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Resumo 

Nos últimos anos, departamentos de urgência há volta do mundo têm-se deparado com o 

mesmo problema, sobrelotação. Com o objetivo de tentar reduzir os tempos de espera de 

pacientes, os autores usaram a ferramenta de simulação de eventos discretos “SIMUL8” 

para criar um modelo generalizado de um departamento de emergência baseado numa 

análise indutiva de casos de estudo.  

Com base nesta análise forma criadas e simuladas 34 variações do modelo base. 

Através da análise destes cenários foi concluído que melhorar alocação de recursos, ou 

aumentar os mesmos, são formas eficazes de diminuir os tempos de espera. 

 

Palavras chave: Triagem, Sistema de Triagem de Manchester, Simulação de Eventos 

Discretos, SIMUL8 

Códigos de Classificação JEL: I11, M10  
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Abstract 

In recent years, emergency departments (ED) all over the world have been suffering from 

overcrowding. Tto deal with this issue by reducing patient waiting times, the researchers 

used the discrete event simulation tool “SIMUL8” to create a general model of an ED-

based on an inductive case study analysis. 

Based on this analysis, 34 different variations of the base model were developed and 

tested. Through analysing the results of these scenarios, it was concluded that improving 

resource allocation and increasing the number of resources available to be the best ways 

to reduce patient waiting times. 

 

Keywords: Triage, Manchester Triage System, Discrete-event Simulation, SIMUL8 

JEL Classification System: I11, M10   
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1 Introduction 

This chapter will introduce a succinct view of the problem that leads to this study along 

with its context and relevance in society. It will also identify the objectives of this thesis 

along with its scope and the methodology used. The last subsection will provide the 

thesis’ structure. 

 

1.1 Research Problematic and Research Problem 

Triage is a concept that has been fundamental in the practice of emergency medicine for 

more than fifty years (Iserson & Moskop, 2007). However, in recent years, Emergency 

Departments (ED)  all over the world have been suffering from overcrowding (Hoot & 

Aronsky, 2008). This increasing number of patients creates the need for fast and accurate 

triage (Ghanes et al., 2015). Simulation in particular has become an effective tool in 

determining the most effective allocation of healthcare resources to improve patient flow 

and minimizing costs (Chouba et al., 2019). Also, using both optimization and simulation 

tools allows for more efficient decision making when determining optimal ED 

configurations. 

Healthcare needs have been growing and healthcare services have become larger, 

more complex and more costly (Everborn, Flisberg, & Ronnqvist, 2005; Wang, 2009). 

Coupled with the intrinsic uncertainty of healthcare demands and outcomes this dictates 

that healthcare policy must be based on evidence of its potential to address said stochastic 

problems (Katsaliaki & Mustafee, 2011) they create a situation in which the use of 

simulation becomes a clear solution as it can be used to forecast the outcome in a change 

of strategy free of cost (Wierzbicki, 2007). 

Barjis (2009) looks at the potential of modelling and simulation in healthcare and 

sees in them major potential in cost reduction, decision support (due to allowing for 

better-informed decision making) and as a way of tackling increased complexity created 

by the extreme mobility of patients.  

Over the last ten years many studies have been done on the use of both simulation 

and optimization to improve the allocation of human and material resources in health care 
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(Ahmed & Alkhamis, 2009a); (Baghery, Abgarmi, Yousefi, & Alizadeh, 2017); (Steward, 

Glass, & Ferrand, 2017). 

In Portugal, the Manchester Triage System (MTS) is the most common system used 

in EDs all around the country (Mackway-Jones, Marsden and Windle, 2014) 

Considering this information, this thesis will focus on the current situation of triage 

in hospitals using the MTS and look for ways to decrease waiting times in the ED. 

 

1.2 Research Gaps 

Robinson (2008) identifies the difficulty of dealing with many different consumers with 

a wide variety of needs as one of the main challenges of service operations management 

when it comes to B2C (Business to Consumer) services, which is the case for a hospital. 

This issue often causes congestion in the service process. 

To find new ways for overcoming these problems, a theoretical model of how a 

hospital’s ED should function, based on the use of the MTS, will be created. This a 

problem mentioned in a paper about the evolution of triage (Robertson-Steel, 2006), the 

issue of how to sort patients following the allocation of priority levels during triage and 

whether to phase in, use appropriate time banding or simply wait for there to be no critical 

cases before dealing with minor injuries.  

 

1.3 Objective 

The purpose of this project is to, through the analysis of previous case studies, develop a 

theoretical simulation model of a hospital’s ED. This model will then be used to test 

different combinations of internal factors (e.g. number of beds) and their ability to deal 

with the patients coming in. 

Based on the context outlined in section 1.1, a literature review focusing on three 

main areas was conducted. First, on services, service operations management and its role 

in healthcare services management. Secondly, the beginning and present of triage were 

studied, along with papers on the MTS in order to understand the current reality in this 

type of triage and have a better way of identifying the issues behind overcrowding. 
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Finally, a look at simulation, some of its different types and on how to develop a 

conceptual model, all of them key in creating an accurate simulation model.  

Since this thesis will be using an inductive approach in creating a simulation model 

of an ED-based on previous cases. The expected outcome will be the creation of 

hypotheses based on the developed model to be compared to existing literature and/or 

tested in future studies. 

 

1.4 Research Questions 

Eisenhardt (1989) identifies the need for an initial definition of the research questions as 

a means of avoiding being overwhelmed by the volume of data. To achieve the goals of 

the thesis, two research questions were defined as follows: 

RQ1) What is the flow of a patient through an ED? 

RQ2) What can be done to reduce waiting times in an ED? 

 

1.5 Methodology 

Exploratory research describes phenomena and attempts to explain why behaviours are 

the way they are, it enables us to understand the very nature of what we are looking at 

(Adams, Khan, Raeside, & White, 2012).  Its primary purpose is to develop preliminary 

ideas about an issue or phenomenon and move toward refined research questions 

(Neuman, 2014). This thesis will be using exploratory research to develop enough 

understanding to create a simulation model of an ED that can be used to create hypotheses 

on its functioning to be tested in later studies.  

The data needed to develop such a model will be gathered through an inductive 

approach.  This type of approach’s objective is developing a theory that begins with 

concrete empirical evidence and works toward more abstract concepts and theoretical 

relationships (Neuman, 2014). In inductive methods of data collection the researcher 

usually (1) systematically observes the phenomena under investigation, (2) searches for 

patterns or themes in the observations, and (3) develops a generalization from the analysis 

of those themes (Lodico, Spaulding, & Voegtle, 2006). 



4 

 

An investigation of case studies pertaining to ED functioning will be the first step 

taken in this thesis, its goal will be to gather the necessary quantitative data. The data 

gathered will pertain mostly to mapping the system flow, to determine the time it takes 

for each task, the population details and the number of resources available in an ED. After 

it is gathered, analysed and its patterns determined, this data will be used to develop the 

simulation model. From it, hypotheses to be tested in future studies will be created. 

 

1.6 Structure 

The structure of this project is divided into the following chapters: 

Chapter 1: Introduction 

Includes a brief contextualization of the problem, including research gaps. Identifies the 

objectives, research questions, methodology used and structure of this thesis. 

Chapter 2: Literature Review 

Through an analysis of previous investigations and existing literature, this chapter studies 

the existing theories on the relevant subjects.  

Chapter 3: Conceptual Framework 

Defines the concept, maps research and synthesizes the relevant aspects that emerged 

from the literature review in a schematic manner. 

 Chapter 4: Methodology 

Explains the methodology adopted and the steps taken during the thesis development.  

Chapter 5: Conceptual Model 

Creation of a conceptual model representative of a real ED. Identifying relevant inputs 

and outputs of the simulation.  

Chapter 6: Data Collection 

Analysis of data obtained from previous studies. 

Chapter 7: SIMUL8 Model Results 
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Identification and results of the base model and scenarios tested. Also contains an analysis 

of these results. 

Chapter 8: Conclusion 

Discusses the results of the analysis and connecting them to existing literature. Presents 

the conclusions reached, identifies the limitations of the thesis and suggest topics for 

future research.  
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2 Literature Review 

The purpose of this chapter will be to show the theoretical foundations upon which this 

thesis will stand. This chapter starts by focusing on services. Afterwards, it focuses on 

triage, its beginning and evolution, and then the MTS specifically, in the end, it also looks 

at the different types of simulation and their uses as well how to create a conceptual 

model. 

 

2.1 Services 

Before looking at what service operations management is, we must first understand what 

services are. According to Bayraktar (2016) “service” is used to describe almost 80% of 

economic activities in developed countries, this is mentioned as a reason to why there is 

no single definition of what a service is. However, a consensus seem to be emerging 

around the idea that a service is an activity in which the costumer also performs an active 

role and which involves the treatment of said costumer or something belonging to him/her 

(Johnston & Kong, 2011).  

Ravindran et al. (2018) identifies four key differences between goods and services:  

• Intangibility: You cannot touch or see a service. Per example, you cannot see 

the knowledge gained by a student during a lecture. 

• Perishability: Unlike services, goods can be produced ahead of time and 

stored. Empty seats on an airplane hold no value once the airplane takes off. 

• Proximity: Most services must require physical proximity to its costumers 

(e.g. going to a movie or buying groceries). However, online services and 

back office operations are the exception as they do not require proximity. 

• Simultaneity: Most services are created and consumed at the same time. 

Presence of a costumer is required in service production. 

As it observes every one of these four conditions, treating patients in a hospital can 

be considered as a service. 

Karmarkar (2004) mentions how competitive advantages can be enhanced through 

service and it is clear that competitive advantages lead to a superior performance (Lusch, 

Vargo, & O’Brien, 2007).  
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2.1.1 Service Operations Management 

Now that we understand what services are and how important service operations 

management can be, it is time to provide a definition for service operations management: 

“Service operations management is the term that is used to cover the activities, decisions 

and responsibilities of operations managers in service organisations. It is concerned with 

providing services, and value, to customers or users, ensuring they get the right 

experiences and the desired outcomes. It involves understanding the needs of the 

customers, managing the service processes, ensuring the organisation’s objectives are 

met, while also paying attention to the continual improvement of the services. ”  

(Bayraktar, 2016, p. 12).  

The definition above mentions how service operations management pertains to 

managers in services organizations, Daskin (2011) identifies healthcare as a service 

industry and therefore, hospitals as service organizations. With this in mind, the following 

sections will first look at process improvement (mentioned in the definition) and 

afterwards in the role of service operations management in healthcare. 

 

2.1.2 Process Improvement 

Competitiveness is the ability to compete which can arise from the process of an 

organization (Ajitabh & Momaya, 2003). Therefore, continuous improvement of 

production processes based on customer demands is necessary to increase or maintain 

competitiveness (Tamás, 2017). Only carrying out continuous improvements and 

adapting to external environment changes is enough to maintain long-term success (J. P. 

Womack & Jones, 1997). This is something that is also mentioned in the definition of 

service operations management given. 

Bendell (2005) mentions how, to improve said processes and maintain 

competitiveness, some companies have been using the Lean Thinking approach.  
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2.1.2.1 Lean Thinking 

Originating in Japan in the Toyota Motor company, lean is considered to be a radical 

alternative to the traditional mass manufacturing and batching principles maximize 

efficiency, quality, cost and speed (Radnor, Holweg, & Waring, 2012). According to 

Holweg (2007) this way of thinking has since spread from Japan to the rest of the world 

in part due to the book “The Machine That Changed the World” by James P. Womack, 

Jones, & Roos (1992). 

The core philosophy behind Lean is to continually improve a process by removing 

non-value added steps or “waste”. Womack and Jones (1996) however define the five 

“Lean Principles” to be followed when looking to remove “waste”: 

• Specify the value desired by the customer; 

• identify the value stream for each product/service providing that value and, 

challenge all of the wasted steps; 

• make the product flow continuously; 

• introduce ‘pull’ between all steps where continuous flow is impossible; 

• continuously strive for perfection through the systematic identification and 

removal of “waste”. 

Section 2.1.3.1 will look at the role of Lean in healthcare management. 

 

2.1.3 Healthcare Services Management 

Healthcare service management has to link together two different sets of interest, those 

focused on providing health services to the population and those focused on providing 

services to the individual (Packwood, 1997). This same paper also describes the different 

operational values of each ideology. Those focused on the population pay more attention 

to equality, equity, economy and resource management. Meanwhile, those focused on the 

individual pay attention to the needs of each patients and tend to disregard economic and 

resource constraints.  

This clash of ideologies ties into Berry (2019) which identifies the cost pressure and 

need for quality service demanded by our societies, mentioning the urgent need for 

innovation as a solution. However, it is widely accepted that there is a trade-off between 

customer satisfaction and productivity (Rust & Huang, 2012). Despite the existence of 
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this trade-off, Wirtz (2019) mentions some organizations that have been able to achieve 

both cost effectiveness and service excellence and identifies doing this as an objective for 

organizations worldwide. 

Wirtz (2019) also mentions how, currently, the service sector and healthcare in 

particular seem to be in an inflection point when it comes to productivity gains, 

identifying as particularly promising innovations robotic, artificial intelligence, Internet 

of Things, wearable technology, analytics and geo tagging.  

 

2.1.3.1 Lean in Healthcare 

It is quite common for the principles of Operations Management (OM) to be used in the 

healthcare industry. Looking at the issues created by overcrowding and congestion in an 

ED Batt and Terwiesch (2012) consider the how ED physicians will order fewer tests if 

the ED is more crowded and Batt and Terwiesch (2015) analyse how overcrowding leads 

to a higher likelihood of patients leaving without being seen. Finding solutions to issues 

like these, caused by overcrowding, has been a common theme in healthcare OM 

literature. Among these proposed solutions we can find the idea of streaming patients 

based on the likelihood of admission (Saghafian, Hopp, van Oyen, Desmond, & Kronick, 

2012); prioritizing patients based on probable resource usage (Saghafian, Hopp, Van 

Oyen, Desmond, & Kronick, 2014); introducing an expedited patient care queue to 

control admission to inpatient units (Helm, Ahmadbeygi, & Van Oyen, 2011); and using 

predicted future patient arrival as well as proactive admission control to effectively 

manage congestion (Xu & Chan, 2016). These suggestions are used as a way to reduce 

the “waste” of waiting (delay) identified as one in Westwood, Moore and Cooke (2007). 

