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A Low-Complexity Beamforming Design for
Multiuser Wireless Energy Transfer

Onel L. A. López, Member, IEEE, Francisco A. Monteiro, Member, IEEE, Hirley Alves, Member, IEEE,
Rui Zhang, Fellow, IEEE and Matti Latva-aho, Senior Member, IEEE

Abstract—Wireless energy transfer (WET) is a green enabler
of low-power Internet of Things (IoT). Therein, traditional
optimization schemes relying on full channel state information
(CSI) are often too costly to implement due to excessive energy
consumption and high processing complexity. This letter proposes
a simple, yet effective, energy beamforming scheme that allows
a multi-antenna power beacon (PB) to fairly power a set of IoT
devices by only relying on the first-order statistics of the channels.
In addition to low complexity, the proposed scheme performs
favorably as compared to benchmarking schemes and its per-
formance improves as the number of PB’s antennas increases.
Finally, it is shown that further performance improvement can
be achieved through proper angular rotations of the PB.

Index Terms—WET, statistical CSI, first-order statistics, en-
ergy beamforming, IoT, antenna rotation.

I. INTRODUCTION

Wireless energy transfer (WET) technology is widely rec-
ognized as a green enabler of low-power Internet of Things
(IoT) since it realizes [1]: i) battery charging without physical
connections, which simplifies servicing and maintenance; and
ii) form factor reduction and durability increase of the end
devices. In fact, IoT industry is already strongly betting on
this promising technology, proof of which is the variety of
emerging enterprises with a large portfolio of WET solutions,
e.g., Powercast, TransferFi and Ossia1.

Over the past few years, the research community has
been analyzing and optimizing WET-enabled communication
systems. However, emphasis has been given to the information
communication aspects rather than to the WET building block
itself, which in fact causes the performance bottleneck in
practical applications since WET of long duration is often
required so that the energy harvesting (EH) devices can harvest
sufficient amount of energy for operation and communication.
Nevertheless, there are works dedicated to WET in the lit-
erature. For instance, the authors of [2] designed a channel
state information (CSI) acquisition method for a point-to-
point multiple-input multiple-output (MIMO) WET system
by exploiting the channel reciprocity, such that full benefits
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from energy beamforming (EB) can be practically obtained.
Such results were extended to frequency-selective channels but
under a multiple-output single-output (MISO) scenario in [3].
Additionally, the problem of power beacons (PBs) deployment
optimization is addressed in [4], the feasibility of WET using
massive MIMO has been corroborated in [5], while in [6]
authors exploit energy trading mechanisms in a scenario where
the PB and EH devices belong to different operators. Also, a
method relying on multiple dumb antennas transmitting phase-
shifted signals to induce fast fluctuations on a slow-fading
wireless channel and attain transmit diversity is proposed in
[7]. This scheme has the additional advantage of being CSI-
free, i.e., the CSI is not required at the transmitter/receiver.
Therefore, particularly beneficial for radio-frequency (RF) EH
networks since CSI acquisition consumes energy of ultra-
low power devices and thus may not be affordable. The CSI
acquisition problem takes on larger dimensions as the network
densifies since the gains from CSI-based EB quickly decrease
as the number of EH devices grows larger. Consequently,
efficient CSI-limited/free schemes are required for enabling
low-power massive IoT [1]. Based on this ground rule, the
authors in [8], [9] have proposed and optimized several multi-
antenna CSI-free WET solutions to improve the statistics of
the RF energy availability at the input of the EH circuitry of a
massive set of energy harvesters. However, their full gains are
obtained only in truly massive setups, while for a moderate
number of devices their performance is not promising.

In this letter, a low-complexity EB scheme is proposed for
a multi-antenna PB to wirelessly power a set of single-antenna
EH devices. The main contributions are three-fold: i) different
from the existing works, this letter addresses the problem of
powering devices with fairness while using only channels’
first-order statistics; ii) a simple, yet effective, EB scheme
is proposed, which attains near-optimum performance as the
channels become more deterministic; iii) it is demonstrated
that the multiuser performance improves as the number of
transmit antennas increases, while further performance im-
provement can be obtained via proper angular rotation.

