
An effective and efficient web platform for monitoring, control, and man-

agement of drones supported by a new microservices approach

Jorge Rafael Cunha Santos

Master in Telecommunications and Computer Engineering

Supervisor

Doctor Pedro Joaquim Amaro Sebastião, Assistant Professor

Iscte - Instituto Universitário de Lisboa

December, 2020

Dedico este trabalho à minha familia, o pilar da minha vida.

Sem eles nunca teria conseguido atingir este objetivo.

Por ti avó.

Acknowledgment

First of all, I want to express my gratitude to my supervisor Prof. Dr. Pedro Sebastião

for the support, orientation and accompaniment given throughout the elaboration of this

dissertation.

To the Institute of Telecommunications of Iscte-iul for providing its installations for

the development of this project.

I thank my whole family for all the support given over the last few years. Without

them I would not have been able to achieve the personal, academic, and professional

successes that I now achieve. A special appreciation to my parents, António and Isabel,

and to my uncles, Maria João, Carlos and Isabel.

To Carlos Saraiva for all the follow-up given during this dissertation, fundamental for

this project to be concluded. For the opportunity given, the support and the motivation,

thank you very much.

To my friends for the companionship and friendship that accompanied me on this

long journey through the Iscte. Special thanks to Carolina Diońısio, Gonçalo Simões, Rui

Passinhas, and Sara Ferreira for giving me fantastic years in this course. Without them,

this passage through Iscte would not have had the same brilliance.

Thanks also to João Cardoso, João Antão and João Domingos for their motivation,

support and help during these difficult months of confinement that coincided with the

writing of this dissertation.

Finally, but most special, to my grandmother Maria Fernanda.

iii

Resumo

Nos últimos anos tem-se assistido a um grande crescimento do uso de drones, sendo

utilizados em diversas áreas como a da segurança, da agricultura ou da investigação. A

existência de alguns sistemas que permite o controlo de drones à distância é uma realidade,

porém, estes sistemas são bastante simples e direcionados a uma funcionalidade espećıfica.

Esta dissertação propõe a elaboração de uma plataforma web feita em Vue.js e Node.js

para controlar, gerir e monitorizar drones em tempo real. Usando uma arquitetura de

microsserviços, o projeto proposto será capaz de integrar algoritmos que permitem a

otimização de processos. A comunicação com os aparelhos remotos é sugerida via HTTP

através das redes de 3G, 4G e 5G, e pode ser feita em tempo real ou através de agen-

damento de rotas. Esta dissertação aborda o caso dos incêndios florestais como um dos

serviços que poderia ser inclúıdo num sistema semelhante ao apresentado.

Os resultados obtidos com a elaboração deste projeto foram um sucesso. A comu-

nicação entre a plataforma web com drones permitiu o seu controlo e monitorização à

distância. A incorporação do algoritmo de deteção de incêndios na plataforma demon-

strou ser posśıvel uma análise em tempo real das imagens captadas pelo drone, sem

intervenção humana.

O sistema proposto demonstrou ser uma mais valia ao uso de UAVs na deteção de

incêndios. A arquitetura da aplicação desenvolvida permite que outros algoritmos sejam

implementados, obtendo uma aplicação mais complexa e com clara expansão.

Palavras-Chave: Controlo de drones, Microsserviços, Node.js, Véıculo Aéreo Não

Tripulado, Vue.js

v

Abstract

In recent years there has been a great growth in the use of drones, being used in several

areas such as security, agriculture, or research. The existence of some systems that allow

the remote control of drones is a reality, however, these systems are quite simple and

directed to specific functionality.

This dissertation proposes the development of a web platform made in Vue.js and

Node.js to control, manage and monitoring drones in real time. Using a microservice

architecture, the proposed project will be able to integrate algorithms that allow the

optimization of processes. Communication with remote devices is suggested via HTTP

through 3G, 4G, and 5G networks, and can be done in real time or by scheduling routes.

This dissertation addresses the case of forest fires as one of the services that could be

included in a system similar to the one presented.

The results obtained with the elaboration of this project were a success. The commu-

nication between the web platform and drones allowed its remote control and monitoring.

The incorporation of the fire detection algorithm in the platform proved possible a real

time analysis of the images captured by the drone, without human intervention.

The proposed system has proved to be an asset to the use of drones in fire detection.

The architecture of the application developed allows other algorithms to be implemented,

obtaining a more complex application with clear expansion.

Keywords: Drone Control, Microservices, Node.js, Unmanned Aerial Vehicles, Vue.js.

vii

Contents

Acknowledgment iii

Resumo v

Abstract vii

List of Figures xiii

List of Tables xv

List of Acronyms xvii

Chapter 1. Introduction 1

1.1. Motivation and Context 1

1.2. Objectives 2

1.3. Structure of the Dissertation 2

1.4. Main Contributions 3

Chapter 2. State of Art 5

2.1. Software Architecture 5

2.1.1. Monolithic Architecture 5

2.1.2. Microservice Architecture 6

2.1.3. Monolithic vs Microservice Architecture 8

2.2. JavaScript 9

2.2.1. TypeScript 9

2.2.2. React 10

2.2.3. Angular 10

2.2.4. Vue.js 10

2.2.5. Angular vs React vs Vue 11

2.2.6. Node.js 12

2.3. Unmanned Aerial Vehicles 12

2.4. Database 13

ix

2.4.1. Structured Query Language 13

2.4.2. Not Only SQL (NoSQL) 14

2.4.3. MySQL / MariaDB 14

2.4.4. Oracle Database 15

2.4.5. MongoDB 15

2.4.6. MySQL vs Oracle DB vs MongoDB 16

2.5. Tests 16

2.5.1. Jest 17

2.5.2. Mocha & Chai 17

2.5.3. ESLint and TSLint 18

2.6. GitHub 18

2.7. Security 18

2.7.1. SSL Certificate 19

2.7.2. PassportJS 20

2.7.3. JSON Web Token 20

2.8. Mobile Network Technologies 21

2.8.1. 3G, 4G and 5G 21

2.9. Communication Protocols 22

2.9.1. Hyper Text Transfer Protocol 22

2.9.2. Hyper Text Transfer Protocol Secure 22

2.9.3. Simple Mail Transfer Protocol 23

2.9.4. MavLink 23

2.10. Artificial Intelligence 24

2.11. Machine Learning 24

2.12. Ardupilot SITL 24

2.13. Related Work 25

Chapter 3. System Implementation 29

3.1. Platform Design 31

3.2. Frontend Architecture in Vue.js 31

3.3. Backend Architecture in Node.js 37

3.3.1. Gateway microservice 40

3.3.2. Notification microservice 41

3.3.3. Image Processing Microservice 42

x

3.3.4. Drone Microservice 42

3.4. Database 43

3.4.1. Object Relational Mapper 45

3.5. Tests 46

3.6. Security 47

Chapter 4. Results 51

4.1. Web Platform 51

4.2. Drone Control 55

4.3. Fire Detection 56

Chapter 5. Conclusions 59

5.1. Main Conclusions 59

5.2. Future work 60

References 61

xi

List of Figures

2.1 Monolithic Architecture 6

2.2 Microservice Architecture 7

2.3 Domain Validation (DV) Certificate 19

2.4 Organization Validation (OV) and Extended Validation (EV) Certificate 19

2.5 Without Certificate 19

2.6 JWT Authentication Diagram 20

2.7 MavLink Protocol Message Format 24

2.8 Ardupilot Running 25

2.9 Illustraion of the Ardupilot by SITL 26

3.1 System Architecture 30

3.2 Devices List Mockup 31

3.3 Device Mockup 32

3.4 Change and Remove Permissions Mockup 32

3.5 Add Permissions Mockup 33

3.6 Dashboard Organization 33

3.7 Application Programming Interface (API) Code Example to Get Users 34

3.8 Sample Code for use of Components 35

3.9 Vue-router Implementation 36

3.10Vuex Architecture 37

3.11Authentication and UserData Organization 38

3.12Backend Architecture 38

3.13Node.js Architecture 39

3.14Node.js Routing 39

3.15Log File Structure 40

xiii

List of Figures

3.16Gateway Architecture 41

3.17Notification Architecture 41

3.18Drone Architecture 43

3.19Sample Code to Communicate with Drone via MavLink 43

3.20UserData Relational Diagram 44

3.21Notification Relational Diagram 44

3.22Drone Relational Diagram 45

3.23Registration of an Company using Sequelize 46

3.24Unit Test of Drone Creation 47

3.25Structured Query Language (SQL) Injection Scheme 48

3.26Login Scheme with JSON Web Token (JWT) 49

3.27JWT Structure 50

4.1 Flydren Website Homepage 51

4.2 Flydren Website Flight Automation Details 52

4.3 Flydren Website Object Recognition Details 52

4.4 Flydren Signup Page 53

4.5 Flydren Login Page 54

4.6 Dashboard Page 54

4.7 Drone List Page 55

4.8 Drone Edit Page 55

4.9 Drone Control Page 56

4.10Drone Mission Simulation 57

4.11Fire Algorithm 57

xiv

List of Tables

2.1 Basic information of Angular, React and Vue 11

2.2 Angular, React and Vue Statistics by GitHub 11

2.3 Comparison between MySQL, Oracle DB and MongoDB 16

xv

List of Acronyms

API Application Programming Interface

ASCII American Standard Code for Information Interchange

AWS Amazon Web Services

CA Certificate Authority

CPU Central Processing Unit

CSS Cascading Style Sheets

DAO Data Access Object

DBMS Database Management System

DOM Document Object Model

DTO Data Transfer Object

DV Domain Validation

ES5 ECMAScript 5

ES6 ECMAScript 6

EV Extended Validation

GCS Ground Control Station

HALE High Altitude Long Endurance

HD High Definition

HMAC Hash-based Message Authentication Code

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IDE Integrated Development Environment

IMAP Internet Message Access Protocol

IMT-2000 International Mobile Telecommunications-2000

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

JWT JSON Web Token

xvii

List of Acronyms

KB KiloByte

LTE Long Term Evolution

MALE Medium Altitude Long Endurance

MAV Micro UAV

MavLink Micro Air Vehicle Link

MIME Multipurpose Internet Mail Extensions

MIMO Multiple-Input and Multiple-Output

MUAV Mini UAV

NoSQL Not Only SQL

ORM Object-Relational Mapping

OSI Open System Interconnection

OV Organization Validation

PL/SQL Procedural Language/Structured Query Language

POP Post Office Protocol

RAM Random Access Memory

RDBM Relational Database Management System

REST Representational State Transfer

RFC Request for Comments

RSA Rivest-Shamir-Adleman

SITL Software In The Loop

SMTP Simple Mail Transfer Protocol

SOA Service-Oriented Architecture

SPA Single Page Application

SQL Structured Query Language

SSD Single Shot Detector

SSL Secure Socket Layer

TDD Test-Driven Development

TLS Transport Layer Security

TUAV Tactical UAV

UAV Unmanned Aerial Vehicle

UMTS Universal Mobile Telecommunications System

URL Uniform Resourcer Locator

UTS Unix Time Stamp

xviii

List of Acronyms

XML Extensible Markup Language

YOLO You Look Only Once

xix

CHAPTER 1

Introduction

1.1. Motivation and Context

The forest area in the world represents approximately 31%, but over the last decades

this value has been decreasing successively [1, 2]. The reasons for the losses of forest land

are diverse, one of them being the disasters with forest fires. Forest fires are uncontrolled

fires that have a very high destructive capacity, capable of destroying thousands of hectares

of forest areas, naturally causing the destruction of flora, but also the destruction of

infrastructure and, worst of all, the death of animals and humans. The carelessness of

the population in the treatment and cleaning of the forests, the criminal hand and the

inability of the security forces to control these fires contribute to them becoming real

natural disasters when the wind and humidity conditions are favorable [3].

The existence of checkpoints in the forests has allowed fires to be detected more quickly,

which allows a faster response to initial outbreaks of fire. The faster fires are fought the

less damage occurs. Other detection methods, such as distributed sensors in the middle

of the forests or the installation of cameras, theoretically help this detection. However,

these efforts are insufficient and, considering the technological advances of recent years,

new methods must be thought out and implemented. The use of a robust system that

would be able to carry out active surveillance autonomously would be an added value for

these situations.

Initially intended for military purposes, in recent years the Unmanned Aerial Vehicle

(UAV) have captivated the ordinary citizen and the business sector. It is already possible

to use this type of devices to make deliveries, to do private vigilance in properties or just

make aerial filming for pure entertainment [4].

The use of these devices can be rewarding in the area of detecting and fighting forest

fires. By having the ability to collect data and images in real time, drones can be used

for continuous surveillance of forest areas. Through the collected data, which is sent to a

server, it is possible to detect risk areas or even to detect fires through sensors and images

captured by the drone.

