
Assessing the Emotional Impact of Video using

Machine Learning Techniques

André Filipe Lopes Maia

Master in Telecommunications and Computer Engineering

Supervisor:

Doctor Tomás Gomes Silva Serpa Brandão, Assistant Professor,

Iscte – Instituto Universitário de Lisboa

Co-supervisor:

Doctor Fernando Manuel Marques Batista, Associate Professor,

Iscte – Instituto Universitário de Lisboa

December, 2020

Assessing the Emotional Impact of Video using

Machine Learning Techniques

André Filipe Lopes Maia

Master in Telecommunications and Computer Engineering

Supervisor:

Doctor Tomás Gomes Silva Serpa Brandão, Assistant Professor,

Iscte – Instituto Universitário de Lisboa

Co-supervisor:

Doctor Fernando Manuel Marques Batista, Associate Professor,

Iscte – Instituto Universitário de Lisboa

December, 2020

Resumo

Quando o ser humano assiste a filmes, diferentes sensações e estados de espírito são

despoletados. Entre estes encontra-se o medo, que pode ser despoletado através da

visualização de excertos de filmes contendo, por exemplo, violência gráfica, horror ou

suspense. Tanto a componente visual como a auditiva contribuem para o despoletar desta

sensação. Nesta dissertação é analisada a utilização de aprendizagem automática para

prever o impacto emocional que a visualização de vídeos possa causar nas pessoas, mais

concretamente os segmentos de um filme que despoletam a sensação de medo.

Foram realizadas diversas experiências usando o conjunto de dados LIRIS-ACCEDE

com os objetivos de encontrar conjuntos de atributos de imagem e áudio com maior

relevância para o problema e de avaliar o desempenho de diversos modelos de

aprendizagem automática usados para classificação. Foram usados diversos algoritmos

clássicos e de aprendizagem profunda, recorrendo-se às bibliotecas Scikit-learn e

TensorFlow. No que se refere à separação dos dados usados para treino e teste foram

seguidas duas abordagens: divisão dos dados ao nível do filme, sendo usados filmes

distintos para treino e teste; e divisão dos dados ao nível da amostra, possibilitando que os

conjuntos de treino e teste contenham amostras distintas, mas pertencentes aos mesmos

filmes. Para previsão dos segmentos que despoletam medo, na primeira abordagem

chegou-se a um resultado de F1-score de 18,5%, concluindo-se que o conjunto de dados

usado não é representativo, e na segunda abordagem a um F1-score de 84,0%, um valor

substancialmente mais alto e promissor no desempenho da tarefa proposta.

Palavras chave

Aprendizagem Automática, Predição Emocional, Predição de Medo, Classificação de Video

i

ii

Abstract

Typically, when a human being watches a video, different sensations and mind states can be

stimulated. Among these, the sensation of fear can be triggered by watching segments of

movies containing themes such as violence, horror and suspense. Both the audio and visual

stimuli may contribute to induce fear onto the viewer. This dissertation studies the use of

machine learning for forecasting the emotional effects triggered by video, more precisely,

the automatic identification of fear inducing video segments.

Using the LIRIS-ACCEDE dataset, several experiments have been performed in order

to identify feature sets that are most relevant to the problem and to assess the performance

of different machine learning classifiers. Both classical and deep learning techniques have

been implemented and evaluated, using the Scikit-learn and TensorFlow machine learning

libraries. Two different approaches for training and testing have been followed: film-level

dataset splitting, where different films were used for training and testing; and sample-level

dataset splitting, which allowed that different samples coming from the same films were

used for training and testing. The prediction of movie segments that trigger fear sensations

achieved a F1-score of 18.5% in the first approach, a value suggesting that the dataset

does not adequately represent the universe of movies. The second approach achieved a

F1-score of about 84.0%, a substantially higher value that shows promising outcomes when

performing the proposed task.

Keywords

Machine Learning, Emotional Prediction, Fear Prediction, Video Classification

iv

Acknowledgments

Esta tese não teria sido possível sem a ajuda de todas as pessoas que me são importantes

e que me apoiaram nesta fase da minha vida. Aos meus pais, irmã, namorada, familiares

e amigos mais próximos por me terem ajudado e motivado a progredir e concluir esta

dissertação, por perguntarem sempre como estava a correr e por se interessarem sobre o

que era. A todas as pessoas que fizeram parte e me ajudaram, de qualquer maneira, nesta

dissertação, um grande obrigado.

Quero também agradecer aos meus orientadores, Tomás Brandão e Fernando Batista,

por me terem ajudado no decorrer desta dissertação. Pelas inúmeras reuniões feitas para

que no fim o resultado fosse o melhor, pelas ideias e melhorias a fazer, um obrigado. Um

obrigado também por estarem sempre dispostos a ajudar sempre que existia alguma

dúvida, e sempre disponíveis quando era necessário. Foi uma grande sorte ter encontrado

orientadores que se preocupam com o aluno e com o resultado final da dissertação.

No final, termino esta dissertação com a sensação de dever cumprido.

Lisboa, 1 de Novembro de 2020

André Maia

vi

Contents

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Proposed Work . 3

1.3 Objectives and Research Questions . 3

1.4 Research Method . 4

1.5 Dissertation Structure . 4

2 Machine Learning Concepts 7

2.1 Classical Approaches . 7

2.1.1 Principal Component Analysis . 7

2.1.2 Neural Networks . 8

2.1.3 Support Vector Machine . 10

2.1.4 K-Nearest Neighbors . 10

2.1.5 Linear Discriminant Analysis . 11

2.1.6 Decision Tree Classifier . 12

2.1.7 Gaussian Naive Bayes . 12

2.2 Deep Learning . 12

2.2.1 Convolutional Neural Networks . 12

2.2.2 Recurrent Neural Networks . 13

2.3 Optimization Algorithms . 15

2.4 Pre-trained Models . 16

2.5 Tools and Libraries . 19

2.6 Assessment Metrics . 19

2.6.1 Mean Square Error . 19

vii

2.6.2 Pearson Correlation Coefficient . 20

2.6.3 Intersection over Union . 20

2.6.4 Accuracy, Precision and Recall . 20

2.6.5 F1-score . 22

2.6.6 Receiver Operating Characteristics and Area Under the Curve 22

3 Literature Revision and Datasets 25

3.1 Related work . 26

3.1.1 Framewise classification models . 27

3.1.2 Time-sequential models . 32

3.2 Summary . 34

4 Classical Classifiers and Feature Analysis 35

4.1 Experimental Setup . 35

4.2 Using Different Films for Training and Testing 37

4.2.1 Individual feature sets . 37

4.2.2 Best feature sets combined . 39

4.2.3 All visual feature sets combined . 40

4.2.4 Class balancing with all visual features sets 40

4.2.5 All features sets combined . 41

4.2.6 Summary . 42

4.3 Using Samples From Same Films for Training and Testing 42

4.3.1 Individual feature sets . 43

4.3.2 Best feature sets combined . 44

4.3.3 All visual feature sets combined . 44

4.3.4 Class balancing with visual features sets 45

4.3.5 All features sets combined . 46

4.3.6 Summary . 46

4.4 Fear-inducing Classifications . 47

4.5 Summary . 50

5 Deep Learning Classification 51

viii

5.1 Baseline Neural Network . 51

5.2 Deep Neural Networks . 57

5.3 Recurrent Neural Network . 61

5.4 Summary . 62

6 Conclusions and Future Work 63

Bibliography 65

ix

List of Figures

1.1 Valence vs arousal. 2

2.1 Visualizing data in different dimensions. 8

2.2 Neural network with two hidden layers. 9

2.3 Neural network with and without a dropout. 9

2.4 Possible hyperplanes vs. optimal hyperplane [22]. 10

2.5 KNN with K=3 [57]. 11

2.6 PCA vs LDA [54]. 11

2.7 Typical CNN architecture [58]. 13

2.8 Convolutional Layer. 13

2.9 Recurrent Neural Network [42]. 14

2.10 LSTM gates [42]. 14

2.11 Gradient Descent formula example [60]. 15

2.12 RMSProp example. 16

2.13 Residual Network. 17

2.14 VGG16 Architecture [46]. 18

2.15 Inception module [66]. 18

2.16 Mean Square Error.[69] . 19

2.17 Heteroscedasticity vs homoscedasticity [36]. 20

2.18 Object detection using IoU [55]. 21

2.19 Different values of AUC. [44]. 23

3.1 Proposed framework [73]. 27

3.2 Fear recognition block diagram [6]. 29

4.1 Three frames from the movie 0. 47

x

4.2 Second segment of the movie 0. 47

4.3 Segment of the movie 16. 48

4.4 Gaussian predictions for visual features. 48

4.5 Audio features predictions. 49

4.6 Predictions using the best method. 49

5.1 Model created using TensorFlow. 51

5.2 Number of epochs by loss. 52

5.3 Variation of the loss, accuracy, precision and recall. 53

5.4 ROC curve. 54

5.5 Number of epochs by the loss, accuracy, precision and recall with class weights. 55

5.6 ROC with all the models. 56

5.7 Model with 10 Dense layers and 9 Dropouts. 58

5.8 Number of epochs by the loss, accuracy, precision and recall. 59

5.9 ROC of the model with 10 Dense layers and 9 Dropouts. 60

5.10 RNN model. 61

xi

List of Tables

2.1 Example of an confusion matrix. 21

3.1 Features used in five runs [73]. 28

3.2 Valence-arousal results [73]. 28

3.3 Fear results [73]. 29

3.4 Valence and arousal, and fear subtasks results [6]. 30

3.5 Results for Valence, Arousal and fear [30]. 31

3.6 Softsampling with different features [76]. 32

3.7 Valence and arousal results [35]. 33

3.8 Runs and fear results described by the team [32]. 34

4.1 F1-score (no-fear/ fear) achieved for each feature set. 38

4.2 Sc features set results. 38

4.3 GaussianNB confusion matrix of sc feature set. 39

4.4 Best feature sets combined. 39

4.5 GaussianNB confusion matrix of best feature set combined. 39

4.6 All visual features combined. 40

4.7 All visual features combined and classes were balanced. 41

4.8 Visual and audio features combined. 41

4.9 Best results for Gaussian Naive Bayes Classifier. 42

4.10 Individual features (F1-score). 43

4.11 KNN confusion matrix of acc feature set. 43

4.12 Best features combined. 44

4.13 KNN confusion matrix of best feature sets combined. 44

4.14 All visual features combined. 45

xii

4.15 Results of balanced classes. 45

4.16 MLP confusion matrix of balanced classes. 45

4.17 All features sets combined results. 46

4.18 MLP confusion matrix all features sets combined. 46

4.19 Best results. 46

5.1 Confusion matrix. 54

5.2 Model with class weights. 56

5.3 F1-score using the model with 5 hidden layers. 57

5.4 Confusion matrix. 58

5.5 F1-score using the model with 10 Dense layers and 9 Dropouts. 60

xiii

xiv

xv

Acronyms

ACC Auto Color Correlation

CEDD Color and Edge Directivity Descriptor

CL Color Layout

EH Edge Histogram

FC6 VGG16 fc6 layer output

FCTH Fuzzy Color and Texture Histogram

JCD Joint descriptor joining CEDD and FCTH in on Histogram

LBP Local Binary Patterns

SC Scalable Color

LDA Linear Discriminant Analysis.

KNN K-Nearest Neighbor.

MLP Multi-layer Perceptron

GaussianNB Gaussian Naive Bayes

LR Logistic Regression

SVM Linear Support Vector

AUC Area Under the Curve

IoU Intersection over Union

CNN Convolutional Neural Network

RNN Recurrent Neural Network

ML Machine learning

xvi

Chapter 1

Introduction

The purpose of this chapter is to provide some insight into the motivation and main goals

of this dissertation, as well as the context, research questions and method.

1.1 Context and Motivation

Machine learning (ML) is a trend in the current days with new methodologies developed

every moment. As its name suggests, the emphasis of ML is on learning, acquiring skills or

knowledge from experience. It is important to have a large amount data to work with, since

most ML approaches need data to learn. This type of technique is used to handle certain

tasks that are incredibly difficult to create a program that has answers for everything, such

as detecting the emotional impact of movies, spam filtering, face recognition, data mining,

robot motion, among others, and can solve very complicated tasks taking much less time

than a human [31].

When watching movies, feelings and states of mind are induced into the viewers. Since

no one is identical, the induced emotions may differ from person to person. Human beings,

according to scientists, can manifest up to twenty seven distinct emotions [59], and human

emotions can be mapped into six different categories: Happy; Sad; Angry; Fear/Worry;

Surprise; and Disgust, proposed by Ekman [14]. When watching a movie, these emotions

can be invoked and can be manipulated with the assistance of combining sound and images.

One example of manipulation is advertising, that attempts to transmit specific sensations to

audiences to accomplish their objectives of selling the product itself. A variety of sensations

are triggered during the course of a film, but fear is the emotion that is wanted and will be

predicted using ML.

Valence and arousal are two measurements that can be used for characterizing

emotions. Valence expresses how pleasant is the feeling while arousal expresses the level

of excitement. Both can assume positive or negative values – unpleasant feelings

correspond to negative valence values, while calm states correspond to negative arousal

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Valence vs arousal.

values. Figure 1.1, extracted from [75], represents an association between possible

affective states and valence and arousal values.

The six categories of emotions mentioned previously can be mapped using these two

measurements, for example, happiness can be expressed as a high value of valence and

positive value in arousal.

Machine learning methods may potentially be used for automatically predicting the

emotional effect of movies. This application can be very beneficial and has many

advantages, such as:

• Video summarization mechanisms that take emotional factor into consideration,

summarizing the video according to excerpts that represent emotional states.

• Improving the recommendation mechanisms and personalization of video

transmission services. For instance, to evaluate a film in order to produce tags

according to the triggered emotional states.

• Protect viewers from content that could affect them, such as children and more

vulnerable people. For example, filter material to protect a child who surfs the

Internet watching a variety of videos, by blocking content that may include violent or

disturbing scenes.

Analyzing the emotional impact of a video clip on audiences may also be used to

strengthen or monitor the psychological influence of media on persons, to maximize

audience interaction with media material, or to create customized media content [52].

1.2. PROPOSED WORK 3

1.2 Proposed Work

The key purpose of this thesis is to predict the emotional effect of audiovisual content on

individuals, and this may include a variety of similar applications, such as personalized

content discovery or video indexing, film searching and even protecting children from

videos that may potentially be dangerous [32, 6]. A dataset named LIRIS-ACCEDE [34],

which provides a total of 56 movies, corresponding to approximately to 24 hours, with

annotations focused on fear, valence and arousal, was used. This database already

includes several sets of features, extracted for every second of each movie, such as color

and texture visual features, audio features, etc., providing a total of twelve feature sets

containing a large amount of features.

Different approaches are proposed in order to evaluate the results, which feature sets

and ML models lead to the best results in predicting the fear inducing segments of the

movies. Two separate training and testing methods are used: the first one is to split the

data at film level, getting samples coming from different films for training and testing,

while the second is less restrictive, randomly splitting the data at the sample level, causing

samples of all movies to appear in the train and test sets.

Two Python libraries, called Scikit-learn and TensorFlow, are used for the estimation

of fear inducing film segments. Scikit-learn classificiers are used for the implementation

of classical ML models, such as Gaussian Naive Bayes, Decision Tree Classifier, Logistic

Regression, among others; TensorFlow is used for the development of deep neural

networks.

1.3 Objectives and Research Questions

The main goal of this dissertation is to automatically detect movie segments that may

trigger the induction of fear, based on the characteristics of the audiovisual content. In

order to perform this task, it is important to understand which ML algorithms perform the

best predictions, namely to discover whether classical and deep learning ML algorithms

(such as Convolutional Neural Networks and Recurrent Neural Networks) can be used to

recognize fear inducing movie segments.

The work developed in the scope of this dissertation should allow to answer the

following research questions:

1. What are the most relevant audio and feature sets for the fear detection task? Which

feature sets can achieve the best outcome?

2. Which ML algorithms and techniques are best suited to predict fear-inducing movies

scenes?

4 CHAPTER 1. INTRODUCTION

3. Do deep learning techniques lead to better outcomes, when compared with classical

ML approaches?

1.4 Research Method

The research method followed in this dissertation is the problem-solving process Design

Science Research methodology, which is composed of six activities [49]:

1. Identification of the problem and motivation – in this dissertation, the problem is to

automatically detect the segments of a movie that may induce fear into the viewers

mind. This task is performed with the help of machine learning.

2. Define objectives for a solution – the goal is to determine which algorithms and feature

sets lead to the best fear prediction results.

3. Design and development – several machine learning models are created using the

machine learning libraries Scikit-learn and TensorFlow. These models follow both

classical and deep learning approaches.

4. Demonstration – the developed models have been used for detecting fear inducing

movie segments, and their performance was compared between each other.

5. Evaluation – the performance of the developed models was evaluated using metrics

typically employed in machine learning problems, namely the F1-score and the

Intersection of Union (IoU). Additionally, the deep learning models are subjectively

assessed with their learning and receiver operating characteristics (ROC) curves.

6. Communicate the problem and its relevance – this activity is accomplished by writing

this dissertation, by reporting the results and the problems that have been

encountered.

1.5 Dissertation Structure

This dissertation is structured as follows and is intended to represent the various phases of

the work:

In chapter 2, Machine Learning concepts used during the dissertation are described,

such as Neural Networks, pre-trained models, tools and libraries, and utilized metrics,

among others.

Chapter 3 describes the literature review, presenting related work on methods and

algorithms used to forecast aspects of the movie that induce fear in spectators. It also

describes the datasets required for the execution and conclusion of the work.

1.5. DISSERTATION STRUCTURE 5

Chapter 4 describes the first experiments performed, using a library in Python called

Scikit-learn. This library contains the implementation of several machine learning

algorithms that were tested in order to determine which lead to the best results. Along

with the algorithm testing, the experimental work reported in this chapter also seeks to

determine which feature sets are the most relevant for the prediction of fear inducing

segments.

Chapter 5 consists of experiments similar to those carried out in Chapter 4, except in

this case, deep learning methods have been used. These were implemented using

TensorFlow. The results are presented and compared with the ones reported in Chapter 4.

Lastly, Chapter 6 describes the main conclusions of the study carried out within the

framework of this thesis.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Machine Learning Concepts

Machine learning (ML) is an artificial intelligence field that enables computer systems to

learn from data samples instead of explicitly programming them. In short, the learning

methods try to use patterns in the provided data in order to perform predictions with

minimal human intervention [65].

This chapter presents the main machine learning concepts used and mentioned in the

context of this dissertation. It starts by describing classical ML approaches such as

Principal Component Analysis (PCA), Neural Networks (NN) and K-Nearest Neighbours

(KNN). It also describes deep learning methods such as Convolutional Neural Networks

(CNN) and Recurrent Neural Networks (RNN), the main pre-trained CNN models and

their use for transfer learning, and the tools and libraries necessary to create machine

learning classifiers for classical deep learning approaches. The chapter ends with a

description of the typical metrics used for assessing the performance of ML-based

classification systems.

2.1 Classical Approaches

Although different and numerous machine learning techniques and methodologies exist,

this section reviews the classical ML approaches that are relevant to the scope of this

dissertation.

2.1.1 Principal Component Analysis

Principal Component Analysis is a technique that can be used for reducing the dimension

of a feature space [21]. It identifies data patterns and expresses the data in such a way that

the most important features can be highlighted. The main advantage of this technique is

therefore the capacity of reducing the number of dimensions, transforming a large set of

variables (features) into a smaller one, with minimal loss of information [63].

7

8 CHAPTER 2. MACHINE LEARNING CONCEPTS

Figure 2.1: Visualizing data in different dimensions.

Imagine a problem with more than 3 dimensions (i.e., more than 3 variables), for

instance a 6-dimensional problem. Visualizing the data in a 6-dimensional space is very

difficult, or even impossible. PCA may play a important role here, allowing the reduction

of the 6-dimensional space into a 2-dimensional one, for instance, by considering less

variables that carry almost the same information as the full variable set. That would

enable easier data visualization and would eventually simplify the problem’s solving. PCA

can consider fewer variables by investigating a set of variables that are correlated to each

other and, for example, merging all of them and consider only one variable.

Figure 2.1, extracted from [21], shows a 3 dimensional space with a set of variables.

Using PCA, it is possible to reduce the dimensionality into a 2 dimensional set and at the

same time keeping the most relevant information.

2.1.2 Neural Networks

A Neural Network is a learning technique that learns from sampled data. Data samples

need to be previously labeled because training the NN requires knowledge about the class

associated to each sample. For instance, if a random dog image is submitted to a NN

for classification, the NN needs to have previous knowledge from other dog images in

order to know what a dog image looks like. This type of learning methodology is called

supervised learning (requiring labeled training and test sets). The creation of an artificial

neural network via an algorithm allows the computer to learn by adding new data and is

used for recognizing patterns [42, 17].

