

Enhancing textual explanations for Java methods
with variable role knowledge

Ricardo Cardoso da Silva

Master in Computer Engineering,

Supervisor:

Doctor André Leal Santos, Assistant Professor,
Iscte - Instituto Universitário de Lisboa

Co-Supervisor:

Doctor Ricardo Daniel Santos Faro Marques Ribeiro, Associate Professor,
Iscte - Instituto Universitário de Lisboa

October, 2020

Enhancing textual explanations for Java methods
with variable role knowledge

Ricardo Cardoso da Silva

Master in Computer Engineering,

Supervisor:

Doctor André Leal Santos, Assistant Professor,
Iscte - Instituto Universitário de Lisboa

Co-Supervisor:

Doctor Ricardo Daniel Santos Faro Marques Ribeiro, Associate Professor,
Iscte - Instituto Universitário de Lisboa

October, 2020

i

First, i would like to thank my family as they have been very supportive during this last year. The

experiences they shared with me proved to be most valuable in overcoming difficulties. A special

thanks to both my parents, they watched over me throughout my whole life and taught me how to

have a good head above my shoulders, and for that, I am deeply grateful.

I would like to thank all my friends, the time spent with them helped me relax and not get anxious

whenever a new obstacle would appear.

I would like to thank each person who took the evaluation questionnaire and set aside a considerable

amount of time to give detailed feedback.

Lastly, i would like to give a special thank you to both my supervisors, André Santos and Ricardo Ribeiro.

Throughout this last year, they guided me to not stray onto a bad path, gave me advice on how to

improve this project, and properly criticized my undoings even during the current outbreak. Without

their insight, this project would probably never come to fruition.

Acknowledgments

iii

Durante as suas fases iniciais de aprendizagem de programação, os estudantes naturalmente vão

deparar-se com vários obstáculos no seu percurso para compreender os vários conceitos de

programação. Apesar do professor ser responsável por ajudar nestas situações, alunos ainda têm

dificuldades para entender os conceitos básicos de programação e uma baixa compreensão destes

pode arriscar futuros projetos dos alunos. Para melhorar esta experiência de aprendizagem, esta

dissertação apresenta um protótipo que pode traduzir métodos básicos numa explicação textual, que

também é enriquecido com o conhecimento de papéis de variáveis. Primeiro, com base numa

experiência anterior, foram feitos dois estudos, o primeiro analisa o metadiscurso de como código é

explicado e o segundo centra-se em entender como cada papel de variável influencia explicações de

professores, estes servem de base para a estrutura da implementação. Para a avaliação, fizemos um

questionário que contém explicações para diferentes métodos básicos e enviámo-lo a vários

professores experientes para avaliar, de um a cinco em funcionalidade, completude e legibilidade. Os

resultados mostram que metade das traduções recebem bons resultados, com maior parte dos votos

sendo quatros ou cincos. No entanto, em métodos específicos, os resultados mostram que teve um

baixo desempenho e sendo assim, o protótipo foi adaptado para ter um melhor desempenho nessas

situações. Os resultados mostram que o conhecimento de papéis variáveis pode ser utilizado para

melhorar componentes textuais e essas podem ser úteis para melhorar a experiência de aprendizagem

inicial, pelo menos na perspetiva de um professor.

Palavras-Chave: Pedagogia; Programação; Interpretação.

Resumo

v

During their early stages of learning programming, students will naturally face various obstacles in their

journey to understand the various programming concepts. Although the teacher is responsible for

helping with these events, students still have difficulty understanding the basic concepts of

programming and a low understanding of these can jeopardize students' future projects. To improve

this learning experience, this dissertation presents a prototype that can translate basic methods into

a textual explanation, which is also enriched with the knowledge of variable roles. First, based on a

previous experience, two studies were made, the first analyzes the metadiscourse of how code is

explained and the second focuses on how each variable role influences an explanation, these serve as

the basis for the implementation structure. For the evaluation, we made a questionnaire that contains

translations for different basic methods and sent it to several experienced teachers to evaluate, from

one to five in functionality, completeness, and readability. The results show that half of the translations

received good results, with most votes being four or five. However, in specific methods, the results

show that it had low performance and so, the prototype was adapted to perform better in these

situations. The results show that knowledge of variable roles can be used to improve textual

components, and these can be useful to improve the initial learning experience, at least from a

teacher's perspective.

Keywords: Pedagogy; Programming; Interpretation.

Abstract

vii

Acknowledgments i

Resumo iii

Abstract v

Index vii

List of tables ix

List of figures xi

Acronyms and abbreviations xiii

1. Introduction 1

1.1. Motivations and background 1

1.2. Research questions 1

1.3. Objective and approach 2

1.4. Document structure 2

2. Related Work 3

2.1. Difficulties for beginners 3

2.2. Variable Roles 4

2.3. Pedagogical Tools 5

2.4. Natural language 8

3. Analytical Studies 9

3.1. Metadiscourse study 9

3.1.1. Preparation 9

3.1.2. Tags analysis 11

3.1.3. Bigram study analysis 14

3.2. Variable roles study 17

3.2.1. Array Index Iterator 17

3.2.2. Gatherer 18

3.2.3. Most Wanted Holder 19

3.2.4. One Way Flag 20

3.2.5. Temporary 21

3.2.6. Most Recent Holder 21

3.2.7. Fixed Value 22

4. Prototype Implementation 23

4.1. Paddle 24

Index

4.2. Variable role identification 24

4.2.1. Gatherer 26

4.2.2. Fixed Value 26

4.2.3. Stepper 26

4.2.4. Array Index Iterator 27

4.2.5. Most Wanted holder 27

4.2.6. One Way Flag 28

4.3. Additional Analysis 28

4.3.1. Function Classifier 28

4.3.2. Recursion 29

4.4. Prototype Development 29

4.4.1. Code Components 30

4.4.2. FVParameterComponent 31

4.4.3. Method Translation 32

4.4.3.1. Bullet Points 32

4.4.3.2. Expression Translator 33

4.4.3.3. Method Translator 35

4.4.3.4. Loop Translator 36

4.4.3.5. Selection Translator 38

4.4.3.6. Assignment Translator 38

4.4.3.7. Return Translator 39

4.4.4. Text Smoothing 41

5. Prototype Evaluation 43

5.1. Preparation 43

5.2. Questionnaire Structure 43

5.3. Results 45

5.4. Prototype modifications 47

6. Conclusions 51

6.1. Main conclusions 51

6.2. Future work 52

Bibliography 53

Appendix A 56

Appendix B 65

ix

Table 2.1 - Descriptions of variable role. 4

Table 3.1 - Taxonomy adapted from [7] and each attributed color for the study. 11

Table 3.2 - Metadiscourse patterns identified from each explanation by each instructor. 12

Table 3.3 - Metadiscourse patterns instances per location. 12

Table 3.4 - Occurrences of each bigram sorted per location. 16

Table 3.5 - Array Index Iterator patterns and their occurrences. 18

Table 3.6 - Gatherer patterns and their occurrences. 19

Table 3.7 - Most Wanted Holder patterns and their occurrences. 19

Table 3.8 - One Way Flag patterns and their occurrences. 20

Table 3.9 - Temporary patterns and their occurrences. 21

Table 3.10 - Most Recent Holder patterns and their occurrences. 22

Table 4.1 - Relevant data structures of Paddle. 25

Table 4.2 - Roles related to each component. 31

Table 4.3 - Example of a translation for each element. 33

Table 4.4 - An example of each implemented variation for the first statement. 37

Table 4.5 - Examples of short explanations about each role. 39

Table 4.6 - Examples of assignment translations for each variation. 40

Table 4.7 - Examples of return translations for each variation. 41

Table 5.1 - Each method provided in the questionnaire and the concept of each portrays. 44

Table 5.2 - Results gathered from the first questionnaire. 46

Table 5.3 - All changes made according to the results of the evaluation. 49

List of tables

xi

Figure 2.1 - BlueJ's main view. 5

Figure 2.2 - Students main view in ProPat. 6

Figure 2.3 - Illustration of a method max in PandionJ. 7

Figure 4.1 - Source code of the method being translated (left side of the view). 23

Figure 4.2 - Generated translation for the summation method (right side of the view). 23

Figure 4.3 - Example of Javardise's link function. 25

Figure 4.4 - Diagram about each step to generate an explanation . 30

Figure 4.5 - Example of bullet points before each line. 32

Figure 5.1 - Example and explanation showcase in questionnaire. 44

List of figures

xiii

AII – Array Index Iterator

API – Application Programming Interface

CS1– Computer Science 1 (first university-level course where programming is taught).

IDE - Integrated Development Environment

MWH – Most Wanted Holder

OWF – One Way Flag

SWT – Standard Widget Toolkit

SWUM – Software Word Usage Model

TED – Technology Entertainment and Design

UML – Unified Modeling Language

Acronyms and abbreviations

1

1.1. Motivations and background

The early stages of learning programming are essential for students, given that in this timeframe

students build their own comprehension about the inner workings of programming primitives and

algorithms. Without proper guidance and attention, students may develop misconceptions [1] that not

only add difficulties to their learning process but also may affect their future work negatively [2].

There are several tools to aid programmers in their struggle, but many of these tools are not

developed with Computer Science 1 (CS1) courses in mind, since they often contain information that

confuse and may misdirect beginners to undesirable paths. There have been pedagogical tools whose

objective is to improve this learning experience, such as pedagogical debuggers, which try to improve

their step-by-step analysis by adding visuals [3], pedagogic IDEs that focus on essential information

and provide only the necessary elements for the learning process [4], or pedagogic plugins which use

different features to make programming more intuitive [5], [6].

Nowadays, several CS1 courses have different teaching methods, and often teachers have to deal

with large groups of students (it is not uncommon to have course editions with more than 100

students). This makes it hard for the instructor to pay attention to every issue, resulting in poor

guidance and consequently develops misconceptions in the knowledge of students [6]. To properly

teach many students at the same time, regularly, examples of code are used to convey every essential

aspect of the initial programming experience. By teaching one example at a time, teachers can restrict

and minimize possible misconceptions.

PandionJ [7] is a pedagogical debugger that builds on the concept of variable roles to provide

explanations based on visual portrayals of the algorithms to achieve the objective of increasing

student's misunderstanding of program dynamics. Continuing to explore this approach, we believe

that it is also worth to pursue and research how impactful would be if explanations are delivered using

natural language while enhancing them with the concept of variable roles.

1.2. Research questions

1. How are variables with different roles explained by instructors using natural language?

2. How helpful is the knowledge of variable roles on a static explanation using natural language?

Introduction

2

3. Is it possible to automatically generate meaningful explanations of small functions in natural

language?

1.3. Objective and approach

Our main objective is to develop a prototype of a pedagogic tool capable of analyzing examples of code

used to teach essentials in CS1 courses and generate an explanation in natural language describing

introductory Java methods, in a way that offers automatic guidance to novices to put them on the right

path or relieve them of misconceptions. Additionally, we want to explore whether or not variable role

knowledge can be helpful in strengthening the textual explanations, therefore we are going to identify

each variable’s role and see how it can enhance each explanation.

To provide a static analysis of a method using variable roles, first, it is necessary to acquire detailed

information about method bodies, which requires static analysis. In order to do this, we are going to

use a recent framework by the name of Paddle that is under development.

Another objective of this dissertation is to discern how these variable roles are explained using

natural language. In order to achieve this, a previous pedagogical study, where programming

instructors are asked to explain Java methods through words and illustrations, were analyzed to

determine the most notable patterns when explaining each variable role. These served as a basis to

design the content of the automatic explanations.

1.4. Document structure

This chapter supplies an overview of what is going to be discussed across this dissertation. The

following chapters will provide:

• Chapter 2 focuses on reporting relevant previous research related to this dissertation.

• Chapter 3 presents an analysis of previous research, focusing on discursive patterns of both

metadiscourse and variable roles

• Chapter 4 encapsulates all choices of implementation, from how each role was identified

to how the translation is conceived.

• Chapter 5 presents our evaluation method, discusses results, and what modifications were

made according to those.

• Chapter 6 discusses our conclusions about the research questions and future

developments.

3

2.1. Difficulties for beginners

In 2005, a study was done with people with programming experience [8]: 559 students and 34

teachers. They had to answer a questionnaire based on background, course contents, and aspects of

learning. The objective of this study was to evaluate a pattern of difficulties among the testers. Results

show some difficulties when dealing with recursion, pointers, or references, mostly by the students.

Lahtinen et al. stated that “novice programmers do not seem to be the understanding of basic concepts

but rather learning to apply them”, which may indicate an underlying problem with their respective

CS1 courses program or learning methods.

Qian et al. [1] using many perspectives from several references, compiled a report about student

difficulties. According to the authors, novices harbor misconceptions which may affect their future

developments. Mistakes that novices make vary from simple syntax mistakes to lack of strategy when

planning the structure of a program. To properly review the misconceptions, every mistake was

categorized under the lack of one of three types of knowledge, these being: syntactic knowledge,

conceptual knowledge, and strategic knowledge.

Syntactic Knowledge refers to the grammatical rules of the programming language. Normal syntax

mistakes [9] refer to missing semi-colons or using variables without declaring them, resulting in syntax

errors. Furthermore, studies also show that some syntax errors require more time to solve than others

[10].

Conceptual Knowledge is the understanding of an individual about the code’s inner working: what

happens in each assignment, where each value is stored, the consequences of conditionals, etc.

Although syntax errors are far more common, conceptual errors take more time to fix, as they might

be the consequence of misconceptions held by the individual. An experiment by Simon [11] showed

that students still struggle with assignments or a sequence of them even after some programming

courses.