Notation: boldface lowercase letters denote column vec-
tors, while boldface uppercase letters denote matrices. For
instance, x = {xi}, where xi is the i-th element of vector
x, while X = {Xi,j}, where Xi,j is the i−th row j−th
column element of matrix X. 1 denotes a vector of ones,
I denotes the identity matrix, and diag(x) is a diagonal
matrix with the main diagonal from entries of x. ||x|| denotes
the Euclidean norm of x, while (·)T , (·)H , Tr(·), and | · |
denote the transpose, Hermitian transpose, trace, and absolute
value operations, respectively. The curled inequality symbol
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� is used to denote generalized inequality: between vectors,
it represents component-wise inequality; between symmetric
matrices, it represents matrix inequality. Also, inf{·}, min{·},
max{·} and O(·) are the infimum, minimum, maximum and
big-O notations, respectively. C is the set of complex numbers,
and i =

√
−1 is the imaginary unit. Finally, x ∼ CN (m,R) is

a circularly-symmetric complex Gaussian random vector with
mean vector m and covariance matrix R, and E[ · ] denotes
the statistical expectation.

II. SYSTEM MODEL

Consider the scenario illustrated in Fig. 1 where a PB
equipped with M antennas transfers energy via RF to a set
{si} of N ≤ M single-antenna IoT devices located nearby.
Quasi-static channels are assumed, with fading remaining
constant over a transmission block, and changing from block
to block with unknown distribution. The power-normalized
channel vector between the PB’s antennas and si is denoted
as hi = h̄i + ĥi ∈ CM×1, where h̄i is the deterministic
component and ĥi is the zero-mean random component with
covariance Ri =E[ĥiĥ

H
i ]. Moreover, βi denotes the average

power gain of the channel between the PB and si.
The PB transmits K ≤ N complex signals {xk} such that

the received RF signal available at each device si (with the
noise ignored and normalized transmit power) is given by

yi =
√
βih

T
i

K∑
k=1

wkxk, i = 1 · · ·N, (1)

where wk ∈ CM×1 represents the precoding vector associated
to the xk, thus

∑K
k=1 ||wk||2 = 1. Signals are assumed

independent and normalized such that E[xHk xk] = 1 and
E[xHk xj ] = 0,∀k 6= j. As such, the RF energy (normalized
by unit time) available at each si is given by

Ei = Ex[yHi yi] = βiEx
[( K∑

k=1

hTi wkxk

)H( K∑
k=1

hTi wkxk

)]

= βi

K∑
k=1

∣∣hTi wk

∣∣2Ex[xHk xk] = βi

K∑
k=1

∣∣hTi wk

∣∣2. (2)

III. PROBLEM FORMULATION

The goal is to maximize the amount of energy harvested per
device in a fair manner, which is formulated as the following
optimization problem

P1 : maximize
{w(j)}, ∀j

inf
i=1,··· ,N

{Ei} (3a)

subject to
K∑
k=1

||wk||2 ≤ 1. (3b)

Notice that the constraint in (3b) is convex and it is related to
the total transmit power, while the objective function in (3a) is
not concave, therefore the problem is not convex. However, it
can still be optimally solved by rewriting it as a semi-definite
programming (SDP) problem [10] as shown next.

First, define ξ , inf{Ei}, while Ei in (2) can be rewritten
as Ei = βi

∑K
k=1 hHi wkw

H
k hi = βi Tr(WHi), where W =∑K

k=1 wkw
H
k and Hi = hih

H
i . Second, notice that W is a

Hermitian matrix with maximum rank M that can be found
by solving the SDP:

Fig. 1. Illustration of the system model. A PB equipped with M antennas
wirelessly powers a set of N ≤M IoT devices.

P2 : minimize
W∈CM×M , ξ

− ξ (4a)

subject to βi Tr(WHi) ≥ ξ, i=1, · · · , N (4b)
Tr(W) = 1 (4c)

W � 0. (4d)

Notice that constraint (4c) is equivalent to (3b). After solving
P2, the beamforming vectors {wk}, with K equal to the rank
of W, can be obtained as the eigenvectors of W, which is
referred to as optimum full-CSI beamforming.
A. Statistical Beamforming Design

Notice that for optimally solving P1 and P2, the in-
stantaneous CSI vectors need to be perfectly known at the
PB. However, in practice, not only CSI is imperfect but
devices’ cooperation is also required for its acquisition, which
consumes their harvested energy. In some cases, the EB
gains cannot compensate the energy consumed during the
CSI acquisition, and as a result the net harvested energy of
devices becomes negative [2], [3]. In order to mitigate these
adverse effects, herein we focus on the average harvested
energy optimization. It can be observed that