A Neural Network consists of several neuron units, organized into layers, that are

used to perform predictions. A basic NN representation can be observed in Figure 2.2,

2.1. CLASSICAL APPROACHES 9

Figure 2.2: Neural network with two hidden layers.

45

5.5 TensorFlow	
TensorFlow is an open-source framework for machine learning and other computations on

decentralized data [60]. In this section, TensorFlow will be used to try to obtain better results.

5.5.1 First	Neural	Network	

A neural network with 5 hidden layers, four dense layers and one dropout, was deployed.

Figure 28. Model created using TensorFlow.

Viewing the previous image, is possible to see that the first three hidden layers have a shape

of 64, 32 and 32 neurons. Then a dropout layer was used with a factor of 0.5. The last layer was

a dense layer with an activation function called sigmoid.

A dropout layer is simply used to ignored random neurons, during the training phase. The

neurons that will be ignored will not be considered during a particular forward or backward

pass. Each training stage the neurons either be dropped out with a probability of 1-ρ or kept

with a probability of ρ. [61]

Figure 29. Neural network with and without a dropout. [61] Figure 2.3: Neural network with and without a dropout.

extracted from [74]. It consists of an input layer (orange), that accepts the data for

classification; two hidden layers (blue and magenta); and an output layer (green) that

outputs the model’s predictions. The output layer will have the same number of neurons

as the output information (number of classes in the labeled data).

The arrows between each layer show how all the neurons are interconnected. The

neuron’s goal is to take all its inputs and multiply each one by their weights, then it sums

them all and the resulting sum value is subject to an activation function [47].

The weights of a neuron implicitly decide which features are more important and, if a

feature has higher importance, the result will have that feature more highlighted. Each

connection has its own weight that starts with a constant or random value which is

subsequently adjusted during the training of the model. Another important feature of the

NN is the bias, which is a constant value associated with each layer that aims to shift the

activation function.

Activation functions are used for standardizing the output values of each neuron. It is

basically a function applied to the output. The most common activation functions are Relu

10 CHAPTER 2. MACHINE LEARNING CONCEPTS

Figure 2.4: Possible hyperplanes vs. optimal hyperplane [22].

(Rectified Linear Unit), Tanh (Hyperbolic Tangent) and Sigmoid [56]. Sigmoid activation

function transforms an input value into a an output value between 0 and 1, for instance, if

the output value of a neuron is -8 the result will be very close to 0.

A Neural Network can have dropout between layers, which is simply used to ignore

random neurons during the training phase. The neurons that will be ignored will not be

considered during a forward or backward transition. At each point of training, the neurons

are either dropped with a 1 − ρ probability or held with a ρ probability [9]. An example of

the dropout is shown in Figure 2.3, extracted from [9].

2.1.3 Support Vector Machine

Support Vector Machine is a ML tool for classification and regression [39]. The objective of

this algorithm is to find a hyperplane, in an N-dimensional space, that distinctly classifies

the data points [22]. Figure 2.4 shows the behavior and the result of a SVM: the left plot

represents different hyperplane possibilities for dividing the two data clusters; the right

plot represents the optimal hyperplane that is found using SVM.

Support Vector Regression (SVR) is extension to SVM that is used for estimation,

instead of classification. SVR can perform predictions that are far more complex than

those provided by a linear regression model.

2.1.4 K-Nearest Neighbors

The K-Nearest Neighbors (KNN) is a clustering algorithm that groups samples with similar

characteristics. It decides which samples have feature values that are close to each other

[23] in order to be placed in a cluster where the samples share similarities between

themselves (i.e., belong to the same class). On the other hand, if two samples are not

similar, their feature values are likely to be very different and therefore the clustering

algorithm places them in different clusters.

2.1. CLASSICAL APPROACHES 11

Figure 2.5: KNN with K=3 [57].

Figure 2.6: PCA vs LDA [54].

One of the problems with this method is to choose the value for K. The K tells how many

clusters should be considered, which is basically the number of model classes. Figure 2.5

depicts an example where K=3, and thus the algorithm groups the data into three different

classes.

2.1.5 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA), is closely related to PCA and is used for classification

based on dimensionality reduction. The main objective is to separate classes in a dataset,

lowering the dimensions and subsequently reducing the computational costs.

Figure 2.6 illustrates this separation, which is based on maximizing the component axes

between two classes, instead of finding the axes that maximize the data variance, as PCA

does [54].

12 CHAPTER 2. MACHINE LEARNING CONCEPTS

2.1.6 Decision Tree Classifier

The Decision Tree Classifier is used for classifying examples based on decision rules.

Decision Tree Classifier consists of a single root node, a different number of leaf nodes,

and branches. Each node represents a feature and branches that reflect a combination of

features contributing to that classification [20].

2.1.7 Gaussian Naive Bayes

Gaussian Naive Bayes can be used for binary classification (i.e., with only two classes) as

well as multi-class problems. It is based on Bayes ’ Theorem, assuming that features are

independent between each other, and that all features are equally weighted.

For two different events A and B, with P (B) 6= 0, Bayes’ Theorem states that:

P (A|B) =
P (A

⋂
B)

P (B)
=
P (A)·P (B|A)

P (B)
, (2.1)

where P (A) represents the probability of occurring event A , P (A|B) is the probability

of occurring event A given that event B occured, and P (A
⋂
B) is the probability of both

occurring.

Logistic Regression

Logistic Regression is a simple ML method that can be used for binary categorical

classification [64]. Its output is a probability value (between 0 and 1) that can be used for

predicting an object or event class. Instead of fitting a straight line as in linear regression

model, the Logistic Regression uses a Sigmoid function to fit the data [77].

2.2 Deep Learning

Deep learning techniques are usually used on problems that are difficult to solve. This class

of machine learning algorithms requires a large amount of labeled data and substantial

computing power for the training procedures [41]. This section describes two classes of

deep learning algorithms: Convolutional Neural Networks and Recurrent Neural Networks.

2.2.1 Convolutional Neural Networks

A Convolutional Neural Network is an artificial neural network whose architecture is

designed to learn spatial hierarchies of features. A typical CNN architecture can be

observed in Figure 2.7. It is mostly used in data that follows grid patterns, such as images.

A CNN is generally composed of three different types of layers [72, 58]:

2.2. DEEP LEARNING 13

Figure 2.7: Typical CNN architecture [58].

Figure 2.8: Convolutional Layer.

1. Convolutional layers – the purpose of these layers is to extract the high-level

features, e.g,. edges, color, etc from the data matrices. A set of filter kernels (grids

of parameters) are convoluted with the input, an image (a matrix of pixels), as shown

in Figure 2.8 and activation functions are applied afterwards. The main goal is to

find the filter kernels parameters, that highlight the most important high-level image

features.

2. Pooling layers – these are responsible for reducing the spatial size of the matrices

resulting from the convolutional layers. Different pooling possibilities can be used,

such as Max Pooling and Average Pooling. The most typically used are Max Pooling

layers, which return the maximum value found on non-overlapping windows of the

input matrix (e.g., the maximum value at each non-overlapping x× 2 window).

3. Fully connected layers – a set of fully connected layers, whose structure is similar to

a classical NN, receives the features resulting from the convolutional/pooling parts of

the network, and produces the network predictions at its output.

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks belong to a class of neural networks that have internal memory

and are useful for modeling sequence data, such as time series [TensorFlowCore2020,

14 CHAPTER 2. MACHINE LEARNING CONCEPTS

Figure 2.9: Recurrent Neural Network [42].

Figure 2.10: LSTM gates [42].

42]. RNNs are recurrent, which means that the output for the current input sample depends

on the previous computations. The decisions are performed by considering the current

input sample and the output that was learned from the previous input samples, as shown

in Figure 2.9. Therefore, RNNs can use internal memory to process sequences of input

samples. While other neural network types consider each sample independent of each

other, Recurrent Neural Networks consider that the input samples are related to each other

[42].

Long Short-Term Memory (LSTM) are a modified version of a basic Recurrent Neural

Network that allow easier access to past data in memory. LSTM can classify, process and

predict time series given time lags of unknown duration. The model is trained based on

back-propagation [42].

Figure 2.10 represents the LSTM gates. The input gate decides which input value shall

change the memory by using the Sigmoid and Tanh functions. The Sigmoid function is used

to determine which values, between 0 and 1, are allowed to pass and the Tanh decide which

values are more important by weighting them. The forget gate, with the Sigmoid function,

determines which values should be discarded. The output gate selects which values are

allowed to pass through, with the Sigmoid and Tanh functions. [42]

2.3. OPTIMIZATION ALGORITHMS 15

Figure 2.11: Gradient Descent formula example [60].

2.3 Optimization Algorithms

During the training process of a neural network, optimization algorithms are used in order

to iteratively estimate the network parameters that lead to a minimal cost function value.

In this section, a few optimization algorithms are described, namely Gradient Descent, Root

Mean Square propagation (RMSProp), and Adam. Gradient Descent is the basic method for

optimizing a neural network while RMSProp and Adam are variants that usually converge

faster into the global function minimum.

Gradient Descent (GD) is one of the most popular algorithms for optimizing the training

process of a neural network. This algorithm aims to find the optimal value for a given cost

function.This optimal value corresponds to the minimum of the function, where its gradient

is null. The iterative process followed by the algorithm can be summarized by the following

equation:

θi+1 = θi − α∇J(θi), (2.2)

where θi and θi+1 represent the current and next estimate of parameter θ and ∇J(θi)
represents the gradient of the function J(θ) under optimization, evaluated at the current

parameter estimate; α is the learning rate or step size. Starting from an initial parameter

guess θ0 and iteratively applying eq. (2.2), GD will lead the estimates of θ to the value that

minimizes function J(θ).

An example of using Gradient Descent is illustrated in Figure 2.11. The idea is to find

the minimum of function J(θ) = θ2 starting from θ0 = 1, with a step α = 0.4. As can be be

observed from the figure, after four iterations using eq. (2.2), the minimum value is almost

reached.

16 CHAPTER 2. MACHINE LEARNING CONCEPTS

Figure 2.12: RMSProp example.

Root Mean Square propagation is another optimization method widely in machine

learning, whose behavior is based on the Gradient Descent [15]. The differences from GD

are the use of the gradient signal only, instead of its amplitude, and the use of an adaptive

learning rate value. High fluctuations in the gradient’s amplitude are therefore avoided

and the use of an adaptive learning rate value ensures that it is adjusted at the current

position by considering the shape of the function to be optimized.

The cost at the training start will be higher, but then RMSProp performs a faster

approach to the global minima (where the cost function achieves the least possible value),

calculating the negative descent towards the “Local optima”, as shown in Figure 2.12,

extracted from [61].

Adam attempts to automatically adjust the learning rate to various parameters, based

on gradient statistics [24]. Adam combines the advantages of two other optimization

algorithms: Root Mean Square Propagation (already mentioned); and the Adaptive

Gradient Algorithm (AdaGrad) [7], which retains low learning rate values for features that

appear regularly and higher learning rate values for features that appear less regularly

[33].

2.4 Pre-trained Models

A pre-trained model is a neural network model containing the weights and biases adjusted

to the features values of the dataset it was trained on [28]. This section describes a set

of pre-trained CNN models, ResNet-50 and VGG16, which are typically used for transfer

learning.

Transfer learning is a technique in machine learning that consists of using information

learned to solve a given problem into another, different, yet related problem. The primary

objective of transfer learning is therefore to profit from the learning acquired from one

task into another related task [2]. Pre-trained models are used, since these models were

typically trained on a wider dataset for solving a more generic problem [37].

Pre-trained models, such as ResNet-50 and VGG16, can be adapted to another

problem, typically by substituting their fully connected network layers, while keeping the

convolutional and pooling layers. Therefore, only the fully connected network layers need

2.4. PRE-TRAINED MODELS 17

Figure 2.13: Residual Network.

to be trained in a transfer learning process, which may lead to important time savings

during the network’s training procedures [2].

ResNet means Residual Network and the number “50” refers to the number of layers

on its architecture. It is a subclass of ResNet and is widely used for image classification

[53].

The Residual Network concept consists of trying to learn residuals, instead of trying to

learn features. The residual can simply be understood as a subtraction from the input of

that layer of the feature learned. ResNet skips connections by directly connecting the layer

a to layer a+k (where a and a+k are layers in ResNet, and k is the number of layers to skip)

[53]. Figure 2.13, from [53], shows a skip connection, where the input can pass through the

weight layers since the network learns the identity function (skip connection). The value

x from the previous layer is added to the output of the layer ahead, F (x), resulting in the

output value of F (x) + x. This is very useful since a deeper network can be created, and

this deeper network can skip over layers that the model finds less important.

According to [46], VGG16 is a convolutional neural network model that achieved 92.7%

accuracy in the ImageNet challenge [18]. The network’s input is a 224 × 224 RGB image.

The image is then passed to a stack of convolutional layers, where the filters have a small

3×3 kernel. The network uses Max Pooling on its pooling layers and its ending is a set of

fully connected layers where last layer is a soft-max one. The VGG16 architecture can be

observed in Figure 2.14.

Inception network, described in [66], is a convolutional neural network model, which is

composed by a concatenation of convolution filters with max-pooling layers. Each inception

module receives the output of the previous layers in the input, and then a convolution is

performed in each filter. The output results in a concatenation of the filter plus the max-

pooling. Figure 2.15 represents an inception module containing 3 different filters and max

pooling. One of the advantages of this architecture is to enable an increase of features

without harming the computational complexity.

18 CHAPTER 2. MACHINE LEARNING CONCEPTS

Figure 2.14: VGG16 Architecture [46].

Figure 2.15: Inception module [66].

2.5. TOOLS AND LIBRARIES 19

Figure 2.16: Mean Square Error.[69]

2.5 Tools and Libraries

The main tools and libraries for machine learning used for the work on this dissertation are

briefly described in this section, namely TensorFlow, openSmile and a Python library called

Scikit-learn.

TensorFlow [38] is a Google-created free software library focused on machine learning,

deep learning and other statistical and predictive analytic workloads.

OpenSMILE is a tool that allows real-time extraction of a large number of audio

features. It can be used for several applications such as automatic speech recognition,

speaker identification, emotion recognition, or beat tracking and chord detection [45, 3].

Scikit-learn is a Python module with easy and powerful prediction implementation

methods. It includes the implementation of several classical ML algorithms, including

those described on section 2.1.

2.6 Assessment Metrics

Machine learning algorithms have different approaches for measuring their performance.

In order to judge the performance of a model, an assessment metric function is used [27].

This section describes some of them.

2.6.1 Mean Square Error

Mean Square Error (MSE) identifies how close a regression line is to a set of points. This

is achieved by taking the distances (’errors’) from the points to the regression line and

squaring them, eliminating some derogatory signs and also emphasizing larger errors [68].

When the MSE is small, a closer fit line is reached. Figure 2.16 represents the best line

fitted in data.

20 CHAPTER 2. MACHINE LEARNING CONCEPTS

Figure 2.17: Heteroscedasticity vs homoscedasticity [36].

2.6.2 Pearson Correlation Coefficient

Correlation is the strength of association between two variables and the direction of the

relationship. Its value ranges between -1 and 1. A value close to 0 indicates a weak

relationship between variables while values that are close to 1 (or -1) means that the

variables are strongly related. The minus sign shows a negative relationship and the plus

sign the negative relationship [36].

Pearson correlation coefficient (PCC) measures the strength of a linear association

between two variables [36]. Figure 2.17 illustrates a case where the variables are well

correlated (homoscedasticity) and a case with low correlation (heteroscedasticity).

2.6.3 Intersection over Union

Intersection over Union (IoU), also known as Jaccard Index, is a metric of similarity that

quantifies how similar two sets are to each other [10]. Equantion 2.3 depicts the Jaccard

Index computation formula.

J(A,B) =
|A ∩B|
A ∪B

(2.3)

In the context of image analysis, this metric is typically used for can measuring the

performance of an object detector. An example can be observed in Figure 2.18 [55].

2.6.4 Accuracy, Precision and Recall

Accuracy, Precision and Recall are metrics commonly used in ML. A confusion matrix,

represented in Table 2.1, can be used to compute these metrics. In a binary classification

2.6. ASSESSMENT METRICS 21

Figure 2.18: Object detection using IoU [55].

Predicted
Positive Negative

Actual
Positive 0 (TP) 9 (FP)

Negative 0 (FN) 9999 (TN)

Table 2.1: Example of an confusion matrix.

problem, Positive represents one class while Negative represents the other. Samples that

correctly classified are designated by True Positives (TP) or True Negatives (TN),

depending to the class they belong to; samples that are misclassified are designated by

False Positives (FP), if the actual class is Negative but the predicted class is Positive; and

False Negatives (FN) otherwise.

Accuracy is the ratio between the number of correct predictions and the total number

of performed predictions. In the case of Table 2.1, the accuracy is 99.9%, which appears

to be a very good outcome. However, under this circumstance, this result is mischievous

since, by evaluating the confusion matrix, it can be observed that the only class with correct

predictions is the Negative. All predictions regarding the Positive class are incorrect. In

addition, the confusion matrix shows that the data is unbalanced, since there are far more

samples belonging to the Negative class than to the Positive class.

The Accuracy is computed as:

Accuracy =
TP + FP

TP + TN + FP + FN
. (2.4)

Precision is the ratio between the correct predictions for a given class and its number

of samples [62]. It is computed as:

Precision =
TP

TP + FP
. (2.5)

22 CHAPTER 2. MACHINE LEARNING CONCEPTS

For instance, using eq. (2.5) to compute the precision for the two classes in Table 2.1,

it can concluded that the model has a precision of 100% in the Negative class and 0% in

the Positive.

Recall simply calculates how many true positives the model captured by labeling them

as positives [62]. It can be computed as:

Recall =
TP

TP + FN
. (2.6)

Applying eq. (2.6) to determine the recall for the two classes in Table 2.1 results in

99.9% for the Negative class and 0% for the Positive.

2.6.5 F1-score

The metric F1-score combines the precision and the recall, according to:

F1 = 2× Precision×Recall
Precision+Recall

(2.7)

F1-score is used when a trade-off between precision and the recall is required. When

class distribution is unbalanced, the F1-score might be a more reliable metric to use.[62].

2.6.6 Receiver Operating Characteristics and Area Under the Curve

The Receiver Operating Characteristics (ROC) curve tells how well one model is capable of

separating the classes. ROC is the probability curve, and the Area Under the Curve (AUC)

refers to the area underneath the ROC curve [44, 19].

Ideally, an AUC equal to 1 means that the model performs a perfect distinction between

the two classes [44]. This is the optimal case achieved where the ROC is constant and equal

to 1, meaning that all samples of a given class can be correctly classified without generating

False Positives. Figure 2.19 illustrates the AUC for different values. For instance, the model

can distinguish classes if the AUC is between 0.5 and 1.0 because it is often possible to

have a higher true positive rate than a false positive rate. The closer the AUC is to 1.0, the

better this differentiation gets. A value of 0.5 means that the model can not differentiate

the two classes, and a value of 0 means that the algorithm forecasts the negative class as

the positive class, and vice versa.

2.6. ASSESSMENT METRICS 23

a) AUC is 1.0

b) AUC is 0.5

c) AUC is 0.0

Figure 2.19: Different values of AUC. [44].

24 CHAPTER 2. MACHINE LEARNING CONCEPTS

Chapter 3

Literature Revision and Datasets

This chapter starts by provide details for the datasets used in the mentioned works and

then, it proceeds to briefly describing the related work, organizing it according to the

followed methodologies.

The LIRIS-ACCEDE dataset is the main dataset used in the related work and in this

dissertation. It consists of a collection of 160 films made by professionals and amateurs,

shared under Creative Commons licenses that allow content redistribution. The movies in

this dataset comprise a wide variety of genres such as suspense, satire, romance, action,

etc. The language spoken in the videos is mainly English, with Italian, Spanish and French

also spoken in a narrower video set. From the full film set, 56 which contains annotations

regarding the fear-inducing movie parts (in total 4.2% of the samples contain fear), as well

as values for valence and arousal are the ones used.

The dataset also provides general-purpose audio and visual content features. Audio

features have been extracted with the openSmile toolbox, considering a 5-second window

sliding through the entire movie, with one-second shifts, leading to one audio feature vector

per video second, resulting in 1583 features. Video features, were computed from key

frames extracted from every second of video [16]. The following sets of visual features

have been provided:

1. Auto Color Correlation (acc): 256 features representing the image color correlogram

[51].

2. Color and Edge Directivity Descriptor (cedd): 144 features that incorporate image

color and texture information in a histogram [11].

3. Color Layout (cl): 33 features representing the spatial distribution of color in the

image [71].

4. Edge Histogram (eh): 80 features representing information regarding five possible

edge types in an image (horizontal, vertical, two diagonal and non-directional edge

types) [48].

