

 i

Illustration of Java execution errors for beginner programmers

Diogo Alexandre Rodrigues de Sousa

Master in Telecommunications and Computer Engineering

Supervisor:
Doctor André Leal Santos,
Assistant Professor,
Iscte - Instituto Universitário de Lisboa

Co-Supervisor:
Doctor Maria Cabral Diogo Pinto Albuquerque,
Assistant Professor,
Iscte - Instituto Universitário de Lisboa

October, 2020

 ii

 iii

Acknowledgments

This thesis represents one of the greatest achievements in my academic life, which could not be

accomplished alone. Through the writing of this dissertation, I received a lot of assistance and support.

I would like to start by thanking my supervisors, André L. Santos and Maria Pinto Albuquerque.

Their constant guidance and willingness to help whenever necessary has helped me overcome many

difficulties. Without them, the thesis in its present form would not be possible.

Next, I would like to thank my colleague Ricardo Castro for accompanying me during the course

of this work.

Last but not least, I would like to thank my family and my friends for the motivation they provided

and encouraging me to never give up pursuing my goal of completing this work.

 iv

 v

Resumo

A programação é um assunto aprendido por estudantes de todo o mundo. Muito estudantes

encontram programação pela primeira vez em aulas introdutórias e enfrentam muitos conceitos novos

que nunca tinham visto antes. Uma das principais dificuldades que encontram são os erros de

execução. As aulas introdutórias de programação com a linguagem Java não abordam os erros de

execução de uma forma clara e fácil para os estudantes compreenderem o que são e como os evitar.

A stack trace do Java não é fácil de decifrar sem conhecimento e experiência prévios sobre os vários

tipos de exceções e não é fácil de descobrir onde os erros se localizam. Existem diversas ferramentas

de programação pedagógicas que fornecem melhores explicações que a stack trace do Java,

aproveitando os papéis das variáveis e utilizando ilustrações, mas ignorando exceções no processo.

A abordagem para esta dissertação foi desenvolver uma ferramenta de programação pedagógica

que se focasse em erros de execução. Utilizando texto e ilustrações, a ferramenta ajuda os estudantes

dando-lhes melhores explicações sobre as exceções e facilitando o processo de descobrir que parte do

código desencadeou o erro de execução. Os papéis das variáveis foram também implementados na

ferramenta, para ajudar os estudantes ao dividir variáveis em diferentes casos de utilização de forma

a explicar melhor como encaixam no código. Para determinar se a ferramenta é eficaz foi realizado um

estudo que envolveu vários estudantes, no qual estes realizaram alguns exercícios para determinar se

a ferramenta é eficaz na assistência a erros de execução.

Palavras-chave: papéis das variáveis, erros de execução, ferramentas de programação

pedagógicas, visualização de programas

 vi

 vii

Abstract

Programming is a subject that is learned by students all around the world. Many students

encounter programming for the first time in introductory classes and face many new concepts they

have never seen before. One of the main difficulties they encounter concerns understanding execution

errors. Introductory classes do not address execution errors in a clear way that makes it easier for

students to comprehend what they mean and how to avoid them. The Java stack trace is not easy to

decipher without previous knowledge and experience on what each type of exception means and not

specific enough for a beginner to pinpoint where the problem occurs. Several pedagogical

programming tools exist that provide better explanations than the stack trace alone, taking leverage

of variable roles and illustrations but neglecting exceptions in the process.

The approach of this thesis was to develop a pedagogical tool that focused in providing

explanations of execution errors. Using text and illustrations, the tool helps students by giving them

better explanations of exceptions and facilitating the process of discovering what part of the code

triggered the execution error. Roles of variables are also implemented, helping students by dividing

variables into different use cases to better explain how they fit into the code. To determine whether

the tool is effective, a study was carried out involving students in which they carried out some exercises

to determine whether the tool is effective in assisting with execution errors.

Keywords: variable roles, execution errors, pedagogical programming tools, program visualization

 viii

 ix

Contents

Acknowledgments .. iii

Resumo ..v

Abstract ... vii

List of Figures ... xi

List of Tables ...xiii

1. Introduction ... 1

1.1. Motivation ... 1

1.2. Research questions.. 1

1.3. Objectives .. 2

1.4. Research Method .. 2

2. Related Work ... 5

2.1. Minimal guidance versus guided instruction in learning .. 5

2.2. Roles of Variables .. 6

2.3. Pedagogical programming tools .. 7

2.3.1. PlanAni ... 8

2.3.2. BlueJ... 9

2.3.3. PandionJ .. 11

3. Enhancing explanation of Java execution errors ... 15

3.1. Illustrating Java Execution Errors .. 15

3.2. Roles of Variables .. 16

3.2.1. Fixed value ... 16

3.2.2. Stepper .. 17

3.2.3. Array Index Iterator ... 19

3.3. Graphical Interface .. 20

3.4. Architecture ... 26

3.4.1. Static Analysis .. 27

3.4.2. Dynamic Analysis ... 28

 x

3.4.3. Explanation and Illustration .. 29

4. User Study ... 33

4.1. Method .. 33

4.2. Results and analysis ... 35

4.3. Threats to validity .. 40

5. Conclusions and Future Work ... 41

References .. 43

Appendix A. Methods created for the experiment .. 45

Appendix B. Experiment questions .. 49

 xi

List of Figures

Figure 1.1 - DSRM Process Model (Figure 1 from [2]) .. 2

Figure 2.1 - Image of the Eclipse Debugger when an ArrayIndexOutOfBoundsException occurs... 8

Figure 2.2 - ... 8

Figure 2.3 - PlanAni animating the first four numbers of Fibonacci's Sequence with Java 9

Figure 2.4 - BlueJ's debugger displaying the same example used in Figure 2.1 11

Figure 2.5 - BlueJ displaying the same Exception as shown in Figure 2.2 11

Figure 2.6 - PandionJ displaying the same example used in Figure 2.1 ... 12

Figure 2.7 - PandionJ when the exception displayed in Figure 2.2 happens 13

Figure 3.1 - Early Draft of an array illustration ... 16

Figure 3.2 - Fixed Value Verification Diagram .. 17

Figure 3.3 - Stepper Verification Diagram .. 19

Figure 3.4 - Array Index Iterator Verification Diagram .. 20

Figure 3.5 - Prototype's graphical interface ... 21

Figure 3.6 - Prototype's graphical interface after executing code ... 22

Figure 3.7 - Explanation and Illustration Area from Figure 3.6 .. 23

Figure 3.8 - Array Illustration Example from Figure 3.7 ... 24

Figure 3.9 - Shortened Array Example ... 25

Figure 3.10 - .. 25

Figure 3.11 - Matrix illustration example with different row sizes and horizontal array error 26

Figure 3.12 - Code analysis process diagram ... 27

Figure 4.1 - Interface when showing regular Java stack trace ... 35

Figure A.1 - First Method - Return sum of all numbers in array .. 45

Figure A.2 - Second method - Return an array with all the natural numbers up to n 45

Figure A.3 - Third method - Return index of the last occurrence of an integer in an array........... 46

Figure A.4 - Fourth Method - Invert array .. 46

Figure A.5 - Fifth Method - Scale a matrix by multiplying each number by n 47

Figure A.6 - Sixth Method - Return a transposed matrix by swapping lines with columns and vice

versa .. 47

Figure B.1 - First two questions of method one ... 49

Figure B.2 - Multiple-choice question for the first method ... 49

Figure B.3 - Options for the multiple-choice question of the first method (Answers: 1, 3) 50

Figure B.4 Last question of the first method (Answers: 1) .. 50

 xii

Figure B.5 - Multiple-choice question for the second method .. 51

Figure B.6 - Options for the multiple-choice question of the second method (Answers: 2) 52