E[Ei] = E
[
βi Tr(WHi)

]
(a)
= E

[
βi Tr(WH̄i)+2βi Tr(WH̃i)+βi Tr(WĤi)

]
(b)
= βi Tr

(
W(H̄i + Ri)

)
, (5)

where (a) comes from

Hi = hih
H
i = (h̄i + ĥi)(h̄i + ĥi)

H

= h̄ih̄
H
i︸ ︷︷ ︸

H̄i

+ h̄iĥ
H
i + ĥih̄

H
i︸ ︷︷ ︸

H̃i

+ ĥiĥ
H
i︸ ︷︷ ︸

Ĥi

,

and (b) comes from taking the expectation inside the trace,
which is a linear operator, and using E[H̄i] = H̄i, E[H̃i]=0,
and E[Ĥi] = Ri. From (5), it becomes evident that the op-
timum statistical-CSI beamforming, {w∗k}∀k, can be obtained
by solving P2 but using H̄i + Ri instead of Hi. Note also
that E[H̄i] = Ēi + Êi, where Ēi = βi Tr(WH̄i) > 0 and
Ēi = βi Tr(WRi) > 0 correspond to the average energy
associated to the first- and second-order channel statistics,
respectively. In this letter, we consider only average CSI is
available, i.e., only the first-order statistics of the channels,
thus only {H̄i} are assumed to be known. Such average CSI
is much less prone to estimation errors and, more importantly,
it varies over a much larger time scale and does not require
frequent CSI updates. This information is expected to be
beneficial since WET channels are typically LOS-dominant
due to the short distances, and consequently have strong
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deterministic components2. Note that the resulting optimum
average-CSI beamforming solution is indeed optimal when
the channels tend to be fully deterministic, i.e., ĥk → 0, ∀k.

B. Problem Complexity

The optimum average-CSI beamforming comes from solv-
ing P2 using H̄i instead of Hi, thus, optimizing inf{Ēi},
which constitutes a lower bound for the actual average har-
vested energy since E[Ei] > Ēi. Now, since P2 is an
SDP, interior point methods are adopted to efficiently find its
optimal solution. It can be shown that solving P2 requires
around O(

√
M log(1/ε)) iterations, with each iteration requir-

ing at most O(M6 + (N + 1)M2) arithmetic operations [11],
and where ε represents the solution accuracy attained when
the algorithm ends. Consequently, the SDP solution becomes
computationally costly as the number of antennas at the PB
increases. To achieve complexity reduction, a low-complexity
beamforming design, that attains near-optimum performance
as the channels become more deterministic, is proposed next
as an efficient alternative. The proposed scheme can be easily
adapted to scenarios including information transmission, e.g.,
wireless powered communication networks (WPCN), and si-
multaneous wireless information and power transfer (SWIPT).

IV. LOW-COMPLEXITY BEAMFORMING DESIGN

The key of the proposed design lies in finding the EB
{wk}∀k that maximizes ξ̄ such that Ēi ≥ ξ̄, ∀i. The com-
plexity of the problem can be alleviated by adopting

wT
k =

h̄Hk
||h̄k||

√
pk, k = 1, · · · ,K, (6)

with K = N . In doing this, the i−th signal transmitted from
all PB’s antennas arrives at si with constructive superposition,
in an average sense. In fact, this design is akin to the max-
imum ratio transmission (MRT) in MISO communications.
Notice that pk represents the power budget for xk such that∑N
i=1 pi = 1, while one should notice that the impact of

the signals for other devices on the RF energy at si is not
considered for the phases’ design. Thus, the RF energy over
the deterministic component of channels can be written as

Ēi = βi

N∑
k=1

∣∣∣∣ h̄Hk h̄i
√
pk

||h̄k||

∣∣∣∣2 = βi

N∑
k=1

Qk,ipk, (7)

where Qk,i =
∣∣h̄Hk h̄i

∣∣2/||h̄k||2 represents the power con-
tribution at si of the signal meant to sk, and notice that
Qk,k = wT

k h̄k = ||h̄k||2. With the above result, P1 can be
re-written as a linear programming (LP) problem as

P3 : minimize
p, ξ̄

− ξ̄ (8a)

subject to BQTp � ξ̄1N×1 (8b)

1Tp = 1 (8c)
p � 0, (8d)

where B = diag
(
[β1, β2, · · · , βN ]

)
. The problem is now

composed of N + 1 linear constraints and variables, and can

2CSI acquisition procedures may be further reduced by exploiting informa-
tion related to the PB’s antenna array architecture and devices’ positioning,
which influence the line-of-sight (LOS) channel, and consequently the chan-
nel’s deterministic component, the most.

