
Learning to code in class with MOOCs:
process, factors and outcomes

João Pedro Grangeia Gomes

Master in Computer Science and Business Management

Supervisor:
Doctor Cláudia Maria Lima Werner, Full Professor,
COPPE/UFRJ

Co-Supervisor:
Doctor Fernando Brito e Abreu, Associate Professor,
Iscte

November, 2020

[This page has been intentionally left blank]

Learning to code in class with MOOCs:
process, factors and outcomes

João Pedro Grangeia Gomes

Master in Computer Science and Business Management

Supervisor:
Doctor Cláudia Maria Lima Werner, Full Professor,
COPPE/UFRJ

Co-Supervisor:
Doctor Fernando Brito e Abreu, Associate Professor,
Iscte

November, 2020

[This page has been intentionally left blank]

Learning to code in class with MOOCs:
process, factors and outcomes

Copyright © 2020, João Pedro Grangeia Gomes, School of Technology and Architecture, Uni-

versity Institute of Lisbon.

The School of Technology and Architecture and the University Institute of Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation through

printed copies reproduced on paper or on digital form, or by any other means known or that

may be invented, and to disseminate through scientific repositories and admit its copying and

distribution for non-commercial, educational or research purposes, as long as credit is given to

the author and editor.

[This page has been intentionally left blank]

To my parents and my sister.

[This page has been intentionally left blank]

Acknowledgements

I would like to thank Professors Fernando Brito e Abreu and Claudia Werner for giving me this

opportunity to work with them. As advisers, your mentoring and support were crucial to keep

me focused and motivated to achieve this goal in my life.

I would also like to thank Professor João Caldeira for the work on this template that allowed

me to write this dissertation.

To my friends, who I met five years ago at the beginning of this journey, thank you for all

the time spent in “sala de estudo“ and all the parties and moments that we been through, it

would not have been the same without you.

To my closest friends, thank you for always being present in the most important moments

of my life, for helping me to be a better person and for all the support during this journey.

A special thank you to my family for giving me the opportunity and conditions to get where

I am at.

To my girlfriend, I would like to thank you for all the support, comprehension, love and

for always believing in me.

Lisbon, November 2020

João Pedro Grangeia Gomes

ix

[This page has been intentionally left blank]

Abstract

Problem: Python became the most popular programming language in recent years, beating

Java, the programming language still widely used as the main programming language in many

undergraduate degrees on computer science related areas. Students from those degrees often

do not get Python in their syllabus, but the job market is demanding it increasingly.

Objective: To assess if learning a new programming language by following a MOOC is fea-

sible in a fully dedicated mode and allows achieving a learning outcome comparable to the

traditional in-class learning process.

Proposal: Students from undergraduate degrees lacking Python skills followed a dedicated and

intensive learning process on that language based on an in-class MOOC. The latter is suitable

for students with some background in programming, as is the case, allowing a faster learning

pace. Participants’ subjective perception of the corresponding workload was monitored.

Validation: A programming contest, using an automatic judge, was used as a validation for this

proposal. Two groups of students participated: those from three degrees lacking Python, which

followed the proposed MOOC (experimental group), and those from the degree that includes

Python programming, which had a traditional in-class learning process (control group).

Conclusions: The experiment results were analysed and it was inferred that the proposed

in-class MOOC learning approach is as effective as the traditional learning approach. Further-

more, it was identified that the students’ average grades obtained in the previous programming

courses taken as part of their degree’s syllabus and the number of MOOC modules finished in

the context of this experiment directly influence the number of points obtained in the contest.

Keywords: learn programming, MOOC, Python, programming contest, hackathon

xi

[This page has been intentionally left blank]

Resumo

Problema: Nos últimos anos, Python tornou-se a linguagem de programação mais popular,

ultrapassando o Java, que continua a ser muito usada como principal linguagem de programação

em muitas licenciaturas relacionadas com informática. Estas licenciaturas acabam muitas vezes

por não oferecer esta competência aos estudantes, no entanto o mercado de trabalho procura-a

cada vez mais.

Objectivo: Avaliar a possibilidade de aprender uma nova linguagem de programação através de

um MOOC num regime de total dedicação. E por fim, perceber se este permite obter resultados

comparáveis ao ensino tradicional.

Proposta: Os estudantes com falta de conhecimentos de Python realizaram um processo de

aprendizagem intensivo desta linguagem através de um MOOC em sala de aula. Este último

é adequado a estudantes com alguns conhecimentos de programação, permitindo assim um

ritmo mais rápido de aprendizagem. A perceção subjetiva dos participantes sobre a respetiva

carga de trabalho foi monitorizada.

Validação: Realização de um concurso de programação recorrendo a um juiz automático. Dois

grupos de estudantes participaram neste concurso: estudantes das 3 licenciaturas sem conheci-

mentos de Python, que realizaram o MOOC (grupo experimental), e os estudantes da licencia-

tura que inclui Python e que teve uma aprendizagem tradicional (grupo de controlo).

Conclusões: Os resultados deste experimento foram analisados e inferiu-se que a aprendiza-

gem de um MOOC em sala de aula é tão eficaz quanto o ensino tradicional. Para além disso,

foi também verificado que a média de notas dos estudantes obtida nas unidades curriculares

de programação que já frequentaram no seu curso e o número de módulos feitos no MOOC no

contexto desta experiência influenciam diretamente os pontos obtidos no concurso de progra-

mação.

Palavras-chave: aprender programação, MOOC, Python, concurso de programação, hackathon

xiii

[This page has been intentionally left blank]

Contents

List of Figures xix

List of Tables xxi

Acronyms xxiii

1 Introduction 1

1.1 Motivation . 3

1.1.1 The rise of Python and its education gap 3

1.1.2 MOOCs for the rescue . 4

1.1.3 Other learning approaches . 5

1.2 The proposed learning approach . 5

1.3 Research objective and questions . 7

1.4 Main contributions . 7

1.5 Organization . 7

2 State of the Art 9

2.1 Introduction . 11

2.2 Rapid review protocol . 11

2.2.1 Research objectives . 11

2.2.2 Choice criteria . 11

2.2.3 Inclusion and exclusion criteria . 12

2.2.4 Search strategy . 12

2.2.5 Results . 13

2.2.6 Validity threats . 13

2.3 Taxonomy . 13

2.3.1 Domain (D) . 14

2.3.2 Learning approach (LA) . 14

2.3.3 Learning motivation (LM) . 14

2.3.4 Learning results (LR) . 14

2.4 Related work . 15

2.4.1 MOOC´s Integration Approach: Assessment and Comparative Studies of

all Moroccan Universities [43] . 15

2.4.2 Flipped Classroom Approaches in Computer Programming Courses in

Japan [29] . 16

xv

CONTENTS

2.4.3 Using a Programming MOOC as an Admission Mechanism for CS [44] 16

2.4.4 Admitting Students through an Open Online Course in Programming: A

Multi-year Analysis of Study Success [33] 17

2.4.5 Secondary Students’ Views on Using Flipped Classroom to Learn Com-

puter Programming: Lessons Learned in a Mixed Methods Study [13] . 18

2.4.6 Student Perception of the Contribution of Hackathon and Collaborative

Learning Approach on Computer Programming Pass Rate [45] 19

2.4.7 Research on the Reform of Flipped Classroom in Computer Science of

University Based on SPOC [3] . 20

2.4.8 Study Effort and Student Success: A MOOC Case Study [46] 20

2.4.9 Introducing Basic Programming to Pre-University Students: A Successful

Initiative in Singapore [40] . 21

2.4.10 Using Flipped Classroom Approach to Teach Computer Programming [2] 22

2.4.11 Teaching Computer Programming using MOOCs in multiple campuses:

Challenges and Solutions [42] . 23

2.5 Summary . 24

3 Selecting a MOOC for Python 27

3.1 MOOCs . 29

3.1.1 What are MOOCs? . 29

3.2 Comparison of MOOC platforms . 29

3.2.1 Codecademy’s course . 30

3.2.2 Udemy’s course . 32

3.2.3 Coursera’s course . 33

3.2.4 The main features of the three courses 35

3.3 Expert panel . 36

3.3.1 Questionnaire . 37

3.3.2 Analysis . 37

3.3.3 Final result . 43

4 In-class MOOC approach trial: Pythacon event 45

4.1 Introduction . 47

4.2 Planning . 47

4.2.1 Participants description . 47

4.3 Execution . 51

4.3.1 First phase description . 51

4.3.2 Second phase description . 54

4.4 Analysis and results . 56

4.4.1 NASA Task Load Index . 56

4.4.2 First and second phase . 59

5 Conclusion 63

5.1 Conclusions . 65

5.2 Validity threats . 67

xvi

CONTENTS

5.2.1 Internal threats . 67

5.2.2 Construct validity . 67

5.2.3 External threats . 67

5.3 Future work . 68

Bibliography 69

Appendices 75

A Selecting a MOOC for Python 75

Annexes 81

I NASA Task Load Index 82

xvii

[This page has been intentionally left blank]

List of Figures

1.1 Java vs. Python - Google trends . 3

2.1 Summary of the rapid review protocol . 12

3.1 Codecademy interface . 31

3.2 Codecademy - macro-process diagram . 32

3.3 Udemy interface . 33

3.4 Udemy - macro-process diagram . 33

3.5 Coursera interface . 34

3.6 Coursera - macro-process diagram . 34

3.7 Methodology followed from [34] . 36

3.8 Expert panel - peer assessment . 38

3.9 Expert panel - course order . 38

3.10 Expert panel - re-attempting an assignment . 39

3.11 Expert panel - provided by a university . 40

3.12 Expert panel - certificate . 41

4.1 Pythacon registrations by undergraduate degree 48

4.2 Pythacon - programming courses grades’ distribution in the experimental group . 49

4.3 Pythacon - programming courses grades’ distribution in the control group 50

4.4 Pythacon - MOOC platforms used . 50

4.5 Participation in Pythacon . 52

4.6 Number of MOOC modules completed with success by undergraduate degree . . 53

4.7 Distribution of the elapsed time in each MOOC module 53

4.8 Pythacon submissions . 55

4.9 Percentage of accepted submissions by undergraduate degree and problem 56

4.10 Average time of accepted submissions by problem 56

5.1 Scatter plot of points by MOOC modules completed and undergraduate degree . 66

5.2 Scatter plot of points by average grades and undergraduate degree 66

A.1 Codecademy - “Do Section“ process diagram . 76

A.2 Udemy - “Do Section“ process diagram . 77

A.3 Codecademy - process diagram . 78

A.4 Expert panel questionnaire - 1 . 79

A.5 Expert panel questionnaire - 2 . 80

xix

List of Figures

I.1 NASA Task Load Index . 82

xx

List of Tables

1.1 Number of jobs offered regarding Python (20/07/09) 3

1.2 Comparison of learning approaches . 6

2.1 Search string execution . 13

2.2 Taxonomy for related work classification . 13

2.3 Taxonomy instantiation for [43] . 15

2.4 Taxonomy instantiation for [29] . 16

2.5 Taxonomy instantiation for [44] . 17

2.6 Taxonomy instantiation for [33] . 18

2.7 Taxonomy instantiation for [13] . 19

2.8 Taxonomy instantiation for [45] . 20

2.9 Taxonomy instantiation for [3] . 20

2.10 Taxonomy instantiation for [46] . 21

2.11 Taxonomy instantiation for [40] . 22

2.12 Taxonomy instantiation for [2] . 23

2.13 Taxonomy instantiation for [42] . 24

2.14 Summary of related work . 26

3.1 Results of the MOOC search . 30

3.2 Python courses’ features . 35

3.3 Expert panel - syllabus . 40

3.4 Course X,Y and Z . 42

3.5 Expert panel - courses’ rank order . 42

4.1 Pythacon participants former programming skills 48

4.2 Programming courses formerly concluded by Pythacon participants 49

4.3 Pythacon - Mastering of other programming languages 51

4.4 Submissions’ classification on Mooshak . 54

4.5 National Aeronautics and Space Administration (NASA) Task Load Index (TLX)

rating-scale descriptions from [23] . 57

4.6 Learning resilience - normality test . 59

4.7 Post-hoc Mann-Whitney test using Bonferroni adjustment 60

4.8 Points - normality test . 61

4.9 Mean points of each learning mode . 61

4.10 Post-hoc Mann-Whitney test using Bonferroni adjustment 62

xxi

[This page has been intentionally left blank]

Acronyms

APA American Psychological Association.

BPMN Business Process Model and Notation.

DCTI Department of Information Science and Technology.

ECTS European Credit Transfer and Accumulation System.

ICPC International Collegiate Programming Contest.

ICT Information and Communications Technologies.

IT Information Technology.

MOOC Massive Open Online Course.

NASA National Aeronautics and Space Administration.

RR Rapid Review.

SPOC Small Private Online Course.

SRL Self-Regulated Learning.

TLX Task Load Index.

xxiii

[This page has been intentionally left blank]

C
h
a
p
t
e
r

11 1

Introduction

Contents
1.1 Motivation . 3

1.2 The proposed learning approach . 5

1.3 Research objective and questions . 7

1.4 Main contributions . 7

1.5 Organization . 7

This chapter introduces the motivation of this work, describes the problem faced by the majority

of the Information Technology (IT) undergraduate students at Iscte, reviews some of the existing

learning approaches and proposes a learning approach to overcome this. Finally, it describes the

research objective and questions, and summarizes the main contributions of this dissertation.

1

[This page has been intentionally left blank]

Chapter 1

Introduction

1.1 Motivation

1.1.1 The rise of Python and its education gap

According to the PYPL index (PopularitY of Programming Language), Python has grown for the

last five years and now leads the popularity race. This is confirmed by a comparative search in

Google Trends (Figure 1.1). The big data field is becoming increasingly important for business,

helping in identifying trends, checking out the competition, improving operations, recruiting

and managing talent. Since Python is specially suited for data analysis and visualization fields

[31], many companies are offering job opportunities for Python programmers (see Table 1.1).

Figure 1.1: Java vs. Python - Google trends

Table 1.1: Number of jobs offered regarding Python (20/07/09)

Website Number of jobs
Dice.com 7995
Monster.com 24577

Students pursuing an IT degree, when looking for the job market, are then motivated to

learn Python. However, it is often the case that that language is not included in the degree’s

regular syllabus. This “Python gap” currently happens in 3 out of our 4 undergraduate degrees1

at the Department of Information Science and Technology (DCTI) in Iscte, where Java is the

main programming language taught, and Python is not included in their syllabus.

Changes in undergraduate degree syllabus often require a long bureaucratic approval cycle

where a national accreditation board is involved. This renewal process is often not agile enough
1Those 3 are: Computer Science and Business Management degree, Computer Engineering degree and Telecom-

munications and Computer Engineering degree. The exception is the recent (started in 2019) Data Science degree.

3

http://pypl.github.io/PYPL.html
https://trends.google.pt/trends/?geo=PT

CHAPTER 1. INTRODUCTION

to follow the market demands which are continuously changing. For those who are in charge of

adapting undergraduate degree syllabus to the latter, one apparent simple solution would be

offering optional courses with the traditional teaching approach. For students, this traditional

approach means reading, watching the learning material in class, and complete tasks at home.

For the faculty staff, this option could be easier due to the experience in teaching, however

they are often unavailable for preparing and teaching extra optional courses, due to their filled

schedules. Furthermore, it is unfeasible to overload the students’ weekly schedule with optional

courses and exceed the usual 30 European Credit Transfer and Accumulation System (ECTS)

credits that they already get on each term. Therefore, other learning alternatives should be

looked for.

1.1.2 MOOCs for the rescue

Some years ago, e-learning platforms popped-in, allowing to make available online, for asyn-

chronous usage, a diversity of learning and self-assessment materials, such as slides, videos or

written tutorials, podcasts, quizzes and assignments [1].

Given the increasing availability of data storage and network bandwidth, those platforms

were improved to support a new educational vehicle, the so-called Massive Open Online

Courses (MOOCs), which are led by subject experts from higher education or industry. MOOCs

are “massive” courses contrarily to the traditional courses which are limited by the physical

dimensions of in-class rooms, since they are offered “online” on any internet connected device

with a browser. They are “open” to everyone without entry qualifications.

MOOC participation is for free or could have a fee, usually when participants desire to

obtain a certificate. Those fees became a new business model for some universities and other

organizations, based on the large potential audience of these MOOCs who wants to obtain valid

certificates with academic or professional training. As a result, there are now multiple MOOC

platforms offering hundreds of courses, some of which have had hundreds of thousands of

students enrolled [4].

Despite the popularity of MOOCs, several studies across the last decade have reported

completion rates2 below 10% [11, 12, 17, 18, 21]. Several reasons have been pointed out for this

failure in MOOCs completion. Among the more recurrent ones are:

• students lack the skill to independently lead their own learning process, especially re-

garding time management [41];

• students face sentiments of isolation and disconnection, similar to those experienced in

distance learning environments [15].

Even though MOOCs are usually conceived for Self-Regulated Learning (SRL), some solu-

tions to mitigate those problems have been proposed in the literature for MOOC platforms’

creators. One of the solutions is merging peer-to-peer learning features in MOOCs, to allow

interaction among participants. That discussion may improve participants’ motivation, thereby

reducing the isolation issue [14]. To mitigate the time management issue, some authors have

proposed to add some pedagogical strategies found to be beneficial in the traditional classroom

2Instead, “attrition rates” are sometimes reported. They stand for the rate of students that stop participating in
a course (aka dropouts)

4

1.2. THE PROPOSED LEARNING APPROACH

setting, such as retrieval practice and study planning in MOOCs [18]. The existence of these

mitigating features for reducing dropout should be taken into account when choosing a MOOC.

