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Resumo

A integracdo de imagens aéreas e satélite com metodologias do ambito da
Aprendizagem Automatica (Machine Learning) ¢ Visdo Computacional (Computer
Vision) providenciou a capacidade de cobrir terrenos amplos ¢ permitiu a extracdo de
novas caracteristicas do terreno, fornecendo meios para localizar, monitorizar e proteger
remotamente de destrui¢do locais com patriménio cultural. Este trabalho procura unir
informacdes espectrais € espaciais, derivadas de imagens multiespectrais, hiperespectrais
e pancromaticas cedidas e obtidas pelos satélites da ESA, para implementar um sistema
de detecdo automatica de alto desempenho capaz de detetar dolmens enterrados ou
cobertos por vegetacdo. Separadamente, implementaram-se métodos onde se tentou
desenvolver um sistema baseado na assinatura espectral do material dos dolmens, para
imagens hiperespectrais, e, para imagens pancromaticas ¢ multiespectrais, um sistema
para extrair indices espectrais, fundir todos os indices extraidos num so e aplicar detegdo
de circulos para identificar locais onde haja grande probabilidade de existir um doélmen,
apos eliminagdo de falsos positivos através de uma técnica supervisionada de
Aprendizagem Automatica. As imagens hiperespectrais ndo demonstraram capacidade de
definir uma assinatura de material de dolmens e, por extensdo, ndo aptas a delinear
automaticamente regidoes com alta probabilidade de presenga de dolmen, devido a grande
dimensao dos pixels em comparacao com os pixels dos dolmens conhecidos e os arredores
dos dolmens serem demasiado semelhantes. O sistema criado da fusdo de imagens
pancromaticas e multiespectrais mostrou-se capaz de detetar localizagdes de dolmen,
provando, simultaneamente, que parte da informacao na ontologia existente para dolmens
em Portugal (nomeadamente, a insercao usual proximo de fontes de agua) pode ser usada
para delinear areas de alta probabilidade de presenca de dolmen e que o uso de métodos

de aprendizagem supervisionada permitiu eliminar cerca de 87.2% falsos positivos.

Palavras-Chave: Imagens Multiespectrais; Imagens Pancromaticas; Imagens
Hiperespectrais; Transformacio de Hough Circular; Indices Espectrais; Aprendizagem

Automatica.
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Abstract

The integration of airborne and satellite imagery with Computer Vision and Machine
Learning methodologies provided the ability of covering ample ground and enabled the
detection of new terrain features, providing means to remotely locate, monitor and protect
from destruction sites of cultural heritage. This work seeks to fuse spectral information
obtainable from multispectral or hyperspectral images with spatial information derived
from panchromatic images, provided by ESA and obtained from its satellites, to
implement a high-performance automatic detection system capable of detecting buried or
covered by vegetation dolmens. Separate methods were implemented, where for
hyperspectral images a system was attempted based on the dolmens respective spectral
material signature, and for panchromatic and multispectral images a system that extracted
spectral indices, fused all into one and applied circle detection to identify dolmen
locations, eliminating false positives through supervised machine learning. The
hyperspectral images could not be used for the creation of a dolmens’ material signature,
and by extension cannot automatically delineate regions of high likelihood of dolmen
presence in images, due to the size of each pixel being of much higher dimensions than
the known dolmens and the dolmens surrounding environments being too similar. The
system created through the fusion of panchromatic and multispectral images proved
capable of detecting dolmen locations, while simultaneously proving that part of the
existent defined ontology of the dolmen (their insertion near water sources) can be used
to delineate areas of high probability of dolmen presence, and that using supervised

learning methods can enable the elimination of around 87.2% of false positives.