25

26 CHAPTER 3. LITERATURE REVISION AND DATASETS

5. VGG16 fc6 layer output (fc6): 4096 features that correspond to the values extracted

at the output of the first fully connected layer (fc6 layer) of the VGG16 convolutional

neural network [40].

6. Fuzzy Color and Texture Histogram (fcth): 192 features representing the color

similarity of each pixel color combined with the histogram bins [12].

7. Gabor (gabor): 60 image texture features [5].

8. Joint descriptor joining CEDD and FCTH in on Histogram (jcd): 168 features

corresponding to 7 color texture areas of 24 sub-regions [13].

9. Local Binary Patterns (lbp): 256 features that represent image texture [70].

10. Scalable Color (sc): 64 features representing color signatures [26].

11. Tamura (tamura): 18 features representing statistical texture features [4].

ImageNet and Places365 are other image datasets mentioned in the related work.

ImageNet is often used as an image library containing tens of millions labeled images

categorized into more than on hundred thousand classes [25]. Places2 dataset has a total

of about 10 million images classified into 400 different categories [50]. Places365 is a

subset of Places2 dataset containing about 8 million images classified into 365 classes

that represent scene types [29].

3.1 Related work

This section describes related work on assessing the emotional impact due to video

visualization, namely evaluating whether the visualization of video induces fear on the

viewer. Published works on this subject use several classical and deep learning-based

machine learning models.

The starting point for this dissertation were the ideas behind a “benchmarking

initiative dedicated to evaluating new algorithms for multimedia access and retrieval”

called MediaEval [43]. MediaEval organizes several challenges on image and video

recognition tasks. Among them, the one called The MediaEval 2018 Emotional Impact of

Movies Task is very close to the purpose of this dissertation, and therefore it will be

further analyzed and studied.

The main objective MediaEval 2018 Emotional Impact of Movies Task is to create a

machine learning based program that automatically predicts the emotional impact that

video content causes in its viewers [16]. The task’s participants are supposed to deploy

multimedia features and models that allow to predict the emotion felt by most of the

audience watching the movie. Each participant team should consider two scenarios as

sub-tasks:

3.1. RELATED WORK 27

Figure 3.1: Proposed framework [73].

1. Valence and Arousal prediction: it’s expected to continuously predict a score of

valence and arousal (i.e., every second) along the duration of the movie subject to

analysis. Valence is classified as a scale, from the most unpleasant to the most

pleasant emotional state, while Arousal is quantified from the calmest to the most

exciting emotional states;

2. Fear detection: the participants are required to present a method that allows to

predict the beginning and ending times of fear inducing sequences within the

movies.

Different teams proposed different methods to handle the challenge. These approaches

will be briefly described in the following subsections. Methods that classify each sample

individually from the remaining ones are described in section 3.1.1, and approaches that

take advantage of potential temporal dependencies of the samples, classifying sample

sequences and not isolated ones, are detailed in section 3.1.2.

3.1.1 Framewise classification models

The approach proposed in [73] uses four sets of features that could influence emotions:

audio, action, object and scene features, which are extracted using pre-trained

convolutional neural networks. Figure 3.1 represents the proposed framework.

Audio signals are known to carry valuable knowledge for emotion identification [73].

The well-known audio feature extractor, VGGish [38], is used to extract the audio feature

vector descriptors. After extracting the audio files from the video, the pre-trained model

for large-scale audio classification is utilized to calculate their feature vectors. Then,

VGGish converts the audio files to high-level 128-dimensional feature vectors. As for the

action features extraction, a CNN is used, which contains two separate recognition

streams, spatial and temporal. The result of the CNN are two 1024-dimensional feature

vectors and, by merging these vectors, each video frame becomes associated to a

2048-dimensional feature vector. Object features are obtained by a CNN called the

Squeeze-and-Excitation Network (SENet) and the result is a set of 2048 object features.

28 CHAPTER 3. LITERATURE REVISION AND DATASETS

Used features

Run 1 Features provided by Mediaeval

Run 2 Audio and scene features

Run 3 Audio, scene and object features

Run 4 Audio, scene and action features

Run 5 Audio, scene, object and action features

Table 3.1: Features used in five runs [73].

Run
Valence Arousal

MSE PCC MSE PCC

1 0.09142 0.27518 0.14634 0.11571

2 0.09038 0.30084 0.13598 0.15546

3 0.09163 0.26326 0.14056 0.14310

4 0.09105 0.25668 0.13624 0.17486

5 0.09243 0.24679 0.13950 0.15226

Table 3.2: Valence-arousal results [73].

To extract the scene features, the pre-trained ResNet-50 model on Places365 is used to

calculate the vectors that result in a 2048-dimensional vector.

When all the features are extracted, the feature vectors are fused using SVR and SVM to

learn the emotional models for each sub-task (fear, and valence and arousal) and Gaussian

blur is used for smoothing the scores over the temporal segments. For each of the sub-

tasks, different feature set combinations were tested, as described in the five runs depicted

in Table 3.1.

The valence and arousal sub-task used SVR for regression and the metrics used for

evaluation were the MSE and the PCC.

By observing Table 3.2, it is possible to infer that Run 2 produced the best results,

which means that the combination of audio and scene features were the most adequate for

valence and arousal estimation. The values that achieve the best results are in bold.

For the fear sub-task, a SVM was used for classification and the results were evaluated

using the Intersection over Union metric. The results are shown in Table 3.3.

The best result was obtained by Run 4, using audio, scene and action features. It can

also be observed that the combination of further features in Run 5 did not lead to better

results.

Comparing the results of Run 2 and Run 3 in Tables 3.2 and 3.3, it can be inferred that

the use of the object feature lowers the performance of the valence-arousal sub-task, but

3.1. RELATED WORK 29

Run IoU

1 0.14360

2 0.12900

3 0.13067

4 0.15750

5 0.14969

Table 3.3: Fear results [73].

Figure 3.2: Fear recognition block diagram [6].

increases the performance for the fear sub-task. This may suggest that the presence of

specific objects, such as a gun, a knife, etc., may contribute to the induction of fear. Since

Run 4 performed better than Run 3, actions may potentially have an higher impact on fear

induction than objects.

A different approach was presented in [6]. This approach follows the block diagram

represented in Figure 3.2.

Transfer learning using the pre-trained VGG16 model for Places2 dataset was used,

since it would be expected that fear induction could be influenced by the movies

background and scenery. The classification is performed for keyframes extracted on every

second of video. Since the number of samples annotated as fear was much smaller than

those annotated as no-fear, an higher amount of samples for the fear class were retrieved

by downloading Flickr images tagged as fear and by using data augmentation techniques.

It resulted in 23,000 and 30,000 images tagged as fear and no-fear, respectively, that were

used for model training.

The openSmile toolbox was used to explore audio content by extracting 1582 audio

features for each second of video. The samples were split by using 80 percent for training

30 CHAPTER 3. LITERATURE REVISION AND DATASETS

Run
Valence Arousal Fear

MSE r MSE r IoU

1 396901706.564 0.079 1678218552.19 0 0.054 0.075

2 0.139 0.010 0.181 -0.022 0.065

3 0.117 0.098 0.138 nan 0.053

4 0.142 0.067 0.187 -0.029 0.063

Table 3.4: Valence and arousal, and fear subtasks results [6].

and 20 percent for validation. The KNN classification method with K=3 and further

processing were applied to the test set, in order to remove probable false negatives and

false positives, i.e., isolated predictions of no-fear inside fear intervals and isolated fear

predictions inside no-fear intervals, respectively. The individual and combined use of

visual and audio features were also evaluated.

The set of visual features provided by LIRIS-ACCEDE was also used. PCA was used to

reduce the dimensionality of this feature space, downsampling the initial high dimensional

feature space (5367 elements) into two thousand principal components.

The four different runs represented in Figure 3.2, were defined as follows: Run 1 uses

the previously described transfer learning approach based on the VGG16 model; Run 2 is

similar to Run 1, with additional post-processing to remove isolated predictions; Run 3 is

based on audio features only, using a neural network with 3 hidden layers for classification;

Run 4 also uses a NN combining the audio features with the visual features provided in

LIRIS-ACCEDE (subject to PCA). The neural network used in Runs 3 and 4 uses ReLU

activation function units and was trained with a learning rate of = 0.001 using the Adam

optimizer. Each hidden layer of neurons has the size of 64, 32 and 32 respectively. Two

thirds of the samples in the development set were used for training; the remaining one

third of the samples were used for validation.

The results for the four runs are depicted in Table 3.4, with the best highlighted in

bold. Mean Square Error (MSE) and Pearson Correlation Coefficient (r) were used for the

assessment of valence and arousal prediction sub-task, while IoU was used in the fear sub-

task. For the valence and arousal sub-task, Run 3 (based on a NN whose inputs are audio

features only) was the one leading to the best results, when compared with the remaining

methodologies. Run 1 obtained the best outcome for the fear detection sub-task, using only

video based classification with the pre-trained VGG16 model.

In the work proposed by Ko et al. in [30], Emotion Preservation Embedding (EPE) was

used to learn the subspace for arousal and valence, and a Bias Discriminatory Embedding

algorithm (BDE) was used to learn fear.

Given a training set, EPE aims to learn a transformation matrix that maps each sample

into a low-dimensional subspace, where the emotion information and manifold structure of

3.1. RELATED WORK 31

Arousal Valence Fear

MSE PCC MSE PCC IoU

Run 1 0.1493 0.0828 0.1016 0.0499 0.1052

Run 2 0.1574 0.0650 0.1089 0.0164 0.0612

Run 3 0.1608 0.0487 0.1089 0.0872 0.0360

Run 4 0.1623 0.0255 0.1076 0.1142 0.0196

Table 3.5: Results for Valence, Arousal and fear [30].

the dataset can be well preserved [30]. BDE attempts to learn the subspace for binary fear

labels that increases the biased discriminatory information in the trained subspace.

A D-dimensional target subspace with D = 4, 5, 9, 10 was used for valence / arousal

prediction in Runs 1, 2, 3 and 4, respectively, with a created D-dimensional subspace

compacting the information equivalent to 2854 features. For fear prediction, the same

values of valence / arousal prediction were used, except in this case BDE was used instead

of EPE.

By analyzing Table 3.5, it can be concluded that Run 1 (D = 4) performed the best for

arousal estimation. There is no optimum valence estimate for the valence sub-task, perhaps

because the optimum valence subspace dimension has not been found [30]. Besides that,

since MSE showed identical performance in all runs, while PCC achieved the highest result

in Run 4 (D = 10), it can be concluded that this run performed the best. For the fear sub-

task, the outcome was quite unsatisfactory, which may be due to a high dataset imbalance

between the fear and no-fear classes. The best results are highlighted in bold

The approach presented in [76] consists of data re-sampling. This approach is

performed for MediaEval 2017 Emotional Impact of Movies Task. Audio, visual and

Valence-Arousal features were extracted resulting in 4172 features. To address the

imbalanced dataset, different sampling methods were applied to the data:

1. All available data (without rebalance).

2. Applying a technique called Synthetic Minority Oversampling Technique (SMOTE),

which will produce fear samples until the number of samples of fear became the

same as no-fear.

3. Random Sampling.

4. Hardsampling, which applies undersampling before oversampling.

5. Softsampling, which applies first undersampling and then oversampling.

Then each sampling method was used to feed the two classifiers, Support Vector

Machine (SVM) and Random Forest (RF). Lastly, late fusion is used. The best result using

32 CHAPTER 3. LITERATURE REVISION AND DATASETS

Features F1-score

Audio+Visual+Valence-Arousal 0.3246

Audio+Visual 0.3090

Valence-Arousal 0.2412

Audio 0.2353

Visual 0.2907

Table 3.6: Softsampling with different features [76].

all features (a combination of audio, visual, and Valence-Arousal.) was 0.3246 of F1-score,

with the Softsampling. As the best result was obtained by Softsampling, this sampling

method was used for the various features, as shown in Table 3.6.

Results shown, in Table 3.6, that visual features obtained the best results achieving

0.3246 of F1-score.

3.1.2 Time-sequential models

The approach proposed in [35] uses two features sets, one for audio and another for video.

The audio features were extracted using the OpenSMILE toolbox, then the mean and

standard deviation were calculated in the centered 5-second-long sliding window of all 23

features (low level descriptors) to achieve a 46-dimensional audio feature vector for each

second of the movie clip. The audio features in the LIRIS-ACCEDE dataset (1582

dimensions) are also considered.

The visual feature sets provided by the LIRIS-ACCEDE dataset, except the fc6 set, have

also been considered, resulting in 1271-dimensional visual feature vector for each second

of video. The fc6 feature set was not used due to its high dimensionality (4096 features).

SentiBank was used for the extraction of additional visual features. The Multilingual

Visual Sentiment Ontology (MVSO) detectors were applied to the image frames extracted

every second from the film, and obtained the final layer of the Inception Net (CNN

classifier), resulting in 4342 dimensions. All feature values have been normalized to zero

mean and unitary variance.

Bidirectional LSTM (BLSTM) was used to predict the emotional flow. This choice was

mainly due to two reasons: to compensate possible latency when visualizing the videos

for annotating the ground truth for emotion; and due to characteristics of the emotional

flow, which is expected to have smooth transitions, and BLSTM may be less influenced by

fluctuation on the input features.

Two experiments were performed for the fear sub-task, a trained classification model to

predict the tag for every second, and also identify a segment as fear according to the tags

3.1. RELATED WORK 33

Run
Valence Arousal

MSE r MSE r

1 0.1021 0.1714 0.1414 0.0870

2 0.1036 0.1820 0.1399 -0.0181

3 0.0924 0.3048 0.1399 0.0761

4 0.0980 0.2422 0.1396 0.0612

5 0.0944 0.2511 0.1460 -0.0667

Table 3.7: Valence and arousal results [35].

of each second within it. Only sequences whose length is longer than a certain threshold

have been kept in order to remove noise from the sequence.

Fusion methods were implemented in all experiments, such as early fusion (concatenate

to a large vector, features of various modalities and sources), late fusion (output of the

LSTM models is combined and used as input of the next fully-connected layer) and average

fusion (average of multiple models’ estimation was computed to prevent over-fitting and

minimize noise).

BLSTM models were used in all runs. The first three runs are distinct in the number

of the model layers, which is 4, 2 and 3 respectively. Run 4 consists of the average fusion

of the first three runs. Run 5 is a late fusion of two BLSTM models, receiving in the input

visual (except CNN) and audio features. Dropout with a probability of 0.5 was used in all

runs to prevent over-fitting.

The results can be observed in Table 3.7 and the best are in bold. It shows that Run

3 (2-layer BLSTM model) achieved the best valence prediction result; and Runs 1 and 4

achieved the best results in correlation and MSE for arousal, respectively.

The fear sub-task performs much worse than expected and suggests that the LSTM or

BLSTM models might not be suitable for the task, since the fear and no-fear classes are

rather unbalanced. Therefore the runs for the fear sub-task were not been submitted.

In the approach followed in [32], the authors suggest to use single-layer and ensemble

of LSTM models. The motivation was notable results obtained by using LSTMs on a similar

task for emotional impact of movies proposed by Mediaeval in 2017.

Visual features were extracted using the VGG16 pre-trained model while audio features

were extracted using the openSmile toolbox. Non overlapping sequences of 101 samples

were used for feeding the LSTM.

Different LSTM model architecture variations were experimented using 12 movies as a

cross-validation set. The best result was obtained by a simple single-layer LSTM with batch

normalization, trained with the visual features. A LSTM with a 1D temporal convolution

34 CHAPTER 3. LITERATURE REVISION AND DATASETS

Description IoU

Run 1 Ensemble of LSTMs + Visual and Audio features 0.06496

Run 2 Ensemble of LSTMs + Audio features 0.07507

Run 3 Ensemble of LSTMs + Visual features 0.08742

Run 4 Single-layer LSTM + Visual features 0.11992

Run 5 Single-layer LSTM + Audio features 0.09874

Table 3.8: Runs and fear results described by the team [32].

layer performed worse but still achieved non-zero F1 ratings, so both model architectures

were considered.

The different combinations of feature sets and models depicted on Table 3.8 have been

tested. Two single-layer LSTM models trained using visual features and two single-layer

LSTMs trained using audio features were used in Run 1. In Run 2, visual features were

used for training four LSTM models (three were single-layer LSTMs and the remaining one

was a single-layer LSTM with a 1D convolutional layer attached). Run 3 is similar to Run

2, but uses audio features. Run 4 and 5 are composed by a single layer LSTM and trained

using the visual and audio features, respectively.

The results for the fear sub-task can be observed in Table 3.8. The used metric was

IoU. From the table, it can be observed that the ensembles performed worse than the single

LSTM models. One explanation is because the predictions in the ensembles were merged

by a simple average function, and not by a weighted average function. Run 4 obtained the

best outcomes, which suggests that visual features may have a greater effect on detecting

fear-inducing video than audio features.

3.2 Summary

This chapter described the dataset and Related work. All approaches use the 2018

MediaEval data from the LIRIS-ACCEDE dataset, except one (approach presented in [76])

that uses the 2017 MediaEval data. The best result for 2018 MediaEval was an IoU of

0.15750, which consisted of using audio, scene and action features. The results were not

promising, since the models cannot predict the presence of fear in the films, obtaining an

IoU score very low. In Chapter 4, various methods will be taken, such as splitting the data

in a different manner, analyzing feature sets and models. The data will be split in the same

way as in the related work (different films for training and testing), but also at the sample

level (the data will be divided randomly) resulting in samples from all movies in the

training and testing.

Chapter 4

Classical Classifiers and Feature

Analysis

This chapter describes the experiments carried out with different classifiers for detecting

fear inducing movie segments. The details of the experimental setup can be found in

Section 4.1. The main purpose of the experiments described along this chapter is to

identify combinations of feature sets and machine learning classifiers that lead to the best

outcomes in the task of identifying fear inducing segments of the film. All tables presented

have the best f1-score for fear prediction in bold.

In the first round of experiments, reported in Section 4.2, training and test sets are

disjoint at video level, meaning that the samples in the training set come from different

videos than those used in the testing set. However, this training/testing methodology lead

to poor classification performance, suggesting that the the videos used in the training set

are not representative of those used in the test set.

In order to tackle this problem, another approach was followed by using samples from

the same videos for training and for testing. i.e., training and test sets are disjoint at

sample level, and thus with less restrictions than the first approach. Both the training an

test sets will therefore contain samples taken from the same videos, meaning that, on the

same video, a set of samples is randomly assigned to the training set while the remaining

ones are assigned to the test set. The experiments that follow this approach are described

in Section 4.3.

4.1 Experimental Setup

This section describes the experimental setup performed to identify feature sets that are

most relevant for the fear prediction. The fear-inducing is classified in the LIRIS-ACCEDE

database described in Chapter 3, which includes eleven sets of visual features and a single

35

36 CHAPTER 4. CLASSICAL CLASSIFIERS AND FEATURE ANALYSIS

set of audio features. The use of these feature sets is subjected to a thorough analysis along

this chapter.

Several matrices have been created, where columns represent features and rows

represent samples, each one corresponding to a segment with the duration of one second

of film. The first segment of the first movie, for example, will be assigned to the first row

of the matrix. This row contains the values corresponding to each set of features, for

instance, the first 256 values correspond to the acc, the next 144 values the cedd and so

on. In total, and if all feature sets are used, the number of columns is 5368, which

represents the total number of features in all sets (5367) plus the last column, which

represents whether or not fear is induced during that second of movie. This last column

consists of 0’s and 1’s, where 0 refers to no-fear and 1 to fear inducing samples. A matrix

containing data for all movies and all features has a shape of 87456 rows by 5368

columns. It is also worth to mention that the movie duration varies from film to film, and

therefore the number of samples per film is not constant.

As for the machine learning classifiers used in the experiments reported in this chapter,

the following have been used (most of them have been described in Section 2.1):

• Linear Discriminant Analysis.

• Decision Tree Classifier.

• K-Nearest Neighbor.

• Multi-layer Perceptron (MLP) Classifier (Neural Network).

• Gaussian Naive Bayes Classifier.

• Logistic Regression Classifier.

• Linear Support Vector Classifier.

All these classifiers were tested in order to evaluate which ones lead to the best results in

the fear inducing prediction task. Their implementations are available in the Scikit-learn

Python library.

The other main goal of this chapter is to determine which feature sets, or feature set

combinations, are the most suitable for the task of predicting fear inducing movie segments.

To accomplish this task, the following flow of experiments was performed:

1. Each individual set of features available in LIRIS-ACCEDE was, in turn, used as the

classifiers input. The goal was to evaluate the discriminating power of each feature

set.

2. The feature sets leading to the best results in the previous step were combined and

used as the classifiers input.

4.2. USING DIFFERENT FILMS FOR TRAINING AND TESTING 37

3. All visual features sets were combined into a single feature vector used as input for

all tested classifiers.

4. Identical to the previous step, but in this case the training set was additionally subject

to a class balancing procedure .

