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Abstract

Downside risk, which refers to deviations below a threshold, is often important in
water management decisions, especially in areas with large and skewed variations in
precipitation patterns. In this paper, we present a model for a reservoir manager who
is downside risk averse and who performs a dynamic allocation of irrigation water,
taking into account the negative effects of droughts on farm profits and different en-
vironmental constraints. We analyse the water stock, flows, and agricultural profits
for alternative environmental restrictions and thresholds for irrigation levels and find
that stricter environmental constraints increase total water supply and carryover stock,
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Abstract: Downside risk, which refers to deviations below a threshold, is often important in1

water management decisions, especially in areas with large and skewed variations in precip-2

itation patterns. In this paper, we present a model for a reservoir manager who is downside3

risk averse and who performs a dynamic allocation of irrigation water, taking into account4

the negative effects of droughts on farm profits and different environmental constraints. We5

analyse the water stock, flows, and agricultural profits for alternative environmental restric-6

tions and thresholds for irrigation levels and find that stricter environmental constraints7

increase total water supply and carryover stock, while higher penalty thresholds tend to8

lead to their overall decrease. Furthermore, increasing penalty thresholds leads to a higher9

emphasis on avoiding shortages, at the expense of lower average profits.10

1 Introduction11

The natural variability of available freshwater resources is significant in many areas,12

with large deviations in seasonal and inter-annual precipitation patterns that often bring13

about serious problems for water users (which means, basically, for everyone). In arid and14

semi-arid places with established human populations, the most challenging issue is dealing15

with water scarcity and droughts, which represent the downside of natural variability in16

such areas. Wada et al. (2011) and Rodell et al. (2018) provide global assessments of water17

stress and freshwater availability trends, respectively, highlighting that population growth18

has heightened pressures on what is essentially a finite resource. Moreover, climate change19

is expected to decrease supply and exacerbate demand increases in several regions, through20

lower precipitation and higher temperature, while also bringing additional hydrological vari-21

ability (Schewe et al., 2014). In these circumstances, the importance of including suitable22

risk analyses in water management decisions cannot be overstated.23

Agriculture features prominently in water risk-management literature for two reasons.24

First, it is one of the main water users in many areas, often accounting for the majority of25
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water withdrawals (in many countries, withdrawals for agriculture are around three quarters26

of the total).1 Also, the sector is fraught with numerous sources of risk, including weather27

conditions as one of the most significant (Zhang and Antle, 2018). Thus the issue of risk28

management in agriculture has received considerable attention for decades (Just, 1975; Hazell29

and Scandizzo, 1977; Binswanger, 1982). A useful summary of the literature is OECD30

(2009). Nonetheless, Just (2003) identifies a need to refocus the analysis by emphasizing31

that farm-level and long-term risks are more relevant, and that methodological approaches32

that stipulate risk neutrality are inappropriate given the empirical evidence, which mostly33

favors the idea that farmers are risk averse. This is pointed out in the survey by Moschini and34

Hennessy (2001), which uses the expected-utility framework. More recently, a few studies35

have used questionnaires to provide a richer characterization of farmer attitudes using the36

theory of planned behaviour (Lynne, 1995; Bergevoet et al., 2004; Läpple and Kelley, 2013;37

Poppenborg and Koellner, 2013).38

In this paper, we focus on the optimal water management problem of a benevolent sup-39

plier, who aims to maximize agricultural profits in a stochastic dynamic problem while40

recognizing downside risk (not enough irrigation may have severe effects below a certain41

threshold). Furthermore, the optimal management problem takes into account environmen-42

tal constraints, such as set minimum levels of water that must be maintained in the reservoir.43

Using data from Turkey, we solve this model computationally to obtain the optimal carry-44

over stock (savings) and irrigation use, and then simulate the model to evaluate the effects45

of these threshold levels and environmental constraints on the key variables.46

In many countries, such as Turkey, where our dataset is from, a benevolent agency is47

in charge of managing reservoirs. If a reservoir supplies water for many uses, decisions in48

case of shortages commonly resort to a prorating strategy . Urban (residential) use is often49

prioritized, which implies other uses such as agriculture may be prorated, depending on the50

severity of the shortage in a particular period. However, this strategy does not take into51

1See FAO AQUASTAT.
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account the dynamic nature of the problem or downside risk. Severe water shortfalls could52

have devastating results on the crop production, via either more land being left fallow or53

lower quality crops. Our model can provide some insight on how a manager may handle54

current shortages with an optimal allocation rule that avoids very undesirable outcomes55

over time.56

Our contribution to the literature is twofold. First, we analyze the effects of downside57

risk on reservoir manager’s decisions. In the relevant literature, Antle (1987) shows that the58

degree of downside risk aversion can be estimated and provides evidence for its occurrence59

among rice farmers in central India. Groom et al. (2008) confirm downside risk aversion60

in Cypriot farmers, highlighting that policy makers who misread farmers’ risk preferences61

may obtain wrong predictions for the magnitude and even direction of input responses to62

water-use restrictions. Antle (2010) defends the use of lower partial moments to estimate63

asymmetric effects of inputs on agricultural production, a strategy pursued by Kim et al.64

(2014), where it can be seen that 90 % of the cost of risk on Korean rice farms comes65

from exposure to downside risk. Bozzola (2014) provides further evidence for downside risk66

aversion in Italian irrigation, noting that it is a key determinant in the decision to adopt67

new technology. Finally, Nauges et al. (2015) point out that different farmer groups seem to68

hold different attitudes to risk, with horticultural irrigators showing downside risk aversion.69

In our paper, we analyze the effects of setting different thresholds on the irrigation water70

use and agricultural profits over time, via changes in the mean as well as the shape of the71

distribution.72

Second, we incorporate the lower partial moments (LPMs) into the stochastic problem73

to analyze the effects of downside risk over time. We assume that the manager allocates74

water under uncertainty across user groups while avoiding very low outcomes. The litera-75

ture covers a number of instruments that target risk reduction, including efficient distribu-76

tion (i.e., water-trading options and environmental-insurance contracts), increasing supply77

(i.e., desalination, external sources), and demand control (i.e., signals to farmers about po-78
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tential risk to encourage changes in irrigation technologies or crop composition). Garrido and79

Gómez-Ramos (2009) provide a summary of economic instruments for drought management,80

while a more complete overview can be found in Lago et al. (2015). Gómez Gómez et al.81