Keywords: Multispectral Images; Panchromatic Images; Hyperspectral Images; Circular

Hough Transform; Spectral Indices; Supervised Machine Learning.
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Introduction

Chapter 1 — Introduction

1.1. Context

With the integration of airborne and satellite imagery alongside Computer Vision and
Machine Learning methodologies in the field of archaeology, the way that archaeological
research is performed is changing. With those systems’ ability, via airborne and satellite
imagery that provides a more ample ground coverage, the detection of new terrain
features is facilitated [1], in a scale unfeasible when relying in human ground coverage
alone. Moreover, we now have the means to remotely locate and monitor sites of cultural
heritage and protect it from destruction, caused by both natural and anthropogenic factors
[2]-[6] and while Portugal is rich in megalithic monuments, there still exist monuments
left unknown, namely in the area of Alentejo, which further facilitates their degradation
and destruction through natural means or by human development of the territory [4]. It
stands to notice that there are key benefits for this remote identification in employing
satellite over airborne imagery such as the greater spectral range and the higher spatial

level they offer [7].

1.2. Motivation

Within this context, and particularly in the archaeological field, we have been
witnessing an increased use of satellite imagery, which itself led to a need to optimize the
traditional manual methods employed in image analysis (e.g. manual classification of an
image by an expert), with investigations and case studies occurring at various locations
and over various differing object types, as evidenced in multiple studies [1], [2], [14], [3],
[5], [8]-[13]. However, both due to advances made in satellite sensors, restrictions in data
accessibility and the variation in archaeological structures from region to region, it has

resulted in various approaches being undertaken, either for the same or for different, data
types [6].

Nevertheless, the still small number of existing studies on the field of archaeology has
already shown both the need to automate the process of remote identification of ground

zones presenting higher likelihood of possessing monuments, and that, from the existent
1
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approaches, it is hard to extract useful knowledge applicable to different archaeological
work as the existing works tailor their methods for the particular monuments, image types,

and environment specifications.

Finally, the awareness of the existence and easiness of access to domain knowledge
expertise for dolmens and the area they are mostly inserted in Portugal [15], as well as
the possibility of acquisition of different types of satellite images for the geographical
area in question, captured and shared by the European Space Agency (ESA), makes this
area suitable for the investigation on the satisfiability of the development of automated

methods for dolmen’s remote identification in the Alentejo district.

1.3. Research Questions

Taking into consideration the context and motivation behind it, this dissertation
focuses mainly in the creation of a system capable of automatically recognizing
megalithic objects (specifically dolmens) in areas of interest (namely in Alentejo) using
satellite imagery. The system will investigate the use of different image types and
methods and will use existing domain knowledge for informed classification decision.
Such a system has the potential of easing the detection of currently unknown monuments,
by aiding archaeologists through the delineation of areas of higher probability of dolmen
presence. To achieve the successful completion of this purpose, we intend to provide

answers for the following three research questions.

Can the use of satellite spectral analysis of the image’s ground allow for the extraction
of spectral information that enables the automatic detection of megalithic monuments,

usually buried or covered by vegetation, and their detection?

In what way can the fusion of the various sources of satellite image types
(panchromatic, multispectral, or hyperspectral) be achieved in order to minimize the loss
of either spectral or spatial information incurred during the process and still gain in

features for identification of relevant areas of interest in ground images?

For the various types of satellite images used, and in view of the answers to previous
questions, what is the most effective features extraction strategy for improving the

performance of a dolmen’s automatic detection system?

2
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1.4. Objectives

Under these optics, this work seeks to make use of known indices and other spectral
information, obtainable from either multispectral or hyperspectral satellite images, to
allow for the implementation of image pattern recognition techniques and detect buried

or covered by vegetation archaeological remains, namely dolmens.

In addition, we shall investigate the best approach for the implementation of the
intended automatic detection system using the different image sources and types next
described, fusing the image with the highest spatial information available with the
extracted spectral features, that allows for the detection of the area’s archaeological

remains with the minimal possible false dolmen detection.