 

2.2 Triage 

The idea of triage first appeared in the late seventeen hundreds during the Napoleonic 

wars to deal with the increased number of deaths and injuries associated with modern 

warfare. And that is exactly what triage did for some years. It was a tool used for war 

scenarios and introduced the ideas of patient sorting and care at the scene into the world. 

The system then continued developing mainly in military situations in the 19th and 20th 

centuries (Robertson-Steel, 2006). 
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During the early 20th century, organized medical systems started to emerge and with 

them so did triage which was a key component of care in emergency departments. In that 

time, however, triage was less standardized and thus more subject to the nurse’s opinion. 

Its role was essentially the same as today: determining possible waiting times and 

sequence in which the patients should be seen, and if applied in the field it served for 

determining the speed of transport and which facility a patient should be transported to 

(Robertson-Steel, 2006). 

Triage has evolved much from its inception, these innovations were created mainly 

in wartime scenarios. In the US civil war implementation of a triage system greatly 

reduced mortality from one year to the other. In WWI a new concept was introduced, 

unlike before where priority went to the most injured, except for those that were beyond 

hope. With the increase in casualties due to new weapons like mustard gas or machine 

guns, medical personnel also started to take into account the time needed to treat an injury 

and if it took too long (and that meant other patients might die) then that patient would 

also be disregarded. Nowadays, the mass evacuation of wounded is much more accessible 

and the scarcity of medical resources less likely. Creating a whole new set of options for 

on-field triage. However, the creation of weapons of mass destruction can render war 

triage virtually irrelevant due to the sheer number of casualties inflicted in an instant 

(Iserson & Moskop, 2007). 

Currently, triage systems in civilian context with widespread adoption include the 

Australasian Triangle scale (ATS), Emergency Severity Index (ESI), Manchester Triage 

Scale (MTS), South African Triage Scale (SATS) and Canadian Triage and Acuity Scale 

(CTAS). All of these triage systems share some core elements: They all use a 5-level 

priority system that aims to assign higher priority to patients in critical need of care and 

assign appropriate waiting time limits for each priority level. However, they have some 

key differences, for example, the role of provider judgment, with the CTAS and MTS 

assigning less importance to it and focusing more on detailed clinical discriminators 

(Hinson et al., 2019). 

Christ, Grossman and Winter (2010) identify the ED as “the crucial interface between 

the emergency medical services and the hospital” and shows how they are increasingly 

being chosen as the primary entry point into the healthcare system. It also mentions how 

triage aims to solve the problem inherent with an inability to accurately predict the 
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volume of patient admissions: the possibility of overcrowding. The authors also identify 

the five-level triage systems as the gold standard in emergency healthcare. 

Now, in the 21st century, the issue that needs resolving is the creation of an integrated 

triage system which encompasses ambulance service, pre-hospital care, general providers 

and advice centres that can be adopted universally (Robertson-Steel, 2006). 

In Portugal, the MTS is the most common system used in EDs all around the country 

(Mackway-Jones, Marsden and Windle, 2014). It is also a part of the recommended five-

level triage systems, which are considered to be valuable and reliable (Schaaf, Funkat, 

Kasch, Christoph, & Winter, 2014) 

The MTS was created in 1996 by the Manchester triage group, they noticed that every 

day EDs were facing a large influx of patients with completely different issues and that 

therefore it was “absolutely essential that there is a system in place to ensure that these 

patients are seen in order of clinical need, rather than in order of attendance.”(Mackway-

Jones, Marsden, & Windle, 2014).   

In this system, patients in an ED are initially screened by a nurse trained in the MTS. 

The nurse uses the 52 flowchart diagrams backed by the MTS in which a patient describes 

his/her symptoms and the nurse follows the chart in order to assign the patient with one 

of five priority levels. These priority levels determine the maximum amount of time 

allowed before the patient is seen by a doctor. Patients categorized into the highest priority 

(red) order must be seen immediately. The following two levels (orange and yellow) will 

have recommended time allowances of 10 and 60 minutes respectively. A patient assigned 

the fourth highest priority (green) will have a time allowance of 120 minutes and the 

lowest level priority patients (blue) will have time allowances of 240 minutes, henceforth 

these will be called MTS levels 1 to 5 (with 1 being the highest priority). The flowcharts 

mentioned above were created around six general discriminators: life threat, conscious 

level, haemorrhage, temperature, pain and acuteness. The flowcharts also take into 

account the age of patients (Weiss et al., 2004). In figure 1 we can see one of these 

flowcharts used to determine the MTS level of a patient presenting with symptoms for 

asthma.  
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Figure 2.1 - Example of an MTS flowchart pertaining to patients with symptoms related 

to asthma. Source: Mackway-Jones, Marsden and Windle (2014) 

Since its widespread adoption, the MTS has been the subject of many studies aiming 

to test its validity in several scenarios: 

The MTS, when studied without a focus on patients with specific conditions, was 

shown to be able to not only correctly prioritise the care of higher acuity patients but also 

accurately predict the evolution of patient conditions while in the facilities (Júnior, 

Salgado, & Chianca, 2012). In addition, when compared to an institutional protocol that 

raised the classification level when there were disagreements on classification the MTS 

was found to be more inclusive (Souza & Toledo, 2011). 

Santos et al. (2013) concluded that both hospitalization and death were more likely 

in high priority patients (red or orange) compared to low priority (yellow, green or blue) 

by 5 and 5.5 times respectively. This paper also determined that the MTS was a good 

discriminator in the use of diagnostic tools in the ED. 

Martins et al. (2009) acknowledged the importance of the MTS when distinguishing 

between patients with a low and high risk of death in the short term and in identifying 

patients requiring 24h hospitalization.  
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Wulp, Schrijvers and Stel (2009) and Storm-versloot et al. (2011) both tried to 

compare the MTS with the Emergency Severity Index (ESI). The results of both papers 

determined that both tools were useful in predicting entry into ED and that they had 

similar validity. However, the MTS had a lower rate of undertriage. 

Undertriage into yellow and orange priority levels were a serious issue with the MTS. 

This was especially the case in elderly patients as the symptoms manifested atypically 

(Wulp, Baar, & Schrijvers, 2008). 

The MTS was reported being moderately sensitive in paediatric patients but that in 

this age-group overtriage was much more common that undertriage (Seiger et al., 2011). 

This same report also mentions how specific modifications should be done to the MTS 

specifically for situations of paediatric care. 

 

2.3 Simulation 

Saunders, Makens and Leblanc (1989) said that system simulation is an infinite potential 

tool to plan how to allocate resources without changing the actual resources in the system. 

It is used to analyse and describe the behaviour of a system, as well as aiding in designing 

a real system (Mandahawi, Shurrab, Al-Shihabi, Abdallah, & Alfarah, 2017). 

Kelton (1999) defined system simulation as a process to recreate the actual system 

through computer technology. The author suggested that “The real meat of a simulation 

project is running your model(s) and trying to understand the results. To do so effectively, 

you need to plan ahead before doing the runs, since just trying different things to see what 

happens can be a very inefficient way of attempting to learn about your models’ (and 

hopefully the systems’) behaviours’”. While also mentioning how simulation can, if well 

planned, yield valuable information with little effort and in little time. 

 

2.3.1 Stochastic Models   

A stochastic model utilizes random number generators to simulate chance or random 

events. "When one studies a stochastic process, he is interested in the average level of 

activity, deviations from this level, and how long these deviations last, once they occur” 

(Maguire, 1972). Stochastic systems typically use Monte Carlo methods, which rely on 

the assumption that probabilistic components have distributions that can be used to obtain 
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inputs for the computation through a random number generator. Therefore, although a 

single run of the simulation would not be representative of the model outcomes, running 

the simulation a large number of times will yield output values following a distribution 

that will characterize the model's behaviour (Harrison, Carroll, & Carley, 2007). 

 

2.3.2 Deterministic Model 

Unlike stochastic models, deterministic models will have no probabilistic elements and 

therefore only a single run need be made for each given model, as the same inputs will 

always yield the exact same result (Harrison et al., 2007). 

Stevens et al. (1996) define computer experiments using deterministic models as 

unreplicated, factorial experiments. Where an unreplicated experiment occurs when there 

is only one independent sampling of each treatment.  

 

2.3.3 Dynamic Simulation Models: 

A complex system can adapt to changes in its local environment, behaves in a non-linear 

fashion and is composed of other complex systems (a good example would be the human 

body). Additionally, the system's behaviour is different from that of its individual parts. 

Unlike more conventional methods, dynamic simulations incorporate the complexity of 

a system and anticipate changes in said complex systems (Marshal et al., 2015). This type 

of system is used when trying to create mathematical representations of processes and 

systems. Their goal is to study different interventions and experiments to the system and 

analyse their consequences over time, leading to a better understanding of the system 

processes and allowing for better-informed management and policy design. (Harrison et 

al., 2007). 

Marshal et al. (2015) identify three modelling methods of dynamic simulation as the 

most appropriate when evaluating system interventions in healthcare: 
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2.3.3.1 System Dynamics (SD) 

SD was developed in the 1950s “with the goal of using science and engineering to identify 

the core issues that determine the success and failure of corporations (Marshall et al., 

2015). 

This model focuses on modelling the behaviour of the system as a whole, rather than 

modelling the behaviours of actors within the system (Battersby & Forrester, 1963). SD 

simulates the processes that lead to changes in the system over time (Harrison et al., 

2007). The core elements of SD are accumulations, rates, time-delays and feedback. An 

important characteristic of these systems is nonlinearity caused by the existence of 

feedback processes, meaning that an effect is seldom proportional to its cause (Marshall 

et al., 2015). Qudrat-ullah (2012) identifies as the most important part of SD modelling 

the identification of how structure and decision policies help to generate patterns of 

behaviour in the system. He also defends that the most appealing feature of SD modelling 

is linking observable behavioural patterns in a system with micro-level structures and 

decision-making processes.  

 

2.3.3.2 Discrete Event Simulation (DES) 

Discrete evens systems are dynamic systems in which time passed through the occurrence 

of events at either regular or irregular intervals. Therefore, it resembles real-world 

production and as such it has been used in a wide array of areas, such as banking, 

manufacturing and distribution systems (Mandahawi et al., 2017). It has even been used 

in healthcare applications, for example, a model was developed to improve radiation 

therapy planning processes (Werker, Sauré, French, & Shechter, 2009). 

DES is used to study queueing processes and networks of queues focusing on 

resource utilization (Siebers, Macal, Garnett, Buxton, & Pidd, 2017). DES focuses on 

four main concepts: events, entities, attributes and resources. 

• Events are something that happens at determined time points and can affect 

entities and/or resources; 
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• Entities are objects that have attributes and consume resources when there is an 

event. They are passive entities as they have no initiative to make decisions and 

instead things are done to them as they move through the system; 

• Attributes are the unique characteristics of each entity; they can change over time 

or not; 

• Resources are the objects that provide a service to the entities. 

Essentially, DES is a simulation in which entities with specific attributes and 

availability to a group of resources are subject to change as they pass through the system 

and experience events at set time points. 

DES is considered to be well suited to problems in which capturing the changing 

attributes of entities is particularly relevant, per example patients and their condition 

(Marshall et al., 2015), hence its popularity and widespread acceptance by decision-

makers in healthcare operations planning (Noorain, Kotiadis, & Scaparra, 2019). This is 

why, in this thesis, SIMUL8, which uses DES, will be utilized. 

 

2.3.3.3 Agent-based Simulation (ABS) 

ABS is a simulation method for modelling dynamic, adaptive, and autonomous systems 

(Gunal, 2017). This model is used to discover systems by using both deductive and 

inductive reasoning. The main elements of ABS are the agents, the simulated environment 

and the simulation environment Agents are the entities looking to achieve their goals 

through interactions with other agents and/or the simulated environment. The simulated 

environment is where both agent and non-agent entities are encountered, in ABS there 

must be at least one simulated environment. The simulation environment is an 

environment for simulating ABS models, it controls the specific simulation time advance 

and provides message passing facilities and directory services (Gürcan, Dikenelli, & 

Bernon, 2013). 

ABS is commonly used to predict the behaviour of large populations, through the 

coding of predefined behaviours into agents it looks to predict how a population following 

said behaviours and the environment in which it resides would adapt and evolve over time 

(Marshall et al., 2015). 

. 
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In Figure 2 we can see a comparison between the three types of simulation mentioned 

above. The table shows how time-consuming and how costly each simulation is and at 

the same time what the perspective of each is. It can be used as a faster way of comparing 

each type of simulation and determine which is more useful for a specific problem. 

 

2.3.4 Model Design 

A simulation for a hospital’s ED can have a lot of different levels of detail and complexity. 

It can be quite simple if it focuses solely on queues and triage, and it could be expanded 

to include things like seating area, empty beds, available staff, medical supplies’ 

availability, etc. To determine the scope of the model created for this thesis,  the steps 

outlined to create a conceptual model in chapters 5 and 6 of Robinson (2008) will be used. 

Proper development of a conceptual model is the key in expressing the context, 

elements, relationships, limitations and purpose of the simulation study (Cetinkaya, 

Verbraeck, & Seek, 2010). The conceptual model will determine the data requirements, 

the speed with which the model can be created, the speed of experimentation, the 

confidence in the results and the validity of the model (Robinson, 2008). A well-designed 

model will increase the likelihood of the simulation meeting its objective considerably. 