(2018) point out the relevance of including institutional aspects in the economic analysis. In82

terms of specific instruments, Gómez-Ramos and Garrido (2004) discuss the potential of op-83

tion contracts for efficient sharing of hydrological risks, whereas Vedenov and Barnett (2004)84

present weather derivatives as risk-management instruments for crop production. Meanwhile,85

water markets are an example of an instrument that increases water-use efficiency but also86

has risk-reduction potential, as shown in the work by Calatrava and Garrido (2005) and Zuo87

et al. (2015), both of which include estimates for downside risk.88

Specifically for water reservoir management decisions, Howitt et al. (2005) find that a89

recursive-utility specification with risk aversion provided the best fit for the data on actual90

storage levels in a Californian reservoir. Tu et al. (2003), on the other hand, propose hedging91

rules that can be used during drought periods to improve the water allocation process. An92

application to water management can be found in Hanemann et al. (2016), which simulates93

the downside risk of climate change impacts in California. In our paper, we consider the94

changes in crop composition, motivated by the Turkish data, and examine to what extent95

accounting for the downside risk in the optimal water management problem affects results.96

Our empirical results are threefold. First, we find that tighter environmental regulations97

do not necessarily have a negative impact on irrigation use, while the total supply and98

savings are affected positively. In our simulations, we observe that supply initially increases99

via higher savings, but flattens later once a certain level is maintained. Second, incorporating100

the LPM into the decision making process decreases the average agricultural profits, while101

lowering the variance as expected. Therefore, a severe shortage becomes less likely. Finally,102

we quantify how environmental constraints impact shortfall probability, expected shortfall,103

and semivariance. We find that tighter constraints slightly raise the shortfall probability and104

decrease the expected shortfall and semivariance.105
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2 Risk Measures and Attitudes106

The production of adequate research on water-use choices under uncertainty requires the107

consideration of two distinct, if interrelated, aspects: the discussion (modeling) of different108

attitudes to risk (or, more generally, to uncertainty), and the definition of relevant risk109

measures.2110

To evaluate the significance of randomness for actual choices, decision makers’ attitudes111

towards uncertainty need to be understood. Typically, models in economic literature use112

expected utility theory, in spite of widespread criticism on many of its assumptions. Within113

the expected utility framework, attitudes toward risk can be characterized by the curvature114

of utility (risk aversion) and of marginal utility (downside risk aversion), as discussed in115

Menezes et al. (1980). Alternatively, downside risk aversion can be modeled through a utility116

function which penalizes results below the mean or some another reference point (Fishburn,117

1977). The latter formalization can be related to the general phenomenon of loss aversion118

identified by Kahneman and Tversky (1979, 1992), even if it is still based on a framework of119

additive probabilities.120

Meanwhile, risk measurement ranges from the simple calculation of variance (or standard121

deviation) to the analysis of stochastic dominance among distributions. Variance (signalling122

the dispersion of possible values around the mean) and the coefficient of variation (indicating123

the ratio of the standard deviation to the mean) are two simple ways to measure risk.124

However, both variance and the coefficient of variation place equal weights on observations125

on either side of the mean, so they may not be ideal measures if there is a concern for126

bad outcomes. If these are concentrated in the lower tail of a distribution, as is the case127

with water scarcity, the analysis calls for risk measures that focus on the downside risk,128

such as skewness, semi-variance, or other lower partial moments. When this downside risk129

is important, that is, when the placement of risk in a distribution matters, one possibly130

2There are several ways to distinguish between risk and uncertainty, but the most common is to assume
“risk” refers to a situation where probabilities are known and “uncertainty” to when they are not (Knight,
1921). In the paper we assume known probabilities and use risk and uncertainty interchangeably.
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useful measure is skewness, which is the third standardized moment of a distribution. In131

particular, increases in skewness indicate that the probability mass is shifting to the left, so132

that downside risk is increasing. Nonetheless, it is still not a sufficiently general measure,133

since all moments of a distribution can matter.134

An alternative approach is to measure downside risk by calculating LPMs. These are one-135

sided measures that look only at outcomes below a reference target value, Q. The general136

expression for an LPM can be written as in Fishburn (1977):137

LPM (κ2, Q) =

∫ Q

−∞
(Q− q)κ2 dF (q) (1)

where κ2 ≥ 0 is the order of the partial moment and also reflects risk preferences in the138

below-target area, with κ2 < 1 signifying risk-seeking attitudes, κ2 = 1 representing risk139

neutrality (note that Eq.(1) becomes the expected value of the below-target outcome in this140

case) and κ2 > 1 indicating risk aversion. The extreme case of κ2 =∞ implies that only the141

worst possible outcomes are considered. The most popular LPM are the target semi-variance142

and its special case, the mean semi-variance (κ2 = 2 in both cases, but the target is specified143

as the mean in the latter).144

Fishburn shows that there is a utility function whose maximization is congruent with145

LPM measures. It is an asymmetric function, as follows:146

U(Q) =


Q, Q ≥ Q,

Q− κ1 (Q−Q)κ2 , Q < Q.

(2)

where κ1 is a positive scaling term. Of all possible LPM measures, only target semi-variance147

is compatible with the formulation of Menezes et al. (1980), which establishes that downside148

risk increases unambiguously if a spread-contraction combination transfers risk to the left149

side of a distribution while preserving mean and variance. Nevertheless, LPM are very150

intuitive: in fact, Unser (2000) provides an experimental study which shows that, in a151
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financial context, LPM are better at describing risk perceptions than variance. However,152

the author also stresses the importance of framing effects and of the simple probability of a153

below-target return (κ2 = 0).154

Finally, it is worth noting that another financial risk measure that would be easy to155

interpret even for complex portfolios is value-at-risk, which is a threshold value in monetary156

units such that the probability mass of getting losses greater than the threshold over a157

given (short) period is some specified number (typically 1% or 5%). Thus, if value-at-risk158

increases at a given confidence level, the expected potential losses for the period are growing,159

and therefore there is more risk. Since it only looks at losses, value-at-risk clearly belongs160

in the family of downside risk measures. However, as it only considers one specific quantile,161

it is not appropriate for ranking distributions.3162

3 Reservoir Management Model163

In this section we present the model that will be used to assess different assignation164

rules between agriculture and environmental requirements in a surface water reservoir. We165

consider a benevolent agent to manage the water supply, such as a water user association166

(WUA) or a local government body, and refer to this as the reservoir manager.167

While water levels in a reservoir are measured at regular intervals, future levels are168

random from the point of view of the reservoir manager, since they depend on run-off, which169

determines reservoir filling. In the Mediterranean region water levels are highly seasonal.170

