The main objective of this thesis is to determine if the usage of machine learning techniques 

can be an effective approach for Android malware detection, contributing to the improvement 

of Android malware detection. In contrast to the majority of the machine learning-based 

Android malware detection methods found in the literature, this research is conducted using 

real, current data on a large scale. 

Another important objective is the development of a malware detection software prototype, 

which implements the most effective malware detection methods in an automated manner found 

by researching the literature. Additionally, the prototype will be used to provide experimental 

proof regarding the effectiveness of the chosen malware detection methods and to compare the 

obtained results against the ones found in the literature. 

1.4. Structure 

The remainder of this thesis is structured as follows: Chapter 2 will present an overview of the 

mobile malware detection landscape with a focus on the Android platform, followed by an 

overview of the Android platform  application components and security, and finally, the 

literature review of static, dynamic and hybrid-analysis-based machine learning detection 

approaches. Chapter 3 will explain the CRISP-DM standard  the methodology chosen to 

conduct the experimental procedures in this thesis , the reason behind its adoption and present 

the outputs of each phase that are applicable to all four experimental procedures. Chapter 4 will 
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focus on the presentation and discussion of the results of each experimental procedure. Chapter 

5 concludes this thesis and proposes ideas for future work.  

1.5. Contributions 

machine learning algorithms fed with features obtained through static analysis with a focus on 

Android permissions using real data; (ii) a systematic study on the adequacy of classification 

techniques in the field of Android malware detection and (iii) an analysis on the importance of 

Android permissions to Android malware detection as well as a proposal for feature 

engineering. 
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2. Literature Review 

Mobile computing technology has been advancing rapidly, and with the emergence of 

smartphones, due to their ability to not only perform data processing tasks that are employed 

by desktop computers, but also provide a mobile platform to do so, their adoption does not show 

signs of stopping, given how attractive these features are for end-users [4]. These tasks  

messaging, health and fitness, productivity, home banking, payments, etc are provided in the 

form of mobile applications, pieces of software that are mainly distributed through application 

stores. Thus, mobile devices store a wide variety of data, most of which contain personal and 

sensitive information, becoming an attractive target for malware authors to instrument their 

attacks on [12]. The Android platform in particular suffers the majority of these attacks in the 

form of premium-rate SMS trojans, spyware, botnets, aggressive adware, ransomware, etc, due 

to the fact that is it the most popular out of the two most used mobile platforms (Android and 

iOS), making up 74.6 % of the mobile OS market share given that its open-source policy enables 

mobile device manufacturers to use it as the base of their respective OS versions [6] [7]. In 

addition, the only location from 

where users can download applications. Users can download applications from third-party 

stores or directly from the web, giving malware authors multiple paths to distribute malicious 

applications, especially those which are disguised as benign applications [12]. The combination 

of these factors contributed to the exponential increase of Android malware, and traditional 

signature-based detection methods lose their effectiveness when faced with this increase in 

volume. Therefore, is it imperative to develop automatic and intelligent malware detection 

methods to prevent the proliferation of Android malware, and machine learning techniques 

could be leveraged to achieve this objective. 

2.1. Android platform application components and security 

Android is an open-source platform providing a Linux-based operative system for mobile 

devices, and its major platform architecture components are shown in Figure 2.1 [13]. 

Additionally, it provides an application environment in order to install developer-made 

applications which are composed of four main components: the AndroidManifest.xml file, 

activities, services and broadcast receivers [14]. These applications are then compiled into a file 

called the Android application package (APK), which contains  in the 

form of files with a .dex extension, resources, assets and the AndroidManifest.xml file, as 

shown in Figure 2.2 [15]. 
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The AndroidManifest.xml file describes essential information about a given application to 

the Android build tools, Google Play, but most importantly, to the Android OS [16]. This file 

instructs the system about how to use activities, services, services and content 

providers, and describes which permissions are required to execute it [14]. 

Activities can be thought of as a single screen within an application, providing it with a 

window where it can draw its User Interface (UI) on. An application can have as many activities 

as it needs. Therefore, activities enable user interaction with an application [17] [18]. 

Services are application components that can perform background tasks (such as network 

operations) that are transparent to the user and can run indefinitely. Services can also perform 

foreground tasks (such as playing music while the user interacts with another application), but 

they must notify the user whenever it is being executed [17] [19]. 

Receivers are messages that an application is interested in receiving in order to perform an 

operation afterwards. When a specific event occurs (such as the completion of the download of 

a file), the application that triggered it sends a broadcast message that notifies every application 

that specified that it desires to receive such message [17] [20]. 

Security-wise, the Android platform provides user-based protection by assigning a Unique 

User ID (UID) to each application and forcing them to run in their own separate process. An 

application is also unable to interact with others and has limited access to the OS by running it 

within an application sandbox [21]. The purpose of this security mechanism is twofold: protect 

applications and OS from malicious applications [21]. Because of this characteristic, 

applications need to share resources and data with each other in a deliberate manner. This is 

achieved using the concept of permissions, where an application declares the need of a given 

permission to access resources and device features that are outside its sandbox [22]. In addition, 

it also uses a secure inter-process communication feature to allow applications which are 

executed in different processes to communicate with each other [23]. 

Permissions are an integral element to the security of an Android user, more specifically, 

its privacy. Permissions control which user data (such as contacts and emails) and system 

features (such as the camera and Near Field Communication (NFC)) a given Android 

application can access and use. They are so important to the security of the Android platform 

that no application has permission to perform actions that could impact a user (such as reading 

and writing its private data), other applications or the operating system negatively by default 

[22]. 
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Figure 2.1  Android platform main components (source: [13]) 

 
Figure 2.2  Android application package contents (adapted from [24]) 

The following sub-chapters encompass the study of the state of the art of machine learning-

based Android malware detection. These methods can fall into one of three categories, 

depending on how it analyses software to extract features in order to train the machine learning 

algorithms: static analysis-based, dynamic analysis-based and hybrid analysis-based. 
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2.2. Static analysis-based malware detection 

Static analysis, which is the focus of this thesis, consists of analysing an 

code without having to execute it [25]. In the Android platform, this implies the analysis of the 

contents of the APK file [26]. The advantage of this type of analysis is that it is fast and low on 

resource consumption. However, it is vulnerable to both code obfuscation techniques and 

dynamically loaded code [26] [27]. 

Sanz et al. [28] developed a static malware detection method that leverages the contents of 

the AndroidManifest.xml file. To extract this file from the APK, it uses a tool named Android 

Asset Packaging Tool (AAPT) [29]. Two specific fields from this file were used as features: 

uses-permission, which lists every permission that the application needs to operate correctly 

and uses-feature, which declares hardware and software features the application needs (for 

instance, the compass sensor) [16]. These features were used to train the following algorithms: 

Logistic Regression (LR), Naive Bayes (NB), Bayesian Network (BN), Sequential Minimal 

Optimization (SMO), an implementation of K-Nearest Neighbours (K-NN) named IBk, 

Decision Tree (J48), Random Tree (RT) and Random Forest (RF). To train these algorithms, it 

was used a dataset comprised of 249 malware samples and 357 benign samples achieving the 

best performance (Area Under the Curve (AUC)) of 0.920 with the RF algorithm. 

Peiravian and Zhu [30] developed a malware detection framework using permissions and 

Application Programming Interface (API) calls as features. This information is obtained using 

the tool Apktool [31] to reverse engineer a given APK, extracting its AndroidManifest.xml file 

and class files. For a given application, the permissions are extracted from the 

AndroidManifest.xml file and are embedded in a binary vector , where  if the ith 

permission is requested in its AndroidManifest.xml file, otherwise, . The API calls are 

extracted from the class files, and as a result, every application is represented by a single binary 

vector of permissions and API calls in addition to a benign or malicious class label. These 

features were used to train the following algorithms: Support Vector Machine (SVM), Decision 

Tree (DT) and Bagging [32]. The used dataset is comprised of 610 malware samples and 1250 

benign samples. Three experiments were conducted using different feature combinations. Using 

permissions, the best performing algorithm was Bagging with an AUC (defined in Chapter 3.4) 

of 0.956. Using API calls, SVM achieved the best performance with an AUC of 0.957. Using 

both permissions and API calls, the best performing algorithm achieved an AUC of 0.991. 

D.Arp, M. Spreitzenbarth, M. Hübner et al. [33] developed a malware detection method in 

the form of an application that is installed on an Android smartphone .Given that the malware 

detection process occurs in the device itself, it needs to be lightweight. Therefore, the static 
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features that are used to train the machine learning algorithms need to be extracted efficiently. 

To achieve this, these features are extracted from two specific locations: the 

AndroidManifest.xml file using the tool AAPT [29] Dalvik bytecode 

using a self-developed disassembler to minimize the feature extraction time, resulting in eight 

sets of features. Four of those sets were extracted from the AndroidManifest.xml file, namely: 

requested hardware components (e.g. GPS, camera access etc), requested permissions, 

application components (activities, services, content providers and broadcast receivers) and 

filtered intents. The remaining four sets were extracted from the disassembled Dalvik bytecode, 

namely: restricted API calls, used permissions, suspicious API calls and network addresses. 

Restricted API calls are, as the name implies, a set of sensitive API calls that the Android 

permission system restricts access to. These API calls are useful as features because using them 

without requesting the corresponding permission could mean that a given application is using 

privilege escalation exploits. The used permissions set is created by matching the restricted API 

call set with the requested permissions in order to determine which permissions are requested 

and used. The suspicious API call set contains API calls that allow access to sensitive data or 

resources given that in most cases, they can lead to malicious behaviour. Finally, the net address 

set in . These feature 

sets are merged into a single feature set  containing approximately 545,000 features, which 

are then embedded in a binary -dimensional vector where each dimension  has a value of 1 

if a given application contains that feature or 0 otherwise. This process is employed for every 

sample in the dataset. The dataset contains 131,611 samples comprising applications from 

various Android application markets, including every sample from the Android Malware 

Genome Project [34]. In order to determine if a given sample is malicious or benign, every 

sample is scanned using the VirusTotal service, using ten anti-virus scanners (AntiVir, AVG, 

Bit- Defender, ClamAV, ESET, F-Secure, Kaspersky, McAfee, Panda and Sophos) [35]. Every 

sample that is classified as malicious by at least two scanners is declared as malicious in the 

dataset, otherwise, it is declared as benign. Furthermore, every sample that is classified as 

adware is removed from the dataset since this type of application is in a grey area between 

malicious and benign. After this labelling process, the final dataset is comprised of 123,453 

benign samples and 5,560 malicious applications, that are fed to an SVM algorithm for training, 

achieving an AUC of 0.939. Another feature of Drebin is the explanation of the detection results 

it yields. When an application is scanned, Drebin presents a screen with a detecting score 

representing how confident the classification is as well as the top  features indexed by their 
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weights, which are the features that contributed the most in classifying it as malicious or benign 

along with a description of the functionality of each top feature. 

C. Zhao, W. Zheng, L. Gong et al. [36] used a subset of API calls as features to train an 

ensemble of DT and K-NN as the base classifiers to detect Android malware. This subset is 

generated by extracting the API calls of a given application using the tool Androguard [37] to 

decompile the class.dex file and applying a regular expression pattern to get all the methods 

from it. Afterwards, a sensitivity score is computed for each extracted API call representing the 

correlation between each API call and its appearance in malicious applications. Given that there 

exists numerous API calls, tests were conducted using the true positive rate as the metric to 

narrow down the number of API calls to use as features to train the algorithms. Observing the 

results of those tests illustrated in pp. 145, figure 5, [36], the optimal number of API calls to 

use is 20, therefore the top 20 most sensitive API calls were chosen. The name of the chosen 

 pp. 145, table 1, [36]. To 

determine the number of neighbours k to use when training the K-NN classifier, the algorithm 

was trained using a dataset of 450 benign samples and 450 malicious samples and tested with 

100 samples using various values for k. Based on the results, which are illustrated in pp. 147, 

figure 4, [36], the optimal number for k is 5. Finally, the ensemble was trained using a dataset 

comprised of 516 benign samples and 528 malicious samples. This paper also explored the 

impact of using an ensemble model rather than standalone classifiers, the effect of different 

classifiers and the effects of different weights of the classifiers within the ensemble module. In 

the first experiment, it concluded that using an ensemble improves both the accuracy as well as 

the false positive rate (FPR), achieving an average accuracy above 90 %, as shown in pp. 147, 

figure 6, [36]. The second experiment concluded that using the accuracy and the true positive 

rate (TPR) as performance metrics, using K-NN and DT as the classifiers of the ensemble 

yielded the best results, as shown in pp. 148, figure 8, [36]. The final experiment concluded that 

the ensemble performs the best when K-NN and DT have a weight of 0.4 and 0.6 respectively, 

achieving an accuracy of approximately 90 % as shown in pp. 148, figure 9, [36]. 