A review of recent studies about academic engagement in MOOCs can be found in [24].

1.1.3 Other learning approaches

Other learning approaches have gained strength in latest years and are being applied in com-

puter programming. They have been facilitated by the widespread availability of the same type

of online learning and self-assessment resources found in MOOCs.

Blended Learning is a combination of online learning (e.g. MOOCs) with the traditional

face-to-face learning. It does not replace traditional learning, instead the two methods of

learning are used complementary together. Blended learning can be particularly useful for

part-time students, due to the availability of self-paced learning features and the option to

frequently assess knowledge [7].

Flipped Classroom is a new learning model, rated as one of the top trends in educational

technology [39]. This learning model refers to readjusting the time in and out of class, trans-

ferring the learning driver from teachers to students. In brief, teachers no longer deliver new

subjects in class, and students must pursue self-study by using online materials at home, on

their own pace, before class. Those materials were previously prepared or selected by the

teacher in charge of the course. The time in class is spent on working through the concepts

being delivered, with the guidance of a teacher that helps students with problems encoun-

tered in self-study [35]. An e-learning platform complements this learning model by allowing

discussion between participants.

Peer-to-peer Learning is a teacher-less approach where students are expected to search

for solutions by themselves, using online materials. Learners proceed through a sequence of

activities that include group discussion about learner responses and may shift from a role of

tutee to tutor. A peer tutor is anyone who has a similar status as the person being tutored

that is not expected to teach, but mainly acts as a facilitator of the learning of their peers in

solving tasks [48]. It has been observed that the discussion of challenging problems leads to

better outcomes than working individually. Additionally, incentivizing people to help each

other generate still better results. [14].

1.2 The proposed learning approach

In this dissertation we propose a learning approach that we named In-class MOOC3 which

consists in using a MOOC in the context of a scheduled class. It is not a blended learning
approach because it is not blended with traditional learning contents, neither is followed by it,

such as in the Flipped Classroom approach.

There were several reasons to choose this learning approach: (i) unavailability of faculty

staff, (ii) avoiding excessive workload for students during each term, (iii) the will to reuse the

most suitable MOOC on Python among the many existing ones, while (iv) trying to reduce the

issue of high attrition rates.

3In opposition to an Off-class MOOC, the usual delivery mode.

5

CHAPTER 1. INTRODUCTION

Although most undergraduate curricula propose learning multiple topics (i.e. different

courses) in parallel like in all our aforementioned degrees, learning a new programming lan-

guage on such short notice requires exclusive dedication. The first reason discarded the tra-

ditional learning, blended learning, and flipped classroom approaches since they all require

faculty staff. To account for the second reason, we scheduled this learning approach to be offered

during the interval that occurs between two consecutive academic semesters. University stu-

dents are often invited to participate in extracurricular activities during these academic breaks

and their adherence is usually greater for short-term activities. That is why we decided that the

application of this learning approach should not exceed more than a week. Furthermore, during

each term, students have multiple different courses and learning a new programming language

on such short time requires exclusive dedication. This option is aligned with findings that

suggest that understanding one topic at a time may improve learning, due to the concentrated

focus on just one topic [10]. In order to fulfill the third reason (choice of a suitable MOOC for

Python) a research was undertaken and described in Chapter 3. Last, but not least, the search

for engaging students in the experiment for our learning approach, while trying to mitigate the

issue of low MOOCs’ retention, led us to the following steps:

• make students aware of the importance of mastering Python, for their future competitive-

ness in the job market, with evidences from the field (job offers);

• valuing certificates given by a trusted university for the MOOC completed;

• participants were together in the same room, each in a separate table, doing the MOOC

independently in their laptops, using headphones, not to disturb colleagues; interactions

were allowed during the coffee-breaks, to fight the sentiment of disconnection [14];

• a defined schedule with 4 half-days (5 hours each), with a coffee-break in-between, offered

to all participants;

• students’ presence and evolution in MOOC’s completion were monitored.

Summing up, as seen in Table 1.2, there are several pedagogical approaches that mainly

depend on student’s autonomy and availability of faculty staff. Discussing which is the best

approach for learning a new programming language is not consensual, due to the complex

nature of programming and individual differences, including study approaches, thinking styles,

and the focus of supervision [51]. The recognition of those differences among students, with

more or less proficiency in programming with another programming language, will be taken

into consideration during the MOOC selection process covered in Chapter 3.

Table 1.2: Comparison of learning approaches

aaaaaaaaaaa
Approach

Characterization Scheduled
classes

or sessions

Participants
interaction

Faculty
staff Learning drivers

Traditional learning Yes Yes Yes Faculty or expert in-class
Blended learning Yes Yes Yes Same as above, complemented with online materials
Flipped Classroom Yes Yes Yes Students alone first, then in-class clarification of doubts
Peer2Peer learning Yes Yes No Students collectively
Off-class MOOC No Usually not No Students alone
In-class MOOC Yes Limited No Students individually, but not alone

6

1.3. RESEARCH OBJECTIVE AND QUESTIONS

1.3 Research objective and questions

In this dissertation, we aim to mitigate the “Python gap“ problem, described in the previous

section, faced by the majority of the IT undergraduate students at the DCTI. Our main research

objective is to assess if the In-class MOOC approach is adequate for learning a new program-

ming language (Python in this case).

Based on the aforementioned research objective, we want to analyse the effectiveness of

the proposed learning approach and which factors have an impact on this effectiveness. Fur-

thermore, we also want to identify which factors influenced the learning resilience of students

during the proposed learning approach. Last, but not least, we want to know if the In-class
MOOC approach allows achieving a learning outcome comparable to the traditional in-class

learning approach. To clarify the previous concerns, we formulate the following research ques-

tions in the context of using the In-class MOOC approach for learning Python as a second

programming language:

• RQ1 - How to select an adequate MOOC?

• RQ2 - Which factors influence learning resilience?

• RQ3 - Which factors influence learning effectiveness?

• RQ4 - Is this approach as effective as traditional in-class learning?

1.4 Main contributions

The main contributions of this dissertation are:

• the proposal of the In-class MOOC learning approach and the confirmation of its adequacy

for learning Python as a second programming language;

• the use of Business Process Model and Notation (BPMN) for producing a graphical repre-

sentation of the learning process in three different MOOC platforms (Coursera, Udemy

and Codecademy); this BPMN modelling was used to present the features of each platform

to an expert panel, in order to make them decide which was the most suitable MOOC for

our purpose;

• the identification and discussion of the factors that do, or do not, influence learning

resilience and effectiveness in this context, by means of a controlled experiment (including

a programming contest) with a control group (placebo) and an experimental group;

• the promotion of the use of an automatic judge (Mooshak v24) within DCTI’s students.

1.5 Organization

The remainder of this dissertation is organized as follows. Chapter 2 proposes and applies a

literature review protocol and a mapping taxonomy to the related work, to get a picture of

the state of the art. Chapter 3 proposes a step-wise method for selecting a MOOC course on

Python, that includes a set of criteria, and applies it to reach three final candidates, that are then

discussed by an expert panel for reaching a consensus on the final choice. Chapter 4 describes

4Mooshak is a system for managing programming contests on the web, that has been used as well for automatic
correction of programming assignments, either individually or in groups

7

https://mooshak2.dcc.fc.up.pt/

CHAPTER 1. INTRODUCTION

a controlled experiment, named Pythacon, that allowed to validate the In-class MOOC learning

approach, using the previously selected MOOC. Last, but not least, conclusions are drawn and

provisions for future work are outlined in chapter 5.

8

C
h
a
p
t
e
r

22 2

State of the Art

Contents
2.1 Introduction . 11

2.2 Rapid review protocol . 11

2.3 Taxonomy . 13

2.4 Related work . 15

2.5 Summary . 24

This chapter aims at outlining the state of the art, by means of a rapid review based on a review

protocol and a proposed taxonomy for classifying the related work found. Finally, discusses

some gaps that have been found in the literature and the opportunities that can be explored in

this dissertation.

9

[This page has been intentionally left blank]

Chapter 2

State of the Art

2.1 Introduction

The purpose of this chapter is to outline the state of the art in the area of alternative approaches

to learn programming using a Rapid Review (RR), also known as rapid systematic review. Ac-

cording to [32], a RR is “a type of knowledge synthesis in which components of the systematic review
process are simplified or omitted to produce information in a short period of time“. In [9], a compari-

son between the characteristics of RRs and systematic reviews is conducted. From this study,

we can deduct that the RR must have a protocol, may use few or just one database and can be

conducted by a single person. Additionally, the selection is based on inclusion/exclusion crite-

ria and descriptive summaries are used as a synthesis procedure. Therefore, the RR protocol is

described in the following sections.

2.2 Rapid review protocol

This RR is organized into five sections. This section focuses on the protocol used, i.e., the

research objectives, inclusion and exclusion criteria, the search strategy, the results of the search

string execution and the validity threats of the undertaken RR. In Section 2.3, it is proposed

a taxonomy with some criteria for the related work. In Section 2.4, the chosen articles for this

review are synthesized and classified based on the proposed taxonomy. Section 2.5 covers the

summary with the final considerations.

2.2.1 Research objectives

The research objectives for this review are:

1. Undertake a rapid systematic review of empirical research on the learning of a program-

ming language using several approaches.

2. Select the most relevant studies to review according to the choice criteria.

3. Analyse and synthesize the selected studies.

4. Find gaps in order to suggest new fields for further investigation.

2.2.2 Choice criteria

For this literature review it was given preference to empirical studies whose participants were

from areas related to computer science. In general, all the studies included in this review had

to discuss at least one of the learning approaches presented in Chapter 1, exclusively in the

programming field.

11

CHAPTER 2. STATE OF THE ART

2.2.3 Inclusion and exclusion criteria

Inclusion Criteria:

• Written in English.

• Articles based on empirical methods, e.g., questionnaires, formal experiments, case stud-

ies.

• Papers in journals or conference proceedings and book chapters are considered.

Exclusion criteria:

• Studies that were published before 2016.

• Studies whose title or abstract are not relevant or related to the theme.

Research
Questions

Identify keywords

Build and refine
search string

Search String
Execution

Search String

Filter Studies

By date

By language

By title

By abstract

By duplication

By full reading

Data Analysis Results

Figure 2.1: Summary of the rapid review protocol

2.2.4 Search strategy

The first step of this search was to choose the following two databases in accordance with its

importance to the theme of this dissertation (IEEE Xplore and Scopus). As some searches were

done on these databases, the search string was refined using the logical operator “AND“ to join

both sides of the string, where the left side is the scope and the right side is the learning ap-

proach. The logical operator “OR“ was used to join all the keywords from the same domain. As

a final result, the search string was as follows: (“learn programming“ OR “computer program-

ming“) AND (“programming challenge“ OR “flipped classroom“ OR “blended learning“ OR

MOOC OR hackathon). After the execution of the search string on the selected databases, it was

applied the criteria in the following order: date, language title, abstract, duplicates detection

and full reading.

12

https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.scopus.com

2.3. TAXONOMY

2.2.5 Results

The results of the search string execution in the chosen databases with the respective criteria

applied are presented in Table 2.1.

Table 2.1: Search string execution

Scopus IEEE Xplore
("learn programming"OR "computer programming")
AND ("programming challenge"OR
"flipped classroom"OR "blended learning"OR MOOC
OR hackathon)

267 38

Removed by date 74 13
Removed by language 2 0
Removed by title 97 14
Removed by abstract 74 5
Removed by duplication 0 1
Removed by full reading 12 2
Final 8 3

2.2.6 Validity threats

As reported in [8], the RR conducted in this chapter may present some validity threats. The

main threats to the validity of this RR are:

• the reduced number of databases, which can lead to not discovering studies which could

be relevant to this dissertation.

• the inadequate size and number of samples used in the related work (Section 2.4), which

could lead to a low reliability of the results.

• the entire selection procedure being conducted by a single researcher, which may intro-

duce selection bias.

2.3 Taxonomy

A taxonomy was developed to serve as a better classification of the articles presented in the

related work. This taxonomy will also contribute to an understanding of what are the common-

alities and differences among the studies. The criteria chosen for this taxonomy was developed

as the review of the articles was being made. Therefore, the taxonomy used in this review

contains the criteria presented in Table 2.2.

Table 2.2: Taxonomy for related work classification

Criterion Abbreviation
Domain D
Learning Approach LA
Learning Motivation LM
Learning Results LR

13

CHAPTER 2. STATE OF THE ART

2.3.1 Domain (D)

This criterion allows to identify and classify the participants described in the studies from the

related work. In order to do that, a nominal scale is used.

2.3.2 Learning approach (LA)

By using this criterion it is possible to identify which was the alternative learning approach

used on the related work studies. To classify this criterion it is adopted a nominal scale with

the following options:

• Flipped Classroom - The learning approach used was the flipped classroom method.

• Hackathon - The learning approach used was a hackathon.

• MOOC - The learning approach used was a MOOC.

• Blended Learning - The learning approach used was the blended learning method.

• Hybrid Learning - Two from the above learning approaches are combined.

2.3.3 Learning motivation (LM)

Using a Likert-scale, this criterion allows to understand the students motivation in the adopted

alternative learning approach.

0. Not applicable (not covered in the study).

1. The students motivation worsen significantly.

2. The students motivation worsen slightly.

3. The students maintained their learning motivation.

4. The students motivation improved slightly.

5. The students motivation improved significantly.

2.3.4 Learning results (LR)

With this criterion, it is possible to understand if the students improved their learning results

when other learning approach was taken instead of traditional learning. This criterion is only

applied when there is a comparison between the adopted learning approach and the traditional

one. This criterion is defined using a Likert-scale:

0. Not applicable (not covered in the study).

1. The students’ results were much better in traditional learning.

2. The students’ results were better in traditional learning.

3. The students’ results did not have significant differences.

4. The students’ results were better in the learning approach defined in the study.

5. The students’ results were much better in the learning approach defined in the study.

14

2.4. RELATED WORK

2.4 Related work

2.4.1 MOOC´s Integration Approach: Assessment and Comparative Studies of
all Moroccan Universities [43]

Objective: Integrate distance learning platforms MOOC into the Moroccan Universities.

Description: In this paper a problem faced in some Moroccan Universities is described and

the implementation of MOOCs is the solution proposed to combat this problem. According

to the authors, Moroccan Universities are facing an obstacle to the education, which is a huge

number of students entering the university cycle each year, while the number of professors

considering retirement increased and the recruitment of professors decreased. The aforemen-

tioned leads to a low professor-student ratio threatening the quality of the education. Another

reason mentioned is the appearance of epidemics, as an example the coronavirus that limited

the traditional face-to-face learning. As a solution to those problems, the authors mentioned

the MOOC platforms as one of the most effective solution. Furthermore, a study on the types

of distance learning in Moroccan Universities is made and a study on MOOC’s implementa-

tion in the concerned universities is undertaken. To the extent of understanding which would

be the best manner of MOOC integration in Moroccan Universities, the authors described an

experiment composed of 130 learners divided into 5 groups. Each group followed the MOOC

in different modes: MOOC alone, MOOC with teacher support, MOOC with other external

resources, MOOC with weekly report and collaborative MOOC. The results of this experiment

showed that: the learners of the five groups were very motivated and appreciated this MOOC

integration, they were ready to recommend it to other learners, and the interaction among

learners (collaborative mode) reinforced their motivation to follow the MOOC. As a conclusion

of this work and based on the experiment, the authors mentioned some recommendations that

must be taken into account to integrate MOOCs in higher education.

Relation to our work: Despite the problem found in this study being different from the prob-

lem described in this dissertation, the solution proposed is similar, which is the integration

of a MOOC to solve the problem. In this study, students were divided in groups and each

group followed a MOOC in a different mode. The MOOC mode that is more relatable to this

dissertation is the collaborative mode where students had the possibility to interact (although

remotely) with each other following the MOOC. Furthermore, this MOOC mode showed that

this interaction reinforced their motivation. These results support one of the reasons of our

proposed learning approach that intends to fight the disconnection and dropouts by students

following a MOOC.

Table 2.3: Taxonomy instantiation for [43]

D LA LM LR
Undergraduate students from a Moroccan University MOOC 5 0

15

CHAPTER 2. STATE OF THE ART

2.4.2 Flipped Classroom Approaches in Computer Programming Courses in
Japan [29]

Objective: Explore the effectiveness of flipped classroom approach in an undergraduate com-

puter programming course.