Figure B.7 - Last question of the second method (Answers: 3) ... 52

Figure B.8 - Multiple-choice question for the third method .. 53

Figure B.9 - Options for the multiple-choice question of the third method (Answers: 1, 4) 54

Figure B.10 - Last question of the third method (Answers: 2, 3) ... 54

Figure B.11 - Multiple-choice question for the fourth method ... 55

Figure B.12 - Options for the multiple-choice question of the fourth method (Answers: 2) 56

Figure B.13 - Last question of the fourth method (Answers: 1, 3, 4) ... 56

Figure B.14 - Multiple-choice question for the fifth method ... 57

Figure B.15 - Options for the multiple-choice question of the fifth method (Answers: 3) 58

Figure B.16 - Last question of the fifth method (Answers: 2) .. 58

Figure B.17 - Multiple-choice question for the sixth method .. 59

Figure B.18 - Options for the multiple-choice question of the sixth method (Answers: None) 60

Figure B.19 - Last question of the sixth method (Answers: 1, 3, 4) ... 60

 xiii

List of Tables

Table 2.1 - Roles of variables (Table 1 from [1]) ... 6

Table 4.1 - Results for the open questions .. 36

Table 4.2 - Results for code multiple-choice question ... 37

Table 4.3 - Results for the general content multiple-choice question ... 38

Table 4.4 - Average time necessary to answer questions (minutes:seconds) 39

 xiv

 1

1. Introduction

1.1. Motivation

Programming is a difficult task for many students [1]. Learning how to program for the first time

can be very hard and frustrating if the proper follow up is not provided. Many students, especially

beginners, face problems in their learning process that prevent them from advancing into more

complicated tasks.

Execution errors are a case where students can find it difficult to isolate and, more importantly,

understand what the problem is, call stack trace provides basic

information of where the problem happened but does so in a convoluted way that is not beginner-

friendly and can lead to frustration. A lot of times, the student requires help from a third party, like a

teacher or one of his colleagues, in order to overcome such errors and understand why they happen.

One problem of requiring help is if the help the student gets does not explain him in a good way what

the problem is, it may leave him without full knowledge of the situation and fail to fix it in the future.

Regular IDEs1 are tailored for professionals, providing maximum efficiency and speed and making

a trade off with ease of use. They only provide the default exception message when an exception

occurs, and when more advanced information is required a debugger is used, which again is not easy

to use and for a beginner. Pedagogical tools exist to aid students at the start of their journey and help

tackle different aspects of learning. The problem with these tools is that they do not focus on execution

errors, offering only the normal default exception message that may be insufficient for a beginner to

decipher. Developing a tool that can fit the role of helping novices learn about execution errors could

bring good benefits to the table, by increasing their knowledge of the language and develop their

execution error solving skills.

1.2. Research questions

Execution errors will be the focus of this thesis. As such, the research questions are targeted at

the explanation of Java execution errors and the interaction between students and the pedagogical

environment itself. Taking this into account, the research questions are as follows:

1 IDE - Integrated Development Environment

 2

R1: How to improve the explanation of Java execution errors in pedagogical environments?

 R2: Can student comprehension of Java execution errors improve when using an enhanced

pedagogical environment?

1.3. Objectives

The aim of this work is to develop a representation and explanations that will help students

understand execution errors and improve their knowledge in the Java language. A tool was developed

with the focus of achieving this goal. The main objectives of this work are as follows:

 Develop a pedagogical tool that provides more elaborate execution error explanation, when

compared to the conventional Java stack trace.

 Investigate how the provided error explanations help students during their learning process.

1.4. Research Method

The research method of this work is design science research [2]. The use of this method will

provide a systematic way of producing a working system, using the steps shown in Figure 1.1.

Figure 1.1 - DSRM Process Model (Figure 1 from [2])

The first phase of this research method is the identification of the problem and definition of

objectives. In this phase, aspects like previous work done for the studied subject and possible

 3

implementations as well as technologies and methods that may be required to implement and achieve

 are defined.

After the definition of objectives, the second phase involves designing and developing a prototype.

This includes tasks like choosing algorithms to use, designing the core system architecture and laying

out a graphical interface.

Afterwards, the third phase of the research method involves the implementation of the prototype.

In this phase the previously designed components are merged and implemented in order to make a

functioning prototype of the system.

The fourth phase is to test the operation of the previously implemented design. This phase

involves comparing the current state of the work and observe if it solves the problems of the first

phase. If any problem is found, then the necessary modifications are done in order to obtain a finished

prototype.

The fifth and final phase is the evaluation phase, in which the final prototype is tested and

evaluated for any possible problems that it may have.

Finally, the sixth phase, known as the communication phase, in which the work is published in

scholarly publications or similar.

The provided method gives a systematic way of producing a working prototype for a system. All

the objectives should be achieved in order to produce a valid prototype. If after the Evaluation a

problem is identified, the second, third and fourth phases are repeated until no problem can be found

and all objectives are fulfilled.

 4

 5

2. Related Work

2.1. Minimal guidance versus guided instruction in learning

The learning process of humans is very memory dependent. Our long-term memory is what

enables us to be skilled in a certain area and be able to do it often unconsciously [3]. The more

information is stored in the long-term memory related to a certain subject the more competent a

person is in that subject, which means altering long-term memory is the objective of all learning

processes.

Before being able to store information in the long-term memory, all information must go through

the short-term memory, also known as working memory [3]. All processing is done in this location,

which means even knowledge stored in long-term memory must go to working memory in order to be

used. Short-term memory is rather limited when dealing with new information, but these limitations

do not apply to information acquired previously and stored in long-term memory [3]. According to

Miller [4], working memory is limited to a very small number of elements, seven plus or minus two.

Peterson and Peterson [5] wrote that knowledge stored in working memory and not trained can be

forgotten in just 30 seconds. Moreover, if instead of only storing information, as assumed in the

previous works, the information is being processed, it is possible to assume that the number of items

may be much less, two or three [3].

Traditional methods of learning often use minimal guidance as a basis for student development,

attempting to stimulate development by telling the student to research and complete the task alone

or at least with minimal help. In contrast, guided instruction provides the student with examples on

how to complete the task at hand and providing help if needed for the student to improve its

knowledge [3]. Minimal guidance tries to develop the student ignoring that working memory is limited

when dealing with new information. The processing required when trying to learn new knowledge

rking memory cannot

cope with all the information [6].

Developing a tool with the guided instruction explained above could help students identify

problems with the code they are trying to build in a more successful way. In the context of this work,

the focus would be in execution errors and helping demonstrate when they happen and how to fix

them. Novices could take leverage of this situation by receiving a visual aid when trying to debug

problems in order to better stimulate their working memory and provide a solid base for long-term

memory to better assimilate the information.

 6

2.2. Roles of Variables

Variables are one of the most fundamental concepts in programming. They are used to store data

values. Students struggle with understanding how the various entities that form a program can be used

and connected together to form useful and working code [1]. Replacing traditional learning techniques

work in certain contexts. Only ten roles are required to cover 99% of variables used in beginner level

programs, displayed in Table 2.1 [7]. The introduction of roles in learning courses provides students

with a deeper understanding of the data flow and function of a program, enabling them to process

information similarly to good programmers [1]. As such, the use of roles shows positives outcomes

when introduced in beginner courses [1].

Table 2.1 - Roles of variables (Table 1 from [1])

Role Informal description

Fixed Value A variable initialized without any calculation and not changed

thereafter.

Stepper A variable stepping through a systematic, predictable succession

of values.

Follower A variable that gets its new value always from the old value of

some other variable.

Most-recent holder A variable holding the latest value encountered in going through a

succession of values, or simply the latest value obtained as input.

Most-wanted holder A variable holding the best or otherwise most appropriate value

encountered so far.

Gatherer A variable accumulating the effect of individual values.

Transformation A variable that always gets its new value with the same calculation

from values of other variables.

One-way flag A two-valued variable that cannot get its initial value once its value

has been changed.