1

Chapter 1 Introduction

1.2. Objectives

The objective of this dissertation is the development of a web platform for real-time

control, management and monitoring of drones. Vaguely, it will be possible for a user

to register the drone and be able to control it live via a computer or smartphone. This

system would be very useful for situations related to the detection of forest fires, since

the range of the drones would only be limited by the range of the mobile network in the

territory and by the battery that the device itself possesses, overcoming constraints of

this type of situations such as pedestrian access to isolated locations and difficult to reach

areas.

Along with the real-time control of the drone, the possibility of scheduling the drone to

make a certain route will be implemented. This functionality is very useful and important,

taking advantage of the fact that it is not necessary the real time monitoring of a human

being for the system to work, allowing these resources to be allocated to other areas.

The use of artificial intelligence would play a fundamental role in this system. The

data collected by the drone, especially the images, need to be analyzed. Continuing the

projects already developed by the Institute of Telecommunications of Iscte-iul, in Lisbon,

Portugal, image processing algorithms have already been developed with the ability to

detect fires. The objective of this project is also to include the results obtained from

previous investigations carried out on this platform, in order to make it a robust and

complete platform.

Although the development of the platform focuses essentially on the improvement of

detection systems, its use can be generalized to other situations. A well implemented and

thought out system allows the addition of new functionalities or algorithms.

1.3. Structure of the Dissertation

This dissertation is organized in a total of 5 chapters, with the respective descriptions:

• Chapter 1 - Introduction: introduces the context of this dissertation, as well as

the objectives intended with this project.

• Chapter 2 - State of the Art: description of technology used or investigated before

the implementation of this project and the analysis of related works

• Chapter 3 - System Implementation: description of the system architecture, and

its implementation. Presentation of the project initially proposed for this disser-

tation.

2

Chapter 1 Introduction

• Chapter 4 - Results: demonstration of the objective results with the system

developed

• Chapter 5 - Conclusion: presents the conclusions obtained with this dissertation

and improvements that it should have.

1.4. Main Contributions

The work conducted in this dissertation contributed in two ways: one practical and

the other scientific. On the practical side, the project developed proved to be able to be

a robust but simple platform for managing drones through the internet. Its applications

are diverse, including fire detection through the implemented algorithm. Its use can be

by individual users or by companies.

This project allowed scientific contributions related to the development of platforms

based on a microservice architecture for control, management, and monitoring of drones.

The publications are:

• J. R. Santos, P. Sebastião, “An Effective and Efficient Web Platform for Moni-

toring, Control, and Management of Drones Supported by a Microservices Ap-

proach” in ICAST 2021: International Conference on Applied Science and Tech-

nology.

• J. R. Santos, P. Sebastião, “A Microservice Platform for Real-time Control and

Monitoring of Drones” in Applied Sciences

3

CHAPTER 2

State of Art

In this chapter will be presented the various architectures, technologies, frameworks,

libraries and methodologies studied for the development of the project proposed by this

dissertation. Projects similar to the one proposed by this document will also be analyzed,

presenting the advantages that the project presented here has.

2.1. Software Architecture

Two software architectures will be presented next: the monolithic architecture and the

microservices architecture. The structure of each of these architectures will be illustrated,

describing the advantages and disadvantages, culminating in a comparison between the

two studied architectures.

2.1.1. Monolithic Architecture

The monolithic architecture is considering the standard way of developing an appli-

cation. This approach consists of encapsulating all system services in the same basic

code, for example the HTML and JavaScript pages that the user interacts, API, database

access, system logic and request execution [5].

At the beginning of a project, the handling of this type of applications is quite simple

and accessible: it has only one basic code which facilitates its initial development and

scaling, and its level of complexity is relatively low [6]. It is possible to use only one

database to handle all information, making transactions easier to manage. Figure 2.1

shows the example of a monolithic architecture.

For large-scale projects, this type of architecture can become a problem. Due to factors

such as the large amount of code and high coupling, developing new features or fixing bugs

can result in a high effort cost for development teams [6]. The simple implementation

of a feature, which at first seems simple, can in fact affect multiple project files and

components, making this task more complex and critical [5].

Continuous deployment is also affected in large projects that use this architecture.

The construction of an artifact in this type of applications encompasses all the project’s

5

Chapter 2 State of Art

Figure 2.1. Monolithic Architecture

source code, not just a specific module. Thus, the passage to production of a new func-

tionality has to be done with the project as a whole. This situation implies that the whole

development team has to be in sync to avoid delays in the development of the application

[7, 8].

On the other hand, the implementation of a monolithic project in the various develop-

ment environments, such as the test environment or production environment, is simpler.

Since only one artifact is used, its passage through the various stages of development is

done in a continuous manner [5]. The development of integration tests in this type of

projects is much easier compared to the microservice system, since all the project code is

located in the same place [7].

2.1.2. Microservice Architecture

The architecture of microservices has been gaining space over the last years. An

application based on this type of architecture is divided into several services, called mi-

croservices. The great advantage of this architecture is due to the easy scalability, project

structure perception and the clean and readable code. The origin of this architecture is

based on the software design called Service-Oriented Architecture (SOA) [9].

6

Chapter 2 State of Art

A microservice should only focus on a set of similar features and should be independent

from other microservices. This is classified as a good modularity in code. Modularity

means ”granting the application components separately and independently”, thus allowing

the development and evolution of each microservice not to be dependent of external

factors. Figure 2.2 shows the example of a microservice architecture [8, 10].

Figure 2.2. Microservice Architecture

The passage from a microservice based application to various development environ-

ments does not necessarily have to be done with all microservices at the same time. Each

microservice generates an artifact that will be implemented independently [5, 9, 10].

This situation, on the other hand, has a negative side, as it is necessary to work with

several artifacts, the time spent in the development of versions is quite high [11].

The communication between these microservices is well delineated because it is done

through lightweight mechanisms, known as APIs, and there is no risk of a microservice

executing internal calls from another microservice. This way, modularity is guaranteed in

this architecture. However, a large number of communications between the microservices

in a single request implies an increase in response time because APIs have limitations in

number and response time [8].

7

Chapter 2 State of Art

2.1.3. Monolithic vs Microservice Architecture

Over the past few years many companies have migrated their applications from a

monolithic architecture to a microservice architecture. Although the development of an

application with this architecture is more expensive in the beginning, in the long term the

advantages are evident. The main advantages and disadvantages of the two architectures

studied are presented below [5, 6, 8, 9, 10].

Monolithic advantages

• Easy development.

• Easy to test, since the whole application integrates a single package.

• Simplicity and speed in deploying, since there is only one package.

• Technological knowledge is equitable, since all developers work on the same ap-

plication and technologies.

Monolithic disadvantages

• In large and complex projects, the implementation of new features will take time

due to high coupling.

• For a minimal change it is necessary to deploy the whole application.

• Introduction or evolution of technologies is complicated and time consuming.

• High CPU utilization.

Microservice advantages

• Low coupling.

• Problems in one of the services do not directly affect the others.

• Fast initialization of services.

• Changes to the code do not imply the deployment of the entire application, only

the changed microservice.

Microservice disadvantages

• The structure of the application is more complex.

• End-to-end and integration tests are more difficult to perform.

• A larger development team is needed because each service can have its own

technology.

• Initial application development is slow.

8

Chapter 2 State of Art

2.2. JavaScript

JavaScript is one of the most popular programming languages in the world. In the be-

ginning it expressed itself in small segments of code to make web pages more dynamic and

attractive to users, libraries and frameworks began to appear and changed the paradigm

of this language [12], [13].

A framework is a set of libraries and tools that allow you to solve recurring problems,

allowing the developer to focus on solving the actual problem and not rewriting code.

In 2010, with the development of AngularJS by Google, JavaScript frameworks began

to stand out among the other technologies, opening space for other frameworks of the

same kind to grow [14].

Most of these frameworks are made up of components. These components have intrin-

sically at their root the ability to communicate with each other, to store information and

are encompassed within the flow of control and processes. The main difference between a

library or a framework is what each one provides to the developer. While a library provides

only one set of functions and methods, a framework offers a pre-implemented architecture,

a set of processes and flows of an already prefabricated system, facilitating communication

between the various modules/layers that the project itself needs [14, 15, 16].

2.2.1. TypeScript

TypeScript language is a super-set of JavaScript that includes a huge amount of fea-

tures that are natively not available or that require a great implementation effort [17].

Created by Microsoft, this language better supports the use of Object-Oriented Pro-

gramming, which includes the principles of inheritance, polymorphism, encapsulation

and abstraction. In addition, it corrects a syntax flaw in JavaScript related to data types.

While in JavaScript the creation of variables does not require the indication of the variable

type, in TypeScript besides using the same syntax as JavaScript, it requires the developer

to indicate the variable type. This improvement allows Integrated Development Envi-

ronment (IDE)s to provide a richer environment for error detection and, consequently,

enables better code interpretation by other users [17, 18].

TypeScript is an open-source project and is based on the ECMAScript 6 (ES6) stan-

dards, which allows compilation into JavaScript. Thus, development in TypeScript is done

in .ts files that can be compiled to JavaScript, since browsers cannot process TypeScript

directly [17].

9

Chapter 2 State of Art

2.2.2. React

React is a robust JavaScript library designed for the development of interactive in-

terfaces without web pages. This library is one of the most used in the world, having a

very simple learning process requiring only basic knowledge of HyperText Markup Lan-

guage (HTML) and Cascading Style Sheets (CSS) to understand it. As it is a very

complete library, it is commonly inserted in the context of frameworks [15, 19].

React, like other frameworks, is composed by components that, interlinked with each

other, originate a cohesive and simplistic flow. It has a Data Binding feature, using an

architecture called Flux, in which a control point makes the data management between

and for the components.

Another feature highly valued in React is the concept of Virtual Document Object

Model (DOM), a tree structure composed of simple objects, enhancing the performance of

the application. When building a Virtual DOM, all objects in this structure are compared

with those already existing in the browser, updating the components where there was a

change, making the process effective and fast [15, 16, 19].

2.2.3. Angular

Angular is a JavaScript framework launched in September 2016, which allows web and

mobile development. It was developed by Google, succeeding the AngularJS framework.

Also known as Angular 2, this framework allows code writing in ECMAScript 5 (ES5)

JavaScript, ES6 JavaScript, Typescript and Dart [14, 17].

Working with very recent languages and libraries, the browsers still have limitations,

which involves some effort of Angular to ensure compatibility with older versions of

browsers. This compatibility is guaranteed through transpilers that the framework it-

self already has properly implemented. On the other hand, there is a great effort in the

community to adopt the ES6 standard, which allows the abolition of transpilers over time

[14, 16, 20].

2.2.4. Vue.js

Vue.js, or just Vue, is a very recent progressive framework, compared to the others

already compared, and is very versatile, easy to use and with a high performance. The

development of this framework was thought to contain the most valued features of the most

popular frameworks. Thus, Vue includes React’s Virtual DOM and Angular’s template

construction [16, 21, 22].

10

Chapter 2 State of Art

Vue is essentially focused on the visual layer and allows an easy integration with

other libraries in order to obtain the desired result. It also allows the development of

Single-Pages Applications together with other libraries and dedicated tools [21].

2.2.5. Angular vs React vs Vue

Until a few years ago, the choice of which JavaScript framework to use was between

Angular or React. But over the last few years, there has been a great growth in the use

of another framework that has shuffled the accounts, the Vue.js.

The development community has a great impact on technological trends. Therefore,

it is possible to obtain a perspective of the growth of these technologies using statistical

data provided by platforms such as GitHub, the largest repository of projects in the world.

Table 2.1 compares some of the characteristics between these JavaScript frameworks [16].

Table 2.1. Basic information of Angular, React and Vue

Angular React Vue
Release date 2010 2013 2014
Approximately size (KiloByte (KB)) 500 100 80
Stable version (Nov 2020) 10.2 16.6 2.6
Used by Google, Wix Facebook, Uber GitLab, Alibaba

Analyzing the Table 2.2, it is possible to conclude that the interest between React

and Vue are similar and high, comparing with the number of Angular observers. The

popularity of Vue is also proven with the number of stars given to this project. It can

also be seen that the conteibution that Vue has is higher compared to Angular and React.

The justification for this great difference is related to the companies that support each of

the technologies: Angular and React have Google and Facebook, respectively, while Vue

is supported by the open source community that has a huge number os users [23].

Table 2.2. Angular, React and Vue Statistics by GitHub

Angular React Vue
GitHub #Observers 3.2k 6.7k 6.2k
GitHub #Stars 62k 151k 166k
GitHub #Contributers 1k 1.3k 300k

The choice between one of these frameworks is not consensual, each having pros and

cons depending on the objective:

• Angular is the oldest framework, therefore the most mature among the three,

having already a high amount of tested and operational tools. It is especially

11

Chapter 2 State of Art

indicated for large projects and with a team that knows TypeScript. However,

the learning of this framework is large and complex.