Precipitation occurs mostly in winter and early spring, and is almost nonexistent during171

the summer and early fall. Precipitation increases the water supply for all user groups172

(via inflows to the reservoir) and it could partially (sometimes fully) offset the demand for173

irrigation. However, the irrigation season usually starts in late spring and continues until174

autumn, so it does not coincide with the main filling period in a typical hydrological year,175

3A broader view of risk is embedded in the concept of stochastic dominance, surveyed in Levy (1992).
This includes stochastic-dominance results based on the quantile approach.
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defined from October until September of the following year. Given the characteristics of the176

region, we assume in the model that precipitation is not available when irrigation is needed;177

we will demonstrate these features of the data in Appendix Section A.4178

3.1 Agricultural Profits179

Models of reservoir management for agriculture commonly assume that profits vary with180

the amount of irrigation water in a risk-neutral manner:181

Π(Q) =
N∑
c=1

pc αc Lc min(Qc/γc, 1) (3)

where the agricultural profits Π(Q) include the profits from every crop c. These in turn182

depend on the crop price pc, land productivity αc, crop water requirement γc, land allocated183

Lc, and the amount of water allocated Qc.5184

Different from the above formulation, we wish to exploit the possibility that farmers have185

downside-risk aversion so there is a disutility term when the irrigation water falls below a186

certain threshold. As a result, similar to (2), the utility from profits equals:187

Π̃(Q,Q) =


Π(Q), Q ≥ Q,

Π(Q)− κ1

[
Π(Q)− Π(Q)

]κ2 , Q < Q

(4)

where Q represents the threshold level, κ1 is some positive scaling term, and κ2 controls the188

risk preferences below the threshold area.189

It is noteworthy that the limits in (4) are defined in terms of quantity (i.e., the amount190

of irrigation Q) instead of profits (i.e., Π(Q)), assuming that the profits are non-decreasing191

4While we make this assumption to better fit the data, we could further revise the model to allow for this
substitution in other datasets/regions where such a link exists.

5Water prices are not included in the model, because the solution to the reservoir manager’s optimization
problem defines the quantity of irrigation water. It would be possible to calculate implicit shadow values
to be used as prices, instead of directly regulating quantity, if the regulatory framework called for a price
strategy. Additionally, we model the farmer’s land allocation decision as a discrete choice problem here but
we will focus on the implications of the model on water management decisions for brevity.
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in quantity. Consequently, the utility functional form is congruent with the lower-partial-192

moments (LPM), where the profits increase linearly in Q if the irrigation use is above the193

threshold, but they incur a penalty if available water is below the threshold.194

3.2 Environmental Constraints195

Environmental constraints to reservoir levels most often exist as a way to maintain ade-196

quate flows in river ecosystems. The establishment of a flow regime is complex and context-197

specific. There is not a single best way of doing it, although dams clearly play a significant198

role; see Dyson et al. (2003).199

We adopt the term E(S) to represent the environmental constraints, which may depend200

on the currently available water supply. We consider absolute and relative stock restric-201

tions to examine the effects of different environmental requirements. With the absolute202

restrictions, there is a fixed threshold of carryover stock: any volume above it can be used203

for consumption (or simply released to avoid overflows). With the relative restrictions, the204

reservoir manager splits water reserves, allotting a proportion of available volume to envi-205

ronmental uses as water levels increase. Either way, we assume that the stock that is carried206

over will be available in future periods to be released as environmental flows, if necessary.6207

3.3 Water Management Problem208

We first introduce some notation about the key components of the model. Water supply209

available in period (year) t is denoted by St, which is a function of the carryover stock from210

last period (wt), and stochastic recharge (Rt). This supply is allocated to four uses. Urban211

water use (Ut) is not expected to vary significantly with hydrological conditions, thus we212

treat it as constant throughout the paper (Ut = U). The second component (Ft) is the213

6While we model the time period as a year in this paper, one could alternatively consider monthly varia-
tions in stochastic variables and their effects on the amount of monthly irrigation and savings. Furthermore,
a monthly analysis with detailed data could provide more insight by allowing the environmental flows to
change throughout the year.
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amount of water released to avoid overflows, which is only relevant during periods with high214

inflows (when no irrigation is happening anyway) and has no economic return (except for215

avoiding damages). We model Ft as a function of the stochastic recharge. The third use is216

for irrigation (Qt), which is one of the control variables in our model. The last component217

is the carryover stock (wt+1), which provides the dynamic link between periods.218

Our timeline is as follows: at the beginning of the irrigation season, the reservoir manager219

observes the carryover stock and the recharge, to calculate the water supply. Taking into220

account urban water use and existing environmental constraints, the manager chooses the221

value for irrigation water (Q) to let farmers know how much water will be available to them222

in the coming months. The farmers then make crop choices that match their aggregate223

demand for irrigation to the amount declared by the reservoir manager. Depending on how224

much water is available, some percent of the land may be left fallow. The remaining supply225

is saved as carryover stock for the next period.226

The reservoir manager aims to maximize the expected discounted utility of profits from227

agriculture subject to two constraints:228

∞∑
t=0

βt E
Rt

[
Π̃(Qt, Q)

]
(5)

Resource Constraint: St = S(wt, Rt) = U + Ft(Rt) +Qt + wt+1;∀t = 0, 1, . . . (6)

Environmental Constraint: wt+1 ≥ E(St);∀t = 0, 1, . . . (7)

Initial State: w0 is given. (8)

where the first constraint (6) governs the evolution of the water stock: The left-hand side of229

this equation is the total supply of water (S), which depends on savings from last period (w)230

and stochastic recharge (R), while the right-hand side reflects all uses (U , F , Q), including231

the carryover stock (w′). The second constraint (7) is due to environmental protection, which232

is imposed as a lower bound on carryover stock (wt+1).233
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Given the recursive nature of the problem, we can rewrite it as a Bellman equation:234

V (w,R) = max
w′,Q

Π̃(Q,Q) + β E
R′|R

[V (w′, R′)] (9)

S(w,R) = U + F (R) +Q+ w′ (10)

w′ ≥ E(S). (11)

where the value function V (w,R) depends on the two state variables (w,R), which denote235

the carryover stock and stochastic recharge. The expectation operator E
R′|R

(·) is due to the236

uncertainty in future recharge levels, which may follow a known Markovian distribution that237

is conditional on the current recharge (R).238

It is worth noting that the environmental constraint provides a lower bound on the239

carryover stock. In other words, in a situation where the savings appear to be less than the240

environmental constraints (i.e., w′ < E(S)), the reservoir manager prorates the irrigation241

water use until the constraint is met.7 The rationing of irrigation water implies that the242

agricultural profits decline accordingly.243

Before we move onto the numerical illustration, it may be useful to describe how the244

solution will depend on some of the key parameters. A higher recharge implies higher water245

supply, which allows the manager to increase savings (carryover stock) as well as irrigation.246