Robinson (2008) Considers the key components of the model to be: 

• Objectives: the purpose of the model and modelling project. 

• Inputs: those elements of the model that can be altered to affect an improvement 

in, or better an understanding of, the real world; otherwise known as the 

experimental factors. 

• Outputs: report the results from simulation runs. 

• Content: the components that are represented in the model and their 

interconnections. 

• Assumptions: made either when there are uncertainties or beliefs about the real 

world being modelled. 

• Simplifications: incorporated in the model to enable more rapid model 

development and use. 
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2.3.5 Representing the Conceptual Model 

Being able to visually represent the conceptual model is very important when creating 

one, Robinson (2008) suggests four main methods of representation: 

• Component list; 

• Process flow diagram; 

• Logic flow diagram; 

• Activity cycle diagram. 

 

2.3.5.1 Component List 

This provides a list of all the components in a model along with some detail on each of 

them. Although it is very simple, it does not provide a visual representation of the model 

and is, therefore, less suited to capture complex logic and the process flow. 

 

2.3.5.2 Process Flow Diagram 

We can view the process flow as a complex network with split, parallel, closed and re-

entrant services (Li & Howard, 2010). A diagram of this process flow shows each 

component in the system along with some detail on it. These components are shown in a 

sequence. The visual representation makes it easier to understand the model. Many 

simulation options use this method, including SIMUL8. 

 

2.3.5.3 Logic Flow Diagram 

This diagram represents the logic of the system rather than the process flow. While the 

process flow diagram shows how the entities move through the system, the logic flow 

diagram shows why they do so in that order.  

 

2.3.5.4 Activity Cycle Diagram 

This method is considered to be somewhere in between the process flow and the logic 

flow diagrams because they describe, in part, the logic of a model while also providing a 



20 

 

visual representation. Robinson et al. (2010) identify their usefulness in identifying 

events, entities and activities.   
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3 Conceptual Framework 

The conceptual framework is the researcher’s idea of how the research problem will have 

to be explored (Upadhyay, 2015).  It allows researchers to define the concept, map 

research and synthesize the relevant aspects that emerged from the literature review in a 

schematic manner (Rocco & Plakhotnik, 2009). With this in mind, the conceptual 

framework (Figure 3.1) was created with a basis on the literature review.  Through an 

analysis of previous studies, the goal will be to collect data on the variables shown in 

Figure 3.1. The data collected will first be used to identify how an ED functions and 

develop a conceptual model for the simulation, through the use of information on patient 

flow. Then it will serve to determine the distribution functions that will be introduced into 

the model when developing the simulation. The model creation will be done through the 

use of a discrete-event simulation tool called SIMUL8 as it is a type of simulation that is 

widely accepted in healthcare due to its usefulness in capturing the changing attributes of 

entities (see section 2.3.3.2). Afterwards, this model will be used to look at the 

relationships between different factors in the ED and develop theories based on the 

observed relationships. These theories will then be compared to existing literature. From 

this comparison, suggestions for future studies will emerge. 

 

 

Figure 3.1 - Conceptual Framework 
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4 Methodology 

This chapter aims to present this thesis’ methodology. The first step will be to take a look 

at existing case studies on the functioning of EDs and take the relevant data from them. 

Afterwards, the data collected will be analysed and used to develop a simulation model. 

From this model many different scenarios will be tested and with the results, theories will 

be generated. 

4.1 Inductive Analysis of Case Studies 

Eisenhardt (1989) defines this approach as a research strategy which focuses on the 

dynamics present within single settings. This type of research consists of analysing 

existing cases without any preconceived notions, and theory building based on this 

analysis. Its primary purpose is to develop preliminary ideas about an issue or 

phenomenon and move toward refined research questions (Neuman, 2014). This thesis 

will be using exploratory research to develop enough understanding to create a simulation 

model of an ED that can be used to create hypotheses on its functioning to be tested in 

later studies.  

This analysis will consist of four steps: 

1. Collecting data; 

2. Developing the simulation model; 

3. Analysing results and theory development; 

4. Comparison with existing literature. 

 

4.1.1 Collecting Data 

The data collection was done through an inductive approach of existing case studies on 

ED functioning, the data collected can therefore be considered as secondary as it is “data 

collected from a source that has already been published” (Kabir, 2016, p. 205). As 

suggested in Eisenhardt (1989), the case selection was done through theoretical sampling 

where the papers chosen were the ones that provided relevant information to be 

introduced into the simulation model. The data collected from these papers was both 

qualitative and quantitative, and aimed at understanding the patient flow through the 

system and how long each activity takes. 
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4.1.2 Development the Simulation Model 

The simulation model was developed as suggested in Robinson (2018) by first developing 

a conceptual model of the simulation (vide section 5). The focus here will be to map the 

patient flow through the system. 

After designing the conceptual model, the actual simulation model was created using 

the simulation tool SIMUL8. Based on the data collected from previous studies, this 

model attempts to represent the average reality of an ED. In this model, the time between 

arrivals of patients and the time it takes for each activity to be performed was introduced 

into the system. 

Due to the seemingly large differences in time it takes for each activity depending on 

the case study looked at, a series of scenarios was created with the goal of recreating these 

different realities. 

 

4.1.3 Analysing results and theory development; 

This step consists of comparing the results of the different scenarios of the simulation and 

developing theories based on them. These results focus mainly on the time patients spend 

waiting while in the system. 

 

4.1.4 Comparing with existing literature 

An essential part of theory building, the comparison of the emergent theories with the 

extant literature involves asking what the theory is in accordance with, what it contradicts 

and why (Eisenhardt, 1989). 

From this comparison along with the theories developed, the suggestions for future 

studies will emerge. 
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5 Conceptual Model 

Designing an appropriate conceptual model is seen as one of the most important parts of 

simulation (Cetinkaya et al., 2010; Robinson, 2008). In order to do so, this thesis will 

follow the steps suggested by chapters 5 and 6 of Robinson (2018).  Figure 5.1 provides 

an outline of a framework for conceptual modelling. It focuses on four key elements: 

1. Develop an understanding of the problem situation; 

2. Determine the modelling objectives; 

3. Design the conceptual model: inputs and outputs; 

4. Design the conceptual model: the model content. 

 

 

 

5.1 Problem Situation 

The problem addressed in this thesis is the issue of overcrowding identified in Pereira et 

al. (2001); Amorim et al. (2019) and numerous other papers. Weiss et al. (2004) looks at 

a lot of possible reasons for overcrowding such as an inadequate nurse-patient ratio or 

ineffective policies when diverting patients. Amorim et al. (2019) considers some of the 

Figure 5.1 - Framework for Conceptual Modelling. Source: Robinson (2008) 
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main reasons for it to be mismanagement of patient flow, lack of access to inpatient beds, 

demand from patients for specialized care instead of primary care, absence of or reduced 

access to primary care, and structural failure of the healthcare system to manage 

population health.  

 

5.2 Modelling Objectives  

The objective of this simulation will be to explore the way an ED works and figure out 

the relationship between elements of the system along with encountering ways of 

reducing patient waiting times and minimizing the number of patients exceeding their 

recommended time allowances, said allowance is determined by their MTS urgency level 

(vide section 2.2).  

 

5.3 Inputs and Outputs 

Hospitals could be viewed as simple input-output systems whereby patients arrive from 

different sources, take different treatment routes, and are discharged (Gunal, 2017). 

Before introducing any information into the simulation, the researcher will try to gather 

data on several inputs that will help in identifying said sources and routes. Those variables 

will be: 

• Patient arrival rates 

• MTS urgency levels 

• Triage, doctor examination and treatment times 

• Number of exams needed 

• Exam times 

• Number of nurses and doctors on staff 

• Number of beds available 

• Patient outcomes 

• Patient flow through the system 

By inputting the mentioned variables into the simulation model, the outcomes which 

will be analysed are: 

• Time spent in queues; 
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• Time spent in the system; 

• Resource utilization 

 

5.4 Model Content  

Having identified the model’s inputs and outputs, the modeller can identify the content 

of the model itself. In this section, both the scope and the level of detail of the model will 

be specified through Tables 5.1 and 5.2 respectively. According to (Robinson, 2008)  the 

scope of the model must be sufficient to provide a link between the inputs and outputs, 

and the level of detail must be such that it represents the components defined within the 

scope and their interconnection with the other components of the model with sufficient 

accuracy. 

 

Table 5.1 - Model Scope 

Component Include/exclude Justification 

Patients Include 
Flow through the system 

Staff 

- Nurses Include 
Input, required for resource utilization 

- Doctors Include 
Input, required for resource utilization 

- Janitorial staff Exclude 
Not relevant for waiting times 

- Receptionist Exclude 
Disregarded due to lack of information 

Supplies 

-Testing Include 
Important in determining time in the system 

- Beds Include 
Input, required for resource utilization and 

determining space in the ED 

- Medical 

Supplies 
Exclude 

Not relevant for waiting times, assume there are 

no shortages 

Queues Include 
Required for waiting time and queue size 

response 
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Table 5.2 - Model Level of Detail 

Component Include/exclude Comment Source 

Patients 

Patient 

inter-arrival 

times 

Include 

Modelled as distribution (Ortiz Barrios & 

Felizzola Jiménez, 2016; 

Weng, Cheng, Kwong, 

Wang, & Chang, 2011) 

Patient age 

and gender 
Exclude 

Lack of data to accurately 

correlate with MTS level 

(Moreira, 2010; 

Zachariasse et al., 2017) 

Patient 

issue/disease 
Exclude 

Lack of data to accurately 

correlate with MTS level 

(Steiner et al., 2016; 

Zachariasse et al., 2017) 

Patient MTS 

level 
Include 

Determines priority in 

queues 

(Anziliero, Dal Soler, 

Silva, Tanccini, & 

Beghetto, 2017; B. 

Martins & Filipe, 2020) 

Mode of 

arrival 
Include 

Assume all urgency 

category 1 come through 

ambulance and skip triage 

(Brenner et al., 2010; 

Mandahawi et al., 2017) 

Outcome Include 
Model exit points (Maningas, Hime, & 

Parker, 2006; Steiner et 

al., 2016) 

Nurses 

Triage time Include 
Modelled as distribution (Improta et al., 2018; 

Weng, Tsai, Wang, 

Chang, & Gotcher, 2011) 

Absenteeism Exclude 
Assume perfect 

attendance 

(Weng, Cheng, et al., 

2011) 

Doctors 

Examination 

time 
Include 

Modelled as distribution (Chen, Guo, & Tsui, 

2020; Weng, Cheng, et 

al., 2011) 

Treatment 

time 
Include 

Modelled as distribution 
(Chen et al., 2020; 

Ramos & Paiva, 2017) 

Absenteeism Exclude 
Assume perfect 

attendance 
(Weng, Tsai, et al., 2011) 

Tests Testing time Include 

Modelled as distribution, 

assume materials required 

are always available 

(Brouns et al., 2019; 

Mandahawi et al., 2017) 

Beds 
Number of 

beds 
Include 

Relevant in determining 

space in the system 

(Nishi, Polak, & Cruz, 

2018; Zeinali, 

Mahootchi, & Sepehri, 

2015) 

Queues 

Queuing Include 
Required for waiting time 

and queue size response 

(Mandahawi et al., 2017; 

Weng, Cheng, et al., 

2011) 

Queue 

behaviour 
Include 

Assigning priorities 

depending on MTS level 

Capacity Exclude 
Assume no capacity 

constraints 
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5.5 Representing the Conceptual Model 

As part of the project specification, it is important to have a means for representing the 

content of the conceptual model (Robinson, 2008). This section will therefore represent 

the conceptual model using the methods explained in section 2.3.4. The diagrams that 

will be shown have been developed through the analysis of previous case studies and how 

they describe the way their observed ED works. The articles used for determining the 

patient flow through the system were Martin et al. (2011); Schaaf et al. (2014); Storm-

Versloot et al. (2014); Rutman et al. (2015); Mandahawi et al. (2017); Improta et al. 

(2018); Amorim et al. (2019); and Martins and Filipe (2020). All these cases identify the 

main path through the system as follows: Arrival > Triage > Doctor consultation/exams 

> treatment > discharge/admission. Doctor consultation and exams are considered as one 

for two reasons: firstly, because exam need varies from patient to patient, some might not 

even require it; secondly, because they are interconnected in the sense that a patient must 

first have a consultation before being sent for testing, and then must return for another 

consultation. However, while they all share this overall path, some of them are more 

complex than others. Something to be considered when developing the simulation in this 

thesis is the existence of a separate room for patients who come in by ambulance and are 

given a MTS level 1 (red) urgency level (Amorim et al., 2019; Mandahawi et al., 2017; 

Schaaf et al., 2014). Another possibility to be looked at a possible solution is creating 

another separate room to deal only with patients who have MTS levels 4 and 5 of the 

MTS and allocating doctors and nurses to it (Mandahawi et al., 2017). 
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5.5.1 Process Flow Diagram 

 Figure 5.2 is used to show in a more simplified manner the components of the system 

along with small details that are relevant to them. These components are shown in a 

sequence (as indicated by the arrows). The system will therefore have two entry points 

(by ambulance and by walk-ins) and three possible exit points (death, internment and 

discharge). In between these, patients will be seen in triage and afterwards by a doctor 

who, if need be, will prescribe exams and afterwards treat patients.  If a patient comes in 

by ambulance it will be assumed that he is a category one patient and will therefore be 

sent directly to a specialized room and treated by a doctor assigned solely to MTS level 

1 patients, these doctors will henceforth be called “red doctors” to differentiate from 

others treating MTS levels 2 to 5. In Figure 5.2, squares are used to represent dead states, 

where a patient waits for something to happen and circles represent active states, where 

a patient is acted upon (Robinson et al., 2010). The distributions mentioned next to the 

active states will be defined in the section dealing with data analysis as they will be 

created based on the result of said analysis. 