M. Kumaran and W. Li [38] developed a lightweight malware detection method using the 

information provided by the AndroidManifest.xml file, namely permissions and intent-filters, 

in order to learn if it proves to be enough in order to classify applications as benign or malicious. 

To extract these features, each application is decompiled using the tool Apktool [31] to gain 

access to AndroidManifest.xml file. Afterwards, this file is fed to a Python Extensible Markup 

Language (XML) API named ElementTree to extract both intents and permissions. This process 

results in 183 features that can belong in three categories: requested permissions (permissions 
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to access phone functionality like location, camera, etc.), declared permissions (permissions 

that are created by a given application in order to protect itself from others that try to access 

data in it) and intent filters, which are used to tell which intents an application can use. These 

features are used to train the following algorithms using a dataset comprised of 500 malicious 

applications and 500 benign applications, using 10-fold cross-validation: Linear Discriminant 

(LD), Cubic SVM, Weighted K-NN, Complex Tree (DT), Linear SVM and Course K-NN. 

Cubic SVM proved to be the best performing algorithm with an accuracy of 91.7 %, as shown 

in pp. 2, figure 2, [38]. Additionally, this paper concluded that solely using intent-filters as 

features yields poor classification results and that using both permissions and intent-filters leads 

to the best performance, as shown in pp. 2, figure 1, [38]. 

K. Allix, T. Bissyandé, Q. Jérome et al. [39] developed a malware detection method based 

, using SVM, RF, the RIPPER rule-

learning algorithm and the tree-based C4.5 algorithm as classifiers.  The feature extraction 

process begins with using the tool Androguard [37] to perform static analysis on a given 

Android applicatio The CFG is then 

represented as character strings using a method developed by Pouik et al. [40] , which holds 

useful such as variable names or register numbers. This representation allows it to be protected 

against obfuscation given that two malware variants can have the same CFG while having 

different bytecode. 

 sequences of instructions of the CFG with only an entry point and an exit point  are extracted 

from it. An important property of these basic blocks is that they represent the smallest piece of 

the application that is always executed collectively. If a basic block is noted as  then  

can be defined as the set of the  basic blocks found in at least one application, as seen in (1): 

  (1) 

And thus, every application is represented by a list of binary values that encode all the 

blocks in , where if a basic block is present the corresponding element has a value of 1, 

otherwise it has the value 0. This paper establishes two scenarios of malware detection: in the 

lab and in the wild. The in-the-lab scenario  is characterized by using a dataset comprised of 

a few thousand samples at most, as well as employing 10-fold cross validation to test the 

machine learning algorithms. An in-the-wild" scenario is a real-world malware detection 

scenario. Using a dataset comprised of over 50 000 applications, two sets are created: , 

containing 
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dataset, which are labelled as goodware, and a second set, , which is comprised of the 

 is always used for testing and 

 can be used as a training set in an in the wild scenario or as a combined training and testing 

dataset. With the datasets for each scenario created, the next step is feature evaluation and 

selection, where the InfoGain feature evaluation implemented by the Weka software [41] is 

computed for every feature. In the feature selection step, every feature that had a null InfoGain 

score is discarded, which comprised of over 99% of the features (over 2.5 million). The steps 

of the overall system are illustrated in pp. 9, figure 1, [39]. In the in-the-lab scenario , various 

experiments were conducted in order to assess the performance of the developed malware 

detection method, the impact of class imbalance, the sensitivity to the number of used features 

and the performance of each classifier. In the performance assessment experiment, which was 

comprised of 960 10-fold cross-validation experiments with all combinations of possible 

parameter values (10 repetitions per algorithm × 4 goodware to malware ratios × 6 values for 

number of features × 4 algorithms), the distribution of performance was as follows: the majority 

of the classifiers achieved very high precision rates with a median of 0.94, as well as high recall 

and F1-scores (defined in Chapter 3.4) with a median of 0.91. The class imbalance experiment 

consisted of using various goodware to malware ratios: 1/2, 1, 2 and 3, corresponding to 620, 

1257, 2500 and 3500 goodware applications. This experiment showed that the classifiers 

perform the best when the goodware to malware ratio is in favour of goodware, as shown in pp. 

13, figure 3, [39]. The feature number experiment showed that with a range of 50, 250, 500, 

1000, 1500 and 5000 features, the classifier performs better as the number of features increase, 

as shown in pp. 14, figure 4, [39]. Regarding the performance of the different classifiers, RF, 

the RIPPER rule-learning algorithm and C4.5 showed high F1-scores while SVM had an overall 

lower F1-score, as shown in pp. 14, figure 5, [39]. In the in-the-wild scenario , the classifiers 

drop abruptly in performance, achieving a distribution of precision values with a median of 

0.11, as well as recall and F1-score values of approximately 0 as shown in pp. 16, figure 7, [39]. 

The variation of goodware to malware ratio yielded the same trend as the in the lab experiment. 

However, as the number of features increase, the performance drops in contrast to the in the lab 

scenario, as shown in pp. 18, figure 11, [39]. This paper also highlights the importance of using 

datasets that are large and of good quality (that contain goodware samples that a in fact 

unknown malware applications) in order to improve the performance of classifiers in a real 

world scenario, as shown in pp. 19, figure 12, [39]. 

Table 2.1 displays the performance of the previously mentioned static analysis-based 

Android malware detection methods that used the AUC as their performance measure. 
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Table 2.1  Performance of malware detection methods based on static analysis-obtained features that use AUC as its 
performance metric 

References Features AUC (Technique used) 

[28] 
Permissions and Used 

Features 

0.890 (LR) 
0.780 (NB) 
0.790 (BN) 

0.860 (SMO) 
0.900 (IBK) 
0.860 (J48) 
0.850 (RT) 
0.920 (RF) 

[30] 

Permissions 
0.917 (J48) 

0.920 (SVM) 
0.956 (Bagging) 

API Calls 
0.918 (J48) 

0.957 (SVM) 
0.956 (Bagging) 

Permissions and API Calls 
0.936 (J48) 

0.963 (SMV) 
0.991 (Bagging) 

[33] 

Hardware Components, 
Requested Permissions, 

Application Components, 
Filtered Intents, Restricted 

API Calls, Used 
Permissions and 

Suspicious API Calls 

0.939 (SVM) 

 

Table 2.2 displays the performance of the static analysis-based Android malware detection 

methods previously mentioned that used only Accuracy as their performance metric. 

 

Table 2.2  Performance of malware detection methods based on static analysis-obtained features that use Accuracy as its 
performance metric 

References Features Accuracy (%) (Technique Used) 

[14] Sensitive API calls ~90 (K-NN and DT Ensemble) 

[16] 
Permissions and Intent 

filters 
91.7 (Cubic SVM) 
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2.3. Dynamic analysis-based malware detection 

Dynamic analysis, in contrast to static analysis, consists of executing a given application in a 

sandbox environment to monitor its behaviour. However, it is more time consuming than static 

analysis methods [7]. 

Singh and Hofmann [25] developed a malware detection method using the frequency of 

system calls as features. The first stage of this process consists of executing each application of 

the sample set, which is comprised of 216 malicious samples and 278 benign samples in an 

emulator using the tool Monkey [42]. This tool generates pseudorandom user actions (clicks, 

touches, gestures and system-level events) [16]. As every application is being executed, a total 

of 337 Linux system calls are monitored, resulting in a feature vector of 337 elements, where 

each element represents how many times that specific system call was invoked during runtime. 

In the next stage, every system call that has zero variance is removed from the feature set, 

resulting in a final feature vector of 43 attributes, excluding the class label. These features are 

used to train the following algorithms: DT, RF, Gradient Boosted Trees (GBT), K-NN, SVM, 

Artificial Neural Networks (ANN) and Deep Learning (DL). In order to improve the 

performance of the algorithms, three feature weighing techniques were also applied before 

training and testing the algorithms once more, namely, Information Gain (IG), Chi-square 

statistic and correlation. 

Bhatia and Kaushal [43] also used frequency of invoked system calls at runtime as features. 

Using a dataset comprised of 50 malicious samples and 50 benign samples, every application 

is executed in an Android Virtual Machine (VM) using the Monkey tool for one minute, 

generating 500 gestures with a 500 millisecond delay between each event, while the Linux 

command strace is executed in parallel to extract the frequencies of every invoked system call 

during that period [42]. This information is aggregated in a single matrix where each row 

represents the frequency of the system calls of a given application and each column represents 

the frequency of a given system call for every application. The algorithms that were chosen 

were J48 and RF. 

Afonso, de Amorim, Grégio, Junquera, and de Geus [44] developed a malware detection 

system using the frequency of both API and system calls that are invoked at runtime. In order 

to extract the API calls, the tool APIMonitor [45] is executed for five minutes while it is being 

executed on an emulator using the tool MonkeyRunner [46]. Furthermore, the file that handles 

the collection of API calls contained in this tool was modified in order to monitor additional 

API calls related to network access, process execution, string and file manipulation and 

information reading. The Linux command strace is also used during this period in order to 
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extract the system calls. This information is aggregated into a vector of 74 API calls and 90 

system calls, amounting to a total of 164 features, each one representing how many times that 

particular API or system call was invoked. Using a dataset of 2295 malicious samples and 1485 

benign samples, the following algorithms were trained in order to determine which one will be 

used by the proposed method: RF, J48, LR, NB, BN, SMO, and IBk. RF achieved the best 

performance with an F1-score of 0.96 using the dataset mentioned above, therefore it was tested 

afterwards using a dataset comprised of 2257 malware samples and 1483 benign samples. 

Table 2.3 displays the performance of the Android malware detection methods mentioned 

above, using F1-Score as the performance metric considering that it is the one that is shared 

among every study. 

Table 2.3  Performance of malware detection methods based on dynamic analysis-obtained features 

References Features F1-score (Technique used) 

[25] 

System Calls, no feature 
weighing 

0.946 (RF) 
0.943 (SVM) 
0.973 (DT) 

0.976 (GBT) 
0.901 (K-NN) 
0.912 (ANN) 
0.937 (DL) 

System Calls, using IG 

0.939 (RF) 
0.966 (SVM) 
0.972 (DT) 

0.981 (GBT) 
0.961 (K-NN) 
0.952 (ANN) 
0.977 (DL) 

System Calls, using Chi-
square statistic 

0.946 (RF) 
0.966 (SVM) 
0.967 (DT) 

0.981 (GBT) 
0.960 (K-NN) 
0.946 (ANN) 
0.965 (DL) 

System Calls, using 
correlation 

0.961 (RF) 
0.969 (SVM) 
0.972 (DT) 

0.991 (GBT) 
0.986 (K-NN) 
0.920 (ANN) 

0.968 (DL 
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[43] System Calls 
0.850 (J48) 
0.885 (RF) 

[44] System Calls and API Calls 0.968 (RF) 

2.4. Hybrid-analysis-based malware detection 

Hybrid analysis methods consist of using both static and dynamic analysis methods in order to 

overcome their respective limitations [27]. 