On the other hand, an increase in the penalty threshold might lead to higher irrigation and247

lower carryover stock. Finally, a tighter environmental constraint imposes a higher amount248

that must be saved. As a result, during drier periods, the manager is forced to save more249

for the future, cutting down irrigation.250

7This assumption, while not necessary for the solution, is motivated by the data. In case of a shortage,
irrigation use is most often pro-rated, while residential use is not affected as much in the data; see Figure 1.
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4 Numerical Illustration251

Since the dynamic problem given in (9)–(11) is stochastic, it is more practical to illustrate252

the solution numerically rather than seek an analytical solution. We use data from Turkey253

to calibrate the key parameters of the model. These values are provided in Table 1. We254

refer to the Appendix Section A for further details on the data description and parameter255

estimation.256

The State Waterworks are in charge of managing the reservoirs in Turkey. They determine257

how much water to allocate for urban (residential) and irrigation uses. Once the amounts258

are set, municipalities run urban water management while WUAs handle irrigation. To do259

so, they report how much water is available to all farmers at the beginning of the season260

and then record crop choices for the agricultural area. Finally, the WUAs then decide on261

the amount of water to be allocated for each crop and the corresponding irrigation price.262

It is worth noting that we do not entertain this decentralised structure in our model for263

two reasons. First, water prices are considered as fees to balance the budget, thus they do264

not reflect scarcity value and in the case of agriculture, they are per area pricing. Second,265

the municipalities and WUAs do not have much control over the amount of water allocated266

across various user groups.267

In case of shortage, the State Waterworks prioritizes urban water use. Therefore, it is268

relatively steady in the data (after controlling for the population increase). This implies that269

any possible cuts are in agricultural use, as illustrated in Figure 1. In most cases, the land270

allocated for wheat experiences the most severe cuts, since wheat (relative to cotton, sugar271

beet, and maize) has the lowest crop water requirement in the region. However, this strategy272

of prorating agriculture in each period does not take into account the dynamic nature of the273

problem or the downside risk.274

The dataset used in this analysis is from South-Southeastern Turkey, and reports the275

aggregate allocation of agricultural land (of about 20, 000ha) from 1984 to 2007 across four276

crops (including leaving the land fallow). The crop composition over time is illustrated in277

13



Figure 2. According to this figure, there is a significant change in the crop composition278

over time in that: (1) The proportion of land allocated for cotton has reduced significantly279

(from as high as 90% to as low as 15%) over time, (2) Maize has emerged in late 1990s as a280

lucrative option for land allocation, (3) The proportion of land left fallow has increased in281

late 1990s and early 2000s (it peaked at more than 20% in 2001), mostly due to the severe282

water shortages experienced in the region.283

To estimate agricultural profits (3), we set up a Logit model, where a representative284

farmer takes into account the crop prices, water availability, and land productivities and285

makes the land allocation decision over these four crops (cotton, maize, sugarbeet, and286

wheat). Leaving some part of the land fallow is also an option (of last resort with no287

economic benefits), unless enough water is available for irrigating the whole area.288

The threshold levels (Q) are not considered in the data generating process. To investigate289

the effect of different thresholds on the variables of interest (i.e., irrigation use, total and290

carryover stocks), we try threshold levels so that, based on the crop choice decision by291

farmers in (3), the proportion of land left fallow equals {10%, 20%, 25%}. Consequently,292

the corresponding threshold levels are set to
{
Q3 = 152, Q2 = 121, Q1 = 109

}
(in hm3),293

respectively.8294

As indicated in Table 1, reservoir capacity (w̄) is fixed at 173.173hm3 and the minimum295

historical carryover stock is constant at 5.65hm3. We assume, as discussed in Section 3,296

that the carryover stock is bounded below by an environmental constraint (w = E(S)).297

We consider four cases here: (EC1) E(S) is constant at 5.65hm3, (EC2) E(S) is constant at298

11.30hm3, (EC3) E(S) is proportional to total supply at 5%, and (EC4) E(S) is proportional299

to total supply at 10%. These environmental constraints provide alternative minimum levels300

for the carryover stock. The stricter the environmental constraint, the more conservative the301

reservoir manager, saving more water for the future while making less available for irrigation302

use.303

8We could consider alternative values for thresholds, but the values used in the analysis already yield
dramatic changes to land use decisions.
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Since we do not observe the downside risk preferences in the data, we set the parameters304

κ1 and κ2 to 20 and 2, respectively. The choice of the value for κ2 is to make the use of LPM305

consistent with the utility framework in (2). Having done so, we have tried various values of306

κ1 and adopted a value that would make the penalty severe enough for the effect of LPMs307

to arise in the numerical illustration.308

We define the Benchmark case (i.e., Q0 = 0) as one with simple risk neutrality (without a309

threshold). For each environmental constraint (EC1–EC4) and penalty threshold level (Q0–310

Q3), the reservoir manager optimally chooses the irrigation use (Q) to maximize the sum311

of the expected discounted agricultural profits, defined as a value function in (9), subject to312

resource and environmental constraints, given in (10) and (11). Given the state variables in313

carryover water stock, stochastic inflows, and stochastic crop prices, we use the grid-search314

method to compute the value function in MATLAB.315

Once we compute the value and policy functions, we perform a Monte-Carlo simulation,316

running the model 1000 times for 25 years. The choice of 25 years is not arbitrary; the317

variables of interest converges to their long run targets by this period. In our analysis,318

we focus on three key variables: total supply (S), carryover stock (w′), and irrigation water319

(Q). First, in Section 4.1, for each environmental constraint and threshold level, we calculate320

the mean of these variables in selected periods and compare the effect of the threshold level321

against a benchmark model, which has no penalty threshold (Q0 = 0). Then, we evaluate the322

cost of threshold levels and environmental constraints on the agricultural profits in Section323