Temporary A variable holding some value for a very short time only

Organizer An array used for rearranging its elements.

M. Kuittinen and J. Sajaniemi conducted an experiment to test the effects of the introduction of

roles in introductory programming course [8]. In order to do a proper evaluation, students were

 7

divided into three different groups: the first one was instructed in a traditional way which did not

involve any kind of role learning; the second group utilized roles in the learning process; the last group

used roles together with an animator based on them when working in exercises. The animator used

was PlanAni, which is explained further in Section 2.3.1. According to Pennington [9], two types of

knowledge exist, surface knowledge and deep knowledge. Surface knowledge represents knowledge

that is available by simply

how data is handled. After completion of the experiment, the results observed showed that while the

animation group had more trouble dealing with surface knowledge, the opposite happened when

dealing with deep knowledge. Moreover, the animation group showed better comprehension of deep

program structures compared to the roles only group. This phenomenon occurs because roles provide

a meaning to each variable of a program, thus helping students understanding how the code works in

a deeper level and increasing the accessibility of deep program knowledge. Additionally, the animation

group received further benefit from the use of a program animator, which provided a visual aid in

understanding how roles behave when using them in exercises.

Introducing variable roles as been proven successful, as explained above, in helping students build

better knowledge and comprehension of coding and its internal structure. In order to maximize

effectiveness of the learning process, the tool that is going to be developed for the purpose of this

work can be further improved using this information. Combining what was wrote in the previous point

with the data explained here, it is possible to enhance the tool in such a way that merging these two

points can benefit the effectiveness and usefulness of such tool and help students maximize their

learning potential. In addition to what a visual aid can offer, variable roles can be introduced in such a

way that trying to understand what is being explained by the visual aid is easier and much more

intuitive.

2.3. Pedagogical programming tools

When starting to learn how to program, novices have a hard time trying not only to learn the

language, but also to acquire a good workflow with the Integrated Development Environment (IDE)

they are going to use. The most common IDEs for Java are Eclipse, NetBeans and IntelliJ. Although

these tools offer a very good value for an experienced Java developer, they can be overwhelming for

a newcomer to learn how to use. When Exceptions start occurring, a developer receives feedback of

 Trace, which contains the location of where the problem occurred

and what Exception has been thrown. For a beginner, the information that is given by the Java stack

 8

trace is convoluted and does not offer short and precise information about what happened and how

or even what to fix. Another way of discovering problems with code is through a debugger. Debuggers

are essential tools for understanding and fixing problems that exist in the code a developer has written.

Each of the IDEs specified offer a debugger that is hard for a novice to use when trying to fix problems

with the code he wrote.

Figure 2.1 - Image of the Eclipse Debugger when an ArrayIndexOutOfBoundsException occurs

Figure 2.2 - Exception at the end of Figure 2.1

2.3.1. PlanAni

PlanAni is a software designed to aid novices in learning programming by using animations and

with a heavy focus in roles of variables [10]. It supports several languages, including Java. PlanAni is

not capable of animating programs made by users. Instead, all examples must be constructed manually

for each program, which involves making the animation commands individually. For each line in the

animated program, approximately five lines of animation are required [10].

Roles are represented with images in the animations, for example, a stepper is represented by

footprints with the current value in the centre, previous values in one side, next values on the other

side and an arrow representing the direction in which the values are going. Arrays are represented

 9

with an image of the role for each element of the array. The images that represent each of the roles

were designed taking into consideration the properties of each individual role in which the informal

descriptions are described in Table 2.1. In order to test how effective PlanAni is in helping students

learn how to construct proper programs, an experiment was made which was described in Section 2.2.

Figure 2.3 - PlanAni animating the first four numbers of Fibonacci's Sequence with Java

Roles of variables can be useful when trying to help debug execution errors. Showing the user

which role each variable is can aid in trying to demonstrate how to evaluate the state the program is

when the error occurs and help in discovering the culprit and fixing the problem. Using variables roles

is easier to explain and demonstrate then using a more traditional method if roles can be discovered

and displayed automatically by the tool.

2.3.2. BlueJ

BlueJ is an IDE designed to introduce beginners to the object-oriented nature of Java. It was

created in a time where it was believed that object-oriented programming was harder than procedural

 10

programming. The creators of BlueJ had the hypothesis that object-oriented programming was not

harder, but the fact that no tools were fit for the job of properly teaching programmers how to use

objects properly [11] [12]. The IDE has three major key points in its design: interaction, visualisation

and simplicity.

objects connect. When a novice sees the class structure displayed he can easily understand that a class

is not just some functions that do something, but objects connected together and cooperating with

each other [11]. In order to achieve this kind of visualisation, BlueJ adopted an UML (Unified Modelling

Language) class diagram that shows the hierarchy of objects in a clear way suited for beginners [12].

every detail of code in an independent and

instinctive way. Simply right clicking in a class allows the user to create an object via one of the

constructors or executing a method by itself. The result of said execution is sent to a result dialogue

and any resulting new objects can be stored in the object workbench. The workbench is used to store

objects that can later be used in methods [11]. This kind of interaction allowed for students to

experience with small-scale interactions and build a better comprehension of how objects work on the

inside [12].

Finally, BlueJ offers a simple experience for students by removing unneeded features present in

more advanced IDEs and focusing more in one specific task, helping novices learn object-oriented

programming [11]. This helped students by reducing the burden of their initial interaction with a

development environment and helping them focus in building better programming knowledge [12].

DE in the way they wanted. Teachers

took advantage of the simplicity that it offered but did not alter their methods in order to explore the

potential BlueJ offered for the student [12].

 11

Figure 2.4 - BlueJ's debugger displaying the same example used in Figure 2.1

Figure 2.5 - BlueJ displaying the same Exception as shown in Figure 2.2

BlueJ offers a much more intuitive experience for beginners to start programming. It allows for

experimentation and easier interaction with objects that already exist or are created by the student

itself. Even with these aids, BlueJ does not help the student dealing with execution errors. As shown in

Figure 2.4 and Figure 2.5, the debugger by itself may offer more information than for example the

standard eclipse debugger but does not offer an explanation to the student that allows him to better

understand what is happening and how can the error be avoided, which in turn requires the student

to seek outside help.

2.3.3. PandionJ

PandionJ is a pedagogical debugger designed for novices. It contains features present in normal

debuggers but provides further enhancements such as the inclusion of variable roles and displaying

 12

relationships between the variables [13]. It was created as an extension of Eclipse and takes advantage

from the prebuilt debugger engine Eclipse provides, while also using static analysis of code in order to

obtain information of variable roles and displaying a beginner friendly user interface.

The creation of PandionJ involved a previous study about how programming teachers illustrated

variables and control flow [14]. Several teachers were tasked with exercises, in which they had to

explain the execution of a certain method. They were free to draw them. After every teacher

completed the experiment, their explanations and drawings were examined and reviewed for patterns

and most used methods from the teachers. These patterns being used for several teachers meant that

they were likely effective at helping students improve their comprehension and develop better

problem solving skills [14]. The patterns discovered were closely related to variables roles [13].

PandionJ takes leverage of the previous illustrations and mimics them in its graphical interface to show

it to the student [13].

Figure 2.6 - PandionJ displaying the same example used in Figure 2.1

 13

Figure 2.7 - PandionJ when the exception displayed in Figure 2.2 happens

Despite the debugger displaying runtime execution in a much more informative and simpler way

for a student, it does not focus in execution errors. The object which had an error is highlighted, but

no further explanation is given. That lack of information means that the student may be stumped when

such error occurs and be unable to properly debug and understand what is happening. Such

information may come from a proper explanation of how a specific execution error occurs and

frequent reasons.

 14

 15

3. Enhancing explanation of Java execution errors

This chapter describes the work developed to achieve the first objective of this thesis. This was

fulfilled with the development of a prototype to provide the student with extra information upon

encountering an execution error during his early programming learning stages.