Zhao, Xu and Zhang [47] developed a system that extracts permissions and API calls as 

static features and runtime behaviour as dynamic features in order to classify applications. In 

the static analysis process, the tool Androguard [37] is used to extract the permissions from the 

AndroidManifest.xml file, resulting in a permission feature set that is further optimized in order 

to remove features that are rarely present. This results in a binary permission feature vector of 

45 dimensions, representing the presence of each permission in each application. Additionally, 

the API calls of applications from various sample sets are extracted through the analysis of their 

respective classes.dex files, using both Androguard and the reverse-engineering tool baksmali 

[48]. In order to optimize the obtained API feature vector, the filter feature selection algorithm 

Relief [49] is used, resulting in a final API call feature set of 22 dimensions where each 

dimension represents an API call. In the dynamic analysis process, every application is installed 

and executed on an emulator. In order to extract runtime behaviours as features, the tool 

Monkey [42] is executed while the tool DroidBox [50] monitors the runtime behaviour to 

determine whether a given application exhibits malicious behaviour such as automatic network 

connection, malicious SMS sending, private information logging, among others. Additionally, 

the number of occurrences of each behaviour is registered and the Relief algorithm is used to 

remove irrelevant features, resulting in a final feature vector of 20 dimensions such as battery 

usage, user activity, network features, among others. Afterwards, this information is aggregated 

into a single feature vector with 87 dimensions. Using a dataset comprised of 359 malware 

samples and 500 benign samples, 150 malicious samples and 150 benign samples were chosen 

randomly to form training and testing datasets, which were used by the following algorithms: 

SVM, K-NN, NB, DT and RF. Using features that were extracted from static analysis, the best 

performing algorithm was RF with an accuracy of 92.07 %. Using both static and dynamic 

analysis derived features, the best performing algorithm was RF with an accuracy of 94.89 %. 

Liu, Zhang, Li and Chen [51] developed a method that employs static analysis or dynamic 

analysis depending on the result of the APK extraction process. Using the tool Apktool [31], if 

it can successfully decompile a given application, it proceeds to the static analysis stage. 

However, if it does not produce useful information (for instance, if code obfuscation techniques 
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were used) it employs dynamic analysis. In the static analysis stage, the AndroidManifest.xml 

file is extracted from each application and every permission is mapped to a feature vector of 

151 dimensions. Additionally, every API call is extracted using the tool baksmali [48] and is 

mapped to a feature vector of 3262 dimensions. Afterwards, both feature vectors are merged, 

resulting in a final feature vector of 3413 dimensions. In the dynamic analysis phase, a system 

call feature vector of 345 dimensions is created where each dimension represents the frequency 

of the invoked system calls. To extract these features, the ADB (Android Debug Bridge) tool 

[52] is used. Afterwards, the application is executed using the Monkey [42] tool and the invoked 

system calls are monitored using the Linux command strace. Using a dataset comprised of 500 

malicious samples and 500 benign samples, the following algorithms were trained: K-NN, SVM 

and NB. Using permissions as the feature set, the best performing algorithm was SVM with an 

accuracy of 96.53 %. Using API calls, the best performing algorithm was also SVM with an 

accuracy of 99.07 %. Using both permissions and API calls, SVM performed the best with an 

accuracy of 99.28 %. Finally, using system calls as features, the best performing algorithm was 

NB with an accuracy of 90 %. 

Arshad et al. [27] developed a hybrid malware detection model where the static analysis 

phase is carried out on a remote server and the dynamic analysis phase is employed on the 

device. This model is composed of two major components: a client application in which the 

dynamic analysis process occurs, and a remote server that handles the static analysis process as 

well as the training and testing of the machine learning algorithms. The client application is 

developed in order to let the user dynamically analyse an application of his/her choice. Once it 

does, the client application hooks the Linux command strace  with that application which 

monitors its invoked system calls. The client application was programmed to monitor the 

frequency of 10 specific system calls related to file operations and network access. Afterwards, 

a system call log file is generated and sent to the remote server. In the static analysis phase, the 

remote server receives the application identifier through the client application, and the server 

queries its database to check if it was not previously classified. If so, a report is sent back to the 

user, otherwise the server downloads the application and employs static analysis. This process 

consists of the extraction of several features such as requested hardware components, requested 

permissions, application components (services, broadcast receivers and content providers), 

intent filters, suspicious API calls and restricted API calls. The first four are extracted from the 

 AndroidManifest.xml file using the AAPT tool [29]. The last two are extracted 

from disassembling the application code from the classes.dex file using the baksmali [48] tool. 

Afterwards, the remote server generates both static and dynamic binary feature vectors to train 
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the following algorithms: SVM, RF, DT and NB. The mentioned algorithms were evaluated 

using the Drebin dataset [33], which is comprised of 5,560 malware samples and 123,453 

benign samples. Using only the features extracted from static analysis, the best performing 

algorithm was RF with an accuracy of 99.07 %. Using dynamic analysis-derived features, the 

best performing algorithms were both RF and SVM with an accuracy of 82.76 %. 

Table 2.4 displays the performance of the Android malware detection methods previously 

mentioned, using Accuracy as the performance metric. 

Table 2.4  Performance of malware detection methods based on hybrid analysis-obtained features 

References Features Accuracy (%) 

[47] 

Static 

85.74 (NB) 
88.19 (J48) 
92.07 (RF) 

91.27 (SVM) 
84.56 (K-NN) 

Hybrid 

84.52 (NB) 
89.34 (J48) 
94.89 (RF) 

93.66 (SVM) 
86.71 (K-NN) 

[51] 

Permissions 
93.33 (NB) 

96.52 (SVM) 
95.58 (K-NN) 

API Calls 
94.23 (NB) 

99.07 (SVM) 
98.42 (K-NN) 

Permissions and API 
Calls 

94.41 (NB) 
99.28 (SVM) 
98.66 (K-NN) 

System Calls 
90.00 (NB) 

85.75 (SVM) 
87.92 (K-NN) 

[27] 

Static 

91.60 (NB) 
99.07 (RF) 

98.97 (SVM) 
98.56 (DT) 

Dynamic 

62.07 (NB) 
82.76 (RF) 

82.76 (SVM) 
72.41 (DT) 
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Observing Table 2.1, Table 2.2, Table 2.3 and Table 2.4, and, although the majority of the 

malware detection methods deliver high accuracy rates, there are some concerns regarding how 

they would perform in a realistic scenario due to: i) using datasets with goodware to malware 

ratios above 90 % [27] [33] and ii) using controlled datasets with a low number of total samples, 

the lowest being 100 total samples [25] [28] [36] [38] [43] [47] [51]. The latter is particularly 

highlighted in [39], where using small controlled datasets and using 10-fold cross-validation 

lead to high performances. However, when those classifiers were used in a realistic scenario, 

their performances plummeted [39]. 

In this thesis, a large dataset with 55378 samples provided by Aptoide, a well-known third-

party Android application market will be used, therefore the trained algorithms will produce 

results that we have a high degree of confidence on regarding their performance given that it 

represents a realistic malware detection scenario.
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3. Experimental Methodology 

To answer the research question defined in Chapter 1, we need to employ machine learning 

techniques to address a classification problem. In other words, given a set of Android 

applications, we want to be able to distinguish between benign and malicious applications. To 

achieve this, the CRISP-DM reference model [53] will be adopted to train and test several 

machine learning classifiers that can distinguish goodware from malware. Given that the 

AppSentinel project follows this standard since it is a widely approved blueprint for data mining 

and machine learning projects in a business context, it is appropriate to adopt this methodology 

in this thesis, given that it is integrated in the project.  

Figure 3.1 illustrates the phases of the CRISP-DM reference model. This model represents 

the lifecycle of a data mining/machine learning project, which is composed of a set of phases 

and their respective tasks as well as how these tasks relate to each other, albeit it cannot capture 

every possible relationship because they change based on which project they are integrated in 

[53]. 

 
Figure 3.1 - CRISP-DM reference model [53] 

There is a total of 6 phases in the CRISP-DM reference model, and there is not a pre-defined 

order at which a given phase is performed. More specifically, the result of a given phase will 

dictate which phase or task of a given phase should be performed next. The inner arrows 

indicate the major dependencies between phases. The outer circle represents the idea that the 



Malware detection methods for Android mobile applications

22 

data mining process (and in this case, the machine learning process) is cyclical. This means that 

the deployment of a solution does not end the process. Instead, what is learned from a given 

cycle can be used to improve the solution in the consequent cycle [53]. 

3.1. Business Understanding 

The main purpose of this phase ls and requirements from a 

business perspective and derive a machine learning problem definition from them as well as a 

 [53]. The output of this phase can be found in 

Chapter 1 section 1. 

3.2. Data Understanding 

This phase is characterised by an initial data collection process, followed by data exploration 

tasks in order to become 

properties of the data such as the number of records, attributes and attribute data types (nominal, 

ordinal or continuous) and the existence of missing values or irregularities in order to analyse 

the quality of the data [53]. 

Observing Table 3.1, the dataset is composed provided by Aptoide across 

29 days of the month of July of 2019, with a peak in number of samples at 2266 on the 8th of 

July. In contrast to the majority of papers that were studied in the Chapter 2, this dataset has the 

advantage of having a substantially larger sample size. 

 

Table 3.1 - General statistics of the dataset 

Number of samples 55378 
Number of days 29 

Day with the most samples 2019-07-08 

Minimum number of 
samples per day 

1371 

Maximum number of 
samples per day 

2266 

 

Observing Table 3.2 and Figure 3.2, the dataset is heavily unbalanced, containing much 

more goodware samples. More specifically, this dataset has a goodware to malware sample 

ratio of approximately 99/1. Furthermore, this discrepancy between the number of goodware 

samples versus malware samples is maintained throughout the days. Given that the dataset was 

provided by Aptoide, a reputable Android application market, it is natural for it to have such a 

low ratio of malware samples to goodware samples given that it is a store with the purpose of 
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distributing applications worldwide. Most importantly, this dataset represents a realistic 

scenario, meaning that the results will be more reliable in contrast to the majority of papers that 

try to tackle this problem [39]. 

 

Table 3.2  Daily goodware and malware distribution 

Date Goodware Malware Total 
2019-07-01 1734 16 1750 
2019-07-02 1759 20 1779 
2019-07-03 1920 25 1945 
2019-07-04 1903 17 1920 
2019-07-05 2148 24 2172 
2019-07-06 1673 22 1695 
2019-07-07 1560 20 1580 
2019-07-08 2241 25 2266 
2019-07-09 2040 24 2064 
2019-07-10 2232 15 2247 
2019-07-11 1968 9 1978 
2019-07-12 2075 11 2086 
2019-07-13 1825 19 1844 
2019-07-14 1607 28 1635 
2019-07-15 1542 11 1553 
2019-07-16 2014 37 2051 
2019-07-17 2100 55 2155 
2019-07-18 2234 15 2249 
2019-07-19 2136 28 2164 
2019-07-20 1971 27 1998 
2019-07-21 1371 10 1381 
2019-07-22 1824 11 1835 
2019-07-23 1775 14 1789 
2019-07-24 2113 11 2124 
2019-07-25 1766 15 1781 
2019-07-26 2091 16 2107 
2019-07-27 1752 6 1758 
2019-07-28 1651 5 1656 
2019-07-29 1814 1 1816 

Total 54839 537 55376 
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Figure 3.2  Proportion of goodware and malware samples per day in the dataset 

Given that the feature space is reasonably large (162 dimensions), the pair-wise correlation 

between features was computed and plotted into a heatmap for better visualization in order to 

investigate the heatmap it can be shortened in later experiments. However, this large feature 

space means that the heatmap will be too large to be readable; therefore, the features that 

achieved pair-wise correlations above 0.80 are shown in a smaller heatmap in Appendix A. The 

full heatmap also revealed permissions that are not requested by any application, as shown in 

Table 3.3. Table 3.4 shows feature pairs that achieved a correlation equal or higher than 0.85. 