4.2. Finally, in Section 4.3, we return our attention to LPM measures for irrigation use324

and calculate shortfall probability, expected shortfall, and semi-variance over time, across325

different penalty thresholds and environmental constraints.326

4.1 Monte-Carlo Simulations: Summary Statistics327

This section presents the results from the Monte-Carlo simulation of our reservoir model,328

specifically for the irrigation use (Q), total supply of water (S), and carryover stock (w′). To329
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understand how these three variables evolve over time, we simulate the stochastic recharge330

and crop prices, and employ the optimal policy rules to calculate the three variables in each331

period of the simulation. While a low value for the carryover stock (eg., w0 = EC1) would332

create a severe shortage at the beginning of the simulation and produce more dramatic333

results, we assume that the starting carryover stock in period 0 is set to the median in the334

data (w0 = 41.78), so the results are consistent with the values in the data. As mentioned335

above, we simulate the model for 25 periods so that we can find out the long run targets of336

these three variables.337

We compare our results across different environmental constraints and thresholds. To do338

so, with each of the four environmental constraints, we calculate the mean of the simulated339

variables (irrigation water, carryover stock, and total supply of water). The benchmark model340

refers to the case where there is no threshold imposed, so no penalty is applied to manager’s341

utility (i.e., Q0 = 0 in (4)). Table 2 presents the average values (across simulations) of the342

three variables in selected periods for each environmental constraint and threshold level.9343

We start our analysis with the effect of environmental constraints, which present a re-344

striction on the lower bound of savings, so the more restrictive an environmental constraint345

is, the lower the irrigation use is on average. While our results in Table 2 verify this finding,346

the decrease in irrigation use is not statistically significant across environmental constraints:347

the mean irrigation use is around 130hm3. However, time profiles will be different. The main348

effect of environmental constraints is on the total supply via the carryover stock (savings).349

The mean carryover stock increases overall when the environmental constraint is more re-350

strictive: in our case, the direction of increase is from constant values (EC1 and EC2) to351

percent values (EC3 and EC4). For instance, in the benchmark model, the total supply in-352

creases from 289hm3 with EC1 to 304hm3 with EC4, along with the carryover stock (63hm3
353

to 78hm3).354

When we focus on the effects of increasing threshold value, again we find that the ir-355

9Other summary statistics are also calculated but not presented here for brevity.
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rigation use is not affected significantly. Meanwhile, the carryover stock and total supply356

decrease with the threshold value across all environmental constraints. For instance, with357

EC1, the average total supply increases from 257hm3 with Q3 to 262hm3 with Q2, 288hm3
358

with Q1, and finally to 289hm3 with no threshold level. As the threshold value is relaxed,359

the manager can afford to supply agriculture with less irrigation, so more can be saved as360

carryover stock, increasing the water supply.361

Table 2 also provides insights about the evolution of these three variables over the periods.362

In general, we observe that, in the earlier periods (i.e, period 5), the reservoir manager363

aggressively saves more for the future (see the high carryover stock in period 5), while trying364

to stay close to the threshold. Over the periods, the reservoir manager accumulates enough365

stock (see periods 10–25), so carryover stock goes down and more water can be released for366

irrigation use.10367

To summarize, across the four types of environmental constraints with varying thresholds,368

we can conclude that changing the environmental constraint to a more conservative one369

unambiguously increases the total supply, but has little effect on irrigation use. Also, the370

increase in threshold level mainly drives up the total supply via carryover stock. For instance,371

from a high threshold (Q3) to no threshold, the total supply increases by around 12% (from372

257hm3 to 289hm3 with EC1). Finally, the carryover stock is higher in earlier periods,373

signaling an initial increase in total supply, and then it levels off (often by period 10–15).374

Given that we start with the median value for the carryover stock in period 0, the variables375

appear to have converged to their long run target distribution by period 25.376

10In the benchmark case with no threshold and the case with low threshold (Q̄ = 109), the manager
appears to be overaggressive in saving the carryover stock for the future periods. This result is due to two
factors. On the one hand, the initial condition is lower than the long run value, which leads to a build up of
carryover stock, particularly to avoid the adverse effects of potential low inflows in the future. The second
factor is the bimodal feature of the distribution of the total supply, which leads to either very low or high
values for carryover stock. This behaviour disappears after the first few periods in these two cases and is
not at all present for the other two, with higher threshold levels.
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4.2 Monte-Carlo Simulations: Agricultural Profits377

In Table 3, we analyze the implications of the environmental constraints and threshold378

levels on the sum of expected discounted agricultural profits (which we will refer to as total379

profits). It is important to note that the values do not take into account the penalty term.380

The agricultural profits are highest in the benchmark model (4.11TRY (Turkish lira in real381

terms) with EC1), compared to threshold levels (e.g. 2.66TRY inQ2 and 2.22TRY inQ3), but382

often at the cost of higher variation.11 The main reason for this result is that the benchmark383

model includes no threshold, so it maximizes the agricultural profits (not the profits minus384

the penalty). However, the manager is also more prone to shortages in the benchmark385

model. To reduce the frequency and severity of these shortages, the reservoir manager can386

utilize the threshold levels (Q1–Q3), but at the cost of lower averages. Consequently, we can387

attribute the changes in the agricultural profits as the cost of thresholds. For instance, from388

the benchmark model to Q2, the average agricultural profits decrease by about 35% for all389

environmental constraints, while it further goes down by 16% from Q2 to Q3. Meanwhile,390

having a higher threshold level decreases the shortfall probability and variance below the391

threshold (which will be discussed in Section 4.3).392

The stricter environmental constraints decrease the total profits : relative to EC1, EC2393

decreases the total profits by 1.26–1.86%, whereas EC4 reduces by at least 6.8% for all but394

Q3. The effects of environmental constraints is less pronounced in Q3, since the threshold395

(Q3) is already at a high level (and so the variation is already reduced considerably).396

4.3 Monte-Carlo Simulations: Lower Partial Moments397

While the average irrigation use seems to be fairly stable across different environmental398

constraints and thresholds over time (see Table 2), it would be misleading to conclude that399

these factors have no effects at all on irrigation. Therefore, we calculate the lower partial mo-400

ments of the irrigation use, and assume that parameter κ2 equals {0, 1, 2} in (1). These three401

114TRY is roughly equal to 1USD.
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cases corresponds to shortfall probability, expected shortfall, and semi-variance, respectively.402

The shortfall probability is the probability of irrigation use going below the threshold,403

while the expected shortfall is the average difference between the threshold and irrigation404

use, conditional on the irrigation use being lower than the threshold, implying the magnitude405

of the shortages when they occur. The semi-variance, similar to the variance measure, signals406

the variation in the shortages when they occur. For instance, according to Table 4, with407