5. Finally, all audio and visual features sets were combined.

All the experiments share the same principle: to train and predict the presence of fear-

inducing video samples using the seven machine learning classifiers and variations in the

feature data used as the classifiers input.

4.2 Using Different Films for Training and Testing

This section reports the experiments done using the same division of training and test sets

as is in the Related Work (Section 3.1), in which the training and test sets are composed of

completely different sets of videos.

The principle is that the video materials were initially split into 44 videos for training

and the remaining 12 for testing. The training set contains a total of 55251 samples (one

sample for each second of video), covering approximately 15 hours of video; as for the

testing set, it contains 32205 samples, covering approximately 9 hours of video. The

experiments described in Section 4.1 were then performed.

4.2.1 Individual feature sets

The first experiments consisted of training a set of Scikit-learn classification algorithms

using features coming from individual sets of visual and audio features. The goal was to

find out which of the feature sets are the most promising ones, when the task is to predict

the temporal video intervals that induce fear into the viewer.

Since the number of samples with fear is much smaller than the number of samples

without fear, accuracy is not a good evaluation metric, as seen in Section 2.6.4. In

conclusion, since the dataset classes are unbalanced the F1-score was used as the

assessment metric, as it uses the precision and recall metrics to compute the final

outcome. The IoU metric is also robust to class unbalancing and therefore it is also an

adequate performance assessment metric for the fear prediction task.

The results achieved by using each individual feature set are shown in Table 4.1. Each

table cell depicts two values separated by ’/’: the first value reflects the F1-score for

predicting the no-fear inducing class, while the second value is the F1-score for predicting

the fear class. Each column depicts the results for a machine learning algorithm, while

38 CHAPTER 4. CLASSICAL CLASSIFIERS AND FEATURE ANALYSIS

LDA DecisionTree KNN MLP GaussianNB LR SVM

acc 0.974/ 0.006 0.945/ 0.083 0.963/ 0.030 0.957/ 0.036 0.399/ 0.111 0.974/ 0.000 0.974/ 0.000

cedd 0.974/ 0.006 0.939/ 0.065 0.966/ 0.030 0.967/ 0.037 0.252/ 0.099 0.974/ 0.002 0.974/ 0.000

cl 0.974/ 0.000 0.942/ 0.069 0.969/ 0.009 0.974/ 0.004 0.828/ 0.143 0.974/ 0.000 0.974/ 0.000

eh 0.974/ 0.000 0.947/ 0.062 0.971/ 0.013 0.955/ 0.068 0.759/ 0.143 0.974/ 0.000 0.974/ 0.000

fc6 0.968/ 0.052 0.951/ 0.068 0.965/ 0.065 0.968/ 0.077 0.617/ 0.135 0.968/ 0.048 0.953/ 0.073

fcth 0.974/ 0.000 0.941/ 0.080 0.967/ 0.057 0.968/ 0.028 0.084/ 0.098 0.974/ 0.000 0.974/ 0.000

gabor 0.974/ 0.000 0.950/ 0.055 0.973/ 0.006 0.974/ 0.000 0.552/ 0.118 0.974/ 0.000 0.974/ 0.000

jcd 0.974/ 0.004 0.951/ 0.081 0.966/ 0.047 0.963/ 0.059 0.219/ 0.098 0.974/ 0.004 0.974/ 0.000

lbp 0.974/ 0.008 0.944/ 0.066 0.968/ 0.013 0.969/ 0.020 0.044/ 0.095 0.974/ 0.001 0.974/ 0.000

sc 0.973/ 0.002 0.948/ 0.060 0.970/ 0.015 0.965/ 0.036 0.928/ 0.185 0.974/ 0.000 0.974/ 0.000

tamura 0.974/ 0.000 0.949/ 0.085 0.968/ 0.006 0.974/ 0.007 0.974/ 0.000 0.974/ 0.000 0.974/ 0.000

audio 0.966/ 0.110 0.951/ 0.089 0.973/ 0.027 0.968/ 0.057 0.662/ 0.120 0.974/ 0.005 0.925/ 0.102

Table 4.1: F1-score (no-fear/ fear) achieved for each feature set.

Metrics LDA DecisionTree KNN MLP GaussianNB LR SVM

F1-score 0.973/ 0.002 0.948/ 0.060 0.970/ 0.015 0.965/ 0.036 0.928/ 0.185 0.974/ 0.000 0.974/ 0.000

IoU 0.001 0.031 0.007 0.018 0.102 0.000 0.000

Table 4.2: Sc features set results.

each row depicts the results achieved by using the corresponding set of features in the

LIRIS-ACCEDE dataset.

By analyzing Table 4.1, it can be observed that the feature sets leading to best results

were cl, eh, fc6 and sc. These feature sets represent the color of the image, the edge types

in an image, values extracted using VGG16 CNN, and the color signatures, respectively. The

best results regarding the detection of the fear class were achieved by the Gaussian Naive

Bayes classifier. On the other hand, the Logistic Regression and SVM classifiers obtained

the worst results regarding fear detection, with null F1-scores for nearly all feature sets,

suggesting that these algorithms always classify all samples as no-fear inducing ones.

The time to train and predict all these models for each feature sets was high. A total

of 84 models were trained and tested (7 algorithms × 12 feature sets) which took about 7

hours to complete. The model showing the higher F1-scores for the fear class, GaussianNB,

was very fast in the training and the testing, taking only a few seconds. On the other hand,

the KNN and MLP models took much longer. For instance, the KNN algorithm took about

30 minutes to train when using fc6 feature set (feature set with the highest number of

features).

The best fear detection results were achieved using the sc feature set. Table 4.2

described the results achieved using all tested classifiers. Besides the F1-score, the

Intersection over Union is also depicted for a better analysis.

The best results were achieved by the Gaussian Naive Bayes algorithm, which obtained

18.5% of F1-score when predicting fear. It was able to correctly predict 485 out of 1606

4.2. USING DIFFERENT FILMS FOR TRAINING AND TESTING 39

Predicted label
no-fear fear

Actual no-fear 27438 3161
label fear 1121 485

Table 4.3: GaussianNB confusion matrix of sc feature set.

LDA DecisionTree KNN MLP GaussianNB LR SVM

F1-score 0.968/ 0.045 0.952/ 0.094 0.964/ 0.073 0.966/ 0.038 0.624/ 0.137 0.967/ 0.040 0.951/ 0.055

IoU 0.023 0.049 0.038 0.020 0.073 0.020 0.029

Table 4.4: Best feature sets combined.

fear samples, and 3161 no-fear samples were mispredicted as fear, as seen in the Table

4.3. In contrast to the other strategies, all the remaining algorithms perform worse when

predicting the fear class.

4.2.2 Best feature sets combined

The best feature sets, sc, cl, eh and fc6, were combined in order to check if better results

are obtained by using a larger amount of features for classification. The results from the

different algorithms are shown in Table 4.4.

By analyzing Table 4.4 it turns out that there is not much difference compared to the

Table 4.1 with the individual features. The Gaussian Naive Bayes slightly decreases the fear

prediction results. On the other hand, the no-fear prediction decreases even further, hitting

almost fifty percent, which is not desirable. GaussianNB manages to correctly predict fear

1336 times, but in total predicts 17936 times the tag fear, leading to a large amount of false

positives. The tag no-fear was predicted correctly 13999 times and badly 16600 times. This

data can also be observed in Table 4.5, which represents the model’s confusion matrix. The

best Intersection over Union value is in the GaussianNB algorithm.

In terms of training and test execution time, all models take a total of 4 hours and

26 minutes to train and test. It is worth to mention that the KNN algorithm took about 3

hours and 30 minutes to run and perform predictions, making it the worst one regarding

the execution time.

Predicted label
no-fear fear

Actual no-fear 13999 16600
label fear 270 1336

Table 4.5: GaussianNB confusion matrix of best feature set combined.

40 CHAPTER 4. CLASSICAL CLASSIFIERS AND FEATURE ANALYSIS

LDA DecisionTree KNN MLP GaussianNB LR SVM

F1-score 0.968/ 0.034 0.956/ 0.076 0.963/ 0.063 0.963/ 0.033 0.546/ 0.126 0.971/ 0.01 0.954/ 0.040

IoU 0.017 0.039 0.033 0.017 0.067 0.005 0.020

Table 4.6: All visual features combined.

4.2.3 All visual feature sets combined

To further analyze the performance, all visual feature sets were merged and used for

training and testing. As can be observed from Table 4.6, the achieved results were a bit

worse than those shown in the previous experiments.

By comparing Tables 4.6 and 4.4 it can be observed that certain results were very

similar, such as those for Decision Tree and KNN classifiers, while others were

substantially worse. The Gaussian algorithm again decreased 12.5% its performance

regarding the prediction of no-fear and 8.03% for the fear class.

It can thus be concluded that the use of the sc feature set alone as shown the best

results so far. Furthermore, the use of a single feature set requires less time for training,

and memory consumption is minimized. Since the results are getting worse as more

features are used, it can be speculated that, as more feature sets are used, the more

noticeable becomes the overfitting to the training set. Remember that samples used for

training come from different films than those used for testing, which suggests that the

training set is not representative of the film universe.

The total time required for training, using all visual features combined, was identical

to the experiment described in Section 4.2.2, taking a total time of about 4 hours.

4.2.4 Class balancing with all visual features sets

Class balancing with all visual features sets was performed because of the 87456 samples

in the dataset, 83759 samples were labeled as no-fear (95.8%), and 3697 samples as fear

(4.2%). Since the no-fear class has a much a larger number of samples when compared

with the fear class, the classes are highly unbalanced. This fact contribute to the reason

why several experiments produced a very small amount of classifications that fall in the

fear class. Therefore, an experiment was carried out by balancing the dataset classes.

Only the training data was balanced. This was achieved by removing random samples

with the tag no-fear from the training set. In the end, the number of fear samples is

the same as the number of no-fear samples, resulting in a much smaller training set with

only 4182 samples. Similarly to the previous experiment, all the visual feature sets were

combined.

The results are depicted in Table 4.7. When compared with the results of the previous

experiment, the prediction of fear generally increases, but at the cost of a substantial

4.2. USING DIFFERENT FILMS FOR TRAINING AND TESTING 41

LDA DecisionTree KNN MLP GaussianNB LR SVM

F1-score 0.730/ 0.097 0.807/ 0.103 0.763/ 0.133 0.882/ 0.110 0.549/ 0.127 0.889/ 0.089 0.864/ 0.089

IoU 0.051 0.054 0.071 0.058 0.068 0.047 0.046

Table 4.7: All visual features combined and classes were balanced.

LDA DecisionTree KNN MLP GaussianNB LR SVM

F1-score 0.969/ 0.059 0.95/ 0.084 0.972/ 0.039 0.971/ 0.032 0.679/ 0.152 0.974/ 0.03 0.964/ 0.049

IoU 0.030 0.044 0.020 0.016 0.082 0.015 0.025

Table 4.8: Visual and audio features combined.

decrease in the prediction of no-fear. Compared to Table 4.4, it can be seen that all IoU

metric values increased except the Gaussian model, for example the KNN increases

46.48% and Gaussian decreases 6.85%, but their values continue to be too low. In

addition, the best F1-score result remains with sc feature set.

This approach took the least time to train all models (about 20 minutes), which is due to

the fact that the size of the training data is much smaller than the one used in the previous

experiments. In this case, all models were trained with 4182 samples rather than the 55251

samples.

4.2.5 All features sets combined

In this experiment, all available LIRIS-ACCEDE visual and audio feature sets have been

used. When combined, these feature sets correspond to a number of 6951 features per

sample. The features sets included in this section are the visual, equivalent to Section

4.2.3, plus the audio, resulting in a training and testing set represented in pandas (a Python

library) by 6951 columns (total number of features).

Table 4.8 synthesizes the results of this experiment. Comparing the results with the

results from the balanced class experiment in Table 4.7, it can be concluded that the

Gaussian Naive Bayes algorithm is the only one that achieved better results. Nevertheless,

results from this algorithm using all available feature sets were worse than those achieved

using the sc feature set alone.

This approach was expected to take longer due to having a larger amount of features

but in the end it only took about 2 hours and 28 minutes for training and testing, which

means that the training algorithms converged faster. The KNN algorithm took about 32

minutes, instead of hours as happened before. In this situation, the MLP was the model

that took the longest during the training, taking 44 minutes to complete.

42 CHAPTER 4. CLASSICAL CLASSIFIERS AND FEATURE ANALYSIS

Method F1-score IoU Time to train and test (s)

Individual features - sc 0.185 0.1017 0,095

All features combined 0.152 0.0820 12,7167

Individual features - cl 0.143 0.0771 0,0535

Individual features - eh 0.143 0.0772 0,1224

Best features combined 0.137 0.0734 8,7499

Table 4.9: Best results for Gaussian Naive Bayes Classifier.

4.2.6 Summary

By comparing the results achieved in the experiments described from Section 4.2.1 to 4.2.5,

the best ones where achieved by using the sc feature set alone. Table 4.9 synthesizes the

performance achieved for the most promising five setups, from best to the worst. All these

methods obtained the best result by using a Gaussian Naive Bayes classifier.

Inspecting Table 4.9, the global outcome is poor, at 18.5% of F1-score by predicting the

label fear. The time required to train and test are very low, but in the end, the best method

(Individual features - sc) obtained one of the shortest times.

The experiments suggest dataset limitations. The dataset classes are very unbalanced,

which causes that most models are prone to forecasting the no-fear class since this class

represents about 95.8% of samples used in training. On the other hand, balancing the data

by removing elements of the most numerous class lead to a rather small training set.

The experiments also showed that the use of a larger amount features did not translate

into better performance. This fact may be due to overfitting problems that become more

evident as more features are used.

4.3 Using Samples From Same Films for Training and Testing

The experiments done in Section 4.2 showed that the data used is cleary insufficient which

makes the models do not generalize well. In order to overcome this problem, this section

describes a new set of experiments at the sample level. A portion of the movie samples are

used for training, and another for testing, and this is done by randomly split the data. The

algorithm’s training and test processes will therefore access samples coming from the full

films dataset.

The main database containing a total of 87456 samples was randomly split into 20% of

all samples for testing (17492 samples) and 80% for training (69964 samples).

The flow of experiments previously performed in Section 4.2 was also performed for

this new dataset division, in order to find out which algorithms and feature sets lead to the

4.3. USING SAMPLES FROM SAME FILMS FOR TRAINING AND TESTING 43

LDA DecisionTree KNN MLP GaussianNB LR SVM

acc 0.976/ 0.136 0.974/ 0.424 0.986/ 0.637 0.981/ 0.539 0.383/ 0.098 0.978/ 0.028 0.977/ 0.064

cedd 0.978/ 0.013 0.976/ 0.467 0.985/ 0.584 0.982/ 0.507 0.338/ 0.093 0.978/ 0.013 0.978/ 0.000

cl 0.978/ 0.000 0.972/ 0.411 0.983/ 0.497 0.979/ 0.093 0.821/ 0.127 0.978/ 0.000 0.978/ 0.000

eh 0.978/ 0.000 0.959/ 0.178 0.983/ 0.468 0.970/ 0.271 0.804/ 0.114 0.978/ 0.000 0.978/ 0.000

fc6 0.977/ 0.405 0.964/ 0.233 0.986/ 0.619 0.982/ 0.570 0.709/ 0.122 0.979/ 0.359 0.972/ 0.379

fcth 0.978/ 0.000 0.977/ 0.500 0.985/ 0.568 0.982/ 0.451 0.132/ 0.087 0.978/ 0.000 0.978/ 0.000

gabor 0.978/ 0.000 0.959/ 0.096 0.977/ 0.005 0.978/ 0.000 0.723/ 0.110 0.978/ 0.000 0.978/ 0.000

jcd 0.978/ 0.010 0.977/ 0.467 0.985/ 0.599 0.982/ 0.550 0.274/ 0.092 0.978/ 0.011 0.978/ 0.000

lbp 0.978/ 0.016 0.970/ 0.335 0.982/ 0.391 0.979/ 0.180 0.126/ 0.085 0.978/ 0.011 0.978/ 0.008

sc 0.976/ 0.092 0.972/ 0.364 0.983/ 0.498 0.979/ 0.420 0.898/ 0.149 0.978/ 0.000 0.978/ 0.000

tamura 0.978/ 0.000 0.961/ 0.185 0.980/ 0.255 0.978/ 0.005 0.951/ 0.055 0.978/ 0.000 0.978/ 0.000

audio 0.978/ 0.342 0.976/ 0.479 0.979/ 0.188 0.982/ 0.521 0.619/ 0.107 0.978/ 0.042 0.853/ 0.107

Table 4.10: Individual features (F1-score).

Predicted label
no-fear fear

Actual no-fear 16633 111
label fear 347 401

Table 4.11: KNN confusion matrix of acc feature set.

best results. The following subsections depict the experimental results.

4.3.1 Individual feature sets

Similar steps to those described in sub-Section 4.2.1 were followed and, for each feature

set, the same machine learning algorithms were used for the predictions. The results

obtained are shown in Table 4.10. Similarly to what has been done before, the F1-scores

were used for performance assessment.

By observing Table 4.10, it can be seen that the results obtained are much better than

those depicted in Table 4.1. With the new training/testing set division, the best F1-score

regarding the prediction of fear is much higher. Training and testing with samples coming

from the same films lead to F1-scores predicting fear in the sixties per cent, for the KNN

and MLP Classifiers, with the acc, cedd, fc6, fcth and jcd feature sets being the most

promising ones. An F1-score of 63.7% for the fear class was the best result achieved, using

the KNN model with the acc feature set, representing the image color correlogram.

The test data contains 748 samples of the fear class and 16744 of the no-fear class. The

algorithm achieving the highest F1-score in fear prediction – KNN –, managed to correctly

predict 401 samples of fear and 16633 of no-fear, as can be observed in the confusion

matrix represented in Table 4.11.

When compared to the results presented in Section 4.2, the reason for this shift to

higher F1-scores is due to the new training/ test set division. In this experiment, the training

44 CHAPTER 4. CLASSICAL CLASSIFIERS AND FEATURE ANALYSIS

LDA DecisionTree KNN MLP GaussianNB LR SVM

F1-score 0.978/ 0.472 0.967/ 0.327 0.987/ 0.65 0.983/ 0.609 0.575/ 0.114 0.98/ 0.431 0.961/ 0.377

IoU 0.309 0.196 0.481 0.438 0.06 0.275 0.232

Table 4.12: Best features combined.

Predicted label
no-fear fear

Actual no-fear 16625 119
label fear 331 417

Table 4.13: KNN confusion matrix of best feature sets combined.

set contains samples coming from all the films available in the dataset, and therefore it is

a richer set. On the other hand, the test set, although consisting of samples different from

those used for training set, contains samples that are expected to be more correlated with

those used for training, than in the situation that they were coming from different films.

Similarly to Section 4.2.1, this set of experiments demanded a long time to train and

test. It took about 9 hours and 54 minutes.

4.3.2 Best feature sets combined

The best feature sets, with the highest F1-score, in Table 4.10, were combined to try to

achieve better results. Five feature sets were selected – acc, cedd, fc6, fcth and jcd –,

resulting in 5368 features for each second. The results with all these feature sets combined

are depicted in Table 4.12. This method takes about 4 hours to train and test all algorithms.

KNN again was the model with the best F1-score for predicting fear, achieving 65% of

the fear class and 98.7% of the no-fear. Compared to Table 4.10, fear and no-fear class are

improved by 0.013 and 0.001, respectively, of F1-score. Also, MLPClassifier has a F1-score

value of 50 percent in the Section 4.3.1, and it shifts to 60 percent, achieving better results.

Comparing this Intersection over Union metric with the previous best features combined,

Section (4.2.2) using different movies to train and test, it is possible to see that the value

increases from 0.073 to 0.481. In addition, the best algorithm has improved, before it was

GaussianNB, and now it’s KNN with 65 percent fear estimation, increasing 46.5%. The

GaussianNB algorithm has poorer result in this case, comparing with all the algorithms.

It is possible to see that the model KNN was able to forecast 417 of the 748 fear tags

and 16625 of the 16744 no-fear tags by examining the confusion matrix in Table 4.13.

4.3.3 All visual feature sets combined

All the eleven visual feature sets were combined in one dataframe, with the help of pandas,

and then all individual algorithms are trained and tested. In total, it takes approximately 7

4.3. USING SAMPLES FROM SAME FILMS FOR TRAINING AND TESTING 45

LDA DecisionTree KNN MLP GaussianNB LR SVM

F1-score 0.979/ 0.493 0.969/ 0.351 0.986/ 0.631 0.985/ 0.64 0.672/ 0.125 0.979/ 0.313 0.979/ 0.455

IoU 0.327 0.213 0.461 0.471 0.066 0.186 0.294

Table 4.14: All visual features combined.