 

Table 3.3  Unrequested permissions in the dataset 

Feature 
ACCEPT_HANDOVER 

BIND_AUTOFILL_SERVICE 
BIND_CALL_REDIRECTION_SERVICE 

BIND_CARRIER_MESSAGING_CLIENT_SERVICE 
CALL_COMPANION_APP 

READ_VOICEMAIL 
SMS_FINANCIAL_TRANSACTIONS 

START_VIEW_PERMISSION_USAGE 
WRITE_VOICEMAIL 
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Table 3.4  Feature pairs that achieved a correlation equal or higher than 0.85 

Feature pair Correlation 
READ_CALENDAR WRITE_CALENDAR 0.85 

READ_SYNC_SETTINGS WRITE_SYNC_SETTINGS 0.90 
BIND_CARRIER_MESSAGI

NG_SERVICE 
BIND_CARRIER_SERVICE

S 
0.91 

REQUEST_COMPANION_R
UN_IN_BACKGROUND 

REQUEST_COMPANION_U
SE_DATA_IN_BACKGROU

ND 
0.97 

BIND_CONDITION_PROVI
DER_SERVICE 

BIND_TV_INPUT 1 

BIND_CONDITION_PROVI
DER_SERVICE 

BIND_VR_LISTENER_SER
VICE 

1 

BIND_VR_LISTENER_SER
VICE 

BIND_TV_INPUT 1 

 SET_ALWAYS_FINISH 
BIND_VOICE_INTERACTI

ON 
1 

 

In the first experiment, the entirety of the feature space will be used to train the machine 

learning algorithms to establish a baseline scenario. In the third experiment, the features shown 

in Table 3.3 and Table 3.4 will be explored further in order to make an educated decision 

regarding their possible elimination and aggregation and its impact on algorithm performance. 

The final step was to visualize the dataset to examine the distribution of its data points and 

investigate the existence of obvious groups of goodware or malware applications and other 

interesting findings. Given the high dimensionality of the dataset, two dimensionality reduction 

techniques were employed to generate 2D and 3D scatter plots of the dataset: Principal 

Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding (t-SNE). 

PCA is a multivariate analysis technique with the aim of reducing the dimensionality of a 

dataset by computing new, uncorrelated variables, that are linear combinations of the original 

variables  while retaining as much variance as possible in 

such a way that the first PC holds the highest possible variance, the second PC the second 

highest possible variance while also being orthogonal to the first PC etc, depending on how 

many dimensions the user wants to reduce a given dataset to [54] [55]. 

Similarly, t-SNE is also a dimensionality reduction technique with a focus on representing 

highly dimensional datasets accurately in 2D and 3D space. A particularity of this algorithm is 

a tuneable parameter named perplexity, which can be interpreted as an approximate measure of 

how many close neighbours each data point has. It also has a learning rate parameter, which 

can be used to speed up the algorithm. When using this algorithm, it is common to use a 

perplexity value between 5 and 50 [56] [57]. To produce the best graphical representation 
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possible, several t-SNE projections were created using various learning rate and perplexity 

value pairs, with the best pair highlighted in bold, as shown in Table 3.5. 

 

Table 3.5  Distribution of learning rate and perplexity values used to create t-SNE 2D and 3D projections 

Learning rate [50, 150, 250, 500] 

Perplexity [10, 20, 50] 

 

Observing Figures Figure 3.3 and Figure 3.4, 2D and 3D PCA projections do not give 

information about underlying structure besides the existence of seven outliers, two 

being goodware samples and five being malware samples, illustrated by a black circle. 

Additionally, there is not a clear separation between malware and goodware samples in these 

dimensions, and within those classes the data points are concentrated into one large group. 

There is also a large quantity of lost information when reducing to two and three dimensions, 

given that the cumulative explained variance of two and three principal components is 15.48 % 

and 19.42 % respectively. 

Observing Figures Figure 3.5 and Figure 3.6, t-SNE projections show that goodware 

samples are compressed together forming a ball-like shape. Furthermore, and similarly to PCA 

projections, there does not exist a clear separation between goodware and malware samples in 

these dimensions. Therefore, conclusions about the structure of these data points cannot be 

drawn. On the other hand, there exists a small number of malware sample groups. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.3  First 2 PCA principal components, (A) goodware and malware, (B) malware. The outliers are circled in 
black  

B A 
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Figure 3.4  First 3 PCA principal components, (A) goodware and malware, (B) malware. The outliers are circled in 
black 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5  2-dimensional t-SNE projection of the dataset with a perplexity of 20 and a learning rate of 50, (A) 
goodware and malware, (B) malware 
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Figure 3.6  3-dimensional t-SNE projection of the dataset with a perplexity of 20 and a learning rate of 50, (A) 
goodware and malware, (B) malware 

Across all experiments, the following features were used: Android permissions up to API 

level 29 (Android version 10.0) [58], application size, number of activities, number of services 

and the number of receivers. 

Regarding Android permissions, it was used the official list developed by Android [58]. 

Each permission has the value of 1 if a given application requests it, otherwise it is NaN. 

T  feature represents the size of each sample in bytes, with a range of values of 

. Observing Table 3.6

the third quartile has a value of 39.51892 MB and the maximum size is 1668.079 MB, these 

values along with the standard deviation indicates that the dataset might contain outliers. A total 

of 1521 samples have a size of NaN. 

 

Table 3.6   

 Size (MB) 
Count 53857 
Mean 27.96009 

Minimum 0.009746 
First quartile 6.395092 

Second quartile 16.84694 
Third quartile 39.51892 

Maximum 1668.079367 
 

A B 
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feature represents the number of activities of each sample, with a range of 

values of . 

The  feature represents the number of services of each sample, with a range of 

values of . 

Lastly, th  feature represents the number of receivers of each sample, with a 

range of values of .  

present NaN values. 

xity. This 

notion of complexity is important, because malware applications usually have a small number 

of these components, in contrast to benign applications such as games or productivity 

applications. The reason behind the usage of these features in particular is twofold: they are 

features that are easily extractable given that they are present in the AndroidManifest.xml file, 

be lightweight on resource consumption. In total, the feature space is composed of 162 features. 

3.2.1. Labels 

Each application in the dataset can have one of six labels: GOODWARE, UNKNOWN, MDUAL, 

MFAKE, MVIRUS and WHITELIST. Although this field is not a feature, there is a need to 

explain the meaning of each label. 

A GOODWARE application is, as the name implies, a benign application. An UNKNOWN 

systems, but it is 

s logic and other internal aspects. A 

MDUAL -virus and 

static rule systems. A MVIRUS application is a malware application that was detected by 

-virus system. An MFAKE application was detected as an application that is 

 A WHITELIST application has some type 

of detection i -virus system. However, because it comes from its partners and 

placed in their respective stores, it is part of a whitelist. 

3.3. Data Preparation 

The data preparation phase encompasses every task that is related with the transformation of 

the raw initial data into a new dataset in order to become usable by the chosen models. Tasks 
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such as selection or exclusion of specific sections of data, data cleaning, data reformation and 

data merging belong to this phase [53]. 

3.3.1. Data cleaning 

The first data cleaning step was to replace every NaN value with the value 0. This means that 

the permissions will be represented by a binary value of 1 if it is requested by a given 

application. However, if it is not requested it will have a value of 0. 

Additionally, comparing the total number of samples in Table 3.1 and Table 3.2, there are 

two samples that do

samples were removed, given that without a label, they will not prove useful in the classification 

process. 

Furthermore, given that the provided dataset had 1521 samples with the Size  feature 

having a NaN value, and it could not be determined if it was a data collection problem, these 

samples were removed from the dataset. 

Lastly, the labels GOODWARE, UNKNOWN, MDUAL, MFAKE, MVIRUS and 

WHITELIST were merged into MALWARE and GOODWARE. This process is necessary given 

that the objective of this thesis is solely to train algorithms that can classify applications as 

malware or goodware. The labels MDUAL, MFAKE, MVIRUS and WHITELIST will be merged 

into MALWARE, because they are samples that were detected by  malware detection 

systems. The labels UNKNOWN and GOODWARE will be merged into GOODWARE given 

that UNKNOWN applications passed Aptoide  malware detection systems successfully. After 

merging, the label field will be a binary value, where GOODWARE is represented by the value 

0 and MALWARE is represented by the value 1. 

After the cleaning process, the sample size of the dataset decreased from 55378 samples to 

53855 samples as shown in Table 3.7. 

 

Table 3.7  Dataset sizes before and after data cleaning 

Before data cleaning After data cleaning 

55378 53855 

3.3.2. Undersampling 

Given that the number of malware and goodware is so discrepant, it is impossible to achieve 

the intended goodware to malware ratio of 70/30. The reason for choosing this ratio is to retain 

the notion that the original dataset has a much higher number of goodware samples than 
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malware samples. To achieve this ratio, it is necessary to under-sample the dataset. The under-

sampling algorithm was developed with the constraint that we will extract 1000 samples per 

day with a goodware to malware ratio of 70/30, meaning that it would be required that each day 

has 700 goodware samples and 300 malware samples. This algorithm also needs to contemplate 

four different scenarios: 

 The number of goodware (Ng) is the limiting factor in a given day, meaning that 

there is not enough goodware samples to make up the 70% ratio, in this case 

700 samples: Although this situation never happens in this dataset, fictitious sample 

numbers will be used to exemplify this scenario. Because the number of goodware is 

the limiting factor, it is necessary to compute the total number of samples (malware 

and goodware) to satisfy the proportion of goodware to malware given the shortage 

of goodware samples (Tg), as shown in (2). Afterwards, computing the number of 

malware samples (Nm) is trivial, as shown in (3). Once the number of goodware and 

malware samples are computed, they are extracted randomly using the method 

sample() from the Python library Pandas. Equations (4) and (5) shows that after 

under-sampling, the ratio of goodware to malware ratio is preserved to approximately 

70/30 as intended. 

 
 (2) 

 

  (3) 

 

 
 (4) 

 

 
 (5) 

 

 The number of malware (Nm) is the limiting factor in a given day, meaning that 

there is not enough malware samples to make up the 30% ratio, in this case 300 

samples: this is the only scenario that is present in the dataset, therefore it will be 

exemplified using the number of samples of 01/07/2019 shown in Table 3.2. In this 

scenario, there is a shortage of malware samples to make up the necessary 300, 

therefore we need to apply a similar principle as the previous scenario. Firstly, the 
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total number of samples in proportion to the shortage of malware samples is 

computed (Tm), as shown in (6). Afterwards, Ng is computed, as shown in (7). 

Equations (8) and (9) show that the desired proportion of goodware to malware is 

preserved successfully. 

 
 (6) 

 

  (7) 

 

 
 (8) 

 

 
 (9) 

 There is a shortage of goodware and malware samples in a given day to 

accommodate the goodware to malware ratio of 70/30 (700 goodware samples 

and 300 malware samples): because there is a shortage of both goodware and 

malware, we need to verify which of those is more limiting. If the number of 

goodware samples is the most limiting of the two, we use the procedure of the first 

scenario. Otherwise, we use the procedure of the second scenario. Because this 

scenario is not present in the dataset and the procedure is identical to the first two 

scenarios depending on which class has less samples, it will not be exemplified. 

 There are no shortages of goodware and malware samples in a given day: given 

that there are no shortages, the number of goodware (700) and malware (300) is 

extracted using the sample() method from the Python library Pandas. 

Observing Table 3.8, while the dataset is drastically smaller after under-sampling, it is a 

compromise that was taken in order to have enough data given the low quantity of malware 

present in the original dataset. In addition, having a dataset with a goodware to malware ratio 

of 70/30 after under-sampling is significantly more adequate to train the algorithms than the 

original dataset, given that it had a goodware to malware ratio of approximately 99/1. 

 

Table 3.8  Total number of samples before and after the under-sampling process  

Before under-sampling After under-sampling 

53855 1713 
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3.4. Modelling 

The modelling phase consists of defining which algorithms will be used, to train the models in 

order to determine their optimal hyper-parameter configurations and the metrics that will be 

used to assess their performance and validity, depending on the type of problem it is trying to 

be solved. It is also necessary to define how the final dataset will be split into training and 

testing sets [53]. 