• React is a framework widely accepted by the community and can be easily incor-

porated into projects already built. Because it allows some flexibility, it is widely

used in small projects or start-ups.

• Vue, despite being the latest framework among these three, has a very flexible

architecture and easy integration. It offers a great customization, having an

overlapping of its functionalities like Angular and React, making a later transition

very accessible.

2.2.6. Node.js

Node.js, or simply Node, is a JavaScript implementation developed to run in a server-

side environment, so it is not browser dependent, unlike traditional JavaScript imple-

mentations. This type of implementation emerged with the growing need for server-side

applications in JavaScript [24, 25].

Unlike other modern frameworks, Node processes do not rely on multi threading to

support the simultaneous execution of logical processes, based on asynchronous and non-

blocking input and output events. Node runs on a Google JavaScript V8 machine, which

consists in transforming JavaScript code into another faster and more perceptible pro-

gramming language by the computer [24, 25].

2.3. Unmanned Aerial Vehicles

UAV are flying devices that do not require a human on board to carry out flight

plans. The drones can be controlled remotely by a human, through radio communication,

or autonomously, using an embedded system and a set of sensors that allows you to make

flight plans [26, 27].

Due to the wide variety of existing UAVs, the author in [28] distributes them into

different categories, depending on their range, autonomy and achievable altitude:

• High Altitude Long Endurance (HALE) are aircraft that have a high autonomy of

flight, which can exceed 24 hours. They can cover more than 5000km of distance,

reach a maximum altitude of 15km and their size can go up to 35m. These UAVs

are used in military missions, such as remote surveillance and air attacks.

12

Chapter 2 State of Art

• Medium Altitude Long Endurance (MALE) are drones with functions which are

similar to HALE but have only a range of 500km and reach a maximum altitude

of 5km. Their size can be up to 20m.

• Tactical UAV (TUAV) are drones like MALE and HALE with a range between

100 and 300km. Their size is very small (not exceeding 10m) and they have a

maximum autonomy of 10h.

• Close-Range UAV are relatively small and very common devices in the military

and civil area, used for different purposes. It can travel a distance of 100km and

has an autonomy of 2 to 4 hours. Its size varies between 1 and 6 meters.

• Mini UAV (MUAV) are drones with a weight of under 10kg. They have an

autonomy of only 2 hours and reach a maximum altitude between 150 and 300m.

Their size does not normally exceed 3 meters.

• The Micro UAV (MAV), together with the MUAVs, are the most popular types

of drones. Due to their small size that does not exceed 1 meter, their acquisition

is quite affordable. The flight autonomy of an MAV is less than one hour and

can reach a height of 250m. Its range does not exceed 20km.

This dissertation will focus mainly on MAV because they are the most common types

of drones.

2.4. Database

2.4.1. Structured Query Language

SQL is the standard language used in Relational Database Management System (RDBM)

relational database. This type of database has as main objective to relate the information

stored in its tables to each other. It also allows a controlled management of data and

system flow.

An SQL database is essentially built by tables, which in turn may have several rows

or entries. Each row of a table is a distinct entity, and each column of the table is an

attribute of that entity [29, 30].

SQL databases must respect the concept of ACID, which includes the integrity of

the information and the system, the validation of transactions, the synchronization of all

tables and the persistence of data after technical failures. The acronym ACID comes from

the following concepts [29]:

• Atomicity: In which each transaction must be reversible if the action is not

successful.

13

Chapter 2 State of Art

• Consistency: The stored data must respect the various rules defined.

• Isolation: The transactions are executed sequentially, which prevents a later ac-

tion from catching an intermediate state existing in the previous multiple action.

• Durability: In case of system failure, if an action was successfully executed it

must persist in the database.

2.4.2. Not Only SQL (NoSQL)

Databases in Not Only SQL (NoSQL), unlike the SQL database, are based on key

value pairs, documents or even graph data. Another big difference is in the database

schema, being a dynamic and versatile schema for when the data is not structural.

Because it is not a relational database, the construction of a NoSQL database is less

demanding and has greater flexibility. It is possible to create documents without first

defining a structure and each document can be its own structure [30, 31].

The scalability of the system also differs, being NoSQL scalable horizontally, allowing a

large set of data and information is not a high effort for the Central Processing Unit (CPU)

or Random Access Memory (RAM) of the system.

Most NoSQL systems do not use ACID transactions. To obtain another level of

benefits such as scalability and resiliency, they use the BASE model in their systems [31]:

• Basically Available: The database has a very high availability.

• Soft-state: Even without any input during a period, the state of the system can

change, very much a result of ’Eventually consistent’.

• Eventually consistent: The system guarantees that after a change in an object,

all access requests will return the last updated value. This is if a failure occurs

and taking into account the maximum size of the inconsistency window, which

may vary depending on the system load [32].

2.4.3. MySQL / MariaDB

MySQL is one of the most popular relational database management systems as it is

open source and free of charge for most of its functionalities. This service uses SQL as its

language. This system was created in 1995 by David Axmark, Allal Larsson and Michael

Widenius and was sold to Sun Microsystems in 2008 under the company MySQL AB. It

is currently under Oracle domain since 2009 [33, 34].

Because it is a system with low hardware requirements, easy to implement and with a

very good performance, it is the most used SQL system in the world by development fans

14

Chapter 2 State of Art

and small businesses. Other highly valued features of MySQL are the great compatibility

with various drivers and the ability to be used in any platform [29, 30, 33].

After Oracle’s acquisition of MySQL, the community version became more restricted,

so one of the founders of MySQL, Michael Widenius, created the MariaDB project. Mari-

aDB is a MySQL fork, i.e. it started as an independent project based on the MySQL

source code, allowing the community to continue to use MySQL unrestricted and for free

as well as to make contributions to the sustainability of the project. MariaDB keeps its

version up to date with MySQl, being its compatibility 100% assured [29, 30, 34].

2.4.4. Oracle Database

Oracle Database is also one of the most popular database management systems,

Database Management System (DBMS). The architecture of this database has a great

optimization and performance, whatever the size of data in question.

Although it is an expensive DBMS, the confidence and security it has demonstrated

justify the investment made to implement this service in a company. Being a multi-model

database, it allows not only the creation of relational models, but also of documents,

graphs and key values, some very famous features in NoSQL [35, 36].

Besides the simple database service, Oracle provides other services that allow complet-

ing and adding many compatible services such as Oracle Streams, Oracle Real Application

Clusters. Oracle’s Procedural Language/Structured Query Language (PL/SQL) exten-

sion integrates many other features that are valued in the developer community [35].

Oracle Database is the leading service in the market in this area, especially in the

business environment, since this sector can support the costs.

2.4.5. MongoDB

MongoDB is a document-oriented database turning it into a NoSQL database and, as it

is open-source, it is one of the most used nowadays. Because it is not a relational database,

the insertion of a document does not imply the prior construction of any structure. Each

document can be independent of everything [30, 31].

A document in a MongoDB database is in JavaScript Object Notation (JSON) format,

allowing the document to have simpler values such as dates, numbers, or string, as well

as more complex information such as lists of objects or pairs of key values.

15

Chapter 2 State of Art

MongoDB allows documents to be grouped into collections. It is this set of collections

that forms the database. This information can be replicated to other servers or even be

shared, through the sharding functionality that MongoDB integrates [31].

2.4.6. MySQL vs Oracle DB vs MongoDB

Table 2.3 presents the main differences between the analyzed databases. Comparing

the databases portrayed here, we can see that there is a big difference between MongoDB,

because it is non-relational, and MySQL and Oracle, which are both relational databases.

The choice of the database for this project is based mainly on the most appropriate type

of database. When seeking a more traditional database, where there is a relationship

between the stored data, MongoDB excludes itself from the equation [37].

Table 2.3. Comparison between MySQL, Oracle DB and MongoDB

MySQL OracleDB MongoDB
Primary database model Relational DBMS Relational DBMS Document store

Secondary database model Document store
Document store
Graph DBMS

Search engine

Ranking
#2 Overall
#2 Relational DBMS

#1 Overall
#1 Relational DBMS

#5 Overall
#1 Document store

Stable version (Nov 2020) 8.0 19c 4.4
License Open source (MariaDB) comercial Open source
Data scheme Yes Yes Schema-free

Following, and as previously described, the choice between the MySQL database and

OracleDB fell on the MySQL database, more specifically in the open-source version Mari-

aDB. The bet on MariaDB came about because it is a free version and, as the project

presented in this dissertation is at an early stage and with little information flow, there

is no need to invest in a more robust database like Oracle.

2.5. Tests

Tests in software development are an important factor in ensuring the quality control

of the system. These have as main objective to guarantee that the requirements of the

system are well implemented.

The use of tests allows for cost savings, whether monetary costs or time costs, be-

cause they allow the detection of errors or bugs much faster. A defect discovered in the

production phase of a software has a much higher cost of correction when compared to

discovering the same defect while in a test phase [38].

16

Chapter 2 State of Art

The use of testing in software development is seen as a quality standard by the tech-

nological community. These tests should include the various existing variants, being the

most used [38, 39]:

• Black box testing: validating the functional requirements of the system. The

code is not observed nor how it was implemented, focusing only on the results

obtained by the various processes.

• Regression test: consists of testing each version, allowing the detection of errors

resulting from the software version change.

• Unit tests: checks if smaller parts of the code, usually methods or a small set of

methods, work properly. It is one of the most important tests when developing

software.

• Integration tests: has as main objective to test the joint integrity of several

parts of the code. Like unit tests, integration tests have a great importance in

development.

2.5.1. Jest

Jest is a JavaScript framework for testing. Created by Facebook, it’s a very complete

and fast framework and doesn’t need a complex configuration to use it. It was developed

from the Jasmine framework.

It was initially developed with the purpose of testing the React framework, also de-

veloped by Facebook. However, its implementation has become quite complete and wide

resulting in it being used in other platforms such as JavaScript, Node.js or Typescript

[40].

2.5.2. Mocha & Chai

Mocha, as announced by the website itself, is a JavaScript framework targeted to Node

applications. This framework allows testing in a simple and easy way, even asynchronous

tests [41].

The Mocha project is an open-source project, allowing any developer to contribute

to its growth. Its rich documentation and easy understanding make it one of the main

testing frameworks used in Node.js [41].

When using Mocha in a project, the integration of Chai is recommended [42]. Chai

is an assertion library that complements Mocha itself, giving the developer more options

17

Chapter 2 State of Art

for testing, making them more cohesive and effective [41, 42]. It also allows the imple-

mentation of HyperText Transfer Protocol (HTTP) order testing, very useful for projects

that contain APIs [42]).

2.5.3. ESLint and TSLint

When developing a project, especially a large one, it is necessary to ensure the quality

of the code developed. For this, there are several code qualities tools on the market, which

help you not only to correct errors, but also to prevent duplicate and confusing code. Two

of these best-known tools are ESLint and TSLint.

ESLint is a lint tool for JavaScript that allows you to generate reports of good and

bad practices existing in the project. You can configure ESLint to respect the JavaScript

standards that exist in the community. ESLint is the most accepted open-source tool

used by the community [43, 44].

TSLint is also a code quality tool and has features quite similar to ESLint [43]. The

main difference is in the target language, Typescript. In order to respond to the calls

made by the community, the developers of TSLint and ESLint decided to unify these

tools. Thus, TSLint was deprecated in 2019 and ESLint started the eslint-typescript

project with the support of the founder of TSLint [45].

2.6. GitHub

Git is a version control system created by Linus Torvalds, creator also of Linux [46]. A

version control system is an essential tool for any project. It allows you to track changes

made to the code, recording who changed it and, if necessary, reversing it [47].

These systems are highly recommended in medium and large projects, especially when

there are continuous releases of versions, code corrections or implementation of new fea-

tures [46].

GitHub is a company that provides the Git cloud service. The simple interface provides

users, free access to numerous control and collaboration tools make it the most widely

used Git service in the world [48].

2.7. Security

Security in any system should be considered as a priority to be implemented. In online

systems, where anyone through the Internet can have access to the content, it is more

important that the security implemented allows to guarantee the integrity, privacy and

correct functioning of the whole system [49].

18

Chapter 2 State of Art

The existing servers on the Internet, which allow anyone to host a website, already

have a robust security. However, certain aspects should be implemented on the website

side and must be of concern to any web developer. In the following, some protocols or

libraries will be presented that allow a better security in the communication and integrity

of the whole system [49, 50, 51].

2.7.1. SSL Certificate

Secure Socket Layer (SSL) Certificates, which is issued by the Certificate Author-

ity (CA), allows all communications with this site to be transferred through the HyperText

Transfer Protocol Secure (HTTPS) protocol. SSL certificates can be of three types de-

pending on the desired security level [52, 53]:

• DV Certificate: a certificate that can be obtained easily and at a very accessible

price. It is directed to a domain or sub-domain.