Description: In this study the authors referred an issue found in the traditional learning ap-

proach which is a wide variety of students with different skills and proficiency levels. This

problem is faced especially in traditional uniform and structured courses, such as computer

programming courses where a culture of lecture-type classes exists. In order to solve this

problem, the authors proposed an implementation of the flipped classroom method, described

as very effective method across various courses but under-explored with respect to computer

programming. The implementation of this learning approach counts with 53 full-time under-

graduate engineering students majors at a Japanese university. None of those participants had

previous experience in this method. The students were tasked to watch a 10 minutes video

lesson with detailed explanations of Java basics before each of the first five classes. In class,

students were expected to apply the knowledge acquired working on practical tasks. At the

end of the course, the students were asked to fill a questionnaire about the flipped classroom

method. As results of this implementation, the authors took into account the answers of the

questionnaire that showed that 75% of the participants highly valued their flipped learning ex-

periences. Furthermore, the authors mentioned that students also highly rated the effectiveness

of video lessons, which enhanced their motivation and comprehension. Regarding the benefits

and disadvantages of flipped classroom to teachers, the authors mentioned “Although preparing
videos was time consuming for the instructors, the preparation process helped them to reconsider how
to teach computer programming, (. . .) including designing in-class tasks, developing their pedagogical
skills, and examining student preparedness for programming“.

Relation to our work: The learning approach implemented in this study was the flipped class-

room which is somewhat similar to the learning approach proposed in this dissertation. The

video lessons explaining the concepts instead of lecture-type classes are a common point in

these two approaches. Therefore, the main conclusion that can be extracted from this study to

consider in ours, is the motivation and comprehension increase showed by these students when

the video lessons were applied as a method to explain the concepts of programming.

Table 2.4: Taxonomy instantiation for [29]

D LA LM LR
Undergraduate engineering students from
a Japanese university

Flipped Classroom 5 0

2.4.3 Using a Programming MOOC as an Admission Mechanism for CS [44]

Objective: Investigate differences in study outcomes between students who applied to study

Computer Science (CS) using a programming MOOC and students who used the traditional

16

2.4. RELATED WORK

application method.

Description: In this study, it is mentioned some of the possibilities of using MOOCs in a univer-

sity context such as teaching purposes, attract and retain students, give credit points, prepare

students for university and as an admission mechanism. The latter is the one adopted in the Uni-

versity of Tartu in Estonia. Therefore, to reach the objective of this study, the authors analysed

a sample with 366 students, 66 applied via MOOC and 300 were admitted via other admission

procedure. The results of this work showed that there was no difference among MOOC and

non-MOOC students in the study outcomes and in retention.

Relation to our work: The relation found in this study was the effectiveness of a programming

MOOC to give the expertise needed for a computer science degree. In this work, it is not very

perceptible which is the background in terms of programming of the students who were ad-

mitted via the traditional application approach. The results showed that students who were

admitted via programming MOOC and non-MOOC application method did not have differ-

ence in their performance on CS courses during the first year, meaning that both admission

mechanisms are on equal terms regarding the preparation for the CS course. However, the

comparison made in this study does not attend the purpose of comparing traditional learning

with alternative approaches regarding how to teach programming as we want for our work.

Table 2.5: Taxonomy instantiation for [44]

D LA LM LR
Candidate students from the University of Tartu in Estonia MOOC 0 0

2.4.4 Admitting Students through an Open Online Course in Programming: A
Multi-year Analysis of Study Success [33]

Objective: Compare study success between students accepted through MOOC and students

accepted through the traditional entrance exam and high school matriculation exam.

Description: In this paper, the authors mentioned that, since 2012 the University of Helsinki

had piloted a new admission process where, in addition to traditional admission, prospective

students could apply for a study right into the computer science degree using an introductory

programming MOOC as an admission process. To the extent of giving context, the authors

discuss university admission policies around the world. However, in this case it is only impor-

tant to refer that the admissions to the university specified in the paper are usually based on

a national enrollment exam, which is referred by the authors as a merit-based process. This

new admission process aimed to solve a problem of retention and dropout in computer science

degrees, discussed in several studies. Considering this, the authors study how students ad-

mitted through MOOC managed in their first year studies are compared to students admitted

through traditional admission. The factors assessed in this comparison were the completed

credits and weighted grade point average (GPA), and the proportion of students who completed

their studies in time. The data analysed by the authors were collected between 2012 and 2015.

17

CHAPTER 2. STATE OF THE ART

The sample was composed of 981 students, 225 of MOOC admission and 756 of traditional

admission. The test results of this analysis showed that MOOC admission may yield students

who were more committed to their studies and consequently more likely to start their studies.

Furthermore, students from the MOOC admission performed better in their CS studies and

were more likely to complete their degree.

Relation to our work: The relation found in this work that is relatable to our work is mainly

the preparation given by the MOOC in terms of programming for a computer science degree.

In this case, students who were admitted via MOOC performed better in their CS studies than

the students who were admitted via national exam. Despite not knowing the entirety of the

programming background of the students who were admitted via traditional, the students

admitted via MOOC were apparently more prepared when enrolling in the CS course than the

other students. Considering all the aforementioned, the comparison that has been made in this

study was not considered because it does not attain our comparison purpose.

Table 2.6: Taxonomy instantiation for [33]

D LA LM LR
Candidate students from the University of Helsinki in Finland MOOC 0 0

2.4.5 Secondary Students’ Views on Using Flipped Classroom to Learn Computer
Programming: Lessons Learned in a Mixed Methods Study [13]

Objective: Explore how secondary students perceive the use of flipped classroom for learning

computer programming.

Description: This study described the adoption of the flipped classroom approach in a Hong

Kong secondary school where 40 students from two Information and Communications Tech-

nologies (ICT) classes have participated. During 4 weeks, this learning approach was adopted to

teach computer programming topics such as conditional and, repetition control flow constructs

and arrays. Before each class, participants were asked to self-study parts of the programming

unit named “Intro to Programming“ at Code.org. In class, the teacher gave a quick review of the

online learning materials but the main objective of these classes was that students solved exer-

cises on an individual basis. After those 4 weeks, the participants were categorized into high-

and low-performing groups based on their performance in class exercises. Eight out of forty

participants were interviewed in order to understand their opinion about flipped classroom

effectiveness. The results of the interview and the questionnaire administered to all participants

at the beginning and at the end of this experiment showed that generally students had positive

attitudes towards learning computer programming through flipped classroom. Furthermore,

the authors concluded that “When compared with traditional classroom instruction, it is found that
the use of flipped classroom is effective in supporting students to learn computer programming at their
own pace, promoting class interactions between teacher and students, as well as sustaining student
engagement in learning computer programming.“ On the other hand, the authors mentioned that

this approach could have an adverse effect on programming education because learning at home

18

2.4. RELATED WORK

may be affected by online distractions.

Relation to our work: The flipped classroom has the component of learning the concepts of a

programming language (in this case) through video lessons and this is the point in common

found between this study and our work. As the authors concluded, the video lessons allow

students to learn in their own pace. This conclusion is important to our study because we will

discuss later in this dissertation whether or not the video lessons in a MOOC context are as

effective as the traditional lecture-type classes.

Table 2.7: Taxonomy instantiation for [13]

D LA LM LR
ICT students from a secondary school in Hong Kong Flipped Classroom 4 4

2.4.6 Student Perception of the Contribution of Hackathon and Collaborative
Learning Approach on Computer Programming Pass Rate [45]

Objective: Investigate students’ perceptions about the contribution of collaborative learning

and Hackathon to improve computer programming pass rate.

Description: In the present work, the authors described a problem faced by the students in

computer programming. According to the author, it is due to the lack of problem solving

skills amongst students. Consequently, they cannot obtain their qualifications without the pro-

gramming subjects and, as a result, student’s dropout increases. The proposed solution is a

hackathon and a collaborative approach to improve computer programming skills as well as

academic results. Therefore, this study was conducted at the Durban University of Technology

(South Africa) in 2016 with 80 IT participating students. The students’ opinion regarding the

collaborative learning activity and hackathon was collected using a questionnaire. The results

of the questionnaire analysis showed that students overwhelmingly agree that: collaborative

learning would improve their computer programming pass rate and hackathons should be part

of the IT curriculum because it would improve their abilities to work with a team on computer

programming tasks and improve programming skills. As a conclusion, and based on the stu-

dents’ opinion, the authors mentioned that the hackathon approach could help students solidify

their problem solving skills, programming and communication skills and their academic re-

sults, because they will apply the knowledge acquired during the semester in real-life scenarios.

Relation to our work: In this dissertation, it is also proposed a hackathon to consolidate and

improve the programming skills acquired before. However, there is one main difference be-

tween this study and our work, which is the students are assessed on an individual basis and

not as a team like in the hackathon proposed in this study. In our case, this will prevent the

collaborative learning among students. Regardless, the “codefest” environment and the com-

petition can still motivate students to improve their programming skills, as expected in this

study.

19

CHAPTER 2. STATE OF THE ART

Table 2.8: Taxonomy instantiation for [45]

D LA LM LR
Undergraduate IT students from Durban University
of Technology in South Africa

Hackathon 0 0

2.4.7 Research on the Reform of Flipped Classroom in Computer Science of
University Based on SPOC [3]

Objective: Propose a new flipped classroom model based on Small Private Online Course

(SPOC) for students in regular university.

Description: In this paper it is described the implementation of a new flipped classroom model

based on SPOC in a basic course (C programming) of computer science and technology in uni-

versity. The methodology followed to implement this new model was divided in three parts:

guidance before class, traditional classroom and the improvement after class. The SPOC plat-

form was used in the first part (guidance before class) where students had videos, PowerPoints

and other materials for online learning. In the traditional classroom part, students spent most

of the time solving problems and receiving feedback from the colleagues. In the after class

part, students were encouraged to peer discussion, and deeply reflect the content of classroom.

In order to measure students’ satisfaction towards this new model, the authors undertook a

questionnaire that 180 students answered. The results showed that learners were satisfied with

SPOC platform. Furthermore, the students’ answers in the questionnaire showed that, when

comparing the traditional classroom with flipped classroom based on SPOC, they were satisfied

with their learning efficiency and their ability to problem-solving improvement.

Relation to our work: A SPOC platform is like a MOOC platform. However, there is a main

difference, which is that the MOOC is open to the masses and SPOC offers custom-made courses

to a small and specific group of learners. Considering this and knowing that SPOC and MOOC

follow the same principles regarding the learning process, we can extract from this study that

this SPOC (applied to a flipped classroom model) had a good impact on students’ motivation,

abilities and learning efficiency.

Table 2.9: Taxonomy instantiation for [3]

D LA LM LR
Students enrolled in a computer science
and technology course at university

Hybrid Learning
(Flipped Classroom based on MOOC1)

4 4

2.4.8 Study Effort and Student Success: A MOOC Case Study [46]

Objective: Examine the relationship between student effort over time and student success in

an introductory level MOOC for programming and computer science.

1In this case, it was considered the SPOC as a MOOC due to its similarities

20

2.4. RELATED WORK

Description: In this paper, the authors undertake a examination of the relationship between

student effort over time and students success in a MOOC. MITx 6.00x was the introductory

course to computer science and programming offered by MIT and hosted on edX MOOC plat-

form that was used in this study. The content of this course included video lessons, homework

questions, assignments, three exams and a forum. Additionally, the course offered a certificate,

at no cost, and based on getting a final grade of at least 55%. The HarvardX-MITx Person-Course

was the dataset used that contains aggregated information of each individual that participated

in MOOCs from Harvard and MIT on the edX MOOC platform. Focusing only on the aforemen-

tioned MOOC, the authors analysed records from 32621 participants using logistic regression

and correlation tests. The results showed that there is almost a linear positive relationship

between student effort over time and student success in a MOOC. However, this almost linear

positive relationship weakens eventually. With this in mind, the authors concluded that those

who exerted effort over the longest amount of time actually had a lower probability of obtaining

a certificate than others who exerted effort over somewhat less time. A given explanation for

this curvilinear relationship is that some students may just need more time to learn and develop
competence in introductory programming and computer science than others, for instance, based on
their prerequisite knowledge. Another possible explanation is that there are two different types

of achievement goals (people who wanted to prove to others their competences and people

who were more concerned in self-improvement). Furthermore, the authors also found other

variables that affected the certification ratio: increasing age somewhat negatively influences

the student success, females had a higher probability of earning the certificate than males and

students with less than secondary education had lower odds for obtaining the certificate than

students with more education.

Relation to our work: In this study the success in a MOOC is explored, and useful information

can be extracted to take into account in our work. For example, the influence of effort over

time and previous education on the MOOC success are certainly factors to be assessed in our

experiment too.

Table 2.10: Taxonomy instantiation for [46]

D LA LM LR
Students enrolled in a MOOC on edX platform MOOC 0 0

2.4.9 Introducing Basic Programming to Pre-University Students: A Successful
Initiative in Singapore [40]

Objective: Undertake an intensive 3-week basic programming course that aimed to formally

expose pre-university students in Singapore to programming.

Description: In this paper, the authors noticed that most students in Singapore were not for-

mally exposed to programming before entering the university. In 2015, a course named “Lets

Code“ was conducted in a blended learning format and included video lessons, quizzes, video

conferences, meet-up tutorial and take-homes programming assignments. The purpose was to

21

CHAPTER 2. STATE OF THE ART

expose pre-university students to programming. Ruby was the programming language chosen

for this course. The instructors of this course agreed that “this blended learning would have more
passive lectures to be done at home delivered in the form of video lessons and the limited classroom time
during tutorial meet-up sessions would be reserved for active learning activities such as quizzes, in-
class programming exercises and code criticism.“ Mentors, who were undergraduate students, were

responsible for giving feedback on the submitted assignment solutions while the participants

were enrolled in video lessons. A total of 535 coders were enrolled in this course and 80.6%

completed the course and were awarded with certificates. The attrition rate was 19.4%, which

was considered low by the authors because there was no obligation to finish the course. The

reasons given by coders who withdrew were the huge amount of time required, co-curricular

activity commitments during the holiday period, loss of interest, inability to follow the lessons,

etc. The authors conclude that the purpose of this study was attained considering that “412 par-
ticipants who had never written a line of code before, wrote their “Hello World!” program through this
project. 78.9% of these first-time coders managed to complete the course, and more than one-third of
them gained enough skills over the three weeks to be recognized as competent beginning programmers.“

Relation to our work: The course “Let’s code“ mentioned in this study has one important point

in common to the proposed learning approach of the present dissertation. This point in common

is the similarity of the course presented in this study and a MOOC because the concepts of a

programming language are taught through video lessons and assessed via assignment and

quizzes. Moreover, the reasons given in this study to explain the students’ dropout can be taken

as lessons to our experiment. As a conclusion, the authors mentioned that the main objective

of the study was attained, which make us believe that this can be a effective learning approach

to teach and improve programming skills.

Table 2.11: Taxonomy instantiation for [40]

D LA LM LR
Pre-university students in Singapore Blended Learning 4 0

2.4.10 Using Flipped Classroom Approach to Teach Computer Programming [2]

Objective: Discuss the suitability of the flipped classroom to teach computer programming and

report the pilot experience of using this approach at Qatar University

Description: In this paper, the author begins to explain why flipped classroom might suit

the programming subject. The first reason given is the difficulty of many students to learn

computer programming that leads to high rate of dropout. These difficulties are categorized

in three types: related to the nature of the subject, related to students and related to teaching

methods. As an example of these types of difficulties the author described one of them which

is the lack of problem-solving skills because teachers spend much of the course time focusing

on syntactic details that leads to a students’ focus on reading textbooks and understanding

language syntax instead of practicing the development of new programs. After that, the author

explains why flipped classroom is suitable to teach programming. It is mentioned by the author

22

2.4. RELATED WORK

that the main advantage of this model over the traditional one is that it maximizes the time

spent in class to develop programming skills by teaching the programming syntax out of class.

Additionally, in-class activities offer an opportunity to increase students interaction with the

instructor, so they can get more feedback about their learning process, which improves their

awareness of deficiencies. Considering all of the above mentioned, it is undertaken a pilot

experiment to investigate the effectiveness of using the flipped classroom to teach computer

program. This experiment was conducted during the fall 2015 at Qatar University. 41 students,

without any programming background participated in this study which was applied in only

one topic (“Arrays“) of the programming course. The experiment was conducted through three

phases:

• online activities, aiming to build students’ knowledge of the syntax related to arrays in

C++ using recorded videos and quizzes;

• in-class activities, aiming to improve knowledge acquired in online activities through

solving exercises and group discussion;

• in-lab activities, aiming to develop programming skills.

The evaluation of this pilot experiment focused on students’ feedback to assess their attitude

in this experience and students´ performance to evaluate the effectiveness of the flipped class-

room on their learning. The results showed that students had positive attitudes toward using

this learning approach and their performance in the area of programming language syntax

and structure improved. On the other hand, the author mentioned some of the challenges that

should be considered in the future which are: how to encourage students to study the subject

in advance and come prepared to in-class activities and apply this learning approach not only

on the “Arrays“ topic but in the whole course.

Relation to our work: The “online activities“ mentioned in this study are similar to our pro-

posed learning approach, meaning that students acquire their programming knowledge through

video lessons at their own pace as in MOOCs. The results attained in this experiment are impor-

tant to our work because demonstrate us that learning programming concepts through video

lessons could improve their learning effectiveness.

Table 2.12: Taxonomy instantiation for [2]

D LA LM LR
Students enrolled in a programming
course at Qatar University

Flipped Classroom 4 0

2.4.11 Teaching Computer Programming using MOOCs in multiple campuses:
Challenges and Solutions [42]

Objective: Describe the challenges faced in implementing a MOOC, the solutions attempted,

and other tools required to make learning of a computer programming course, a better experi-

ence.