1.5. Research Methods

The research method used was the Design Science Research process (DSR), since this
research is undertaken in order to design an artefact: an automated image object
identification system. According to [16], the DSR is subdivided into six main steps, that
can generally be described as: (1) an identification of the problem and respective
motivation, where the research problem is defined and the value of the solution justified;
(2) the objectives for the solution are defined; (3) relates to the design and development,
that is, the creation of an artefact, such as models, instantiations, methods, or constructs;
(4) the demonstration of the use of the developed artefact to solve one or more instances
of the problem, either through experimentation, simulation, case study, proof, or other
appropriate activity; (5) the evaluation of the solution, comparing the obtained results
from using the artefact with the stated objectives; finally, (6) the communication of both
the problem and its importance, the developed artefact and both its utility and novelty,

the rigor of its design and its effectiveness to other researchers and relevant audiences.

The above described method can be assigned to four main phases: the problem
identification phase, that encompasses both the problem and motivation identification and
definition of objectives; the solution design phase, comprising the third step of design and

development of the artefact; the evaluation phase, covering the demonstration of the

3
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established artefact and evaluation of the solution; the final phase, the summarization of

the results and respective communication through their publishing [17].

Accordingly, both the first and second steps are described in the introductory chapter.
The next steps are primarily defined through the literary review, conducted in the second
chapter of this thesis. The third step id integrated in the third chapter of the dissertation.
Both the fourth and fifth steps stand as the fourth chapter, discussing the implementation
and results and, finally, the sixth step is found in the concluding chapter, where the main

conclusions, contributions, limitations, and future research are communicated

1.6. Structure and Organization of the Dissertation

The current thesis is divided in five chapters that reflect the phases undergone until its

conclusion.

The first chapter introduces the investigation’s context and motivation, as well as its

theme, objectives, and brief structure description.

The second chapter divulges a revision of the related literature, the theoretical
foundations beyond the conception of the work that provide the theoretical bases needed

to understand it.

The third chapter describes the methodological development, revealing the needed

background for the system’s implementation.

The fourth chapter presents the implementation used and an analysis and discussion of

the results obtained.

Finally, in the fifth chapter, the conclusions of this study and recommendations,

limitations, and future research are presented.
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Chapter 2 — Literature Review

This chapter describes the Literature Review and the context upon which this thesis is
inserted that is derived from existent scientific works, being divided into nine sections:
the first introducing the archaeological context of the objects to be detected; the second,
presenting a previously ontology of the monuments, created by an expert; the third,
expands on the automatic remote sensing methodologies; the fourth, introduces the
satellite imagery types and image fusion methods; the fifth, presents existing
classification based approaches and related works; the sixth, describes the methodologies
used in related works; and the seventh, presenting some conclusions obtained with this

investigation.

2.1. Archaeological Context

In the region of Pavia, the archaeological monuments investigated, i.e., the dolmens,
stem from a currently unknown period over 4000 years ago and it is currently unknown
whether they were a target of reuse of an older, unused or vacant, monument that was
already present or were built from the ground up, with only their current shape being
known [4], [18]. Since they are present through the rise and fall of several civilizations,
they may have been reused, buried, destroyed or annexed to other structures, and be found

in rural or city areas [4], [15].

The dolmens can be found dispersed throughout the region’s territory, majorly
distributed near the main riversides and areas near rocky outcrops' [4], [6], [12]. They are
commonly found grouped up to a dozen, with distances in-between being relatively small.
However for the rare isolated one’s, the distance between it and the nearest monument
doesn’t exceed a few kilometres [4]. Based on data obtained by [4] from the database of
Portal do Arquedlogo da Direcdo Geral do Patriménio Cultural, a total of sixty eight

identified dolmens are present in the study area. From this data, an approximate

' Rocky outcrops are geological features, usually steep, that support ecological
influence beyond their area [93].
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geographic location, of which most of them are represented with a coordinate accuracy

ranging from 20m to 200m, of the dolmens in the area can be seen in Figure 1.

Figure 1:Example of a dolmens’ schematic aerial view survey Source: [6].