Strategic Knowledge refers to the knowledge required to plan or strategize how to develop

efficiently. Several actions in programming require this knowledge. From developing a single method

to a full program, debugging productively, or predicting and avoiding bugs. Qian et al. [1], [4] said that

“only knowing syntax and semantics does not necessarily produce a good programmer”. The lack of

proper strategy and planning to program may lead to many problems, among some being, bugs,

rewriting, or more high-level problems like deadlocks.

Related Work

4

2.2. Variable Roles

Variable roles refer to an empirical study by Sajaniemi [12], by analyzing the roles of variables of 109

novice-level programs developed by experts they were able to introduce a list of roles which

encapsulates 99% of the roles of variables in novice programs. Table 2.1 displays a list and description

of these roles.

Table 2.1 - Descriptions of variables roles.

Roles Description

Fixed Value After being assigned a value, that value will never change

Follower Is assigned a previous value from another variable

Gatherer Is an accumulation of several individual values

Most Wanted
Holder

Holds the value that most respects a certain condition

Most Recent
Holder

Holds the latest encountered value while going through a succession of
values.

One Way Flag Is assigned a value and it does not change again after the second
assignment

Organizer An array storing elements to be reorganized

Stepper Goes through a predictable succession of values

Temporary Is assigned a value for a short time only

Under a pedagogical view, a study was made about a review where three different courses

undergo changes to improve their program [13]. Where previously they used Java, C, and Delphi as an

introductory language. They started to use Python while focusing on variable roles. Although there

was some struggle dealing with roles like Most Wanted Holder or Stepper, results for all three courses

were mostly positive. Even though the positive results might be from the language change. Teachers

have stated that they could more easily convey concepts by focusing on variables roles. Not only for

the teacher but the students as well, by holding the same concepts of variables roles, they better

understand the viewpoint of the instructor figure. Furthermore, an increase in motivation and desire

for learning was acknowledged, due to the success of students in completing assignments.

Another study [14], in an introductory Pascal course, separated students into groups and used

different the learning process of variable roles for each group to compare the results. The groups were

the traditional group, following the traditional course, the roles group, where the roles are taught, and

the animation group, which used roles in conjunction with the animator. Results show that knowledge

about variable roles allow for students to process information in a way of what is thought of as good

code comprehension.

To further research this concept, experimental tools started to be developed around variable

roles, such as the case of PlanAni [15], an animator used in a previously mentioned study [13]. And

5

more recently, a program by the name of PandionJ [7] was developed, a pedagogical debugger which

implements variable roles concept in a step-by-step analysis (further explained in Section 2.3).

2.3. Pedagogical Tools

Over the years, the difficulties and misconceptions of beginners in programming through various

studies were identified and acknowledged. To further research solutions to aid in introductory

struggles, several pedagogical tools were developed.

BlueJ is a pedagogical IDE with development centered around object-orientation [4]. According to

the authors, teachers find that teaching object-oriented is more difficult than procedural

programming. After analyzing limitations in other environments, it was noticed that most

environments are not object-oriented friendly or were too complex for beginner level. BlueJ was

developed to offer an object-orientation friendly design. Its main view uses Unified Modelling

Language (UML) to display relations between objects to better understand all interactions allowing

users to constantly focus on the structure of the program (as shown by Figure 2.1). Tasks like creating

an object are greatly simplified by making it accessible by a right-clicking a menu and displaying a

window to input basic object information such as parameters or name. By maintaining a simple and

objective visualization not only it allows for teachers to have an easier time explaining concepts, but

also for beginners to quickly adapt to the new environment. However, the authors also theorize a

dependency setback on their system. Students may grow overly dependent on the beginner-friendly

environment and struggle when changing to other IDEs.

Figure 2.1 – BlueJ’s main view.

6

Results with BlueJ [4] display that it was already adopted as introductory IDE by more than 800

universities. Opinions of students manifest that BlueJ is easier to use than other IDEs and its

environment was helpful. Furthermore, reports also show that feedback from teachers is mostly

positive. The conclusion by the authors is that although there are positives aspects in this project, more

research on new approaches still needs to happen to furtherly fine-tune the subject of learning object-

orientation programming.

Previous research shows that experienced programmers sometimes apply old solutions from their

past experiences to conceived solutions to their current problems. However, beginners do not have

the experience or knowledge to enact this type of problem-solving. ProPat [16] is an IDE for Eclipse

inspired by this idea and tries to teach usual problem-solving patterns in introductory courses. It offers

two different perspectives. The Teacher perspective, to allow the teachers to create exercises for the

students to solve and add new possible patterns to solve the problem. Furthermore, with additional

information inserted by the teachers, it allows to pinpoint some mistakes and provide an explanation.

The Student perspective displays many views that allows the students to select an exercise to solve

with no help or use one of the provided patterns to achieve the same objective. In case of difficulty,

one of the views displays a description, specifications, and already made tests for an exercise. Figure

2.2 shows a detailed view of the Student perspective. According to the authors, this system allows for

a student to intuitively associate a previous problem-solving pattern to a current problem.

Figure 2.2 - Students main view in ProPat.

7

PandionJ is a pedagogical debugger developed in recent years as an Eclipse extension [7]. It focus

on providing visual illustrations to students while debugging to facilitate the comprehension of code.

Furthermore, it also uses variable role knowledge to enhance the visual experience.

To be able of identifying variable roles, a first static analysis of the source code is executed. A set

of rules was created for each role. A variable would need to have all pre-defined conditions true to be

classified as a role. To determine these conditions, there were functions developed to get essential

method information, such as verifying if the variable is a parameter or if an assignment is inside a

repetition control structure. In our work, although the approach is similar, some changes were made.

A static analysis and pre-set of rules will still be done, but in this case, it is using the in-developing

framework, Paddle, to access information of source code more easily.

To achieve another of their objectives, they realized an exploratory study [17] with six

programming instructors. In which each of the instructors was filmed and asked to explain basic

methods covering essentials in introductory programming by freely writing and speaking and after that

to provide feedback. Using this study, they noted each pattern to depict each role and took note of

the most prominent. Results show some similarities in illustrations by different instructors. This study

is going to be the basis of our research, although in our case, it is more focused on the natural language

patterns instead of illustrations.

PandionJ follows a usual step-by-step debugging analysis but offers illustrations. Each illustration

varies depending by the variable role. Making it more intuitive for students who face struggles in

comprehending the source of the error. Figure 2.3 is an example of a depiction of a method to find the

highest value in an array, max being a Most Wanted Holder.

Figure 2.3 - Illustration of a method max in PandionJ.

8

2.4. Natural language

Nowadays, natural language keeps on being one of the most researched topics. As it is essentially our

main form of communication, it is still investigated on several ways to use this knowledge to facilitate

programming tasks.

One of the most common examples of natural language present in programming are comments,

when dealing with large scale projects these are essential to ensure everyone is on the same page. As

so, several ways of automatically generating comments were investigated such as Sridhara et al., who

proposed an approach of identifying the most relevant segments of a Java method and focus the

generation on those main points [18] which later was improved to do the same with parameters [19],

high-level actions in methods [20] and classes [21]. Another approach was proposed by Wong et al.

which consisted in analyzing already existing software repositories and generate comments based on

those results [22]. It was also researched on how the use of neural networks could achieve this same

objective as showed by Liang [23] and Hu et al. [24]. Similar to this project, Farinha attempted to

generate descriptions for Prolog programs [25] yielding some good results. Another project,

specifically for identifiers, was conceived to convert identifiers composed of 2 or more words into their

complete textual version without abbreviations [26].

However, natural language is not always the end result, recent research shows how pure text can

be the basis of beneficial generations to users. Deeptimahanti was able to, through NLP, build a system

that converts natural language requirements into UML diagrams making it easier to analyze them [27].

Mandal developed a model that can convert textual mathematical problems to its source code version

and discover the answer for said problem, although it had some flaws, they were able to achieve a high

percentage accuracy ratio in generating right answers [28].

9

Our objective is to be able to create an explanation for different types of introductory programming

functions/procedures. An important note is to understand which kind of text structure should be used,

what linguistic patterns are most used in each explanation.

This chapter contains two analytical studies. The first study focuses on analyzing metadiscourse

patterns to discover which are the most prominent. The second study, which is directly related to our

first and second research questions:

• How are variables with different roles explained by instructors using natural language?

• How helpful is the knowledge of variable roles on a static explanation using natural language?

The latter analyzed a bundle of diverse explanations, to investigate if there are linguistic patterns

directly connected to each variable role to further enhance our explanation.

3.1. Metadiscourse study

3.1.1. Preparation

To properly generate an explanation that can guide students through their obstacles, first we need to

figure out what would be an acceptable text structure. Different students are compatible with different

ways of explaining, whether they react better through a practical exposition of the method or a more

theoretical approach, it must be acknowledged that our objective is to try to appease the most of every

type of student. To achieve this, we researched what kind of text structure would be the most helpful

through an analysis of a previous study in which 6 programming teachers were asked to explain a set

of novice-level methods [17] and were recorded in the process. Each instructor was asked to verbally

explain methods and in doing so, they complemented each explanation with drawings to better convey

some concepts. The mentioned study’s objective was to see how each instructor would depict

concepts related to each variable role. Our approach will be more focused on the textual aspect, we

will be analyzing discourse patterns and try to apply any findings to generate a properly structured

explanation (all methods included in appendix B).

In order to unveil any patterns, we were inspired by a previous experiment [29]. To create

metaTED, a corpus of metadiscourse for spoken language, a set of TED talks was randomly chosen, and

by adapting a taxonomy from Ädel [30], they conducted a crowdsourcing study [31] to accurately

annotate each segment of each TED talk. In the same fashion, we are going to apply the same method

Analytical Studies

10

to previously mentioned videos and annotate and analyze any frequently used metadiscursive

patterns, and which of those will possibly enhance our future generated explanation.

The taxonomy used for the crowdsourcing experiment consisted of 16 categories listed in Table

3.1. These categories were all adjusted for the annotation of the TED talks and contrary to them, the

videos to be analyzed are not structured in any way. The teachers were only asked to explain each

method without any previous idea of what method and were not restricted in time or explanation

styles. Hence, as the teachers used free speech, discourse among all videos is varied and might contain

anomalies such as pauses, repetitions, or even mistakes. As such, there are some categories which we

did not consider due to the difference in circumstances between studies. In that manner, arguing (ARG)

and comment on linguistic form (COM) were not pondered during the annotation. ARG instances

happen when the speaker tries to engage with the audience, in this case, there is no audience to be

engaged with and COM, in this practical case, has a very low chance of happening, so both were

discarded, leaving us with 14 categories.

To accurately annotate each category, the audio from the videos needed to be converted to raw

text. So, to achieve this we used the Python Speech Recognition Package [32] and the Google Speech

Recognition API to convert audio to Portuguese text. However, as already expected, the automatic

conversion API was not enough to detect and convert all audio. There were instances in which the API

would completely fail to detect some words correctly and be unable to convert sections. For this

reason, in segments in which the API would fail, they would be properly mended by hand, while being

as faithful as possible to the original audio.

Our chosen annotation approach was rather simple. For each identified occurrence of a category,

either the color of the background of the sentence or the letter color was changed according to each

category. Table 3.1 shows which color is correlated to each category. For categories with no

occurrences, there is not an attributed color.

In the previously mentioned study, four of six instructors explained 7 different methods, with the

remaining two having explained 6 methods. After the conversion of audio to text, we gathered a total

of 40 different transcriptions. The transcriptions numbered a total of 16171 words, with the average

per transcription being 404,3 words. Among all explanations, 1117 words was the highest number used

in a single explanation and 142 was the minimum. Additionally, the highest difference of words

between explanations for the same method was 868 words.

11

Table 3.1 - Taxonomy adapted from [7] and each attributed color for the study.

3.1.2. Tags analysis

Table 3.2 displays if a category was identified at least once throughout all explanations. Each of these

occurrences was also distributed by instructor (labeled as “I” in Table 3.2), to also be able to identify if

any category is mostly used due to instructor preferences. Furthermore, we thought that it was also

necessary to have data on the location of all category’s usages. So, we sorted each occurrence per one

of three metrics: Beginning, Middle, and End (see Table 3.3). Beginning refers to the initial part of the

explanation, including the introduction and additional information explained before going through

each instruction. Middle usually means the explanation of each instruction until the instructors start

to finalize the explanation. Finally, End includes the final parts of the explanation such as the conclusion

and recapitulation of cycles and the like.

Closely observing both Tables 3.2 and 3.3, it seems that there are prominent categories among all

explanations. Observing CLAR and R&R instances, it appeared that the two seemed to express the

same idea, both applying when an instructor rephrased certain ideas for example when variables were

explained in many cases instructors would retry to convey the general purpose of it to dissipate any

possible doubts. Additionally, as the instructors were told to explain a method without any previous

knowledge, this resulted in various mistakes from the fast-thinking performed at that moment. Causing

several to rethink and retry to convey to further clarify each concept. As there are many similarities

Tags Description Annotation Color

ADD Adding to the topic with Asides N/A

ANT Anticipating response N/A

ARG Arguing N/A

CLAR Clarifying Gray

COM Comment on Linguistic Form/Meaning N/A

CONC Concluding Light Blue

DEF Definitions Yellow

DELIM Delimiting Topic Green

EMPH Emphasizing Light Gray

ENUM Enumerating Dark Blue

EXPL Exemplifying with Imagining Scenarios Brown

INTRO Introducing the topic Red

POST Postponing Topic N/A

RCAP Recapitulating Green

REF Refer to Previous Idea Blue

R&R Repairing with Reformulating Gray

12

Table 3.2 - Metadiscourse patterns identified from each explanation by each instructor. 4 explained
7 different methods. 2 explained 6 methods.