Algorithm 1 Low-Complexity Beamforming
1: Input: Q, B, δ ∈ (0, 1) and ε ∈ (0, 1)

2: Set A=

[
1N×1 −BQT IN×N

0 11×N 01×N

]
, µ=[−1, 0, · · · , 0]T

3: Set p0 using (10), ξ̄0 = min{Ēi|p0
} and ν = Ēi|p0

− ξ̄0
4: Set z(0) = [ξ̄0,p0,ν]T and τ = 0
5: repeat
6: Z(τ)=diag(z(τ)), λ(τ)=

(
A(Z(τ))2AT

)−1
A(Z(τ))2µ

7: r(τ) = µ−ATλ(τ)

8: z(τ+1) = z(τ) − δ(Z(τ))2r(τ)/||Z(τ)r(τ)||
9: τ := τ + 1

10: until 1TZ(τ−1)r(τ−1) < ε and r(τ−1) � 0
11: Output: {pi = z

(τ)
i+1}i=1,··· ,N and τ

be solved efficiently. For instance, if interior point methods
are used, solving P3 will take at most O(

√
N + 1 log(1/ε))

iterations, each one with at most O((N + 1)3) arithmetic
operations [11]. This is a considerable complexity reduction
compared to the optimum SDP-based solutions described in
Section III. For solving P3, Algorithm 1 is proposed, which
is a particularly simple interior-point method implementation
based on affine scaling [11], and explained below.

First, P3 is transformed to the form: minimize µT z subject
to Az = b and z � 0, which is done by stacking constraints
(8b) and (8c) into a single system of equations with µ and A
given in line 2 of Algorithm 1. Note that the variable space
z now groups ξ̄, p and the slack vector ν � 0 as defined
and initialized in line 4, while b = [01×N , 1]T . Note that for
initialization, p is computed in line 3 according to (10), which
is shown to be optimal under certain special circumstances,
thus, it should provide a good initial guess; while ξ̄ is set to be
the minimum available RF energy associated to the channels’
deterministic component when using such power allocation;
and ν is the corresponding slack vector. In addition to the
initial z, the iteration index τ is also established in line 4.
Lines 5-10 constitute the core of the affine scaling method.
Specifically, lines 6, 7 are for computing the dual estimates, λ,
and reduced costs r, while line 8 is the updating step consisting
of an affine scaling with coefficient δ. The algorithm stops,
i.e., convergence is declared, when no cost remains negative3

(r � 0) and the variation in the objective function is already
inferior to the tolerance error ε. Then, the power allocation
returned by Algorithm 1 in line 11 is ε−optimal.

A. Performance Bounds
By taking advantage of the fairness of the problem solution,

the total power budget, and the upper bound of Qk,i ≤
Qi,i = ||h̄i||2, which comes from using the Cauchy–Schwarz
inequality, one realizes that Ēi in (7) is upper-bounded by

Ēi ≤ Ēub = min{βi||h̄i||2}1Tp =min{βi||h̄i||2}. (9)

Unfortunately, such bound is not attainable unless all devices
have the same average channel, which is unlikely to happen
in practice, or when the path-loss of a certain device is much

3In practice, it is usually required to relax this and allow the algorithm to
stop even if r still contains very small negative values. This is to counteract
numerical precision errors, hence one should use r � −η1N×1 with small
η. In Section V, η = 10−4 is used.
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larger than that of the others such that its received energy
dominates in the beamforming design. Meanwhile, a lower
bound can be derived by noticing that all entries, especially
the non-diagonal entries, of matrix Q are non-negative. Then,
consider the extreme case Q = diag