Q1 and EC1, the average shortfall probability over all periods is 0.68 indicating that in 68408

percent of the time, the amount of water given to farmers will be less than the threshold level409

of 109hm3. In this case, the irrigation use is on average 20.53hm3 less than this threshold,410

with semi-variance equal to 1229hm3 (semi-variance).411

Table 4 lists these three measures for the irrigation use across different environmental412

constraints and thresholds for selected periods. When the threshold is high (i.e. Q2 or413

Q3), it is expected that the shortfall probability will be high. In fact, with Q3, it is almost414

impossible for the manager to irrigate at or above the threshold in any period. As the415

threshold decreases (from Q3 to Q1), the average shortfall probability over all periods goes416

down: with EC1, it is 67% with Q2, and 34% with Q3.417

When we consider different environmental constraints, we see that the average shortfall418

probability decreases in earlier periods, but increases eventually, but mostly stays the same419

overall (i.e., from 67% with Q2 and EC1 to 71% with EC4). 12
420

To explore the effect of the threshold level on the expected shortfall (κ2 = 1), we first421

revisit our definition of the expected shortfall given in (1):422

LPM (κ2 = 1, Q) =

∫ Q

−∞
(Q− q) dF (q,Q) (12)

where F (q,Q) denotes the cumulative distribution function of irrigation use q, which has423

12The average shortfall probability with Q2 in EC1 is 67%, whereas the four periods depicted in this table
have all higher probabilities. It is worth noting that in the earlier periods, the shortfall probability is much
lower (not illustrated here), which leads to this average value. The opposite is true for EC4, where, in the
earlier periods, the shortfall probability is higher, so the mean is higher than the four periods depicted on
Table 4.
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a probability density function denoted by f(q,Q). Equation (12) is slightly different than424

(1). In (1), the cumulative distribution does not depend on the threshold, so increasing the425

threshold cannot decrease the expected shortfall. Meanwhile, in (12), the cumulative distri-426

bution F (q,Q) also depends on the threshold level, given the dynamic nature of the problem,427

as the optimal rule for carryover stock changes with the threshold. Consequently, this fur-428

ther impacts the distribution of the irrigation use. To investigate the effect of the threshold429

on the expected shortfall, we compute the partial derivative of the expected shortfall with430

respect to threshold level:431

∂LPM(κ2 = 1, Q)

∂Q
=
∂

∂Q

(∫ Q

−∞
(Q− q) dF (q,Q)

)
=

∫ Q

−∞
f(q,Q) dq +

∫ Q

−∞
(Q− q)

∂f(q,Q)

∂Q
dq. (13)

Equation (13) implies two effects of the threshold on the expected shortfall. On the432

one hand, the higher the threshold, the more likely the irrigation use is to stay below the433

threshold, so the expected shortfall increases. This effect is due to the first term on the434

right hand side and also present in (1). On the other hand, when the threshold is larger, the435

distribution also changes (via the first term on the right hand side), because the reservoir436

manager revises the optimal carryover stock, which further affects the total supply in the437

next period. Thus, it is not clear if the overall effect is positive or negative.438

As can be seen in Table 4, the shortfall probability is relatively high for thresholds Q2439

and Q3, so the first effect dominates the second. Consequently, the expected shortfall goes440

down when the threshold is lower (from Q3 to Q2). Meanwhile, the shortfall probability is441

relatively low for threshold (Q1). In this case, the expected shortfall stays high compared to442

the threshold Q2, indicating that while irrigation use is less likely to fall below the thresholds,443

the difference is high when it occurs.444

The effect of environmental constraints on the expected shortfall is not as pronounced.445

While the environmental constraints do not appear to change the expected shortfall signif-446
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icantly in the case of Q3, the stricter constraints tend to lower the expected shortfall with447

lower thresholds. This pattern is similar but more significant for semivariance.448

To summarize, we find that the shortfall probability increases with the threshold level,449

while environmental constraints do not have a significant effect overall. Meanwhile, we450

distinguish the two effects of the threshold level on the expected shortfall: the first one is451

the direct effect and the second one is via the change in the policy rule. We conclude that452

an increase in the threshold level initially decreases the expected shortfall (since the second453

effect dominates), but eventually increases it (via the first effect). A similar pattern is also454

observed in the semi variance values. Meanwhile, tighter environmental constraints generally455

decrease the expected shortfall and semivariance.456

5 Concluding remarks457

This paper sets out to analyze the risk profiles of different assignment rules and envi-458

ronmental constraints in a water reservoir that serves agricultural demand for irrigation.459

We present a model for a downside risk-averse reservoir manager in order to examine how460

the optimal savings and irrigation use react to different assignment rules and increasingly461

demanding environmental constraints. To conduct our analysis, we incorporate the lower462

partial moments into our dynamic model, as they put more emphasis on the shortages. Since463

these are a key issue in water management in many irrigated areas, we believe the use of464

one-sided risk measures should be more widespread. Using Turkish data, we solve our model465

computationally and simulate it to evaluate the effects on irrigation use, total supply, and466

carryover stock, as well as agricultural profits.467

The results are quite intuitive. First, we conclude that while thresholds (for LPM)468

and environmental constraints do not impact the average irrigation use, total supply and469

carryover stock are affected positively by stricter environmental constraints and negatively470

by increasing thresholds. As environmental constraints get stricter, carryover stock has to471
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be maintained at a higher level, which raises the total supply. On the other hand, increasing472

thresholds mean the utility penalty is stronger, so more water is allocated to irrigation.473

Second, agricultural profits decrease with higher thresholds and stricter environmental474

constraints. On the one hand, thresholds put more emphasis on avoiding shortages, so475

the variance may go down at the expense of lower average profits. Tighter environmental476

constraints, by forcing higher savings, decrease profits.477

Third, we find that as the threshold increases, the shortfall probability increases. Mean-478

while, for a given threshold, stricter environmental constraints slightly raises the shortfall479

probability. However, the effect of thresholds on the expected shortfall and semivariance is480

not clear, as the dynamic problem will take the threshold into account, so the distribution of481

the irrigation use changes with the assumed threshold level. Meanwhile, the environmental482

constraint have a negative impact on the expected shortfall, which is more pronounced in483

the semivariance.484

Extensions to this research could include modeling the distribution of stochastic recharge485

as a Markov process, or utilizing its empirical distribution. Additionally, the model could486

include multi-purpose reservoirs with hydropower production, as well as more realistic envi-487

ronmental flow regimes. Another interesting avenue for further research would be to compare488

the results of our single-goal optimization model to those of more realistic, and complex, hy-489

droeconomic models of water management where multiple attributes are considered (Rausser490

and Yassour, 1981; Delforce and Hardaker, 1985; Gómez-Limón and Riesgo, 2004; Chung491

and Lee, 2009). The advantage of this approach is that one goal is not paramount and de-492

cision weights take center stage. Participatory methods (Munda, 2008; Messner et al., 2006;493