23

CHAPTER 2. STATE OF THE ART

Description: In this paper it is described the experience gained over two consecutive years of

running a computer programming course on a MOOCs platform at Birla Institute of Technol-

ogy and Science in India. First, the authors explained that the reasons why they thought that

MOOC was a better choice were to reduce the workload of faculty (700 students registered in

the course), for a better student engagement in large courses and also to mitigate the problems

in the traditional method. The implementation used the edX platform to deliver the videos

which were made available to students one week before to give them time to go through them.

To guarantee that students watched the videos online quizzes were used so they could keep

pace with the delivered content. Moreover, there were labs where Mooshak2 was one of the

experimented platforms to evaluate the former. Two tutorial sessions per week were also part

of the program where students had the opportunity to solve problems and to clear and discuss

doubts. Furthermore, the evaluation components of this new method were mid semester test,

online quizzes, two online tests, lab attendance, evaluated labs and comprehensive exam. After

the implementation, some challenges faced during the MOOC are discussed in this paper3. The

results of this implementation (2014-15 and 2015-16) compared to the traditional approach

(2013-14) showed an overall increase in grades and in the learning of students. The findings

from student feedback indicated that those with prior programming background benefited

most from this model and irregular students suffered in their learning despite of having the

content at hand all the time.

Relation to our work: As in our proposed learning approach, this study also proposed an

implementation of a MOOC. In this paper, the MOOC is implemented in a programming course

which is different from our work. However, the video lessons and online quizzes mentioned

in this study seem to had a great contribute to the students’ grades increase. Moreover, the

authors mentioned that students with prior programming background benefited most from

this model which is a important conclusion to us, because in our work the proposed learning

approach will be applied to students with some knowledge in programming.

Table 2.13: Taxonomy instantiation for [42]

D LA LM LR
Students enrolled in a programming
course at Birla Institute of Technology and Science in India

MOOC 0 4

2.5 Summary

A summary of the categorized related work aiming to clarify and compare more easily all the

studies reviewed is presented in Table 2.14. It is noticeable that MOOCs have been studied in

latest years. In [33] and [44], MOOCs were proposed to serve as admission mechanisms to the

university. In [43], [3] and [42], MOOCs were applied to programming courses (or similar) in

order to solve problems found in the traditional learning [43] and to try to improve students’

2the same automatic judge as the one used in this dissertation
3However there was no relevance in those challenges to our work, so it was decided to not include them in this

description.

24

2.5. SUMMARY

learning effectiveness [3],[42]. In [46], the students’ success in a MOOC considering their effort

time was explored. Considering this, all of these studies showed that MOOCs had a great

contribution towards the learning effectiveness in programming.

The flipped classroom method, which has the video lessons to teach the programming con-

cepts in common to MOOCs, showed great results when compared to the traditional learning

[13]. Additionally, this method motivates students in learning programming [29], [13], [2].

The Hackathon method seems to have a lack of studies exploring it. However, in [45] the

students’ perception about this method to serve as an approach to consolidate and improve

learning skills was very positive.

In [40], which is the study more relatable to our work, the 3-week initiative undertaken to

teach programming using video lessons, quizzes and assignments to pre-university students

showed great results in their learning effectiveness.

Considering the aforementioned, it is noticeable a lack of studies using MOOCs to teach a

programming language and comparing the results with the traditional learning. Additionally,

the Hackathon method has been under-explored, so we find an opportunity to use it as a

method to consolidate the knowledge acquired in the MOOC approach, while improving the

programming skills.

25

C
H
A
P
T
E
R

2
.
S
T
A
T
E
O
F
T
H
E
A
R
T

Table 2.14: Summary of related work

Article D LA LM LR
[43] Undergraduate students from a Moroccan University MOOC 5 0

[29]
Undergraduate engineering students from
a Japanese university

Flipped Classroom 5 0

[44] Candidate students from the University of Tartu MOOC 0 0
[33] Candidate students from the University of Helsinki MOOC 0 0
[13] ICT students from a secondary school Flipped Classroom 4 4

[45]
Undergraduate IT students from Durban University
of Technology

Hackathon 0 0

[3]
Students enrolled in a computer science
and technology course at university

Hybrid Learning
(Flipped Classroom based on MOOC)

4 4

[46] Students enrolled in a MOOC on edX platform MOOC 0 0
[40] Pre-university students in Singapore Blended Learning 4 0

[2]
Students enrolled in a programming
course at Qatar University

Flipped Classroom 4 0

[42]
Students enrolled in a programming
course at Birla Institute of Technology and Science

MOOC 0 4

26

C
h
a
p
t
e
r

33 3

Selecting a MOOC for Python

Contents
3.1 MOOCs . 29

3.2 Comparison of MOOC platforms . 29

3.3 Expert panel . 36

This chapter proposes a step-wise method for selecting a MOOC on Python, including a set

of criteria, and its application to reach three final candidates, which are then discussed by an

expert panel for reaching a final choice.

27

[This page has been intentionally left blank]

Chapter 3

Selecting a MOOC for Python

3.1 MOOCs

3.1.1 What are MOOCs?

MOOCs are one of the emerging technologies in the field of education in the 21th century and

have gained media attention globally [22][36]. MOOCs have emerged as a key mechanism for

millions of learners to access semi-formal learning opportunities and to acquire new knowl-

edge and skills particularly for those whom this has previously been impossible because of

constraints of cost or geography [38]. The MOOC acronym is better explained in the following

bullet list:
• Massive: the course can enroll an unlimited number of participants;
• Open: the course is open to all Internet users; registering and tracking courses remain free and

open; certification fees may apply, but certification must be optional;
• Online: all classes, activities and duties can be taken online;
• Course: the course must meet educational goals, including productions, activities or homework to

participants, not just online resources [27].

The European Commission defines a MOOC as “online courses designed for a large number
of participants that can be accessed by anyone anywhere, as long as they have an internet connection.
They are open to everyone without entry qualifications, and offer a complete course experience online
for free. They are led by subject matter experts from higher education or industry and hosted by
learning management systems or dedicated MOOC platforms“ [50]. Also, two forms of MOOCs

have emerged. In cMOOCs, learners are encouraged (though not required) to contribute actively

via blog posts, tweets or other social media posts that are aggregated online by course organisers

and shared with all participants via email or newsletters. The “c” stands for “connectivist” and

the course approach is typically that learners pursue their own learning outcomes with a focus

on community and connections. xMOOCs, on the other hand, resemble traditional courses and

more traditional higher education teaching methods are used. Pre-recorded video lectures and

scalable forms of assessment are provided to learners who can interact in pre-set forums in a

single platform rather than creating and/or sharing distributed content on the Web outside the

platform [50].

3.2 Comparison of MOOC platforms

There are several MOOC platforms offering courses in many areas. Some of these platforms

provide free of charge access, but several others have paid access1, therefore violating the

aforementioned European Commission’s definition of a MOOC. In the BitDegree2 website it is

possible to find a list with the “Best Online Learning Platforms of 2020“ which are reviewed and

scored by a BitDegree experts team. This review process is also explained in detail to provide

1see https://www.bitdegree.org/online-learning-platforms
2see https://www.bitdegree.org/online-learning-platforms/mooc-review-process

29

https://www.bitdegree.org/online-learning-platforms
https://www.bitdegree.org/online-learning-platforms/mooc-review-process

CHAPTER 3. SELECTING A MOOC FOR PYTHON

transparency of their choices. To search for the most suitable MOOC to fit this dissertation’s

purpose, we considered the aforementioned list which details the 10 best MOOC platforms:

Coursera, Datacamp, Udacity, Udemy, edX, LinkedIn Learning, SkillShare, BitDegree, Khan

Academy and Codecademy.

In those 10 platforms we searched for “Python“ and the following filters were applied:

course for beginners, most relevance and better classification. This search resulted in 7 courses.

In the Udacity platform all the courses found were applied to a specific area (Artificial In-

telligence, for example) which does not fit in our purpose of an introductory Python course.

The Khan Academy platform was also removed because during the search only isolated videos

about Python programming were found. The course found in the edX platform was the same

as the one found in Coursera. In these circumstances, it was decided to remove the former and

maintain the latter due to the ranking in the list aforementioned. After this, it was considered

the classification and number of students enrolled in each course. The only courses with classi-

fication were the ones from Coursera, Udemy, BitDegree and Codecademy with 4.8, 4.6 and 4.4

and 4.1, respectively. Thus, the courses without classification were removed, meaning that only

4 courses remained. Since the purpose was to extract 3 courses of the list of 10, the number

of students enrolled was the criterion applied to those 4 courses remaining. The 3 courses

with more students enrolled were Coursera, Codecademy and Udemy with approximately 2

millions, 4 millions and 0.25 million, respectively (see Table 3.1). Therefore, as a result of this

search, the courses from Coursera, Udemy and Codecademy were respectively, “Programming

for Everybody3“, “Learn Python Programming Masterclass4“ and “Learn Python 25“.

In the following subsections the learning process of these three courses will be explained

in detail using BPMN modelling as a tool to attain this goal.

Table 3.1: Results of the MOOC search

MOOC Platforms Course Name Classification
Number of

students enrolled
Coursera Programming for Everybody 4,8 +-2M
Datacamp Introduction to Python +-2M

Udemy
Learn Python Programming
Masterclass

4,6 +-0.25M

LinkedinLearning Python Essential Training +-0.23M

SkillShare
Python 3: A Beginners
Guide to Python Programming

+-0.019M

BitDegree Master Python Fundamentals 4,4 +-0.015M
Codecademy Learn Python 2 4,1 +-4M

3.2.1 Codecademy’s course

This course is mostly free, since some syllabus topics are only available after the upgrade to the

Codecademy’s pro version. Regarding the free version, this course has 12 sections and includes

3https://www.coursera.org/learn/python?specialization=python
4https://www.udemy.com/course/python-the-complete-python-developer-course/
5https://www.codecademy.com/learn/learn-python

30

https://www.coursera.org/
https://www.datacamp.com/
https://www.udacity.com/
https://www.udemy.com/
https://www.edx.org/
https://www.linkedin.com/learning
https://www.skillshare.com/
https://www.bitdegree.org/
https://www.khanacademy.org/
https://www.khanacademy.org/
https://www.codecademy.com/
https://www.udacity.com/
https://www.khanacademy.org/
https://www.edx.org/
https://www.coursera.org/
https://www.coursera.org/
https://www.udemy.com/
https://www.bitdegree.org/
https://www.codecademy.com/
https://www.coursera.org/
https://www.codecademy.com/
https://www.udemy.com/
https://www.coursera.org/
https://www.udemy.com/
https://www.codecademy.com/
https://www.codecademy.com/
https://www.coursera.org/learn/python?specialization=python
https://www.udemy.com/course/python-the-complete-python-developer-course/
https://www.codecademy.com/learn/learn-python

3.2. COMPARISON OF MOOC PLATFORMS

the main topics of Python such as syntax, conditionals, functions, lists, dictionaries, loops and

input and output. The recommended time to finish the course is 25 hours. This course does

not focus much on the theory, instead the main focus is coding to learn programming. The

Codecademy’s interface can be seen in Figure 3.1. On the left side, some key points about

the topic and instructions to solve the problem are provided and on the right side an IDE

where the learner writes the code to solve the problem. Whenever the learner can not solve the

problem, he/she can ask for help and Codecademy provides hints to the problem solution. After

running the code successfully by pressing the button “Run“, the next level will be available.

As mentioned before, this learning process was modelled using BPMN. The macro-process

can be seen in Figure 3.2. The process starts with the learner/student pressing the button to

login. After that, the learner credentials are verified in Codecademy databases and the session

is restored 6. The sub-process “Do Exercise“, where the interaction between the learner and

Codecademy’s interface while the former is solving a problem is explained in detail in Appendix

A.1.

Figure 3.1: Codecademy interface

6Wrong credentials were not considered because it is not the objective of this modelling

31

https://www.codecademy.com/
https://www.codecademy.com/
https://www.codecademy.com/
https://www.codecademy.com/

CHAPTER 3. SELECTING A MOOC FOR PYTHON

Figure 3.2: Codecademy - macro-process diagram

3.2.2 Udemy’s course

This course has 50 hours of video lessons, 14 downloadable resources, 24 coding exercises,

all structured into 14 sections. The recommended time to finish this course is approximately

59 hours. The first two sections are dedicated to a course introduction and installation of

IntelliJ (IDE). The remaining sections cover all the essential topics of a programming language,

such as program flow control, lists, input and output and functions (Figure 3.3). Each section

is composed of several short videos about the topic, coding exercises and a final quiz of 10

multiple-choice questions. A particular feature of this quiz is that, in case of failing a question,

the student can try again until the correct answer is given. After finishing the quiz, it is shown

to the student how many questions did he/she answer correctly on the first attempt and in those

that he/she did not. Udemy also reminds which lectures the student should review. Therefore,

the student can always go back and watch those video lessons again. Furthermore, the student

is free to choose which topics he/she wants to learn first, despite the suggested order given by

the course. The macro-process of this course (Figure 3.4) shows the main interactions between

the learner and the platform. This process starts with the learner logging in and the platform

verifying the credentials. After that, the learner’s session state is restored. The sub-process

“Do Section“ explains in detail the activities when the learner is watching video lessons, doing

quizzes or coding exercises. The “Do Section“ also details the activities done by the Udemy

platform when the learner submits a quiz or assignment. This sub-process can be found in

Appendix A.2.

32

3.2. COMPARISON OF MOOC PLATFORMS

Figure 3.3: Udemy interface

Figure 3.4: Udemy - macro-process diagram

3.2.3 Coursera’s course

This course is the first module out of four that belongs to the Python for Everybody Specialization.
This first module is an introduction to Python programming and is the one that will be analysed

from now on. Thus, this module is organized in 7 sections (see Figure 3.5) and the first two

sections focus on an introduction to Python programming language and its installation on

Windows and Macintosh. In the following sections other topics such as variables and types,

expressions, conditional code, functions, loops and iteration are addressed. Differently from

the courses analysed before, this course has a component of peer assessment where students

33

CHAPTER 3. SELECTING A MOOC FOR PYTHON

assess each others assignments. Despite the suggested course order given by the course, the

student is free to choose his/her own order, meaning that he/she can always turn back to watch

videos again, or to repeat the quiz in search for a better grade. In Figure 3.6, a macro-process

with the main activities between the learner and the platform is presented. As the other courses

analysed before, this course also starts with the learner logging in and his/her credentials being

verified by the Coursera’s databases. After that, the session is restored and the student is able to

watch videos, do quizzes or assignments, which is detailed in the sub-process “Perform weekly

workload“ (see Appendix A.3). As a conclusion reward, this course, which is provided by the

University of Michigan, provides a certificate.

Figure 3.5: Coursera interface

Figure 3.6: Coursera - macro-process diagram

34

3.2. COMPARISON OF MOOC PLATFORMS

3.2.4 The main features of the three courses

The objective of this subsection was to collect and show the main features of the courses in

Coursera, Codecademy and Udemy platforms. In terms of the learning process and evaluation,

it is possible to highlight two different approaches in these three courses. Coursera and Udemy

use video lessons, coding exercises/assignments and quizzes to teach and evaluate the Python

topics. On the other hand, Codecademy gives priority to coding supported by a short text

explaining the topics. Coursera’s course is the only course that has peer assessment, which

allows participants to learn how to evaluate other course participants performance in their

assessments. In those three courses, two types of paths were identified and named, as weak

order and compulsory order, that students will find when joining the course. In the weak order

type, presented in Coursera and Udemy courses, a syllabus order is suggested but students

can configure their own path. Meaning that they can skip section 1 and do section 2 and later

get back and do section 1. In the compulsory order, presented in Codecademy’s course, the

syllabus topics must be followed by the proposed order. Another feature that is important to

highlight in those three courses are the syllabus topics taught. All three courses teach Python

syntax, variables and types, strings, program control flow, functions and input and output.

Codecademy, beyond these topics, also teaches dictionaries and sets. Udemy in addition to all

the topics mentioned before adds databases, binary number system and object oriented to its

syllabus. The possibility of re-attempting an assignment is a feature available only on Udemy

and Coursera courses and allows participants to retry and have a better grade or in case of a

failure to have the chance to pass in the assignment. Contrarily to Udemy and Codecademy, the

Coursera’s course is provided by the University of Michigan and gives a conclusion certificate.

In order to summarize these features, Table 3.2 was created and helps to understand the next

section where these features are assessed by an expert panel.

Table 3.2: Python courses’ features

Codecademy Coursera Udemy
Learning Process
and Evaluation

Text to explain the
concepts and coding

Video lesson, code
exercises and quiz

Video lesson, code
exercises and quiz

Peer assessment No Yes No

Course order
Compulsory

order
Weak order Weak order

Possibility of
re-attempting an
assignment

No Yes Yes

Syllabus

Syntax, Variables and
Types, Lists, Strings,

Program Control Flow,
Functions, Dictionaries and

Sets, Input and Output

Syntax, Variables
and Types, Strings, Program

Control Flow, Functions,
Input and Output

Syntax, Variables and
Types, Lists, Strings,

Program Control Flow,
Functions, Dictionaries

and Sets, Input and Output,
Using Databases, Binary

Number System,
Object Oriented

Provided by
a university

No Yes No

Certificate No Yes No

35

CHAPTER 3. SELECTING A MOOC FOR PYTHON

3.3 Expert panel

In the previous section, the learning process of three courses from three different platforms

was designed using BPMN allowing to collect features and compare those courses (Section

3.2). According to [6], previous studies have used small samples to get expert feedback to

evaluate and support model development. Many authors have used expert panels, specially, in

software engineering. For example, in [20] 30 experts were interviewed to obtain elements for

their instrument to evaluate requirements engineering success. In [19], 11 experts conducted a

review process. We gathered an expert panel in order to choose the most suitable MOOC from

the previous 3 candidates, following the methodology proposed in [34]. The latter includes

eight main steps, which are presented in Figure 3.7.