Table 3.3 - Metadiscourse patterns instances per location.

TAGS/Location Beginning Middle End Total

CLAR/R&R 27 58 9 84

EXPL 25 31 6 62

DELIM 46 0 0 46

INTRO 38 0 0 38

CONC 0 0 35 35

ENUM 15 6 0 21

REF 1 8 9 18

RCAP 1 9 6 16

EMPH 6 6 1 13

DEF 10 2 0 12

TAGS/Instructors I1 I2 I3 I4 I5 I6 Total

Clarifying & R&R (CLAR & R&R) 7 7 7 7 6 5 39/40

Example (EXPL) 7 5 7 7 6 6 38/40

Introduction (INTRO) 7 6 7 6 6 6 38/40

Delimitation (DELIM) 6 7 7 5 6 5 36/40

Conclusion (CONC) 7 5 7 5 5 6 35/40

Enumeration (ENUM) 7 1 1 4 0 2 15/40

Refer to Previous Idea (REF) 0 3 4 3 2 3 15/40

Recapitulation (RECAP) 2 0 4 2 2 3 13/40

Emphasizing (EMPH) 2 2 3 2 2 1 12/40

Definition (DEF) 1 1 2 2 1 2 9/40

13

between these categories, for a simpler analytical perspective, we annotated them under a new

category resulting from the conjunction of the previous two. Together these hold the most occurrences

of a category although their location usage usually varies a lot, their occurrences can be found

throughout any part of the method, especially in the middle section.

INTRO, CONC, and DELIM are the most consistent in terms of structure and location. INTRO, always

being at the beginning, most of the time comprises of a simple explanation of basic objectives or

features of a method. Features signifying a short description of what type of value and variable will be

returned and what kind of parameters does the method receive. Although only once, a teacher simply

started to go through the method development, without referring the objective, essentially skipping

the beginning. Furthermore, in special cases, namely, the Fibonacci method, nearly all teachers felt the

need to state that it is a recursive method, since this concept is one of the most probable of confuse

students. The features breakdown also was normally considered DELIM segments, basing on its original

definition in [30], “used to explicitly state how the topic is constrained”. Therefore, explaining the

boundaries of said method (topic), what type of variable is returned, and what will be used to achieve

the result such as parameters, is considered a constriction. For this reason, DELIM, are normally located

inside the INTRO or in the first segments of each explanation. CONC, as a category that conveys the

conclusion of each transcription, is always located on the bottom section. It is typically focused around

the proceeding steps leading to the returned variable. According to our analysis, it seems to vary

according to different conditions. In the sum example, various instructors opted to synthesize and

explain the reasoning for the returned variable value or in the case of the insertionSort, an overview

of the changes performed to the vector. In the contains example, as soon as the conditions for the

boolean variable to change to true were settled, they would skip to the end and conclude with the

returning of the variable. Although some instructors continued to perform a step by step analysis,

normally in examples correlated to iterations of vectors. In rare cases, one of the instructors concluded

an example with a real-life example, or in another singular case, there was not a conclusion, leading to

an abrupt ending.

As previously stated, the previously mentioned categories were structurally consistent, but the

other ones proved to not be. By going through with the analysis, these other categories although still

prominent in some cases, its occurrences were rather “random”, greatly differing among instructors

explaining styles. We found them more associated to certain components such as fors, whiles, ifs, and

so on, of each method, rather than the location from an introduction/conclusion perspective.

DEF is not widely used among all methods transcriptions, but that seems to correlate to its usage

situations. DEF was only identified in methods where instructors felt the need to further explain the

definition of a concept. Namely, methods sum, factorial, and Fibonacci. Since these required some sort

of previous mathematical knowledge or deal in harder concepts like matrices, a majority added a

14

simple definition of the said concept, for example, saying that a matrix is an array of arrays and

following up with pictures or recapping how the Fibonacci sequence or the factorial functioned. This

also applies in situations where the method in question was recursive. ENUM differs considerably from

instructor to instructor. Instances of ENUM account mostly for when an array is involved: certain

instructors, while displaying the positions to be iterated or the values of an array, do so with an

enumeration. As Table 3.2 shows, instructor 1 greatly uses ENUM while others do not have the urge

to do so. Meaning the usage of ENUM might not be essential for a student to understand arrays. Due

to the study’s context, EXPL is widely used by every instructor. Sometimes, to simply explain the

functioning of some methods, a simpler example is used, one shorter to explain but still containing the

core operations. As shown by Instructor 1 on the sum method. Another annotated usage is when real-

life examples are given. Despite very rare, these offered some knowledge about the applications of

said methods. For example, instructor 3 giving a playing cards example to showcase the insertion Sort

method.

Regarding EMPH, its number of occurrences appear to be similar between instructors. As seen

from the explanations, instructors do not seem to use it to convey the importance of the variable role.

But rather, they use it in “irregular” situations in which students might fall into a mistake. As is the case

of the sum method: sum contains, as a parameter, a non-square matrix, and most instructors look to

rapidly say it is not a normal matrix, so additional care will be needed while iterating it. The same

applies to the max method, to improve the efficiency of the iteration, the max variable is initialized

with the first value of the array. So, instructors stress the reason for the benefits of doing so. Less

prominent annotations account for when it is said if a variable is returned during its initialization.

Both RECAP and REF usages situations are deeply alike, both are utilized when referring to a

segment or idea already explained. RECAP seems to be mainly applied in cases where certain key

variables need to be closely monitored. Being the case with the contains method. In this example, the

returned variable revolves around its boolean value, so instructors strictly remember the listener of its

current value. In some other cases, it is used to remember stored values inside each array’s position.

REF is strictly used in situations related to repeated actions, by most instructors, as is redundant to

continue to explain the same actions in a loop. Instructors sometimes start to shorten each cycle

explanation, saying to repeat the same actions but not explaining them deeply as to not repeat

themselves.

3.1.3. Bigram study analysis

The previous study focused on analyzing each discursive tag individually and better understand which

patterns to use and where to use them. We decided to make an additional study which more

15

specifically examines structural relationships between tags. So, by identifying bigrams occurrences,

occurrences in which occur after other tags, we can further solidify our understanding of each

discursive pattern. Table 3.4 displays the obtained results, where we can observe that each bigram's

occurrence is again discriminated per location of usage, using the same metrics as the previous study.

Furthermore, as our objective is to identify the most prominent patterns, we decided to discard

bigrams with total occurrences lesser than three.

By going through our results, we can see some obvious relationships between tags. The most

prominent being an INTRO followed by a DELIM. We can notice this bigram not only has the most

occurrences of all bigrams but all of those are located on the beginning part of the explanation.

Meaning instructors are more likely to introduce a method and explain its boundaries such as

parameters and return type. Alternatively, there are other categories that occur after an INTRO,

although rarely, such as EXPL, ENUM, CLAR/R&R, and DEF that have a significant number of

occurrences. Despite using the usual INTRO/DELIM beginning, sometimes instructors would use other

tags instead of DELIM to adapt to certain situations of specific methods which instructors felt the need

for additional explaining. Examples of this are the insertionSort (sorting algorithms) and the sum

method (matrices), which, as before mentioned, might require a special usage of a category to explain

certain concepts. We can also see few instances of DELIM/EXPL and DELIM/ENUM which usually occur

right after an INTRO/DELIM occurrence. Both of these seem a consequence of an instructors’s

preference, since depending on both the level of difficulty of the method and the instructor, some

choose to add an example to clarify how the method works and, in cases of an array parameter, some

also enumerate each of the arrays position.

Both CLAR/R&R and EXPL hold the most occurrences among individual categories, CLAR/R&R

having 84 occurrences and EXPL 62. We can see those numbers influence the results of the bigram

study as both their pairs hold the second and third spots with most occurrences. Since both categories

are abundantly used throughout the explanation, it is difficult to pinpoint the meaning of the usage of

each pair containing either of them as these two tags not only pair up with almost every category, but

their locations are used in all of the three parts of the explanation. Especially in the middle part, most

bigrams with most occurrences in the middle contain either CLAR/R&R or EXPL, making it hard to draw

a conclusion in bigrams revolving these two categories.

16

Table 3.4 - Occurrences of each bigram sorted per location.

Concerning the conclusion in the explanation, we found more patterns: the cases of RCAP/CONC

and REF/CONC are both used only in the end section. As previously mentioned, REF and RCAP are used

to remember the student of certain quirks of a loop or variable states. As so, we can see some

tendencies of instructors to do a final reviewing of the method before concluding the explanation. In

some rare cases, even while concluding the explanation instructors would end with a REF, as we can

see with the CONC/REF bigram. These cases occurred due to the nature of the contains method which

highly revolved around the value of the returned variable. EMPH, its number of occurrences appear to

be similar between instructors. As seen from the explanations, instructors do not seem to use it to

convey the importance of the variable role. But rather, they use it in “irregular” situations in which

students might fall into a mistake. As is the case of the sum method: sum contains, as a parameter, a

non-square matrix, and most instructors look to rapidly say it is not a normal matrix, so additional care

Bigrams Beginning Middle End Total

INTRO DELIM 35 0 0 35

CLAR/R&R EXPL 7 15 1 23

EXPL CLAR/R&R 7 12 0 19

INTRO EXPL 14 0 0 14

REF CONC 0 0 14 14

INTRO DEF 11 0 0 11

CLAR/R&R REF 1 8 2 11

CLAR/R&R CONC 0 0 10 10

INTRO CLAR/R&R 7 0 0 7

EXPL ENUM 3 4 0 7

CLAR/R&R EMPH 1 5 0 6

EXPL CONC 0 0 6 6

DELIM EXPL 6 0 0 6

ENUM CLAR/R&R 6 0 0 6

CLAR/R&R RCAP 0 5 0 5

EXPL REF 0 1 4 5

INTRO ENUM 5 0 0 5

EMPH EXPL 2 3 0 5

EXPL EMPH 2 2 0 4

CONC REF 0 0 4 4

REF EXPL 1 2 1 4

EMPH CLAR/R&R 1 3 0 4

EXPL RCAP 0 3 0 3

EXPL DEF 0 3 0 3

DELIM ENUM 3 0 0 3

REF CLAR/R&R 0 3 0 3

RCAP CONC 0 0 3 3

17

will be needed while iterating it. The same applies to the max method, to improve the efficiency of the

iteration, the max variable is initialized with the first value of the array. So, instructors stress the reason

for the benefits of doing so. Less prominent annotations account for when it is said if a variable is

returned during its initialization.

3.2. Variable roles study

To be able to examine each variable role, we used the spoken text of our previous study. First, we

identified where each variable role was used throughout each method.

By going through each explanation, we manually annotated each possible pattern for each role

and sorted their occurrences by location, the previously explained beginning, middle and end, and to

which method component, such as ifs or whiles, the identified pattern is correlated to.

Each variable role is examined individually, and hence, the results are separated by variable role.

To better align with what is going to be discussed in Chapter 4, this section uses terms of our chosen

framework to refer to certain structures, respectively, Loops refer to repetition control structures such

as fors and whiles, and Selections refer to decision-based structures such as ifs.

3.2.1. Array Index Iterator

Among all variables roles, Array Index Iterator (AII) is one of the most common. This role is deeply

connected to loops: we can observe most of its prominent patterns are used referring to loops

properties, as it is shown in Table 3.5. The same thing applies to Stepper since an AII is a specialization

of it, although Steppers are used in loops that do not iterate arrays.

It can be observed that there are many ways of describing the same segment of instructions. For

example, while explaining loops, some instructors proceed to use a generic short explanation of the

loop, by declaring the condition for instance, "enquanto i não for maior que o tamanho do array".

However, our most prominent Loop patterns show that instructors further simplify their explanation

by specifying the loop's objective and saying that the loop will iterate certain positions of the array,

which in most cases, is to iterate the whole array.

There were also some patterns in the declaration of said variable. Instructors usually opted

between two different patterns. To simply say the initialized value of the variable or to be more specific

and explain the objective of said initialization, meaning, its role in the loop. However, in some cases,

both patterns were used in the same explanation.

Assignments revolving around an AII, in this analysis, means exclusively instances where the

variable is incremented or decremented. Although there are more assignments in which this role

participates, as its usage is immense in variety, no patterns were discovered in these cases. So, when

18

the variable is incremented, similar to the last patterns, it branches to two options. When the

increment is explained, instructors might say that the variable is incremented, or, in another way, say

the variable goes up a value, or, by being more specific, declaring that the loop proceeds to the next

position of the array.

Table 3.5 - Array Index Iterator patterns and their occurrences.

Components Prominent Linguistic Patterns Occurrences

Loop To iterate all array's positions 13/22

Declare the loop limit 9/22

Declare the loop condition 6/22

Variable Declaration Declare the starting value 12/22

It starts on X position of the array 7/22

Assignments It proceeds to the next position 12/22

Variable is in/decremented 11/22

3.2.2. Gatherer

In beginner-level methods, there are many cases where the Gatherer is returned at the end of the

method, making it the objective. Therefore, Gatherers requires additional attention when analyzing

the introduction of the method and the return instruction.

As can be seen in Table 3.6, several patterns were identified. Starting from the introduction of the

method, more than half of the instructors described the purpose of the returned variable, to properly

establish the method objective, whereas others mention that an integer will be returned without

further description.

Concerning the declaration of the variable, three different patterns appear. Explaining the

initialization value of the variable, which is used by more than half of instructors, shows that is

necessary to state simple aspects so as to not lose students in the explanation. The other two patterns

are further specifications of the variable's role. Instructors felt the need to mention that the variable

will accumulate values throughout the method. And although rare, some mentioned that the variable

is returned in the end. In most cases if one pattern is identified, others of the same component are

not. But in this case, both variable declarations were identified most of the time.