Paneque Salgado et al., 2009) can be used to select attributes and weights as well as enable494

better policy discussions.495
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A Data Description617

Water data presented here are from the Kartalkaya dam, located in the Ceyhan basin618

in south-eastern Turkey. It provides water for irrigation and drinking purposes. The dam619

capacity is 173.173 hm3 and the total irrigation area that it serves is 22, 810ha (Pazarcik620

County). It also supplies tap water to the city of Gaziantep (population of 1.5 million).621

Data concerning the flows into the Kartalkaya dam are available from January 1984 to622

August 2007 (with a total of 284 observations), and the boxplot of the flows (in hm3) are623

depicted in Figure 3. Since precipitation is mostly during the winter, reservoirs are required624

to provide water for summer irrigation. The government releases water for three purposes:625

tap, irrigation, and to avoid reservoir overflows. Tap water use amounts to around 100 hm3
626

annually; irrigation use is slightly higher, ranging between 130 − 150 hm3. Water released627

to avoid overflows does not have any other economic benefit.628

Agriculture in general may make use of precipitation as a substitute for irrigation. How-629

ever, we assume precipitation is not a viable source when irrigation is needed, which is often630

the case for semi-arid and arid regions. Therefore, Qt measures the amount of irrigation631

during a period (from October to September).632

Water released to avoid overflows is censored from below: it is zero if there is no threat633

of overflows; also, more water than the reservoir capacity may be released in any given year.634

Therefore, we estimate the water release for flood control, denoted by F , using the Tobit635

model and utilizing the annual recharge R as the predictor.636

To solve the dynamic problem, we assume that the exogenous stochastic shocks in this637

economy stem from two components: inflows to the reservoir and crop prices. We estimate638

the annual inflows with an auto-regressive process, but reject the test for autocorrelation.639

Therefore, we fit the inflows data with the Gamma distribution.13640

Among the crop prices, only the crop price of cotton has changed significantly over the641

13See Heidecke and Heckelei (2010); Leizarowitz and Tsur (2012) for the use of Gamma distribution to
estimate inflows.
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last two decades. Meanwhile, the crop prices of wheat, maize, and sugar beet have stayed642

almost constant during the time period. To incorporate these stochastic shocks, we assume643

a log-normal distribution for the crop price of cotton, estimate an AR(1) process, and derive644

the transition matrix using the algorithm described by Tauchen (1986).645
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Table 1: Parameter Values for the Empirical Illustration

Type Parameter Variable Value

Computational Carryover stock: grid points Nw 100
No of periods in each simulation NT 25
No of simulations M 1000

LPM Penalty scalar κ1 20
Order of partial moment κ2 2
Penalty thresholdsa (hm3) Q1–Q3 {109, 121, 152}

Uncertainty Stochastic recharge: no of grid points NR 8
Stochastic recharge: distribution (hm3) Gamma(5.6910, 69.2267)
Cotton price: no of grid points Np 2
Cotton price: distribution AR(1)

Economic Discount rate (%) rβ 1%
Minimum carryover stock (hm3) w 5.65
Maximum carryover stock (hm3) w̄ 173.173
Env. constraints: fixed (hm3) EC1–EC2 (5.65, 11.30)
Env. constraints: variable (% of supply) EC3–EC4 (5%, 10%)

Water Use Residential demand (hm3) U 95.32
Flood Prevention (hm3) F max (−220.91 + 0.9695 R, 0)

Note: (a) The threshold values for the irrigation water use are chosen so the proportion of land left fallow
equals {25%, 20%, 10%}, respectively.
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Table 2: Summary Statistics (Mean) of Key Variables (in hm3) in the Simulation

Irrigation Use - Mean Total Supply - Mean Carryover Stock - Mean

Period EC1a EC2 EC3 EC4 EC1 EC2 EC3 EC4 EC1 EC2 EC3 EC4

Benchmarkb

5 87.77 88.00 92.20 137.17 267.65 269.26 272.83 310.89 84.48 85.85 85.22 78.03
10 129.71 123.68 125.94 128.16 292.72 291.15 293.22 301.70 67.52 71.97 71.79 77.95
15 136.23 129.15 129.15 131.11 292.55 293.08 293.93 304.18 60.84 68.43 69.28 77.46
25 138.86 137.23 138.36 130.51 295.93 297.49 299.15 303.71 61.56 64.73 65.26 77.59

Overallc 130.72 130.58 130.55 129.96 288.87 292.99 294.28 303.69 62.66 66.90 68.22 78.12

Q1=109d

5 88.60 101.89 115.42 141.99 269.01 278.05 288.70 309.32 85.04 80.75 77.85 71.88
10 134.55 130.13 130.38 128.22 295.19 293.52 294.60 301.24 65.19 67.94 68.77 77.59
15 141.65 132.97 132.01 128.54 294.07 293.49 294.13 299.81 56.96 65.08 66.69 75.84
25 136.57 135.39 134.40 133.42 292.91 295.37 296.13 302.97 60.88 64.52 66.26 74.11

Overall 130.79 130.64 130.57 130.28 287.73 292.08 293.75 301.24 61.49 65.99 67.73 75.53

Q2=121

5 115.33 126.16 130.30 143.29 251.28 263.94 267.30 296.54 40.61 42.45 41.66 57.88
10 121.88 127.82 130.21 136.70 255.60 265.92 267.66 291.66 38.38 42.75 42.10 59.58
15 126.68 130.10 130.50 135.13 257.79 267.46 268.12 290.16 35.77 42.02 42.27 59.66
25 129.66 130.28 131.06 133.50 260.68 267.56 269.89 290.05 35.68 41.94 43.49 61.18

Overall 131.91 131.65 131.59 130.86 262.10 269.83 271.01 288.13 34.86 42.83 44.08 61.91

Q3=152

5 132.86 131.65 131.53 131.13 260.30 261.28 261.53 268.13 32.12 34.30 34.68 41.68
10 131.07 130.87 130.84 130.08 255.49 259.17 259.88 269.66 29.10 32.98 33.72 44.26
15 130.84 130.94 130.98 130.71 253.70 259.02 259.88 271.53 27.54 32.76 33.58 45.50
25 132.13 131.60 131.54 131.46 252.14 258.03 258.49 271.48 24.69 31.10 31.63 44.70