3.1. Illustrating Java Execution Errors

In order to improve a comprehension of execution errors, we must consider the human

working memory characteristics. As described in section 2.1, providing a person with better

explanations and illustrations of a certain topic can help her with achieving a greater understanding of

the topic. With that knowledge in mind, this work aimed to provide the student with a good amount

of information but without sacrificing simplicity, since a convoluted message could cause the student

to become confused or simply not understand what is being transmitted.

For the purpose of this work and answering the research questions, this prototype only supports

the ArrayIndexOutOfBoundsException, but the functionality could be extended to other exceptions.

This type of exception is one the most common in beginner programming, especially when starting to

learn these data structures, thus making it a good candidate for the purpose of this work.

stack trace provides only the essential information of what happened and where but does

not say why it happened, at least in an obvious way for a beginner, as seen in Figure 2.2. This means

that one of the points the developed prototype would have to improve on is the explanation of the

Exceptions. First, a textual explanation of what is happening. For example, an

ArrayIndexOutOfBoundsException can simply be explained as error that occurs when iterating

outside of , but simply providing this as an explanation is not enough to

contextualize the problem that originates an ArrayIndexOutOfBoundsException. Extra information

such as what is the size of the array, the variable that represents the array (useful in cases with multiple

arrays in the same line of code) and the variables that were used to access that same array could help

a novice better understand what is happening and where to fix the problem.

Building upon the textual description should be a graphical illustration of the error. A beginner

requires more information in order to understand a problem, in which a text may not be enough to

clarify his doubts or even to capture his attention to the problem. Providing context in a graphical way

boosts the readability of the information, by complementing the information already given by the text

description using a visual language that provides more possibilities of description than text.

 16

Furthermore, the illustration can even offer additional information over what is already given by the

text.

Figure 3.1 - Early Draft of an array illustration

One of the elements of the visual representation that had a special attention were arrays. These

data structures can be complicated for beginners to grasp and understand what happens inside them,

so a correct and clear illustration is critical for their understanding of how they work. Displaying the

array the user is interacting with in a graphical way can help understanding everything easier. It allows

for better tracking of what happened during execution and an easier way for the student to

independently discover what went wrong in its approach. Figure 3.1 features an early draft that tried

to fulfil all these points and transmit an efficient message to the end user.

3.2. Roles of Variables

One of the elements which could help beginners better learn how to use and interpret variables

are roles of variables. These were explained in 2.2 and in this section they will be complemented with

their interpretation and implementation in the prototype. From the list previously mentioned in Table

2.1, only two were implemented in the context of this work, which are the fixed value and the stepper,

with an extra one being the array index iterator, which is a sub-role derived from the stepper.

Moreover, the roles only focus on the detection of primitive values and arrays of primitive values,

which means that objects are not supported and will not be a part of how the roles work and behave,

since a student learning Java starts with these basic data types and only advances into objects further

down the line.

3.2.1. Fixed value

A fixed value is characterized as a variable that does not change its value after being assigned. In

the context of a method, the variable can either be received as a parameter, and therefore already

have a value, or it can be created and assigned inside of the method. If the variable is a parameter, it

 17

is considered a fixed value if its value is never changed during the execution of the code. On contrary,

if the variable is not a parameter and is created inside of the method body, it is considered a fixed

value if after the first assignment its value is never changed. This includes variables in which their first

value is given by another variable or an expression with several variables and not altered further down

the line during execution of the code. In the case of arrays, the previous applies with a few extra

differences. An array is considered a fixed value until it is created again, exactly like normal variables

described above. Adding to this is the possibility of switching a value inside one of the array positions.

To deal with that, the fixed value can have a modified attribute, specific to arrays, which indicates if

one of their internal values has been changed. This means that an array can be a fixed value that has

been modified, to distinguish them from a fixed value array that is not modified internally. Figure 3.2

demonstrates the entire process through a diagram, for easier comprehension.

Figure 3.2 - Fixed Value Verification Diagram

3.2.2. Stepper

The stepper is another of the existing roles of variables described in Section 2.2. Compared to fixed

value, this stepper implementation requires more checks in order to verify if a variable is indeed a

stepper or not. A stepper is a variable in which its value goes through a predictable succession of

 18

values. The first requirement is that the expression that gives the variable its values must be a binary

expression. A binary expression is an expression which contains two operands separated by an

operator (for example, i + 1).

value to be the previous value added with another value. In order to maintain the predictability, the

other operand must be a literal, also known as a constant, so each incrementation is of the same size.

Another requirement is the binary expression must be either an addition or a subtraction. Typically,

these two operators are the most used for a stepper, and in order to simplify both the analysis and the

comprehension of the role, only these two are allowed for the stepper role. When the operator is a

subtraction, there is one extra verification that must be done, which is that the variable must be on

the left side of the binary expression and the literal on the right side. If the literal is on the left side,

there is no continuation of the previous value, which is a requirement listed above, due to subtraction,

contrary to addition, not having the associative property. This property determines that when present

the order of the elements of an expression does not matter, and the result will always be the same.

Addition does not have any extra specific requirements in its validation and order is not important.

The stepper also has an attribute that indicates which direction it is going, positive or negative. For

example, if it is a sum of two positive numbers, the direction is positive, because the sum of two

positive numbers is always a larger number. As another example, if it is a subtraction of two positive

numbers, then the direction is negative. This entire process is shown in Figure 3.3.

 19

Figure 3.3 - Stepper Verification Diagram

3.2.3. Array Index Iterator

The array index iterator is a special case of a stepper, hence why it is not included in Table 2.1.

This role applies to when a stepper is used to access a position of an array. Before starting to check if

the variable is an array index iterator, it is required to validate if it is a stepper. After this, the only

verification required is to check if the variable was used to access an array. The array index iterator

can also store which arrays it accessed for later consultation.

 20

Figure 3.4 - Array Index Iterator Verification Diagram

Figure 3.4 details the rather simple process to determine whether a variable is an array index

iterator after confirmation it is a stepper. A variable being a stepper is completely independent of it

being an array index iterator, which means it can be a stepper and not be an array index iterator, but

the other way around is not possible.

3.3. Graphical Interface

The prototype was designed with the main objective of being simple but informative. In order to

fulfil this objective, the design of the interface would also have to follow the same principles. The user

interface was written in Portuguese, which means th figures

will contain text written in the latter. The final product was built to accommodate

these requirements, culminating in what can be observed in Figure 3.5 and Figure 3.6.

 21

Figure 3.5 - Prototype's graphical interface

 22

Figure 3.6 - Prototype's graphical interface after executing code

The The left portion is the code area, where

the code is located and displayed, as would be in a normal IDE. It supports some features such as a

simple syntax highlighting and line numbers but also includes some details specific to this work. The

right portion is where most of the major focus of the prototype is done. This last area is the focus of

this work and is the visual representation of what was described as intended in the prototype in section

3.1.

Figure 3.6 contains a full demonstration of everything the prototype offers the end user. In the

code area, extra annotations pop up and provide information of what the state of each variable is

when execution of the program stops due to the execution error. First is the red square, which shows

the expression that causes the error and to the right of it an annotation that says what was the problem

 23

d vector position when i equals 5. In this example

the vector was accessed using a single variable, but the red square highlight supports multiple variables

in case the access is done via an operation like a sum of variables, for example. In addition to the

already mentioned annotations, each of the variables created inside the method are also annotated in

the left with the value they had when the code threw an exception, as seen in line 5 applied to integer

i, and the same applies to each which shows the value of

the integer n.