LDA DecisionTree KNN MLP GaussianNB LR SVM

F1-score 0.768/ 0.143 0.829/ 0.182 0.846/ 0.237 0.91/ 0.316 0.701/ 0.13 0.883/ 0.261 0.794/ 0.194

IoU 0.077 0.1 0.134 0.188 0.069 0.15 0.107

Table 4.15: Results of balanced classes.

hours and 53 minutes to train and test all the algorithms, and in the end, the results were

a little higher in some cases and in others remained the same.

Table 4.14 represents the F1-score and IoU results for each tested ML algorithm. For

this experiment, the MLP classifier achieved the best outcome. Comparing with the results

depicted in Section 4.3.2, it can be observed that the use of all feature sets is leads to

similar results, going from 0.65 to 0.64 for the fear class prediction. The IoU is also very

similar, slightly decreasing from 0.481 to 0.471. The results concerning the prediction of

the no-fear class are even more similar, with F1-score differences of about 0.002.

4.3.4 Class balancing with visual features sets

This method consists of balancing the classes of fear and no-fear. The no-fear class was

randomly reduced to the same number of samples from the fear class, as in Section 4.2.4,

resulting in a size of 5898 seconds for training, rather than 69964. It took less time to train

and test all algorithms, approximately 16 minutes, since this method had fewer samples in

training.

The results were not the best with a class balancing, as can be seen in Table 4.15. The

best result is 38% well below the previous ones, so a very poor result is obtained by this

approach. This may have happened because important data was removed. Analyzing the

confusion matrix of the model MLP, in Table 4.16, it is possible to verify that the fear

prediction has 2669 false positives (no-fear tag has been wrongly predicted), and this

happens because 64066 seconds were removed with the no-fear tag.

Predicted label
no-fear fear

Actual no-fear 14075 2669
label fear 107 641

Table 4.16: MLP confusion matrix of balanced classes.

46 CHAPTER 4. CLASSICAL CLASSIFIERS AND FEATURE ANALYSIS

LDA DecisionTree KNN MLP GaussianNB LR SVM

F1-score 0.983/ 0.619 0.973/ 0.436 0.981/ 0.32 0.988/ 0.725 0.729/ 0.137 0.979/ 0.16 0.981/ 0.397

IoU 0.448 0.279 0.191 0.569 0.073 0.087 0.248

Table 4.17: All features sets combined results.

Predicted label
no-fear fear

Actual no-fear 16546 198
label fear 210 538

Table 4.18: MLP confusion matrix all features sets combined.

4.3.5 All features sets combined

In this approach all the features were combined. The differences of this approach with

Section 4.3.3 is the addition of the audio feature. As is explained at the beginning of the

Section 4.3, this data is divided randomly. To verify the results, the models were again

trained. Impressively, the training and testing period was shorter than in previous methods,

taking 2 hours and 48 minutes because what was observed was that with more features,

more time was needed to train and test all algorithms (happen the same in Section 4.2.5).

The results of these trained algorithms are shown in the Table 4.17.

The best result so far, hitting 72.5% of F1-score in the prediction of fear, is obtained by

the MLP classifier. Also, the F1-score of the no-fear class increases 0.1%, achieving 98.8%

of F1-score. An inspection of the confusion matrix in Table 4.18 reveals that the fear class

was well classified 538 times and badly 198, and the no-fear class was correctly predicted

16546 times.

4.3.6 Summary

Comparing all the approaches described along this section, it is possible to conclude that

the integration of all audio and visual features produced the better outcomes. The five

strategies experimented leading to the best results are synthesized in Table 4.19.

The best results were achieved by the MLP classifier, which achieved a F1-score of

Method Algorithm F1-score IoU Time to train and test (min)

All features combined MLP 0.725 0.569 51.36

Best features combined KNN 0.650 0.481 172.95

All visual features combined MLP 0.640 0.471 307.54

Individual features - acc KNN 0.637 0.467 6.75

All visual features combined KNN 0.631 0.461 105.80

Table 4.19: Best results.

4.4. FEAR-INDUCING CLASSIFICATIONS 47

Figure 4.1: Three frames from the movie 0.

Figure 4.2: Second segment of the movie 0.

72.5% predicting the fear tag and 99.8% predicting the no-fear, when all the available

features (visual and audio) were combined. This algorithm feature set combination was

also the one that took less processing time to train and test, comparing to Best features

combined and All visual features combined.

4.4 Fear-inducing Classifications

In this section some of the movies were manually watched to check if they were good movies

(based on real life and not on nonsense material, have good resolution, etc) and if the tag

fear was correctly placed. A function was created to generate subtitles in the movies. The

purpose of this function is to warn pictures that include fear in the numerous videos. A

subtitle that says "fear" has been applied to the videos. This makes it easy to manually

check if the fear tag was well put and if the dataset was done well.

Figure 4.1 shows three frames from the movie MEDIAEVAL18 00 and reveal that the

first two frames (explosion and body) convey fear, but are not identified as such, and the

third frame, which contains a person’s body, is correctly tagged as fear.

Figure 4.2 shows an image that transmits fear, but the audio contains a piece of happy

music, so the audio does not correspond with the current action, thus the audio, in this

case, was misleading to recognize fear.

The fear tag in the dataset contains scenes like a fight and with suspense, images with

48 CHAPTER 4. CLASSICAL CLASSIFIERS AND FEATURE ANALYSIS

Figure 4.3: Segment of the movie 16.

Figure 4.4: Gaussian predictions for visual features.

blood, pistols, but there are some cases where this doesn’t happen. This is illustrated in

Figure 4.3, which shows a person placed in a bag with a man carrying a gun in his pocket,

and this frame has no annotation of fear.

The conclusion is that the fear annotations are not consistent. In some cases, the fear

tag is well-associated, and some are not, plus there are some cases of fear that do not exist.

Feeling of fear can also vary person to person, so it’s hard to tell for certain whether or not

a picture involves fear.

To examine what the best model in Section 4.2 predicts in each second and the

confidence of the predicitons, a graph has been made for each movie. This graph

represents, in each second, the real tag fear or no-fear (1 or 0 in the axis y), the prediction

that the model qualifies (green line) and the confidence in each prediction (orange). This

likelihood is the assurance that the model has, for example, if the model says that in the

first second the probability to predict fear is 1, this means that the model has 100%

confidence that fear occurs at that time. Figure 4.4 corresponds to movie 54 in the dataset

of LIRIS-ACCEDE. The x axis represents each second of the movie, in this case the movie

has 213 seconds, and these predictions were made using visual features only.

Analyzing Figure 4.4 is it possible to see that the model outputs a lot of random

predictions at the beginning of the movie, the green line goes up and down (classify as fear

and no-fear) at a time when there is no fear conveyed. In all of these predictions, the model

has a 100% predictability, which is definitely not a positive indication. Looking at these

4.4. FEAR-INDUCING CLASSIFICATIONS 49

Figure 4.5: Audio features predictions.

Figure 4.6: Predictions using the best method.

results, it is possible to conclude that this is not a good model since it performs a lot of fear

predictions with only one second. In one second exists fear, and the next one doesn’t. This

doesn’t occur in movies, if the movies transmit fear, that fear will be transmitted in the next

seconds and not in one unique second. In this movie, it is possible to see that exists fear in

the seconds 165 to the 193, and in all graph, there’s no peak of fear in a unique second.

With the audio features, represented in Figure 4.5, it’s possible to see the same thing,

but with these features, the predictability isn’t necessarily 100%.

The same methods for the best model in Section 4.3 have been implemented and the

graph is represented in Figure 4.6. The model was trained with a random split of the data

and certain movies were chosen to perform prediction, in summary, the training is randomly

separated but the test is not.

Figure 4.6 represents the movie 55 with the real and predicted tag, and the probability

of certain in each prediction, and as expected, forecasts are much better at predicting

nearly all correctly, and in certain situations, if the model is inaccurate, the probability of

confidence that it has is poor, having around 60% certainty of the prediction.

If improvements were made to the model predictions by changing isolated predictions,

better results could be obtained because there is no likelihood of fear in a single second or

vice versa. An example of change is to change the model’s prediction, for example, fear in

a single second, to no-fear.

50 CHAPTER 4. CLASSICAL CLASSIFIERS AND FEATURE ANALYSIS

4.5 Summary

Some conclusions can be drawn by comparing the results obtained with those of related

works. The best result achieved in related works using the same data as in this chapter

(MediaEval 2018) was an IoU of 0.15750. This result, proposed in [73], uses audio, scene

and action features and divides the data the same method as Section 4.3, different movies

to train and test. Using this type of division it was possible to obtain a result of 0.1017 IoU

utilizing only the feature sc. Both results were not positive, as the model cannot predict

fear.

When comparing the use of training/test set division at film level with division at sample

level (4.2 vs 4.3), the latter achieved better results. F1-scores improved from 0.185 to

0.725. When training and testing with distinct films there are far too many classification

errors, meaning that learning based on a set of films assigned to the training set did not

generalize for different films, and this is a very bad result which it is possible to say that

the model can’t predict fear. On the other hand, the predictions were much more accurate

when the ML algorithms were trained with about 80% of the samples coming from all

the videos present in the dataset, meaning that generalization is achieved for different

moments of the films. These observations suggest that the LIRIS-ACCEDE database may

not be sufficiently representative of the films universe. A larger dataset covering more film

variations should help to improve the learning processes.

Chapter 5

Deep Learning Classification

In this chapter, the Python library called Tensorflow is going to be used in order to try

to achieve improved results compared to Chapter 4. First, a baseline Neural Network is

created to verify what results are obtained, and then a deeper NN is deployed. Lastly, an

RNN is generated using the LSTM layers.

5.1 Baseline Neural Network

A Neural Network based on the [6] methodology work, containing three hidden layers of

64, 32, 32 neurons with an activation function called Rectified Linear Unit function, and

a learning rate equal to 0.001 was deployed. In this case, the NN contains four dense

layers and one dropout. The output, last dense layer, is composed of a dense layer with

an activation function sigmoid, which returns only values between 0 and 1. The optimizer

used is the Adam and has a loss function called binary cross-entropy. The dropout layer

was used with a factor of 0.5, meaning that 50% of the connections will be dropped and

whatever enters the dropdown will leave with half of the connections. The structure of this

NN can be seen in Figure 5.1.

Layer (type) Output Shape Param #
==
Dense 1 (None, 64) 343552
__

Dense 2 (None, 32) 2080
__

Dense 3 (None, 32) 1056
__

Dropout (None, 32) 0
__

Dense 4 (None, 1) 33
==
Total params: 346,721

Figure 5.1: Model created using TensorFlow.

51

52 CHAPTER 5. DEEP LEARNING CLASSIFICATION

Figure 5.2: Number of epochs by loss.

A tutorial/code made by TensorFlow [67] was used to classify the imbalanced data. The

LIRIS-ACCEDE dataset is imbalanced since the fear tag is much less frequent than the no-

fear tag, and in total there are 87456 seconds in which only 4.23% of all data contain the

tag fear. In this case the data used is the eleven visual features sets (the data is smaller,

comparing to all features sets, so the training and testing period is shorter, which makes it

easier to check whether the results are positive or bad), and samples were randomly split

for training and for testing (80% training / 20% testing).

In order not to waste the model’s first epochs discovering that the fear tag is unlikely,

the bias was changed using the eq. (5.1), retrieved from [67].

bias = −loge
samples fear

samples no fear
(5.1)

To show the benefit of bias shifting, the plot represented in Figure 5.2, depicts the train

and validation loss along 20 epochs, with and without the bias shifting using the data and

model described previously.

It is possible to see in Figure 5.2 that the change in bias improves a little in the training

of the model, but the loss of the validation data worsened in the ninth epoch, and in the

twentieth epoch the loss became almost the same as the model without the bias. Cross-

entropy loss is used because there are only two mark classes, 0 and 1, in this case, 0 is

no-fear and 1 is fear.

A model was trained. This baseline model contains the calculated bias, 100 epochs with

an early stopping monitoring the recall and a batch size of 4096.

5.1. BASELINE NEURAL NETWORK 53

Figure 5.3: Variation of the loss, accuracy, precision and recall.

54 CHAPTER 5. DEEP LEARNING CLASSIFICATION

Predicted label
no-fear fear

Actual no-fear 16586 180
label fear 273 453

Table 5.1: Confusion matrix.

.

Figure 5.4: ROC curve.

Analyzing Figure 5.3, the train line in recall doesn’t change much, from epoch 30, in

the training curve, and the validation curve stays in the 0.6 recall. Also, the loss in the

validation curve increases, which means that the longer the model is trained, the more loss

exists in the validation, in fact, this can mean that the model is over-fitting. This NN starts

to learn patterns that are appropriate to the training set and not good for generalization.

This leads the validation set to predict wrong, amplifying the loss [1]. On the other hand,

the loss in the training curve decrease. Accuracy, precision and recall make it easier to see

and provide other evidence that the model is over-fitting since the curve is nearly one. This

can occur because the data with the tag no-fear is much higher than the fear tag.

The testing with the baseline model was then used to perform predictions in the

remaining data. This model obtained an F1-score by predicting fear of 67.87% and no-fear

98.57%. Table 5.1 illustrates the confusion matrix of the model.

A ROC (Receiver Operating Characteristics) graph was implemented to see the

performance of the model because the ROC curve tells how the model classifies the fear

tag as fear and the no-fear tag as no-fear.

Analyzing the results obtained from the model, in Figure 5.4, it is possible to see that

the AUC in the validation is between 0.5 and 1 so that the algorithm can differentiate

5.1. BASELINE NEURAL NETWORK 55

Figure 5.5: Number of epochs by the loss, accuracy, precision and recall with class weights.

between fear and no-fear. The AUC in the test is almost 1, which means that the model can

distinguish almost all tags and this curve can intend to be an overfit on the train.

Then the same model but this time with different class weights calculated is trained.

These weights are calculated because the class fear is the one that has fewer samples

so needed too have more importance. This may lead the model to pay more attention to

examples in the under-represented class [67]. The no-fear class has a weight of 0.52 and

the class of fear is 11.83, applying eq.5.2, retrieved from [67].

weight =
total

2 ∗ class size
(5.2)

Analyzing the graphics in Figure 5.5 is possible to see that the loss no longer

decreases. In addition, the recall increases and the precision worsens, but overfitting

seems to continue to exist. The results were proximally close to the baseline model

achieve an F1-score by predicting fear of 70.74% and no-fear 98.54%.

As shown in Table 5.2, representing the confusion matrix, this model can predict

56 CHAPTER 5. DEEP LEARNING CLASSIFICATION

Predicted label
no-fear fear

Actual no-fear 16399 367
label fear 198 528

Table 5.2: Model with class weights.

Figure 5.6: ROC with all the models.

correctly the class fear 528 times and 16399 times the no-fear class but predict

incorrectly 565 times.

Lastly, a model with an oversampled data is trained. Fear class will be oversample so

that there is more data about fear. The model obtain an F1-score by predicting fear of

68.68% and no-fear 98.64%.

The ROC results for all models are shown in Figure 5.6. In the end, the study of the

ROC graph reveals that all the models obtains the same value of AUC in the testing, and

in the training all methods obtain a value close to 1, more specifically, the AUC in three

models is 0.8833, 0.9234 and 0.8798. In testing, the AUC has a value greater than 0.5,

which means that the models can differentiate the classes fear and no-fear.

Also, the data about the audio features were used. The same procedures were used and

the best result was 67,62% of F1-score by predicting fear.

Even tests using different films to train and test were made. The results were poor,

8,283% in the videos features sets were the best F1-score by predicting fear. By forecasting

fear, the audio features get a 9.687% of F1-score. The sc feature, which uses the Gaussion

algorithm to achieve the best result (18,5%), generates a result of 6.904% using this NN

algorithm.

5.2. DEEP NEURAL NETWORKS 57

F1-score fear (%) F1-score no-fear (%) IoU Time to train (min)

Baseline model 78.367 99.101 0.644 1.616

Weighted model 77.859 98.908 0.637 1.290

Oversampled model 78.358 99.073 0.644 8.084

Table 5.3: F1-score using the model with 5 hidden layers.

The audio and visual features combined were also used, as these features sets had

the best result with the MLP classifier, Scikit-learn algorithm (72.5% F1-score). So, the

Neural Network with the audio and visual features sets is deployed to see what results are

obtained, whether they are better or worse. Table 5.3 represents the approaches performed

following the same idea as previously.

The results in Table 5.3 produce improved results relative to the MLP Scikit-learn

algorithm, rising by about 6% in the F1-score of fear and 0.3% of no-fear. Also, IoU goes

from 0.569 to 0.644. It should be noted that the training time has also decreased from 51

minutes to approximately 2.

5.2 Deep Neural Networks

Deeper learning was performed in order to try to achieve better results. Firstly, the visual

feature sets are the data utilized and the data used in this section and Section 5.1 were

randomly separated so that the train and test data are different in the two sections. The

network’s complexity has been increased, with 10 dense layers and 9 dropouts because

several experiments were done with different layers and this model was the one with the

best result. Figure 5.7 reflects the new NN.

In an effort to prevent overfit, the 9 dropouts were included, but the results of the F1-

score did not change too much, staying in the seventies. Using the dropouts, gazing at the

same graphs that tell us the training history, helps to remove the overfit, as seen in Figure

5.8.

The experiments performed in Section 5.1 were also done with this Neural Network

(train the model with a calculated bias, also with class weights, and for the last train on the

oversampled data). The best result of F1-score is obtained by class weights and the value

of these weights is the same as Section 5.1, so the best F1-score result is 74.22% in the fear

class and 98.99% in the no-fear, increasing 3.48% and 0.45% respectively. In Table 5.4, the

confusion matrix is represented and tells how this NN behaves in the prediction of fear and

no-fear. It forecast fear 488 times out of 729 and no-fear 16665 times out of 16763, and

misses 339 times in total.

Experiments have also been carried out for all available data, visual and audio features

sets, as these are the ones that have achieved the greatest outcomes so far. Table 5.5

58 CHAPTER 5. DEEP LEARNING CLASSIFICATION

Layer (type) Output Shape Param #
===
Dense 1 (None, 1024) 5496832

Dropout 1 (None, 1024) 0

Dense 2 (None, 256) 262400

Dropout 2 (None, 256) 0

Dense 3 (None, 256) 65792

Dropout 3 (None, 256) 0

Dense 4 (None, 256) 65792

Dropout 4 (None, 256) 0

Dense 5 (None, 64) 16448

Dropout 5 (None, 64) 0

Dense 6 (None, 64) 4160

Dropout 6 (None, 64) 0

Dense 7 (None, 32) 2080

Dropout 7 (None, 32) 0

Dense 8 (None, 32) 1056

Dropout 8 (None, 32) 0

Dense 9 (None, 32) 1056

Dropout 9 (None, 32) 0

Dense 10 (None, 1) 33
===
Total params: 5,915,649

Figure 5.7: Model with 10 Dense layers and 9 Dropouts.

Predicted label
no-fear fear

Actual no-fear 16665 98
label fear 241 488

Table 5.4: Confusion matrix.

5.2. DEEP NEURAL NETWORKS 59

Figure 5.8: Number of epochs by the loss, accuracy, precision and recall.

60 CHAPTER 5. DEEP LEARNING CLASSIFICATION

F1-score fear (%) F1-score no-fear (%) IoU Time to train (min)

Baseline model 79.686 99.231 0.662 1.943

Weighted model 82.694 99.289 0.705 1.787

Oversampled model 84.014 99.336 0.724 18.143

Table 5.5: F1-score using the model with 10 Dense layers and 9 Dropouts.

Figure 5.9: ROC of the model with 10 Dense layers and 9 Dropouts.

describes the results with the different models.

Using a model with 10 dense layers and 9 dropouts, and oversampled data achieved

the best result so far, achieving an F1-score of 84.014% in the class fear. The only problem

is the training time with the oversampled model that takes 18 minutes to train, but in this

situation, if a quicker model is wanted the weighted model is the better one taking only 2

minutes and also obtaining a high F1-score result.

Analyzing Figure 5.9, it can be shown that all models, in the train, have an AUC of

approximately 1. This means that the model can distinguish what is fear and what is not,

so there is an slightly overfitting. The best model that achieves the best F1-score obtained

an AUC equal to 0.9132 in the training and the weighted model appears to have a smaller

AUC value in the training, relative to the other models.

5.3. RECURRENT NEURAL NETWORK 61

Layer (type) Output Shape Param #
===
LSTM 1 (None, 256, 256) 5758976

Dropout (None, 256, 256) 0

Dense (None, 256, 32) 8224

LSTM 2 (None, 256) 295936
===
Total params: 6,063,136

Figure 5.10: RNN model.

5.3 Recurrent Neural Network

Since the Recurrent Neural Network has proved effective in time-based predictions, RNNs

have been used to introduce another method. This approach has been embraced because

films involve time, and fear is defined in more than one second.