This sub-section will provide insight into the modelling setup that was used in every 

experiment. However, additional modelling steps were taken in the fourth experiment and are 

detailed in its respective chapter. The algorithms that are going to be trained are: eXtreme 

Gradient Boosting (XGBoost), K-NN and SVM.  

XGBoost is an implementation of gradient boosted trees with a focus on computation speed, 

efficiency, and scalability [59]. Using decision trees as an example, boosting is an approach 

where weak decision tree models are created in a sequential manner, with each subsequent tree 

being fitted using the previous tree  and added to the overall model, improving its 

performance [60]. It is important to note that the first learner is trained using a weighted version 

of the original dataset, so that the next iterations can modify the weights on the examples in 

order to focus on correcting the examples that were misclassified by the majority of the earlier 

weak learners. This is done by increasing the weights of the incorrect decisions and decreasing 

the weights of the correct decisions of the weak learner in the current boosting iteration [61]. 

Gradient boosting expands on the boosting approach by representing the residual as a gradient, 

where the goal is to add the tree that has the maximum negative gradient, which is the one that 

will minimize the loss function the most [62]. XGBoost improves regular gradient boosted tree 

algorithms by improving the regularized objective to further prevent overfitting and making the 

learning algorithm easier to parallelize. Additionally, rather than using an exact greedy 

algorithm to find the best split, which is impossible to use when the data is too large to store in 

memory and when using in a distributed computing context, XGBoost uses an approximate 

algorithm that not only is modified to be able to handle weighted datasets but can also be used 

in this context. Lastly, it implements sparsity-aware split finding to be able to handle real-word 

datasets which in most scenarios has either missing values, zero entries or products of feature 

engineering, and cache aware access to optimize split finding speed [59]. 

SVM belongs to the family of discriminant-based models and is heavily inspired by the 

maximum margin classifier [63]. This algorithm is based on distributing the data in space and 

computing hyperplanes  subspaces that have one less dimension than the original space, that 

perfectly separate the data  and selecting the optimal separating hyperplane afterwards [60]. 
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To select the most optimal hyperplane, the margin  the perpendicular distance from the 

hyperplane to the closest observations on either side  is computed for each of the found 

separating hyperplanes and the one which has the largest margin is the optimal separating 

hyperplane [60] [63]. The reason behind this choice is to maximize model generalization, to 

prevent misclassification due to noise [63]. The margin also contains the support vectors, 

training observations that are alongside the optimal separating hyperplane and equidistant from 

it [60]. It is also important to note that only the support vectors carry information, given that 

they are the only points that if shifted would cause the optimal separating hyperplane to shift 

accordingly unless it is a point that surpasses the margin hyperplane [60] [63]. Using a two 

class classification example where the targets values are {-1,1}, in order for SVM to classify a 

observations  feature measurements and depending on the sign of the result, it will appear on 

one of the sides of the optimal separating hyperplane, and the farthest it is from a given side the 

more confidence we have that it was correctly classified [60]. 

K-NN belongs to the family of instance-based learners, storing instances of training data 

rather than creating an internal model [64]. This algorithm works by assigning a test observation 

 to the class that has the most observations among its K nearest neighbours [63]. This 

value rises the model becomes stiffer, sacrificing variance for bias given that it uses a larger 

number of training data points to make predictions [60]. 

Random search will be used to find the best hyper-parameter configuration for each 

algorithm as opposed to grid search and manual search, because it is more effective than testing 

each configuration individually, given that it is a technique where, given a set of hyper-

parameters and their value distribution, it chooses a random hyper-parameter value combination 

rather than testing them one by one as grid search does [65] [66]. For each algorithm, the 

number of random search iterations is set to 750. It is important to note that given K- lower 

hyper-parameter space, it is only possible to do 120 iterations of Random Search, instead of the 

intended 750. Additionally, the dataset will be divided into two sets: 80 % will be used to train 

and validate the algorithms using 10-fold cross-validation, and 20 % to create the testing set. 

This division is stratified, meaning that it preserves the goodware and malware ratios [67]. 

K-fold cross-validation is an evaluation technique where the data is divided into k equal or 

partially equal parts (folds). Afterwards, k iterations of training and validation are done where 

k-1 parts are used for training and the remaining part is used for validation. The process stops 
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when every fold has been used for validation [68]. This process is also stratified. It is important 

to note that 10-fold cross-validation was used across all experiments. 

The evaluation metrics that will be used are the AUC of the ROC curve, F1-score, FNR 

and FPR given that the algorithms are being trained to solve a binary classification problem. 

The ROC curve is a graphical representation of the TPR (true positive rate) versus FPR 

(false positive rate) for different TPR thresholds, and for each threshold a (TPR, FPR) pair is 

obtained. The best-case scenario is a classifier that has a (1,0) pair. Additionally, given that the 

TPR is on the y axis and the FPR is on the x axis, the closer a classifier  curve is to the upper-

left corner, the better it is [63] [69]. Figure 3.7 shows an example ROC curve. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7  Example ROC curve (adapted from [69]) 

The AUC of the ROC curve is a numerical value that summarizes the ROC curve over all 

thresholds. This value has a range of [0,1], where an AUC of 1 corresponds to the best-case 

scenario mentioned earlier for the ROC curve, and an AUC of 0 represents a classifier that is 

completely inaccurate. An AUC of 0.5 represents a classifier that cannot distinguish between 

positive and negative samples [60] [63] [69].  

The F1-score (F1) represents the harmonic mean of the precision (P) and recall (R), as 

shown in (10). The precision is given by (11) and recall is given by (12), where TP is the number 

of true positives, FP is the number of false positives and FN is the number of false negatives 

[70]. 

 
 (10) 

 

T
P

R
 

FPR 
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 (11) 

 

 
 (12) 

 

The FPR is given by (13) and represents the proportion of negative samples that are wrongly 

classified as positive samples, where FP is the number of false positives and N is the number 

of negative samples [63]. 

 
 (13) 

The FNR is given by (14) and represents the proportion of positive samples that are wrongly 

classified as negative samples, where FN is the number of false negatives and P is the number 

of positive samples. 

 
 (14) 

 

Given that the dataset does not have an equal ratio of goodware samples to malware samples 

(70 % to 30 % respectively), the accuracy is not a good metric to ascertain which algorithm 

performs the best. This is true for every experiment given that this ratio does not change. The 

modelling setup is identical across the first, second and third experiments, the only aspects that 

change are the hyper-parameters chosen by random search. Therefore, the modelling phase of 

the fourth experiment is detailed in Chapter 4.4. 

3.5. Evaluation 

The evaluation phase consists of assessing whether the selected models in the previous phase 

achieved the business objectives that were set in the business understanding phase and 

reviewing the process thoroughly in order to check for disregarded tasks. Depending on the 

result of the assessment, a decision about whether to perform a new iteration, create a new 

project or proceed to the deployment phase should be made [53] 

3.6. Deployment 

When a project moves forward to the deployment phase, it usually means integrating the models 

-making processes  in this case, the permission or prohibition 

of an Android application in an application marketplace. This can be as straightforward as 

solely elaborating a final report or as complex as implementing a cyclical data mining/machine 
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learning process pipeline. Regardless of the purpose of the models, it is necessary to elaborate 

a plan which describes the steps required to deploy the models and how to perform them. 

Additionally, it should be outlined how the models should be maintained and analysed during 

their operation. Another output of this phase is a final report, which could be in the form of a 

written report that integrates the deliverables of the previous phases and summarizes the 

empirical results, or in the form of a comprehensive presentation in order to exhibit the obtained 

results. Lastly, the project should be reviewed in order to report which aspects went wrong, 

which aspects need to be improved in future projects of similar nature and which aspects were 

employed well [53].
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4. Tests and Validation 

This chapter will focus on presenting and discussing the results of the four experiments 

conducted, in addition to the specification of the hyper-parameters of the models in each 

experiment. Any additional data understanding, data preparation and modelling tasks that are 

employed in a particular experiment are also detailed in this chapter. 

4.1. Baseline Scenario 

The objective of the first experiment is to establish a baseline scenario from which additional 

data preparation and modelling tasks can be performed in further experiments in order to 

explore their impact on model performance. This experiment will use all the 162 features, and 

only 3.18 % of all the data (1713 samples with a ratio of 70 % goodware to 30 % malware). 

Modelling 

Table 4.1, Table 4.2 and Table 4.3 show the value distribution of hyper-parameters for each 

algorithm. The hyper-parameter combination that yielded the best performance is shown in 

bold. 

 

Table 4.1  XG -parameter value distribution in the first experiment  

Hyper-parameter Values 
min-child-weight 1, 5, 10 

gamma 0.1, 0.3, 0.5, 0.7, 1, 1.3, 1.5, 1.7, 2, 5 
subsample 0.1, 0.3, 0.6, 0.8, 1.0 

colsample_bytree 0.1, 0.3, 0.6, 0.8, 1.0 
max_depth 3, 5, 6, 10, 13, 15, 17, 20, 25, 30 

learning_rate 0.01, 0.05, 0.1, 0.3, 0.5 
n_estimators 100, 250, 500, 750, 1000 

early_stopping_rounds=50 20, 30, 50, 70 
 

Table 4.2  -parameter value distribution in the first experiment 

Hyper-parameter Values 
kernel rbf 
gamma [60 values from 0.01 to 2] (0.01) 

C [20 values from 0.1 to 2] (0.5) 
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Table 4.3  K- -parameter value distribution in the first experiment 

Hyper-parameter Values 
algorithm ball_tree, kd_tree 

n_neighbors 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 
weights uniform, distance 

Evaluation 

Observing Table 4.4, XGBoost is the highest performing algorithm, given that it outmatches 

the remaining algorithms in every metric, with a F1-score of 0.89 and an AUC ROC of 0.911. 

Additionally, it has the lowest FPR and FNR rates of 0.038 and 0.279 respectively, which are 

very important factors in a malware detection context. The SVM algorithm yielded anomalous 

results, given that it achieved a FPR of 0 and a FNR of 0.952. 

has a different value range than the remaining features coupled with the fact that it is in Bytes 

and the mean size is approximately 28 MB. This hinders its ability to compute the optimal 

separating hyperplane and consequently, to classify the samples. This issue will be investigated 

in the second experiment by removing this feature from the feature space. Lastly, K-

performance makes it unfeasible for classification, especially with a FNR of 40.4 %. 

 

Table 4.4  Algorithm performance of the first experiment 

Algorithm F1-score AUC ROC FPR FNR 
XGBoost 0.890 0.911 0.038 0.279 

SVM 0.610 0.588 0 0.952 
K-NN 0.770 0.772 0.155 0.404 

 

Observing Table 4.5, XGBoost and SVM took two hours, 19 minutes, and 54 seconds and 

two hours, 19 minutes and 23 seconds to train respectively. K-NN took 35 seconds to store the 

training instances. 

 

Table 4.5  Time taken to train each algorithm in the first experiment (XGBoost and SVM) and for K-NN to store the training 
instances 

Algorithm Time taken 

XGBoost 2 hours, 19 minutes, and 54 seconds 

SVM 2 hours, 19 minutes, and 23 seconds 

K-NN 35 seconds 
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Using 10-fold cross validation, the first experiment demonstrates how superior XGBoost is 

in comparison to the remaining machine learning algorithms, having a 91.1 % change of 

distinguishing between goodware and malware correctly. However, having a 27.9 % probability 

of classifying a malware application as goodware is problematic

abnormal results and the next experiment will focus on correcting this issue in order to better 

compare these three algorithms. 

4.2. Experiment with the  

T test if the removal of  feature from the feature space 

will improve without interfering with other algorithms. This experiment will use 

161 features, and only 3.18 % of all the data (1713 samples with a ratio of 70 % goodware to 

30 % malware). 