({
||h̄i||2

}
∀i

)
under which

P3 can be easily solved to obtain

p∗i =
1/(βiQi,i)∑N

k=1 1/(βkQk,k)
=

1

1 +
∑
k 6=i

||h̄i||2
||h̄k||2

1
βk

, (10)

Ēi ≥ Ēlb =
1∑N

k=1 β
−1
k ||h̄k||−2

. (11)

In general, ||hi||2 increases linearly with M . Hence, both
bounds, (11) and (9), grow linearly and unbounded4 with M ,
and consequently it is possible to conclude that the actual Ē
also grows with M . Additionally, note that Ēub ≤ NĒlb due
to the inequality between the harmonic mean and the minimum
function (i.e., min{vi} ≤ N/

∑N
k=1v

−1
k ). Therefore, the gap

between Ēub and Ēlb is limited by the number of EH devices.
According to our discussions in Section III-A, the lower

bound for Ēi in (11), serves also as a lower bound for the
actual E[Ei]. Meanwhile, as the spatial correlation (positively)
increases, the average energy actually delivered may be much
larger than that predicted by (11), and even reach (or surpass)
the upper bound provided in (9). Finally, as M grows larger,
not only the proposed beamforming scheme is able to increase
the average delivered energy, but it also converges faster. This
happens because when M increases, Algorithm 1’s solution
gets closer to the initial guess; in fact, by increasing M , Q’s
off-diagonal elements decrease, and Q tends to asymptotically
(M → ∞) mimic a diagonal matrix (due to the channel-
hardening effect), for which (10) is optimal power allocation.

B. Analysis under Rician Fading Channels
In this subsection, Rician fading channels are considered

with different LOS factors κi ≥ 0 [12, Ch. 2]. Under such
fading, h̄i corresponds to the LOS component of the channel,
while ĥi represents the scattering contribution. The PB is
equipped with a half-wavelength uniform linear array and the
signals from all antennas are assumed to experience the same
average path-loss. Then, h̄i =

√
κi

1+κi
eiφi such that φi is what

si observes as the mean phase shift vector among the PB’s
antenna elements, and ĥi ∼

√
1

1+κi
CN (0, I), which accounts

for uncorrelated channel components.
Based on the above assumptions, it holds that ||h̄i||2 =
κi

1+κi
M , and consequently (9) and (11) are modified such that

M∑N
k=1

κk+1
βkκk

≤ Ēi ≤M min
{ βiκi

1 + κi

}
. (12)

Finally, note that

Êi =
βi

1 + κi
Tr(WI) =

βi
1 + κi

Tr(W) =
βi

1 + κi
(13)

since Ri = 1
1+κi

I and Tr(W) = 1. Observe that even under
non-LOS conditions, i.e., κ = 0, the proposed beamforming

4Note that such analytical results do not violate the law of conservation
of energy in practice due to the more substantial path-loss as compared to
beamforming gain.
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Fig. 2. Average worst-case RF energy available at the user devices.

can provide the same energy level as in a single-antenna PB
system. Obviously, such energy will be larger when κ increases
and/or under the effect of some positive spatial correlation.

V. NUMERICAL RESULTS

This section presents numerical results on the performance
of the proposed low-complexity average-CSI based EB scheme
under the example-case of Rician fading, described in Sec-
tion IV-B. Note that our proposed scheme does not assume
any fading distribution knowledge, thus it works for arbitrary
channels (as long as the channel mean vectors are known).

Algorithm 1 is run with δ = 0.9 and ε = 10−5. The
performance results under the optimum CSI-based scheme and
the optimum average-CSI based scheme, which were described
in Section III, are used as benchmark. The switching antennas
(SA) CSI-free scheme proposed in [8] is also considered.
Notice that under SA, the PB transmits through one antenna at
each time such that all its antennas are used during a coherence
block, while no CSI is exploited at all.

The PB is equipped with a uniform linear array (ULA) such
that φi=−[0, 1, · · · , (M−1)]Tπ sin θi, where θi is the azimuth
angle of terminal si relative to the boresight of the PB’s
antenna array [13, Ch. 5]. The EH devices are assumed to be
randomly and uniformly distributed around the PB at distances
between 1 and 10 m, i.e., in an annulus region of around
311 m2 of area. A log-distance path-loss model with exponent
2.7 is considered along with a non-distance dependent loss of
16 dB [14], e.g., βi=10−1.6× d−2.7

i , where di is the distance
between si and the PB. Unless stated otherwise, M = N = 8,
and κ = 10 dB is set for all Rician channels involved.