In case of Loops, most instructors follow the previously explained pattern of the Array Index

Iterator, but further emphasize that, by explaining not only the iterated position but clarifying that

those values will be stored. At the return instruction, half of the instructors decided to specify the

returned value according to the role by saying that the result of the accumulation is returned. Instead

of the generic alternative, declaring it returns the variable.

19

Table 3.6 - Gatherer patterns and their occurrences.

3.2.3. Most Wanted Holder

Like Gatherer, Most Wanted Holder (MWH) also has several cases in which the objective of the method

is the variable value. So, the same precautions will be noted as with the previous role. Table 3.7

presents the analysis of this role.

Table 3.7 - Most Wanted Holder patterns and their occurrences.

Components Linguistic Patterns Occurrences

Method Introduction Return the max/min value of an array 6/6

Variable Declaration Declare variable initial value 6/6

This variable will store the wanted value 1/6

Loop Iterate all positions to compare values 4/6

Selection The position's value is higher than the current max value 6/6

Assignment Store the new wanted value on the variable 6/6

Return Returns the max value 4/6

When the method is introduced, every instructor defines the method objective, which is to return

a variable containing a max or min value of a list type variable. During the declaration, everyone

mentions the initialization value. But this pattern might be caused by a peculiarity. The MWH is

initialized with the value of the first position of the array. Because of this, the instructors felt the need

to explain the why of that initialization. Other than that, only one mentioned the role of the MWH

variable during its declaration, probably because it was already explicitly said during the introduction.

During the Loop explanation, like with happens with the Gatherer, they mention which values are

iterated and what is done with those values, which in this case, is to compare them. Concerning the

selection and assignment which follow right up, every instructor used the same pattern: they ask if the

current iterated value is higher than the old stored value and if so, they say that it replaces that value

Components Prominent Linguistic Patterns Occurrences

Method Introduction Returns an accumulation of values from X 7/10

Variable Declaration This variable will store the accumulation of values 6/10

Declare starting value 6/10

This variable will be returned 3/10

Assignment Variable will accumulate the position's value 8/10

Return Returns the result of the accumulation 5/10

Loop To iterate the array which values will be stored 4/5

20

with the new value. Concerning the return of the variable, more than half mentioned that it returns

the most wanted value which in the case of the analyzed example is the highest value of the array.

3.2.4. One Way Flag

A One Way Flag variable, although it can be used in a variety of situations, it might not be returned.

However, that is not the case with the examined method case. This allows us to be able to properly

identify each pattern and cover more cases of this role.

Right at the beginning, when explaining the method objective, almost all instructors not only

convey that the returned variable is a boolean, but additionally say in which conditions would the

returned value be true or false. In this case, it refers to the condition of the Selection.

Methods where an OWF is returned focus on which conditions change the returned variable value.

Therefore, throughout the declaration, perhaps because this type of method requires close

observation on the OWF’s value, every instructor strictly declares the initialization value of the One

Way Flag variable. And half of them emphasize the fact that the variable will not change value until

the condition is true.

Table 3.8 - One Way Flag patterns and their occurrences.

Components Linguistic Patterns Occurrences

Method Introduction Returns a boolean value 5/6

Explains condition for true 6/6

Variable Declaration Declare variable initial value 6/6

Will not change value until the condition is true 3/6

Loop To iterate each position to (Selection condition) 4/6

Selection Declare condition 6/6

Assignment Update the variable's value 6/6

It will not change values ever again 6/6

Return Return the variable's boolean value 2/6

Return true/false when condition 2/6

The explanation of the Loop continues to follow the previously observed pattern of other roles.

Briefly explaining which positions would be iterated and state their role in the selection condition. In

the Selection itself, the condition would be explained generically.

Concerning the assignment that changes the variable's value every instructor after stating that if

the condition is true, says that the value would change to the new value. However, every single one

was also inclined to further emphasize the fact the value would not change again, despite some

instructors already having stated the same thing during the explanation of the declaration.

21

Concerning the return of the variable, instructors follow two different patterns, with half just

stating that the boolean value of the variable would be returned, but another half also felt the need

to reaffirm the condition for each of the returned boolean values.

3.2.5. Temporary

Our analyzed example with a variable with a Temporary role is very brief, only having three

instructions. As this is a very simple case, the data does not provide enough examples to identify

patterns related to loops or selections. Nevertheless, perhaps because of the simplicity of the method,

it is possible to examine how the role is explained in the most basic ways as the method greatly focus

on the swap of values of an array.

In this case, the instructors explained the swap and the importance of the auxiliary variable. In

Table 3.9, we can see that all instructors used the same patterns. Then, start to state the necessity of

an auxiliary variable and the value it will take. Then, explain the assignment of the temporary value to

another variable. While we might still need a greater data set. The analyzed method shows the

foundations of the temporary role, which is storing a value and use it for later purposes.

Table 3.9 - Temporary patterns and their occurrences.

Components Linguistic Patterns Occurrences

Variable Declaration Declare starting value 6/6

Explain the temporary role 6/6

Assignment Explain which variable will take the temporary value 6/6

3.2.6. Most Recent Holder

As shown by the analysis portrayed in Table 3.10, the data gathered about the Most Recent Holder

role is very scarce. Most of the identified patterns are usually generic and the analyzed example might

not show all possible patterns for this role. The example not only does not return the Most Recent

Holder but with its multiple loops, it overshadows the purpose of the variable. Many instructors only

mention the variable at surface level without explaining its clear purpose in the method. Nevertheless,

despite only having access to this spoken text example, we decided to continue this role study to at

least have some information about it.

As previously mentioned, most information related to the MRH variable are surface-level generic

explanations. Most of the time, instructors state the declaration of the initialized value of the variable,

and while explaining the Loop they also mention the variable in the condition, and finally, they

eventually mention the update of the variable's value. But as mentioned, each of these patterns is

generic, none of them explains the variable role. Some other instructors do not even mention some

22

instances of the variable. This minority opted for an unusual explanation, which focused on explaining

the method's main objective and functioning without mentioning secondary variables, which is the

case of the MRH in this example.

Table 3.10 - Most Recent Holder patterns and their occurrences.

Components Linguistic Patterns Occurrences

Variable Declaration Declare variable initial value 4/6

Loop Declare condition 4/6

Assignment Update of the variable value 4/6

3.2.7. Fixed Value

As Fixed Value is the simplest of all roles, describing variables which value does not change, except

when changing internal values of objects and arrays (in that case, it can still be considered a Fixed

Value). Several examples of Fixed Values are usually in the parameters, more so than any other role.

Moreover, perhaps due to the simple nature, no specific role objective was found. Most explanations

concerning it vary according to its particular purpose in the code. Making it hard to determine a

common objective among all Fixed Values. Therefore, no discursive patterns were prominent enough

to consider important.

However, it was already said that there are special cases with arrays and objects. For unique

methods such as swap, where a parameter is a Fixed Value which is going to have its values modified

and this action is aligned with the method's objective, several instructors, when trying to explain the

method, mentioned how the values of the array will be changed and how is it going to affect the

method. By knowing it is going to be modified, it makes it possible to, at the very least, minimally

specify the purpose of this role in certain cases.

23

This chapter describes the development of our pedagogical tool. As mentioned, our main objective of

our tool is to display textual explanations of code instructions to students, so that by comparing them

side-by-side, they might better understand the code's inner functioning or become aware of

misconceptions. Furthermore, we also attempt to enhance the learning experience by identifying

variable roles and use those to more accurately explain the instructions that relate to our second

research question and previous study.

The prototype's main function is simple: given any kind of method and it displays both the source

code and the textual explanation of it side-by-side to be able to locally associate each instruction to its

corresponding explanation, as shown in Figures 4.1 and 4.2. Each explanation may vary according to

various possibilities, whether it is differences in methods structuring or more specific changes like

identifying certain variables roles (further explained in section 4.4.2).

Prototype Implementation

Figure 4.2 - Source code of the method being translated (left side of the view).

Figure 4.1 - Generated translation for the summation method displayed in Figure 4.1 (right side of the view).

24

4.1. Paddle

To be able to analyze the source code and identify the role of each variable, we decided to use a

framework by the name of Paddle. Paddle is a recent under development framework developed by

André Santos [35] and possesses various utilities, of which only the ones utilized for this project will be

explained. One of its main functions is to go through each instruction, using visitors, of selected source

code and it can store information in data structures relevant to each instance, which for this thesis, it

simplifies the access to information for the analysis of the methods.

These data structures contain essential information about its corresponding part in the source

code. Table 4.1 summarizes the most relevant data structures for our development. For example, an

instance of an IProcedure encapsulates general details about the method such as return type,

parameters, or local variables. ILoops and ISelections, referring to repetition control and decision type

structures respectively, allows for a smooth analysis of guards. Variable expressions are designated as

an instance of IVariableExpression and with the knowledge of their type, so we can adapt our

generation according to each possible type.

Paddle also includes a visualization component designated Javardise. It displays the source code

in a big size font making it easy to read and, similar to Eclipse, highlights keywords, for example, whiles,

or ifs. An example of this already was showed in Figure 4.1. Javardise also possesses another useful

functionality: The possibility to add links to in textual explanation in which when clicked highlights a

specific part of the source code (example in Figure 4.3). We use this functionally to better some of the

linguistic shortcomings of our prototype.

4.2. Variable role identification

This section will specify how is each variable role is identified. To do this, we perform a static analysis

of the method and try to look for certain conditions common to a role. Previous research [7] already

concluded that is it consistently possible to identify some roles and in doing so also theorized

conditions for most roles. By making use of this research, we implement the already established

conditions. However, there are a few differences, we are implementing the roles using Paddle,

meaning we have easier access to more details. Therefore, we also add and change some conditions

of our own to better identify roles.

Every implementation of a role is extended from an interface designated IVariableRole

representing a role concept. We use its static method match which receives a variable

(IVariableDeclaration), goes through a sequence of ifs to check each role using each correspondent

isVariableRole() method (e.g., Stepper.isStepper()), which if true returns an IVariableRole instance

containing said role, meaning that only one role can be returned. While doing this, we also take

25

measures to carefully organize each if as sub roles such as AII, must be checked first before their parent

role.

Each of the following sections will go through how each role is identified and what methods they

possess to help on the method’s analysis. However, all of them have a method designated

getExpressions(). This method returns a list of program elements (IProgramElement) which usually

contains instructions relevant to the said role. For example, MWH stores its ISelection guard, ILoop

guard, and its update expression, in that order. Each getExpressions() is different for each role, they

are considered important to explain or highlight the role's objective. We specifically use this together

with the link capability of Javardise to highlight key expressions when necessary.

Table 4.1 - Relevant data structures of Paddle.

Data Structures Description

IProcedure Methods

IProcedureCall Method calls

ILoop Repetition control structures (e.g., Fors)

ISelection Decision-based structures (e.g., Ifs)

IReturn Return expressions

IExpression Any expression (e.g., guards or assignments)

IVariableAssignment Any kind of assignment to a variable

IVariableExpression Any variable

IArrayElement Element of an array (e.g., array[0])

ILiteral Literal value (e.g., 0, true)

IUnaryExpression Any unary expression (e.g., !expression)

IType Type of variables (e.g., int, boolean)

Figure 4.3 - - Example of Javardise's link function.

26

4.2.1. Gatherer

Gatherer is a variable which accumulates a series of values. All non-initial variable assignments to a

variable must be accumulations. Moreover, all those assignments must have the same operator as it

would not be a gathering operation if said values are being subtracted and added at the same time.

We also considered adding a restriction and check if the accumulations are inside repetition control

structures as most gatherers tend to accumulate values from arrays (e.g., adding all value from an

array). We decided against it as to not restrict the system to only one kind of Gatherer.

By visiting all IVariableAssignments instances (excluding the declaration), we verify which ones

have the correct target variable and if its operators are all the same. During the analysis, we also store

information on the gatherer callable upon functions. getOperation() returns an enum instance

signifying the accumulations operator such as ADD (addition) or MUL (multiplication) and

getAccumulationExpression() returns what values is the Gatherer accumulating. This allows a more

detailed explanation of the overall objective of the variable.

4.2.2. Fixed Value

Fixed Value is a variable that after its initialization never changes its value. So, it must only have one

assignment, automatically returning false if it more than one is found. Although, there is one exception,

if the Fixed Value points to an array or object and, for example, an assignment changes the arrays

position values or the fields of an object, the variable is still considered a Fixed Value since the variable

is still pointing to the same memory segment. Therefore, we check each assignment which target is

the variable currently being analyzed and verify if assignments of the type [Variable = Anything] occur,

excluding the first assignment (initialization), and if there are not occurrences the variable is

considered a Fixed Value.

As we mentioned, exceptions as modifying values of an array may occur, so we provide the

method isModified() which returns a boolean telling if the variable is an instance of an array or object

which position values or fields were modified during the execution. We identify this aspect by checking

if there are assignments of the type [ArrayElement = Value] and [Object.Field = Value]. This allows to

properly distinguish the two types, modified and not modified, as they may have separate purposes in

a method.

4.2.3. Stepper

A Stepper is a variable that goes through a predictable sequence of values. It is one of the most

recognizable roles since in most loops there is an iterator variable controlling the limit which happens

to be a Stepper. To be recognized as one, a variable must be an integer or a double (since other options

27

such as Iterators are not implemented within the framework) and after being initialized, every

following assignment of that variable must be an increment or decrement of the same value during

execution. We search each assignment and confirm all of them are of the type [TargetVariable (+ or -)

= StepSize]. And if the operation or step size changes throughout the method it fails to identify the

Stepper.