• OV Certificate: it is also a certificate directed to a domain or sub-domain, how-

ever, its verification requires a higher level of security, essentially business.

• EV Certificate: is the certificate that guarantees the highest level of security and

has a validity of only 2 to 7 days. It is aimed at businesses that require extreme

confidentiality, such as bank access.

The images illustrated in figures 2.3, 2.4 and 2.5 show how the various types of SSL

certificates are represented in the browser.

Figure 2.3. DV Certificate [54]
Figure 2.4. OV and EV Cer-
tificate [54]

Figure 2.5. Without Certifi-
cate [54]

19

Chapter 2 State of Art

2.7.2. PassportJS

PassportJS is an authentication middleware for Nodes.js. Its sole purpose is to guar-

antee the authenticity of received requests through an easy and fast way to use. Through

this implementation it is possible to configure a user’s session, authentication strategy

and configure the various authentication routes [55, 56].

PassportJS allows authentication to be done using the traditional method, using an

email or username and the respective password. This information must be stored by the

application in a database. It also allows integration with other more recent authentication

mechanisms, OAuth. OAuth is a service that allows users to register and authenticate

in an application using an external/third party application. This implementation is used

recurrently through authentication using platforms like Google, Facebook or LinkedIn

[55, 56].

2.7.3. JSON Web Token

The JWT is an Request for Comments (RFC) 7519, a security mechanism to realize

authenticity between two parties through the use of a signed token [57]. This token is

digitally signed using an Hash-based Message Authentication Code (HMAC) algorithm

or using public and private Rivest-Shamir-Adleman (RSA) keys.

Figure 2.6. JWT Authentication Diagram

20

Chapter 2 State of Art

The operation mode using this mechanism is quite simple, as can be seen in the Figure

2.6. The server, after receiving the authentication request and subsequent validation,

creates a token signed by the user that is sent to the user. From this moment on, whenever

the user makes requests to the server, the latter must include the token in the message

sent. This way, the server is able to verify the authenticity of the request received, ensuring

that non-authenticated users cannot access restricted content [57, 58, 59].

2.8. Mobile Network Technologies

The technology used in mobile communications ceased many years ago to have exclu-

sive use in the mobile market. The evolution of the technology, and the growing need,

has allowed a high range of other products to incorporate this technology. We can char-

acterize that a mobile communication technology is any wireless communication between

two devices, which can be, among others, cell phones, computers, transmission towers or

radios.

2.8.1. 3G, 4G and 5G

3G technology was the first great leap in mobile communication. With the global stan-

dard agreed at International Mobile Telecommunications-2000 (IMT-2000), the use of the

Internet in cell phones became a daily act of the user. The mobile system compatible with

the IMT-2000 standard is called Universal Mobile Telecommunications System (UMTS).

The most used frequency bands are 900MHz and 2100MHz in Europe, Asia, Africa and

Oceania and 850MHz and 1900MHz on the American continent [60].

The 4G/Long Term Evolution (LTE) technology has allowed communication and infor-

mation exchange to take place with higher bandwidth and lower latency. This technology

has revolutionized several digital sectors such as the use of audiovisual content, streaming

and video calls. Although this technology has existed for many years, its coverage espe-

cially in rural areas is not guaranteed. The frequencies used by the 5G network are mainly

800MHz, 1800MHz and 2600MHz in EuroAsia and 700MHz, 1700MHz and 2300MHz in

America [60].

The 5G technology under implementation presents a new digital technology, the Mas-

sive Multiple-Input and Multiple-Output (MIMO). With 5G, the data exchange speed

will be much faster, with less latency and congestion [61]. The 5G will be the open door

for the great growth of Internet of Things (IoT) in recent years, allowing high numbers of

objects to be connected to each other without disturbances in the network. In contrast,

21

Chapter 2 State of Art

the range of an antenna will be smaller. This technology brings two frequency ranges:

450MHz to 6GHz and 24GHz to 52GHz [60, 61].

2.9. Communication Protocols

2.9.1. Hyper Text Transfer Protocol

HTTP is the protocol used by browsers to exchange information between a user and

a server. This system is the basis of any communication on the Internet, which allows

content to be accessible through an address, commonly called a Uniform Resourcer Lo-

cator (URL) [62].

All servers that host websites have designed in their programs the ability to receive

HTTP requests, while browsers, the HTTP clients, can make these requests and conse-

quently process the content received.

The protocol arose with the need to transfer information between a client and a

server, so that there was a standardization in the distribution in this way, the first version

of this protocol appeared in 1990, called HTTP/0.9. This first version had only one

request method, the GET. Over the years other methods were incorporated and additional

functionalities were implemented such as connection control, cache management and even

articulation with other communication protocols used in the World Wide Web [63, 64].

Currently the most used version is HTTP/2.0, and the migration to version 3.0 is already

happening [62, 65].

2.9.2. Hyper Text Transfer Protocol Secure

An existing problem with the transfer of information between the client and the server,

or even between servers, is the necessity of ensuring that no content in the messages is

viewed or changed. In this sense, there was the need to ensure that the exchange of

information was [66]:

• private, the content should not be viewed by third parties except the recipient.

• integral, the content should not be altered or manipulated.

HTTPS is not exactly a new protocol, but the use of HTTP protocol over an encrypted

SSL/Transport Layer Security (TLS) connection layer. In packets transmitted over the

network, all content is encrypted, including the header and requests, and is only decrypted

when the message reaches its destination [66, 67].

A connection between the client and the server, using HTTPS, only happens if the

accessed website has an SSL Certificate. Browsers illustrate if the communication between

22

Chapter 2 State of Art

the browser and the server is secure through the https terms in the site’s own URL or

through an image of a lock [67].

2.9.3. Simple Mail Transfer Protocol

Simple Mail Transfer Protocol (SMTP) is a convention dedicated exclusively to sending

emails over the Internet. Because it only refers to sending emails, it is usually used in

conjunction with other protocols, such as Post Office Protocol (POP) or Internet Message

Access Protocol (IMAP), when you want to have a sender-receiver system. In this case,

the sender implements the SMTP protocol and the receiver one of the other protocols

[68].

One of the gaps in this protocol is the inability to transfer files, such as images or

videos, and the limitation of supporting only 7-bit American Standard Code for Informa-

tion Interchange (ASCII) characters. In order to combat this problem, the Multipurpose

Internet Mail Extensions (MIME) was developed. Thus, the vast majority of email ser-

vices exchange messages using the SMTP protocol with the MIME format. Because

there is such a close relationship between these two protocols, they are commonly called

SMTP/MIME [68, 69].

2.9.4. MavLink

Micro Air Vehicle Link (MavLink) Communication Protocol is a message protocol for

communication with drones, or between the components of a drone. This protocol allows

two-way communication between the drone and the Ground Control Station (GCS). The

control station sends commands to the drone, while the drone responds with measured

data at least, such as location or images [70, 71]. It was initially released in 2009 by

Lorenz Meier.

The MavLink protocol is a layer 2 protocol, in reference to the Open System Intercon-

nection (OSI) layers, which is the data layer. It is responsible for starting the connection,

indicating the logic for data transfer, and interrupting the connection [2, 71, 72]. The

messages contained in this protocol are defined in Extensible Markup Language (XML)

files and can be implemented in one of the programming languages supported by MavLink,

some of them being C, C#, Java or Python.

All MavLink messages have an identifier, which relates the source station and the de-

vice. Because there is no guarantee that messages are delivered, frequent communication

is required to ensure that the content has been delivered correctly. An advantage of this

23

Chapter 2 State of Art

protocol is that the messages are already encrypted. The size of these messages can vary

between 8 Byte and 263 Byte, depending on whether the protocol is the first or second

version of MavLink. In the Figure 2.7 it is possible to observe the structure of a MavLink

message [70, 2].

Figure 2.7. MavLink Protocol Message Format [70]

2.10. Artificial Intelligence

Artificial Intelligence is a system that can evolve through the acquisition of knowledge.

Such a system is intended to imitate human intelligence, through behaviors such as rea-

soning, judgment, identification, perception, understanding, thinking, learning, problem

solving, etc...

Artificial Intelligence can be used in countless areas and needs people with knowledge

not only in computing, but also in philosophy, psychology or science, depending on the

purpose of the machine created. The main focus of the last years has been essentially in

the field of intelligence, education, process automation and the development of intelligent

decision support systems [2, 73].

2.11. Machine Learning

Machine Learning is a field of artificial intelligence that allows applications to predict

data with a high accuracy. As a rule, this prediction is possible with the learning of previ-

ous data, allowing the application to identify patterns and, consequently, make decisions

autonomously and with minimal human intervention [2, 63].

The more data is provided to Machine Learning, the more accurate will be the con-

clusions presented. This type of applications are used in several areas such as security,

privacy and simplicity of tasks.

2.12. Ardupilot SITL

The Ardupilot is an open-source software of autopilot, i.e., intends to represent the

control of a vehicle automatically. It can control almost all vehicles: airplanes, helicopters,

cars, boats, drones, etc.... It is used mainly in research or in the simulation of prototypes

24

Chapter 2 State of Art

in other projects. Being an open-source project, the contribution given by the community

is quite high, which allows a rapid and current evolution [74, 75, 76].

The Software In The Loop (SITL) Simulator allows you to run ArduPilot on your

computer without using any special hardware. This simulator provides the user with a

graphical interface that allows a better interpretation of the data collected by Ardupilot

[77].

Figure 2.8 shows the Ardupilot running on a computer console, while in figure 2.9

the SITL simulator represents the Ardupilot through a graphical interface using a C++

compiler.

Figure 2.8. Ardupilot Running

2.13. Related Work

Over the last few years several systems for fire detection have been developed. In [78]

three fire detection systems are demonstrated through image processing. Each system

presented corresponds to a different type of image detection, and the one that obtained the

best result in fire detection was the Faster R-CNN. Faster R-CNN is an object detection

architecture developed by Ross Girshick, Shaoqing Ren, Kaiming He and Jian Sun in 2015.

It is one of the most famous neural networks of convolution. The other architectures used

were You Look Only Once (YOLO) and Single Shot Detector (SSD). The results obtained

were positive. However, the system presented in this dissertation has the advantage that

the image processing algorithm is in a cloud and can be accessed and used at any time.

25

Chapter 2 State of Art

Figure 2.9. Illustraion of the Ardupilot by SITL

In [79] the authors approach one of the solutions used in fire detection and fighting:

the use of artificial satellites. The study concludes that the development of satellites

exclusively dedicated to image processing is too expensive. Therefore, the ideal would be

the use of aerial devices that would be more economical and obtain the same result.

Fire detection should not be restricted to fire analysis only. In [80], the authors

presented a proposal for a system to detect smoke. However, as concluded in the article,

the use of only this system does not guarantee correct fire detection. Environmental

pollution, especially in urban areas, makes the mission of these algorithms difficult. On

the other hand, the development of a system that detects smoke and fire at the same time

will increase the effectiveness in detection, reducing false alarms.

In [81], a proposal was made for a drone control system through a IoT platform de-

veloped on a Raspberry Pi. The communication between the platform and the drone is

through internet, more specifically through Wi-Fi. The project presented in this disser-

tation will greatly enhance the idea sought by the authors in [81], transforming a basic

and simple system, a complex platform, in a cloud, with the ability to manage users and

control any device, provided it is connected to the Internet.

There are already some platforms that allow the control of UAVs in real time, such

as https://flytnow.com/. This platform allows a user to associate a drone to his account

and to control it through the internet. The functionalities of this system include the

26

Chapter 2 State of Art

communication with the drone through 4G or 5G and High Definition (HD) streaming.

Being a platform directed to companies, the costs of membership are high, keeping away

any normal user.

The objective of this dissertation is not only to develop and implement a control,

management, and monitoring platform for drones, but also to have the ability to detect

forest fires remotely. As there is no platform that offers this solution, the idea presented

is innovative.

27

CHAPTER 3

System Implementation

For the implementation of this system, a microservice architecture was used which,

among all the advantages already described in section 2.1, allows an independent devel-

opment of each microservice. Seven microservices were developed according to the theme

each one covered: Landing Page, Dashboard, Gateway, Auth and UserData, Drone, No-

tification, and Image Processing. The functionalities and objectives of each of these

microservices are:

• Landind Page: main page of the website available to any internet user. Informs

the features of platform.

• Dashboard: visual panel that presents information in a centralized way. It indi-

cates processed metrics and allows the registration and monitoring of new drones.

• Gateway: middle ware microservice between frontend and backend microservices.

• Auth and UserData: responsible for storing user data. Also responsible for grant-

ing users access to the platform’s pages.

• Drone: responsible for storing the drones’ data. It communicates with the drones

via Internet.

• Notification: microservice dedicated to creating and sending notifications to

users.

• Image Processing: microservice responsible for processing images obtained by the

drones.