Figure 3.7: Methodology followed from [34]

Based on some of those steps, the organization of this expert panel was divided into five

phases:

1. Identify and collect the main features of the three courses:

• Overall learning process and evaluation;

• Peer assessment;

• Course order;

• Course topics;

• Course origin;

• Provision of certificate.

2. Invite four professors with expertise in teaching programming;

3. Build a questionnaire in Qualtrics7 based on those features found in the first step;

4. Collect expert opinions through an expert panel session;

7https://www.qualtrics.com/

36

https://www.qualtrics.com/

3.3. EXPERT PANEL

5. Outcome analysis of the expert panel session.

The identified Python programming experts were all professors with expertise in teaching

programming in the DCTI at our university. In a total of four experts invited, all accepted

the invitation to participate in the meeting. To ensure that the discussion among the experts

was written in this dissertation as it happened, the experts gave their permission to record the

session. In the beginning of the session, a short presentation to describe the background and

the reason of the session was made, as well as how it would work. After the presentation it was

asked to the experts to fill out the questionnaire.

3.3.1 Questionnaire

The questionnaire had 8 questions and it was built in a way that experts chose individually the

features which seemed better in terms of teaching Python. After that, with the features associ-

ated with the corresponding course, they had to choose the best combination. This question-

naire use a five-level Likert scale (“Not important at all” to “Very important”), multiple-choice

questions with single answer and multiple answer, and a rank order question. The first seven

questions were to evaluate the features of the three courses individually and the last question’s

purpose was to make the experts choose the best course based on its features, not knowing the

name of the course or the platform. In the next subsection it will be presented the questions,

the respective experts’ answers and the discussion between experts. The questionnaire can be

seen in Appendix A.4 and A.5

3.3.2 Analysis

The discussion was conducted question by question with experts’ answers presented in graphs,

and it was asked to the experts to justify their answers. The first question was a multiple-choice

question about the learning process and evaluation. The two possibilities of choice, which were

the only types of learning process and evaluation presented in the courses, were “video lesson,

code exercises and quiz” and “text to explain the concepts and coding”. To this question, the

answers from all the experts were unanimous since all considered “video lesson, code exercises

and quiz” the better approach.

The second question was a Likert scale question referring to the importance of peer as-

sessment in a MOOC. Two experts answered as “Not important at all”, one considered peer

assessment with “Low importance” and the other has seen it with “Moderate importance” (Fig-

ure 3.8). One of the experts who answered “Not important at all” said that peer assessment

could be valuable in the teacher perspective, to this point of view the other expert, who an-

swered the same, agreed and added that peer assessment would be important if it was possible

that the teacher could see how a student explains the contents to others. The other two experts

who answered, “Low importance” and “Moderate importance”, ended up agreeing with the

colleagues.

In the third question, which the results are presented in Figure 3.9, the goal was to un-

derstand which was the best path that students can follow in these three courses. One of the

courses has a specific order to follow, which we called “Compulsory order”, the other two

courses suggest an order, but students can configure their path, “Weak order”. The experts

37

CHAPTER 3. SELECTING A MOOC FOR PYTHON

Experts Panel
Experts Panel
October 20, 2020 12:17 PM BST

Q2 - Peer assessment (assignments are assessed by other course participants):

End of Report

Not important at all Low importance Moderate importance Important Very important
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Figure 3.8: Expert panel - peer assessment

had to choose the option that they thought better in these circumstances, and the most chosen

approach (chosen by three experts) was the “Compulsory order”, while the “Weak order” was

chosen just by one expert. One of the experts justified his choice “Compulsory order” saying

that, if the course was for students with basic knowledge in programming, the “Weak order”

would be more effective. Also, this expert said: “a long time ago the syllabus changed in a Com-
puter Engineering course that I was enrolled in as a teacher. The topic control flow, which was taught
before the topic functions, became to be taught after, and thanks to this order change, the students
improved their code, making it less confusing”. Another expert, who answered “Weak order”,

replied to the previous expert saying that in case of an online environment and not a traditional

one, the students should have a path suggestion, but at the same time they should have the

flexibility to watch the video lessons according to their needs. He also added that since the

students have basic knowledge in programming, an obligation of a specific order could increase

a course dropout caused by students’ discouragement. Reacting to this, another expert said that,

they had to finish all the topics eventually to have the certificate of completion, and for that

reason they should follow the “Compulsory order”. To fight the problem of discouragement,

this expert added that a component of gamification would be a possible solution.

Experts Panel
Experts Panel
October 20, 2020 12:07 PM BST

Q3 - Course order:

End of Report

Weak order - A
syllabus topics order

is suggested, but
students can

configure their own
path

Compulsory order -
Syllabus topics must

be followed by the
proposed order

0 0.5 1 1.5 2 2.5 3

Figure 3.9: Expert panel - course order

The fourth question was about the importance of re-attempting an assignment and one of

38

3.3. EXPERT PANEL

the four experts answered as “Not important at all”, two answered as “Important” and one as

“Very important”. The expert who answered “Not important at all” was asked to justify his

answer and he mentioned that when he was answering he could take “Very important” as well.

In his opinion, when a student does an assignment is to evaluate the knowledge learned in the

video lessons. For that reason, the assignments only should be repeatable if it is to use as a

study component, otherwise, if it is to get a better grade, it does not make sense. The other

experts when answering to this question assumed that the goal of re-attempting an assignment

was to help students understand that they must review the previous video lessons and do the

assignment again to reevaluate their knowledge (Figure 3.10).

Experts Panel
Experts Panel
October 20, 2020 12:08 PM BST

Q4 - Possibility of re-attempting an assignment:

End of Report

Not important at all Low importance Moderate importance Important Very important
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Figure 3.10: Expert panel - re-attempting an assignment

As mentioned before the three courses were for beginners in Python programming who had

previous mastering in at least another programming language. Therefore, the fifth question

was to understand which topics of the syllabus were more relevant to this type of students. The

topics from the three courses were all aggregated in a multiple-choice question.

Given the results presented in Table 3.3, it is possible to see that the topics which were more

consensual among the experts to a course for beginners in Python programming were Syntax,

Variables and Types, Functions, Dictionaries and Sets and Object-Oriented Paradigm. Strings,

Program Control Flow, Lists, Input and Output were considered essential for some experts.

Binary Number System was not considered important with zero votes among the experts.

Many of these MOOCs are provided by universities or organizations which provides certifi-

cates for students who finish the course. Others are provided by subject experts and usually

do not provide a final certificate. Thus, the sixth and seventh question were to understand the

importance of these two features in experts’ opinion. In the sixth question, which asked the

importance of the course being provided by a university, the experts’ answers were unanimous.

It can be seen in Figure 3.11 that they all answered “Moderate Importance”.

The seventh question (Figure 3.12), which was regarding the certificate, had similar re-

sponses to the previous question. Although, in this question, one expert answered that cer-

tificate is “Important” and the other three answered “Moderate importance”. The expert who

classified the certificate as “Important” mentioned that, since the students put the effort in the

attempt to finish the course, they must be rewarded somehow if they finished. Also, he added

39

CHAPTER 3. SELECTING A MOOC FOR PYTHON

Table 3.3: Expert panel - syllabus

Experts Panel
Experts Panel
October 20, 2020 12:18 PM BST

Q6 - Provided by a University:

End of Report

Not important at all Low importance Moderate importance Important Very important
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3.11: Expert panel - provided by a university

that in the perspective of the student, this certificate is important because they can use it as

a component of their curriculum vitae. All the other experts agree with each other that the

certificate has some importance but is not the most important feature that an online course

should have. Instead, they considered more important other features, such as the course being

well structured and the syllabus is appropriate to beginners in Python programming, that they

consider more important.

The last question of this questionnaire was a ranking order question. As it is possible

to see in Table 3.4, the features, which were assessed individually before, were now linked

to the corresponding course. The courses were named X,Y and Z in order to avoid experts

40

3.3. EXPERT PANEL

Experts Panel
Experts Panel
October 20, 2020 12:15 PM BST

Q7 - Certificate:

End of Report

Not important at all Low importance Moderate importance Important Very important
0

0.5

1

1.5

2

2.5

3

Figure 3.12: Expert panel - certificate

from being influenced by any experience that they could have with the platforms/courses. The

main objective was to make them choose based on the features of each course without knowing

its name. Taking these images into account, the experts had to rank them according to their

preference and knowing its purpose, which was to choose the best course for students who had

knowledge of Java but want to learn Python. The results of this question are presented in Table

3.5.

41

CHAPTER 3. SELECTING A MOOC FOR PYTHON

Table 3.4: Course X,Y and Z

Table 3.5: Expert panel - courses’ rank order

Course X had one vote for the best course and had three votes for the third best course.

Course Y was considered by two experts the best course and the other two experts voted as the

second and the third best course. Course Z earned one vote for the best course and three for the

second best course. Course X was the least preferred in the experts’ opinion. However a good

point of view was given by the expert who chose course X, he mentioned that video lessons can

be uninteresting to students who know already how to program and if they had instead text to

explain the syllabus topics it would be more interesting and easier to them. The race for the

42

3.3. EXPERT PANEL

best course was between courses Y and Z. Three experts were unanimous that video lessons

was the best approach to take in this type of course. The main reason that made them choose

between Y or Z was the syllabus topics. One of the experts mentioned that taking into account

the fact that course Y was provided by a university could mean that the course has more quality

than the other. With this in mind, he added that he prefers to have less syllabus topics but more

quality in the course. The two remaining experts, one agreed with the previous said. The other

mentioned that the personal reason to choose course Z over course Y was the importance of all

the syllabus topics for beginners presented in course Z.

3.3.3 Final result

Course X, Y and Z are Codecademy, Coursera and Udemy courses, respectively. The discussion

between the Coursera’s course and the Udemy’s course was tight. Coursera’s course had two

votes for the first place and one vote for the second place. On the other hand, the Udemy’s course

had one vote for the first place and three for the second place. Despite the tight discussion

between these two courses, the choice was for Coursera’s course. As mentioned before, the

purpose of this expert panel was to choose one of these three MOOCs to use the best and most

suitable in a pedagogical event named Pythacon that will be explained in detail in the next

chapter.

43

[This page has been intentionally left blank]

C
h
a
p
t
e
r

44 4

In-class MOOC approach trial: Pythacon event

Contents
4.1 Introduction . 47

4.2 Planning . 47

4.3 Execution . 51

4.4 Analysis and results . 56

This chapter describes the plan and execution of a controlled experiment, named Pythacon,

that allowed to validate the proposed learning approach, In-class MOOC, using the previously

selected MOOC. Finally, the results of the experiment are analysed.

45

[This page has been intentionally left blank]

Chapter 4

In-class MOOC approach trial: Pythacon event

4.1 Introduction

Pythacon was a pedagogical event organized at Iscte and its duration was one week divided

into two phases from September 14th to 18th, 2020. The main goal was to understand the

effectiveness of learning Python using the proposed learning approach (In-class MOOC) and

compare it with the traditional learning approach.

The planning step in the organization of Pythacon included the development of its website1

in order to disseminate all the information about the event and attract students to register and

participate in it. Direct emails were sent to all students, providing the link to the inscription

page in Pythacon’s website.

The first phase of this event, which lasted four days, was dedicated to the In-class MOOC
learning using the Coursera’s Python course and was targeted to students from the three fol-

lowing undergraduate degrees: Computer Science and Business Management2, Computer En-

gineering and Telecommunications3 and Computer Engineering4. The participants from these

three undergraduate degrees formed the experimental group. They had previous programming

knowledge, mostly in Java, acquired in traditional learning, but Python was not part of their

degrees’ syllabus. The main objective of this phase was to provide these participants the oppor-

tunity to learn Python with a MOOC in class. Therefore, learning Python through a MOOC in

class was the treatment applied to our subjects. Furthermore, in order to measure participants’

workload in our proposed learning approach, the NASA TLX was used.

The second phase, inspired by the International Collegiate Programming Contest (ICPC)5

event, was the contest day where participants put to test their knowledge on Python program-

ming. In order to get to this phase, participants from the experimental group had to complete

at least the first module of the selected MOOC. As for the control group, it was composed of

Data Science6 undergraduate students, that learned Python through the traditional in-class

learning approach. Therefore, the latter had no precondition for joining the second phase.

4.2 Planning

4.2.1 Participants description

As mentioned in the previous section, students had to register in Pythacon website. This reg-

istration page was a questionnaire developed in the Qualtrics platform7 containing questions

1https://sites.google.com/iscte-iul.pt/pythacon/
2https://www.iscte-iul.pt/course/6/bachelor-bsc-in-computer-science-and-business-management
3https://www.iscte-iul.pt/course/2/bachelor-bsc-in-telecommunications-and-computer-engineering
4https://www.iscte-iul.pt/course/3/bachelor-bsc-in-computer-engineering
5https://icpc2019.up.pt/
6https://www.iscte-iul.pt/course/291/bachelor-bsc-in-data-science
7https://www.qualtrics.com/

47

https://sites.google.com/iscte-iul.pt/pythacon/
https://www.iscte-iul.pt/course/6/bachelor-bsc-in-computer-science-and-business-management
https://www.iscte-iul.pt/course/2/bachelor-bsc-in-telecommunications-and-computer-engineering
https://www.iscte-iul.pt/course/3/bachelor-bsc-in-computer-engineering
https://icpc2019.up.pt/
https://www.iscte-iul.pt/course/291/bachelor-bsc-in-data-science
https://www.qualtrics.com/

CHAPTER 4. IN-CLASS MOOC APPROACH TRIAL: PYTHACON EVENT

about students’ identification such as student number, email, undergraduate degree and corre-

sponding year of inscription. The questionnaire also had other questions about programming

skills, programming courses completed and respective grades, previous mastering in other

programming languages and familiarity with MOOCs.

In total, 102 registrations were received. As represented in Figure 4.1, the undergraduate

degree with more registrations was Computer Engineering, with a total of 36 registrations,

followed by Computer Science and Business Management with 33. Telecommunications and

Computer Engineering had 19 registrations and Data Science was the undergraduate degree

with less registrations, only 14. The most common year of the students was the second year

with a total of 68 students. The first and third year were represented by 4 and 23 students,

respectively. From the fourth year, which is only applicable in the Computer Science and

Business Management degree there were 7 students.

Default Report
Pythacon
October 24, 2020 5:03 PM BST

Q1 - Qual a licenciatura que frequentas?

End of Report

33

19

36

14

Computer Science
and Business
Management

Telecommunications
and Computer

Engineering

Computer
Engineering

Data Science

0 5 10 15 20 25 30 35 40

Figure 4.1: Pythacon registrations by undergraduate degree

Most students only obtained their programming skills at the undergraduate degree (4.1),

although some of them mentioned other situations when they gained or improved their pro-

gramming skills, which are: high school, MOOCs, books, videos online and internet.

Table 4.1: Pythacon participants former programming skills

The programming courses offered on each undergraduate degree and the number of stu-

dents that completed them are presented on Table 4.2, thereby confirming that the vast majority

of students in the experimental group had taken successfully at least 3 programming courses

in Java and the vast majority of students in the control group had taken successfully 2 courses

on Python.

48

4.2. PLANNING

Table 4.2: Programming courses formerly concluded by Pythacon participants

Computer
Engineering

Computer Science and
Business Management

Telecommunications
and Computer Engineering

Data
Science

No.
Students

and %
Introduction to
Programming

1st year 1st year 1st year - 88 (100%)

Algorithms and
Data Structures

1st year 1st year 1st year - 79 (89.7%)

Objected Oriented
Programming

1st year 1st year 1st year - 75 (84.3%)

Concurrent
and Parallel
Programming

2nd year 2nd year 2nd year - 29 (33%)

Programming - - - 1st year 13 (92.9%)
Data Structures
and Algorithms

- - - 1st year 12 (85.7%)

In Figure 4.2 and Figure 4.3, the grades’ distribution across the different programming

courses is presented . Regarding the experimental group, it can be observed the median grade

of the four programming courses, presented here in the same order as in Figure 4.2: (Mdn =
14), (Mdn = 15), (Mdn = 12) and (Mdn = 14). Additionally, by observing the interquartile range

(Q3-Q1) in the Introduction to Programming course, it is possible to affirm that about 50%

of the students had their grades between 11 and 16.4, meaning that this programming course

was the one with the largest grade distribution. The programming course with the shortest

distribution was the Objected Oriented Programming course where about 50% of the students

had their grades between 13 and 17. In Figure 4.3, the median grade of the Programming course

and Data Structures and Algorithms course was 13 and 15, respectively. In the Data Structures

and Algorithms course it is possible to affirm that about 50% of the students had their grades

between 13 and 17. Furthermore, in the Programming course it is noticeable the presence of

outliers, meaning that there were students with grades that stretched an abnormal distance

from the remaining distribution.