Overall 132.36 132.11 132.08 131.56 256.89 260.88 261.45 270.97 29.21 33.45 34.04 44.08

Note: (a) The notation “EC1–EC4” refer to the environmental constraints for the minimum carryover stock: (EC1) constant at
5.65hm3, (EC2) constant at 11.30hm3, (EC3) variable with 5% of the supply, (EC4) variable with 10% of the supply. (b) The
“Benchmark” model refers to the case where there is no penalty threshold. (c) The term “Overall” indicates the average over all
periods. (d) The notation “Q1–Q3” refer to the threshold levels of the irrigation use that lead to {25%, 20%, 10%} of the land left
fallow, respectively.
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Table 3: Average Discounted Lifetime Agricultural Profits (without Penalties)

Averagea Std. Dev. % change (rel. to EC1)

Period EC1b EC2 EC3 EC4 EC1 EC2 EC3 EC4 EC1 EC2 EC3 EC4

Benchmarkc 4.11 4.06 4.03 3.83 0.28 0.28 0.28 0.26 0 -1.26 -1.92 -6.8

Q1= 109d 4.11 4.03 3.97 3.62 0.28 0.28 0.28 0.29 0 -1.86 -3.43 -11.76

Q2= 121 2.66 2.62 2.58 2.43 0.34 0.35 0.35 0.36 0 -1.7 -2.88 -8.74

Q3= 152 2.22 2.2 2.2 2.16 0.19 0.18 0.18 0.18 0 -0.72 -0.92 -2.79

Note: (a) The term “Average” indicates the average, across simulations, of the sum of the discounted
lifetime agricultural profits, measured in real terms of the domestic currency. This measure does not
account for the penalty if fallen below threshold. (b) The notation “EC1–EC4” refer to the environmental
constraints for the minimum carryover stock: (EC1) constant at 5.65hm3, (EC2) constant at 11.30hm3,
(EC3) variable with 5% of the stock, (EC4) variable with 10% of the stock. (c) The “Benchmark” model
refers to the case where there is no penalty threshold. (d) The notation “Q1 – Q3” refer to the threshold
levels of the irrigation use that lead to {25%, 20%, 10%} of the land left fallow, respectively.

33



Table 4: Lower Partial Moments for Irrigation Use in the Simulation

Shortfall Probability (κ2 = 0) Expected Shortfalla (κ2 = 1) Semivariance (κ2 = 2)

Period EC1b EC2 EC3 EC4 EC1 EC2 EC3 EC4 EC1 EC2 EC3 EC4

Q1=109c

5 0.68 0.58 0.49 0.30 40.74 33.87 26.60 12.35 2432 1998 1531 646
10 0.31 0.36 0.37 0.44 18.54 20.03 19.43 16.76 1096 1157 1104 835
15 0.26 0.33 0.35 0.43 15.24 18.86 18.90 17.10 908 1095 1081 877
25 0.30 0.31 0.33 0.39 17.79 17.94 17.87 14.67 1067 1054 1028 738

Overalld 0.34 0.35 0.36 0.42 20.51 20.01 19.42 15.90 1227 1168 1106 801

Q2=121

5 0.91 0.73 0.68 0.51 10.91 9.34 8.03 3.95 400 373 292 72
10 0.82 0.72 0.68 0.61 9.05 8.47 7.91 5.02 288 304 271 96
15 0.74 0.69 0.69 0.64 8.38 7.56 7.32 5.23 277 239 222 93
25 0.71 0.69 0.68 0.66 6.97 7.13 7.03 5.51 192 212 211 99

Overall 0.67 0.67 0.68 0.71 6.84 6.75 6.51 5.86 197 188 163 101

Q3=152

5 1.00e 1.00 1.00 1.00 19.12 20.32 20.45 20.85 1071 1206 1210 1186
10 1.00 1.00 1.00 1.00 20.90 21.11 21.14 21.89 1223 1236 1237 1297
15 1.00 1.00 1.00 1.00 21.13 21.04 21.00 21.26 1238 1219 1209 1232
25 1.00 1.00 1.00 1.00 19.85 20.38 20.44 20.51 1064 1134 1136 1137

Overall 1.00 1.00 1.00 1.00 19.61 19.87 19.89 20.41 1087 1110 1107 1140

Note: (a) Expected shortfall and semi-variance are measured in hm3 and squared hm3, respectively. (b) The notation
“EC1–EC4” refer to the environmental constraints for the minimum carryover stock: (EC1) constant at 5.65hm3,
(EC2) constant at 11.30hm3, (EC3) variable with 5% of the supply, (EC4) variable with 10% of the supply. (c) The
notation “Q1–Q3” refer to the threshold levels of the irrigation use that lead to {25%, 20%, 10%} of the land left
fallow, respectively. (d) The term “Average” indicates the average over all periods. (e) The probability value “1.00”
does not imply certainty, but is due to rounding of the results.
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Figure 1: Annual flows in Kartalkaya Dam (year starting in October)

Note: In this figure, we observe that the fluctuations in the water supply affects the
irrigation use more than the urban use. In fact, the urban use has steadily increased over
time, thanks to the population growth, while shortages limit farmers’ ability to access
enough water from the reservoir.
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Figure 2: Changes in crop composition for the period 1984–2007

Note: In this figure, more than 90% of the land was initially allocated for cotton. Over
time, this proportion has decreased considerably over time. Meanwhile, maize has emerged
in late 1990s as a lucrative option for land allocation, due to increasing yields in seed
quality and corn prices. Finally, the proportion of land left fallow has increased in late
1990s and early 2000s (it peaked at more than 20% in 2001), mostly due to the severe
water shortages experienced in the region.
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Figure 3: Boxplot of the reservoir flows (in hm3)

Note: According to this figure, tap water use (on a monthly basis) has been steady (also
illustrated in Figure 1). Meanwhile, irrigation use is highly seasonal, and reach to its peak
levels during June and July, while inflows (and therefore release for flood control) drop to
almost zero during the irrigation season.
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Figure 4: Water released to avoid overflows (in hm3) versus total supply before release

Note: In this figure, the horizontal axis represents the total amount of water collected
during a period. Since the reservoir capacity (indicated by the vertical line) is around
173hm3, any amount exceeding this threshold is released to avoid overflows, as illustrated
on the vertical axis. This relationship suggests that the water release for flood control is
censored from below, so a Tobit model would be a relevant model to fit the data. It is also
worth noting that the total supply of water is the amount collected minus the release for
flood control and is the net stock that is available for consumption and savings.
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