Figure 3.7 - Explanation and Illustration Area from Figure 3.6

Moving on to the Explanation and Illustration area of the prototype, it can be divided into two

main sections, one is the code contextualization and the other is the code explanation. The first section

contains information about what the displayed code is supposed to do and return upon success. This

is shown as soon as the code is loaded and appears before the code is executed. As seen in Figure 3.7,

this is displayed in the top part of the explanation and illustration area and is consisted by 3 pieces of

information, labelled one to three. The first one is a description of the objective of the method

displayed in the code area, in this case returning the sum of all integers inside an array. The second

part is an example of a possible argument that can be passed to the function, which in this example is

the value 5. The third and final part is the expected return value of the method when the argument in

the second part is given and if the code did not produce an exception, in this case an array of size 5

 24

. These pieces of information provide the context for the student to

understand what the pre-existent exercises try to achieve.

The second section is where the prototype provides more information to the user related to the

objective of the work. As written previously, the code area gives some insight about the state of the

variables when the code throws an exception, and this new area delivers the rest of the information

related to the execution of the code. For starters, the button located on top serves the purpose of

running the code and seeing what is returned. Upon running the code, if an exception is encountered,

all

means that the code annotations, the code textual explanation and the array illustration are all

created at this moment. Below this button is the code textual explanation, which gives the user a

textual explanation of the problem encountered in the code. This part aims to provide the student with

a global description of exactly what happened. Information such as array size and valid positions (to

remind the user that an array of size 5, for example, has numbers one to four as valid indexes), invalid

index that the code tried to access, description of the illegal action, variables that contributed to the

invalid access and if possible their respective variable.

Figure 3.8 - Array Illustration Example from Figure 3.7

The final part of this section is the illustration of the affected array or matrix. This area displays

the array in a graphical and informative way and helps the user develop a mental image of how an

array is structured, which will help in the long run in the development of beginner knowledge. Figure

3.8 shows in a better highlight the illustration of a known as a unidimensional

array. The darker grey rectangle represents the array the

elements of the array, represented by the small white rectangles. Inside each of these smaller

rectangles is the value contained in that position of the array, while the smaller number below the

rectangle represents the value of the index. Each of these rectangles can have a green outline, which

indicates that during the execution of the code at some point that position of the array was accessed,

either for reading or for writing data. Not having the green outline means that the position was never

accessed during the execution of the code. Moving on to outside of the array, the red rectangle

represented in Figure 3.8 on the right represents the index that was invalid. Since the array is in order,

if this rectangle is in the right of the array, it means that invalid index is bigger than the biggest valid

 25

index, and if the rectangle is in the left, it means , since only negative numbers

are lower than the lowest array index, 0. The number below the red rectangle is the invalid position

that the code tried to access. Above the array is a representation of its size, outside of the parenthesis,

and inside of them is the expression that calculates array size. This expression can only be obtained

if the array is created inside of the analysed method, because information related to that expression

cannot be obtained from inside of the method if the array is received as a parameter.

Figure 3.9 - Shortened Array Example

This illustration has a limited amount of horizontal space. If an array is big enough, trying to draw

it on screen would cause the illustration to go out of bounds and become unreadable. To circumvent

this problem, the array is shortened to a maximum of eight values displayed at a given time. If an array

has a length of eight or less, all values can be displayed normally, as already demonstrated in Figure

3.7 and Figure 3.8. When the length is bigger than eight, the first five and the last two elements are

shown and all intermediate values are omitted, as shown in Figure 3.9. This allows for a reasonable

amount of information about the array contents while keeping the illustration size manageable and

readable.

Figure 3.10 -

 26

Figure 3.11 - Matrix illustration example with different row sizes and horizontal array error

When the method involves a matrix, the previous illustration does not fit well with what is

required to represent it. Since a matrix is a two-dimensional array, the logic used for one-dimensional

arrays can be used with a couple of upgrades. One of the points this illustration tries to convey to the

itself another array. As seen in Figure 3.10, this is achieved by drawing an array on the left side in a

vertical position, where instead of each of its elements being a value, they have an arrow which points

to another array where that one is the one that contains the values. Invalid positions can appear either

on the vertical array or in the horizontal arrays and different sized horizontal arrays are supported, as

shown in Figure 3.11, just like in regular java where rows may not all be the same size. The rest of the

array symbols apply apart from horizontal arrays not having the array size written, as such would

occupy too much space and cause a lot of visual clutter. Like regular arrays, matrices can also be

shortened if they are too big to fully illustrate in the available space. Both vertical and horizontal arrays

behave similarly to Figure 3.9, with the same constraint in maximum displayed array elements.

3.4. Architecture

This section will feature an overview of the process and artefacts that are used to provide the

described tool features of the prototype and its inner workings and elaborate about details related to

the logic behind the implementation of all the features included in the prototype and how they work.

The tool addresses exceptions, which only happen during runtime. Simply performing a static

analysis of the code does not allow to obtain information about exceptions since these are not

apparent and cannot be obtained via this method. On the contrary, variable roles use a static code

 27

analysis, and are not obtained in the same way as the exceptions. This means that the prototype will

have to feature both types of analysis in order to determine every piece of information necessary for

generating both the textual explanation and the illustration.

Figure 3.12 - Code analysis process diagram

3.4.1. Static Analysis

The first step in analysing a snippet of code is performing a static analysis. This is the shortest part

of the whole process and its purpose is to obtain the roles of each variable. It starts by sweeping the

code to obtain all existing variables. After that, each discovered variable is analysed against each of

the existing roles, each one with its own distinct process, to determine which one fits the use case. The

roles and each of their requirements are explained in section 3.2. They are tested in a specific order,

 28

starting with fixed value, then stepper and finally array index iterator. The fixed value is tested first

since it is simpler than a stepper to test. If the variable is a stepper, it must also be tested for an array

index iterator. If the latter is also confirmed, the variable is an array index iterator, if not, the variable

is a stepper. It is possible for a variable to not fit the requirements of any variable role, especially since

only three roles are being used in this prototype.

3.4.2. Dynamic Analysis

Running a piece of code in the prototype is a multistage process from the beginning to the drawing

of each illustration. Pressing the code executing button in the interface starts the process and despite

the prototype containing the code examples prewritten, the process is entirely dynamic and can be

used with any piece of code within certain limitations, such as no support for objects, which means all

variables must be primitive data types. This analysis is possible thanks to an execution engine[15] that

can execute provided code and allow access to the stack trace and execution state. The engine also

offers support for listeners to be registered and listen for specific events that happen during runtime.

The runtime engine starts the execution of code in a chosen method, that will act as the main

method for execution, but can have any kind of return type and any name. When the execution starts,

the first thing that is done for their initial values and store them

appropriately. After that, a listener is created to listen to what happens during execution of the

method code. This listener is triggered for every statement of the code and the variables contained

in it and their respective values are stored for future use in evaluating what happened during

execution. A variable can be accessed multiple times and its value can change throughout the

execution of the code. Because of this fact, the prototype stores the history of all values assigned to

each variable in order, so that it maintains the complete information about variables history.

For each existing variable, three pieces of information are stored for further use: variable type,

history of all values and a reference to the variable. The variable type can be two different possibilities,

either the variable is a parameter or a local variable. The variable history explained before benefits

from the added simplicity of only dealing with primitive data types, which are easily stored in a list that

sorts by order of insertion. The last part is the reference to the original variable, which is useful

internally and since this is all done inside of the same runtime environment, it is possible to access

even after the code stops executing. This information applies to all variables that can be encountered,

but arrays are a special case which require extra attention.

Arrays are more complex than a normal variable and extra information is required, which means

that extra data must be stored for analysis further down the line. An important note regarding arrays

 29

in this prototype as well as Java in general is that a matrix is an array of arrays (i.e., an array in which

each position holds a reference to another array). This means that the information for unidimensional

arrays is enough for arrays with any dimension, making this approach viable for both normal arrays

and matrices, which are both considered in the execution process. Therefore, regarding the collection

of variable information, any further explanation will work for both arrays and matrices unless explicitly

stated otherwise. For arrays, apart from the information collected for all variables, three extra pieces

of data are obtained. For starters, the number of dimensions, since this is required to distinguish an

array from a matrix, which is essential. The second is the history of all array accesses, which can be

stored in a list with the indexes of each access as values. The final piece of information is the length

expressions that created the array. These are the expressions that were provided for each dimension

when creating an array, not the size itself, and are optional because when an array is received as a

parameter this is not possible to obtain.