Since a Stepper is very common in loops, we provide methods to return the loop's boundaries.

getDirection() returns an enum instance which can be INC or DEC, signifying an increment or

decrement to the Stepper, respectively. getStepSize() returns an integer corresponding to the value

being added to the Stepper. getInitializationValue() returns the initialization expression.

getCycleLimit() returns an expression of the limit of the iteration, among some. array.length and 0 tend

to be common limits and isIteratingWholeArray() returns true if the stepper can be theoretically used

to iterate all positions of an array, although this only is helpful for AIIs (next section), it was

implemented in Stepper due to easier access of loop information. Both the two previous methods are

achieved while analyzing the guard of the loop. If the loop guard is a common one such as,

[0<array.length], [0<= array.length - 1] or [array.length-1 >= 0] (the left or right operand being the

iterator initialization value), we both identify the limit and if it can iterate all positions of an array.

Although this only covers some common conditions, it can be used to add more details about the

purpose of the Stepper.

4.2.4. Array Index Iterator

The Array Index Iterator (AII) role is a sub-role of a Stepper, it has all the characteristics of a Stepper,

but is also used to access positions of an array. To identify an AII we visit every ArrayElement instance

and confirm if any index of that element is the possible AII which returns true if it finds a match. To

know which arrays are being iterated, getArrayVariables() returns a list of iterated arrays, verified

when checking all ArrayElement instances.

4.2.5. Most Wanted holder

The objective of a Most Wanted Holder (MWH) is to hold the value which meets most of a determined

criteria. Most examples consist of finding the biggest or lowest value of an array. Among MWH usages

there are similar aspects, first an iteration to search the value, a condition to see if the iterated value

fits the criteria, and an update instruction if the condition is true. Although it is possible to not have an

iteration involved. We decided to implement it in favor of most MWH examples.

We first go through each ISelection and search in its guard the possible MWH present and a

relational operator such as, SMALLER (<) or GREATER (>). Following that, we verify if among the

28

Selection's children there is an expression of type [TargetVariable = ArrayElement] which is when the

MWH is updated to a new value. Finally, it checks if the Selection is inside a Loop structure.

We also provide details on each MWH instance. GetObjective() returns an enum instance, most of

the cases SMALLER or GREATER, meaning the objective is to find the lowest or highest value of a list of

values, respectively. We achieve this by analyzing the condition for the update, if it is something

common as [Array Value > Stored Highest Value], we safely assume the objective as GREATER or

SMALLER, depending on the position of the operands. It can also return UNDEFINED, covering

uncommon cases where the purpose is neither of the before mentioned. getTargetArray() returns the

variable array which is being iterated and getIteratorVariable() returns the variable used to iterate the

array (or null if there is none).

4.2.6. One Way Flag

A One Way Flag (OWF) role is a boolean variable that after being initialized, it may change its value

according to certain conditions or not, and when it changes it will not change again. There can be

various assignments and conditions for this change to occur as long as the value to be changed to is

always the same.

Analysis wise, the OWF and Fixed Value are similar. We access instances of variable assignments

of the possible OWF and verify if the new attributed value is a boolean value and if its opposite from

the initialization value. Although there are exceptions, most practical OWF only changes when certain

guards become true, so to give more context on why the change, we developed the method

getConditions() which returns a list with each condition which is made by checking if each assignment

is inside a parent structure ISelection (if) and storing its guard in the list as an expression.

4.3. Additional Analysis

Both this and the following section are not of variable roles, they are classes that use the same

approach of analysis to search and identify relevant information about the method. We use two

different classes, FunctionClassifier and IRecursive to search for two different aspects, which analyze

an IProcedure instance referring to the whole method.

4.3.1. Function Classifier

FunctionClassifier is an analysis objectified to verify if a method is a procedure or a pure function

(no side-effects). A procedure explicitly refers to a method that performs state changes in the

objects/arrays previously allocated in the heap memory. Similar to the identification method in Fixed

29

Value's isModified(), we see if any internal values are changed such as fields of objects or position of

arrays and declare procedure if it happens or function if it does not.

The method getClassification(), which returns the result of the analysis, an enum instance

PROCEDURE or FUNCTION. And getVariables() and getExpressions(), both returns list with the variables

whose internal values were altered, and the exact instruction where said alteration happened,

respectively. So, students may be informed of the reason for it being a procedure or function.

4.3.2. Recursion

IRecursive analyzes if the method is recursive. And to identify that, we access each IProcedureCall

and IProcedureExpression instance and see if the received IProcedure and the parent procedure of the

visited expression (e.g., expression.getProcedure()) are the same. While analyzing, we insert into their

respective lists both conditions of ISelection in case of a parent element ISelection and each recursive

expression, callable using the respective method getConditions() and getExpressions(). Using both is

helpful to identify the recursive and base case branches.

4.4. Prototype Development

The prototype's main function is to display both the source code and the explanation. This is controlled

by two components: ExplanationGenerator and ExplanationVisual. The first focuses on generating the

explanation, which when creating a new instance, receives an IProcedure as a parameter and generates

an explanation for that method. We comprise our implementation in three actions, Analysis,

Translation, and Text Smoothing. Analysis refers to storing any information relevant to translate some

segments such as variable roles. Translation generates an explanation for each code element, and Text

Smoothing fixes any inconsistencies for example marks, unnecessary spaces, and merging words into

contractions. ExplanationVisual focuses on printing each text segment, respectively as a link or normal

text, and creating the Standard Widget Window (SWT) window to display both the source code and

the generation (see Figure 4.4).

First, we gather information about the roles of each variable as we described previously. This is

applied to both local variables and parameters. If a role is discovered, the results are inputted to a list,

which is used throughout the analysis to properly identify the role of variables in expressions.

Additionally, if a given variable is a Fixed Value and a parameter, we include that information on a list

of Fixed Value Parameter, a class used to more specifically know the purpose of the Fixed Value

(discussed in section 4.4.2). We also find each return instruction and store them in a list, as those have

a certain impact on translating some components.

30

In the initial stages of development, we had a straightforward approach visiting each instruction

and directly translating each one. But the objective of this thesis is to provide a helpful explanation

and enhance the generation with variable role knowledge. The results in Chapter 3 show that there

are specific patterns to each role, varying in each segment of code (e.g., loops, assignments).

Therefore, to achieve this variation we developed several classes to analyze each specific code

segment and identify which role it is correlated to (explained in the following section). To later create

the possibility of explaining certain situations in a more detailed manner.

4.4.1. Code Components

By verifying multiple examples and Paddle's capabilities we can generalize each method instruction

under one of these: assignments, loops, procedure calls, returns, and selections. We created classes

to specifically analyze each component. These classes were designated AssignmentComponent,

LoopComponent, and so forth. So, for each one, we developed a different way to reveal its

corresponding role. So, using the getExpressions() method available to each role instance, we compare

if the program element is equal to any expression of any variable role getExpressions(), revealing that

the component currently being analyzed correlates with that role. This is assuming that only one role

can be correlated to a program element and although it is possible to have multiple roles on a single

variable, considering only introductory level methods, it is quite unlikely to occur.

According to research made in Chapter 3. Some components show to be more important to some

roles than others. For example: assignments, from previous results we can see that at least one

assignment needs to be present in MWH, Gatherer, Stepper, and therefore AII, to be identified as so.

Hence, we only iterate getExpressions() if one of the said roles is identified. Table 4.2 shows which

components are relevant to each role. Although for Loops our thought process deciding the roles was

different. We saw that loops are present in many of the researched roles, but most of its discursive

Figure 4.4 – Diagram about each step to generate an explanation.

31

patterns focused on explaining what is going to be iterated. And for that, we only need the information

on the Stepper or AII. Procedural calls did not reveal any relations to a specific role.

 Table 4.2 – Roles related to each component.

However, there are other possibilities to be considered. One is if what is being returned is a single

variable and if that variable holds a role. If not a single variable, we cannot consistently assume a

correlation between the instruction and a role, so we restrict it to returns of single variables and only

then we find out if the returned variable has a role.

There is also one more component, but this one does not share the concept as the others

previously mentioned, since it does not correspond to a specific segment of source code. We

designated it MethodComponent, a component that stores general information about the method

such as parameters or whether it is recursive, a function, or a procedure. All previous components

receive access to this one since they require it to translate when it is required to mention the method

type (function or procedure).

Overviewing the process, ExplanationGenerator goes through each instruction and creates a

component for it which then is included in a list. However, this list only contains instructions of the

same branch level, meaning instructions inside branches are not included. For branch components

namely, loops and selections, they have their list to insert their components. When one of these

components is created, they visit the instructions inside their branch and make components for those.

Additionally, selection components have two components lists in the case of an alternative branch.

4.4.2. FVParameterComponent

On another note, for particular cases where a parameter is a Fixed Value, specific classes designated

FixedValueObjectiveVisitor and FVParameterComponent are used to analyze it and try to figure out its

purpose in the method. As already mentioned, Fixed Value, among all roles, does not have a clear

purpose due to the simplicity of its conditions, at least in non-modified cases. However, since it is hard

to pinpoint the objective without any context, another approach was taken. Instead of trying to blindly

find it, we pre-define certain objectives and see if the variable is doing any of those. In basic methods,

Component Corresponding roles

Assignment MWH, Stepper, AII, Gatherer

Loop Stepper, AII

Selection OWF, MWH

Return All roles

ProcedureCall N/A

32

constant parameters are commonly used to define an array's length. FixedValueObjectiveVisitor is a

visitor whose only purpose is to find out if a parameter is defining an array's length. It does so by

visiting every instance of array initializations (IArrayAllocation) and checking if the argument for the

length matches the variables, including cases with matrices. Any results are stored in an

FVParameterComponent, which can later be accessed under the form of booleans.

4.4.3. Method Translation

After all components are stored, we go through each one and translate those to generate an

explanation. We do not store the whole translation in a single string, instead, each text segment of

each line is stored in a TextComponent, a class we use to differentiate links from normal text. The

construction of a TextComponent can receive either only a string or a string and an IProgramElement

list. If it only receives a string it is considered normal text and vice-versa if it includes a list, containing

the instructions of which the link will highlight. Every TextComponent is inserted into a list which then

is added to another list to later be iterated and the explanation printed.

The next following sections show how each component is translated. But, before that, we describe

some other important aspects for the generation.

4.4.3.1. Bullet Points

Since branches are quite common as far as simple methods go. We developed a way to add bullet

points before each line to be able to differentiate in what branch is the translation included in. We

achieve this by using a global integer variable designated depthLevel. Each time it goes into a branch

to translate component, which can only happen on selections and loops instances, it adds to its value

and removes 1 whenever it finishes translating a branch. In each translation for an instruction before

any translation is done (meaning the TextComponent list is empty) ,depending on the depthLevel value,

it adds TextComponents with backspaces and adds a bullet point at the end marking the beginning of

the instructions (as shown in Figure 4.5).

Figure 4.5 – Example of bullet points before each line.

33

4.4.3.2. Expression Translator

Since we are working with Paddle and at the same time translating methods. We expected we would

need a way to translate each code element whether it is arrays, booleans, or binary expressions.

Therefore, we developed an ExpressionTranslatorPT class which contains methods to translate most

of the elements in the Paddle's system. This class receives a list of TextComponents as a parameter

which is where each method is going to input their translations. Table 4.3 shows an example of most

of our translations. Although many of them follow the displayed pattern some have detailed variations

depending on the circumstances.

On array elements, we felt a need to properly distinguish a vector from a matrix: translating a

matrix element by only giving the positions such as "o valor da posição i,j..." may not help students to

understand the specifications of a matrix. Instead, we opted to explain that the first index concerns

the "rows" and the second index refers to each position inside a "row". In cases of referring to initial

positions, instead of a normal translation, it becomes "o valor da primeira posição..." or in case of a

matrix "o valor da primeira posição da primeira linha...". This conveys the fact that index 0 refers to

the first position of an array. This also applies to the ArrayLength translation, for example, "o valor do

tamanho da primeira linha...".

Table 4.3 - Example of a translation for each element.

As already shown, translations for basic elements storing a value such as array elements and

variables, usually start with "o valor" since we wanted clear any possible misunderstandings, to make

explicit that is the value of the variable being used in operations.

Element Example Translation

ArrayElement array[i] "o valor da posição i do vetor array"

ArrayElement (matrix) m[i,j] "o valor da posição j da linha i da matriz m"

ArrayLength array.length "o valor do tamanho do vetor array"

Type integer;
boolean

"inteiro"; "booleano";

BinaryExpression i + 1 "o valor de i a somar com 1"

UnaryExpression !(i > 0) "o valor de i é menor ou igual a 0"

RecordFieldExpression o.field "o valor do campo field do objecto o"

ProcedureCall call(n-1) "A função invoca o método call com os argumentos:
o valor de n a subtrair por 1"

Direction (Stepper) INC; DEC; "incrementado"; "decrementado";

Literal true "verdadeiro"

VariableExpression i "o valor de i"

Operator SMALLER (<) "menor que"

Objective (MWH) GREATER "maior"

Assignment i = 0 "o valor de i é alterado para 0"

34

For types, in some particular situations involving matrices, we needed sometimes to specify the

type of the elements stored in the matrices, and in others we did not. So, the IType method receives a

boolean parameter listsWithType to decide whether or not to include those details. For example, "a

matriz de inteiros" and "a matriz", for true and false values, of this parameter respectively.