 

Figure 5.2 - Process flow diagram of the conceptual model 

Source: Adapted from Robinson (2008) with information from Martin et al. (2011); Schaaf et al. 

(2014); Storm-Versloot et al. (2014); Rutman et al. (2015); Mandahawi et al. (2017); Improta et 

al. (2018); Amorim et al. (2019); and Martins and Filipe (2020) 
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5.5.2 Logic Flow Diagram 

Figure 5.3 shows the logic behind the process flow diagram. It explains when and why 

patients move from one process to the other. In this diagram, the difference between red 

doctors and the other doctors is not shown as the logic behind their movement is the same 

once it reaches the queue for doctor examination. The only place where that difference 

can be seen in Figure 5.3 is in the arrow from “patient arrival” to “queue for bed/doctor” 

that shows the path for patients coming in an ambulance.  

 

Figure 5.3 - Logic flow diagram of the conceptual model 

Source: Adapted from Robinson (2008) with information from Martin et al. 

(2011); Schaaf et al. (2014); Storm-Versloot et al. (2014); Rutman et al. 

(2015); Mandahawi et al. (2017); Improta et al. (2018); Amorim et al. (2019); 

and Martins and Filipe (2020) 
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5.5.3 Activity Cycle Diagram 

Figure 5.4 - Activity cycle of the conceptual model 

Source: Adapted from Robinson (2008) with information from Martin et al. (2011); 

Schaaf et al. (2014); Storm-Versloot et al. (2014); Rutman et al. (2015); Mandahawi et 

al. (2017); Improta et al. (2018); Amorim et al. (2019); and Martins and Filipe (2020) 

In Figure 5.4, just like Figure 5.2, rectangles represent dead states and circles represent 

active states. A dead state of ‘‘outside’’ the model is included to create a complete activity 

cycle, that is, customers come from and are returned to the ‘‘outside’’. Once again, to 

simplify the comprehension of the diagram, the distinction between MTS level 1 patients 

and the rest was not mentioned as the overall activities are the same with the exceptions 

of waiting in the queue for triage and the triage itself. 

 

5.5.4 Assumptions 

To develop this simulation, a series of assumptions had to be made. This section serves 

the purpose of identifying them. The following is a list of said assumptions: 

1. All ambulance patients skip triage and go directly to a different room (Mandahawi 

et al., 2017), as there is a lack of information on the MTS levels of ambulance 

patients, it is assumed they have the highest urgency, level 1; 

2. Receptionists and time spent registering a patient are not considered due to a lack 

of data on the subject; Martin et al. (2011) mentions the fact that patients go 

through receptionists but then also disregards them in his model; 

3. Assume infinite queue capacity; 

4. Every nurse is equally qualified (Weng, Cheng, et al., 2011); 



32 

 

5. Every doctor is equally qualified (Weng, Cheng, et al., 2011); 

6. There is never a lack of the required medical supplies. “Emergency department 

planning and resource guidelines. Policy statement,” (2014) published in “Annals 

of emergency medicine” identifies more than forty items needed (not counting 

drugs), simulating all of them would overcomplicate the system and be outside of 

this model’s scope; 

7. Assume exams depends solely on the availability of a nurse (due to lack of 

available data on testing machines) (Weng, Cheng, et al., 2011); 

8. No problems in staff scheduling (Weng, Cheng, et al., 2011); 

9. Patients don’t leave unseen, even with long waiting times (Weng, Cheng, et al., 

2011); 

10. Even though death normally could happen at any time, due to data constraints it 

will be assumed that patients can only die after going through the system.  



33 

 

6 Data Collection  

Inductive analysis refers to approaches that primarily use detailed readings of raw data to 

derive concepts, themes, or a model through interpretations made from the raw data by 

an evaluator or researcher (Thomas, 2006). It is an analysis in which the researcher begins 

with an area of study and allows the theory to emerge from the data (Ozanne, Strauss, & 

Corbin, 1992). Despite a lack of availability of raw patient data, this chapter will be 

outlining the values observed and utilized by previous researchers on the inputs 

mentioned in Table 2 above. 

The data collected comes from 29 different studies written in between 2006 and 2020. 

 

6.1 Arrival Rates 

When studying the arrival rates of patients in EDs, as with most other data collected, the 

information available and the way it was presented varied from study to study. Some 

authors chose to share the distributions they used at each time interval (e.g. Weng, Cheng, 

et al., 2011; Mandahawi et al., 2017) while others simply provided the number of 

observations and the time period. For the first ones, the 95% confidence intervals and 

averages for both days and hours have been calculated. For the second ones the 

confidence intervals were impossible to determine. Therefore, only the daily and hourly 

average rates were determined. Table 6.1 shows the results of this analysis. 



34 

 

Table 6.1 - Average daily and hourly rates of arrival for patients 

Author Daily Hourly 

-95% Average 95% -95% Average 95% 

(Weng, Cheng, et al., 2011)  127,1 129,5 131,8 5,3 5,4 5,5 

(Mandahawi et al., 2017)  486,9 491,2 495,4 20,3 20,5 20,6 

(Zachariasse et al., 2017)  684,9   28,5  

(Steiner et al., 2016)  80,2   3,3  

(Van Veen et al., 2008)  44,6   1,9  

(M. N. Storm-Versloot, Ubbink, 

Chin A Choi, & Luitse, 2009) 

 84,9   3,5  

(Santos et al., 2013)  210,2   8,8  

(Nishi et al., 2018)  547,9   22,8  

(Almeida & Vales, 2020)  321,6   13,4  

(Ramos & Paiva, 2017)  411,0   17,1  

(Improta et al., 2018)  92,0   3,8  

(Maningas et al., 2006)  158,7   6,6  

 

Average  263,6   10,98  

The last row shows the average of those studies, weighted regarding the number of 

observations from which the values were calculated. In the end we will have an average 

of 263,6 patients per day entering the system 

Another factor that is considered relevant when forecasting patient arrivals are the 

days of the week (McCarthy et al., 2008; Wargon, Casalino, & Guidet, 2010; Whitt & 

Zhang, 2017). From these three studies, the percentages of all weekly arrivals that come 

in each day were calculated. 

The final factor that will be used to determine the arrival rate to the ED will be the 

hour of the day. Many authors identify this as an important differentiating factor for 

arrivals (Chen et al., 2020; Green, Soares, Giglio, & Green, 2006; McCarthy et al., 2008; 

Weng, Tsai, et al., 2011; Whitt & Zhang, 2017). However, due to a lack of raw data, the 

difference between the arrival rates of each hour had to be determined through the 

graphics supplied by these papers. 
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The graphics pertaining to the arrival rates per hour from all five papers mentioned 

(e.g. Figures 6.1 and 6.2), although not exactly the same, all showed a low number of 

visits up until 7, then a sharp increase from then on usually peaking at around 11. From 

there it usually decays at a lower rate from hours 13 to 24. From the graphics of all five 

papers mentioned earlier, the arrival rates at every 2 hours were taken and an average 

calculated, from there the percentage of arrivals for each hour calculated. The results of 

this process can be seen in Table 6.2 and Figure 6.3. 

Table 6.2 - % of total arrivals in each hour 

Interval 0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 22-24 

% of 

arrivals 
6,4 4,4 3,7 4,0 8,4 13,4 11,7 11,3 10,3 9,1 9,4 

 

Figure 6.2 - Patient arrival pattern 

over a 24-h period. Source:(Weng, 

Tsai, et al., 2011) 

Figure 6.1 - Patient arrival pattern 

over a 24-h period. Source: (Green et 

al., 2006) 

Figure 6.3 - % of total arrivals in each hour 
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6.2 Manchester Triage System (MTS) Levels 

Probably one of the most important factors to be able to predict, the MTS level assigned 

to each patient will have a direct influence in the doctor examination, test and treatment 

times, as well as in the number of tests needed and the probability of each outcome. 

To determine the likelihood of each urgency level, various studies have been analysed 

and the percentages of each level calculated, as shown in Table 6.3. The authors did not 

mention the standard deviations of their results.  

Table 6.3 - % of patients assigned to each urgency level 

Author Red Orange Yellow Green Blue 
Total 

observed 

(Zachariasse et al., 2017) 0,7% 15,6% 36,4% 45,5% 1,8% 288 663 

(Steiner et al., 2016) 0,9% 25,8% 40,5% 30,0% 2,8% 2 407 

(Gräff, Latzel, Glien, Fimmers, 

& Dolscheid-Pommerich, 2019) 

1,6% 15,8% 36,1% 41,9% 4,5% 20 836 

(Van Veen et al., 2008) 1,5% 21,4% 36,2% 40,1% 0,8% 13 554 

(Santos et al., 2013) 0,4% 14,7% 34,5% 46,5% 3,9% 23 615 

(Mandahawi et al., 2017) 1,1% 2,3% 36,0% 33,7% 27,0% 445 

(Cicolo & Peres, 2019) 0,5% 4,1% 18,7% 62,2% 14,5% 7 720 

(B. Martins & Filipe, 2020) 0,5% 6,0% 37,3% 55,0% 1,1% 276 279 

(Anziliero et al., 2017) 0,5% 6,6% 17,8% 71,4% 3,6% 136 153 

(Whitt & Zhang, 2017) 0,4% 8,5% 39,0% 50,7% 1,3% 324 022 

       
Average  0,57% 9,95% 34,94% 52,64% 1,91%  

In the average given by Table 6.3 to each colour, the weight of each paper was 

determined by the number of observations, meaning that studies with more observation 

will have a higher weight in the average. These values will be the ones introduced into 

the simulation when determining the urgency level assigned to a patient. 

 

6.3 Resources 

In an actual ED, the resources needed would include all staff (janitorial, receptionists, 

doctors, nurses, etc.) as well as the seats available in waiting rooms, the beds available, 

the testing machines, the laboratory equipment and the general medical supplies needed 

for treatments and tests. However, not all resources can be included in a simulation due 

to how complex it would become. Günal & Pidd (2010) mentions how the more complete 

and detailed a model is the more limited it is. While very useful for the specific situation 

it is modelling it is not usable for different situations. Therefore, the resources on which 

this study will focus are the number of beds, nurses and doctors available. 
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The medical supplies needed are excluded due specifically to how much more 

information would be needed (since there are so many different types of supplies, each 

with different lower utilization rates). The number of machines is excluded due to lack of 

information however, this is compensated in the simulation by assuming that a nurse is 

always required when doing tests (vide section 5.5.4). 

 

6.3.1 Beds 

A lack of beds has been consistently cited as a major source of ED crowding (Hamrock, 

Paige, Parks, Scheulen, & Levin, 2014), hence its inclusion in the model. When it comes 

to collecting data on the number of beds available in an ED, two approaches were taken. 

The first consisted of dividing the number of Portuguese ED beds (830, according to 

Instituto Nacional de Estatística, 2019) by the number of hospitals with an ED, 82 

(Campos, 2014). This resulted in a rounded average of 9 beds per ED. The second 

approach used previous studies that mentioned the number of beds available and 

compared them to the patients per year in each of those EDs. Then, it used the average 

patients per bed and applied it to Portuguese reality. Table 6.4 shows the results of said 

research. 

Table 6.4 - Patients per bed 

Author Patients per year Nº of beds Patients per bed 

(Weng, Cheng, et al., 2011) 63 843 60 1 064 

(Nishi et al., 2018) 200 000 178 1 124 

(Maningas et al., 2006) 57 980 389 149 

(McCarthy et al., 2008) 55 000 41 1 341 

(Graves et al., 2018) 70 000 40 1 750 

(Hamrock et al., 2014) 
59 000 25 2 360 

50 000 20 2 500 

(Weng, Tsai, et al., 2011) 32 000 53 604 

(Zeinali et al., 2015) 52 000 10 5 200 

    

Average   1788 

As can be seen in Table 6.4, from this research an average of 1 bed available for every 

1788 patients in a year was found. On its own, this number might seem a bit strange but 

it can be explained that oftentimes each patient spends only a couple of minutes in a bed 

to treat minor issues, in the end, this means that each bed will be used by an average of 5 

patients in any given day. Using the number of ED visits from INE (2019), we will have 

an average of 83 550 visits to an ED per year, which means that it would need 46,7 beds 

per ED to have the same 1788 patients per bed (83550 / 1788 = 46,7). 
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The fact that the Portuguese average and the average found in the studies are so 

distinct is something that could be relevant therefore, simulations with both values will 

be performed to determine how relevant this difference is. 

 

6.3.2 Nurses 

This simulation will be following in the footsteps of  Zeinali, Mahootchi and Sepehri, 

(2015) by trying not a single combination of allocation of nurses but many different 

scenarios. It will also take into accounts having a  different number of nurses per shifts.  

The nurses present in an ED are divided into two categories, triage nurses and regular 

nurses. Triage nurses are the ones who have had training on the MTS and are therefore 

able to correctly triage patients. The amount of nurses in charge of triage at any given 

time is usually just one (Brenner et al., 2010; Weng, Tsai, et al., 2011). However, this 

study will look at the effects of having two instead of one and see how it may impact 

waiting times. Table 6.5 shows the number of nurses available in the EDs studied in 

different papers. 

Table 6.5 - Number of nurses available 

Author Number of nurses 

(Olofsson, Gellerstedt, & Carlström, 2009) 30 

(Weng, Cheng, et al., 2011) 7 to 9 

(Brenner et al., 2010) 10 to 13 

(Weng, Tsai, et al., 2011) 8 to 9 

(Zeinali et al., 2015) 1 to 6 

In table 6.5 the first paper seems to be an outlier among the five. However, this is due 

to the fact that the number 30 pertains to the total number of nurses in the staff, while to 

the rest of the papers it is only the number of nurses available at any given time in the 

ED. If we divide the 30 by the 3 shifts (assuming an equal number of nurses per shift) it 

would give us 10, a number in line with the others observed. In the table we can see how 

4 out of the 5 papers were also experimenting with different configurations for the ED, 

this is similar to what will be done in this simulation: trying out a varying number of 

nurses.  