Data Preparation 

In addition to the data preparation steps of the first experiment, the ize  feature was removed 

from the dataset. 

Modelling 

Table 4.6, Table 4.7 and Table 4.8, show the hyper-parameters that yielded the best 

performance for the XGBoost, SVM and K-NN algorithms respectively. 

 

Table 4.6  -parameters in the second experiment 

Hyper-parameter Values 
min-child-weight 1 

gamma 0.1 
subsample 1.0 

colsample_bytree 0.6 
max_depth 10 

learning_rate 0.01 
n_estimators 500 

early_stopping_rounds=50 50 
 

Table 4.7  -parameters in the second experiment 

Hyper-parameter Values 
kernel rbf 
gamma 0.01 

C 1.9 
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Table 4.8  K- -parameters in the second experiment 

Hyper-parameter Values 
algorithm kd_tree 

n_neighbors 30 
weights distance 

Evaluation 

Observing Table 4.9, removing the ize  feature solved SVM

experiment and improved K- . Given that K-NN is a 

distance-based algorithm and the  feature has a value range that is extremely different 

than the remaining features, this performance improvement is expected after its removal from 

the feature space. However, XGBoost is still the best performing algorithm with a F1-Score of 

0.890, a FNR of 0.017, an FPR of 0.298 and an AUC ROC of 0.911, corresponding to a FPR 

and FNR improvement of 0.021 and 0.019 respectively in comparison to the first experiment. 

Observing Table 4.10, XGBoost and SVM took two hours, 33 minutes and 44 seconds, and 

one hour, 41 minutes and 18 seconds to train respectively. Comparing to the first experiment, 

SVM took less time to train with the removal of the Size  feature, while XGBoost had its 

training time increased. K-NN took more time to store the instances than the previous 

experiment, specifically, one minute and 21 seconds. 

 

Table 4.9  Algorithm performance for the second experiment 

Algorithm F1-score AUC ROC FPR FNR 
XGBoost 0.890 0.911 0.017 0.298 

SVM 0.850 0.835 0.042 0.385 
K-NN 0.860 0.856 0.063 0.298 

 

Table 4.10  Time taken to train each algorithm in the second experiment (XGBoost and SVM) and for K-NN to store the 
training samples 

Algorithm Time taken 

XGBoost 2 hours, 33 minutes, and 44 seconds 

SVM 1 hours, 41 minutes, and 18 seconds 

K-NN 1 minute and 21 seconds 
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abnormal results and improving K-

to the first experiment, XGBoost remains the best performing algorithm. However, it also 

increased XGBoost FNR by 1.9 %. 

4.3. Experiment applying feature elimination and aggregation 

This experiment will explore how eliminating and aggregating certain features will affect the 

performance. Feature reduction is also important to evaluate the possibility of 

reducing training times without sacrificing performance. It is important to note that similarly to 

the second experiment, the ize  feature will not be used in order to maintain normal SVM 

results. This experiment will use 132 features, and only 3.18 % of all the data (1713 samples 

with a ratio of 70 % goodware to 30 % malware). 

Data Understanding 

Feature aggregation and elimination may lead to information loss, and consequently lower the 

performance of the algorithms. Therefore, these operations need to be considered carefully 

before they are employed. The data preparation phase will discuss which features were 

eliminated and aggregated and the reasoning behind such decisions. It is important to note that 

the only features that underwent this process were the Android permissions, given that they 

represent the largest portion of the feature space. 

Three factors were considered to determine which features (permissions) will be 

eliminated: its requested percentage, XGBoost , and if Android 

classifies it as a dangerous permission. 

The requested percentage of a given permission Pi represents the percentage of applications 

which requested it, and is given by dividing the number of samples, Np, that request that 

permission (meaning it has a value of 1), by the total number of samples, Nt, as shown in (15). 

To obtain XGBoost s importance of each feature it is necessary to train a model first, therefore 

the feature importance values of the best model from the second experiment will be used. This 

value is computed using the average gain of splits of a given feature and represents its 

contribution to the increase of  [71] [72]. Lastly, according to Android, 

dangerous permissions cover areas where the app wants data or resources that involve the 

user's private information, or could potentially affect the user's stored data or the operation of 

other apps  [73]. 

For a permission to be eliminated, it must have a requested percentage equal or lower than 

0.009 % (which translates to a permission being requested by 5 applications or less in this 

dataset), a feature importance of 0 or NaN and it cannot be a dangerous permission. This 
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requested percentage threshold was chosen to minimize the possibility of removing permissions 

that could be useful to detect a specific malware/goodware application while optimizing the 

feature space by removing permissions that might not carry useful information. 

Appendix A shows the permissions that are going to be removed, and their respective values 

in the metrics mentioned above. 

 
 (15) 

Although Table 3.4 contains feature pairs with correlations of 0.85 and higher, pair-wise 

correlations alone should not be used to decide whether to aggregate those features or not, due 

to the possibility of losing valuable information. Therefore, the function of both features will 

be considered, meaning that if a pair of features has both a high correlation value and are similar 

in their function or allow operations that affect the same resource, that feature pair will be 

aggregated. 

Permissions READ_CALENDAR and WRITE_CALENDAR have a correlation of 0.85 

and are related to manipulating the Android calendar by reading and writing calendar data 

respectively [74] [75]. Similarly, READ_SYNC_SETTINGS and WRITE_SYNC_SETTINGS 

have a correlation of 0.90 and are related to reading and writing sync settings [76] [77]. 

REQUEST_COMPANION_RUN_IN_BACKGROUND and 

REQUEST_COMPANION_USE_DATA_IN_BACKGROUND have a correlation of 0.97 and 

are related to companion applications, more specifically, executing companion applications in 

the background and allowing them to use data in the background [78] [79]. Lastly, permissions 

BIND_CARRIER_MESSAGING_SERVICE and BIND_CARRIER_SERVICES have a 

correlation of 0.91, and Android advises the usage of the latter instead of the former given that 

it is deprecated since Android API level 23 [80] [81]. For these reasons, these permission pairs 

will be aggregated, creating a new feature as shown in Table 4.11. The aggregated feature will 

be assigned a value of 1 if any of the original features has a value of 1, and a value of 0 if both 

original features have a value of 0. 

Table 4.11  Feature pairs chosen for aggregation and the corresponding aggregated feature 

Feature pair Aggregated Feature 

READ_CALENDAR WRITE_CALENDAR CALENDAR 
READ_SYNC_SETTINGS WRITE_SYNC_SETTINGS SYNC_SETTINGS 

BIND_CARRIER_MESSAGI
NG_SERVICE 

BIND_CARRIER_SERVICE
S 

BIND_CARRIER_SERVI
CES 

REQUEST_COMPANION_R
UN_IN_BACKGROUND 

REQUEST_COMPANION_U
SE_DATA_IN_BACKGROU

ND 
REQUEST_COMPANION 



Malware detection methods for Android mobile applications

45 

Data Preparation 

Similarly to the second experiment, the features listed in Appendix A were eliminated by 

removing their respective columns from the dataset. The feature aggregation process was 

employed as follows: for every permission pair that was chosen for aggregation, if any of those 

permissions are present in a given application (meaning that it has a value of 1), the aggregated 

feature will have a value of 1, otherwise it will have a value of 0. Afterwards, the columns of 

the feature pairs are removed from the dataset and the column of the aggregated feature is 

inserted into the dataset. 

Modelling 

Table 4.12, Table 4.13 and Table 4.14 show the hyper-parameters that yielded the best 

performance in this experiment for the XGBoost, SVM and K-NN algorithms respectively. 

 

Table 4.12  -parameters in the third experiment 

Hyper-parameter Values 
min-child-weight 1 

gamma 1.3 
subsample 1.0 

colsample_bytree 0.8 
max_depth 15 

learning_rate 0.01 
n_estimators 750 

early_stopping_rounds=50 70 
 

Table 4.13   hyper-parameters in the third experiment 

Hyper-parameter Values 
kernel rbf 
gamma 0.04372881355932204 

C 1.2 
 

 

Table 4.14  K- -parameters in the third experiment 

Hyper-parameter Values 
algorithm ball_tree 

n_neighbors 28 
weights distance 
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Evaluation 

Observing Table 4.15, and comparing to the previous experiment, although eliminating and 

aggregating features did not impact F1-Scores, it increased the AUC ROC of every algorithm. 

Additionally, it decreased XGBoost  FNR to 0.260 and increased its FPR to 0.042

performance improved marginally, achieving an AUC ROC of 0.836, just 0.001 higher than the 

previous experiment. Likewise, K-NN achieved an AUC ROC score of 0.858, corresponding 

to a marginal increase of 0.002. 

Observing Table 4.16, feature elimination and aggregation lowered XGBoost

training times in comparison to the previous experiment, slightly improving training efficiency. 

More specifically, it reduced XGBoost by 23 minutes and three seconds, and 

training time by 12 minutes and 52 seconds. It also reduced K-NN  time to store 

training instances by seven seconds. 

 

Table 4.15  Algorithm performance for the third experiment 

Algorithm F1-score AUC ROC FPR FNR 
XGBoost 0.890 0.917 0.042 0.260 

SVM 0.850 0.836 0.042 0.385 
K-NN 0.860 0.858 0.063 0.298 

 

Table 4.16  Time taken to train each algorithm in the third experiment (XGBoost and SVM) and for K-NN to store the training 
instances 

Algorithm Time taken 

XGBoost 2 hours, 10 minutes, and 41 seconds 

SVM 1 hours, 28 minutes, and 26 seconds 

K-NN 1 minute and 14 seconds 

 

first and second experiments: 

XGBoost is the best algorithm. Additionally, the combination of highly correlated features and 

the elimination of features that were deemed unimportant improved XGBoost false negative 

rate to its lowest value yet, 26 %. 
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4.4. Initial exploration with all features and a small dataset 

In this experiment composed of two scenarios, six new features were introduced to the dataset: 

operation codes, resource strings, smali strings, API packages, system commands and intents. 

Additionally, several feature normalization techniques will be employed to investigate how it 

will impact the results. Lastly, the ill be reintroduced to the feature space given 

that using feature normalization will compress its large value range, which was the cause of 

 In the first scenario, all features will be used 

and in the second scenario feature aggregation and elimination will be applied. The first 

scenario will use 168 features, and only 3.18 % of all the data (1713 samples with a ratio of 70 

% goodware to 30 % malware). The second scenario will use 139 features, and only 3.18 % of 

all the data (1713 samples with a ratio of 70 % goodware to 30 % malware). 

Data Understanding 

The new features were provided by Aptoide and were extracted using a mixture of AndroGuard 

[37] as the base tool with additional logic by AndroPyTool [82] [84]. Androguard is a tool that 

employs Android file manipulation such as disassembling DEX/ODEX bytecodes, decompiling 

DEX/ODEX files, etc [37]. AndroPyTool is a tool designed to employ static and dynamic 

feature extraction, integrating various current analysis tools such as DroidBox, FlowDroid, 

AndroGuard, Strace, VirusTotal and AVClass [82] [84]. 

Operation codes represent the number of Dalvik bytecode operation codes from [85] in 

each application. Dalvik is the discontinued runtime that Android used to execute Android 

applications, replaced by Android Runtime (ART) [86]. This feature has a possible range of 

values of . 

Resource strings represent the number of string resources in each application. Resource 

strings are XML text resources that can be optionally stylized and formatted [87]. This feature 

has a possible range of values of . 

Smali strings represent the number of unique smali strings. Smali code originates from the 

assembler/disassembler tool named baksmali, which transforms Dalvik bytecode into a more 

readable syntax [48]. This feature has a possible range of values of . 

API packages represent the number of unique Java packages that are called in an 

application. This feature has a possible range of values of . 

System commands represent the number of Unix system commands found within the smali 

code of an application. This feature has a possible range of values of . 
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Intents are messaging objects that describe an action to be performed in a distinct 

application component or application altogether [88] [89]. This feature has a possible range of 

values of values of . 