Procedure calls follow a common pattern as shown in Table 4.3 but have a special case to consider,

namely recursion. When mentioning recursion, it needs to properly convey the idea of the method

calling itself. Furthermore, as far as language goes, we also wanted to depict the fact the recursion is

based around a variable, meaning the results of each call will be different, hence not infinite. Two

options were considered whether or not the call is in a binary expression. The grammar slightly changes

for each one, for example [i + factorial(n)] would be "... i mais o resultado da invocação recursiva da

função...", focusing on the operation. However, if it is not in a binary expression, we can eliminate

other factors and focus on explaining the recursion. For example, a recursive return such as

[factorial(n-i)] would be "a função é sucessivamente invocada com os argumentos n-i", but when

dealing with simple arguments such as [n-1 or n+1], it becomes "... invocada com um valor superior a

n", further conveying the progress of the recursion around the variable.

Although assignments have variations for declaration and not, besides the initial segment, both

follow similar rules. When dealing with primitive assignments such as integers or booleans, then it

follows the patterns displayed in Table 4.3. However, for arrays and matrices, after saying that the

array is assigned, it is stated its size (arrays) or "number of lines" and "lines size" (matrices). For

example, the translation of the assignment [int[][] m = new int[n][n]] would be "A variável m é

inicializada como uma matriz com o número de linhas e comprimento das mesmas igual ao valor de n

(elementos a 0)". For initializations specifically, we state the starting value of each the array like the

previous example “(elementos a 0)”. We do the same for booleans and doubles, but change the initial

value to false and 0.0, respectively.

Unary expressions "reverse" the meaning of the internal expression. There are two unary

operators, NOT (!) and MINUS (-), the first is used in conditional expressions and the second in

arithmetical expressions. So, whenever one of these is found, we add or modify the translations to

adapt to each. For the elements that could be negated we developed a possible negated translation.

In MINUS case, we considered three situations, a variable, a literal number, and a binary expression.

For literals, we simply add "menos" before the number (e.g., "menos 1"). For variables, to follow our

pattern of focusing on the value of the variable, we modify the text to "o valor negativo de i". Binary

expressions also add "a forma negativa da expression [expression]". We considered to translate to the

result of the negation instead of our approach, however, this might have caused a discrepancy

between the observed source code and the translation, so we took the safer approach.

35

In the NOT cases, we did not do the same. In all conditional expressions where negation is found,

all values are translated to its negated version. Booleans switch between "verdadeiro" e "falso" and

operators such as OR (||) or AND (&&) switch between themselves. For example, [!(i < v.length)] would

be translated to "o valor de i maior ou igual ao tamanho do array v".

As shown by most examples by now, binary expressions have a three step translation: translate

the left operand, the operator, and the right operand. However, with commonly used expressions, we

changed the approach to better explain some cases. Specifically, [array.length - 1] and [array.length -

2], both referring to particular positions of an array, the last and penultimate. When these expressions

are identified, they are directly translated to "a última posição do vetor" e "penúltima posição do

vetor".

For better efficiency, we made a method for translating IExpression instances that identifies what

specific expression is used and then translates it with the appropriate approach. As all methods except

this one are package-private, this method is called numerously by the components to be explained in

the next sections.

4.4.3.3. Method Translator

As with many good explanations, the opening statement is important to describe the objective of the

method and not confuse the students. Our translation of the method component attempts to do

exactly that: it starts with an opening paragraph about its parameters, and if necessary situational

information about recursion and procedures. Structurally speaking, our translation is divided into two

sections, the first focusing on the declaration and the second one, being situational, adds additional

information in case of recursion. Each section is represented in a different line.

The first section is the opening statement for the explanation. In section 3, we analyzed that

instructor's first utterances generally explain the objective and briefly present the parameters. Our

first section attempts to emulate that as much as possible. We divide this first line into three parts,

each part varying according to several possibilities.

In the first part, the beginning of the sentence, usually starts with "Esta função", but in the case

of a procedure, we wanted to better convey why was it considered a procedure and, as before

explained, it is only a procedure when there are possible side-effects. So, the first part becomes, for

example, "Este procedimento altera o vetor array passado por referência", mentioning which

array/object was modified. Additionally, we add a link to "altera" that highlights which instructions

modify the variable to be able to emphasize the connection between the two.

36

The second part focuses on what it is returned. It tries to convey the objective by looking at the

return expression. To achieve this, we considered some possibilities: when there is one return and it

returns a single variable or when there are two returns of either primitive boolean values or variable

expressions. The first possibility varies according to the role of the returned variable. Since some roles

are very specific in their usage, we take advantage of that to give an overview of the method objective.

For example, a max function to discover the highest value of an array would be "devolve um inteiro

max que contém o maior valor das posições iteradas do vetor array". By returning an MWH, we can

assume the objective of the method and add details of which array is being iterated. In the same sense,

we implemented a variation for each role. Table 4.4 displays each of these variations. The second

possibility, of having two returns, it is explained differently: when two variables are returned the

second part generally becomes "devolve var1 ou var2". We initially considered to find the role of each

variable and try to do something similar to the single variable situation, but it introduced too many

possibilities to be able to accurately explain the objective of the method. On the other hand, when two

primitive boolean values are returned, we noticed in section 3 that instructors quickly state the

conditions for returning true or false. Therefore, we adapted our generator to conceive a similar

segment. We access the return, verify its condition and use that condition in the generation: for

example, "devolve verdadeiro se i é igual a zero".

The third part centers around the parameters. It states their type and name, although it is basic

information, it is still necessary to not make our explanation feel incomplete. Most of the time, the

final part will be for example "recebe um inteiro i e um vetor v". But there is an exception: most of the

time parameters will have a role of Fixed Value. However, Fixed Value does not have a clear objective,

unlike other roles. But checking on the FVParameter instances, we can assert if it has a clear purpose,

and if so, we attach that information to the said parameter (e.g., "recebe um inteiro n que define o

comprimento do vetor v").

The second section, as stated before, is situational. It covers for cases when the method is

recursive and to do this, we add another line to our opening paragraph explaining what and why it is

considered recursive (e.g., "Esta função é recursiva porque se invoca a si mesma durante a sua

execução"). Furthermore, to clarify any misunderstandings we add a link to "se invoca" highlighting

the recursion instructions.

4.4.3.4. Loop Translator

Loops are useful to repeat instructions. In several cases, they are used to iterate through arrays. While

explaining the loop, we want to not only translate the condition but also specifically say what that loop

is used for, as accurately as possible. We divide our translation into two lines.

37

The first line is a basic translation of the while condition. Our objective is to specify the boundaries

according to the iterator role but since there are cases that do not require an iterator, we include a

default first line to minimally explain the loop. For example, a Loop with a condition [i < v.length] would

be translated to "Este ciclo repete-se enquanto o valor de i é menor que o valor do tamanho do vetor

v". We realized that saying "this cycle" would be too vague so we add a link to "ciclo" to highlight the

referred loop. The second line tries to convey the details of the loop and it does this by first checking

the role of the iterator, previously identified in the Loop Component. For each one of the two

possibilities, Stepper or AII, it varies the explanation since both can be used in different circumstances.

When the iterator is a Stepper, it signifies two distinct facts. The loop is controlled by the Stepper,

meaning it will continue to iterate until the Stepper reached a certain value and that Stepper will

continuously be incremented or decrement while the loop condition is true. We focus on convey these

two points. Using the previous example, it would generate "As iterações deste ciclo são controladas

através da variável i que é incrementada 1 por 1 em cada iteração". As previously stated, "ciclo" is also

linked to its respective loop and "são controladas através da variável i" highlights the condition of the

guard that contains the Stepper.

Table 4.4 - An example of each implemented variation for the first statement.

Variation Example Translation

Default "devolve um inteiro e recebe um inteiro n"

Gatherer "devolve um double que resulta de uma acumulação de elementos do vetor
array"

Most Wanted
Holder

"devolve um inteiro que tem o valor mais alto do vetor array"

Fixed Value
(modified)

"devolve um vetor de inteiros array que é criado pela função e recebe um
inteiro n"

One Way Flag "devolve um booleano cujo valor vai depender de certas condições"

Stepper "devolve um inteiro que contém o número de ocorrências de uma
determinada condição"

Procedure "altera o vetor de inteiros array passado por referência, não devolve nada e
recebe um inteiro n"

2 Variables returns "devolve o valor de inteiro a ou o valor de inteiro b"

2 literal boolean
returns

"devolve verdadeiro se o valor de n resto da divisão inteira o valor de i é
igual a 0 e recebe um inteiro n"

An AII has more of a specific approach, we know it is used to iterate positions of an array.

Therefore, we focus on explaining which positions are iterated with the variable. To cover the cases

where not all the positions are iterated, we use a generic method to convey that. For example, an

38

iteration from the second position to the fourth would be "Através de i, o ciclo itera e acede às posições

de vetor v desde a posição 2 até à posição 4". There are also situational variations that make the

explanation more complete. Just in case of the variable being incremented by more than 1, it adds a

short phrase describing this like such "...posição 4 a cada 2 posições", meaning it only for through half

of the positions.

4.4.3.5. Selection Translator

When developing a translation for Selections, Chapter 3 results showed us that in most situations there

are specific linguistic patterns. Several instructors just would state the condition of the selection and

do not add any extra information according to the roles of variables, except for the MWH, which

instructors would specifically refer to the old wanted value and newest possibly wanted value to

update when referring to the condition. Although some patterns were identified with a OWF, since the

role’s main function is simple (only changing value once) and we already explain that on the variable

initialization, to avoid repetition, OWF does not have an implementation.

Therefore, we developed two possible outcomes when translating a Selection. First, a generic way

of stating the condition. We use ExpressionTranslatorPT to translate the condition. For example, an

[i!=0] condition would generate "Se i é diferente de 0". And in particular, for MWH cases, we adopt

the same previously analyzed pattern of referring to the operands of the condition by stating the

condition only happens if the newest value if higher/lower than the old value, which is stored in the

MWH. So a generation of a condition [v[i] > m] would turn to be as such: "Se o valor da posição do

vetor v é maior que o maior valor encontrado até ao momento, guardado na variável m". We try to

give more details as to why the MWH is present on the condition. Additionally, we add a link to help

on the understanding of our explanation: "é maior que o ao momento" links to the condition of the

Selection.

As far as we know, through Chapter 3 no significant patterns where noticed in the case of

alternative branches so those are normally translated.

4.4.3.6. Assignment Translator

For assignments, two situations are considered: initializations (the first assignment) and the normal

assignments. Initializations are when variables are introduced and so we take the advantage of

enhancing that introduction. Therefore, after stating the initialized value we follow up the explanation

by trying to convey the purpose of the variable with a short text according to its role.

The initialization segment is translated by ExpressionTranslatorPT using the already explained

translateDeclarationAssignment() method. The short text about the role is generated by the

39

VariableRoleExplainer class and method getRoleExplanationPT() which receives a role and returns the

corresponding short text. We conceived a text for each previously analyzed role focusing on the main

points of their purpose. Table 4.5 displays an example of each role. Additionally, there some texts with

links to highlights key instructions namely the Fixed Value, highlighting the modified values

instructions, and AII, showing which instructions access the array values. A full translation of a

declaration, for example for an initialization [m = 0], m being an MWH, would be "A variável m é

inicializada com 0, esta variável vai guardar o valor mais alto encontrado durante a iteração ao vetor

m".

For the normal assignments, five variations were implemented, four that adapted to specific roles,

and a generic one for cases which it is not related to any of those four. Similarly, to the declaration,

the generic approach is handled by ExpressionTranslatorPT directly translating the assignment as it is

in previous examples. But for the four roles, we conceived a detailed explanation based on the

circumstances of each one. These roles are the MWH, the Gatherer, the Stepper, and the AII. There

were other considered, namely Fixed Value, however we focus on these four to first assert if providing

a specific explanation is beneficial or not for the reader. Table 4.6 shows each one of those four

variations. Similar to previous translations, we add links to each variation, highlighting their respective

assignment.

Table 4.5 - Examples of short explanations about each role.

Role Example Short Text

Most Wanted
Holder

"esta variável vai guardar o maior/menor valor encontrado durante a iteração
ao vetor m"

Gatherer "esta variável vai acumular a cada iteração: [valor que acumula]"

Fixed Value "após receber o seu valor, o valor desta variável nunca será alterado"

Fixed Value
(Modified)

"após a sua inicialização, os valores do vetor serão alterados"

Stepper "esta variável vai ser incrementada 1 a 1"

Array Index Iterator "esta variável é usada para iterar e aceder a cada 2 posições do vetor v"

One Way Flag "se o valor desta variável é alterado após essa atribuição esse nunca mais irá
mudar"

4.4.3.7. Return Translator

When we analyzed the patterns discussing returns, we observed that some explanations just state

what it is returned without any complementary information. However, in some cases, instructors,

when mentioning the returned result, focus on the objective of the variable and remember the listener

of its purpose. We focus our implementation around that thought process: we have a generic

implementation to handle all non-specific cases in which we use ExpressionTranslatorPT to translate

40

the return expression. Similar to assignments, we conceived a variation for each of the following five

roles: MWH, Gatherer, Stepper, OWF, and Fixed Value (modified). Furthermore, we also implemented

variations for special cases such as being a recursive return or a return with no expression (void

method).

 Table 4.6 - Examples of assignment translations for each variation.

Variation Assignment Translation

Default "O valor de i é alterado para 1"

Most Wanted Holder "O novo valor mais alto é guardado em m"

Gatherer "Em cada iteração é adicionado à variável sum: [valor que acumula]"

Stepper "i é incrementado por 1"

Array Index Iterator " i é incrementado para prosseguir para a próxima posição do vetor"

Table 4.7 shows an example of every of our implemented situations. For identified role situations,

we try to give a short description of what the variable contains as a value, or in case of Fixed Values,

state what changes the variable went through. Since this is a return, we reinforce the idea of the

purpose of the variable being correlated with the objective of the method, making it easier to

understand. For void methods, since returns have no expression, hence being harder to correlate to a

specific objective, we simply translate it to mark a possible ending of the corresponding method. As

with other translations, we use links to once again highlight instructions of importance to the return,

such as Fixed Value modification instructions.