The microservices and the databases were hosted on a cloud platform that allows the

deployment, the execution of tests and a continuous monitoring of the application status.

The server chosen was Heroku for being free. The addition of extras and new features is

possible at very affordable prices or for free. There are other more complete services which

offer better conditions, such as Amazon’s Amazon Web Services (AWS) and Microsoft’s

Azure, but their cost of use is quite large, so they did not fit the expectations of this

project [82, 83].

Of these seven microservices implemented, two of them are dedicated to providing

information to the user, commonly called a website. In these two websites the framework

29

Chapter 3 System Implementation

used for their development was Vue.js, which as already explained in the state of the art,

is a framework with a great growth and very accepted by the community of programmers.

In the remaining five microservices, the JavaScript framework used was Node.js. Al-

though the base language of this framework is JavaScript, the implementation of these

microservices was in TypeScript. The structure of these microservices in Node.js is quite

similar, but there are two cases that differ substantially: Gateway and Drone microser-

vices. This difference will be detailed in sections 3.3.1 and 3.3.4, respectively.

The figure 3.1 illustrates how the architecture of this project was designed. Land-

ing Page and Dashboard, to communicate with the backend services, always send their

requests to the Gateway. The Gateway forwards the received requests to the respec-

tive microservice. Some of the backend microservices have a connection to an isolated

database. A more detailed explanation will be given later in this chapter.

Figure 3.1. System Architecture

The implemented microservices use the HTTP protocol to perform their communi-

cations. However, the simple use of a communication protocol does not make a system

efficient or well implemented: the HTTP protocol does not define any rules or principles

for using its methods. Therefore, it is necessary to use the Representational State Trans-

fer (REST) principles, a set of rules and good practices, to allow structured and organized

communication. Systems that apply the REST principles are called RESTful.

30

Chapter 3 System Implementation

3.1. Platform Design

The design of the platform had to go according to the expected functionalities for this

website.This way, mockups were designed. A mockup is a template or a representation

of a project, used to demonstrate the basic idea of a project. In mockups may already

be represented attributes, values or colors, but it is not mandatory. The main objective

of designing a mockup is to guarantee an initial approval of the system before starting to

develop further.

Therefore, mockups were designed in a way to have a structured and organized idea

of the website design. The pictures 3.2, 3.3, 3.4 and 3.5 illustrate some of the initial

mockups that, of course, differ a lot from the result, but that were a beginning.

Figure 3.2. Devices List Mockup

The basic design of the platform developed comes from Vue.js libraries, as already

explained in the section 2.2.4. Changes were then made that were considered necessary

in order to meet the challenges inherent to this project. The final result can be seen in

chapter 4.

3.2. Frontend Architecture in Vue.js

Vue.js is one of the fastest growing JavaScript frontend frameworks, as it allows great

versatility, simple modularization and easy adaptation. The version of Vue.js used in this

project was the 2.6, supported in JavaScript.

Like other JavaScript frameworks already explained in this dissertation, Vue uses the

concept of component as a way to organize and structure the project. A component is a

31

Chapter 3 System Implementation

Figure 3.3. Device Mockup

Figure 3.4. Change and Remove Permissions Mockup

reusable instance, created using the syntax of HTML with JavaScript code, which allows

iterations and manipulations that the native HTML does not have. To be reusable, the

components are created in their own files that allow their integration through specific

tags, as will be demonstrated later.

Vue applications allow you to have several different programming syntaxes in a single

.vue file: HTML code, used to create the skeleton of the web page, CSS, directed to the

32

Chapter 3 System Implementation

Figure 3.5. Add Permissions Mockup

look of the web page, and JavaScript, which allows to connect the web page to the logic

of the application. In structural terms, the developed microservices that use Vue.js have

a structure similar to the one illustrated in the 3.6 image.

Figure 3.6. Dashboard Organization

33

Chapter 3 System Implementation

The integration of Vue with libraries and CSS frameworks is possible, and greatly fa-

cilitated with the use of the Vuetify framework. This framework aims to provide a number

of customized components for Vue applications. The use of this type of components al-

lows simplifying and saving development time, giving the developer the opportunity to

dedicate himself to other more relevant aspects. Although these components are already

customized, there is the possibility of being customized by the developer, and this was

the option taken throughout this project.

The two frontend microservices have an API that allows communication with the rest

of the platform. The API is used whenever the application needs to make an information

request for any backend service. As explained above, all requests made between the fron-

tend and backend pass through the Gateway so that it is possible to make the appropriate

validations when necessary.

The creation of these requests is done using the axios library, an HTTP client that

allows making any of the HTTP requests, either in a browser or a Node.js server. The

functions to make the requests are already pre-made, needing only the content of the

request that is provided when it is invoked. Figure 3.7 shows two blocks of code that

indicate how an API call is made in this project. The simplicity presented is the result

of the good organization of the project.

Figure 3.7. API Code Example to Get Users

The use of components as already mentioned, is a constant aspect in the development

of these microservices. Each component is implemented in a single file and, in principle,

are independent from each other. The exception appears when a component aggregates

another component. The components can be reused quite easily and quickly by just

importing them into the page to be used and then invoking it in HTML syntax, referencing

its name between tags.

The figure 3.8 shows a code block refers to a situation of how the use of a component

can be used. Using JavaScript syntax you can implement the component created in

a separate file. Then, it is possible to include the component in the part of the code

34

Chapter 3 System Implementation

Figure 3.8. Sample Code for use of Components

dedicated to HTML, giving the name of the imported component between tags. In this

case, it is demonstrated the inclusion of the component PlainTableDevices, referring to

the device table, and the CreateDevice component, the button that appears on this page

that allows the registration of a new drone.

A Vue.js component does not necessarily need to be a small block of code, nor should it

be considered solely as an object that integrates into other pages already made. The web

page can be considered a component, as was done in this application: the page component

includes other smaller components.

Vue being a Single Page Application (SPA), can change the content presented on the

page quickly, making the user experience very enjoyable. In order to use this capability,

Vue uses a framework called vue-router that allows the management of the content to be

made available to the user according to the URL address. The Figure 3.9 illustrates how

this feature was implemented in the project, in which depending on the URL received, a

component is associated that will be made available to the user.

The variable requireAuth is related to user authentication, which will be explained in

section 3.6.

Finally, another framework that was implemented in this project was Vuex. Vuex is

a state and data management standard in Vue.js applications. This framework works as

a temporary database centralized in the application and accessible by all components,

depending on the permissions granted to each.

35

Chapter 3 System Implementation

Figure 3.9. Vue-router Implementation

The great advantage of this type of store is related to the ability to update informa-

tion shared by several components. At the same time, no component modifies this data

directly, ensuring data consistency. This capability inserted in a Vue project allows that,

if two components use the same variable, the change of the value of the variable by one of

the components immediately leads to an update of the state of the variable in the other

component. This makes the pages more interactive and provides a better user experience.

The Figure 3.10 illustrates the diagram of how this process works:

(1) A component makes an order to the Vuex that it needs to obtain (or insert)

information from the database.

(2) In the Actions module, a request is made to the application’s Gateway, using the

APIs already explained. Once the request is made, it waits for the answer.

(3) In case of a positive response, the content received is committed to the store,

which is done through Mutations. These changes are reflected in the State.

(4) Finally, the Component is constantly listening to the desired variables in the

store, that is, in the State module. When it has the desired content, it makes

it available to the user. In the situation where two components have the same

variable, the change made by one of the components to the variable is reflected

in State.

36

Chapter 3 System Implementation

Figure 3.10. Vuex Architecture

The creation of a project in Vue.js is not necessarily complicated, but rather time

consuming. However, the use of this type of frameworks brings advantages in the medium

and long term, especially if the project starts to grow and become more complete.

3.3. Backend Architecture in Node.js

The backend microservices were developed in Node.js, being this one of the most used

technologies for backend servers in JavaScript. The version used in the microservices was

the 12.14 version, the most current at the start date of this project. It should be noted

that the language used in these projects was not JavaScript, but a variation, TypeScript.

The advantages of this language compared to the traditional JavaScript are described in

section 2.2.1.

The architecture used in these microservices, with the exception of the Gateway’s

microservice and the Drone’s microservice, as a result of the specific characteristics of

these microservices, follow the architecture presented in figure 3.11. The same happens

in the project organization, demonstrated in figure 3.12. Anyway, all good practices were

respected in the development of these projects.

The reception of HTTP requests is possible through the Express.js framework, or sim-

ply express, which allows the construction of a web API in Node.js environments. These

37

Chapter 3 System Implementation

Figure 3.11. Authentication and UserData Organization

Figure 3.12. Backend Architecture

APIs can handle multiple requests simultaneously. As requests arrive, they are queued

and processed consecutively as soon as possible. Each application has been configured

with 4 threads pools to process the requests, i.e. the system can simultaneously process

4 processes at the same time. This value can be increased if justified. The 3.13 figure

demonstrates how the Node.js architecture works in one of the developed microservices.

For each new request that arrives at the microservice, the URL prefix is analyzed,

originating a forwarding of the request to one of the project controllers. This is described

as routing and can be seen in figure 3.14.

In the controller, its first task is to validate the request body. This must respect a

predetermined structure that is in accordance with the expected structure. This valida-

tion, which is done through a Data Transfer Object (DTO) is an added value in terms

of security. Besides fulfilling its main purpose, which is to validate if the fields received

in the body of the request are the expected ones, it checks if the content respects cer-

tain imposed rules. Thus, it is guaranteed that the content processed by the application

38

Chapter 3 System Implementation

Figure 3.13. Node.js Architecture

Figure 3.14. Node.js Routing

does not allow to make adulterations in the code. If the request has been filtered by the

controller, it sends the request to the most appropriate service.

The service module is responsible for all the microservice logic. It is divided into

several files depending on the type of objects processed. The content of the received

request is validated again and, if possible, leads to the creation of a Model object, or

alternatively Data Access Object (DAO). This new object created will be explained later

in section 3.4.1.

39

Chapter 3 System Implementation

Any error or invalidation that occurs in the process is almost all treated in this module.

The logs are inserted in a .log file whose name is the current date. The structure of the

logs is shown in figure 3.15, which contains information such as the Internet Protocol (IP)

and user id, and data that allows a follow-up of the executed processes. It is important

to have a well structured log system. Any error that occurs during the process should be

stored in a file for later analysis. The structure and the information contained in the files

varies according to the microservice.

Figure 3.15. Log File Structure

Associated to one service can be one or more repositories. Depending on the service,

they may need to make queries, inserts, updates or deletions in the database. Repositories

are classes responsible for managing these access requests. Their existence provides greater

organization of the code. In the repository, each function is responsible for a single request

to the database. The communication between the services and the repositories is done

through a proper interface. A more detailed explanation of how communication with the

database works is detailed in section 3.4.

3.3.1. Gateway microservice

Despite being developed in Node.js, the Gateway presents a different architecture,

based on the functionalities that it needs to have. This microservice has as main respon-

sibility the forwarding of requests received by the frontend to the backend, and consequent

reverse forwarding with the response.

The reception of HTTP requests happens in the same way as other backend microser-

vices, using the Express.js framework. And since the Gateway also needs to create HTTP

requests, it contains in its code the necessary mechanisms to create requests via axios.

Figure 3.16 illustrates the Gateway’s architecture when it comes to message processing.

The Gateway also acts as an important role in validating requests, ensuring that the

origin of requests comes from an authorized person. This information is explained in

section 3.6.

40

Chapter 3 System Implementation

Figure 3.16. Gateway Architecture

3.3.2. Notification microservice

The notification microservice, besides including all the features already detailed in

section 3.3 for being developed in Node.js, also includes the ability to send emails through

the SMTP protocol. The figure 3.17 shows the architecture of this microservice.

Figure 3.17. Notification Architecture

The nodemailer library allows the configuration and the sending of e-mails in Node.js

applications. The emails sent can be of the type:

• Welcome to new users.

• Password recovery.

• Invitation to register on the platform.

• Invitation to join a group or a company.

• Fire detection alert.

41

Chapter 3 System Implementation

The email used to send this information is associated with the domain acquired by

the company Amen.pt.

3.3.3. Image Processing Microservice

This microservice has a different structure from the others since it also includes an

algorithm. The algorithm made in python intends to represent a machine learning with

the ability to identify forest fires through image processing. This machine learning was

developed in another project made by the Institute of Telecommunications of Iscte-iul

and adapted so that it could be integrated into a microservice platform [2].

This microservice, firstly, is developed in Node and presents the architecture already

presented previously. It receives requests via HTTP, but by default this protocol cannot

incorporate images in its requests. To get around this situation, it is necessary to use the

multipart/form-data encoding that allows the transfer of binary files, in which an image

is included, through the HTTP protocol.

The received images are stored in a server folder,toProcess folder, and the file name is

defined according to the unixtime-droneid.png structure, where the first part corresponds

to the date of reception, in Unix Time Stamp (UTS), and the second part to the drone

id.