Algorithms and Data
Structures

Concurrent and
Parallel Programming

Object Oriented
Programming

Introduction to
Programming

G
ra

de
s

20

18

16

14

12

10

Page 1

Figure 4.2: Pythacon - programming courses grades’ distribution in the experimental group

49

CHAPTER 4. IN-CLASS MOOC APPROACH TRIAL: PYTHACON EVENT

Data Structures and AlgorithmsProgramming

G
ra

de
s

20

18

16

14

12

10

Page 1

Figure 4.3: Pythacon - programming courses grades’ distribution in the control group

Towards understanding of the familiarity with MOOCs, students were questioned regard-

ing which platforms of online courses they used before. Observing Figure 4.4 one can see that

only 9 participants had contact with MOOCs, which corresponds to 8.82% of the total. Regard-

ing which platform they used, 4 answered Coursera, 2 the Udemy platform, 1 Codecademy and

the other 2 mentioned Code.org in the “other“ option.

Report
Pythacon
November 25, 2020 5:44 PM GMT

Q6 - Que plataforma(s) MOOC utilizaste?

End of Report

11.11%

44.44%

22.22%

22.22%

 Coursera Udemy CodeCademy Outro

Figure 4.4: Pythacon - MOOC platforms used

In Table 4.3 are presented the programming languages that students had contact with. In

this question, students were asked to classify in a scale of 0 to 10 their knowledge in the selected

programming languages. With no surprise Java was the most recurrently selected programming

language and with the higher mean score (6.23). The least chosen programming language was

PHP which also had the lowest mean score (1.16). Python was chosen by 63 students and had a

mean score of 3.37, meaning that despite being the second most chosen programming language

these students do not have much knowledge in Python programming. This particular aspect

about the Python programming language confirms the “Python gap“ mentioned in Section 1.1.

50

4.3. EXECUTION

Table 4.3: Pythacon - Mastering of other programming languages

4.3 Execution

4.3.1 First phase description

Based on the inscriptions, we were expecting 88 participants in the first phase. The additional

14 participants inscribed were from the Data Science degree and were automatically admitted

in the second phase.

Given that Pythacon took place during the COVID-19 pandemic, albeit in a period of

slowing down between two peaks, participants were organized into two 5-hour shifts each, to

maximize the physical distance between each other’s tables. One shift worked from 8:00 am

to 1:00 pm and another from 1:30 pm to 6:30 pm. Therefore, since this first phase spanned

for 4 days, each student had 20 hours scheduled for In Class MOOC learning. This duration

corresponds roughly to the recommended 19 hours for the first module of the selected MOOC

course, the “Olympic minimums“ to be fulfilled by these first phase participants to be accepted

in the second phase.

At the room doors, participants used the provided hand disinfectant gel and, in the interval

between the two shifts, the room was disinfected by the cleaning staff at Iscte. The chosen room

had excellent natural lighting and good air circulation. Each participant had their own table

with an electrical connection for their laptop and coffee breaks were offered approximately

halfway through each shift. WiFi traffic workload was monitored continuously by the IT de-

partment to guarantee that it did not cause any disruptions in participants’ work, especially

because it encompassed the visualization of many videos that require a good bandwidth. All of

this was important to guarantee good working conditions since the course was intensive.

In the first day we had 76 participants, which means a dropout of only 13.6%. One partici-

pant concluded the first module in just 1 hour and 23 minutes and following this participant

other 34 finished the first module in the first day, i.e. within the first 5 hours, that corresponds

to less than 25% of the aforementioned recommended duration for the first module. This con-

firmed the importance of choosing a MOOC that allowed “fast-forward“ for participants with

51

CHAPTER 4. IN-CLASS MOOC APPROACH TRIAL: PYTHACON EVENT

previous knowledge on other programming language(s), as mentioned in section 3.2. To max-

imize the learning outcome, many participants progressed to the following MOOC modules

in Coursera which were Python Data Structures, Using Python to Access Web Data and Using
Databases with Python.

In Figure 4.5 it is possible to observe the mortality rate in Pythacon participation. The

increase of participants from the Computer Engineering degree and Telecommunications and

Computer Engineering degree from day 3 to day 4 was probably due to the fact that we an-

nounced that by the end of each shift in day 4 we would provide additional information and

instructions regarding the contest to be hold on day 5.

33

30

23
19

10
9

19

14
13

8

10

9

36

32

27

18

22

17

14

9

0

5

10

15

20

25

30

35

40

Inscriptions Day_1 Day_2 Day_3 Day_4 Contest

Participation per undergraduate degree

Computer Science and Business Management Telecommunications and Computer Engineering

Computer Engineering Data Science

Figure 4.5: Participation in Pythacon

The number of MOOC modules finished by participants on the first phase is presented in

Figure 4.6. The undergraduate degree with better performance was the Computer Engineering

degree with 32 participants finishing the first MOOC module, 19 who finished the second

module and 5 finishing the third module. It is important to refer that the first module was

finished by all the 76 participants with different paces, which will be discussed later in this

section. Observing Figure 4.6, it is possible to note that just 1 participant, who was from the

Computer Science and Business Management degree, finished the fourth module. The average

of modules finished by student was 1.47.

In this first phase the students could have used the 20 hours (1200 minutes) scheduled

to finish the maximum modules as possible. Based on that, the average time that students

spent in the four days of the first phase was 808 minutes. All the modules had a suggested

time given by the Coursera platform which was 19 hours (1140 minutes) for the first, second

and third modules and 14 hours (840 minutes) for the fourth. In Figure 4.7, it is presented

the distribution of the elapsed time in each MOOC module. The median of the elapsed time

for modules 1, 2 and 3 was respectively, Mdn = 217.5, Mdn = 255 and Mdn = 262.5. The

largest distribution of the elapsed time in all the three modules was in the second module,

52

4.3. EXECUTION

30

14

32

5
6

20

1
0

5

1
0 0

0

5

10

15

20

25

30

35

Computer Science and Business Management Telecommunications and Computer

Engineering

Computer Engineering

N
o

.
o

f
st

u
d

en
ts

 t
h
at

 c
o

m
p

le
te

d
 t

h
e

m
o

d
u
le

 w
it

h
 s

u
cc

es
s

Number of MOOC modules completed by Undergraduate Degree

Module1 Module2 Module3 Module4

Figure 4.6: Number of MOOC modules completed with success by undergraduate degree

where about 50% of the students concluded it between approximately 190 and 300 minutes.

The third module had the shortest distribution where about 50% of the students finished it

between approximately 250 and 260 minutes. This may be due to the small number of students

(probably the more proficient ones) who finished module 3 when compared to the other two

modules. Still regarding the third module, it is possible to observe an outlier, meaning that one

student’s elapsed time stretched an abnormal distance from the remaining distribution.

Module 3Module 2Module 1

E
la

ps
ed

 T
im

e
(m

in
ut

es
)

600

500

400

300

200

100

Page 1

Figure 4.7: Distribution of the elapsed time in each MOOC module

53

CHAPTER 4. IN-CLASS MOOC APPROACH TRIAL: PYTHACON EVENT

4.3.2 Second phase description

In this second phase of the Pythacon, the main goal was to test the knowledge acquired in

Python programming either by the experimental group and the control group. All the 76

participants from the experimental group finished the first MOOC module in the first phase

that guaranteed the possibility for being in the second phase. However, only 35 out of 76

were present in the contest day. Additionally to these 35 participants from the experimental

group, only 9 out of 14 students from the control group went to the competition. Thus, in the

contest day a total of 44 participants were present. A group of professors, who were involved

in the organization of this event, created a set of six exercises which were divided in three

categories of two exercises each. Hence, there was two easy, two medium and two complex

exercises. These exercises, or later called problems along with input and correspondent output

data, were inserted in the Mooshak automatic judge. Mooshak’s interface allows students to

the problem statement and submit solutions. The submissions can be classified as observed

in Table 4.4, re-adapted from a tutorial8 at Mooshak’s website. This automatic judge ran in a

virtual machine with the following specifications: SO – Debian 9; CPU – Intel(R) Xeon(R) CPU

E5-2650 2.20GHz; RAM – 4GB.

Table 4.4: Submissions’ classification on Mooshak

Severity Classification Meaning
9 Requires Reevaluation For some reason the program has to be re-evaluated

8 Runtime Error
The program crashed, i.e. it exited prematurely due
to a run-time error

7 Invalid Exit Value The program terminated with an invalid code

6 Invalid Function
The program or evaluator has called an invalid
function and/or an internal error occurred

5 Time Limit Exceeded
The program did not finish within the allocated
amount of time

4 Memory Limit Exceeded
The program exceeded the allocated amount of
memory

3 Output Limit Exceeded
The program generated an output too long for
this problem

2 Wrong Answer
The program runs through one or more test cases
without a run-time error but the output did not
match the expected output

1 Presentation Error
The output seems to be correct but it is not
presented in the required format

0 Accepted
The program passed all tests and is accepted
as correct

The contest duration was 5 hours and during this period it was received 754 submissions.

There were 5 types of submissions registered: “Accepted“, “Wrong Answer“, “Time Limit

Exceeded“, “Invalid Submission“ and “Runtime Error“, which are presented in detail in Figure

4.8. The “Wrong Answer“ submissions had the highest percentage of the total submissions.

However, in this dissertation it will only be discussed the “Accepted“ submissions by problem

and undergraduate degree in order to find out if the undergraduate degree had influence on

the learning performance in the contest.

8https://mooshak2.dcc.fc.up.pt/mooshak/automated-judge-newcomers

54

https://mooshak2.dcc.fc.up.pt/mooshak/automated-judge-newcomers

4.3. EXECUTION

In Figure 4.9 allows observing differences on accepted submissions among undergraduate

degrees. Later in this dissertation we will check if those differences are statistically significant.

In Figure 4.10 it is presented the average time of the six problems. The first problem had

the lower average time of all the problems (M = 00:57:43). In the second problem there was

an increase in the average time that students took to solve this problem (M = 02:47:31). In

the two following problems, the third and fourth, there was a slight dropout in the average

time of the third problem (M = 02:44:24) and in the fourth problem the dropout was much

more noticeable (M = 02:15:35). In the fifth problem, the solving average time increased (M =
02:52:46). The sixth problem did not have any accepted submission, which means that none

of the participants managed to solve this last and most complex problem. For each problem it

was given a corresponding value in points. P1 and P2 were worth 1 point each, P3 and P4 were

worth 2 points each and P5 and P6 were worth 3 points each. At the end of the 5 hours, the

points were calculated towards a final contest ranking. Several students had equivalent scores,

therefore these points were adjusted considering the time that each student took to solve each

problem.

SubmissionClassification

Time Limit ExceededRuntime ErrorInvalid SubmissionWrong AnswerAccepted

C
ou

nt

600

500

400

300

200

100

0

66

9,02%

542

74,04%

87

11,89% 36

4,92%
1

0,14%

Submissions

Page 1

Figure 4.8: Pythacon submissions

55

CHAPTER 4. IN-CLASS MOOC APPROACH TRIAL: PYTHACON EVENT

22,22%
30,00%

23,08%
17,39%

40,00%

38,89%

60,00%

38,46% 52,17%

40,00%

22,22%

10,00%

23,08%
17,39%

20,00%16,67% 15,38% 13,04%

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

P1 P2 P3 P4 P5 P6

Percentage of "Accepted" Submissions by Undergraduate Degree and Problem

Computer Science and Business Management Computer Engineering Telecommunications and Computer Engineering Data Science

Figure 4.9: Percentage of accepted submissions by undergraduate degree and problem

Problem

P5P4P3P2P1

M
ea

n
tim

e

03:00:00,00

02:00:00,00

01:00:00,00

00:00:00,00

02:52:46,40

02:15:35,22

02:44:24,9202:47:31,30

00:57:43,31

Average Time of the Accepted Submissions by Problem

Accepted
Submission_Classification

Page 1

Figure 4.10: Average time of accepted submissions by problem

4.4 Analysis and results

4.4.1 NASA Task Load Index

NASA TLX was developed more than 30 years ago to measure workload in aviation [26] [25].

Since then this questionnaire was used in several areas and estimated that it was used in more

56

4.4. ANALYSIS AND RESULTS

than 300 studies [25]. It is claimed in [49] that this questionnaire became a dominant scale in

workload measurement with an explosive use between 1985-2012. According to [49] it can be

stated that workload has become synonymous with TLX. Despite the fact that NASA TLX being

mostly used in aviation, in [30] the authors apply it in health care, that showed that NASA TLX

is a reliable and valid tool to measure workload among ICU nurses. Also, the NASA TLX is

easy to administer and allows the researcher to measure different dimensions of workload and

overall workload [30].

NASA TLX consists in six sub scales that represent somewhat independent clusters of

variables: Mental, Physical, and Temporal Demands, Frustration, Effort, and Performance [25].

The assumption is that some combinations of these dimensions are likely to represent the

workload experienced by most people performing most tasks [26] [25]. In [23] there is a figure

adapted from [26] which contains the description of the six sub scales. This figure is reproduced

in this dissertation for a better understanding of each dimension (4.5).

Table 4.5: NASA TLX rating-scale descriptions from [23]

In this dissertation we applied NASA TLX to measure participants workload during the

first phase. The participants were asked to fill the questionnaire (see Annex I.1) at the end of

the first and fourth day. In the first day, 76 participants filled this questionnaire, while in the

last day of the first phase only 48 filled the TLX. The data were analysed using SPSS software9

and it will be applied the American Psychological Association (APA) format10 to report the

results. As mentioned before there are six dimensions in NASA TLX: Mental Demand (MD),

Physical Demand (PD), Temporal Demand (TD), Performance (P), Effort (E) and Frustration

(F). To differentiate both time instances where the questionnaire was filled by the participants,

the variables in the first time instance were named MD1, PD1, TD1, P1, E1 and F1, and in

the second time instance were named MD2, PD2, TD2, P2, E2 and F2. To test whether these

variables are normally distributed, it was used the Kolmogorov-Smirnov test. The result of this

9https://www.ibm.com/analytics/spss-statistics-software
10https://apastyle.apa.org/

57

https://www.ibm.com/analytics/spss-statistics-software
https://apastyle.apa.org/

CHAPTER 4. IN-CLASS MOOC APPROACH TRIAL: PYTHACON EVENT

test indicated that the following dimensions followed a normal distribution, with a confidence

level of 95%:

• MD2 (D(48)=0.119, p=0.085);
• TD2 (D(48)=0.124, p=0.063);
• E2 (D(48)=0.077, p=0.2).

The Kolmogorov-Smirnov test indicated that the remaining dimensions do not follow a

normal distribution:

• MD1 (D(76)=0.125, p=0.005);
• TD1 (D(76)=0.171, p=0.0001);
• PD1 (D(76)=0.221, p=0.0001);
• P1 (D(76)=0.244, p=0.0001);
• E1 (D(76)=0.120, p=0.009);
• F1 (D(76)=0.237, p=0.0001);
• PD2 (D(48)=0.229, p=0.0001);
• P2 (D(48)=0.165, p=0.002);
• F2 (D(48)=0.195, p=0.0001).

Considering the fact that some of these dimensions are not normally distributed, a non-

parametric test was undertaken. The Wilcoxon test compared the two paired groups of the

different time instances. Therefore, it was compared Mental, Physical and Temporal Demand,

Performance, Effort and Frustration at the beginning and at the end of the first phase.

On average, the students performed better11 at the beginning (Mdn =3.00) than at the end

of the first phase (Mdn = 4.50) but a Wilcoxon signed-rank test indicated that this difference

was not statistically significant, T = 633, Z = -1.946, p = 0.052. Regarding effort, on average

the students showed more effort at the end (Mdn =10.0) than at the beginning of the first

phase (Mdn =7.0). The Wilcoxon signed-rank test indicated that this difference was statistically

significant, T = 650.5, Z = -3.241, p = 0.001. Concerning the mental demand, on average

the students were more mental actives at the end (Mdn = 10.0) than at the beginning of the

first phase (Mdn = 7.0) and the Wilcoxon signed rank-test indicated that this difference was

statistically significant, T = 679.5, Z = -4.051, p < 0.001. On average, the students showed a

higher physical demand at the end (Mdn =6.0) than at the beginning of the first phase (Mdn 5.0).
The Wilcoxon signed-rank test indicated that this difference was not statistically significant,

T = 203.5, Z = -0.352, p = 0.725. In terms of temporal demand, on average the students felt

more pressure at the end (Mdn = 8.0) than at the beginning of the first phase (Mdn = 6.0) and

a Wilcoxon signed-rank test indicated that this difference was not statistically significant, T =
518.0, Z = -1.793, p = 0.073. As regards the frustration, on average the students showed more

frustration at the end (Mdn = 4.0) than at the beginning of the first phase (Mdn = 2.0). The

Wilcoxon signed-rank test indicated that this difference was statistically significant, T = 639.5,
Z = -3.492, p < 0.001.

11Note: See Table 4.5 that shows that the performance scale is inverted.

58

4.4. ANALYSIS AND RESULTS

4.4.2 First and second phase

In order to understand whether or not there were factors influencing the learning resilience in

the in-class MOOC learning approach, the following null hypothesis with the respective factors

were tested. “learning resilience of a new programming language does not depend on:“

• the previous mastering of other programming language(s);

• the undergraduate degree followed;

• the learning pace.