For recursive methods, we translate the expression using ExpressionTranslatorPT, similar to our

default approach. However, when the method is identified as recursive, for each return translation,

we check if the return addresses a base case, meaning usually returns of a primitive value to finish the

recursion. We do so by comparing if the return expression is included on the IRecursion

getExpressions() list and if so, it is a recursive case. After the analysis, a tag is added right after the

normal translation revealing to the reader which case is the return (e.g., “(Caso Base)”, “(Caso

Recursivo)”). This tag is accompanied by a link highlight the whole branch to further distinguish base

branches from recursive branches.

41

Table 4.7 - Examples of return translations for each variation.

Variation Return Translation Example

Most Wanted Holder "Após a iteração de vetor a função devolve max que contém maior valor
encontrado"

Stepper/Gatherer "Após a acumulação de valores a função devolve o resultado dessa
acumulação"

Fixed Value (modified) "A função devolve vetor v cujos valores foram alterados"

Recursion (Base Case) "A função devolve 1 (Caso Base)"

Recursion (Recursive
Case)

"A função devolve o valor de n a multiplicar por o resultado da invocação
recursiva desta função de n - 1 (Caso Recursivo)"

Void Method "A função pára aqui a sua execução"

4.4.4. Text Smoothing

Throughout our previous steps, we focused on explaining to understand the method. Therefore, we

did not take further care in fixing any grammar or punctuation problems as that would increase the

complicity of that part of the translation process. So, we developed this specialized class to fix any text

inconsistencies. It receives a list of lists of TextComponents from ExplanationVisual and it modifies that

list to be displayed beside the source code.

After some observation, we took notice of these four grammar/punctuation problems:

unnecessary spaces, first letter of sentences in lower case, pairs of words that could be merged into

conjunctions, and missing end marks at the end of sentences. Most of these were dealt with using

regular expressions, however since we use TextComponents, we had to adapt to the modification to

other situations.

To fix these problems, we iterate through all TextComponents and analyze if any of them contains

a grammar problem with regular expressions. To add an end mark at the end of a sentence, we simply

created a new TextComponent containing a single mark and put it in last in each row (list). We took

additional care in not adding end marks when the sentence ended with a special character such as ":".

For unnecessary spacing, we identified in which cases it would happen and deleted them with regular

expressions. In general, it would sometimes occur before a comma and before the end mark, with the

second occurrence being caused by our solution to our first solved problem. So, using both these

regexes [" *,"] and ["[]*\$"], we replaced any matches with an empty string (“”) to properly dispose

of them, the second regex being applied before adding the end mark.

To turn the first letter to upper case, we had to be able to identify which TextComponent contained

the first word since the first components can contain the code bullet points. After localizing the right

component, it was also necessary to confirm if the first word was not a variable, since variables are not

42

normally designated with the first letter being uppercase. Only after confirming none of the previous

cases was true the first letter would be modified. As already mentioned, our attention to grammar was

not our focus while translating, so there are many cases in which it is possible to refer both to a male

and female word. For example, our most prominent situation is when referring to an array which could

be a simple array or a 2-dimensional array known as a matrix, both with different gender designations,

in the Portuguese language. When generating most cases of this would be "de o", "de a", "por o", "por

a". Fortunately, these are pairs that can be merged into a single word, namely contractions. To do this,

we investigated most types of usual contractions [33] [34], and searched for occurrences of each

combination, including a special situation where the two words are located in different

TextComponents, and merge them into each respective combination result.

43

5.1. Preparation

After developing our prototype to be able to deal with a large range of method examples, we decided

to do an initial evaluation of it and see how it fares in the eyes of people with experience not only in

programming, but also in teaching the same concepts addressed in our prototype. To achieve this, we

sent a questionnaire to several programming teachers and analyzed the results to see in which aspects

of our prototype were still lacking and how it could be further improved.

5.2. Questionnaire Structure

We decided to build the form using Google Forms for its easy accessibility for both the creator and the

people who answer it and for the several tools at the creators' disposal.

The questionnaire's structure is composed of several sections. The first section works as an

introduction for the teachers to understand or know relevant information about this evaluation. More

specifically, we shortly explain what the objective of the questionnaire is and for what purpose is the

data going to be used. Additionally, we provide disclosure of each section and the average time for

answering all sections, so the teachers know what to expect. Also, intending to maintain the results as

truthful as possible we avoided mentioning the fact our textual explanations are automatically

generated since this might influence the results.

The structure of each section after the first is very similar. Each one initially shows two images (as

Figure 5.1 shows): a method example written in Java and its corresponding generated explanation. To

purely evaluate our textual information, we provided only the generated text omitting the links to see

how necessary they are to convey certain aspects such as loops. We decided to center our evaluation

around three different components, Functionality, Completeness, and Readability. Functionality

measures if each individual expression correctly reflects what is happening in the method.

Completeness asks if relevant information was not mentioned, and Readability evaluates how easy is

to read the explanation or how much the structure of our explanation holds back the conveyance of

the method. We ask to evaluate each component in a scale of 1 to 5, 1 meaning a poor performance,

and 5 a good one. Additionally, we also provide an open text box following each evaluation to further

explain the reason for the evaluation. We repeat this structure for each of the provided examples (see

appendix A).

Prototype Evaluation

44

For choosing the methods presented in the questionnaire, we opted for methods that either

display concepts essential for introductory programming or methods which functioning highly revolves

around a variable with a role. Table 5.1 lists all the methods used in this questionnaire and the reason

why it was chosen.

Table 5.1 - Each method provided in the questionnaire and the addressed concept.

Method Related concept/role

summation(double[]): double Gatherer (sum)

max(int[]) : int Most Wanted Holder (max)

factorial(int) : int Recursion

isPrime(int) : boolean Returns mid-loop

naturals(int) : int[] Stepper (i); Local array

multiplyArrayValues(int[], int) : void Procedure

exists(int[], int) : boolean One Way Flag (found)

contains(int[][], int) : boolean Matrices, Loops within loops

Figure 5.1 - Example and explanation showcase in questionnaire.

45

5.3. Results

After sending the questionnaire to several programming teachers we got a total of 10 responses. Each

one of the evaluations is displayed in Table 5.2. By looking through the gathered data, we can notice

that in some methods there is a great disparity between evaluations. Our prototype to some level was

able to succeed in conveying each instruction of some methods, as shown by the methods summation

and multlipyArrayValues, whose results were the most positive. Readability-wise, it seems it did not

prove to be a major obstacle for each instructor to understand the code, as these evaluations were

mostly fours and fives except for isPrime and contains. Nevertheless, most instructors mentioned some

changes to how some aspects were translated. For example, in some cases changing the textual

translation of a binary expression like "o valor de n a subtrair por 1" para "n - 1" because it would be

easier to understand. Despite having some better than average results, in other situations our

prototype shows to perform poorly in all three components with marks below 3, namely, method max,

isPrime, and contains.

Before analyzing the previously mentioned examples, we must discuss some common

observations left by several instructors. Besides the first two examples, at least one or more instructors

commented on the fact our prototype does not transfer the general idea of the method, meaning its

performance is poor at explaining the high-level objective. As mentioned before our declaration

translation tries to convey the objective or the conditions to return a value. This mostly happens when

a single variable with a known role is returned, otherwise, the declaration will be a default translation

of generic information which seems to fail at identifying the method’s objective. This explains why

both first methods did not have this problem, both summation and max's objectives are greatly

correlated to the returned variable role. exists shares some similarities, but at the time One Way Flag

role was not implemented.

Several instructors also mentioned our explanation fails to mention external concepts which might

be considered essential to explain certain methods. factorial and isPrime are examples of these

situations. One deals with factorials and the other one with prime numbers which are not explained in

the generated explanation and might be the reason for low evaluations in completeness. This also

might justify the low evaluations for method max. We omitted the supposed pre-condition of the

argument array only having values above 0 and our explanation did not mention that possibility and

many instructors were quick to refer that the method is not 100% functional.

Generation-wise, both method isPrime and contains share similarities. Both return two literal

boolean values. Our prototype in these cases attempts to explain the condition for it to return true or

false. However, as several instructors commented that the opening declaration is weird or even

confusing, this might not prove as useful as previously anticipated. In other comments, it also seems

46

the language of our explanation of the condition does not suffice to convey the objective. Furthermore,

some instructors observed that some returns appear to be decontextualized which are obstacles to

understanding the code. In isPrime's example, since the generation did not explain the concept about

prime numbers, more than half instructors decided to negatively evaluate the explanation. It is

important to note that, among all categories, only one 3 mark was given, with the rest either being

divided below and above 3, showing great inconsistency in the performance of our prototype. contains

also possesses some unique details important to be discussed. Namely, the presence of matrices and

multiples loops. Many instructors pointed out that there were no explanations of what a matrix is

(arrays of arrays), meaning it was incomplete in the eyes of an experienced individual. Additionally,

being the topic, most comments came from the only example featuring matrices, namely, contains.

We can conclude that our explanation did not transmit the concept of iterations inside iterations and

made the text confusing to understand.

 Table 5.2 - Results gathered from the first questionnaire.

Methods Evaluation 1 2 3 4 5

summation Functionality 1 9

Completeness 10

Readability 2 6 2

max Functionality 1 3 2 4

Completeness 1 1 8

Readability 1 3 6

factorial Functionality 2 8

Completeness 2 3 5

Readability 1 3 6

isPrime Functionality 2 4 3 1

Completeness 2 1 3 4

Readability 4 3 3

naturals Functionality 2 2 6

Completeness 1 3 6

Readability 1 4 5

multlipyArrayValues Functionality 3 7

Completeness 4 6

Readability 5 5

exists Functionality 2 4 4

Completeness 1 3 6

Readability 2 3 5

contains Functionality 1 4 3 2

Completeness 4 4 2

Readability 2 3 4 1

47

5.4. Prototype modifications

After accessing the results of the questionnaire and seeing some segments were not as successful as

others. We decided to add modifications to those parts which performed worse and those that despite

not having a bad performance, still had a lot of comments suggesting beneficial changes to further

improve the overall experience. First, we discuss the minor changes and those which are consequences

of bad questionnaire results.

Regarding the initial statement, the one giving an overview of the objective, we made a few

changes to specific role variations. For MWH, some instructors pointed out the first statement was a

little misguiding, as we mention the returned value would be the highest/lowest from an array, and to

some cases where the array is not fully iterated our choice of words would be deceiving. So, for MWH,

using the information on the AII iterator (if there is one), it is verified whether the array is being fully

iterated. If so, then we use the same pattern as is already implemented, and when not, it specifically

mentions the wanted value is only among the iterated values.

For Gatherer, we added more details to describe each situation. Before it was mentioned the

returned result would be from an accumulation of values, while technically true, questionnaire

observations showed some room for improvement. Now it specifies what accumulations is the

Gatherer variable accumulating, varying from five possible operations: addition, subtraction,

multiplication, division, and the remainder of the division.

As for grammar problems, since many suggestions were made, we observed the most prominent

ones and improved them. In the translation for assignments of the AII variation, we fixed it changing

"incrementado por 1" to "incrementado em 1 unidade" as it seems more correct from a Portuguese

perspective. In what concerns MWH, throughout all translations, references to its objective vary

between "o valor mais alto" and "o maior valor". Since it was brought to our attention that "o valor

mais alto" might not be the best choice of words to describe the situation, we accordingly changed

each objective translation to now consistently mention "o maior valor".

Returning to the first statement, originally, we had solely commas (no "e" conjunctions) separating

each of the previously mentioned segments in section 4.4.3.3. In specific cases, at most, the first

sentence would have 3 commas. For those who are trying to read the sentence fluently, they would

be put off by the strange punctuation. Therefore, breaking their attention to the actual details of the

method. To fix this we make sure the first instance of a comma is replaced by an "e" conjunction to

make the text more readable (shown in Table 5.3). We also take measures to not overuse the

conjunction only appearing at most two times, one to replace the first comma and another in case of

multiple parameters. On another note, we got observations about certain cases of over-translating.

Usually, all expressions where translated including even the more complex of binary expressions. For

48

expressions such as factorials, when translating a binary expression argument, it would make it hard

and too long to comprehend. Therefore, we decided to not translate the arguments.

For the major problems, we already observed that the methods isPrime and contains were the

ones that performed the worst among all categories. They share one similarity: both have the two

returns variation in the first statement. And as noted earlier, they also share the same observations,

the first statement is hard to comprehend making it difficult to discern the objective and

decontextualized returns. When reading the translation for the last return after a loop, instructors

were expecting an explanation regarding the loop ending followed by the execution of the last return.

However, in their perspective, the translation “suddenly” explained the return without any association

to the previous instructions, making it decontextualized. Particularly for contains, comments show our

translations for loops inside loops are not adequate.

For our two returns variation, our objective was to provide insight about how the result was

achieved, but both for readability reasons, the first generated sentence trying to explain the guard

condition was too complex and confusing, making instructors confused on how the declaration was

explained. For that reason, we reverted our two returns implementation to the default one. As for the

decontextualized returns, when identifying multiple returns, the last return's translation is changed to,

for example, "Caso a condição anterior não seja verdadeira a função acaba por devolver falso",

"condição anterior" is a link which highlights the respective condition. Also, even if the two returns

variation was reverted, we still wanted to address the fact several instructors complained about our

isPrime first statement, more specifically, the grammar problems on the remainder of the division. So,

the case of the operator for integer division was restructured to be more readable. Table 5.3 lists all

modifications made to each element.