Each day will feature three shifts of eight hours starting at 00:00, 08:00 and 16:00. 

The shifts were divided like this because three shifts seem to be the most common 

configuration and looking at the arrival rates of Figure 6.3 these seem like the best hours 

to separate the shifts so that the arrival rates are somewhat consistent throughout the shift. 
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With the first shift being the one with the least patients and the second the one with the 

most. However, since the difference between the second and third shift is relatively small, 

the same number of staff for both shifts will be assumed. This schedule while be 

applicable for both nurses and doctors. 

 

6.3.3 Doctors 

When choosing the number of doctors, we will follow the same logic as with the number 

of nurses, it will depend on shifts and many scenarios will be tried out. Table 6.6 gives us 

the number of doctors available at any moment as mentioned in each of those papers. 

Table 6.6 - Number of doctors available 

Author Number of doctors 

(Weng, Cheng, et al., 2011) 7 to 9 

(Cicolo & Peres, 2019) 7 

(Brenner et al., 2010) 5 to 6 

(Weng, Tsai, et al., 2011) 4 to 8  

From this table we realize that the suggested number of doctors ranges between 4 and 

9; in SIMUL8 we will try to determine an optimal solution. 

 

6.4 Time Distributions 

6.4.1 Triage Time 

The triage time is about the time a patient spends with the triage nurse where at the end 

he/she is assigned an MTS level. The fact that the MTS level is assigned during triage 

invalidates the time distributions given by some papers (Anziliero et al., 2017; Chen et 

al., 2020; Marja N. Storm-Versloot et al., 2014) as they separate the triage times by MTS 

level. In this simulation, the same triage times will be used for every patient. Although 

exponential distributions are considered to be a good approximation of service time 

(Swamidass, 2000), not every paper available uses it. The distributions found in Table 

6.7 will be the ones used. 
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Table 6.7 - Triage time distributions (min) 

Author Distribution Time (min) 

(Martin et al., 2011) Normal 
Mean Standard Deviation 

3 3 

 

(B. Martins & Filipe, 2020) 
Exponential 

2 

(Improta et al., 2018) 7 

 

(Mandahawi et al., 2017) 
Triangular 

1,3,5 

(Weng, Tsai, et al., 2011) 7,8,10 

 

6.4.2 Doctor Examination Time 

For this distribution, we will have a scenario where the examination time depends on the 

MTS level and then three more where the same distribution is used for every patient. This 

is due to the lack of data separating the times per colour, this may be because it is not 

relevant or simply because it was not the objective of the papers found to determine that 

correlation. Table 6.8 shows the distributions to be used. 

Table 6.8 -  Doctor examination time distribution times (min) 

Author Red Orange Yellow Green Blue 

(Chen et al., 2020) 
Uniform 

(60) 

Uniform 

(30) 

Triangular 

(8;9;10) 

Triangular 

(6;7;8) 

Triangular 

(3;4,5;6) 

      

 Distribution Time  (min) 

(Ahmed & Alkhamis, 2009b) Triangular 8;16;24 

(Weng, Tsai, et al., 2011) Triangular 4;8;12 

(Improta et al., 2018) Exponential 13 

As can be seen, the difference in time for each paper seems to be quite substantial, 

hence each will be simulated and its effects on the simulation analysed.  

 

6.4.3 Tests Time 

The time spent on testing will go hand in hand with the number of tests necessary. To 

determine testing time there will be three different scenarios based on the different options 

seen in the literature.  
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Table 6.9 - Testing time scenarios by case study used 

Scenarios Number of tests Testing time 

1 (Weng, Cheng, et al., 2011) (Mandahawi et al., 2017)  

2 (Brouns et al., 2019)  (Mandahawi et al., 2017)  

3 (Brouns et al., 2019) (Weng, Cheng, et al., 2011) 

4 (Weng, Cheng, et al., 2011) (Weng, Cheng, et al., 2011) 

The scenarios in Table 6.9 were created from among three different case studies, the 

number of tests simply because the values were different and testing both options could 

prove to be useful (Table 6.10). The testing time varies because while Weng, Cheng, et 

al. (2011) changes the time it takes for each subsequent test to be conducted, Mandahawi 

et al. (2017) use a triangular distribution of (15,20,30) for every test.  

Table 6.10 - Number of tests per colour 

Author 
Nº of 

tests 
Red Orange Yellow Green Blue 

(Weng, Cheng, et al., 

2011) 

1 15,48% 18,01% 20,53% 21,46% 45,38% 

2 39,89% 41,30% 42,71% 49,77% 35,71% 

3 23,27% 21,68% 20,09% 11,67% 16,81% 

4 11,42% 10,59% 9,75% 9,33% 2,10% 

5 6,42% 5,37% 4,32% 4,67% 0 

6 3,52% 3,06% 2,60% 3,10% 0 

       

(Brouns et al., 2019) 

Mean 3,4 1,5 1,5 0,9 0,9 

SD 1,7 1,1 1,1 0,9 0,9 

None 9,8% 4,1% 20,3% 41,6% 41,6% 

Before anything else, it is very important to mention how both papers were missing 

some data. Weng, Cheng, et al. (2011) on the orange patients and Brouns et al. (2019)on 

blue patients. For the first one an average of the colours red and yellow was used, for the 

second one, the same values as the ones from green were assumed. Although this is not 

necessarily similar to reality it was the best that could be done to complement the data. 

Relevant for the design of the simulation is also the fact that scenarios 1 and 4 assume 

that every patient requires at least one test.  

Table 6.11 shows the time distribution of each test that will be used in scenarios 3 

and 6. Compared to the other distribution used, T(15,20,30), the first test will be quicker, 

but the rest will most likely be slower. 

Table 6.11 - Time distribution for each test(min). Source:(Weng, Cheng, et al., 2011) 

Test Number Time (min) 

1 Exponential(3.4) 

2 Exponential (107.4) 

3 Exponential (55.6) 

4 Exponential (75,3) 

5 Exponential (49,8) 

6 Exponential (49,8) 
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6.4.4 Treatment Time 

The treatment time relates to the period in between the second doctor examination (first 

if there were no exams needed) and the exit from the system (either through discharge or 

admission). Four different scenarios will be tested, the first two using different times for 

each MTS level, the second and third maintaining the same distribution for every patient. 

Table 6.12 - Treatment time distributions (min) 

Author Distribution Red Orange Yellow Green Blue 

(Chen et al., 2020) 
Triangular 

 
(0,4;8) (0;2.1;24) (0;2.1;45) (0;2.5;60) (2;5.42;60) 

(Marja N. Storm-

Versloot et al., 2014) 

Exponential  
131.4 131.4 120 30.6 22.8 

       

(Mandahawi et al., 

2017) 
Triangular 5,10,20  

(Ramos & Paiva, 

2017) 
Average 300 

The reason for all four scenarios being tested is the differences between them. 

Between the first two in the second two, the difference is how the first two differentiate 

between MTS levels. Afterwards is the fact that all four of them suggest quite distinct 

treatment times, ranging from 0 to 300 minutes.  

The difference between them is not explained but it could be due to different ways of 

measuring per example, considering the recovery time versus not it in an observation unit 

within the ED as treatment.  

In the paper by Storm-Versloot et al. (2014), no information on the treatment time of 

patients assigned to urgency level one was available as they did not include any such 

patient in their study. Therefore, in order for it to be used in the simulation, it was assumed 

that treatment time for those patients was the same as the one for urgency level two 

patients. 

 

6.4.5 Outcome 

There are three possible outcomes for the patient journey: discharge, admission and death. 

The healthy patients are discharged and exit the system that way, the ones admitted into 

the hospital leave the ED to go to other departments, therefore leaving the simulation 

scope. The third outcome is death; it may come at any point in the simulation. For each 
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outcome, their likelihood will depend on the MTS level assigned to the patient. Tables 

6.13 and 6.14 show the likelihoods of admission and death respectively, otherwise, all 

patients are discharged.  

Table 6.13 - Likelihood of admission   

Author Red Orange Yellow Green Blue 
Total 

Observed 

(Steiner et al., 2016) 33,3% 7,6% 3,4% 0,8% 0% 2 407 

(Santos et al., 2013) 59,2% 12,3% 4,7% 1,3% 0,3% 24 721 

(Moreira, 2010) 21% 28% 9% 1% 3% 32  022 

(Maningas et al., 2006) 38,0% 18,4% 9,1% 1,5% 0,4% 7 077 

(Brouns et al., 2019) 72,2% 29,6% 11,4% 2,8% NA 6 108 

       

Weighted average 24,86% 26,64% 8,72% 1,06% 2,70%  

The likelihood of admission for each MTS level was calculated by determining the 

weighted average of the results given by the papers in table 6.13 (the weight of each value 

was proportional with the total number of observations in the corresponding paper). The 

case study of Moreira (2010) has a considerably higher amount of patients observed when 

compared to the other four, hence its increased weight on the average. The last paper on 

the table did not include information on patients assigned the blue colour during triage, 

therefore it was not used to calculate that average. The weighted average is showing the 

likelihood of a patient being admitted depending on his MTS level per example if a patient 

is assigned the level 3 (yellow) he has an 8,39% chance of being admitted. 

Table 6.14 - Likelihood of death 

Author Red Orange Yellow Green Blue 
Total 

Observed 

(Steiner et al., 2016) 19% 4% 3,1% 1,9% 3% 2 407 

(Santos et al., 2013) 30,6% 3,3% 0,9% 0,3% 0,3% 24 721 

(Moreira, 2010) 29% 1% 0% 0% 0% 324 022 

(Brouns et al., 2019) 18,0% 0,2% 0% 0% NA 6 108 

       

Weighted average 28,30% 1,14% 0,08% 0,03% 0,04%  

The logic behind Table 6.13 is the same as that of Table 6.14 (explained in the 

previous paragraph) but this time it relates to the likelihood of death instead. As can be 

seen, the likelihood of death is much higher in patients assigned to MTS level 1 (Red). 

In reality, as more time is spent waiting, the chances of admission and/or death 

increase (Mahmoudi, Swiatek, & Chung, 2017). However, since reliable data on the 

relation of between time spent waiting and patient outcomes could not be found, this 

theory has been disregarded when constructing the simulation model.  
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7 SIMUL8 Model  

7.1 Why SIMUL8? 

Before explaining the model developed and looking at the results, a brief explanation on 

why SIMUL8 was the simulation tool chosen for thesis is required. SIMUL8 uses 

discrete-event simulation which is widely accepted in the healthcare industry (vide 

section 2.3.3.2). Additionally, this is a tool that is considered to be “a robust, user-friendly 

tool, which has proved to be adequate for implementing conceptual models and also for 

what-if analysis.” (Vilas-boas, Suleman, & Moreira, 2015). 

Within SIMUL8 itself, some of the capabilities that led to it being the chosen 

simulation tool were: 

• Using different arrival rates depending on the time of day; 

• Introducing resources and assigning them to different activities; 

• Creating shifts and controlling the number of resources available per shift 

(e.g. number of doctors); 

• Assigning labels to work items (patients) and setting different paths through 

the system depending on label assigned; 

• Being able to choose the key performance indicators (KPIs) wanted; 

• Setting up trials with however many runs the researcher wants and receiving 

a results list with the average and 95% confidence intervals of the KPIs 

determined. 

The fact that the researcher already had previous experience using SIMUL8 was the 

final reason for choosing it for this simulation. 

 

7.2 Base Model 

7.2.1 Definition of the Inputs to the Base Simulation Model 

Testing every possible combination of the different options mentioned in the Data 

Collection chapter would mean testing 64 000 scenarios. This is not feasible, therefore 

this thesis will choose one combination to function as a base model and then test different 

scenarios and compare the results. The only two components of the model that will not 
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be changed are the assignment of MTS Levels and the likelihood of each outcome. The 

values used in both will be the ones mentioned in the previous chapter. 

The following list will explain the values chosen for each of the variables defined in 

the previous chapter along with how they were introduced in SIMUL8 when creating the 

base model (all service distributions chosen were simply introduced in the activity 

properties): 

• Arrival Rates: The arrival rates used will be the average of the papers of eleven 

patients per hour. The rates have, however, been adjusted to fit the percentage of 

arrivals by day and hour mentioned before;  

o Done by assigning a time dependent distribution that changes the arrival 

rates every two hours. 

• Beds: The number of beds considered for the base model will be nine, with two 

of them always available for patients assigned MTS level 1; 

o Creation of the resources “beds” and “red beds”. 

• Nurses and Doctors: After building the first model, a sensibility analysis will be 

performed and from there the values to be used in the rest of the scenarios will 

be decided. From the number of nurses, at least one will be put in triage and from 

the doctors, at least one will be assigned solely to treating MTS level 1 patients;  

o Creation of the resources “triage nurses”, “nurses”, “doctors”, and “red 

doctors” and determining the number of resources available depending on 

shifts (e.g. Figure A.12 seen in Appendix A). 

• Triage: The triage time distribution will be an exponential with an average time 

of two minutes, following Martins and Filipe (2020). Exponential distributions 

are commonly used to determine service times (Swamidass, 2000) and of the two 

exponential distributions available this is the paper with the most observations;  

• Doctor examination: In the base model, priority will be given to papers that 

differentiate between each MTS level as these should be closer to reality. 

Therefore, the distributions used to determine doctor examination will be the ones 

from Chen, Guo and Tsui (2020) described in Table 6.8; 

• Tests: The number of tests will be determined using (Weng, Cheng, et al., 2011) 

as it has detailed information on the likely number of tests for each colour. 

Normally, the test times from the same paper would be used, however, since in 

this paper tests take too long when compared to the arrival rates this would create 
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a bottleneck that would heavily influence results from any activity or queue that 

come after it. Therefore, the distribution used will be a triangular (15,20,30) taken 

from Mandahawi et al. (2017); 

• Treatment: Chen, Guo and Tsui (2020) will be delivering the distributions to be 

used in the treatment time as it is the only one that distinguishes by MTS level 

and has data available on all five levels. 