A simple RNN with 2 LSTM’s, a dense layer and a dropout was used. Figure 5.10

illustrates this RNN. The data was divided to form a 3D array, because the input to every

LSTM layer must be three-dimensional.

Each dimensional of the 3D array consist of the samples, the time steps and the features

[8]. In this test, the samples are the number of data that are possible to divide, for example,

the number of samples are five if a movie have 1280 seconds and the number of seconds to

feed the RNN are 256. The number of time steps is 256 seconds, and the features are the

visual features sets.

The visual features sets were used to feed the model but the 2D data have to be

reshaped and a time step of 256 has been used to do this. This 256 means that the model

will be fed with 256 consecutive seconds in each sample. In most cases, the length of the

movies is not a multiple of 256, and in these cases, the remaining seconds have been

dropped. For example, if the movie has 1480 seconds, the last 200 seconds were dropped

(256 seconds * 5 samples=1280 seconds and 1280 seconds + 200 seconds = 1480

seconds). Using this time step, the final 3D array results in the form of 309 samples and

5367 visual features (309, 256, 5367).

Using a Neural Network that requires a temporal sequence seems to be a good idea,

but the outcomes have not been the best. The best result was a 9% F1-score in the fear

class. As a result, it is concluded again that the database is not the best and does not have

enough data to predict fear.

62 CHAPTER 5. DEEP LEARNING CLASSIFICATION

5.4 Summary

Deeper learning achieved even greater results compared to Chapter 4. These results were

achieved using the random division of data, resulting in 84.014% of F1-score or IoU of

0.724 for fear prediction. Also, the data used was a combination of the visual and audio

features sets. Compared with the Related Work (3.1) the results were much better because

a different division of data was performed. Again, this leads to the conclusion that the

LIRIS-ACCEDE database may not be fully representative of the universe of films.

Both RNN results were weak, in the case of the related work an IoU of 0.11992 was

achieved and in the experiments carried out an F1-score of 9% was obtained. The features

used were only the visual ones, and the methodology followed in [32] deployed a single-

layer LSTM, while the experiments performed utilized 2 LSTM’s.

Chapter 6

Conclusions and Future Work

The main goal of this thesis was to predict the induction of fear sensations triggered by

audiovisual content, using machine learning techniques. The experiments reported here

use the LIRIS-ACCEDE database, which was previously used in the MediaEval

benchmarking initiative, in the scope of the 2018 Emotional Impact of Movies Task

challenge. Seven teams competed in this challenge producing outcomes for valence and

arousal estimates, and for the forecast of fear inducing movie content, sharing similar

goals as the ones of this dissertation. The LIRIS-ACCEDE database contains several

movies, where each segment of one second was annotated as fear inducing segment or

not. The work of this dissertation started by analyzing the approaches used by each one of

these teams. Afterward, the first main task was to reorganize the data from

LIRIS-ACCEDE in order to improve the efficiency of loading the data and prepare it for

each experiment, because the data is divided in a second of film per file. At the end of this

process, a Comma Separated Values (CSV) file for each movie set of features was created

(for instance, the data for the first movie consists of 12 CSV’s files representing the audio

plus each visual feature set). This implementation was essential in order to optimize the

data reading process required for feeding the machine learning classifiers.

The initial experiments were performed using the Scikit-learn library, which provided

efficient implementations for most of the classical ML classification methods. Afterward,

the TensorFlow library was used to create deeper neural network models, aiming at

surpassing the performance of the previously applied ML methods.

The large size of the database was an important factor to take into consideration, not

only because of memory issues but also because of execution time issues, since some of

the experiments demanded long periods of training time. The models based on LSTMs

demanded a significant memory size, as well as long periods of training, which turned out

to be a problem considering the existing resources. As a result, the results achieved using

such models were not optimized and, despite their potential, they turned out not to be the

best performing ones.

63

64 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

It has been concluded that the LIRIS-ACCEDE dataset, despite being very large, does

not contain a significant and representative set of movies for predicting emotions, such as

fear. This conclusion is drawn because when having some information about the videos in

the training and testing models the results are much better (the best was 84.0%) than

those achieved when the models are trained and tested with disjoint film sets. Of all the

experiments carried out, the best result was obtained by combining all the features

provided, audio and visual, and trained with a model created with TensorFlow, containing

10 dense layers and an extensive application of dropout. Through this model, an answer to

the question presented in the introduction is reached, concluding that deep learning is

more fitting for this type of problem because by increasing the size of the Neural Network

from 4 to 10 dense layers, better results are achieved. It is also worth noting that visual

feature sets have achieved a better outcome compared to audio, and Auto Color

Correlation (acc) is the best visual feature set. When the model is trained with all the

features combined, the f1-score for fear prediction, goes from 64% (all visual features) to

72.5%, combining the audio, results in an 8.5% improvement.

Concerning future directions, efforts should be made for producing larger databases

of annotated movies, in order to achieve a more significant content variability. With the

current dataset, we can train a model with samples associated to film segments and to

correctly predict fear induction in different segments of the same film. However, training

with a selection of movies and generalizing predictions for a different selection did not

achieve satisfactory results. Another topic that deserves further investigation is the

feature extraction process. Current visual features are based on key-frames, and therefore

they do not consider temporal movie characteristics, which may also be relevant to trigger

emotional states. Additionally, the use of Recurrent Neural Networks should be revisited

as more data becomes available.

Bibliography

[1] Soltius (https://stats.stackexchange.com/users/201218/soltius). How is it possible

that validation loss is increasing while validation accuracy is increasing as well.

Cross Validated. URL:https://stats.stackexchange.com/q/341054 (version:

2020-12-17). eprint: https : / / stats . stackexchange . com / q / 341054. URL:

https://stats.stackexchange.com/q/341054 (visited on 12/29/2020).

[2] Charu C. Aggarwal. “Educational and software resources for data classification”. In:

Data Classification: Algorithms and Applications (2014), pp. 657–665. DOI: 10.1201/

b17320.

[3] AudEERING. OpenSMILE - audEERING. 2019. URL: https://www.audeering.com/

opensmile/ (visited on 10/07/2020).

[4] Neelima Bagri and Punit Johari. “A Comparative Study on Feature Extraction using

Texture and Shape for Content Based Image Retrieval”. In: International Journal of

Advanced Science and Technology 80 (July 2015), pp. 41–52. DOI: 10.14257/ijast.

2015.80.04.

[5] Isaac N Bankman, Thomas S Spisz, and Sotiris Pavlopoulos. “Chapter 15 -

Two-Dimensional Shape and Texture Quantification”. In: ed. by

ISAAC N B T - Handbook of Medical Image Processing BANKMAN and

Analysis (Second Edition). Burlington: Academic Press, 2009, pp. 261–277. ISBN:

978-0-12-373904-9. DOI: https://doi.org/10.1016/B978-012373904-9.50024-6.

URL:

http://www.sciencedirect.com/science/article/pii/B9780123739049500246

(visited on 10/27/2020).

[6] Elissavet Batziou et al. “Visual and audio analysis of movies video for emotion

detection @ Emotional Impact of Movies task MediaEval 2018”. In: CEUR Workshop

Proceedings 2283.October (2018), pp. 29–31. ISSN: 16130073.

[7] Jason Brownlee. Gentle Introduction to the Adam Optimization Algorithm for Deep

Learning. 2017. URL: https : / / machinelearningmastery . com / adam -

optimization-algorithm-for-deep-learning/ (visited on 09/19/2020).

65

https://stats.stackexchange.com/q/341054
https://stats.stackexchange.com/q/341054
https://doi.org/10.1201/b17320
https://doi.org/10.1201/b17320
https://www.audeering.com/opensmile/
https://www.audeering.com/opensmile/
https://doi.org/10.14257/ijast.2015.80.04
https://doi.org/10.14257/ijast.2015.80.04
https://doi.org/https://doi.org/10.1016/B978-012373904-9.50024-6
http://www.sciencedirect.com/science/article/pii/B9780123739049500246
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

66 BIBLIOGRAPHY

[8] Jason Brownlee. How to Reshape Input Data for Long Short-Term Memory Networks

in Keras. 2017. URL: https://machinelearningmastery.com/reshape- input-

data-long-short-term-memory-networks-keras/ (visited on 10/25/2020).

[9] Amar Budhiraja. Dropout in (Deep) Machine learning. URL: https :

//medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-

less- to- learn- better- dropout- in- deep- machine- learning- 74334da4bfc5

(visited on 10/30/2020).

[10] Bugraakyildiz. Industry Similarity via Jaccard Index. 2015. URL:

https://axialcorps.wordpress.com/2015/05/01/industry-similarity-via-

jaccard-index/ (visited on 01/07/2020).

[11] Savvas Chatzichristofis and Yiannis Boutalis. CEDD: Color and Edge Directivity

Descriptor: A Compact Descriptor for Image Indexing and Retrieval. 2008,

pp. 312–322.

[12] Savvas Chatzichristofis and Yiannis Boutalis. “FCTH: Fuzzy Color and Texture

Histogram - A Low Level Feature for Accurate Image Retrieval”. In: WIAMIS 2008 -

Proceedings of the 9th International Workshop on Image Analysis for Multimedia

Interactive Services. 2008, pp. 191–196. ISBN: 978-0-7695-3344-5. DOI:

10.1109/WIAMIS.2008.24.

[13] Savvas A. Chatzichristofis, Avi Arampatzis, and Yiannis S. Boutalis. “Investigating the

behavior of compact composite descriptors in early fusion, late fusion and distributed

image retrieval”. In: Radioengineering 19.4 (2010), pp. 725–733. ISSN: 12102512.

[14] L Universite Claude and Bernard Lyon. “PHD THESIS D ´ etection des ´ par Rizwan

Ahmed KHAN”. In: (2013).

[15] Yann N. Dauphin, Harm De Vries, and Yoshua Bengio. “Equilibrated adaptive

learning rates for non-convex optimization”. In: Advances in Neural Information

Processing Systems 2015-Janua.April (2015), pp. 1504–1512. ISSN: 10495258.

arXiv: 1502.04390.

[16] Emmanuel Dellandréa et al. “The MediaEval 2018 emotional impact of Movies task”.

In: CEUR Workshop Proceedings 2283 (2018), pp. 6–8. ISSN: 16130073.

[17] Jonas DeMuro. “What is a neural network?” In: IOP Publishing Ltd, 2019. DOI: 10.

1887/0750303123/b365c4. URL: https://www.techradar.com/news/what-is-a-

neural-network (visited on 01/06/2020).

[18] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE

conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[19] Google Developers. Classification: ROC Curve and AUC. 2019. URL:

https : / / developers . google . com / machine - learning / crash -

course/classification/roc-and-auc (visited on 08/16/2020).

https://machinelearningmastery.com/reshape-input-data-long-short-term-memory-networks-keras/
https://machinelearningmastery.com/reshape-input-data-long-short-term-memory-networks-keras/
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://axialcorps.wordpress.com/2015/05/01/industry-similarity-via-jaccard-index/
https://axialcorps.wordpress.com/2015/05/01/industry-similarity-via-jaccard-index/
https://doi.org/10.1109/WIAMIS.2008.24
https://arxiv.org/abs/1502.04390
https://doi.org/10.1887/0750303123/b365c4
https://doi.org/10.1887/0750303123/b365c4
https://www.techradar.com/news/what-is-a-neural-network
https://www.techradar.com/news/what-is-a-neural-network
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

BIBLIOGRAPHY 67

[20] Cheng-Jin Du and Da-Wen Sun. Computer Vision Technology for Food Quality

Evaluation. 2008. URL: https : / / www . sciencedirect . com / topics / computer -

science/decision-tree-classifier (visited on 10/16/2020).

[21] Sydney Firmin. Tidying up with PCA: An Introduction to Principal Components

Analysis. 2019. URL: https://towardsdatascience.com/tidying-up-with-pca-

an-introduction-to-principal-components-analysis-f876599af383 (visited on

01/09/2020).

[22] R Gandhi. Support Vector Machine — Introduction to Machine Learning Algorithms.

2018. URL: https : / / towardsdatascience . com / support - vector - machine -

introduction - to - machine - learning - algorithms - 934a444fca47 (visited on

01/08/2020).

[23] Onel Harrison. Machine Learning Basics with the K-Nearest Neighbors Algorithm.

URL: https://towardsdatascience.com/machine-learning-basics-with-the-k-

nearest-neighbors-algorithm-6a6e71d01761 (visited on 10/23/2020).

[24] Jie Hu et al. “Squeeze-and-Excitation Networks”. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 42.8 (2020), pp. 2011–2023. ISSN: 19393539.

DOI: 10.1109/TPAMI.2019.2913372. arXiv: 1709.01507.

[25] ImageNet. About ImageNet. URL: http://image-net.org/about-overview (visited

on 11/06/2020).

[26] Muhammad Imran et al. “Class wise image retrieval through scalable color descriptor

and edge histogram descriptor”. In: (2016). URL: http://www.science-gate.com/

IJAAS/V3I12/Imran.html (visited on 10/15/2020).

[27] Chayan Kathuria. Regression — Why Mean Square Error? 2019. URL: https://

towardsdatascience.com/https-medium-com-chayankathuria-regression-why-

mean-square-error-a8cad2a1c96f (visited on 01/08/2020).

[28] Keras. ResNet-50. 2015. URL: https://www.kaggle.com/keras/resnet50 (visited

on 10/18/2020).

[29] Aditya Khosla. Places2: A Large-Scale Database for Scene Understanding. 2016.

URL: http://places2.csail.mit.edu/download.html (visited on 10/07/2020).

[30] Tobey H. Ko et al. “Towards learning emotional subspace”. In: CEUR Workshop

Proceedings 2283.3 (2018), pp. 4–6. ISSN: 16130073.

[31] Miroslav Kubat. “An Introduction to Machine Learning”. In: An Introduction to

Machine Learning (2017), pp. 1–348. DOI: 10.1007/978-3-319-63913-0.

[32] Chloe Loughridge and Julia Moseyko. “IM-JAIC at MediaEval 2018 Emotional Impact

of Movies Task Chloe”. In: CEUR Workshop Proceedings 2283.October (2018). ISSN:

16130073.

https://www.sciencedirect.com/topics/computer-science/decision-tree-classifier
https://www.sciencedirect.com/topics/computer-science/decision-tree-classifier
https://towardsdatascience.com/tidying-up-with-pca-an-introduction-to-principal-components-analysis-f876599af383
https://towardsdatascience.com/tidying-up-with-pca-an-introduction-to-principal-components-analysis-f876599af383
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://doi.org/10.1109/TPAMI.2019.2913372
https://arxiv.org/abs/1709.01507
http://image-net.org/about-overview
http://www.science-gate.com/IJAAS/V3I12/Imran.html
http://www.science-gate.com/IJAAS/V3I12/Imran.html
https://towardsdatascience.com/https-medium-com-chayankathuria-regression-why-mean-square-error-a8cad2a1c96f
https://towardsdatascience.com/https-medium-com-chayankathuria-regression-why-mean-square-error-a8cad2a1c96f
https://towardsdatascience.com/https-medium-com-chayankathuria-regression-why-mean-square-error-a8cad2a1c96f
https://www.kaggle.com/keras/resnet50
http://places2.csail.mit.edu/download.html
https://doi.org/10.1007/978-3-319-63913-0

68 BIBLIOGRAPHY

[33] A Agnes Lydia and F Sagayaraj Francis. “Adagrad: An Optimizer for Stochastic

Gradient Descent”. In: International Journal of Information and Computer Science

6.5 (2019), pp. 566–568. arXiv: 1609.04747. URL: http://ijics.com.

[34] Ec-lyon.fr. LIRIS-ACCEDE. 2015. URL:

https://liris-accede.ec-lyon.fr/database.php (visited on 01/07/2020).

[35] Ye Ma, Xihao Liang, and Mingxing Xu. “THUHCSI in MediaEval 2018 Emotional

Impact of Movies Task”. In: CEUR Workshop Proceedings 2283 (2018). ISSN:

16130073.

[36] J Magiya. Pearson Coefficient of Correlation Explained. 2019. URL:

https : / / towardsdatascience . com / pearson - coefficient - of - correlation -

explained-369991d93404 (visited on 01/07/2020).

[37] Pedro Marcelino. Transfer learning from pre-trained models. 2018. URL:

https://towardsdatascience.com/transfer- learning- from- pre- trained-

models-f2393f124751 (visited on 09/05/2020).

[38] Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. Software available from tensorflow.org. 2015. URL:

https://www.tensorflow.org/ (visited on 09/26/2020).

[39] Mathworks.com. Understanding Support Vector Machine Regression. 2019. URL:

https://www.mathworks.com/help/stats/understanding- support- vector-

machine-regression.html (visited on 01/15/2020).

[40] Mathworks.com. vgg16. URL: https://www.mathworks.com/help/deeplearning/

ref/vgg16.html (visited on 09/01/2020).

[41] Mathworks.com. What Is Deep Learning? 3 things you need to know. 2019. URL:

https : / / www . mathworks . com / discovery / deep - learning . html (visited on

07/02/2020).

[42] Aditi Mittal. Understanding RNN and LSTM. 2019. URL:

https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e

(visited on 10/15/2020).

[43] Multimediaeval.org. About MediaEval. 2019. URL: http://www.multimediaeval.

org/about/ (visited on 11/06/2019).

[44] Sarang Narkhede. Understanding AUC - ROC Curve. URL:

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

(visited on 10/29/2020).

[45] Naxingyu. naxingyu/opensmile. 2019. URL:

https://github.com/naxingyu/opensmile (visited on 10/11/2020).

[46] Neurohive.io. VGG16 - Convolutional Network for Classification and Detection.

2018. URL: https://neurohive.io/en/popular- networks/vgg16/ (visited on

09/07/2020).

https://arxiv.org/abs/1609.04747
http://ijics.com
https://liris-accede.ec-lyon.fr/database.php
https://towardsdatascience.com/pearson-coefficient-of-correlation-explained-369991d93404
https://towardsdatascience.com/pearson-coefficient-of-correlation-explained-369991d93404
https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751
https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751
https://www.tensorflow.org/
https://www.mathworks.com/help/stats/understanding-support-vector-machine-regression.html
https://www.mathworks.com/help/stats/understanding-support-vector-machine-regression.html
https://www.mathworks.com/help/deeplearning/ref/vgg16.html
https://www.mathworks.com/help/deeplearning/ref/vgg16.html
https://www.mathworks.com/discovery/deep-learning.html
https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e
http://www.multimediaeval.org/about/
http://www.multimediaeval.org/about/
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://github.com/naxingyu/opensmile
https://neurohive.io/en/popular-networks/vgg16/

BIBLIOGRAPHY 69

[47] Aleksander Obuchowski. Understanding neural networks 1: The concept of neurons.

2019. URL: https://becominghuman.ai/understanding-neural-networks-1-the-

concept-of-neurons-287be36d40f (visited on 07/10/2020).

[48] Dong Kwon Park, Yoon Seok Jeon, and Chee Sun Won. “Efficient use of local edge

histogram descriptor”. In: (2000), pp. 51–54. DOI: 10.1145/357744.357758.

[49] Ken Peffers et al. “A design science research methodology for information systems

research”. In: Journal of Management Information Systems 24.3 (2007), pp. 45–77.

ISSN: 07421222. DOI: 10.2753/MIS0742-1222240302.

[50] Places2.csail.mit.edu. Places: A 10 million Image Database for Scene Recognition.

URL: http://places2.csail.mit.edu/ (visited on 10/18/2020).

[51] Wichian Premchaiswadi and Anucha Tungkasthan. A compact auto color correlation

using binary coding stream for image retrieval. 2011, pp. 430–436.

[52] Khanh An C. Quan, Vinh Tiep Nguyen, and Minh Triet Tran. “Frame-based

evaluation with deep features to predict emotional impact of movies”. In: CEUR

Workshop Proceedings 2283 (2018), pp. 2–4. ISSN: 16130073.

[53] Quora.com. What is the deep neural network known as “ResNet-50”? - Quora. 2014.

URL: https://www.quora.com/What-is-the-deep-neural-network-known-as-

%E2%80%9CResNet-50%E2%80%9D (visited on 11/06/2020).

[54] Sebastian Raschka. Linear Discriminant Analysis. 2014. URL: https :

//sebastianraschka.com/Articles/2014%7B%5C_%7Dpython%7B%5C_%7Dlda.html

(visited on 09/09/2020).

[55] A. Rosebrock. Intersection over Union (IoU) for object detection. 2016. URL: https:

//www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-

object-detection/ (visited on 01/06/2020).

[56] Tim Ruscica. Introduction to Neural Networks. 2020. URL:

https : / / colab . research . google . com / drive / 1m2cg3D1x3j5vrFc -

Cu0gMvc48gWyCOuG%7B%5C#%7DforceEdit=true%7B%5C&%7DsandboxMode=true%7B%

5C&%7DscrollTo=jqVqT%7B%5C_%7DCxh4Ho (visited on 06/08/2020).