A. Performance Comparison

Fig. 2 corroborates that despite its simplicity, the pro-
posed low-complexity scheme based on average-CSI performs
extremely well. In fact, it even outperforms the optimum
average-CSI design, which comes from solving the SDP
problem P2, when the Rician factor is below 15 dB. As
the Rician factor increases, the performance gap between the
full-CSI and the two average-CSI schemes diminishes, while
the CSI-free scheme does not provide additional benefits5. In
addition, Fig. 2 validates the bounds given in (12), and shows
that for this particularly scenario, the upper (lower) bound is
tighter under small (large) Rician factor.

5This is without considering the power consumed in the CSI acquisition,
which would tilt the scale in favor of the CSI-free and average-CSI schemes.
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Fig. 3. Average worst-case RF energy available at the user devices as a
function of the number of PB’s antennas for N ∈ {4, 16, 64}.

Fig. 3 validates the results in Section IV-A, which predicted
a nearly linear performance improvement with the number of
antennas M at the PB. Notice that as the number of devices
increases, the chance of being farther from the PB increases,
thus, deteriorating the system performance. Meanwhile, the
low-complexity feature of the proposed Algorithm 1 is also
evidenced here by showing the average number of iterations
that were carried out. As expected, as the number of devices
increases, more iterations are required, but less than 10 it-
erations on average sufficed in all the cases. Increasing the
number of antennas is shown to be beneficial in this case as
expected from our discussions at the end of Section IV-A.
Finally, notice that the fast convergence feature of the proposed
algorithm contrasts with the SDP-based implementations (both
full-CSI and average-CSI) which require considerably more
time, and as such it is infeasible to obtain their performance
when M = 256, N ∈ {16, 64}.

B. Improvement via PB Antenna Rotation
The ULA angular orientation directly impacts on θi, and

consequently on φi, h̄i and Q, thus it influences the system
performance. Assume that the PB can adjust its orientation by
rotating the array by α radians such that θi := θi + α. This
may be possible in static setups, where the task is committed
to the technician/user, or in slow-varying environments, where
the PB itself is equipped a rotary-motor and it is capable
of adjusting its orientation. The performance, as a function
of such rotation angle, is shown in Fig. 4 for three differ-
ent setups. Notice that the antenna array orientation and/or
devices’ angular position play a major role on the system
performance. Intuitively, it would be desirable that the ULA
is geared towards the farthest user(s) to counteract the most
adverse path-loss(es), however, this is not completely true
as evidenced by Fig. 4. Also, the actual rotation gains are
considerable since the gaps between the global minimums
and maximums are around 3 dB for the scenarios shown.
Meanwhile, the performance gap between the optimum and
the low-complexity design is not greater than 1 dB for all
scenarios (0 dB in case of Scenario A), and their curves follow
similar trends.

VI. CONCLUSION

This letter presented a low-complexity, yet effective, beam-
forming scheme that allows a PB to fairly power a set of
EH devices. Albeit also applicable with instantaneous CSI,

-90 -60 -30 0 30 60 90

-16

-14

-12

-10

-8

-6

Fig. 4. Average worst-case RF energy available at the user devices as a
function of the PB’s rotation angle for three different setups: i) Scenario A,
where d = [2, 2, 4, 4, 6, 6, 8, 8]m and θi = 10i◦, ii) Scenario B, where
di = (1 + i) m and θi = 90◦ − 10i◦, and iii) Scenario C, where d =
[3, 3, 5, 5, 7, 7, 10, 10]m and θ = [20, 20, 60, 60, 40, 40, 10, 80]◦.

the scheme is proposed and assessed in tandem with the
assumption that only first-order statistics of the channels
are available, given the context of simple low-power IoT
devices. Besides simpler implementation, the proposed scheme
outperforms the optimum average-CSI based scheme under
low-to-moderate LOS conditions in Rician fading channels,
and its performance improves as the number of PB’s antennas
increases, leveraging on the channel-hardening effect. Also,
it was shown that further performance improvement can be
obtained via proper angular rotation of the PB. Exploring
analytically/algorithmically the PB rotation optimization and
the performance under different antenna array architectures are
future research directions.
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