The execution of the code and collection of data continues until one of two things happen: either

the code finishes, and an end value is returned, or an execution error is detected and execution halts.

Since the normal functioning of the code does not belong to the scope of the project, when such event

happens the only thing returned is the correct value of . On the other hand, an

exception occurring triggers the continuation of the process, which will be then move on to the next

part of the process.

3.4.3. Explanation and Illustration

To start the next part of the process, the first objective is checking which type of exception has

occurred. The runtime engine can detect what type of exception was thrown by the code, which then

allows the prototype to act according to the requirements of the exception. As already explained in

Section 3.1, only ArrayIndexOutOfBoundsExceptions are being analysed in this thesis, which means

despite other types of exceptions being possible, only this type is supported by the prototype. In

Section 3.3, it is shown what the textual explanation and the illustration look like and what information

they contain for the user. These are constructed in this part of the process, with the information

gathered before.

After the exception is discovered, all the gathered information starts being processed in order to

produce a text. One dimensional arrays and matrices have some text differences due to the number

of dimensions involved, which means they require different text templates. Variable name and invalid

access value are obtained the same way for both, with the only change being the invalid value changing

the format in which it is written, because of multiple dimensions, but it is stored and accessed in the

 30

same way despite that. The variable name is obtained from the reference of the array where the invalid

access occurred. The invalid access value is stored in the history of access values specific to the affected

array, more specifically the last access that occurred. The array size is done differently depending on

the case. For arrays, accessing the array and obtaining its length is enough to write about its size and

valid indexes (between zero and length minus one). In the case of a matrix, the text shows the size of

the dimension where the illegal access occurred, which means the dimension must be obtained and

written next to its size in the text, with the rest of it applying the format of a regular array. The last

part of the text is the name of the variable that triggered the illegal access, which is easy to obtain

thanks to the execution engine that allows easy access to variables that trigger exceptions.

After creating the text, the prototype generates the code annotations. These annotations are

created directly in the code and provide quick and easy access to information about the variables they

are next to. The most important annotation created is the red rectangle that highlights the variable or

expression (if multiple variables are involved) that caused the illegal access and triggered the

exception. Like the text, the execution allows easy access to this variable, so highlighting it in the code

is just a case of searching for where it is used and drawing a rectangle around it. At the end of the line,

an annotation is added that contains a small indication of the type of error that occurred (i.e. for an

ArrayIndexOutOfBoundsException, , and is directly related to the

exception, and also the variable that did the illegal access and its value. Finally, for every variable

present, either a normal variable, array or matrix, the value assigned to it when the execution was

triggered is annotated next to the variable for easy reference.

The last step is creating the array illustration. This illustration is the most complicated part of the

last section of the process. For starters, the array contents are required to draw the values of each

position. An array is illustrated as a grey rectangle with white squares inside representing each

position, with the text inside them being the content of the position and below the square the index

of that position. The array illustration is adaptable in size, which means the longer the length, the larger

the horizontal size of the array. In order to be consistent, each position is the same size, which means

an array of length four is roughly double the size of an array of length two. The counterpart is that

space is not infinite, so a limit had to be imposed in order

That limit was defined as eight array positions. If an array is length eight or lower, the prototype simply

draws an array of that size with each position having its respective value. If the length is greater than

eight, the prototype draws an array of that length and copies from the full array the beginning five

values (index zero to four) and the last two (index array length minus two and index array length minus

one). This leaves the sixth position of the illustration free, so the prototype inserts a symbol to indicate

 After drawing the array itself, the top part where the array length and

 31

expression that provided the length value are created. The length expression is optional, as already

stated in section 3.4.2, so it is only drawn when possible.

When drawing matrices, the logic is slightly changed but most of the unidimensional array code

can be repurposed. Since the prototype was directed at Java beginners, the matrix illustration focuses

in certain core ideas of how they work. A matrix is an array where each position is another array, and

this illustration is designed to transmit this information. For this purpose, a vertical array is drawn,

similar to the previously explained arrays, but in which each position instead of containing a value,

they have an The vertical array

also has an array size representation and length expression which are related to the first dimension of

the matrix. The horizontal arrays do not have the size indication because it would occupy to much

space and the length expressions may not make sense because a matrix can have lines of different

lengths.

 32

 33

4. User Study

In this chapter, the procedures and results of the study are described. The experiment was

conducted to fulfil the second objective of this thesis and provide an answer to the second research

question. The purpose of this is to validate whether the developed pedagogical tool had a positive

effect on and how to avoid them.

4.1. Method

The prototype is a pedagogical tool focused for people that do not have knowledge about

execution errors, therefore hitting a wall when they face such problems. Following this idea, the

recruitment stage was planned to target an audience of students that were in a level where such

adversities occur. The first requirement for recruitment candidates is being a student at Iscte. Being

from the same university means that all possible candidates that are on courses with programming

subjects were all taught the same contents. The second criterion is the course the students are

attending. Arrays and matrices are learned in introduction to programming in Iscte, so the preferred

level of learning was students finishing introduction to programming or starting object-oriented

programming (second programming subject). These two requirements allowed for students who

understood how data structures such as arrays worked but may still have trouble dealing with

execution errors, knowledge that is further developed during the second course. Students were

contacted for recruitment via email. The lists of students that were attending introduction to

programming and object-oriented programming were used to contact potential candidates.

The experiment consisted in an interview with each participant in which they had to answer

questions related to six different methods. The six different methods are included in Appendix A. They

consist of faulty code that will face an execution error when ran. The code would then be executed

and return an execution error in one of two ways: either the normal stack trace, or with the

explanations and illustrations written in this work.

We carried out a within-subjects experiment, especially due to the low number of available

subjects. The six methods were divided into two different groups, one for odd numbered methods and

another for even numbered. The objective of separating these two groups is comparing the differences

between the two alternatives in similar coding cases. The candidates were also divided in two different

groups, half for each. For the first half, the odd numbered methods, when executed, would return a

normal stack trace and the even numbered methods would return the illustrations of

our prototype. The other half of the participants had the inverse sequence of error output.

 34

Each method related to

corrections. The first two questions were about locating the error in the code and trying to explain why

it happened. These were open questions to which participants answered orally. The next question was

a multiple-choice question where a section of the code that caused the execution error was highlighted

and each answer was a possible replacement for that area. The final question, also a multiple-choice

question, was not directly related to the method but was a more general question to evaluate the

knowledge of basic concepts related to arrays and matrices. Both multiple choice questions

could contain multiple correct answers or even no correct answers. All questions were repeated for

each of the methods and are included in Appendix B.

To better explain how the experiment unfolded, the procedure for one of the methods will be

described in this paragraph. This procedure is repeated for each of the methods, so by describing one

of them the logic applies to the rest. For starters, the interviewer shows the code to the volunteer and

gives a brief explanation, running the code in the process. The only change this step has is whether the

question shows the java stack trace (Figure 4.1) or the explanation and illustrations (e.g., Figure 3.6).

After giving a brief explanation, the interviewer waits for the participant to answer the open questions

and writes them down. After answering, the interviewer changes to the first multiple-choice question

and waits for the participant to say the correct options. Finally, the interviewer moves on to the last

multiple-choice question, and proceeds exactly as the first multiple-choice question.