The algorithm is called by the Node thread responsible for processing the request.

If the algorithm detects something suspicious, the microservice sends a request to the

Notification microservice so that it alerts those device’s responsible a suspicion of forest

fire was detected. All processed images are moved to the processed folder.

3.3.4. Drone Microservice

This microservice has an architecture very similar to the one presented in section

3.3: it receives HTTP requests from the Gateway, processes them and has a database

to store information, in this case drones. However, this microservice needs to actively

communicate with drones. Therefore, in addition to the common features of a backend

microservice, it uses the mavlink library to create MavLink requests to communicate with

the drones. The implementation of the mavlink in this microservice is similar to that used

in the Gateway.

MavLink requests are addressed to a destination drone, where the content of the mes-

sage sent are commands that allow the drone to execute tasks. The Drone’s microservice is

42

Chapter 3 System Implementation

in constant contact with the drone so that it can store the collected data in the database.

The figure 3.18 shows the architecture adopted for this microservice.

Figure 3.18. Drone Architecture

The figure 3.19 shows the code block responsible for creating the orders to be sent to

the drone.

Figure 3.19. Sample Code to Communicate with Drone via MavLink

3.4. Database

The databases are associated with only a few backend microservices. These are the

Auth & UserData microservice, the Notification microservice and the Drone microservice.

Each one of these microservices has a unique database that is only accessible by itself.

The databases were developed in MariaDB, the free version of MySQL, and their

design was done through the MySQL Workbench software that, besides allowing the

43

Chapter 3 System Implementation

design, allows its export and especially the execution of a database locally. This allowed

that during the development of the platform a local database was used instead of the

production database that is hosted on the Heroku server.

The Figures 3.20, 3.21 and 3.22 illustrate the relational diagram of the various databases

developed.

Figure 3.20. UserData Relational Diagram

Figure 3.21. Notification Relational Diagram

44

Chapter 3 System Implementation

Figure 3.22. Drone Relational Diagram

At the start-up of each microservice, the connection to the respective database is initi-

ated. Depending on the environment in which the application takes place, the connection

is either made to the local database or to the production database.

In accordance with the rules of the European area, described in the General Data

Protection Regulations, the data stored in the database are protected and are hosted on

trusted servers. It also includes the right to forget, which allows the user to remove all

data that allow their identification [84]. Thus, when the user makes this request, all fields

containing sensitive data, such as name, image, and email, are replaced by a default text

’DELETED’. This way we can ensure that the system continues to work correctly, as

there was no abrupt removal of data, guaranteeing the rights of users registered on the

platform.

3.4.1. Object Relational Mapper

To manage the database, an Object-Relational Mapping (ORM) called Sequelize was

used. This promise-based library supports a wide database dialect, including MySQL,

and has features and capabilities related to data transaction and the relationship between

objects.

All the objects of the application, called Model, are built in ORM optics. This allows

the manipulation of objects like User, Company or Drone to be more fluid and safer. One

of the great advantages of using this type of objects is the transaction management, which

allows rollbacks in case of failure in a certain step of the process, and the need not to use

SQL code to make the requests to the database. In the 3.23 image it is possible to see

45

Chapter 3 System Implementation

the create function, in the companies repository, which allows the creation of a company

in the database receiving an ORM of type Company. In detriment of the typical SQL

create command, in the code only the save method is invoked that automatically creates

the object in the database.

Figure 3.23. Registration of an Company using Sequelize

These Sequelize ORM objects have in their class a direct association to the respective

table in the database. First by indicating the name of the class, making the object

Company correspond to the company table, and second by making a similar association

between the parameters of the object and the columns of the table. The characteristics

of the columns are also explicit in the ORM class, thus allowing a validation of data even

before executing the action.

3.5. Tests

Throughout the project, unit tests and integration tests were developed, as a way to

prove and certify that the implementation was correct. This allowed the development on

the platform not to suffer significant delays, since it was not necessary to redo function-

alities that could be working incorrectly.

The implementation of the tests, and the project code, followed the Test-Driven Devel-

opment (TDD) approach. This approach consists in the development of the test-oriented

software, consisting in the maximum realization of tests in order to contain all possible

possibilities. The development process in TDD is the following [85]:

(1) Write tests without having the code done.

46

Chapter 3 System Implementation

(2) Execute the tests and, as there is no code done, it will cause errors in all the

tests.

(3) Develop the functionality for the test until it passes.

(4) Repeat the procedure of development of functionalities until all the tests of this

functionality are positive.

(5) Pass to the next functionality and repeat the process.

This way, and if the tests are well done and cover all the possibilities, either of success

or of error, we guarantee that the writing of the code that is done later is correct. In

figure 3.24 there is a code block that represents a test to the creation of drones on the

platform. The tests were developed using the Jest framework, explained in section 2.5.1.

Figure 3.24. Unit Test of Drone Creation

3.6. Security

As it is a web platform, accessible to any user, it is necessary to ensure that the data

processed by the application is safe. For this, several ways have been used to ensure that

the entire system is able to prevent possible attacks to disable the platform or to access

private information.

The first measure implemented was to obtain an SSL certificate. The use of this

certificate on the website allows communications between users’ browsers and the web

server to be encrypted, as already explained in section 2.7.1. The type of certificate

obtained was the simplest, DV Certificate. Because this is still a small platform with

47

Chapter 3 System Implementation

little traffic there was no need to invest in a more robust certificate. This certificate was

obtained at Amen.pt, a company accredited by several CA.

The use of Sequelize allows a greater security in the access to the database. One of

the most common attacks on the database is through SQL Injection. This attack consists

in the adulteration of variables to be used in SQL scripts in order to return something

different, as shown in figure 3.25.

Figure 3.25. SQL Injection Scheme

Sequelize, although allowing the use of SQL scripts in the traditional way, its imple-

mentation in this project was more directed to the concept of ORM, explained in section

3.4.1. The use of these methods gives the possibility to make invocations to the database

in a more secure way. Likewise, Sequelize already integrates in its base code mechanisms

that prevent this type of attacks, so its use ensures greater security.

The authenticity check is done through the validation of the JWT, described in section

2.7.3. The use of this token in browser cookies is fundamental in accessing restricted pages,

such as the dashboard, which should only be accessible if the login has been made.

As illustrated in figure 3.26, on the Landing Page login page, the user enters the correct

data for authentication. These are sent to the Gateway, which redirects it to the Auth

& UserData microservice. It is in this microservice that occurs, among other things, the

verification of the password with that stored in the database. In case of success, a JWT

token is created with the user id, email and IP, using an RSA private key. Then, the

JWT takes the reverse route of the login request, being answered by Auth & UserData

to the Gateway, where it will include the JWT in the cookies of the user response. This

way, when the user is redirected to the dashboard page, they will already have the cookie

in their browser.

Figure 3.27 shows how a JWT token is built. It is divided into three parts:

• Header - contains the algorithm used and the type of token, in this caseRSA256

and JWT, respectively.

48

Chapter 3 System Implementation

Figure 3.26. Login Scheme with JWT

• Payload: contains essentially the content (the user id, your email and your IP),

but also additional information such as the creation date of the token and the

expiration date, in UTS.

• Signature: contains the first two parts coded, so it is possible to check later if

the message has changed. It also allows to verify that the origin of the token is

who it says it really is, because it has the private key.

Some Dashboard pages may require the user to be authenticated. These accesses are

indicated in figure 3.9 through the variable requireAuth which, if true, the Dashboard

makes a verification request to the Gateway that the JWT cookie, if any, is valid.

The Gateway is responsible for validating the authentication tokens through the RSA

public key. If it is possible to decrypt the JWT through that key it means that the token

is a valid token on the platform, but an extra security validation is still needed: the IP.

As an extra security measure, the IP stored in the JWT token must match the IP of

the user who made the request. If everything is in accordance, the Gateway responds

49

Chapter 3 System Implementation

Figure 3.27. JWT Structure

positively to the validation requested by the Dashboard, thus allowing the user access to

the rest of the platform.

A similar strategy has been adopted in the remaining requests that are made to the

backend services. All HTTP requests that are made, pass through the Gateway that will

do the JWT validation and will only forward the request to the specific microservice if it

is valid. This allows a continuous validation in the access to the platform and its data.

At the same time that the JWT token is generated, another token called refreshToken

is also generated. This token, also JWT, allows the renewal of the main token after its

expiration. The JWT token has a maximum usage period of one day, unless the user logs

out of the platform before. After that day, if the user continues with the token in the

cookies, when accessing the platform, the token will have expired. In these situations, if

refreshToken is in the cookies, there will be a renewal of the user’s access by creating a

new valid token. This mechanism is part of the JWT and prevents users from needing to

make repetitive logins if the token has already expired.

50

CHAPTER 4

Results

The main results of the implementation of the previous chapter will be presented

below, namely the web platform developed. The results obtained come from three different

but interconnected sources. The developed platform, where the objective has always been

to make it available online, was successfully achieved. The various microservices developed

communicate between themselves perfectly and correspond to the expectations taken at

the beginning of the development of this project. This platform includes the machine

learning algorithm that allows image processing.

The results obtained in terms of communication with the drone, and the obtaining of

its data, were made in a simulated environment. This environment would always be the

first to be tested before performing open field tests with a real device. However, due to

numerous circumstances this part of the project could not be completed. Nevertheless,

the whole system is operational and working as desired.

4.1. Web Platform

Figure 4.1. Flydren Website Homepage

As already explained, the main objective of this dissertation was the development

of a web platform that would allow the control of UAVs, more specifically MAVs. The

51

Chapter 4 Results

platform was developed locally and phased to the Heroku server, where it is currently

active under the name Flydren and accessible by the domain https://www.flydren.pt.

In figures 4.1, 4.2 and 4.3 it is possible to see the main page of the platform, the

Landing Page, where the basic information of the system, as well as the services available,

can be found. The website is very receptive and can be accessed by computers, tablets,

and smartphones. A page about the presented project and a contact form were also

developed.

Figure 4.2. Flydren Website Flight Automation Details

Figure 4.3. Flydren Website Object Recognition Details

52

Chapter 4 Results

The registration and the login of the platform were developed in the Landing Page

microservice, as can be seen by figures 4.4 and 4.5. The registration on the platform is

quite fast. The user needs to give some information such as name, email, country, city,

and password. If the registration is successful, a confirmation message will appear on the

page. An email will also be sent to the user. After logging in the platform, the user is

redirected to another sub-domain, dedicated to Dashboard.

Figure 4.4. Flydren Signup Page

On the main page of the Dashboard, hosted in https://dashboard.flydren.pt, graphs

with statistical information of the drones that the user has access are presented. As it is

possible to see in figure 4.6, data such as the number of flights made, and the number of

photos and videos captured by the devices are illustrated. It is possible to consult the log

history, accessing the files directly.

The platform provides a list of drones that is presented on the main page of the

Dashboard and on a page dedicated exclusively to this purpose, shown in Figure 4.7. The

list contains all the drones that the user has access to, and the permission level is divided

into three:

• Normal: the user only has access to the statistics that the drone generates.

53

Chapter 4 Results

Figure 4.5. Flydren Login Page

Figure 4.6. Dashboard Page

• Edit: the user can configure missions, edit the drone data and manage the drone

permissions.

• Master: the user is the owner of the drone and has access to all the features. He

can delete the drone.

On the devices page, the user can register a new drone by clicking the dedicated

button. The user will be asked for some data about the drone to be registered, which can

be changed later. Some of the fields of the drone are the name, description, IP, and the

54

Chapter 4 Results

list of users who have access to this drone. Figure 4.8 shows the permissions list of the

Sintra Mountains drone.

Figure 4.7. Drone List Page

Figure 4.8. Drone Edit Page

4.2. Drone Control

The control of a device is only available to a user who has permissions to do it. Figure

4.9 shows how a mission for a drone is created. From the map that exists on the page,

the user can draw the path that the drone will follow. For each point indicated on the

map, the user must click on the extract point button to insert it in the table. The table

contains all the points through which the drone will make the route. Each line of the

55

Chapter 4 Results

table has the coordinates of the point (longitude and latitude), the altitude of the drone

and its orientation. Once the list of positions is finished, it is transformed into a file and

sent to the drone.

Figure 4.9. Drone Control Page

As soon as the drone is moving, on the map will appear the route that the drone is

taking. Values measured by the drone are sent to the user. However, the values that each

drone collects differ from drone to drone. This way, the user must indicate in the settings

of the drone which message structure it returns, so that the information can be presented

in a more user-friendly table.

For not having been able to use a real drone in the tests developed, open-source

software was used that allowed simulating the drone. These softwares are the ardupilot

and the SITL. The figures 4.10 represent the result of the communications made between

the platform and the simulated drone, demonstrating the effectiveness of the project

developed.