The dataset contained Smali strings

 , it was found that these values 

belong to 144 samples, meaning that these values are not spread randomly. This could be due 

to an error during the feature extraction process (e.g. due to code obfuscation). 

Data Preparation 

In this phase, the new features mentioned in the data understanding phase were introduced to 

the dataset by inserting their respective columns. 

Additionally, the 144 samples that had 

are goodware applications. Therefore, these values were 

replaced with the value 0. If these samples were a mixture of goodware and malware or solely 

malware, it could indicate that there could exist malware families that are characterized by 

having these values in these specific features and it would be necessary to adopt a different 

strategy. 

Modelling 

In comparison to the previous experiments, additional steps were introduced to the modelling 

approach in this experiment. Before training the algorithms, given that the range of values are 

not uniform across the feature space, four different feature normalization techniques are going 

to be employed: Z-Score, Min-Max, Quantiles Information and Unit norm. They are going to 

be trained without using feature normalization techniques as well in order to function as a 

control group to compare their impact on algorithm performance. 

Additionally, each algorithm will be trained five times per feature normalization technique 

to obtain more confidence about the results, and 10-fold cross-validation will use a random seed 

in K-NN and a fixed seed in XGBoost and SVM. This way, for a given algorithm, their results 

will be comparable per feature normalization technique but also between different algorithms 

and prevent K-NN from outputting the same results each run by randomizing the partitioning 

of the testing sets. 

The hyper-parameters per algorithm per feature normalization technique for each run can 

be found in Appendixes B-G. These tables are in a backslash separated format, meaning that 

for each normalization technique, the hyper-parameter values of each model are separated by 

backslashes, where the first value of a given hyper-parameter corresponds to the first run, the 
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second value to the second run, etc, up to the fifth run (e.g. 1.0/1.1/1.2/1.3/1.4/1.5). If there is 

only one value in a given table cell, it means that hyper-parameter was equal on all five runs. 

Evaluation 

Observing Table 4.17, without employing feature elimination and aggregation, XGBoost 

achieves an overall better performance than both SVM and K-NN regarding F1-score and AUC 

ROC. Additionally, it achieved the best FPR using every feature normalization technique except 

Quantiles Information, where SVM achieved a value that is 0.006 lower. Regarding FNR, 

XGBoost always performs better than SVM, although it never achieves better results than K-

NN. This is not alarming, given than XGBoost outperforms K-NN in the rest of the metrics 

regardless of the feature normalization technique that is used. Taking every metric into account, 

the version of XGBoost that achieved the best performance was using Quantiles Information 

normalization with an F1-score of 0.908, an accuracy of 0.912, a FPR of 0.020, a FNR of 0.244, 

and an AUC ROC of 0.918, outperforming the remaining XGBoost models in every metric 

except AUC ROC. Similarly to XGBoost

overall performance using Quantiles Information as well, with a F1-Score of 0.890, an accuracy 

of 0.896, a FPR of 0.014, a FNR of 0.310, and an AUC of 0.897. This model is an improvement 

in every metric in relation to the first and second experiments. In addition, there does not exist 

a clear best performing K-NN model. However, it yielded the lowest results when the features 

were not normalized as well as when using Min-Max normalization. 
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Table 4.17  Algorithm performance per feature normalization technique of the fourth experiment without feature elimination 
and aggregation 

Algorithm F1-score AUC ROC FPR FNR 
Without Normalization 

XGBoost 0.904 0.919 0.025 0.246 
SVM 0.588 0.583 0 0.973 
K-NN 0.832 0.825 0.105 0.308 

With Z-score Normalization 
XGBoost 0.906 0.919 0.023 0.248 

SVM 0.890 0.891 0.028 0.283 
K-NN 0.870 0.897 0.086 0.240 

With Min-Max Normalization 
XGBoost 0.902 0.918 0.023 0.250 

SVM 0.870 0.877 0.042 0.327 
K-NN 0.852 0.897 0.106 0.244 

With Quantiles Information Normalization 
XGBoost 0.908 0.918 0.020 0.244 

SVM 0.890 0.897 0.014 0.310 
K-NN 0.866 0.909 0.089 0.237 

With Unit Norm Normalization 
XGBoost 0.892 0.907 0.024 0.287 

SVM 0.870 0.869 0.038 0.329 
K-NN 0.870 0.887 0.077 0.248 

 

Observing Table 4.18, feature aggregation and elimination achieved mixed results. For each 

algorithm, both F1-Scores and AUC ROC values either decreased or increased so marginally, 

that the deciding factor between which algorithm to choose is a matter of which metrics between 

FNR, FPR and training time are more important to who is going to implement it. However, it 

should be noted that feature aggregation and elimination increased AUC ROC values of every 

K-NN model. 
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Table 4.18  Algorithm performance per feature normalization technique of the fourth experiment after feature elimination 
and aggregation 

Algorithm F1-score AUC ROC FPR FNR 
Without Normalization 

XGBoost 0.904 0.918 0.026 0.248 
SVM 0.618 0.583 0 0.933 
K-NN 0.834 0.826 0.095 0.313 

With Z-score Normalization 
XGBoost 0.904 0.918 0.024 0.244 

SVM 0.886 0.890 0.027 0.294 
K-NN 0.868 0.898 0.089 0.238 

With Min-Max Normalization 
XGBoost 0.908 0.917 0.023 0.240 

SVM 0.870 0.877 0.040 0.327 
K-NN 0.860 0.902 0.098 0.231 

With Quantiles Information Normalization 
XGBoost 0.900 0.917 0.021 0.264 

SVM 0.890 0.896 0.013 0.310 
K-NN 0.872 0.915 0.075 0.244 

With Unit Norm Normalization 
XGBoost 0.890 0.911 0.028 0.283 

SVM 0.868 0.867 0.039 0.329 
K-NN 0.866 0.888 0.083 0.244 

 

Observing Table 4.19, XGBoost best performing version took the least time to train, 

namely two hours, 14 minutes, and 56 seconds. Given that SVM gives abnormal results without 

the use of feature normalization, t considered. With this in 

mind, the only model to achieve faster training times than in the previous experiment was when 

using Unit Norm normalization, taking one hour, 22 minutes and 41 seconds to train. K-NN 

stored the training samples slower when using feature normalization and faster without 

normalization in comparison to the previous experiment. 
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Table 4.19  Average time taken to train each algorithm (XGBoost and SVM) and for K-NN to store the training instances 
across five 750 iteration-grid search runs using 10-fold cross-validation per feature normalization technique without feature 
elimination and aggregation 

XGBoost SVM K-NN 

Without Normalization 

2 hours, 15 minutes, 15 seconds 
2 hours, 9 minutes, and 49 

seconds 
50 seconds 

With Z-score Normalization 

2 hours 29 minutes and 20 

seconds 
1 hour 39 minutes 11 seconds 

4 minutes and 43 

seconds 

With Min-Max Normalization 

2 hours, 21 minutes, and 25 

seconds 

1 hour, 45 minutes, and 39 

seconds 

5 minutes and 14 

seconds 

With Quantiles Information Normalization 

2 hours, 14 minutes, and 56 

seconds 

1 hour, 48 minutes, and 25 

seconds 

4 minutes and 16 

seconds 

With Unit-Norm Normalization 

2 hours, 36 minutes, and 13 

seconds 

1 hour, 22 minutes, and 41 

seconds 

5 minutes and 18 

seconds 

 

Observing Table 4.20, employing feature elimination and aggregation reduces training 

times across every algorithm, just as it occurred from the second experiment to the third. 

XGBoost took the least time to train when using Z-Score normalization, namely one hour and 

57 minutes. SVM achieved its fastest training time of one hour, two minutes and 36 seconds 

when using Min-Max normalization. Lastly, K-NN achieves its fastest training instance storing 

time of 51 seconds when feature normalization techniques are not employed, being 1 second 

slower than without feature elimination and aggregation. 
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Table 4.20  Average time taken to train each algorithm (XGBoost and SVM) and for K-NN to store the training instances 
across five 750 iteration-grid search runs using 10-fold cross-validation per feature normalization technique with feature 
elimination and aggregation 

XGBoost SVM K-NN 

Without Normalization 

2 hours, 5 minutes, and 1 second 1 hour, 53 minutes and 33 seconds 51 seconds 

With Z-score Normalization 

1 hour and 57 minutes 
1 hour, 13 minutes, and 49 

seconds 

3 minutes and 28 

seconds 

With Min-Max Normalization 

1 hour, 59 minutes, and 42 

seconds 
1 hour, 2 minutes, and 36 seconds 

3 minutes and 58 

seconds 

With Quantiles Information Normalization 

2 hours and 37 seconds 1 hour, 16 minutes and 10 seconds 3 minutes and 4 seconds 

With Unit-Norm Normalization 

2 hours, 5 minutes, and 19 

seconds 
1 hour, 4 minutes, and 6 seconds 

3 minutes and 35 

seconds 

 

In summary, the addition of new features and the usage of feature normalization techniques 

improved the overall performance of every algorithm in comparison to the third experiment. 

However, when all metrics are considered, XGBoost proves to be the best performing algorithm 

when using Quantiles Information normalization. 

In addition, aggregating highly correlated features and eliminating non-important features 

did not produce significant changes in order to conclude whether it improves or lowers the 

overall performance of the trained algorithms. Therefore, more experiments with an increasing 

number of eliminated and aggregated features would have to be conducted to determine whether 

it is beneficial or detrimental to the performance of the algorithms, or if there is an ideal set of 

features that boost their performance. 
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5. Conclusions and future work 

In this thesis, several machine learning algorithms were trained to measure the effectiveness of 

using machine learning in Android malware detection with the goal of countering the current 

state of rampant malware proliferation. To explore this matter, three machine learning 

algorithms, namely XGBoost, SVM and K-NN were trained using Android permissions, 

application size, activities, services, receivers, intents, operation codes, resource strings, smali 

strings, API packages and system commands as features across four experiments using the 

CRISP-DM methodology. 

In the first experiment, using permissions and the number of activities, receivers, and 

services, XGBoost proved to be the best performing algorithm. Additionally, it was discovered 

that SVM yielded abnormal results therefore its performance could not be assessed. 

 test if the removal of the Size  feature would 

correct the problem that led to abnormal results. This change solved  

improved K- e; however, XGBoost is still the best performing algorithm 

across every metric. Regarding training times, XGBoost was slower than the first experiment 

and SVM was faster. K-NN was slower at storing the training instances. 

In the third experiment, several features were eliminated and aggregated to measure the 

impact of reducing the feature space on algorithm performance as well as the possible gains in 

training-time of using less features. XGBoost remains the best performing algorithm, although 

its FPR increased after feature aggregation and elimination. SVM and KNN showed marginal 

improvements over the second experiment. In comparison to the second experiment, XGBoost 

and SVM achieved faster training times and K-NN achieved faster training instance storage 

times. 

The fourth and final experiment was characterized by the usage of feature normalization 

techniques, the reintroduction of a normalized version of the Size  feature and the introduction 

of six new features, which motivated the employment of two tests: a) using feature 

normalization techniques, and b) using both feature normalization techniques and feature 

aggregation and elimination. In the first test, XGBoost showed an improvement in F1-score, 

AUC ROC and FNR in comparison to the first and second experiments; however, it has a 0.003 

higher FPR than the model of the second experiment. SVM also improved in every metric in 

comparison to its first and second model counterparts. On the other hand, none of the K-NN 

models performs clearly better than the ones in the first and second experiments. The second 
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test achieved mixed results; therefore, it is not clear which algorithm performed the best. 

However, every K-NN model showed an improvement in their AUC ROC values. 

In the first test, all XGBoost models achieved slower training times than the third 

experiment. SVM models also achieved slower training times except when using Unit Norm 

normalization. K-NN training instance storage times were slower except when normalization 

techniques were not used. 

In the second test, all XGBoost and SVM model training times improved in comparison to 

the first test. K-NN training instance storage times improved except when feature normalization 

was employed. 