49

Modified
Elements

Before modification After modification

Method
Translator (2
boolean return)

"devolve verdadeiro se o valor da posição r
da linha i da matriz m é igual ao valor de e"

Reverted to default

Method
Translator
(MHW)

"devolve um inteiro que tem o valor mais
alto do vetor array"

"devolve um inteiro max que tem o
maior valor das posições iteradas do
vetor array"

Method
Translator
(Gatherer)

"devolve um double que resulta de uma
acumulação de elementos do vetor array"

"devolve um double sum que resulta
de uma acumulação de adições de
elementos do vetor array"

Method
translator
(commas)

"devolve um inteiro, recebe um double v" "devolve um inteiro e recebe um
double v"

Assignment
Translator

"incrementado por 1" "incrementado em 1 unidade"

ProcedureCalls
(arguments)

"n a multiplicar por o resultado da
invocação recursiva desta função de o valor
de n a substrair por 1"

"...desta função do valor de n-1"

Integer division "o valor de n resto da divisão inteira o valor
de i é igual a 0"

"o resto da divisão do valor de n pelo
valor de i é igual a 0"

Multiple returns
(last return)

“A função devolve falso” "Caso a condição anterior não seja
verdadeira a função acaba por devolver
falso"

Table 5.3 - All changes made according to the results of the evaluation.

51

6.1. Main conclusions

In this thesis, our goal was to find whether a static explanation enhanced with variable role knowledge

is useful for learning/teaching purposes. For this goal, we developed a prototype that can generate

explanations for basic methods.

First, we researched the foundation of discourse based on previous experiments. We analyzed the

textual speech of experienced programmers and categorized each of their patterns according to their

locations. We then applied our results to build the foundation of our text structure. Using the same

transcriptions, we also analyzed if each role of each variable influenced the instructors to explain them

in a particular way and when so, tried to apply any of those to enhance the explanation.

We built a prototype that for generating textual explanations for an arbitrary method involving

basic programming constructs. First, each variable (including parameters), is analyzed to find out what

role it has in the method. Following that, it starts to visit each instruction and store its information in

specific data structures, where each does its own analysis to determine a role. Secondly, it starts to

translate each of those components in order, where each has variations according to the specific

situation. Lastly, we clean up text inconsistencies such as grammar. After the generation, we make use

of Javardise, Paddle's visual component, to create a window with both the generated explanation and

the source code for a side-by-side comparison.

The results of the evaluation show that, in some methods, our prototype achieved a good

performance, proving some evidence that our approach is adequate, at least from the perspective of

an experienced programming instructor. However, there were also methods in which our explanation

received more negative results than positive among all instructors. We analyzed the prominent

problems and attempted to fix them.

To answer our research questions:

• How are variables with different roles explained by instructors using natural language? -

By analyzing the textual transcriptions, we were able to determine that there are specific

discourse patterns to describe each role, although, these patterns seem clearer in roles

with an evident purpose such as the MWH and the Gatherer.

• How helpful is the knowledge of variable roles on a static explanation using natural

language? - Depending on the role, results showed good evaluations on some methods.

Conclusions

52

However, we learned that the prototype could not capture the objective of the method,

ending up explaining it vaguely. This was not the case with MWH and Gatherer. These two

roles have a clear purpose and, in our evaluation, both example's objective was to return

the value of the variable with such a role. Showing if certain conditions are present, variable

role knowledge can be used to determine even the method's objective. On another level,

role knowledge can also be used to explain common occurrences such as loops. By using

the AII, we can determine which arrays and what positions are being iterated, making

possible a precise loop explanation. In some examples, roles allow for a more immersive

explanation, which is necessary for a good learning experience.

• Is it possible to automatically generate meaningful explanations of small functions in

natural language? – Yes, although there are exceptions, most of the translations overall

received positive results, many of them having evaluation scores of 5 (the highest grade),

meaning that, to some extent, instructors considered the translations adequate to convey

the methods’ functionality.

6.2. Future work

For future work, first, we propose to increase the data gathered about patterns of each role. Although

our data set is based on previous work [17], due to the lack of data, some roles could not be analyzed

as wanted. Therefore, we hope the same experiment is redone but with more instructors and methods

to add more variety to the data set, consequently, uncovering more patterns and adapting those to

the translations. Secondly, we also desire to expand on our evaluation method, exhibiting this

prototype to more experienced instructors. And, especially, to make an experience to see how our

project fares when in the hands of an inexperienced student, which is the main purpose of this

prototype.

Just as this project is a continuation of PandionJ [7] in seeing how much the knowledge of roles

can enhance the initial programming learning experience and what kind of portrayal (e.g., textual,

visual) makes the most difference, we are encouraged to continue to experience with more

information portrayals, hopefully leading to a conclusion about the general benefits of variable roles

in education.

53

[1] Y. Qian and J. Lehman, “Students’ misconceptions and other difficulties in introductory

programming: A literature review,” ACM Transactions on Computing Education, vol. 18, no. 1,

pp. 1–24, 2017, doi: 10.1145/3077618.

[2] E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud, “Predicting at-risk novice Java programmers

through the analysis of online protocols,” ICER’11 - Proceedings of the ACM SIGCSE 2011

International Computing Education Research Workshop, pp. 85–92, 2011, doi:

10.1145/2016911.2016930.

[3] A L. Santos, ”Enhancing visualizations in pedagogical debuggers by leveraging on code

analysis.” In Proceedings of the 18th Koli Calling International Conference on Computing

Education Research (Koli Calling '18), pp. 1–9, 2018, doi:10.1145/3279720.3279732

 [4] M. Kölling, “Using BlueJ to introduce programming,” Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 4821 LNCS, pp. 98–115, 2008, doi: 10.1007/978-3-540-77934-6_9.

[5] A. L. Santos, “AGUIA/J: A tool for interactive experimentation of objects,” ITiCSE’11 -

Proceedings of the 16th Annual Conference on Innovation and Technology in Computer

Science, no. November, pp. 43–47, 2011, doi: 10.1145/1999747.1999762.

[6] P. A. Kirschener, J. Sweller, and R. E. Clark, “Why Minimal Guidance During Instruction Does

Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential,

and Inquiry-Based Teaching,” Educational Psychologist, vol. 21, no. 41, pp. 75–86, 2006, doi:

10.1207/s15326985ep4102_1.

[7] H. S. Sousa, “Illustrating Debugger Execution Leveraging on Variable Roles,” MSc, Ista, Iscte -

Instituto Universitário de Lisboa, 2016, Accessed on: Nov 23, 2019. [Online]. Available:

https://repositorio.iscte-iul.pt/handle/10071/14632.

[8] E. Lahtinen, K. Ala-Mutka, and H. M. Järvinen, “A study of the difficulties of novice

programmers,” Proceedings of the 10th Annual SIGCSE Conference on Innovation and

Technology in Computer Science Education, pp. 14–18, 2005, doi: 10.1145/1067445.1067453.

[9] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and correcting Java

programming errors for introductory computer science students,” SIGCSE Bulletin (Association

for Computing Machinery, Special Interest Group on Computer Science Education), pp. 153–

156, 2003, doi: 10.1145/792548.611956.

[10] P. Denny, A. Luxton-Reilly, and E. Tempero, “All syntax errors are not equal,” Annual

Conference on Innovation and Technology in Computer Science Education, ITiCSE, pp. 75–80,

2012, doi: 10.1145/2325296.2325318.

[11] Simon, “Assignment and sequence: Why some students can’t recognise a simple swap,”

Proceedings - 11th Koli Calling International Conference on Computing Education Research,

Koli Calling’11, pp. 10–15, 2011, doi: 10.1145/2094131.2094134.

Bibliography

54

[12] J. Sajaniemi, “An empirical analysis of roles of variables in novice-level procedural programs,”

Proceedings - IEEE 2002 Symposia on Human Centric Computing Languages and Environments,

HCC 2002, pp. 37–39, 2002, doi: 10.1109/HCC.2002.1046340.

[13] U. Nikula, J. Sajaniemi, M. Tedre, and S. Wray, “Python and Roles of Variables in Introductory

Programming: Experiences from Three Educational Institutions,” Proceedings of the 2007

InSITE Conference, vol. 6, 2007, doi: 10.28945/3097.

[14] M. Kuittinen and J. Sajaniemi, “Teaching roles of variables in elementary programming

courses,” SIGCSE Bulletin (Association for Computing Machinery, Special Interest Group on

Computer Science Education), vol. 36, no. 3, pp. 57–61, 2004, doi: 10.1145/1026487.1008014.

[15] P. Gerdt and J. Sajaniemi, “An Approach to Automatic Detection of Variable Roles in Program

Animation,” Third Program Visualization Workshop, no. 1984, pp. 86–93, 2004.

[16] L. N. de Barros, A. Paula, and S. P. Brazil, “A Tool for Programming Learning with,” pp. 125–

129, 2005.

[17] A. L. Santos, H. Sousa, “An exploratory study of how programming instructors illustrate

variables and control flow. In Proceedings of the 17th Koli Calling International Conference on

Computing Education Research (Koli Calling '17), pp. 173–177, 2017, doi:

10.1145/3141880.3141892.

 [18] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker, “Towards automatically

generating summary comments for Java methods,” ASE’10 - Proceedings of the IEEE/ACM

International Conference on Automated Software Engineering, pp. 43–52, 2010, doi:

10.1145/1858996.1859006.

[19] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Generating parameter comments and

integrating with method summaries,” IEEE International Conference on Program

Comprehension, pp. 71–80, 2011, doi: 10.1109/ICPC.2011.28.

[20] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting and describing high

level actions within methods,” Proceedings - International Conference on Software

Engineering, pp. 101–110, 2011, doi: 10.1145/1985793.1985808.

[21] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-Shanker, “Automatic

generation of natural language summaries for Java classes,” IEEE International Conference on

Program Comprehension, pp. 23–32, 2013, doi: 10.1109/ICPC.2013.6613830.

[22] E. Wong, T. Liu, and L. Tan, “CloCom: Mining existing source code for automatic comment

generation,” 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and

Reengineering, SANER 2015 - Proceedings, pp. 380–389, 2015, doi:

10.1109/SANER.2015.7081848.

[23] Y. Liang and K. Q. Zhu, “Automatic generation of text descriptive comments for code blocks,”

32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 5229–5236, 2018.

55

[24] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation,” Proceedings -

International Conference on Software Engineering, pp. 200–210, 2018, doi:

10.1145/3196321.3196334.

[25] D. Miguel, “Automatic Generation of Descriptions for Prolog Programs,” MSc, Ista, Iscte -

Instituto Universitário de Lisboa, 2019, Accessed on: Jul 13, 2020. [Online]. Available:

https://www.it.pt/Supervisions/Supervision/16115.

[26] N. R. Carvalho, J. J. Almeida, P. R. Henriques, and M. J. Varanda, “From source code

identifiers to natural language terms,” Journal of Systems and Software, vol. 100, pp. 117–

128, 2015, doi: 10.1016/j.jss.2014.10.013.

[27] D. K. Deeptimahanti and R. Sanyal, “Semi-automatic generation of UML models from natural

language requirements,” Proceedings of the 4th India Software Engineering Conference 2011,

ISEC’11, pp. 165–174, 2011, doi: 10.1145/1953355.1953378.

[28] S. Mandal and S. K. Naskar, “Natural Language Programing with Automatic Code Generation

towards Solving Addition-Subtraction Word Problems,” Proceedings of the 14th International

Conference on Natural Language Processing ({ICON}-2017), no. December, pp. 146–154, 2017,

[Online]. Available: https://www.aclweb.org/anthology/W17-7519.

[29] R. Correia, N. Mamede, J. Baptista, and M. Eskenazi, “MetaTED: A corpus of metadiscourse

for spoken language,” Proceedings of the 10th International Conference on Language

Resources and Evaluation, LREC 2016, pp. 3907–3913, 2016.

[30] A. Ädel, “Just to give you kind of a map of where we are going: A Taxonomy of Metadiscourse

in Spoken and Written Academic English,” Nordic Journal of English Studies, vol. 9, no. 2, p.

69, 2010, doi: 10.35360/njes.218.

[31] R. Correia, N. Mamede, J. Baptista, and M. Eskenazi, “Using the crowd to annotate

metadiscursive acts,” Proceedings 10th Joint ISO - ACL SIGSEM Workshop on Interoperable

Semantic Annotation, pp. 102–108, 2014.

[32] Python Speech Recognition, “SpeechRecognition · PyPI,” Pypi.org, 2019.

https://pypi.org/project/SpeechRecognition/ (accessed Jul. 13, 2020).

[33] “Combinação e contração das preposições - PrePara ENEM.”

https://www.preparaenem.com/portugues/combinacao-contracao-das-preposicoes.htm

(accessed Sep. 08, 2020).

[34] “Contracções (preposição + pronome/determinante, pronome + pronome) - Ciberdúvidas da

Língua Portuguesa.” https://ciberduvidas.iscte-iul.pt/consultorio/perguntas/contraccoes-

preposicao--pronomedeterminante-pronome--pronome/27390 (accessed Sep. 19, 2020).

[35] “GitHub - andre-santos-pt/paddle.” [Online]. Available: https://github.com/andre-santos-

pt/paddle. [Accessed: 28-Oct-2020].

56

Questionnaire used to evaluate the textual generation prototype

Questionnaire general information

Appendix A

57

Method 1

Method 2

58

Method 3

Method 4

59

Method 5

Method 6

60

Method 7

61

Method 8

62

Questions about functionality

Questions about completeness

63

Questions about readability

65

Java methods analyzed in chapter 3 from [17]

Appendix B

66

67

 Enhancing textual explanations for Java methods
with variable role knowledge

Ricardo Cardoso da Silva

 Enhancing textual explanations for Java methods
with variable role knowledge

Ricardo Cardoso da Silva