4.3. Fire Detection

As already mentioned in this dissertation, the results obtained were through the use

of a simulated drone. Because it was not a real drone it was not possible to test or obtain

results about the correct functioning of the whole project.

In the image 4.11 it is possible to see how the algorithm operates, as it has been

previously demonstrated in other projects [2].

In order to obtain as many results as possible in this area, the sending of images to

the image processing microservice was simulated. The results obtained with this test were

56

Chapter 4 Results

Figure 4.10. Drone Mission Simulation

Figure 4.11. Fire Algorithm [2]

like what had been obtained when using the algorithm in isolation and running locally.

Thus, the effectiveness and efficiency of the image detection algorithm was not affected

by its hosting in a cloud service or by the integration in a larger project.

57

CHAPTER 5

Conclusions

5.1. Main Conclusions

The main objective of this dissertation was the construction of a web platform capable

of managing, monitoring and controlling drones in real time in order to detect forest fires,

as a possible use case. The possibility of pre-programming the drones to perform a certain

mission at a certain time was also one of the expected objectives for this dissertation.

Finally, the integration of a machine learning algorithm with the ability to detect forest

fires would be an added value for this project.

In general, the objectives proposed for this dissertation were accomplished and can be

indexed and detailed in the following points:

• The development of a web platform that allows users to register their drones.

The possibility of organizing users by groups and companies, allowing several

users to have access to the same drone, was an added value implemented in this

project.

• The architecture thought for the platform considered the possible escalation that

can occur. The structure adopted allows the addition of new features without

compromising the rest of the platform. The choice for a microservice architecture

was fundamental for this possibility to exist.

• The research methodology and the development methodology were accomplished

most of the time, as well as the good practices in software development.

• The control with the drone via internet, and through a web platform, was shown

to be possible. Although it was only possible to use a simulated drone, it does

not invalidate the work developed which, in theoretical terms, should not have

any influence on the intended result.

• The integration of the machine learning algorithm in the platform was partially

achieved. The fact that a real drone was not used in the system tests, does not

ensure that the reception of images coming from the drone is working as desirable.

59

Chapter 5 Conclusions

• The real-time control of the drone is not user-friendly. Although it is possible to

trace the path of the drone using a map, the communication with the drone is

done via commands that the user needs to understand.

5.2. Future work

Some improvements to the project developed in this dissertation should be made, as

well as the development of new features:

• The tests of this system should not be restricted only to simulated drones. Tests

should be made with real drones to validate the developed project.

• The communication between the drone and the platform must be protected. No

security protocol has been implemented in this communication so the content of

the messages between both parties is susceptible to external interference.

• The drone control page must be improved and made more user-friendly. The

possibility to schedule a route for the drone to travel should also be developed

and it should not be necessary for a user to give the exit order.

• It is expected that the drone sends images in real time to the platform. These im-

ages should be made available to users though the website. In addition, the video

received must be forwarded to the image processing microservice for analysis.

• The upgrade of this system to a more complete and secure cloud server should be

considered. While all security guarantees have been taken, the services provided

by platforms such as Azure or AWS bring numerous advantages.

• The platform developed allows for the addition of new functionality or new al-

gorithms with great ease. In order not to restrict this system to fire detection

alone, its expansion should be considered.

60

References

[1] X. Yang, S. Xiong, H. Li, X. He, H. Ai, and Q. Liu, “Research on Forest Fire Helicopter Demand

Forecast based on Index Fuzzy Segmentation and TOPSIS,” 2019 9th International Conference on

Fire Science and Fire Protection Engineering, ICFSFPE 2019, no. 2018, 2019.

[2] C. Saraiva, “Automatic Fire Detection System: Autonomous Drone Supported by Artificial Intelli-

gence,” Master Thesis, ISCTE - Instituto Universitário de Lisboa, 2019.

[3] “Global Fire Data,” Accessed at 2020-08-29. [Online]. Available: https://www.globalfiredata.org/

regional.html

[4] K. Hartmann and K. Giles, “UAV exploitation: A new domain for cyber power,” International

Conference on Cyber Conflict, CYCON, vol. 2016-Augus, pp. 205–221, 2016.

[5] M. Kalske, “Transforming monolithic architecture towards microservice architecture Department

of Computer Science,” Master Thesis, University of Helsinki, 2017. [Online]. Available:

https://helda.helsinki.fi/handle/10138/234239

[6] F. Ponce, G. Marquez, and H. Astudillo, “Migrating from monolithic architecture to microservices:

A Rapid Review,” Proceedings - International Conference of the Chilean Computer Science Society,

SCCC, vol. 2019-Novem, 2019.

[7] O. Al-Debagy and P. Martinek, “A comparative review of microservices and monolithic architec-

tures,” 18th IEEE International Symposium on Computational Intelligence and Informatics, pp.

149–154, 2019.

[8] L. De Lauretis, “From Monolithic Architecture to Microservices Architecture,” Proceedings - 2019

IEEE 30th International Symposium on Software Reliability Engineering Workshops, ISSREW 2019,

pp. 93–96, 2019.

[9] T. C. Santos, A. Rodrigues, and P. Sardinha, “Adopting Microservices Migrating a HR tool from a

monolithic architecture,” Master Thesis, IST - Instituto Superior Técnico de Lisboa, 2018.

[10] K. Stenroos, “Microservices in Software Development,” Bachelor Thesis, Metropolia University of

Applied Sciences, 2019. [Online]. Available: https://www.theseus.fi/handle/10024/171777

[11] M. Zaymus, D. Author Zaymus, S. Salmikangas, and J. Assigned by Solteq Oyj, “Decomposition of

monolithic web application to microservices School of Technology, Communication and Transport

Degree Programme in Information and Communications Technology Decomposition of monolithic

web application to microservices Degree programme Info,” Bachelor Thesis, JAMK University

of Apllied Sciences, 2017. [Online]. Available: https://www.theseus.fi/bitstream/handle/10024/

131110/Zaymus{ }thesis.pdf

[12] “JavaScript Mozilla Documentation,” Accessed at 2020-04-15. [Online]. Available: https:

//developer.mozilla.org/en-US/docs/Web/JavaScript

61

https://www.globalfiredata.org/regional.html
https://www.globalfiredata.org/regional.html
https://helda.helsinki.fi/handle/10138/234239
https://www.theseus.fi/handle/10024/171777
https://www.theseus.fi/bitstream/handle/10024/131110/Zaymus{_}thesis.pdf
https://www.theseus.fi/bitstream/handle/10024/131110/Zaymus{_}thesis.pdf
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript

References

[13] “JavaScript Devdocs Documentation,” Accessed at 2020-04-15. [Online]. Available: https:

//devdocs.io/javascript/

[14] Z. Brabec, T. Cerny, and J. Sebek, “On metadata extension to derive data presentations with angular

2,” 2016 6th International Conference on IT Convergence and Security, ICITCS 2016, 2016.

[15] M. D. Sousa and A. Gonçalves, “humanportal – Um caso de estudo usando React.js,” 15th Iberian

Conference on Information Systems and Technologies (CISTI), no. June, pp. 24–27, 2020.

[16] J. Voutilainen, “Evaluation of Front-end JavaScript Frameworks for Master Data Management

Application Development,” Bachelor Thesis, Metropolia University of Applied Sciences, 2017.

[Online]. Available: https://www.theseus.fi/bitstream/handle/10024/138668/Voutilainen{ }Jaakko.

pdf?sequence=1

[17] “TypeScript Documentation,” Accessed at 2020-05-10. [Online]. Available: https://www.

typescriptlang.org/docs/

[18] “Why JavaScript - Serokell,” Accessed at 2020-06-03. [Online]. Available: https://serokell.io/blog/

why-typescript

[19] “React Documentation,” Accessed at 2020-03-05. [Online]. Available: https://reactjs.org/

[20] “Angular Documentation,” Accessed at 2020-03-05. [Online]. Available: https://angular.io/

[21] “Vue.js Documentation,” Accessed at 2020-03-05. [Online]. Available: https://vuejs.org/

[22] “Angular vs React vs Vue Trends,” Accessed at 2020-04-19. [Online]. Available: https:

//www.npmtrends.com/angular-vs-react-vs-vue

[23] “Front-end frameworks popularity,” Accessed at 2020-08-30. [Online]. Available: https:

//gist.github.com/tkrotoff/b1caa4c3a185629299ec234d2314e190

[24] “Node.js Documentation,” Accessed at 2020-04-15. [Online]. Available: https://nodejs.org/en/

[25] L. P. Chitra and R. Satapathy, “Performance comparison and evaluation of Node.js and traditional

web server (IIS),” 2017 International Conference on Algorithms, Methodology, Models and Applica-

tions in Emerging Technologies, ICAMMAET 2017, vol. 2017-Janua, pp. 1–4, 2017.

[26] N. Santos, A. Raimundo, D. Peres, P. Sebastião, and N. Souto, “Development of a software platform

to control squads of unmanned vehicles in real-time,” 2017 International Conference on Unmanned

Aircraft Systems, ICUAS 2017, no. 1, pp. 1–5, 2017.

[27] A. S. Lima Raimundo, “Autonomous Obstacle Collision Avoidance System for UAVs in Rescue

Operations,” Master Thesis, ISCTE - Instituto Universitário de Lisboa, 2016.

[28] Reg Austin, Unmanned Aircraft Systems, wiley ed., 2010.

[29] S. Palanisamy and P. Suvithavani, “A survey on RDBMS and NoSQL Databases MySQL vs Mon-

goDB,” 2020 International Conference on Computer Communication and Informatics, ICCCI 2020,

2020.

[30] G. Ongo and G. P. Kusuma, “Hybrid Database System of MySQL and MongoDB in Web Applica-

tion Development,” Proceedings of 2018 International Conference on Information Management and

Technology, ICIMTech 2018, no. September, pp. 256–260, 2018.

62

https://devdocs.io/javascript/
https://devdocs.io/javascript/
https://www.theseus.fi/bitstream/handle/10024/138668/Voutilainen{_}Jaakko.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/138668/Voutilainen{_}Jaakko.pdf?sequence=1
https://www.typescriptlang.org/docs/
https://www.typescriptlang.org/docs/
https://serokell.io/blog/why-typescript
https://serokell.io/blog/why-typescript
https://reactjs.org/
https://angular.io/
https://vuejs.org/
https://www.npmtrends.com/angular-vs-react-vs-vue
https://www.npmtrends.com/angular-vs-react-vs-vue
https://gist.github.com/tkrotoff/b1caa4c3a185629299ec234d2314e190
https://gist.github.com/tkrotoff/b1caa4c3a185629299ec234d2314e190
https://nodejs.org/en/

References

[31] M. Sharma, V. D. Sharma, and M. M. Bundele, “Performance Analysis of RDBMS and No SQL

Databases: PostgreSQL, MongoDB and Neo4j,” 3rd International Conference and Workshops on

Recent Advances and Innovations in Engineering, ICRAIE 2018, vol. 2018, pp. 22–25, 2018.

[32] W. Vogels, “Eventually Consistent - Revisited,” Accessed at 2020-06-14, 2008. [Online]. Available:

https://www.allthingsdistributed.com/2008/12/eventually{ }consistent.html

[33] “MySQL Documentation,” Accessed at 2020-07-23. [Online]. Available: https://dev.mysql.com/doc/

[34] “MariaDB Documentation,” Accessed at 2020-09-01. [Online]. Available: https://mariadb.com/kb/

en/documentation/

[35] “Oracle DB Documentation,” Accessed at 2020-03-12. [Online]. Available: https://docs.oracle.com/

en/

[36] W. Khan, W. Ahmad, B. Luo, and E. Ahmed, “SQL database with physical database tuning tech-

nique and NoSQL graph database comparisons,” Proceedings of 2019 IEEE 3rd Information Tech-

nology, Networking, Electronic and Automation Control Conference, ITNEC 2019, pp. 110–116,

2019.

[37] “DB Engines - MongoDB, OracleDB, MySQL,” Accessed at 2020-11-15. [Online]. Available:

https://db-engines.com/en/system/MongoDB{%}3BMySQL{%}3BOracle

[38] Z. Kaprocki, V. Pekovic, and G. Velikic, “Combined testing approach: Increased efficiency of black

box testing,” 2015 IEEE 1st International Workshop on Consumer Electronics - Novi Sad, CE WS

2015, pp. 76–78, 2017.

[39] J. Vitovec, “Optimization of Recommender Systems,” Bachelor Thesis, Czech Techical University in

Prague, 2017.

[40] “Jest Documentation,” Accessed at 2020-05-21. [Online]. Available: https://jestjs.io/docs/en/

getting-started

[41] “Mocha Documentation,” Accessed at 2020-05-03. [Online]. Available: https://mochajs.org/

[42] “Chai Documentation,” Accessed at 2020-05-03. [Online]. Available: https://www.chaijs.com/

[43] K. F. Tomasdottir, M. Aniche, and A. Van Deursen, “Why and how JavaScript developers use

linters,” ASE 2017 - Proceedings of the 32nd IEEE/ACM International Conference on Automated

Software Engineering, pp. 578–589, 2017.