[57] Salouan S. Safi and B. Bouikhalene. “Printed Noisy Greek Characters Recognition

Using Hidden Markov Model, Kohonen Network, K Nearest Neighbours and Fuzzy

Logic”. In: International Journal of Signal Processing, Image Processing and Pattern

Recognition 8.10 (2015), pp. 241–256. ISSN: 20054254. DOI: 10.14257/ijsip.2015.

8.10.26.

[58] Sumit Saha. A Comprehensive Guide to Convolutional Neural Networks — the ELI5

way. 2018. URL: https://towardsdatascience.com/a- comprehensive- guide-

to- convolutional- neural- networks- the- eli5- way- 3bd2b1164a53 (visited on

01/05/2020).

https://becominghuman.ai/understanding-neural-networks-1-the-concept-of-neurons-287be36d40f
https://becominghuman.ai/understanding-neural-networks-1-the-concept-of-neurons-287be36d40f
https://doi.org/10.1145/357744.357758
https://doi.org/10.2753/MIS0742-1222240302
http://places2.csail.mit.edu/
https://www.quora.com/What-is-the-deep-neural-network-known-as-%E2%80%9CResNet-50%E2%80%9D
https://www.quora.com/What-is-the-deep-neural-network-known-as-%E2%80%9CResNet-50%E2%80%9D
https://sebastianraschka.com/Articles/2014%7B%5C_%7Dpython%7B%5C_%7Dlda.html
https://sebastianraschka.com/Articles/2014%7B%5C_%7Dpython%7B%5C_%7Dlda.html
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://colab.research.google.com/drive/1m2cg3D1x3j5vrFc-Cu0gMvc48gWyCOuG%7B%5C#%7DforceEdit=true%7B%5C&%7DsandboxMode=true%7B%5C&%7DscrollTo=jqVqT%7B%5C_%7DCxh4Ho
https://colab.research.google.com/drive/1m2cg3D1x3j5vrFc-Cu0gMvc48gWyCOuG%7B%5C#%7DforceEdit=true%7B%5C&%7DsandboxMode=true%7B%5C&%7DscrollTo=jqVqT%7B%5C_%7DCxh4Ho
https://colab.research.google.com/drive/1m2cg3D1x3j5vrFc-Cu0gMvc48gWyCOuG%7B%5C#%7DforceEdit=true%7B%5C&%7DsandboxMode=true%7B%5C&%7DscrollTo=jqVqT%7B%5C_%7DCxh4Ho
https://doi.org/10.14257/ijsip.2015.8.10.26
https://doi.org/10.14257/ijsip.2015.8.10.26
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

70 BIBLIOGRAPHY

[59] SBCoaching. Emoções: definição, tipos e importância de se ter o controle. 2019. URL:

https://www.sbcoaching.com.br/blog/emocoes/ (visited on 01/05/2020).

[60] Scribd. Gradient Descent - Problem of Hiking Down a Mountain: Derivatives. URL:

https://pt.scribd.com/document/456344322/Gradient- Descent (visited on

09/20/2020).

[61] Sweta Shaw. RMSprop : A Better Way to Optimize Your Model. 2019. URL: https:

//medium.com/@shwetaka1988/rmsprop- a- better- way- to- optimize- your-

model-bc4eaca33090 (visited on 10/05/2020).

[62] Koo Ping Shung. Accuracy, Precision, Recall or F1? 2018. URL: https :

//towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9

(visited on 07/19/2020).

[63] Lindsay Smith. “A tutorial on PCSA”. In: Department of Computer Science,

University of Otago. (2006), pp. 12–28. DOI:

http://www.cs.otago.ac.nz/research/techreports.php.

[64] Saishruthi Swaminathan. “Logistic Regression — Detailed Overview”. In: (). URL:

https://towardsdatascience.com/logistic-regression-detailed-overview-

46c4da4303bc (visited on 10/20/2020).

[65] Expert System. What is Machine Learning? A definition. 2017. URL:

https : / / expertsystem . com / machine - learning - definition/ (visited on

10/02/2020).

[66] Christian Szegedy et al. “Inception v4”. In: Population Health Management 18.3

(2015), pp. 186–191. ISSN: 1942-7891. arXiv: 1409 . 4842v1. URL:

http://online.liebertpub.com/doi/10.1089/pop.2014.0089.

[67] TensorFlow. Recurrent Neural Networks (RNN) with Keras. 2020. URL: https://

www.tensorflow.org/guide/keras/rnn (visited on 09/20/2020).

[68] Statistics How To. Mean Squared Error: Definition and Example - Statistics How To.

2013. URL: https://www.statisticshowto.com/mean-squared-error/ (visited on

10/20/2020).

[69] www.oreilly.com. Mean squared error - Hands-On Machine Learning for

Cybersecurity [Book]. URL:

https : / / www . oreilly . com / library / view / hands - on - machine -

learning / 9781788992282 / 3da539f8 - 3925 - 47d7 - b3dd - 61ae8420c8e8 . xhtml

(visited on 10/20/2020).

[70] Www.sciencedirect.com. “Local Binary Pattern”. In: (). URL:

https://www.sciencedirect.com/topics/engineering/local-binary-pattern

(visited on 10/15/2020).

https://www.sbcoaching.com.br/blog/emocoes/
https://pt.scribd.com/document/456344322/Gradient-Descent
https://medium.com/@shwetaka1988/rmsprop-a-better-way-to-optimize-your-model-bc4eaca33090
https://medium.com/@shwetaka1988/rmsprop-a-better-way-to-optimize-your-model-bc4eaca33090
https://medium.com/@shwetaka1988/rmsprop-a-better-way-to-optimize-your-model-bc4eaca33090
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://doi.org/http://www.cs.otago.ac.nz/research/techreports.php
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://expertsystem.com/machine-learning-definition/
https://arxiv.org/abs/1409.4842v1
http://online.liebertpub.com/doi/10.1089/pop.2014.0089
https://www.tensorflow.org/guide/keras/rnn
https://www.tensorflow.org/guide/keras/rnn
https://www.statisticshowto.com/mean-squared-error/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781788992282/3da539f8-3925-47d7-b3dd-61ae8420c8e8.xhtml
https://www.oreilly.com/library/view/hands-on-machine-learning/9781788992282/3da539f8-3925-47d7-b3dd-61ae8420c8e8.xhtml
https://www.sciencedirect.com/topics/engineering/local-binary-pattern

BIBLIOGRAPHY 71

[71] www.semanticscholar.org. Color layout descriptor. URL:

https://www.semanticscholar.org/topic/Color- layout- descriptor/36875

(visited on 10/15/2020).

[72] Rikiya Yamashita et al. “Convolutional neural networks: an overview and application

in radiology”. In: Insights into Imaging 9.4 (2018), pp. 611–629. ISSN: 18694101.

DOI: 10.1007/s13244-018-0639-9.

[73] Yun Yi, Hanli Wang, and Qinyu Li. “CNN features for emotional impact of movies

task”. In: CEUR Workshop Proceedings 2283.October (2018), pp. 29–31. ISSN:

16130073.

[74] Tony Yiu. Understanding neural networks. 2019. DOI: 10 . 2307 / 1270439. URL:

https : / / towardsdatascience . com / understanding - neural - networks -

19020b758230 (visited on 01/09/2020).

[75] Liang Chih Yu et al. “Building Chinese affective resources in valence-arousal

dimensions”. In: 2016 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, NAACL HLT 2016 -

Proceedings of the Conference June (2016), pp. 540–545. DOI:

10.18653/v1/n16-1066.

[76] Xiaotong Zhang et al. “Imbalance learning-based framework for fear recognition in

the mediaeval emotional impact of movies task”. In: Proceedings of the Annual

Conference of the International Speech Communication Association, INTERSPEECH

2018-September.September (2018), pp. 3678–3682. ISSN: 19909772. DOI:

10.21437/Interspeech.2018-1744.

[77] Jaime Zornoza. Logistic Regression Explained. 2020. URL: https :

/ / towardsdatascience . com / logistic - regression - explained - 9ee73cede081

(visited on 10/18/2020).

https://www.semanticscholar.org/topic/Color-layout-descriptor/36875
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.2307/1270439
https://towardsdatascience.com/understanding-neural-networks-19020b758230
https://towardsdatascience.com/understanding-neural-networks-19020b758230
https://doi.org/10.18653/v1/n16-1066
https://doi.org/10.21437/Interspeech.2018-1744
https://towardsdatascience.com/logistic-regression-explained-9ee73cede081
https://towardsdatascience.com/logistic-regression-explained-9ee73cede081

Noname manuscript No.

(will be inserted by the editor)

Automatic detection of fear-inducing segments in videos

André Maia · Tomás Brandão · Fernando Batista

06 January 2021

Abstract This paper explores the use of machine learning to predict the emotional
e�ects triggered by video, more speci�cally, the automated recognition of fear-inducing
segments. LIRIS-ACCEDE dataset is used in the experiments because it includes sev-
eral sets of features annotated as fear, which are extracted for every second of each
movie. Both classical and deep learning techniques have been implemented and evalu-
ated, using the scikit-learn and TensorFlow machine learning libraries.

Two di�erent approaches for training and testing have been followed: �lm-level
dataset splitting, where di�erent �lms were used for training and testing; and sample-
level dataset splitting, which allowed that di�erent samples coming from the same
�lms were used for training and testing. The experimental results indicate that LIRIS-
ACCEDE dataset does not contain a signi�cant and representative set of movies for
predicting emotions, such as fear because from the two approaches performed of split-
ting the data the second approach achieved a F1-score of about 84.0% instead of 18.5%
from the �rst approach.

Keywords Machine Learning & Emotional Prediction, Fear Prediction, Video Clas-
si�cation, Deep Learning

1 Introduction

Human beings, according to scientists, can manifest up to twenty seven distinct emo-
tions SBCoaching 2019, and human emotions can be mapped into six di�erent cat-
egories: Happy; Sad; Angry; Fear/Worry; Surprise; and Disgust, proposed by Ekman
(Claude and Lyon, 2013). Machine learning (ML) is a technique used to handle di�cult
tasks, such as detecting the emotional impact of movies, face recognition, data min-
ing, among others, and can solve very complicated tasks taking much less time than a
human Kubat 2017. Automatically detecting fear induced by a �lm is a di�cult task

andre_maia@iscte-iul.pt

tomas.brandao@iscte-iul.pt

fernando.batista@iscte-iul.pt

2 André Maia et al.

and ML can help to perform this detection, which can be very bene�cial having many
advantages, such as:

� Video summarization mechanisms that take emotional factor into consideration,
summarizing the video according to excerpts that represent emotional states.

� Improving the recommendation mechanisms and personalization of video transmis-
sion services. For instance, to evaluate a �lm in order to produce tags according to
the triggered emotional states.

� Protect viewers from content that could a�ect them, such as children and more
vulnerable people. For example, �lter material to protect a child who surfs the
Internet watching a variety of videos, by blocking content that may include violent
or disturbing scenes.

When watching movies, feelings and states of mind are induced into the viewers. Since
no one is identical, the induced emotions may di�er from person to person. Analyzing
the emotional impact of a video clip on audiences may also be used to strengthen
or monitor the psychological in�uence of media on persons, to maximize audience
interaction with media material, or to create customized media content Quan, Nguyen,
and Tran 2018.

The key purpose of this article is to determine the emotional e�ect of audiovisual
content on individuals, more speci�cally the fear. A dataset named LIRIS-ACCEDE

Ec-lyon.fr 2015, which provides a total of 56 movies, corresponding to approximately
to 24 hours, with annotations focused on fear, valence and arousal, was used. This
database already includes several sets of features, extracted for every second of each
movie, such as color and texture visual features, audio features, etc., providing a total
of twelve features sets containing a large amount of features.

Di�erent approaches are proposed in order to evaluate the results, which feature
sets and ML models lead to the best results in predicting the fear inducing segments
of the movies. Two separate training and testing methods are used: the �rst one is to
split the data at �lm level, getting samples coming from di�erent �lms for training and
testing, while the second is less restrictive, randomly splitting the data at the sample
level, causing samples of all movies to appear in the train and test sets.

Two Python libraries, called Scikit-learn and TensorFlow, are used for the esti-
mation of fear inducing �lm segments. Seven scikit-learn classi�ers are used for the
implementation of classical ML models, such as Gaussian Naive Bayes, Decision Tree
Classi�er, Logistic Regression, among others; TensorFlow is used for the development
of deep neural networks.

2 Related work

The starting point for this article were the ideas behind a �benchmarking initiative
dedicated to evaluating new algorithms for multimedia access and retrieval� called Me-

diaEval (Multimediaeval.org, 2019). MediaEval organizes several challenges on image
and video recognition tasks. Among them, the one called The MediaEval 2018 Emo-

tional Impact of Movies Task is very close to the purpose of this article, and therefore
it will be further analyzed and studied.

The main objective MediaEval 2018 Emotional Impact of Movies Task is to create a
machine learning based program that automatically predicts the emotional impact that
video content causes in its viewers (Dellandréa et al., 2018). The task's participants are

Automatic detection of fear-inducing segments in videos 3

supposed to deploy multimedia features and models that allow to predict the emotion
felt by most of the audience watching the movie. Each participant team should consider
two scenarios as sub-tasks:

1. Valence and Arousal prediction: it's expected to continuously predict a score of
valence and arousal (i.e., every second) along the duration of the movie subject
to analysis. Valence is classi�ed as a scale, form the most unpleasant to the most
pleasant emotional state, while Arousal is quanti�ed from the calmest to the most
exciting emotional states;

2. Fear detection: the participants are required to present a method that allows to pre-
dict the beginning and ending times of fear inducing sequences within the movies.

Di�erent teams proposed di�erent methods to handle the challenge. The sub-task men-
tioned in the following lines is fear detection, which de�nes methods that classify each
sample individually from the remaining ones, and approaches that take advantage of
potential temporal dependencies of the samples, classifying sample sequences and not
isolated ones. All approaches performed 4 Runs which will be described individually.

The approach proposed in (Yi, Wang, and Li, 2018) uses four sets of features that
could in�uence emotions: audio, action, object and scene features, which are extracted
using pre-trained convolutional neural networks. They performed 4 runs and each one
is consisted of:

1. Features provided by Mediaeval

2. Audio and scene features
3. Audio, scene and object features
4. Audio, scene and action features
5. Audio, scene, object and action features

The audio features were extracted using VGGish (Martin Abadi et al., 2015). A CNN
is used to extract the action features, which contains two separate recognition streams,
spatial and temporal. Object features are obtained by a CNN called the Squeeze-and-
Excitation Network (SENet). Lastly, pre-trained ResNet-50 model on Places365 extract
the scene features.

The best result was obtained by Run 4, using audio, scene and action features,
achieving IoU value of 0.1575.

Another strategy was proposed in (Batziou et al., 2018), followed by 4 Runs for
the fear subtask:

1. Run 1 consists of visual based classi�cation and uses transfer learning approach
based on the pre-trained VGG16 model for Places2 dataset;

2. Run 2 is similar to Run 1, with additional post-processing to remove isolated pre-
dictions;

3. Run 3 is based on audio features only, using a neural network with 3 hidden layers
for classi�cation;

4. Run 4 also uses a NN combining the audio features with the visual features provided
in LIRIS-ACCEDE (subject to PCA).

The best result was obtained by Run 1 achieving a value of IoU equal to 0.075.
In the work proposed by Ko et al. in (Ko et al., 2018) Bias Discriminatory Embed-

ding algorithm (BDE) was used to learn fear. Each Run is composed by aD-dimensional
target subspace with D = 4, 5, 9, 10, respectively. The outcome was quite unsatisfac-
tory obtaining 0.1052 of IoU, which may be due to a high dataset imbalance between
the fear and no-fear classes.

4 André Maia et al.

The last work performed by (Ma, Liang, and Xu, 2018), implement time-sequential
models, and each run uses LSTMs. The best result achieved 0.11992 of IoU, de�ned as
a single-layer LSTM with visual features.

3 Classical Classi�ers and Feature Analysis

This chapter describes the experiments carried out to evaluate which sets of features
and classi�ers lead to the best results in fear detection. The details of the experimental
setup can be found in Section 3.1.

In the �rst round of experiments, reported in Section 3.2, training and test sets are
disjoint at video level, meaning that the samples in the training set come from di�erent
videos than those used in the testing set. However, this training/testing methodology
lead to poor classi�cation performance, suggesting that the the videos used in the
training set are not representative of those used in the test set.

In order to tackle this problem, another approach was followed by using samples
from the same videos for training and for testing. i.e., training and test sets are disjoint
at sample level, and thus with less restrictions than the �rst approach. Both the training
an test sets will therefore contain samples taken from the same videos, meaning that,
on the same video, a set of samples is randomly assigned to the training set while the
remaining ones are assigned to the test set. The experiments that follow this approach
are described in Section 3.3.

3.1 Experimental Setup

This section describes the experimental setup performed to identify feature sets that
are most relevant for the fear prediction. The LIRIS-ACCEDE is the main dataset
used in this article and consists of a collection of 160 �lms made by professionals and
amateurs, shared under Creative Commons licenses that allow content redistribution.
From the full �lm set, 56 which contains annotations regarding the fear-inducing movie
parts, as well as values for valence and arousal are the ones used. Audio features have
been extracted with the Smile toolbox, considering a 5-second window sliding through
the entire movie, with one-second shifts, leading to one audio feature vector per video
second, resulting in 1583 features. Video features, were computed from key frames
extracted from every second of video. In total, it includes eleven sets of visual features
and a single of audio feature.

As for the machine learning classi�ers used in the experiments reported in this
chapter, the following have been used:

� Linear Discriminant Analysis.
� Decision Tree Classi�er.
� K-Nearest Neighbor.
� Multi-layer Perceptron (MLP) Classi�er (Neural Network).
� Gaussian Naive Bayes Classi�er.
� Logistic Regression Classi�er.
� Linear Support Vector Classi�er.

All these classi�ers were tested in order to evaluate which ones lead to the best results
in the fear inducing prediction task. Their implementations are available in the scikit-
learn python library.

Automatic detection of fear-inducing segments in videos 5

The other main goal of this chapter is to determine which feature sets, or feature
set combinations, are the most suitable for the task of predicting fear inducing movie
segments. To accomplish this task, the following �ow of experiments was performed:

1. Each individual set of features available in LIRIS-ACCEDE was, in turn, used as
the classi�ers input. The goal was to evaluate the discriminating power of each
feature set.

2. The feature sets leading to the best results in the previous step were combined and
used as the classi�ers input.

3. All visual features sets were combined into a single feature vector used as input for
all tested classi�ers.

4. Identical to the previous step, but in this case the training set was additionally
subject to a class balancing procedure .

5. Finally, all audio and visual features sets were combined.

All the experiments share the same principle: to train and predict the presence of fear-
inducing video samples using the seven machine learning classi�ers and variations in
the feature data used as the classi�ers input.

3.2 Using Di�erent Films for Training and Testing

This section reports the experiments done using a training and test sets are composed
of completely di�erent sets of videos. The principle is that the video materials were
initially split into 44 videos for training and the remaining 12 for testing. The training
set contains a total of 55251 samples (one sample for each second of video), covering
approximately 15 hours of video; as for the testing set, it contains 32205 samples,
covering approximately 9 hours of video. The experiments described in Section 3.1
were then performed.

Since the number of samples with fear is much smaller than the number of samples
without fear, accuracy is not a good evaluation metric. In conclusion, since the dataset
classes are unbalanced the F1-score was used as the assessment metric, as it relies on
the precision and recall metrics to compute the �nal outcome. The IoU metric is also
robust to class unbalancing and therefore it is also an adequate performance assessment
metric for the fear prediction task.

The best results from the experiments described in Section 3.1 are represented
in Table 1. The F1-score column depicts two values separated by '/': the �rst value
re�ects the F1-score for predicting the fear inducing class, while the second value is
the F1-score for predicting the no-fear class.

The �rst experiments consisted of training a set of scikit-learn classi�cation al-
gorithms, synthesized at the beginning of this chapter, using features coming from
individual sets of visual and audio features. The goal was to �nd out which of the fea-
ture sets are the most promising ones, when the task is to predict the temporal video
intervals that induce fear into the viewer. Then best feature sets, which are cl, eh, fc6
and sc (achieving 14.3, 14.3, 13.5 and 18.5 per cent of fear prediction, respectively),
were combined in order to check if better results are obtained by using a larger amount
of features for classi�cation. These feature sets represent the color of the image, the
edge types in an image, values extracted using VGG16 CNN, and the color signatures,
respectively. Class balancing with all visual features sets was done because the 87456

6 André Maia et al.

Method Algorithm F1-score IoU Time to train
and test (s)

Individual features - sc

GaussianNB

0.185/ 0.928 0.1017 0,095

All features combined 0.152/ 0.679 0.0820 12,717

Individual features - cl 0.143/ 0.828 0.0771 0,054

Individual features - eh 0.143/ 0.759 0.0772 0,122

Best features combined 0.137/ 0.624 0.0734 8,750

Class balancing
KNN 0.133/ 0.763 0.0710 1017,139

GaussianNB
0.127/ 0.549 0.0680 4,220

Visual feature sets combined 0.126/ 0.546 0.0670 10,612

Table 1 Best results.