 35

Figure 4.1 - Interface when showing regular Java stack trace

4.2. Results and analysis

The volunteers that we managed to recruit are students from the computer engineering and

telecommunications and computer engineering degrees offered at our institution, who have obtained

approval on the subjects of Object-Oriented Programming (second programming subject) or

Concurrent and Distributed Programming (third programming subject). Despite the best efforts for

reaching volunteers through email advertisements sent by the course professors, only a total of six

volunteers accepted to participate in the experience, resulting in a small sample to observe.

As written in section 4.1, the participants were separated into two groups, three volunteers for

each. Group A was the group that had odd numbered methods using the regular stack trace, whereas

group B had the opposite with even numbered methods using illustrations.

 36

Table 4.1 - Results for the open questions

 Group A Group B

Correct Wrong

No

answer Score Correct Wrong

No

answer Score

Method 1 3 0 0 3 3 0 0 3

Method 2 3 0 0 3 3 0 0 3

Method 3 3 0 0 3 3 0 0 3

Method 4 3 0 0 3 2 0 1 1

Method 5 3 0 0 3 3 0 0 3

Method 6 3 0 0 3 2 0 1 1

Table 4.1 displays the results for the open questions, where the volunteers must locate the error

and explain why it happens. The numbers in the correct, wrong and no answer columns refer to the

number of volunteers who had this classification in that method. The score column is a sum of the

results from the other columns, for easier observation of the overall performance of the volunteers.

Grey rectangles highlight the cases of the experimental group that used our tool. The criteria for

classification was as follows:

 Correct: the participant located the error in the code and explained why it happens

increases score by one

 Wrong: the participant located the error and explained but incorrectly decreases score

by one

 No answer: the participant did not manage to locate the error or explain why it happens

- decreases score by one

In Table 4.1, it is possible to observe that almost every question was answered successfully. Group A

had 100% correct answer rate and does not allow for any conclusion alone. In Group B however, in

two different methods, there was one volunteer that did not know how to answer the questions, with

both cases being a method which only used the regular Java stack trace and not the illustration tool.

This may point to the possibility that the tool offers better information for the user to be able to detect

execution errors, although the difference between answered and non-answered questions in the table

is insufficient to be sure.

 37

Table 4.2 - Results for code multiple-choice question

 Group A Group B

Correct

Partially

Correct Wrong Score Correct

Partially

Correct Wrong Score

Method 1 3 0 0 3 3 0 0 3

Method 2 3 0 0 3 3 0 0 3

Method 3 3 0 0 3 3 0 0 3

Method 4 3 0 0 3 2 0 1 1

Method 5 3 0 0 3 3 0 0 3

Method 6 0 0 3 -3 1 0 2 -1

Table 4.2 shows the results for the first multiple-choice question, in which the participants had to

choose possible code solutions. The columns for this table were slightly different, but still represent

the number of students that had that classification in each method, with the score table being the sum

of the results. The criteria is slightly different from before to better fit the evaluation of multiple-choice

question, and was made as follows:

 Correct: all answers are chosen, or if none is correct, the participant said so explicitly

increases score by one

 Partially correct: only some of the correct answers are selected, and no incorrect answers

are chosen adds zero to the score, or in other words, score is unchanged

 Wrong: At least one wrong answer is chosen, even if the rest are correct decreases score

by one

Group A was correct in all answers except in the last method, in which everyone failed, despite

being a method which contained the explanation and illustrations. Group B was similar except in

method four and six. In method four, which only had the stack trace, one person failed to correct the

code, but the rest succeeded. In method six, this time with the stack trace, only one person managed

to answer correctly, while the rest failed. The last question being almost universally wrong may have

a relation with the fact that it was the only method where this multiple-choice question had none of

the options as a correct answer, despite the volunteers being warned about this possibility. In method

four, group B which had the stack trace had one person incorrectly answer while the other group was

completely correct. In the rest of the questions, the opposite happens, that is, all answers were correct.

 38

Table 4.3 - Results for the general content multiple-choice question

 Group A Group B

Correct

Partially

Correct Wrong Score Correct

Partially

Correct Wrong Score

Method 1 2 0 1 1 2 0 1 1

Method 2 3 0 0 3 3 0 0 3

Method 3 2 1 0 2 3 0 0 3

Method 4 2 1 0 2 2 1 0 2

Method 5 1 0 2 -1 2 0 1 1

Method 6 2 1 0 2 1 1 1 0

Table 4.3 contains the results of the last multiple-choice question, in which the volunteers were

evaluated with questions not directly related to the method, but similar. In this question, as opposed

to the previous question, the results between the two groups differ, which hints that the tool might

have had a positive effect. Methods one, two and four had equal results across both groups, despite

not all of them being completely correct. In method three, group B had a better result, because A had

one person with only a partially correct answer. Since this method is an odd number, that means the

group with illustrations had a better performance than the other. Methods five and six had a similar

outcome, where for method five group B had a better result, with only one wrong answer versus the

two from group A and method six being the inverse and having group A with better answers than group

B. This means that whenever groups scores differ, the experimental group using our tool gets the

highest score. From analysing Table 4.2 and Table 4.3, some conclusions can be drawn. In the first

table, we can observe that the tool made no significant difference in the

fixing the code. Since most answers were correct, there is a strong possibility that the questions were

too easy for the level of learning the students have, which may be the reason for having no noticeable

differences. When analysing the second table, the same does not apply. In this, there is a noticeable

difference between the correct answer rate of both groups, which points to the possibility that the

tool can help with the of answering questions with similar topics. This may be

related to improving interpretation of future questions with the same topic when a better explanation

is provided. The low number of participants does not allow for statistical significance, but the results

encourage further experiments to confirm if there is such an effect.

 39

Table 4.4 - Average time necessary to answer questions (minutes:seconds)

 Group A Group B Fastest Group

Method 1

Open questions 0:52 0:46 B

Code multiple-choice 0:14 0:18 A

General multiple-choice 0:14 0:17 A

Method 2

Open questions 0:55 1:47 A

Code multiple-choice 0:21 0:35 A

General multiple-choice 0:28 0:43 A

Method 3

Open questions 0:59 1:39 A

Code multiple-choice 0:22 0:46 A

General multiple-choice 0:21 0:33 A

Method 4

Open questions 1:31 2:15 A

Code multiple-choice 0:49 1:21 A

General multiple-choice 0:47 0:34 B

Method 5

Open questions 1:37 0:56 B

Code multiple-choice 0:11 0:55 A

General multiple-choice 0:18 0:28 A

Method 6

Open questions 1:51 2:18 A

Code multiple-choice 0:55 1:12 A

General multiple-choice 0:24 1:05 A

Table 4.4 displays the average amount of time the participants took in each question. The average

is calculated with all 3 times in each group except in the open questions when a participant explicitly

says he does not know the answer, not including that time in the calculation. Since both open questions

are asked at the same time and the participant can answer both freely, they were grouped together

as the same time. The last column contains the letter that represents the best group for that question.

Group A can answer faster than group B almost every time, with few exceptions, which makes it not

viable to make any conclusions related to the impact the tool has in the speed in which the users can

answer.

One observation that happened during the experiment is related to students changing their

answers. Although not a common occurrence, three of the interviewees had one question each where

while they were answering verbally, they changed their mind and answered the question in a different

way, correcting the answer. When this phenomenon happened, the sequence of events was similar

for all students. They started by locating the error as the first step, following the order in which the

open questions appear. After, when trying to answer why it happened, there was a waiting time where

students were quiet or tried to answer but stopped mid-sentence and did not know how to proceed

 40

with the answer. After a while, they would suddenly realise their line of thought did not work and

changed their answer to something different, thus giving the correct answer. The most important part

of this phenomenon is that it only occurred when the method was shown with the regular stack trace

instead of the tool. This is particularly interesting because it may indicate that the tool helps students

reach their answer in a more direct way, avoiding incorrect lines of thought altogether.

The participants also gave some feedback regarding some aspects of the tool and how it could be

improved. One of the interviewees mentioned that the placement of the value of variables in the code

area (Figure 3.6) can be confusing because it appears above the line where the execution error

appears, conveying the idea that this value was the value in that location of the code and not the value

when the code threw the exception, despite the latter being the intention.