[44] K. F. Tomasdottir, M. Aniche, and A. Van Deursen, “The Adoption of JavaScript Linters in Practice:

A Case Study on ESLint,” IEEE Transactions on Software Engineering, vol. 46, no. 8, pp. 863–891,

2020.

[45] “TSLint Documentation,” Accessed at 2020-04-30. [Online]. Available: https://palantir.github.io/

tslint/

[46] D. Spinellis, “Git,” IEEE Software, vol. 29, no. 3, pp. 100–101, 2012.

[47] F. F. Blauw, “The use of git as version control in the South African software engineering classroom,”

2018 IST-Africa Week Conference, IST-Africa 2018, pp. 1–8, 2018.

[48] N. Kobayakawa and K. Yoshida, “How GitHub Contributing.md Contributes to Contributors,” Pro-

ceedings - International Computer Software and Applications Conference, vol. 1, pp. 694–696, 2017.

63

https://www.allthingsdistributed.com/2008/12/eventually{_}consistent.html
https://dev.mysql.com/doc/
https://mariadb.com/kb/en/documentation/
https://mariadb.com/kb/en/documentation/
https://docs.oracle.com/en/
https://docs.oracle.com/en/
https://db-engines.com/en/system/MongoDB{%}3BMySQL{%}3BOracle
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://mochajs.org/
https://www.chaijs.com/
https://palantir.github.io/tslint/
https://palantir.github.io/tslint/

References

[49] Y. Yu, Y. Yang, J. Gu, and L. Shen, “Analysis and suggestions for the security of web applica-

tions,” Proceedings of 2011 International Conference on Computer Science and Network Technology,

ICCSNT 2011, vol. 1, pp. 236–240, 2011.

[50] M. Bang and H. Saraswat, “Building an effective and efficient continuous web application secu-

rity program,” 2016 International Conference on Cyber Situational Awareness, Data Analytics and

Assessment, CyberSA 2016, 2016.

[51] Divyaniyadav, D. Gupta, D. Singh, D. Kumar, and U. Sharma, “Vulnerabilities and security of web

applications,” 2018 4th International Conference on Computing Communication and Automation,

ICCCA 2018, pp. 1–5, 2018.

[52] M. Kogce and N. E. Siseci, “A New Approach to Security of NTP via SSL Certificates,” 1st In-

ternational Informatics and Software Engineering Conference: Innovative Technologies for Digital

Transformation, IISEC 2019 - Proceedings, 2019.

[53] K. A. Shaikh, A. Karthik Bhat, and M. Moharir, “A Survey on SSL Packet Structure,” 2nd Interna-

tional Conference on Computational Systems and Information Technology for Sustainable Solutions,

CSITSS 2017, pp. 268–272, 2018.

[54] “Amen.pt,” Accessed at 2020-04-03. [Online]. Available: https://www.amen.pt/

[55] “PassportJs Documentation,” Accessed at 2020-04-26. [Online]. Available: http://www.passportjs.

org/

[56] “PassportJs Repository,” Accessed at 2020-04-27. [Online]. Available: https://github.com/

jaredhanson/passport

[57] M. Jones, Microsoft, J. Bradley, P. Indentity, N. Sakimura, and NRI, “JSON Web Token (JWT),”

RFC Editor, RFC 7519, 5 2015. [Online]. Available: https://www.rfc-editor.org/rfc/rfc7519.txt

[58] “JWT Documentation,” Accessed at 2020-04-30. [Online]. Available: https://jwt.io/

[59] A. Alkhulaifi and E. S. M. El-Alfy, “Exploring Lattice-based Post-Quantum Signature for JWT

Authentication: Review and Case Study,” IEEE Vehicular Technology Conference, vol. 2020-May,

pp. 0–4, 2020.

[60] R. Zeqiri, F. Idrizi, and H. Halimi, “Comparison of Algorithms and Technologies 2G, 3G, 4G and 5G,”

3rd International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT

2019 - Proceedings, pp. 5–8, 2019.

[61] Y. Li, P. Ren, and Z. Xiang, “A Dual-Passband Frequency Selective Surface for 5G Communication,”

IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 12, pp. 2597–2601, 2019.

[62] R. Fielding, UC Irvine, Gettys, Compaq/W3C, J. C. Mogul, Compaq, H. Frystyk,

W3C/MIT, L. Masinter, Xerox, P. Leach, Microsoft, and T. Berners-Lee, “Hypertext

Transfer Protocol – HTTP/1.1,” RFC Editor, RFC 2616, 6 1999. [Online]. Available:

https://www.rfc-editor.org/rfc/rfc2616.txt

[63] C. Dionisio, “Distributed sensing solution for home efficiency tracking,” Master Thesis, ISCTE -

Instituto Universitário de Lisboa, 2019.

[64] G. Simoes, “Smart System for Monitoring and Control of Swimming Pools,” Master Thesis, ISCTE

- Instituto Universitário de Lisboa, 2019.

64

https://www.amen.pt/
http://www.passportjs.org/
http://www.passportjs.org/
https://github.com/jaredhanson/passport
https://github.com/jaredhanson/passport
https://www.rfc-editor.org/rfc/rfc7519.txt
https://jwt.io/
https://www.rfc-editor.org/rfc/rfc2616.txt

References

[65] M. Belshe, BitGo, R. Peon, Google Inc, T. M, and Mozilla, “Hypertext Transfer

Protocol Version 2 (HTTP/2),” RFC Editor, RFC 7540, 5 2015. [Online]. Available:

https://www.rfc-editor.org/rfc/rfc7540.txt

[66] E. Rescorla and RTFM Inc, “HTTP Over TLS,” RFC Editor, RFC 2818, 5 2000. [Online].

Available: https://www.rfc-editor.org/rfc/rfc2818.txt

[67] I. Stanivuk, V. Bjelic, T. Samardzic, and D. Simic, “Expanding lua interface to support

HTTP/HTTPS protocol,” 2017 13th International Conference on Advanced Technologies, Systems

and Services in Telecommunications, TELSIKS 2017 - Proceeding, vol. 2017-Octob, pp. 407–410,

2017.

[68] J. Klensin, “Simple Mail Transfer Protocol,” Internet Requests for Comments, RFC Editor, RFC

5321, 10 2008. [Online]. Available: https://www.rfc-editor.org/rfc/rfc5321.txt

[69] R. Sureswaran, H. Al Bazar, O. Abouabdalla, A. M. Manasrah, and H. El-Taj, “Active e-mail system

SMTP protocol monitoring algorithm,” Proceedings of 2009 2nd IEEE International Conference on

Broadband Network and Multimedia Technology, IEEE IC-BNMT2009, pp. 257–260, 2009.

[70] S. Atoev, K. R. Kwon, S. H. Lee, and K. S. Moon, “Data analysis of the MAVLink communication

protocol,” 2017 International Conference on Information Science and Communications Technologies,

ICISCT 2017, vol. 2017-Decem, pp. 1–3, 2017.

[71] I. Nurmawati, A. Affandi, and I. Pratomo, “Evaluation of AIS and MAVLINK Protocol Perfor-

mance,” Proceedings - 2020 International Seminar on Intelligent Technology and Its Application:

Humanification of Reliable Intelligent Systems, ISITIA 2020, pp. 338–344, 2020.

[72] A. Koubaa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, and M. Khalgui, “Micro Air Vehicle Link

(MAVlink) in a Nutshell: A Survey,” IEEE Access, vol. 7, pp. 87 658–87 680, 2019.

[73] X. Liu, “Artificial intelligence and modern sports education technology,” Proceedings - 2010 Inter-

national Conference on Artificial Intelligence and Education, ICAIE 2010, pp. 772–776, 2010.

[74] A. Allouch, O. Cheikhrouhou, A. Koubaa, M. Khalgui, and T. Abbes, “MAVSec: Securing the

MAVLink Protocol for Ardupilot/PX4 Unmanned Aerial Systems,” International Wireless Commu-

nications and Mobile Computing Conference, pp. 621–628, 2019.

[75] “Ardupilot Website,” Accessed at 2020-07-14. [Online]. Available: https://ardupilot.org/index.php

[76] “Ardupilot Dev Website,” Accessed at 2020-07-14. [Online]. Available: https://ardupilot.org/dev/

index.html

[77] “SITL Documentation,” Accessed at 2020-09-20. [Online]. Available: https://ardupilot.org/dev/

docs/sitl-simulator-software-in-the-loop.html

[78] S. Wu and L. Zhang, “Using Popular Object Detection Methods for Real Time Forest Fire Detection,”

Proceedings - 2018 11th International Symposium on Computational Intelligence and Design, ISCID

2018, vol. 1, pp. 280–284, 2018.

[79] F. A. Al-Wassai and N. Kalyankar, “Major Limitations of Satellite images Firouz,” Journal of Global

Research in Computer Science, vol. 4, pp. 51–59, 2013.

65

https://www.rfc-editor.org/rfc/rfc7540.txt
https://www.rfc-editor.org/rfc/rfc2818.txt
https://www.rfc-editor.org/rfc/rfc5321.txt
https://ardupilot.org/index.php
https://ardupilot.org/dev/index.html
https://ardupilot.org/dev/index.html
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html

References

[80] X. Zhao, H. Ji, D. Zhang, and H. Bao, “Fire Smoke Detection Based on Contextual Object Detec-

tion,” 2018 3rd IEEE International Conference on Image, Vision and Computing, ICIVC 2018, pp.

473–476, 2018.

[81] A. M. AbdElrahim Mohamed and A. Elmustafa AbuElgasim, “Controlling Drone – using IOT plat-

form,” 2019 International Conference on Computer, Control, Electrical and Electronics Engineering

(ICCCEEE19), pp. 6–9, 2019.

[82] B. H. Lee, E. K. Dewi, and M. F. Wajdi, “Data security in cloud computing using AES under

HEROKU cloud,” 2018 27th Wireless and Optical Communication Conference, WOCC 2018, pp.

1–5, 2018.

[83] A. S. Muhammed and D. Ucuz, “Comparison of the IoT Platform Vendors, Microsoft Azure, Amazon

Web Services, and Google Cloud, from Users’ Perspectives,” 8th International Symposium on Digital

Forensics and Security, ISDFS 2020, 2020.

[84] W. S. Blackmer, “General Data Protection Regulation,” 2016.

[85] Y. Zhang, “Test-Driven Modeling for Model-Driven Development,” IEEE Software, vol. 21, no. 5,

pp. 80–86, 2004.

66

	Acknowledgment
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1. Introduction
	1.1. Motivation and Context
	1.2. Objectives
	1.3. Structure of the Dissertation
	1.4. Main Contributions

	Chapter 2. State of Art
	2.1. Software Architecture
	2.1.1. Monolithic Architecture
	2.1.2. Microservice Architecture
	2.1.3. Monolithic vs Microservice Architecture

	2.2. JavaScript
	2.2.1. TypeScript
	2.2.2. React
	2.2.3. Angular
	2.2.4. Vue.js
	2.2.5. Angular vs React vs Vue
	2.2.6. Node.js

	2.3. Unmanned Aerial Vehicles
	2.4. Database
	2.4.1. Structured Query Language
	2.4.2. Not Only SQL (NoSQL)
	2.4.3. MySQL / MariaDB
	2.4.4. Oracle Database
	2.4.5. MongoDB
	2.4.6. MySQL vs Oracle DB vs MongoDB

	2.5. Tests
	2.5.1. Jest
	2.5.2. Mocha & Chai
	2.5.3. ESLint and TSLint

	2.6. GitHub
	2.7. Security
	2.7.1. SSL Certificate
	2.7.2. PassportJS
	2.7.3. JSON Web Token

	2.8. Mobile Network Technologies
	2.8.1. 3G, 4G and 5G

	2.9. Communication Protocols
	2.9.1. Hyper Text Transfer Protocol
	2.9.2. Hyper Text Transfer Protocol Secure
	2.9.3. Simple Mail Transfer Protocol
	2.9.4. MavLink

	2.10. Artificial Intelligence
	2.11. Machine Learning
	2.12. Ardupilot SITL
	2.13. Related Work

	Chapter 3. System Implementation
	3.1. Platform Design
	3.2. Frontend Architecture in Vue.js
	3.3. Backend Architecture in Node.js
	3.3.1. Gateway microservice
	3.3.2. Notification microservice
	3.3.3. Image Processing Microservice
	3.3.4. Drone Microservice

	3.4. Database
	3.4.1. Object Relational Mapper

	3.5. Tests
	3.6. Security

	Chapter 4. Results
	4.1. Web Platform
	4.2. Drone Control
	4.3. Fire Detection

	Chapter 5. Conclusions
	5.1. Main Conclusions
	5.2. Future work

	References