 

7.2.2 Defining and Depicting the Base Simulation Model 

Figure 7.1 provides us with an overview of the base model developed using SIMUL8. 

On the top part of the figure, we have the resources used in the simulation. Each resource 

is inside a coloured box. The activities that use any resource will also be inside a box of 

the same colour as the resource required. Most activities (blue squares with a gear) have 

a title either above or below them which explain what that activities they are. The 

exceptions are the ones in the dark green box which are lacking a title, these activities 

represent the tests (1 through 6) the patients are assigned.  

Only three activities are independent from any resource: “Ambulance entries”, 

“Routing” and “Routing 2”. All three of these activities have a fixed activity time of zero 

seconds. They are not activities that exist in reality, they are instead added here simply to 

make the simulation work. “Ambulance entries” has this name because it is where MTS 

level 1 patients are sent, it is used to assign a label that will determine whether patients 

will have to go through some tests or not, this activity will only be of use in scenarios 24 

and 25. “Routing” and “Routing 1” will be used as a way to route patients based on their 

MTS levels. This is necessary as SIMUL8 does not allow for routing out logic in queues. 

This meant that, if we required different activity times for each MTS level, then this was 

the method found to guarantee that each patient would move to the correct activity. 
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  Figure 7.1 - Base Model in SIMUL8 
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7.3 Determining the number of Nurses and Doctors 

When determining the number of nurses and doctors to be used in the base model fifteen 

scenarios (vide table 7.1) where simulated the relevant results are shown in Figures A.1 

to A.6 (in Appendix A). These numbers include one nurse assigned to triage and two 

doctors assigned solely to MTS level 1 patients. 

Table 7.1 - Scenario description 

Scenario 
Number of nurses Number of Doctors 

0h-8h 8h-24h 0h-8h 8h-24h 

1 6 7 7 8 

2 7 8 7 8 

3 8 9 7 8 

4 9 10 7 8 

5 10 11 7 8 

6 11 12 7 8 

7 12 13 6 7 

8 12 13 7 8 

9 12 13 8 9 

10 12 13 9 10 

11 13 14 7 8 

12 13 14 8 9 

13 14 15 7 8 

14 14 15 8 9 

15 15 16 7 8 

The MTS levels 5 and 4 patients’ results are a bit less intuitive to understand than the 

rest. Looking just at Figures A.1 and A.2, a lower number of nurses would actually lead 

to lower waiting times. However, this is not true. To truly understand the results, one must 

also look at Table 7.2. 

Table 7.2 - Queue for tests and patients who have not left the system in scenarios 1 

through 15 

Scenario Average queue for tests 
Patients in the system at the end of one 

week 

 -95% Average 95% -95% Average 95% 

1 368,44 377,33 386,22 756 757 759 

2 272,25 281,17 290,09 561 563 564 

3 180,95 189,37 197,79 367 369 371 

4 155,12 168,03 180,94 172 175 178 

5 20,71 23,88 27,06 43 47 52 

6 8,08 9,05 10,01 23 30 36 

7 0,33 0,37 0,40 27 42 56 

8 3,32 3,73 4,13 11 20 29 

9 4,75 5,31 5,88 16 21 26 

10 5,37 6,08 6,78 16 21 27 

11 0,98 1,13 1,29 9 17 26 

12 2,05 2,41 2,76 12 17 22 

13 0,37 0,44 0,50 7 17 27 

14 0,90 1,08 1,26 12 16 21 

15 0,15 0,17 0,19 8 17 26 
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The queue for tests being so large in the first four scenarios explains the perceived 

low waiting times, as many of the level 5 and 4 patients are still in the queue by the end 

of the week meaning that they are not counted when calculating waiting times. In this 

model, patients with a higher MTS level (less urgent) are always the last to be seen.  

This is further shown when in scenario 5: as fewer patients are stuck indefinitely in 

the queue, the waiting times for level 5 patients increases to an average of 20 hours (the 

same happens for level 4 patients but in scenario 4 and to 4 hours) because more of them 

are now counted. 

Looking at the graphs for the two less urgent patient categories, the comparison 

between scenarios 7 to 10 will also be relevant to understand the system. In all of them, 

the number of nurses remains constant and it is the number of doctors that varies. The 

interesting part is that as the number of doctors increases by one, from 7 (8h to 24h) to 8, 

the waiting time decreases greatly. However, as the same is done in scenarios 8, 9 and 10 

the waiting time increases slightly. This happens because, as all patients take less time to 

pass through the doctor examination, they arrive at faster rates at the queue for testing 

and therefore, it takes longer for patients of lower urgency to be tested. Hence, for lower 

urgency patients, increasing the number of doctors past a certain point can be detrimental 

to waiting times if it is not accompanied by changes to the number of nurses.  

For the rest of the MTS levels increasing the number of nurses will heavily reduce 

the waiting times up until 13 nurses. From there onwards, the waiting time still decreases 

but at a slower pace. When it comes to the number of doctors, increasing them seems to 

make little difference to the total waiting time as it reduces the waiting time for doctor 

examination but increases the one for tests. This happens because as they are seen faster 

by the doctor, the queue for tests will grow. This can be more easily seen in Figure 7.2 

which shows the average size of the queue for tests depending on the scenario. Since the 

number of nurses is constant between scenarios 7,8,9 and 10 (12/13); scenarios 11 and 12 

(13/14) and scenarios 13 and 14 (14/15). The only change between them is the increase 

of the number of doctors available, as can be seen, when the number of doctors increases 

the queue size for tests increases. 
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Figure 7.2 – Average size of the queue for tests in scenarios 7 to 14 

Overall, the key takeaway from here is that while increasing the number of nurses 

will consistently decrease waiting times up to a point, increasing the number of doctors 

seems to not be relevant unless it is accompanied by an increase in the number of nurses 

as well. 

One final interesting observation to mention is how the average waiting times for 

MTS level 1 seem to increase when the number of doctors is increase (e.g. from scenarios 

8 to 9, 11 to 12 and 13 to 14). This may be happening due to the fact that this increased 

number of doctors will only be looking at the other four levels as level 1 patients always 

have two doctors exclusively assigned to treat them. This means  MTS level 2, 3, 4 and 5 

patients will be entering the queue for testing more frequently, increasing the time MTS 

level 1 patients will have to wait. 

To prevent testing every other scenario with the existence of substantial bottlenecks 

or with unrealistic staff numbers, the scenario that will be used in the base model will be 

scenario 8 with either 12 or 13 nurses and  7 or 8 doctors (depending on shifts). These 

values have also been seen in previous literature as can be seen in Tables 6.5 and 6.6. 

 

7.4 Arrival Sensitivity Analysis 

The arrival rate of patients to the ED is subject to numerous outside factors, Otsuki et al. 

(2016) identifies seasonal changes as one such factor, and the recent pandemic created is 

an example of another. Therefore, before simulating the rest of the scenarios, a sensitivity 

analysis of the patients interarrival rate was done.  
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This sensitivity analysis picked the peak hours of patient arrivals, between 10:00 and 

16:00 and looked at the different averaged waiting times per MTS level. Both decreases 

and increases of 10%, 20% and 50% to the interarrival times were simulated. Table 

A.1show us the result of these simulations. Results regarding the MTS level 5 patients 

were not included as even in the simulation with the most patient arrivals the number of 

level 5 patients was, on average, 0,9 with a 95% confidence interval of 0,56 to 1,24. 

Figure 7.3 gives us an easier to understand view of Table A.1 (in Appendix A)  by 

showing the difference in average total waiting times for each level.  

 

 

 

Figure 7.4 - Average time spent waiting for triage (min) depending on the change to 

interarrival time 

 -

 20

 40

 60

 80

 100

 120

50% 20% 10% base -10% -20% -50%

MTS Level4 MTS Level 3 MTS Level 2 MTS Level 1

0

5

10

15

20

25

30

35

40

45

50

50% 20% 10% base -10% -20% -50%

Figure 7.3 - Average total waiting times (min) depending on MTS level 

and on change to interarrival time 



52 

 

 

The average waiting time seems to increase at a seemingly stable rate as the 

interarrival rate goes down. The rate is stable up until the interarrival time is reduced by 

half, here we see a sizable jump in total waiting time for every MTS level except for level 

1. The reason why this happens is the waiting time for triage. When the interarrival time 

is this low, just one triage nurse is not enough to handle all patients. Hence, waiting times 

increase. MTS level 1 patients do not wait longer because they do not go through triage. 

Figure 7.4 shows us this difference in triage times, which, as can be seen, seems to match 

the lines from Figure 7.3. - Average time spent waiting for triage (min) depending on the 

change to interarrival time 

 

7.5 Results Analysis 

In this subsection, fourteen more scenarios will be tested using the distributions found in 

the literature (vide chapter 6). These scenarios will be divided into five groups. The first 

one contains only scenario 16 and it is related to the number of beds available. The second 

one looks at the different triage time distribution and is composed of scenarios 17 to 20. 

The third one changes the doctor examination times and encompasses scenarios 21, 22 

and 23. The fourth one changes the number of tests and/or the test times, it is composed 

of scenarios 24, 25 and 26. The last one will be the one looking at different treatment 

times and how they affect the simulation in scenarios 27, 28 and 29.  Table 7.3 provides 

us with the variables in which each scenario varies from the base model. 
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Table 7.3 - Scenario description 

Scenario Number of beds Number of red beds 

16 37 10 

 

 Triage Times (min) 

17 Normal (µ=3;σ=3)  

18 Exponential(7) 

19 Triangular (1;3;5) 

20 Triangular (7;8;10) 

 

 Doctor examination times (min) 

21 Triangular (8;16;24) 

22 Triangular (4;8;12) 

23 Exponential(13) 

 

 Number of tests/test times (Table 11 scenarios) 

24 2 

25 3 

26 4 

 

 Treatment times 

 Red Orange Yellow Green Blue 

27 Exponential 

(131,4) 

Exponential 

(131,4) 

Exponential 

(120) 

Exponential 

(30,6) 

Exponential 

(22,8) 

28 Triangular (5,10,20) 

29 Average (300) 

 

7.5.1 Beds 

Scenario 16 will simulate the ED with 47 beds instead of 9 (as proposed in subsection 

5.3.1). The number of “beds” and “red beds” will be 37 and 10 respectively, to maintain 

the ratio used before of 7:2. 

In this scenario, it becomes clear that in the base model, increasing the number of 

beds will have next to no impact as doing so diminishes the average waiting time of 

patients (of any MTS level) by less than one minute. The utilization percentages of “beds” 

and “red beds” will also drop from 45,69 and 0,19 to 9,41 and 0,04 respectively. This 

means that increasing the number of beds will not be useful if the utilization percentage 

was already low beforehand.  
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7.5.2 Triage Times 

To look at the impact of triage times in the simulation, four different scenarios were 

tested. Table 7.4 and 7.5 show the relevant results taken from the simulations. 

Table 7.4 - Comparison between results from the base model and scenarios 17, 18, 19 

and 20 

  base 17 18 19 20 

Triage Average Waiting time 

(min) 

-95% 1,58 7,73 1212,22 8,82 1779,13 

Average 1,67 8,50 1 271,09 3,61 1 818,30 

95% 1,75 9,27 1329,97 3,89 1857,47 

“Triage nurse” utilization % 

-95% 36,6% 58,9% 98,6% 53,8% 99,2% 

Average 37% 59,5% 98,8% 54,3% 99,4% 

95% 37,4% 60,1% 99,1% 54,7% 99,6% 

Patients still in the system at 

the end of the week 

-95% 20 20 428 20 634 

Average 23 23 430 23 642 

95% 26 26 432 26 649 

 

Table 7.5 – Total waiting times (except for triage queue) per colour 

   base 17 18 19 20 

Average 

Total 

Waiting 

time 

(except 

triage 

queue) 

(min) 

Blue 

-95% 196,80 179,14 0,85 193,23 0 

Average 233,81 214,74 1,85 228,57 0 

95% 270,83 250,33 2,86 263,91 0,01 

Green 

-95% 52,30 46,84 0,77 50,06 0 

Average 60,01 54,19 1,00 57,57 0 

95% 67,72 61,54 1,24 65,09 0,01 

Yellow 

-95% 4,54 4,10 0,39 3,93 0 

Average 4,90 4,45 0,47 4,23 0 

95% 5,26 4,80 0,55 4,54 0 

Orange 

-95% 2,55 2,40 0,27 2,36 0 

Average 2,76 2,62 0,36 2,58 0 

95% 2,98 2,83 0,45 2,80 0 

Red 

-95% 1,46 1,57 0,05 1,68 0 

Average 2,41 2,53 0,96 2,55 0,61 

95% 3,37 3,50 1,87 3,42 1,26 

 

Scenarios 17 and 19 tested triage times that, although slower than the base model, on 

average, managed to look at patients at a faster rate than patients would arrive at the 

system. This meant that even though there was an increase in the utilization percentage 

of the resource "triage nurse", the overall time spent waiting for each colour remained 

similar between these two scenarios and the base model, as can be seen in Table 7.5. This 

can be seen in Figures A.7, for scenario 17, and A.9, for scenario 19; (in Appendix A) 

where the maximum number of patients in the queue for triage is 16 and 6 respectively, 

therefore, triage does not seem to be an issue in these scenarios 
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In scenarios 18 and 20 using simply one triage nurse will be unsustainable. As can be 

seen in Table 7.4, taking this much time in triage will lead to average waiting times for 

triage of 21h and 30h. Figures A.8 and A.10 (in Appendix A) show us the number of 

patients in the queue for triage at any given point of the simulation for scenarios 18 and 

20 respectively. Here it is important to note how the number does not increase at a 

constant rate. Since the interarrival time is not always the same, it would seem from these 

figures that when the interarrival time is at its highest (during the night) the queue for 

triage will decrease. However, this decrease is not enough to compensate for the increase 

during the day. In scenarios 17 and 19, since even during the day the queues are small, 

during the night there are almost no queues. 