The first step was to test whether or not the dependent variable (learning resilience) fol-

lowed a normal distribution. In Table 4.6 it is possible to observe that this assumption is not

satisfied, meaning that the data do not follow a normal distribution (W(76) = 0.931, p < 0.001)

and the use of non-parametric tests is recommended.

Table 4.6: Learning resilience - normality test

The Spearman’s rank-order correlation is the non-parametric version of the Pearson product-

moment correlation. Spearman’s correlation coefficient (ρS) measures the strength and direction

of association between two ranked variables. It is usually adopted when the assumption of the

normal distribution is not tenable [5]. Also, in [16] the authors mentioned that the most popular

non-parametric correlation measure is Spearman’s rank-order correlation. In order to determine

if there was any relationship between the learning resilience, which is the total dedication time

learning through MOOCs in the first phase, and the previous mastering of other programming

language(s) and the learning pace, a Spearman rank-order correlation test was conducted. The

results of the Spearman correlation indicated that there was a very weak and positive correla-

tion between learning resilience and the previous mastering of other programming language(s)

(ρS(76) = 0.027, p=0.814) and a weak and positive correlation between learning resilience and

the learning pace (ρS(76) = 0.361, p=0.001).

The Kruskal-Wallis test is the non-parametric analogue of a one-way anova, which does not

make assumptions about normality. In [28], the author ended concluding that: “For non-
symmetrical distributions the non-parametrical Kruskal-Wallis test results in a higher power com-
pared to the classical one-way anova. The results of the simulations show that an analysis of the data
is needed before a test on differences in central tendencies is conducted. Although the literature and
textbooks state that the F-test is robust under the violations of assumptions, these results show that
the power suffers a significant decrease“. Therefore, in order to compare the effect of the under-

graduate degree followed on the learning resilience, a Kruskal-Wallis test was undertaken. The

results of this test showed that there were no differences found among the three undergraduate

59

CHAPTER 4. IN-CLASS MOOC APPROACH TRIAL: PYTHACON EVENT

degrees (χ2(2) = 0.561, p = 0.756).
Despite the very weak and weak correlations, a Kruskal-Wallis test was undertaken as well to

explore the effect of the previous mastering of other programming language(s) on the learning

resilience and the effect of the learning pace on the learning resilience. Regarding the effect

of the previous mastering of other programming language(s) on the learning resilience, the

Kruskal-Wallis test showed no differences (χ2(2) = 0.141, p = 0.932) among the three categories

of this variable. Differently, the Kruskal-Wallis test showed that there was a statistically sig-

nificant difference (χ2(3) = 8.192, p = 0.042) in learning resilience between the four different

groups of learning pace (fast, moderate, slow and very slow). Post-hoc Mann-Whitney tests

using a Bonferroni-adjusted alpha level of .00812 were used to compare all pairs groups. As

it is possible to see in Table 4.7, none of the comparisons among the different groups were

significant after the Bonferroni adjustment.

Table 4.7: Post-hoc Mann-Whitney test using Bonferroni adjustment

To the extent of understanding which factors influenced or not the learning effectiveness,

the contest points were analysed in SPSS as well as the following factors: learning mode, overall

proficiency level and MOOC modules completed. Therefore, the null hypothesis to test was

“learning effectiveness does not depend on“:

• the learning mode (traditional vs. In-class MOOC;

• the overall proficiency level (average grades in degrees’ programming courses);

• the number of MOOC modules completed.

A test of normality to the dependent variable was undertaken in order to understand whether

or not the data followed a normal distribution. The Kolmogorov-Smirnov and Shapiro-Wilk

test (Table 4.8) showed that these data do not follow a normal distribution (W(44) = 0.89, p =
0.001). With this in mind, it is recommended the appliance of non-parametric tests.

12To minimise the problem of obtaining an increase in false positive results, the 0.05 alpha threshold is divided
by the number of tests intended to run

60

4.4. ANALYSIS AND RESULTS

Table 4.8: Points - normality test

Therefore, a Spearman rank-order correlation test was conducted in order to determine if

there was any relationship between the learning effectiveness, measured by the points earned in

the contest, and the number of MOOC modules completed in the first phase of the event. The

results of the Spearman correlation indicated that there was a strong and positive correlation

between points and modules completed (ρS(35) = 0.675, p<0.001). The same test was used to

assess the relationship between the learning effectiveness and the students’ average grades in

the programming courses taken in their undergraduate degrees. The results of the Spearman

correlation indicated that there was moderate and positive correlation between the learning

effectiveness and the average grades (ρS(44) = 0.438, p=0.003).

Regarding the learning effectiveness among the two learning modes, it was compared the

mean points of the two conditions (traditional and In-class MOOC) and the differences between

them. The results presented in Table 4.9 and the Kruskal-Wallis test showed that there was no

significant differences (χ2(1) = 2.208, p = 0.137) among the traditional (M = 2.14) and In-class
MOOC (M = 3.65) conditions.

Table 4.9: Mean points of each learning mode

Complementing the Spearman test results regarding the existing relationship between the

contest points and the number of MOOC modules and the contest points and the average grades,

it was undertaken a Kruskal-Wallis test to examine the differences between them. Regarding

the contest points and the average grades, the Kruskal-Wallis test showed no differences (χ2(2)
= 5.154, p = 0.076) among the three different categories of the average grades. Contrarily, the

Kruskal-Wallis test showed that there was a statistically significant difference in the contest

points between the different number of MOOC modules taken (χ2(3) = 15.867, p = 0.001). Post-
hoc Mann-Whitney tests using a Bonferroni-adjusted alpha level of .008 were used to compare

all pairs groups. The comparison between the groups who completed 1 module and 2 modules

61

CHAPTER 4. IN-CLASS MOOC APPROACH TRIAL: PYTHACON EVENT

was significant after Bonferroni adjustment (p = 0.0029). None of the other comparisons were

significant after the Bonferroni adjustment, see Table 4.10.

Table 4.10: Post-hoc Mann-Whitney test using Bonferroni adjustment

62

C
h
a
p
t
e
r

55 5

Conclusion

Contents
5.1 Conclusions . 65

5.2 Validity threats . 67

5.3 Future work . 68

This chapter summarizes the main contributions and presents the conclusions of this disserta-

tion. Finally, presents the threats to the validity of the experiment and possible future works.

63

[This page has been intentionally left blank]

Chapter 5

Conclusion

5.1 Conclusions

This dissertation intended to mitigate the “Python gap“ problem faced by the majority of the IT

undergraduate students at Iscte. As explained in detail in Section 1.1, this problem arises with

the increasing popularity of the programming language Python and its high demand on the job

market. In Section 1.2, a learning approach is proposed to solve the problem above mentioned.

This learning approach that we named In-Class MOOC was then used as a learning method in

the event “Pythacon“, where the students had the possibility to learn Python.

In Chapter 3, a step-wise method for selecting a MOOC course on Python was proposed

to answer the first research question (see Section 1.3). This method included a set of criteria,

which was applied to reach three final candidates: “Learn Python“, “Programming for Every-

body (Getting Started with Python)“ and “Learn Python Programming Masterclass“ from the

Codecademy, Coursera and Udemy platforms, respectively. These three courses were graphi-

cally represented using BPMN and then discussed by an expert panel for reaching a consensus

on the final choice. Therefore, those were the steps taken in this dissertation to answer the first

research question (see Section 1.3).

The second research question of this dissertation aimed to understand whether or not there

were factors influencing the learning resilience in the In-Class MOOC approach. Based on the

results presented in Section 4.4, we can conclude that the previous mastering of other pro-

gramming language(s) and the learning pace, despite weakly, influenced the learning resilience

positively but that influence is not statistically significant. Furthermore, it is also possible to

conclude that the undergraduate degree followed by the participants did not affect the learning

resilience.

Regarding the third research question “Which factors influence learning effectiveness¿‘,

it is possible to conclude that the number of MOOC modules done by the students directly

influenced the number of points they had in the contest. Additionally, the students’ grades

were also related to the number of points they got in the contest. Observing Figure 5.1 and

taking into account the results in Section 4.4, we conclude that there is a significant difference

between finishing only the first module and finishing the first and the second module. Students

who finished only the first module did not have good marks in the contest and the students who

had good marks finished at least two modules. In Figure 5.2, we can affirm that to get a high

number of points, the average grades had to be high too. However, the opposite to this is not

necessarily true. In other words a good background was necessary but not sufficient condition

for maximizing learning effectiveness, it is also required persistence in following more MOOC

modules.

The fourth and last research question of this dissertation aimed to find out whether the

In-class MOOC learning approach is as effective as the traditional learning approach. In Section

4.4, the results showed that the learning mode (traditional learning and In-class MOOC) did not

affect the points obtained in the contest, meaning that regardless the learning mode, students

65

CHAPTER 5. CONCLUSION

were on equal terms as regards the know-how in Python programming. With that being said,

we can conclude that the proposed learning approach is as effective as the traditional learning

approach.

Modules_Completed

4321

Po
in

ts

10,00

8,00

6,00

4,00

2,00

,00

Scatter Plot of Points by Modules_Completed & Degree

Computer Science and
Business Management

Telecommunications and
Computer Engineering

Computer Engineering
Degree

Page 1

Figure 5.1: Scatter plot of points by MOOC modules completed and undergraduate degree

Average_Grades

20,0018,0016,0014,0012,0010,00

Po
in

ts

10,00

8,00

6,00

4,00

2,00

,00

Scatter Plot of Points by Average Grades & Degree

Computer Science and
Business Management

Telecommunications

and Computer Engineering

Computer Engineering
Data Science

Degree

Page 1

Figure 5.2: Scatter plot of points by average grades and undergraduate degree

66

5.2. VALIDITY THREATS

5.2 Validity threats

Based on [47], this section dedicates to the identification and discussion of the validity threats

found in the experiment conducted in this dissertation.

5.2.1 Internal threats

• Social: The students from the control group did not have the same treatment as the

experimental group. As treatment, we mean the In-Class MOOC where the students from

the experimental group had the opportunity to learn Python programming prior to the

day of the competition. Since the students from the control group were in disadvantage,

the compensation was the automatic qualification for the second phase (compensatory

equalization of treatments). Additionally, the experimental group faced a pre-selection

because they had to complete the first MOOC module to qualify for the contest1, while

the control group did not have to face any pre-selection because all the students from this

group were automatically qualified for the contest.

• Instrumentation: In order to collect the data regarding the students’ presence, dedication

time to the MOOC and breaks during the 5 hour period of each day, the main objective

was to use their students’ card and the card reader available at the room doors. However

this was not possible, so this information was collected manually on a worksheet (excel),

meaning that it may have deviations from reality. Since, for instance, the time spent on

coffee breaks was not registered.

• Mortality: In this experiment, the dropout in both groups was noticeable (see Figure 4.5),

meaning that different types of students did not come to the contest day and this may

have influenced the results obtained by each group.

5.2.2 Construct validity

• Social: The set of prizes offered to the best students in the contest may have influenced

their behaviour (e.g. already had programming Python skills when registered in the event

or carried an in-depth study of the Python programming language outside each 5 hour

period in the first phase).

5.2.3 External threats

• Selection: The small number of subjects in both groups, as well as the discrepancy be-

tween them, prevented us from generalizing the results of the experiment to the popula-

tion, which is the students at DCTI.

• Evaluate Apprehension: Some of the students could have not been comfortable with

being assessed, which may have influenced their behaviour in the experiment (known as

the Hawthorne effect [37]).

1All the students from the experimental group finished the first module, and as a consequence, qualified for the
contest

67

CHAPTER 5. CONCLUSION

5.3 Future work

The objectives defined for this dissertation were accomplished. However, there are some aspects

which could be addressed in the future to extend this study:

• Undertake an experiment as the one presented in this dissertation with more subjects in

both groups, as well as equivalence between them towards an understanding of whether

or not the results obtained can be extrapolated to the population.

• The In-Class MOOC’s integration in a programming course of the undergraduate degrees

at DCTI. The main objective of this integration would be learning the programming con-

cepts through the MOOC and then be assessed with a project development and a final test.

After the integration and based on the results obtained, compare this learning approach

with the previous traditional approach. Additionally, undertake an interview/question-

naire to obtain the students’ feedback regarding their experience, the negative and posi-

tive points and suggestions to improve in the future.

• Conduct an experiment with a small number of subjects in order to measure their cogni-

tive effort in MOOCs using an EEG2 headset and an eye-tracking device.

2Electroencephalography

68

Bibliography

[1] K. Abuhlfaia and E. d. Quincey. “The usability of E-learning platforms in higher educa-

tion: a systematic mapping study.” In: Proceedings of the 32nd International BCS Human
Computer Interaction Conference 32. 2018, pp. 1–13. doi: 10.14236/ewic/HCI2018.7.

[2] S. Alhazbi. “Using flipped classroom approach to teach computer programming.” In:

Proceedings of 2016 IEEE International Conference on Teaching, Assessment and Learning for
Engineering, TALE 2016. Institute of Electrical and Electronics Engineers Inc., Feb. 2017,

pp. 441–444. isbn: 9781509055982. doi: 10.1109/tale.2016.7851837.

[3] S. An, W. Li, J. Hu, L. Ma, and J. Xu. “Research on the reform of flipped classroom

in computer science of university based on SPOC.” In: ICCSE 2017 - 12th International
Conference on Computer Science and Education. Institute of Electrical and Electronics

Engineers Inc., Oct. 2017, pp. 621–625. isbn: 9781509025084. doi: 10.1109/iccse.

2017.8085567.

[4] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec. “Engaging with massive

online courses.” In: WWW 2014 - Proceedings of the 23rd International Conference on World
Wide Web. New York, New York, USA: Association for Computing Machinery, Inc, Apr.

2014, pp. 687–697. isbn: 9781450327442. doi: 10.1145/2566486.2568042. arXiv:

1403.3100.

[5] R. Artusi, P. Verderio, and E. Marubini. “Bravais-Pearson and Spearman Correlation

Coefficients: Meaning, Test of Hypothesis and Confidence Interval.” In: The International
Journal of Biological Markers 17.2 (Apr. 2002), pp. 148–151. issn: 1724-6008. doi: 10.

1177/172460080201700213.

[6] S. Beecham, T. Hall, C. Britton, M. Cottee, and A. Rainer. “Using an expert panel to

validate a requirements process improvement model.” In: Journal of Systems and Software
76.3 (June 2005), pp. 251–275. issn: 01641212. doi: 10.1016/j.jss.2004.06.004.

[7] A. Bralić and B. Divjak. “Use of moocs in traditional classroom: blended learning ap-

proach.” In: Forging new pathways of research and innovation in open and distance learning
34 (2016).

[8] B. Cartaxo, G. Pinto, and S. Soares. “The Role of Rapid Reviews in Supporting

Decision-Making in Software Engineering Practice.” In: Proceedings of the 22nd Inter-
national Conference on Evaluation and Assessment in Software Engineering 2018. Ease’18.

Christchurch, New Zealand: Association for Computing Machinery, 2018, 24–34. isbn:

9781450364034. doi: 10.1145/3210459.3210462.

69

https://doi.org/10.14236/ewic/HCI2018.7
https://doi.org/10.1109/tale.2016.7851837
https://doi.org/10.1109/iccse.2017.8085567
https://doi.org/10.1109/iccse.2017.8085567
https://doi.org/10.1145/2566486.2568042
https://arxiv.org/abs/1403.3100
https://doi.org/10.1177/172460080201700213
https://doi.org/10.1177/172460080201700213
https://doi.org/10.1016/j.jss.2004.06.004
https://doi.org/10.1145/3210459.3210462

BIBLIOGRAPHY

[9] B. Cartaxo, G. Pinto, and S. Soares. “Rapid Reviews in Software Engineering.” In: Contem-
porary Empirical Methods in Software Engineering. Ed. by M. Felderer and G. H. Travassos.

Cham: Springer International Publishing, 2020, pp. 357–384. isbn: 978-3-030-32489-6.

doi: 10.1007/978-3-030-32489-6_13.

[10] J. M. Case and H. Heydenrych. “Trade-offs in curriculum design: Implementation of

an integrated curriculum in chemical engineering.” In: 2018 IEEE Frontiers in Education
Conference (FIE). Ieee. 2018, pp. 1–9. doi: 10.1109/fie.2018.8658519.

[11] L. Chamberlin and T. Parish. “MOOCs: Massive open online courses or massive and often

obtuse courses?” In: ELearn 2011.8 (2011). doi: 10.1145/2016016.2016017.

[12] A. Chauhan. “Massive open online courses (MOOCS): Emerging trends in assessment

and accreditation.” In: Digital Education Review 25 (2014), pp. 7–17. doi: 10.1344/der.

2014.25.7-17.

[13] G. Cheng and W. S. Ng. “Secondary students’ views on using flipped classroom to learn

computer programming: Lessons learned in a mixed methods study.” In: Communications
in Computer and Information Science. Vol. 1048. Springer Verlag, Mar. 2019, pp. 27–36.

isbn: 9789811398940. doi: 10.1007/978-981-13-9895-7_3.

[14] D. Coetzee, S. Lim, A. Fox, B. Hartmann, and M. A. Hearst. “Structuring interactions

for large-scale synchronous peer learning.” In: Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work & Social Computing. 2015, pp. 1139–1152. doi:

10.1145/2675133.2675251.

[15] N. Croft, A. Dalton, and M. Grant. “Overcoming isolation in distance learning: Building

a learning community through time and space.” In: Journal for Education in the Built
Environment 5.1 (2010), pp. 27–64. doi: 10.11120/jebe.2010.05010027.