In summary, the application of machine learning using static analysis-extracted features in 

the detection of Android malware proved to be promising by providing an automatic method 

that could be used in the protection of application stores in a real-word scenario. However, the 

fact that false negative rates never lowered past 23.1 % is a big concern, given that if this method 

was being applied in an application store, more than one fifth of applications would be classified 

as goodware when in reality they are malware, which is not acceptable. This might be due to 

the fact that the dataset has a small sample size of over 1700 samples after under-sampling 

coupled with a goodware to malware ratio of 70/30. If the dataset was larger, even with this 

ratio, the number of malware would be higher which would make it easier for the model to 

distinguish between malware and goodware given that it would have more information, leading 

to better classification decisions. 

The fact that the models were trained using a realistic dataset provided by a reputable 

Android application store also give these results a higher degree of confidence, even though 

they achieved slightly lower performances than the best static-analysis-based malware 

detection methods present in the reviewed literature. 

This thesis also originated a paper providing an overview of machine learning-based 

Android malware detection methods, which was presented in the 7th International Symposium 

on Digital Forensics and Security (ISDFS) in June 2019 and was published on IEEE Xplore in 

July 2019 [12]. 

Possible routes for future work include increasing the number of features to be eliminated and 

aggregated by increasing the permission requested and correlation thresholds chosen in this 

thesis (0.009 % and 85 % respectively), training the algorithms with different malware to 

goodware ratios to investigate its impact on their performance, exploring new features to 

include in the dataset, using a dataset with a larger sample size in order to increase the size of 

the resulting dataset after under-sampling if the goodware to malware ratio of the original 
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dataset follows the same trend as the one used in this thesis (99/1), and dividing numerical 

features into sets of boolean features (e.g. discrete boolean 

features, e.g. ). 
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Appendixes 

Appendix A 

Appendix A shows the smaller version of the heatmap mentioned in Chapter 3.2, which only 

contains the pair-wise correlation of the permissions that achieved a value higher than 0.80. 

These values range from 0 to 1, where the bluer the colour of a rectangle is, the lower the 

correlation between a given pair of permissions is. In the same way, as the correlation increases 

this colour changes from blue to red and the redder it is the higher the correlation. The diagonal 

of the heatmap has a correlation of 1 (corresponding to the brightest red possible) given that it 

is the self-correlation of a given permission. 

 

Heatmap of the permissions that achieved a pair-wise correlation higher than 0.80 
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Appendix B 

Appendix B shows the eliminated features (permissions) in third experiment and second test of 

the fourth experiment and the respective values of the three conditions that had to be met for a 

permission to be eliminated: having a XGBoost importance value in the second experiment 0 

or NaN, the percentage of samples (applications) that requested such permission and not being 

classified by Android as a dangerous permission. 

 

Eliminated features (permissions) in the third experiment and second test of the fourth 

experiment and their respective values of the conditions to be met for elimination 

Permission 
XGBoost Feature 

Importance 
Requested 

Percentage (%) 
Dangerous 
Permission 

BIND_AUTOFILL_SERVICE NaN 0 No 
BIND_CALL_REDIRECTION_
SERVICE 

NaN 0 No 

BIND_CARRIER_MESSAGING
_CLIENT_SERVICE 

NaN 0 No 

BIND_CHOOSER_TARGET_S
ERVICE 

NaN 0.005 No 

BIND_CONDITION_PROVIDE
R_SERVICE 

NaN 0.002 No 

BIND_DREAM_SERVICE NaN 0.004 No 
BIND_MIDI_DEVICE_SERVIC
E 

NaN 0.004 No 

BIND_PRINT_SERVICE NaN 0.007 No 
BIND_SCREENING_SERVICE NaN 0.009 No 
BIND_TELECOM_CONNECTI
ON_SERVICE 

NaN 0.007 No 

BIND_TEXT_SERVICE NaN 0.002 No 
BIND_TV_INPUT NaN 0.002 No 
BIND_VISUAL_VOICEMAIL_
SERVICE 

NaN 0.005 No 

BIND_VOICE_INTERACTION NaN 0.004 No 
BIND_VPN_SERVICE NaN 0.002 No 
BIND_VR_LISTENER_SERVIC
E 

NaN 0.002 No 

CALL_COMPANION_APP NaN 0 No 
FACTORY_TEST NaN 0.004 No 
READ_VOICEMAIL NaN 0 No 
REQUEST_PASSWORD_COM
PLEXITY 

NaN 0.002 No 

SET_ALWAYS_FINISH NaN 0.004 No 
SMS_FINANCIAL_TRANSAC
TIONS 

NaN 0 No 
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START_VIEW_PERMISSION_
USAGE 

NaN 0 No 

WRITE_GSERVICES NaN 0.005 No 
WRITE_VOICEMAIL NaN 0 No 
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Appendix C 

Given that five models were trained per normalization technique in the fourth experiment, 

Appendixes C-H are in a backslash separated format, meaning that for each normalization 

technique, the hyper-parameter values of each model are separated by backslashes, where the 

first value of a given hyper-parameter corresponds to the first run, the second value to the 

second run, etc, up to the fifth run (e.g. 1.0/1.1/1.2/1.3/1.4/1.5). If there is only one value in a 

given table cell, it means that hyper-parameter was equal on all models. 

 

XGBoost hyper-parameter values of the first test of the fourth experiment for each feature 

normalization technique 

      Normalization 
Hyper- 
parameter 

Without 

Normalization 
Z-score Min-Max 

Quantiles 

Information 
Unit Norm 

subsample 1.0 1.0 1.0 1.0 
0.8/1.0 
/1.0/0.8 

/0.8 

n_estimators 
1000/750 
/1000/250 

/100 

500/250 
/500/750 

/1000 

1000/500 
/500/250 

/500 

1000/1000 
/100/100 

/500 

500/100 
/500/250 

/500 

min_child_weight 1 1 1 1 1 

max_depth 13/25/15/30 
/20 

17/20/17 
/10/15 

10/15/10 
/25/17 

15/30/30 
/15/13 

25/30/25 
/15/17 

learning_rate 
0.05/0.01 

/0.01 
/0.05/0.05 

0.01/0.1 
/0.1/0.01 

/0.1 

0.05/0.01 
/0.01/0.1 

/0.01 

0.01/0.1 
/0.05/0.05 

/0.01 

0.01/0.05 
/0.1/0.01 

/0.01 

gamma 1.7/0.3/1.3 
/0.3 

0.3/1/1/1 
/1.7 

1/0.7/0.1 
/0.7/0.5 

0.7/0.5/0.3 
/1.5/1 

1.7/2/1/0.1 
/1.3 

early_stopping_rou

nds=50 
70/70/20/70 

/20 
20/20/70 
/50/50 

70/30/70 
/20/50 

50/70/20/70 
/30 

50/50/20 
/30/70 

colsample_bytree 
0.6/0.3/0.6 

/0.3/0.8 

0.3/0.6 

/0.6/0.3 

/0.6 

0.6/0.3 

/0.3/0.3 

/0.3 

0.3/0.3/0.3 

/0.6/0.3 

1.0/0.6/1.0 

/0.8/0.6 
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Appendix D 

SVM hyper-parameter values of the first test of the fourth experiment for each feature 

normalization technique 

     Normalization 
Hyper- 
parameter 

Without 

Normalization 
Z-score Min-Max 

Quantiles 

Information 
Unit Norm 

kernel rbf rbf rbf rbf rbf 

gamma 0.01 

0.145 

/0.145 

/0.179 

/0.145 

/0.145 

0.179 

0.111/0.077 

/0.111/0.077 

/0.077 

0.280/0.212 

/0.246/0.280 

/0.212 

C 
1.3/0.4/0.1/0.2 

/0.2 

2.0/2.0 

/1.9/2.0 

/2.0 

2.0/1.8 

/2.0/1.8 

/2.0 

2.0/2.0/1.8 

/2.0/2.0 

1.9/1.8/1.4 

/1.9/2.0 
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Appendix E 

K-NN hyper-parameter values of the first test of the fourth experiment for each feature 

normalization technique 

       Normalization 
Hyper- 
parameter 

Without 

Normalization 
Z-score Min-Max 

Quantiles 

Information 
Unit Norm 

weights distance distance distance distance distance 

n_neighbors 9/6/10/6/7 7/8/8/7/7 6/5/5/7/11 6/10/5/7/7 8/8/9/6/6 

algorithm 

ball_tree/ 

ball_tree/ 

kd_tree/ 

ball_tree/ 

ball_tree/ 

ball_tree ball_tree ball_tree ball_tree 
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Appendix F 

XGBoost hyper-parameter values of the second test of the fourth experiment for each feature 

normalization technique 

         Normalization 
Hyper- 
parameter 

Without 

Normalization 
Z-score Min-Max 

Quantiles 

Information 
Unit Norm 

subsample 1.0 1.0 
1.0/1.0 
/0.8/1.0 

/1.0 
1.0 

0.8/0.8 
/0.8/0.8 

/1.0 

n_estimators 
750/250 

/500/1000 
/100 

1000/500 
/1000/500 

/500 

750/500 
/750/500 

/1000 

500/1000 
/750/250 

/250 

100/500 
/1000/750 

/500 

min_child_weight 1 1 1 1 1 

max_depth 25/17/15 
/13/17 

15/17/20 
/20/10 

15/30/15 
/15/30 

15/30/20 
/25/25 

13/17/20 
/17/13 

learning_rate 
0.01/0.1 
/0.1/0.01 

/0.05 

0.1/0.01 
/0.01/0.05 

/0.01 

0.01/0.01 
/0.01/0.01 

/0.3 

0.01/0.1 
/0.01/0.05 

/0.01 

0.05/0.05 
/0.01/0.01 

/0.1 

gamma 0.1/1.7/1.3 
/0.7/1.3 

1/0.7/1/1/1 
1/1/0.1/1 

/2 
0.5/1.5/0.3 

/1/1.3 
0.3/1/1/0.7 

/2 

early_stopping_roun

ds=50 
30/20/30 
/50/20 

50/20/20 
/30/30 

50/30/20 
/50/30 

50/20/30 
/70/50 

20/20/30 
/70/50 

colsample_bytree 0.6/0.6/0.6 
/0.3/0.3 

0.8/0.3 
/0.3/0.3 

/0.3 

0.3/0.3 
/0.6/0.3 

/0.8 

0.6/0.6 
/0.3/0.6 

/0.3 

1.0/1.0/1.0 
/1.0/0.8 
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Appendix G 

SVM hyper-parameter values of the second test of the fourth experiment for each feature 

normalization technique 

     Normalization 
Hyper- 
parameter 

Without 

Normalization 
Z-score Min-Max 

Quantiles 

Information 
Unit Norm 

kernel rbf rbf rbf rbf rbf 

gamma 0.01 

0.179 
/0.145 
/0.179 
/0.179 
/0.179 

0.179 
/0.179 
/0.212 
/0.179 
/0.179 

0.111/0.111 
/0.111/0.111 

/0.077 

0.246 
/0.314 
/0.314 
/0.314 
/0.314 

C 1.3/0.99/0.6 
/0.6/0.3 

2.0/2.0 
/1.8/2.0 

/1.8 

2.0/2.0/2.0 
/2.0/1.9 

2.0/2.0/2.0 
/1.8/2.0 

2.0 
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Appendix H 

K-NN hyper-parameter values of the second test of the fourth experiment for each feature 

normalization technique 

       Normalization 
Hyper- 
parameter 

Without 

Normalization 
Z-score Min-Max 

Quantiles 

Information 
Unit Norm 

weights distance distance distance distance distance 

n_neighbors 12/11/7/7/10 8/6/7/7/8 9/10/8/7/9 12/7/6/6/11 9/8/7/7/11 

algorithm 

ball_tree 
/kd_tree 
/ball_tree 
/ball_tree 
/kd_tree 

ball_tree ball_tree ball_tree ball_tree 

 