 

7.5.3 Doctor Examination times 

Changing the time spent during doctor examinations will have the same effect we saw 

when changing the number of doctors available (vide section 7.3). As can be seen in Table 

7.7, the locations where a patient will wait the most will change. However, the total 

queueing time seems to remain relatively unchanged. This happens because when the 

waiting time for the doctor examination reduces or increases the waiting times for tests 

does the opposite. As patients go through the doctor examination faster, they are also 

faster to arrive at the queue for tests meaning that the time spent waiting in this queue 

will increases. 

This may make it seem like lowering the doctor examination times will be irrelevant, 

and even though when it comes to total waiting time this seems to be somewhat true, it 

will have a much more noticeable effect on the percentage of patients that wait for longer 

than the suggested amount of time per colour between triage and being seen by the doctor, 

this can be seen in Table 7.6. Here we see how, in scenarios increasing 21 and 23 the 

number of patients not seen within the time limit increases compared to the base model, 

with the exception being the MTS level 1 patients which are more likely to wait longer in 

the base model since, for this level, it is the scenario in which the doctor examination 

takes longer. 
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Table 7.6 - Percentage of patients queued above the suggested time limit in scenarios 21, 

22  and 23 

   base 21 22 23 

Patients queued 

above time limit  

 

Blue 

-95% 0% 25,3% 0% 2,5% 

Average 0,6% 29,1% 0% 4,3% 

95% 1,2% 33,0% 0% 6,1% 

Green 

-95% 0% 11,4% 0% 0,7% 

Average 0,1% 14,4% 0% 1,5% 

95% 0,3% 17,5% 0% 2,3% 

Yellow 

-95% 0% 0% 0% 0% 

Average 0% 0% 0% 0% 

95% 0% 0% 0% 0% 

Orange 

-95% 0% 0,2% 0% 0,3% 

Average 0,1% 0,5% 0% 0,6% 

95% 0,3% 0,7% 0% 0,8% 

Red 

-95% 0,2% 0% 0% 0% 

Average 1,3% 0% 0% 0% 

95% 2,4% 0% 0% 0% 
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Table 7.7 - Comparison between results from the base model and scenarios 21, 22  and 

23 

   base 21 22 23 

Average Waiting 

Time 

For Doctor 

Examination 

(min) 

Blue 

-95% 3,33 168,30 0,28 25,26 

Average 6,07 192,53 1,10 34,92 

95% 8,82 216,76 1,92 44,58 

Green 

-95% 1,46 39,92 0,36 9,09 

Average 1,96 46,34 0,45 11,24 

95% 2,47 52,76 0,54 13,39 

Yellow 

-95% 0,44 3,06 0,18 1,65 

Average 0,52 3,26 0,21 1,81 

95% 0,59 3,46 0,25 1,97 

Orange 

-95% 0,29 1,63 0,12 0,95 

Average 0,34 1,74 0,14 1,05 

95% 0,39 1,86 0,17 1,14 

Red 

-95% 0 0 0 0 

Average 0,28 0 0 0 

95% 0,57 0 0 0 

       

Average Waiting 

Time 

For Tests (min) 

Blue 

-95% 193,27 45,76 195,78 167,71 

Average 227,11 62,20 228,30 200,20 

95% 260,96 78,64 260,83 232,70 

Green 

-95% 50,28 18,88 51,03 44,05 

Average 57,37 22,22 58,12 50,50 

95% 64,46 25,56 65,21 56,95 

Yellow 

-95% 3,73 2,86 3,74 3,66 

Average 3,95 3,06 3,98 3,86 

95% 4,16 3,26 4,22 4,07 

Orange 

-95% 1,99 1,77 1,99 2,00 

Average 2,10 1,87 2,11 2,11 

95% 2,21 1,98 2,23 2,23 

Red 

-95% 1,56 1,30 1,32 1,41 

Average 1,80 1,60 1,63 1,66 

95% 2,05 1,90 1,93 1,91 

       

Average Total 

Waiting Time 

(except triage 

queue) 

 (min) 

 

Blue 

-95% 196,80 224,52 196,17 195,30 

Average 233,81 269,42 229,68 239,07 

95% 270,83 314,32 263,18 282,84 

Green 

-95% 52,30 72,84 51,62 56,87 

Average 60,01 84,19 58,85 66,20 

95% 67,72 95,53 66,07 75,54 

Yellow 

-95% 4,54 8,83 4,08 6,79 

Average 4,90 9,49 4,38 7,35 

95% 5,26 10,15 4,69 7,90 

Orange 

-95% 2,55 4,98 2,21 3,82 

Average 2,76 5,31 2,39 4,12 

95% 2,98 5,64 2,57 4,42 

Red 

-95% 1,46 1,30 1,32 1,36 

Average 2,41 1,60 1,63 1,72 

95% 3,37 1,90 1,94 2,08 
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7.5.4 Number of Tests and Test Times 

Regarding testing, scenario 24 tests assigning fewer tests to the patient and introduces the 

possibility of a patient going straight to treatment without any tests (in order to do so, a 

new label called “no tests “ was created in SIMUL8 and the routing out from the Doctor 

Examinations was dependent on the results of that label as per Figure A.11, seen in 

Appendix A). Scenario 25 does the same and introduces a longer testing time. Scenario 

26 returns to the same number of tests as the base model but maintains higher testing 

times. Since testing seems to be the main bottleneck of the base model, it would seem 

that lowering the number of tests would reduce the average waiting times considerably. 

At the same time, increasing the testing time will also some problems in the system 

leaving many patients unseen at the end of the week, all of this is shown in Table 7.7. 

Table 7.8 - Comparison between results from the base model and scenarios 24, 25 and 

26 

   Base 24 25 26 

Average Total Waiting Time 

(except triage queue)  

(min) 

 

Blue 

-95% 196,80 12,89 301,49 0,60 

Average 233,81 19,78 455,99 17,31 

95% 270,83 26,68 610,49 34,03 

Green 

-95% 52,30 5,46 189,62 43,39 

Average 60,01 7,01 267,83 55,25 

95% 67,72 8,56 346,03 67,10 

Yellow 

-95% 4,54 1,44 26,36 189,10 

Average 4,90 1,68 33,38 220,60 

95% 5,26 1,92 40,39 252,09 

Orange 

-95% 2,55 0,88 7,87 13,50 

Average 2,76 1,03 8,59 14,14 

95% 2,98 1,18 9,30 14,78 

Red 

-95% 1,46 0 5,78 9,78 

Average 2,41 0,36 7,85 12,09 

95% 3,37 0,86 9,92 14,40 

       

Average Queue Size for 

Testing 
 

-95% 5,59 0,01 12,00 442,53 

Average 6,36 0,02 20,16 457,16 

95% 7,13 0,03 28,32 471,78 

Patients still in the system  

-95% 19,91 9,76 42,24 928,26 

Average 22,73 12,77 46,27 934,43 

95% 25,56 15,77 50,29 940,61 

 

As the results in the table above show, decreasing the number of tests required should 

reduce the average waiting time considerably, while at the same time increasing them too 

much could lead to higher than acceptable average queue sizes for testing. It is important 

to note that however useful it may be, reducing the number of tests assigned to patients 

may not be feasible. 
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Important to note how the fact that 934 patients not leaving the system in scenario 26 

has distorted the results. The average waiting times for "blue" and "green" patients seem 

to have reduced from the base model but this only happens because most of them are still 

in the queue at the end of the simulation. The only ones counted for those waiting times 

were the ones that entered at the beginning of the simulations and had much smaller 

queues still. 

 

7.5.5 Treatment Times 

As was expected, since it is the last part of the system the effect of increasing or 

decreasing treatment times will only affect the time spent waiting for treatment. This time 

will also depend on the number of beds available. Scenarios 27 and 29 increase treatment 

times considerably. This leads to a much higher number of patients left in the system. 

This value should lower if the number of beds increases. Table 7.8 shows the number of 

patients in the system at the end of the week, along with the utilization percentages of 

“beds” and “red beds”. The fact that that the utilization percentages of “beds” in scenarios 

27 and 29 are almost at 100% is the reason why such a big queue is formed and why 

increasing the amount of those resources could lead to better results. 

Table 7.9 - Comparison between results from the base model and scenarios 27, 28 and 

29 

  base 27 28 29 

Patients still in the system 

-95% 19,91 1245,01 19,02 1591,12 

Average 22,73 1 247,97 21,87 1 601,03 

95% 25,56 1250,93 24,71 1610,95 

“beds” utilization % 

-95% 45,31 98,28 29,75 99,05 

Average 45,69 98,47 29,98 99,09 

95% 46,06 98,65 30,21 99,13 

“red beds” utilization % 

-95% 0,16 5,27 0,48 12,15 

Average 0,19 6,35 0,55 13,97 

95% 0,21 7,43 0,62 15,79 

 

7.5.6 Improvement Proposals 

After analysing all 29 scenarios, some possible solutions for the ones with the highest 

average waiting times and/or more patients left in the system have been tested. The 

scenarios where the proposals have been simulated were 18, 20, 21, 27 and 29. The 

solutions and the logic behind them will be explained as we look through each of them 
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separately. To be more easily identifiable, the simulations testing the solutions will 

henceforth be identified as scenario x.a  (per example: scenario 18.a). 

Scenarios 18.a and 20.a both employ the same solution. This is because the issue in 

both is the same, triage takes too long. Therefore, the solution tested is increasing the 

number of triage nurses during the day to 2, while maintaining only one during the night.  

Additionally, scenarios 18.b and 20.b were also created, in these scenarios the number of 

triage nurses was considered to be 2 during the night instead of the day, this was done to 

see the importance of accurate staff allocation and compare the results of increasing the 

number of nurses during the different shifts. 

As the results of scenarios 18 and 20 from triage onwards are unreliable (due to the 

low number of patients that the triage queue) the values compared between the originals 

and the solutions were only the average waiting times for triage. As it shows in Table 7.9, 

increasing by one the number of triage nurses will lead to much lower waiting times. The 

increase will be much more relevant during the day, as can be seen, changing the number 

of triage nurses during the night meant a smaller difference in waiting times for triage, 

this should be due to the lower affluence of patients during the night. Important to note 

how we are assuming patients never leave due to waiting times. In reality, it is possible 

that patients would not wait for nighttime to be seen by a triage nurse. 

However, this is something that should only be done if the waiting for triage takes 

too long. 

Table 7.10 - Comparison between results from the scenarios 18, 18.a, 20 and 20.a  

Scenarios  
Triage Average Waiting time 

(min) 
 

 -95% Average 95% 

18 1 212,22 1 271,09 1 329,97 

18.a 15,74 17,59 19,44 

18.b 259,43 282,71 306,00 

20 1 779,13 1 818,30 1 857,47 

20.a 39,08 45,40 51,72 

20.b 840,13 881,72 923,32 

 

Of all the scenarios that varied the time it would take for the doctor examination to 

be performed, scenario 21 was the one to have the highest percentage of patients not seen 

within the time limit. As a solution for this, scenario 21.a simulates the creation of a 

separate queue for lower urgency patients (MTS level 4 and 5), which was suggested in 

Mandahawi et al. (2017). Therefore, having three different queues, one for level 1 
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patients, one for levels 2 and 3 and one for levels 3 and 4. The table below shows how 

doing this has both advantages and disadvantages, while the likelihood of a patient 

waiting longer than the number of minutes suggested by the MTS is lower for the less 

urgent patients, the average waiting time for patients seems to increase at the same time. 

Figure 7.5 Shows the changes made within SIMUL8: creating a new routing activity and 

a new resource “doctors 2” representing the doctors assigned to the new queue. 

Table 7.11 - Comparison between results from the scenarios 21 and 21.a 

 

  21 21.a 

Average Total Waiting 

Time (except triage 

queue) 

 (min) 

Blue 

-95% 224,52 244,89 

Average 269,42 305,09 

95% 314,32 365,29 

Green 

-95% 72,84 129,43 

Average 84,19 148,24 

95% 95,53 167,05 

Yellow 

-95% 8,83 17,82 

Average 9,49 20,78 

95% 10,15 23,74 

Orange 

-95% 4,98 5,85 

Average 5,31 6,32 

95% 5,64 6,78 

Red 

-95% 1,30 1,54 

Average 1,60 1,81 

95% 1,90 2,07 

     

Patients queued above 

time limit 

 

Blue 

-95% 25% 5% 

Average 29% 8% 

95% 33% 10% 

Green 

-95% 11% 0% 

Average 14% 0% 

95% 17% 0% 

Yellow 

-95% 0% 3% 

Average 0% 4% 

95% 0% 6% 

Orange 

-95% 0% 2% 

Average 0% 2% 

95% 1% 3% 

Red 

-95% 0% 0% 

Average 0% 0% 

95% 0% 0% 
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Figure 7.5 - Screenshot from SIMUL8 showing scenario 21.a 

 

Scenarios 27.a and 29.a try to look at the possibility of increasing the number of beds 

as a solution for treatment times taking too long. The number of beds available was, 

therefore, considered to be 16 (doubled).  

 To compare the results between them we will be looking at the patients still in the 

system at the end of the simulation. We do this because in scenarios 27 and 29 this number 

is so large that it distorts waiting times across the simulation. Scenario 27.a will reduce 

the number of patients in the system by 1132 (from 1248 to 116) and 29.a reduces it by 

227 (from 1601 to 1374). What these results show is that while increasing the number of 

beds available should reduce the queue sizes for treatment (and consequently the patients 

left in the system) the relation between how much the queue reduces and the number of 

beds added depends on each ED and the treatment times in it. Table 7.12 shows the results 

of these simulations. 