[16] C. Croux and C. Dehon. “Influence functions of the Spearman and Kendall correla-

tion measures.” In: Statistical Methods and Applications 19.4 (2010), pp. 497–515. issn:

16182510. doi: 10.1007/s10260-010-0142-z.

[17] J. Daniel. “Making sense of MOOCs: Musings in a maze of myth, paradox and possibil-

ity.” In: Journal of interactive Media in education 2012.3 (2012). doi: 10.5334/2012-18.

[18] D. Davis, G. Chen, T. Van der Zee, C. Hauff, and G.-J. Houben. “Retrieval practice and

study planning in MOOCs: Exploring classroom-based self-regulated learning strategies

at scale.” In: European conference on technology enhanced learning. Springer. 2016, pp. 57–

71. doi: 10.1007/978-3-319-45153-4_5.

[19] T. Dybå. “Instrument for measuring the key factors of success in software process im-

provement.” In: Empirical Software Engineering 5.4 (Dec. 2000), pp. 357–390. issn:

13823256. doi: 10.1023/a:1009800404137.

[20] K. El Emam and N. H. Madhavji. “An instrument for measuring the success of the require-

ments engineering process in information systems development.” In: Empirical Software
Engineering 1.3 (1996), pp. 201–240. issn: 13823256. doi: 10.1007/bf00127446.

70

https://doi.org/10.1007/978-3-030-32489-6_13
https://doi.org/10.1109/fie.2018.8658519
https://doi.org/10.1145/2016016.2016017
https://doi.org/10.1344/der.2014.25.7-17
https://doi.org/10.1344/der.2014.25.7-17
https://doi.org/10.1007/978-981-13-9895-7_3
https://doi.org/10.1145/2675133.2675251
https://doi.org/10.11120/jebe.2010.05010027
https://doi.org/10.1007/s10260-010-0142-z
https://doi.org/10.5334/2012-18
https://doi.org/10.1007/978-3-319-45153-4_5
https://doi.org/10.1023/a:1009800404137
https://doi.org/10.1007/bf00127446

BIBLIOGRAPHY

[21] T. Eriksson, T. Adawi, and C. Stöhr. “Time is the bottleneck: a qualitative study exploring

why learners drop out of MOOCs.” In: Journal of Computing in Higher Education 29.1

(2017), pp. 133–146. doi: 10.1007/s12528-016-9127-8.

[22] D. Gašević, V. Kovanović, S. Joksimović, and G. Siemens. “Where is research on massive

open online courses headed? A data analysis of the MOOC research initiative.” In: Inter-
national Review of Research in Open and Distance Learning 15.5 (2014), pp. 134–176. issn:

14923831. doi: 10.19173/irrodl.v15i5.1954.

[23] V. J. Gawron. Human performance measures handbook. Lawrence Erlbaum Associates

Publishers, 2000.

[24] B. E. Guajardo Leal, C. Navarro-Corona, and J. R. Valenzuela González. “Systematic

mapping study of academic engagement in MOOC.” In: International Review of Research
in Open and Distributed Learning 20.2 (2019).

[25] S. G. Hart. “Nasa-Task Load Index (NASA-TLX); 20 Years Later.” In: Proceedings of the
Human Factors and Ergonomics Society Annual Meeting 50.9 (Oct. 2006), pp. 904–908.

issn: 1541-9312. doi: 10.1177/154193120605000909.

[26] S. G. Hart and L. E. Staveland. “Development of NASA-TLX (Task Load Index): Results

of Empirical and Theoretical Research.” In: Advances in Psychology 52.C (Jan. 1988),

pp. 139–183. issn: 01664115. doi: 10.1016/s0166-4115(08)62386-9.

[27] A. Hassani and S. A. Ghanouchi. “Modeling of a collaborative learning process in the

context of MOOCs.” In: Proceedings - 2016 3rd International Conference on Systems of
Collaboration, SysCo 2016. Institute of Electrical and Electronics Engineers Inc., Jan.

2017. isbn: 9781509049264. doi: 10.1109/sysco.2016.7831336.

[28] T. V. Hecke. “Power study of anova versus Kruskal-Wallis test.” In: Journal of Statistics and
Management Systems 15.2-3 (May 2012), pp. 241–247. issn: 0972-0510. doi: 10.1080/

09720510.2012.10701623.

[29] Y. Hirata and Y. Hirata. “Flipped Classroom Approaches in Computer Programming

Courses in Japan.” In: Proceedings - 2020 International Symposium on Educational Technol-
ogy, ISET 2020. Institute of Electrical and Electronics Engineers Inc., Aug. 2020, pp. 109–

113. isbn: 9781728171883. doi: 10.1109/iset49818.2020.00032.

[30] P. Hoonakker, P. Carayon, A. P. Gurses, R. Brown, A. Khunlertkit, K. McGuire, and J. M.

Walker. “Measuring workload of ICU nurses with a questionnaire survey: the NASA Task

Load Index (TLX).” In: IIE Transactions on Healthcare Systems Engineering 1.2 (Apr. 2011),

pp. 131–143. issn: 1948-8300. doi: 10.1080/19488300.2011.609524.

[31] V. Johri and S. Bansal. “Identifying Trends in Technologies and Programming Languages

Using Topic Modeling.” In: Proceedings - 12th IEEE International Conference on Semantic
Computing, ICSC 2018. Vol. 2018-Janua. Institute of Electrical and Electronics Engineers

Inc., Apr. 2018, pp. 391–396. isbn: 9781538644072. doi: 10.1109/icsc.2018.00078.

[32] S. Khangura, K. Konnyu, R. Cushman, J. Grimshaw, and D. Moher. “Evidence summaries:

The evolution of a rapid review approach.” In: Systematic Reviews 1.1 (Feb. 2012), pp. 1–9.

issn: 20464053. doi: 10.1186/2046-4053-1-10.

71

https://doi.org/10.1007/s12528-016-9127-8
https://doi.org/10.19173/irrodl.v15i5.1954
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1016/s0166-4115(08)62386-9
https://doi.org/10.1109/sysco.2016.7831336
https://doi.org/10.1080/09720510.2012.10701623
https://doi.org/10.1080/09720510.2012.10701623
https://doi.org/10.1109/iset49818.2020.00032
https://doi.org/10.1080/19488300.2011.609524
https://doi.org/10.1109/icsc.2018.00078
https://doi.org/10.1186/2046-4053-1-10

BIBLIOGRAPHY

[33] J. Leinonen, P. Ihantola, A. Leinonen, H. Nygren, J. Kurhila, M. Luukkainen, and A.

Hellas. “Admitting students through an open online course in programming: A Multi-

year Analysis of Study Success.” In: Proceedings of the 2019 ACM Conference on Inter-
national Computing Education Research (ICER 2019). New York, NY, USA: Association

for Computing Machinery, Inc, July 2019, pp. 279–287. isbn: 9781450361859. doi:

10.1145/3291279.3339417.

[34] M. Li and C. S. Smidts. “A ranking of software engineering measures based on expert

opinion.” In: IEEE Transactions on Software Engineering 29.9 (Sept. 2003), pp. 811–824.

issn: 00985589. doi: 10.1109/tse.2003.1232286.

[35] M. Liu, L. Wang, Q. Chi, L. Wang, and Q. Liu. “Research on Flipped Classroom about Java

Programming Course Based on MOOC.” In: Proceedings of the 3rd International Conference
on Education & Education Research (EDUER 2018). Uk: Francis Academic Press, 2018,

pp. 296–300. doi: 10.25236/eduer.18.065.

[36] R. Mcgreal, W. Kinuthia, and S. Marshall. Open Educational Resources: Innovation, Re-
search and Practice. Vancouver, Canada: Commonwealth of Learning and Athabasca

University, 2013. isbn: 9788188770267.

[37] F. Merrett. “Reflections on the Hawthorne effect.” In: Educational Psychology 26.1 (2006),

pp. 143–146. doi: 10.1080/01443410500341080.

[38] C. Milligan and A. Littlejohn. “Why study on a MOOC? The motives of students and

professionals.” In: International Review of Research in Open and Distance Learning 18.2

(2017), pp. 92–102. issn: 14923831. doi: 10.19173/irrodl.v18i2.3033.

[39] H. Mok. “Teaching tip: The flipped classroom.” In: Journal of Information Systems Educa-
tion 25.1 (2014), pp. 7–11. issn: 1055-3096.

[40] H. N. Mok and V. R. Rao. “Introducing basic programming to pre-university students: A

successful initiative in Singapore.” In: 2018 17th International Conference on Information
Technology Based Higher Education and Training, ITHET 2018. Institute of Electrical and

Electronics Engineers Inc., Aug. 2018. isbn: 9781538646236. doi: 10.1109/ithet.

2018.8424783.

[41] I. Nawrot and A. Doucet. “Building engagement for MOOC students: introducing sup-

port for time management on online learning platforms.” In: Proceedings of the 23rd
International Conference on world wide web. 2014, pp. 1077–1082. doi: 10.1145/2567948.

2580054.

[42] T. Ray, A. Malapati, and N. L. Murthy. “Teaching Computer Programming Using MOOCs

in Multiple Campuses: Challenges and Solutions.” In: Proceedings - IEEE 8th International
Conference on Technology for Education, T4E 2016. Institute of Electrical and Electronics

Engineers Inc., Jan. 2017, pp. 160–163. isbn: 9781509061150. doi: 10.1109/t4e.2016.

041.

72

https://doi.org/10.1145/3291279.3339417
https://doi.org/10.1109/tse.2003.1232286
https://doi.org/10.25236/eduer.18.065
https://doi.org/10.1080/01443410500341080
https://doi.org/10.19173/irrodl.v18i2.3033
https://doi.org/10.1109/ithet.2018.8424783
https://doi.org/10.1109/ithet.2018.8424783
https://doi.org/10.1145/2567948.2580054
https://doi.org/10.1145/2567948.2580054
https://doi.org/10.1109/t4e.2016.041
https://doi.org/10.1109/t4e.2016.041

BIBLIOGRAPHY

[43] B. Riyami and A. Bouaine. “MOOC’s Integration approach: Assessment and comparative

studies of all moroccan universities.” In: ACM International Conference Proceeding Series.
Association for Computing Machinery, July 2020, pp. 11–15. isbn: 9781450375757. doi:

10.1145/3411681.3411693.

[44] M. Sade and R. Suviste. “Using a programming MOOC as an admission mechanism for

CS.” In: Proceedings - IEEE 20th International Conference on Advanced Learning Technolo-
gies, ICALT 2020. Institute of Electrical and Electronics Engineers Inc., July 2020, pp. 42–

44. isbn: 9781728160900. doi: 10.1109/icalt49669.2020.00019.

[45] M. D. Sakhumuzi and O. K. Emmanuel. “Student perception of the contribution of

Hackathon and collaborative learning approach on computer programming pass rate.”

In: 2017 Conference on Information Communication Technology and Society, ICTAS 2017
- Proceedings. Institute of Electrical and Electronics Engineers Inc., May 2017. isbn:

9781509059959. doi: 10.1109/ictas.2017.7920524.

[46] J. Samuelsen and M. Khalil. “Study Effort and Student Success: A MOOC Case Study.” In:

Advances in Intelligent Systems and Computing. Vol. 916. Springer Verlag, 2020, pp. 215–

226. isbn: 9783030119317. doi: 10.1007/978-3-030-11932-4_22.

[47] M. K. Slack and J. L. R. Draugalis. “Establishing the internal and external validity of

experimental studies.” In: American Journal of Health-System Pharmacy 58.22 (Nov. 2001),

pp. 2173–2184. issn: 10792082. doi: 10.1093/ajhp/58.22.2173.

[48] M. Stigmar. “Peer-to-peer teaching in higher education: A critical literature review.” In:

Mentoring & Tutoring: partnership in learning 24.2 (2016), pp. 124–136. doi: 10.1080/

13611267.2016.1178963.

[49] J. C. de Winter. “Controversy in human factors constructs and the explosive use of the

NASA-TLX: A measurement perspective.” In: Cognition, Technology and Work 16.3 (May

2014), pp. 289–297. issn: 14355566. doi: 10.1007/s10111-014-0275-1.

[50] G. Witthaus, A. Inamorato dos Santos, M. Childs, A. Tannhauser, G. Conole, B. Nkuyub-

watsi, and Y. Punie. “Validation of non-formal MOOC-based learning: An analysis of

assessment and recognition practices in Europe (OpenCred).” In: JRC Science for Policy
Report (2016). issn: 1831-9424. doi: 10.2791/809371.

[51] M. Yağcı. “Web-Mediated Problem-Based Learning and Computer Programming: Effects

of Study Approach on Academic Achievement and Attitude.” In: Journal of Educational
Computing Research 56.2 (Apr. 2018), pp. 272–292. issn: 15414140. doi: 10.1177/

0735633117706908.

73

https://doi.org/10.1145/3411681.3411693
https://doi.org/10.1109/icalt49669.2020.00019
https://doi.org/10.1109/ictas.2017.7920524
https://doi.org/10.1007/978-3-030-11932-4_22
https://doi.org/10.1093/ajhp/58.22.2173
https://doi.org/10.1080/13611267.2016.1178963
https://doi.org/10.1080/13611267.2016.1178963
https://doi.org/10.1007/s10111-014-0275-1
https://doi.org/10.2791/809371
https://doi.org/10.1177/0735633117706908
https://doi.org/10.1177/0735633117706908

[This page has been intentionally left blank]

A
p
p
e
n
d
i
x

AA A

Selecting a MOOC for Python

75

A
P
P
E
N
D
I
X

A
.
S
E
L
E
C
T
I
N
G

A
M

O
O
C

F
O
R

P
Y
T
H
O
N

Figure A.1: Codecademy - “Do Section“ process diagram

76

Figure A.2: Udemy - “Do Section“ process diagram

77

A
P
P
E
N
D
I
X

A
.
S
E
L
E
C
T
I
N
G

A
M

O
O
C

F
O
R

P
Y
T
H
O
N

Figure A.3: Codecademy - process diagram

78

Figure A.4: Expert panel questionnaire - 1

79

APPENDIX A. SELECTING A MOOC FOR PYTHON

Figure A.5: Expert panel questionnaire - 2

80

A
n
n
e
x II I

81

ANNEX I. NASA TASK LOAD INDEX

NASA Task Load Index

Name Task Date

 Mental Demand How mentally demanding was the task?

 Physical Demand How physically demanding was the task?

 Temporal Demand How hurried or rushed was the pace of the task?

 Performance How successful were you in accomplishing what
you were asked to do?

 Effort How hard did you have to work to accomplish
your level of performance?

 Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

Figure 8.6

NASA Task Load Index

Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.

Very Low Very High

Very Low Very High

Very Low Very High

Very Low Very High

Perfect Failure

Very Low Very High

Figure I.1: NASA Task Load Index

82

L
ea

rn
in

g
to

co
d

e
in

cl
as

s
w

it
h

M
O

O
C

s:
p

ro
ce

ss
,f

ac
to

rs
an

d
ou

tc
om

es
Jo

ão
G

om
es

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	The rise of Python and its education gap
	MOOCs for the rescue
	Other learning approaches

	The proposed learning approach
	Research objective and questions
	Main contributions
	Organization

	State of the Art
	Introduction
	Rapid review protocol
	Research objectives
	Choice criteria
	Inclusion and exclusion criteria
	Search strategy
	Results
	Validity threats

	Taxonomy
	Domain (D)
	Learning approach (LA)
	Learning motivation (LM)
	Learning results (LR)

	Related work
	MOOCs Integration Approach: Assessment and Comparative Studies of all Moroccan Universities Riyami2020
	Flipped Classroom Approaches in Computer Programming Courses in Japan Hirata2020
	Using a Programming MOOC as an Admission Mechanism for CS Sade2020
	Admitting Students through an Open Online Course in Programming: A Multi-year Analysis of Study Success Leinonen2019
	Secondary Students’ Views on Using Flipped Classroom to Learn Computer Programming: Lessons Learned in a Mixed Methods Study Cheng2019
	Student Perception of the Contribution of Hackathon and Collaborative Learning Approach on Computer Programming Pass Rate Sakhumuzi2017
	Research on the Reform of Flipped Classroom in Computer Science of University Based on SPOC An2017
	Study Effort and Student Success: A MOOC Case Study Samuelsen2020
	Introducing Basic Programming to Pre-University Students: A Successful Initiative in Singapore Mok2018
	Using Flipped Classroom Approach to Teach Computer Programming Alhazbi2017
	Teaching Computer Programming using MOOCs in multiple campuses: Challenges and Solutions Ray2017

	Summary

	Selecting a MOOC for Python
	MOOCs
	What are MOOCs?

	Comparison of MOOC platforms
	Codecademy's course
	Udemy's course
	Coursera's course
	The main features of the three courses

	Expert panel
	Questionnaire
	Analysis
	Final result

	In-class MOOC approach trial: Pythacon event
	Introduction
	Planning
	Participants description

	Execution
	First phase description
	Second phase description

	Analysis and results
	NASA Task Load Index
	First and second phase

	Conclusion
	Conclusions
	Validity threats
	Internal threats
	Construct validity
	External threats

	Future work

	Bibliography
	Appendices
	Selecting a MOOC for Python

	Annexes
	NASA Task Load Index