4.3. Threats to validity

In this section, some possible threats to the validity of this study are listed.

Low number of participants. The reduced number of participants may not allow for an accurate

representation of the potential average user of this tool. Some differences noted between the groups,

such as group A answering faster than group B in almost all questions is a symptom of this.

Interviewer interference. When interacting with the volunteers, the interviewer may

unintentionally interfere with the experience by explaining the exercises in a different way to some of

the participants when attempting to explain how the process works. This may have an influence how

the interviewees interpret the questions and react to them, changing the outcome of the answers.

 41

5. Conclusions and Future Work

In this work, the author created a pedagogical tool with the purpose of helping students achieve

a better comprehension of how execution errors work and how to avoid or correct them if required.

The work began with researching past tools and approaches to start off the tool. Guided instruction

was the idea behind the tool and the type of learning it tries to provide. Roles of variables are one of

the additions that were implemented to try and help students. Previously existing tools were analysed

and reviewed for inspiration, including PandionJ, already used in Iscte in Introduction to Programming.

The answer for the first research question exists in the tool itself. The tool provides explanations

and illustrations much more detailed than the conventional Java stack trace. Through the use of a

runtime engine, it is possible to listen to events that happen during code execution and access variable

values and states. Using this data, the tool provides information to the user of about the execution

error that occurred. The first piece of information given to the user is the text. The tool generates a

text which provides info about the type of error (which for this thesis is always an

ArrayIndexOutOfBoundsException), size of the array, variable that caused the illegal access, the illegal

index it tried to access and variable role. The second piece of information is code annotations. The

annotations appear in the code area and indicate the specific location where the error occurred and

the value of each existing variable. The third and final piece is the illustration. This is the most elaborate

part of the three and is a representation of the array which was illegally accessed. It includes the values

of all array positions, an indication of which ones were accessed, the representation of the illegally

accessed index, the size of the array and, if possible, the expression that gave the array its length when

it was created. These three things provide an answer to the first research question.

For the second research question, an experiment was conducted in order to determine the

effectiveness of the tool in student performance. For this purpose, an interview was conducted with a

questionnaire included in which students had to answer some questions related to this topic and the

results were than analysed to extract data about the impact the tool may have had. The low number

of volunteers for this study did not help with acquiring the required data, which would improve in

quality if a bigger number of participants appeared. Even so, we concluded that the tool may help

students finding errors easier and more directly, helping them in future situation like the ones the tool

intervened in previously. In the open questions, although almost everyone was able to answer

everything successfully, the only two exceptions that happened did so when only the Java stack trace

was available. This meant that having access to the tool may have benefited the interviewees when

trying to understand what caused the error. The first multiple-choice question did not allow for any

conclusions because, like the open questions, there was a lot of correct answers. The difference is that

 42

in this one the incorrect or partially correct answers were scattered through both the Java stack trace

and the tool assisted answers. The last multiple-choice question revealed a different story. In this one,

there was a bigger difference between the groups and methods, benefiting the tool much more than

the Java stack trace. This means that even if the tool may not benefit the students directly when giving

information in a method, it helps them create better knowledge for similar questions that may appear

in the future. When measuring the average time it took for the participants to answer the questions,

it was observed that one of the groups is faster than the other in almost all questions, with or without

observed that, while answering the open questions, there was a bigger tendency for the participant to

alter their answer while answering this question, while with the tool such did not occur. This indicates

that the tool helps students find and understand the errors in a more direct way, facilitating those with

difficulties in this topic.

For future work, the tool could be improved with adding new types of execution errors and

performing a better and more in-depth experiment. Different errors than the one already

implemented could prove to be even more beneficial in helping students with their difficulties dealing

with execution errors. Another important feature to add is the ability to write code directly inside the

tool or allow compatibility with already existing IDEs. This would allow students to understand the

code they themselves write and would the most important addition in order to allow this application

to be used in a subject such as Introduction to Programming.

 43

References

[1]
co SIGCSE Bull. (Association Comput. Mach. Spec. Interes. Gr. Comput. Sci. Educ., vol. 36,
no. 3, pp. 57 61, 2004.

[2]
Methodology for Information Systems Resea J. Manag. Inf. Syst., vol. 24, no. 3, pp. 45 77,
Dec. 2007.

[3]
Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and
Inquiry- Educ. Psychol., vol. 21, no. 41, pp. 75 86, 2006.

[4]
Psychol. Rev., vol. 63 2, pp. 81 97, 1956.

[5] -term retention of individual verba J. Exp.
Psychol., vol. 58, p. 193 198, 1959.

[6] Cogn. Sci., vol. 12, pp.
257 285, 1988.

[7] -level proc
Proc. IEEE 2002 Symp. Hum. Centric Comput. Lang. Environ., pp. 37 39, Jan. 2002.

[8]
Comput. Sci. Educ., vol. 15, no. 1, pp. 59 82, 2005.

[9]
Sheppard, and E. Soloway, Eds. Norwood, NJ, USA: Ablex Publishing Corp., 1987, pp. 100 113.

[10] Inf. Vis.,
vol. 3, no. 3, pp. 137 153, 2004.

[11]
Comput. Sci. Educ., vol. 13, no. 4, pp. 249 268, 2003.

[12] Reflections on the Teaching of
Programming, vol. 4821 LNCS, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 98 115.

[13] in Pedagogical Debuggers by Leveraging on Code
Proceedings of the 18th Koli Calling International Conference on Computing

Education Research - , 2018, pp. 1 9.
[14] amming instructors illustrate

Proceedings of the 17th Koli Calling Conference on Computing
Education Research - , 2017, pp. 173 177.

[15] - andre-santos- .com/andre-santos-
pt/paddle. [Accessed: 28-Oct-2020].

 44

 45

Appendix A. Methods created for the experiment

Figure A.1 - First Method - Return sum of all numbers in array

Figure A.2 - Second method - Return an array with all the natural numbers up to n

 46

Figure A.3 - Third method - Return index of the last occurrence of an integer in an array

Figure A.4 - Fourth Method - Invert array

 47

Figure A.5 - Fifth Method - Scale a matrix by multiplying each number by n

Figure A.6 - Sixth Method - Return a transposed matrix by swapping lines with columns and vice versa

 48

 49

Appendix B. Experiment questions

Figure B.1 - First two questions of method one

 The open questions are the same for every method, so Figure B.1 covers these questions for every

method and will not be repeated.

Figure B.2 - Multiple-choice question for the first method

 50

Figure B.3 - Options for the multiple-choice question of the first method (Answers: 1, 3)

Figure B.4 Last question of the first method (Answers: 1)

 51

Figure B.5 - Multiple-choice question for the second method

 52

Figure B.6 - Options for the multiple-choice question of the second method (Answers: 2)

Figure B.7 - Last question of the second method (Answers: 3)

 53

Figure B.8 - Multiple-choice question for the third method

 54

Figure B.9 - Options for the multiple-choice question of the third method (Answers: 1, 4)

Figure B.10 - Last question of the third method (Answers: 2, 3)

 55

Figure B.11 - Multiple-choice question for the fourth method

 56

Figure B.12 - Options for the multiple-choice question of the fourth method (Answers: 2)

Figure B.13 - Last question of the fourth method (Answers: 1, 3, 4)

 57

Figure B.14 - Multiple-choice question for the fifth method

 58

Figure B.15 - Options for the multiple-choice question of the fifth method (Answers: 3)

Figure B.16 - Last question of the fifth method (Answers: 2)

 59

Figure B.17 - Multiple-choice question for the sixth method

 60

Figure B.18 - Options for the multiple-choice question of the sixth method (Answers: None)

Figure B.19 - Last question of the sixth method (Answers: 1, 3, 4)