It should be noted that, even though the results given by the SIMUL8 for average 

waiting times were not compared due to the reasons mentioned above, having a lower 

amount of patients in the system at the end of simulation, when the only change was 

increasing the number of beds, means patients must have spent less time in the system. 
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Table 7.12 - Comparison between results from the scenarios 27, 27.a, 29 and 29.a 

  27 27.a 29 29.a 

Patients still in 

the system 

-95% 1 245 128 1 591 1 365 

Average 1 248 116 1 601 1 374 

95% 1 251 105 1 611 1 382 
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8 Conclusion 

The chapter starts with a discussion on the results gathered in the previous section 

(vide chapter 7) and relate them to existing literature, as mentioned in the Methodology 

(vide section 4.1.4).  Afterwards, it outlines the final conclusions reached along with 

possible answers to the proposed research questions (vide section 1.4). It then discusses 

the main limitations associated with this thesis, suggestions for future research (i.e. a 

proposal for future hypothesis supporting forthcoming studies) and identifies the 

contributions of the study. 

 

8.1 Discussion 

In this section, some considerations about the results obtained are considered. 

The first conclusion to come from the analysis is that before attempting to develop 

solutions, one must correctly identify the issues within the system. As can be seen in the 

scenario analysis (vide sections 7.3; 7,4 and 7,5), the issue within the system can be a 

number of different things depending on the ED in question. The most influential issues 

when it comes to waiting times are resource bottlenecks also identified as a problem in 

Williams, Tai and Lei (2010). These bottlenecks can be any part of the system depending 

on the service times and on the resources available. This can be seen, per example, when 

comparing scenarios 21 and 23 (assuming a doctor examination service time represented 

by a triangular (8, 16, 24) distribution and an exponential (3) distribution respectively). 

By changing the service times, the bottleneck in the system changes from the doctor 

examination, in scenario 21, to testing, in scenario 23 (vide section 7.5.3). 

A way to deal with the issue mentioned above and strive for long-term success is 

through the use of continuous improvement (vide section 2.1.2). The effectiveness of this 

way of thinking was seen when determining the number of nurses and doctors to use in 

the base model (vide section 7.3). Looking at scenarios 1 to 15, at first, increasing the 

number of doctors seemed to not decrease waiting times, increasing the number of nurses 

would be much more effective. However, as can be seen in the difference in average 

waiting times from scenarios seven to eight, after a certain number of nurses, increasing 

doctors would be the most influential decision. A manager constantly trying to improve 
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should be able to realize the point of diminishing returns and change his policy from 

hiring nurses to hiring doctor, and vice-versa accordingly. 

Besides simply increasing the number of resources available (which may not always 

be possible) diminishing service times has also been seen to be a way to decrease overall 

patient waiting times, this can be seen when comparing total waiting times between the 

scenarios 24 and 25 (vide section 7.5.4), while maintaining the number of tests, increasing 

the time they took also increased the waiting times for every MTS level. Comfere, 

Matulis, & O’Horo (2020) suggests using quality improvement methods such as Lean 

Thinking to accomplish this (vide section 2.1.3.1). 

When simulating an increase in the number of triage nurses available, we noticed the 

importance of staff scheduling. Increasing the number during the nights a much smaller 

difference compared to during the day, when arrivals are at their highest (vide section 

7.5.6). This is something that is corroborated by Evans, Gor, & Unger (1996) and Kumar 

& Kapur (1989). 

Creating a separate queue for low priority patients was seen to increase waiting times 

(vide section 7.5.6). However,  Garcia et al. (1995) observed the opposite, that doing so 

would reduce waiting times. More studies on this subject should be conducted to ascertain 

in which scenarios it could be useful. 

 

8.2 Final Conclusions 

The creation of a simulation model of an ED using the MTS, through the use of the 

DES tool SIMUL8, was the chosen theme for this thesis.  

The reason for looking at the functioning of an ED was the issue of overcrowding 

identified in Ghanes et al. (2015) and Hoot & Aronsky (2008). Among these EDs multiple 

types of triages are used (vide section 2.2), the one chosen to be used in this thesis was 

the MTS (vide section 2.2.1) as it is the one most commonly used in Portugal (Mackway-

Jones et al., 2014) 

Simulation was the method chosen to address this problem because it is widely 

regarded as one of the most useful tools for determining resource allocation in EDs when 

trying reduce overcrowding (Barjis, 2009; Chouba et al., 2019).  
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Within simulation there were multiple methods of dynamic simulation available (vide 

section 2.3.3 and its sub-sections). Among these options the one determined to be the 

most appropriate was DES (vide section 2.3.3.2) as it is considered particularly relevant 

for healthcare simulation (Marshall, et al., 2015). SIMUL8 was the chosen simulation 

tool due to its capabilities and the researchers previous experience with it (vide section 

7.1). 

The research was done through the inductive research method (vide section 4.1.1). 

Therefore, Research Questions were proposed at the beginning of the research a means 

of avoiding being overwhelmed by the volume of data, as suggested by (Eisenhardt, 

1989). 

RQ1) What is the flow of a patient through an ED? 

This first question was chosen with the creation of the model in mind. In order to 

create a realistic model through the use of secondary data only a good understanding of 

the patient flow was required. In order to answer this question, the researchers followed 

the path suggested by Robinson (2008) on how to design and represent a conceptual 

model (vide section 2.3.5 and its subsections). The information required to create those 

representations was taken from Martin et al. (2011); Schaaf et al. (2014); Storm-Versloot 

et al. (2014); Rutman et al. (2015); Mandahawi et al. (2017); Improta et al. (2018); 

Amorim et al. (2019); and Martins and Filipe (2020). The result of this analysis identified 

the main path through the system as  Figure 9.1. 

 

 

Figure 8.1 - Patient flow through the system 

 

To explain Figure 9.1: the patient arrives in the system and enters the queue for triage; 

triage is performed by a nurse trained in the MTS; after triage the patient is assigned an 
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MTS that determines his priority in the following queues and is sent to the queue for the 

doctor examination; after the doctor examination patients, if need be, are sent to do some 

tests, otherwise they are sent to the que for treatment; after going through the assigned 

test the patient is once again sent to the doctor examination and then sent for treatment; 

after treatment the patient either leaves the hospital or is sent to internment in a different 

department. It is also important to note that a patient can die at any point during the 

system. More detailed information on how this path was adapted into the simulation 

model can be seen in sections 5.5.1, 5.5.2 and 5.5.3. 

RQ2) What can be done to reduce waiting times in an ED? 

As mentioned in the discussion (vide section 8.1) there can be no single answer for 

this question. The fact that through the analysis of previous papers we were able to create 

14 scenarios by changing only one of the activities service time from the base model (vide 

section 7.5) shows that every single ED will have its own specific solutions. However, 

there are a couple of generalizations that can be derived from the results collected: 

• Since patients tend to arrive more commonly during the day (vide section 

6.1),taking this into account when allocating staff and, therefore, having more 

active staff during the day seems to improve ED functioning and reduce 

waiting time (vide section 7.5.6). 

• Increasing the resource available for an activity will reduce average waiting 

times in that activity, even if it may not reduce average total waiting times in 

the system (vide section 7.3). The same can be said for reducing service times 

(vide section 8.1) 

It should also be mentioned once again that due to the fact that there are so many 

different realities in EDs, in addition to the recent technological developments that could 

influence the industry (vide section 2.1.3) a mentality of constant improvement and 

adapting seems to be very important in reducing waiting times (vide section 8.1). 

8.3 Limitations  

The model created in SIMUL8 was constructed from researching previous papers on 

the subject rather than observation of ED functioning, meaning that it uses solely 

secondary data (vide section 4.1.1). Hence, the data available to construct the model was 
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severely limited to what was made available on those papers. Therefore, a list of 

limitations can be enumerated: 

• The inability to predict changes in the outcomes of patients when reducing or 

increasing waiting times. Which also led to an inability to test scenarios which 

revolved around this rather than average waiting times (e.g. introducing changes 

to MTS levels after a set period of time waiting). 

• Testing was assumed to always require a nurse when, in reality, it is also 

dependent on machine availability, along with the fact that not all tests require a 

nurse to be present for the entire duration (e.g. blood and urine analysis). 

• Even though some studies mention how age and gender can be relevant to the 

likelihood of under and over triage (Steiner et al., 2016; Brouns et al., 2019), and 

others give us data on the likelihood of every urgency level at different ages 

(Moreira, 2010), due to the lack of available data showing the correlation between 

age, gender and urgency levels, these are two variables that will not be introduced 

into the model. 

• Despite some assumptions on these subjects being made: not all ambulance 

arrivals are “red” patients; doctors and nurses are not all equally efficient; staff 

scheduling issues are a common problem; patients often leave unseen if waiting 

times are too high (vide section 5.5.4) 

• Due to lack of available information, the costs and revenues of the ED were not 

considered. 

• Results in simulation are not necessarily equal to real life situations as simulation 

modelling remains a representation of the reality (Vilas-boas et al., 2015). 

Implementing the scenarios could yield different results 

 

8.4 Recommendations for Future Studies 

As an inductive analysis of case studies one of the objectives of this thesis was to develop 

hypotheses to be tested in future studies. This is a list of the hypotheses developed: 

H1. Increasing the resource available for an activity will reduce average 

waiting times in that activity (as long as the average waiting time is higher  

than zero), even if it may not reduce average total waiting times in the system 

(vide section45 7.3). 
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H2. Decreasing the service times for an activity will reduce average waiting 

times in that activity (as long as the average waiting time is higher  than zero), 

even if it may not reduce average total waiting times in the system (vide 

section 8.1). 

H3. Creating a separate queue for lower priority patients (MTS level 4 and 5) 

does not reduce average waiting times (vide section 7.5.6). 

Besides the creation of these hypotheses, there are also other recommendations that have 

emerged from this thesis: 

• This model could be used as a framework for future studies, values from a 

specific ED would only need to be introduced into the model. In ED specific 

models, introducing staff scheduling conflicts and different staff efficiencies 

could be relevant; 

• The following set of recommendations are ways to improve upon the created 

model:  

o Introduce cost analysis: SIMUL8 has the tools necessary to do so, one 

would only need to gather the required data to introduce them into the 

model; 

o Use the number of arrivals at EDs since the beginning of the COVID-

19 pandemic to develop a model capable of dealing with the increased 

demand in times of pandemics; 

o Determining the relation between changes to waiting times and patient 

outcomes and including them in the model, therefore allowing for 

suggestions based on improving outcomes rather than just waiting 

times; 

o Determine different likelihood for each MTS level depending on the 

patient’s issue and introduce it into the model; 

• Utilize quality improvement methods like Lean and six sigma to improve ED 

functioning (vide section 2.1.3.1); 

• Simulate different  5-level triage methods like Australasian Triangle scale, 

Emergency Severity Index, South African Triage Scale and Canadian Triage 

and Acuity Scale with the same amount of resources and compare the  results. 
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8.5 Contributions 

In general, the development of this thesis contributes for different areas. 

From a theoretical standpoint this thesis contributes to healthcare operations 

management by suggesting hypothesis to be studied by future researchers. 

From the practitioners’ point of view this thesis may contribute with the creation of 

a general simulation model that can be adapted to fit a specific ED, therefore allowing for 

estimating the benefits of different policies before implementation. Moreover, 

suggestions are provided on practices that, if adopted, could reduce waiting times for 

patients (vide section 8.2).  

Finally, this thesis may also contribute do social welfare if its suggestions are adopted 

and proven to be useful when reducing patient waiting times in EDs and, consequently, 

improving patient outcomes. 
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Appendix A 

 

 

Figure A.1 - Waiting time for MTS level 5 patients (in minutes) per scenario 

 

 

 

 

Figure A.2 - Waiting time for MTS level 4 patients (in minutes) per scenario 
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 Figure A.3 - Waiting time for MTS level 3 patients(in minutes) per scenario 

 

 

 

 Figure A.4 - Waiting time for MTS level 2 patients (in minutes) per scenario 
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Figure A.5 - Waiting time for MTS level 1 patients (in minutes) per scenario 
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Figure A.7 - Patients in the queue for triage depending on the hour 

(scenario17) 

Figure A. 8 - Patients in the queue for triage depending on the hour 

(scenario18) 

Figure A.9 - Patients in the queue for triage depending on the hour 

(scenario19) 



85 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.11 - Screenshot from SIMUL8 showing the routing out conditions for the 

Doctor Examination of MTS level 5 patients in scenario 24. "No tests"=1 means the 

patient will not have to go through any tests 

Figure A.10 - Patients in the queue for triage depending on the hour 

(scenario20) 
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Table A.1 - Average total waiting times depending on MTS level and on change to 

interarrival time 

   50% 20% 10% base -10% -20% -50% 

Total 

Waiting 

time 

(Including 

triage 

queue) 

Green 

-95% 2,64 12,25 18,07 19,68 24,64 35,85 85,58 

Average 4,62 18,02 28,12 31,24 40,43 55,52 112,63 

95% 6,61 23,79 38,16 42,79 56,22 75,19 139,67 

Yellow 

-95% 1,74 4,42 6,26 7,32 9,35 13,53 55,82 

Average 2,59 6,15 8,38 10,44 13,73 19,97 67,25 

95% 3,44 7,88 10,50 13,56 18,11 26,42 78,68 

Orange 

-95% 1,50 3,67 4,37 5,49 7,06 9,81 46,62 

Average 2,37 4,91 5,70 6,96 8,88 12,44 54,29 

95% 3,23 6,14 7,04 8,43 10,71 15,07 61,95 

Red 

-95% 0 0,23 0,20 0,38 0,48 0,48 0,90 

Average 0,18 1,13 0,59 1,10 0,99 1,09 1,78 

95% 0,37 2,03 0,99 1,83 1,50 1,71 2,66 
 

 

 

Figure A.12 - Screenshot from SIMUL8 showing the 

availability of the resource "doctors" in the base 

model 