Predicted label

no-fear fear

Actual no-fear 27438 3161
label fear 1121 485

Table 2 GaussianNB confusion matrix of sc feature set.

samples in the dataset, 83759 samples were labeled as no-fear (95.8%), and 3697 sam-
ples as fear (4.2%). This fact may contribute to the reason why several experiments
produced a very small amount of classi�cations that fall in the fear class.

Table 1 synthesizes the performance achieved for the most promising eight setups,
from best to the worst. All these methods obtained the best result by using a Gaussian
Naive Bayes classi�er except one.

Inspecting Table 1, the global outcome is poor, at 18.5% of F1-score by predicting
the label fear. The time required to train and test are very low, but in the end, the best
method (Individual features - sc) obtained one of the shortest times. Furthermore, the
use of a single feature set requires less time for training, and memory consumption is
minimized. Since the results are getting worse as more features are used, it can be spec-
ulated that, as more feature sets are used, the more noticeable becomes the over�tting
to the training set. Remember that samples used for training come from di�erent �lms
than those used for testing, which suggests that the training set is not representative
of the �lm universe. It is noteworthy that the KNN algorithm has obtained the longest
time to test and train, compared with the others. Some algorithms achieved a poorer
performance, in some cases the F1-score to predict fear was 0%.

The experiments suggest dataset limitations. The dataset classes are very unbal-
anced, which causes that most models are prone to forecasting the no-fear class since
this class represents about 95.8% of samples used in training. On the other hand, bal-
ancing the data by removing elements of the most numerous class lead to a rather
small training set.

The experiments also showed that the use of a larger amount features did not
translate into better performance. This fact may be due to over�tting problems that
become more evident as more features are used.

Analyzing Table 2, which represents the confusion matrix of the Gaussian Naive
Bayes algorithm and the feature set sc, it was able to correctly predict 485 out of 1606
fear samples, and 3161 no-fear samples were mispredicted as fear.

Automatic detection of fear-inducing segments in videos 7

Method Algorithm F1-score IoU Time to train
and test (min)

All features combined MLP 0.725/ 0.988 0.569 51.36

Best features combined KNN 0.650/ 0.987 0.481 172.95

All visual features combined MLP 0.640/ 0.985 0.471 307.54

Individual features - acc

KNN

0.637/ 0.986 0.467 6.75

All visual features combined 0.631/ 0.986 0.461 105.80

Individual features - fc6 0.619/ 0.986 0.034 217.91

Individual features - jcd 0.599/ 0.985 0.024 5.43

Class balancing MLP 0.316/ 0.910 0.188 1.83

Table 3 Best results.

3.3 Using Samples From Same Films for Training and Testing

The experiments done in Section 3.2 showed that the data used is cleary insu�cient
which makes the models do not generalize well. In order to overcome this problem, this
section describes a new set of experiments at the sample level. A portion of the movie
samples are used for training, and another for testing, and this is done by randomly
split the data. The algorithm's training and test processes will therefore access samples
coming from the full �lms dataset.

The main database containing a total of 87456 samples was randomly split into
20% of all samples for testing (17492 samples) and 80% for training (69964 samples).

The �ow of experiments previously performed in Section 3.2 was also performed
for this new dataset division, in order to �nd out which algorithms and feature sets
lead to the best results. The following subsections depict the experimental results.

By observing Table 3, it can be seen that the results obtained are much better
than those depicted in Section 3.2. With the new training/testing set division, the
best F1-score regarding the prediction of fear is much higher. Training and testing
with samples coming from the same �lms lead to F1-score of 72.5% predicting the fear
tag and 99.8% predicting the no-fear, for the MLP Classi�er, when all the available
features (visual and audio) were combined.

When compared to the results presented in Section 3.2, the reason for this shift
to higher F1-scores is due to the new training/ test set division. In this experiment,
the training set contains samples coming from all the �lms available in the dataset,
and therefore it is a richer set. On the other hand, the test set, although consisting of
samples di�erent from those used for training set, contains samples that are expected
to be more correlated with those used for training, than in the situation that they were
coming from di�erent �lms. The only thing that got worse was the training and testing
time, going from a few seconds to, in some cases hours.

The results were not the best with a class balancing, as the best result is 38% well
below the previous ones, so a very poor result is obtained by this approach. This may
have happened because important data was removed.

An inspection of the confusion matrix in Table 4 relative to all features combined
and MLP algorithm, reveals that the fear class was well classi�ed 538 times and badly
198, and the no-fear class was correctly predicted 16546 times.

8 André Maia et al.

Predicted label

no-fear fear

Actual no-fear 16546 198
label fear 210 538

Table 4 MLP confusion matrix of all features sets combined.

Fig. 1 Three frames from the movie 0.

Fig. 2 Second segment of the movie 0.

3.4 Summary

Some conclusions can be drawn from these experiments, because when comparing the
use of training/test set division at �lm level with division at sample level (3.2 vs 3.3), the
latter achieved better results. F1-scores improved from 0.185 to 0.725. When training
and testing with distinct �lms there are far too many classi�cation errors, meaning
that learning based on a set of �lms assigned to the training set did not generalize
for di�erent �lms, and this is a very bad result which it is possible to say that the
model can't predict fear. On the other hand, the predictions were much more accurate
when the ML algorithms were trained with about 80% of the samples coming from all
the videos present in the dataset, meaning that generalization is achieved for di�erent
moments of the �lms. These observations suggest that the LIRIS-ACCEDE database
may not be su�ciently representative of the �lms universe. A larger dataset covering
more �lm variations should help to improve the learning processes.

4 Fear-inducing Classi�cations

This section describes some classi�cations that induce fear and, for that, some of the
�lms were watched manually to verify that the fear tag was placed correctly and the
predictions made by the di�erent models were analyzed.

A function was created to generate subtitles in order to be able to analyze the tag
in the �lms. A subtitle that says "fear" has been applied to the videos.

Figure 1 shows three frames from the movie MEDIAEVAL18 00 and reveal that
the �rst two frames (explosion and body) convey fear, but are not identi�ed as such,
and the third frame, which contains a person's body, is correctly tagged as fear.

Automatic detection of fear-inducing segments in videos 9

Fig. 3 Segment of the movie 16.

Fig. 4 Visual features predictions performed by GaussianNB.

Figure 2 shows an image that transmits fear, but the audio contains a piece of
happy music, so the audio does not correspond with the current action, thus the audio,
in this case, was misleading to recognize fear.

The fear tag in the dataset contains scenes like a �ght and with suspense, images
with blood, pistols, but there are some cases where this doesn't happen. This is illus-
trated in Figure 3, which shows a person placed in a bag with a man carrying a gun
in his pocket, and this frame has no annotation of fear.

The conclusion is that the fear annotations are not consistent. In some cases, the
fear tag is well-associated, and some are not, plus there are some cases of fear that do
not exist. Feeling of fear can also vary person to person, so it's hard to tell for certain
whether or not a picture involves fear.

Graphics were made for each �lm, in order to examine the predictions made by
the best models, represented in the Section 3.2 and 3.3, GaussianNB and MLP. This
graph represents, in each second, the real tag fear or no-fear (1 or 0 in the axis y), the
prediction that the model performs (green line) and the con�dence in each prediction
(orange). This likelihood is the assurance that the model has, for example, if the model
says that in the �rst second the probability to predict fear is 1, this means that the
model has 100% con�dence that fear occurs at that time. Figure 4 corresponds to movie
54 in the dataset of LIRIS-ACCEDE. The x axis represents each second of the movie,
in this case the movie has 213 seconds, and these predictions were made using visual
features and GaussianNB.

Analyzing Figure 4 is it possible to see that the model outputs a lot of random
predictions at the beginning of the movie, the green line goes up and downs (classi�es
as fear and no-fear) at a time when there is no fear conveyed. In all of these predic-
tions, the model has a 100% predictability, which is de�nitely not a positive indication.
Looking at these results, it is possible to conclude that this is not a good model since
it performs a lot of fear predictions with only one second. In one second exists fear,
and the next one doesn't. This doesn't occur in movies, if the movies transmit fear,
that fear will be transmitted in the next seconds and not in one unique second. In this

10 André Maia et al.

Fig. 5 Audio features predictions performed by GaussianNB.

Fig. 6 Visual features predictions performed by MLP.

movie, it is possible to see that exists fear in the seconds 165 to the 193, and in all
graph, there's no peak of fear in a unique second.

With the audio features, represented in Figure 5, it's possible to see the same thing,
but with these features, the predictability isn't necessarily 100%.

Figure 6 represents the predictions performed with the visual feature sets of movie
55 using the MLP classi�er. The model was trained with a random split of the data
and certain movies were chosen to perform prediction, in summary, the training is
randomly separated but the test is not.

Analyzing Figure 6 it is possible to see that, as expected, the predictions made by
the MLP model are much better, predicting almost everything correctly and, in certain
situations, if the model is inaccurate, the probability of con�dence that it has is low,
having about 60% certainty of the prediction.

If improvements were made to the model predictions by changing isolated predic-
tions, better results could be obtained because there is no likelihood of fear in a single
second or vice versa. An example of change is to change the model's prediction, for
example, fear in a single second, to no-fear.

5 Deep Learning Classi�cation

In this chapter, the Python library called Tensor�ow is going to be used in order to try
to achieve improved results compared to Chapter 3. First, a baseline Neural Network is
created to verify what results are obtained, and then a deeper NN is deployed. Lastly,
an RNN is generated using the LSTM layers.

Automatic detection of fear-inducing segments in videos 11

Layer (type) Output Shape Param #
====================================
Dense 1 (None, 64) 343552

Dense 2 (None, 32) 2080

Dense 3 (None, 32) 1056

Dropout (None, 32) 0

Dense 4 (None, 1) 33
====================================
Total params: 346,721

Fig. 7 Model created using TensorFlow.

5.1 Baseline Neural Network

A Neural Network based on the Batziou et al. 2018 methodology work, containing
three hidden layers of 64, 32, 32 neurons with an activation function called relu, and
a learning rate equal to 0.001 was deployed using TensorFlow. In this case, the NN
contain four dense layers and one dropout. The output, last dense layer, is composed
of a dense layer with an activation function called sigmoid, which returns only values
between 0 and 1. The optimizer used is the Adam and has a loss function called binary
cross-entropy. The dropout layer was used with a factor of 0.5, meaning that 50% of
the connections will be dropped and whoever enters the dropdown will leave with half
of the connections. The structure of this NN can be seen in Figure 7.

A tutorial/code made by TensorFlow TensorFlow Core 2020 was used to classify
the imbalanced data. In order not to waste the model's �rst epochs discovering that
the fear tag is unlikely, because the LIRIS-ACCEDE dataset is imbalanced, the bias
was changed using the eq. (1), retrieved from TensorFlow Core 2020.

bias = −loge
samples fear

samples no fear
(1)

A model was trained. This model contains the careful bias calculated, 100 epochs
with an early stopping monitoring the recall and a batch size of 4096. The audio and
visual features combined were used, as these features sets had the best result with the
MLP classi�er, scikit-learn algorithm (72.5% F1-score).

Analyzing Figure 8, the train line in recall doesn't change much, from epoch 30, in
the training curve, and the validation curve stays in the 0.7 recall. Also, the loss in the
validation curve increases, which means that the longer the model is trained, the more
loss exist in the validation. In the other hand, the loss in the training curve decrease.
It also seems that the model is over-�tting in training since the accuracy, precision and
recall curve is almost one. In the other hand, this can occur because the data with the
tag no-fear is much higher than fear tag.

The learned model was then used to perform predictions in the remaining data.
This model obtained an F1-score by predicting fear of 78.37% and no-fear 99.10%.

A ROC (Receiver Operating Characteristics) graph was implemented to see the
performance of the model because the ROC curve tells how the model classi�es the
fear tag as fear and the no-fear tag as no-fear.

12 André Maia et al.

Fig. 8 Variation of the loss, accuracy, precision and recall.

Analyzing the results obtained from the model, in Figure 9, it is possible to see
that the AUC in the validation is between 0.5 and 1, so the algorithm can di�erentiate
between fear and no-fear in certain situations. The AUC in the test is almost 1, which
means that the model can distinguish almost all tags and this curve can intend to be
an over�t on the train.

Then the same model but this time with di�erent class weights calculated is trained.
These weights are calculated because the class fear is the one that has fewer samples
so needed too have more importance. This may lead the model to pay more attention
to examples in the under-represented class TensorFlow Core 2020. The no-fear class
has a weight of 0.52 and the class of fear is 11.83, applying eq.2.

weight =
total

2 ∗ class size (2)

Analyzing the graphics in Figure 10 is possible to see that the loss no longer in-
creases. In addition, the recall increases and the precision is worsens, but over�tting
seems to continue to exist. The results were proximally close to the baseline model
achieve an F1-score by predicting fear of 77.86% and no-fear 98.91%.

As shown in Table 5, representing the confusion matrix, this model can predict cor-
rectly the class fear 640 times and 16488 times the no-fear class but predict incorrectly
364 times.

Automatic detection of fear-inducing segments in videos 13

.

Fig. 9 ROC curve.

Fig. 10 Number of epochs by the loss, accuracy, precision and recall with class weights.

14 André Maia et al.

Predicted label

no-fear fear

Actual no-fear 16488 255
label fear 109 640

Table 5 Model with class weights.

Fig. 11 ROC with all the models.

F1-score fear (%) F1-score no-fear (%) IoU Time to train (min)

Baseline model 78.367 99.101 0.644 1.616

Weighted model 77.859 98.908 0.637 1.290

Oversampled model 78.358 99.073 0.644 8.084

Table 6 F1-score using the model with 5 hidden layers.

Lastly, a model with an oversampled data is trained. Fear class will be oversampling
so that there is more data about fear. The model obtain an F1-score by predicting fear
of 78.36% and no-fear 99.07%.

The ROC results for all models are shown in Figure 11. In the end, the study of the
ROC graph reveals that all the models obtains the same value of AUC in the testing,
and in the training all methods obtain a value close to 1. In testing, the AUC has a
value greater than 0.5, which means that the models can di�erentiate the classes fear
and no-fear.

Table 6 represents the summary of the approaches performed (F1-score and the
time to train).

The results in Table 6 produce improved results relative to the MLP scikit-learn
algorithm, rising by about 6% in the F1-score of fear and 0.3% of no-fear. Also, IoU
goes from 0.569 to 0.644. It should be noted that the training time has also decreased
from 51 minutes to approximately 2.

Even tests using di�erent �lms to train and test were made. The results were poor
using videos features sets, were the best F1-score by predicting fear is 8.283%. By
forecasting fear, the audio features get a 9.687% of F1-score. The sc feature, which

Automatic detection of fear-inducing segments in videos 15

F1-score fear (%) F1-score no-fear (%) IoU Time to train (min)

Baseline model 79.686 99.231 0.662 1.943

Weighted model 82.694 99.289 0.705 1.787

Oversampled model 84.014 99.336 0.724 18.143

Table 7 F1-score using the model with 10 Dense layers and 9 Dropouts.

uses the Gaussion algorithm to achieve the best result (18.5%), generates a result of
6.904% using this NN algorithm.

5.1.1 Deep Neural Networks

Deeper learning was performed in order to try to achieve better results. Firstly, the
visual feature sets are the data utilized and the data used in this section and Section
5.1 were randomly separated so that the train and test data are di�erent in the two
sections. In an e�ort to prevent over�t, the 9 dropouts were included, so the network's
complexity has been increased, with 10 dense layers and 9 dropouts (one dense layer,
one dropout, one dense layer and so on).

The experiments done in Section 5.1 were also done with this deeper Neural Net-
work (train the model with a calculated bias, also with class weights, and for the last
train on the oversampled data). All available data, visual and audio features sets, is
used to train the NN, as these are the ones that have achieved the greatest outcomes
so far. Table 7 describes the results with the di�erent models.

Using a model with 10 dense layers and 9 dropouts, and oversampled data achieved
the best result so far, achieving an F1-score of 84.014% in the class fear. The only
problem is the training time with the oversampled model that takes 18 minutes to
train, but in this situation, if a quicker model is wanted the weighted model is the
better one taking only 2 minutes and also obtaining a high F1-score result.

6 Conclusions and Future Work

The main goal of this article was to predict the induction of fear sensations triggered
by audiovisual content, using machine learning techniques. The experiments reported
here use the LIRIS-ACCEDE database, that was previously used in the MediaEval

benchmarking initiative, in the scope of the 2018 Emotional Impact of Movies Task

challenge. Seven teams competed in this challenge producing outcomes for valence and
arousal estimates, and for the forecast of fear inducing movie content, sharing similar
goals as the ones of this article. The LIRIS-ACCEDE database contains several movies,
where each segment of one second was annotated as fear inducing segment or not.

It has been concluded that the LIRIS-ACCEDE dataset, despite being very large,
does not contain a signi�cant and representative set of movies for predicting emotions,
such as fear. This conclusion is drawn because when having some information about
the videos in the training and testing models the results are much better (the best was
84.0%) than those achieved when the models are trained and tested with disjoint �lm
sets. The best result was obtained by combining all the features provided, audio and
visual, and trained with a model created with TensorFlow, containing 10 dense layers
and an extensive application of dropout. Through this model is possible to conclude

16 André Maia et al.

that deep learning is more �tting for this type of problem because by increasing the size
of the Neural Network from 4 to 10 dense layers, better results are achieved. A simple
RNN with 2 LSTM's, a dense layer and a dropout was also used. The models based
on LSTMs demanded a signi�cant memory size, as well as long periods of training,
which turned out to be a problem considering the existing resources. As a result, the
results achieved using such models were not optimized and, despite their potential,
they turned out not to be the best performing ones (best result was a 9% F1-score in
the fear class).

Concerning future directions, e�orts should be made for producing larger databases
of annotated movies, in order to achieve a more signi�cant content variability. With
the current dataset, we can train a model with samples associated to �lm segments
and to correctly predict fear induction in di�erent segments of the same �lm. However,
training with a selection of movies and generalizing predictions for a di�erent selection
did not achieve satisfactory results. Another topic that deserves further investigation
is the feature extraction process. Current visual features are based on key-frames,
and therefore they do not consider temporal movie characteristics, which may also be
relevant to trigger emotional states. Additionally, the use of Recurrent Neural Networks
should be revisited has more data becomes available.

References

Batziou, Elissavet et al. (2018). �Visual and audio analysis of movies video for emo-
tion detection @ Emotional Impact of Movies task MediaEval 2018�. In: CEUR
Workshop Proceedings 2283.October, pp. 29�31. issn: 16130073.

Claude, L Universite and Bernard Lyon (2013). �PHD THESIS D Â� etection des Â�
par Rizwan Ahmed KHAN�. In.

Dellandréa, Emmanuel et al. (2018). �The MediaEval 2018 emotional impact of Movies
task�. In: CEUR Workshop Proceedings 2283, pp. 6�8. issn: 16130073.

Ko, Tobey H. et al. (2018). �Towards learning emotional subspace�. In: CEURWorkshop

Proceedings 2283.3, pp. 4�6. issn: 16130073.
Kubat, Miroslav (2017). �An Introduction to Machine Learning�. In: An Introduction

to Machine Learning, pp. 1�348. doi: 10.1007/978-3-319-63913-0.
Ec-lyon.fr (2015). LIRIS-ACCEDE. url: https : / / liris - accede . ec - lyon . fr /

database.php.
Ma, Ye, Xihao Liang, and Mingxing Xu (2018). �THUHCSI in MediaEval 2018 Emo-

tional Impact of Movies Task�. In: CEURWorkshop Proceedings 2283. issn: 16130073.
Martin Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems. Software available from tensor�ow.org. url: https : / / www .

tensorflow.org/.
Multimediaeval.org (2019). About MediaEval. url: http://www.multimediaeval.org/

about/.
Quan, Khanh An C., Vinh Tiep Nguyen, and Minh Triet Tran (2018). �Frame-based

evaluation with deep features to predict emotional impact of movies�. In: CEUR
Workshop Proceedings 2283, pp. 2�4. issn: 16130073.

SBCoaching (2019). Emoções: de�nição, tipos e importância de se ter o controle. url:
https://www.sbcoaching.com.br/blog/emocoes/.

TensorFlow Core (2020). Recurrent Neural Networks (RNN) with Keras. url: https:
//www.tensorflow.org/guide/keras/rnn.

Automatic detection of fear-inducing segments in videos 17

Yi, Yun, Hanli Wang, and Qinyu Li (2018). �CNN features for emotional impact
of movies task�. In: CEUR Workshop Proceedings 2283.October, pp. 29�31. issn:
16130073.