These monuments have been identified to possess, in their majority, a polygonal shape,
with seven pillars and a corridor of varying dimensions [4], [15], [18] that leads towards
the polygonal shaped chamber, ranging from 2 to 5 meters and that is usually covered by
a slab, in the format of a table or a hat [4], [6], [15]. While in their original form, these
monumental structures were not visible, being covered by successive layers of earth and
stone, called barrows or tumulus, the presence of the tumulus may have disappeared over

the long period of time since its construction [4], [15].

Although the monuments already investigated in the case study’s region, introduce
certain unique polymorphisms to the dolmens structure, it’s still possible to find
similarities between them and thus allow for their identification through ground or

vertical (aerial and satellite) images [4], [6], [19].

Consequently, while dolmens have been observed with or without several of their
features depending on their state of degradation and destruction, throughout the entire
region all share a common structure: a chamber, the primary feature that allows dolmens
visualization from aerial and satellite imageries [4], [15], [19]. Considering the natural
environment in which rocks are placed irregularly, the geometric shape present in the
chamber makes it stand out from the surroundings, as even if such regular forms are found

in nature they are usually smaller than the 2 to 5 meters diameter of the dolmens’ chamber

[4], [15].
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2.2. Dolmen Ontology

An ontology defines what an object is and its composing features. As such, ontologies
enable the logical organization of current existing knowledge on diverse themes, working
as a methodology for the integration and representation of current information available

from different domains [15], [20].

It facilitates the sharing and reuse of information, and increases the common
understanding of knowledge of a domain between a machine and a man, allowing
machines to process and collect resources intelligently, while simultaneously facilitating

communication in-between the various devices present in the network [15], [20].

According to [15, p. 2], [21], an ontology is “composed of several entities: a set of C
concepts; a set of R relations; and a set of A axioms”. It allows to describe an object,
based on its attributes, and use of these descriptions to recognise others of the same class

[15].

As stated by [15], [22], ontologies are created to be easily reused and integrated with
other ontologies and software systems, like for this case study that seeks to integrate the
developed ontology of dolmens present in Pavia into an automatic classification system

in order to detect and classify similar monuments.

The knowledge graph representing the dolmens’ ontology, seen in Figure 2, provide
the necessary context for the improvement of the machine learning algorithms capabilities

and identification of hidden patterns [15].
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Figure 2: Ontology model of dolmens of the Mora region Source: [15].

2.3. Automatic Remote Sensing Methodologies

Since the beginning of the 20" century, Remote Sensing (RS) techniques have been

applied to aerial photographs with the intuit of identifying features not visible at ground
level and detecting objects of interest [2], [6].

However, with the appearance of satellite images, the use of RS methods applied to
aerial photography have seen their use extended towards their application on satellite

imagery, whose large scale datasets created new trials for their respective image analysis
[23].

23.1 Benefits of Satellite Imagery

With the continuous technological development of satellites, RS techniques became
able to be used to cover any area present in the world in a relatively short period [6], [14],
[23], as exemplified by the WorldView-2 (WV-2) satellite that offers fast retargeting,
having an average revisit time of any site around the world of 1.1 days, and possesses the

capability of collecting data of vast areas of over 10,000km? [24], [25]. Further, as sensors
9
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continued to improve, not only has it allowed to capture imagery of higher spatial
resolutions, giving rise to panchromatic (PAN) and Light Detection and Ranging
(LiDAR) imagery types, but it has also allowed to capture a greater number of spectral
bands, which in turn has increased the usage of multispectral (MS) and hyperspectral

(HS) images [26].

The main advantage of using satellite imagery over aerial photography is the
possibility of using a wider number of spectral bands to extract spectral information of an
object [2], [8], [9]. This has turned satellite imagery into a valuable source of data for RS
methods [2].

As such, with an increased capacity of detecting and capturing features at ever higher
spatial, geometrical, spectral and radiometric resolutions, of objects present at ground
level through satellite imagery, RS techniques applied to the field of archaeology have
spiked, as shown by the multitude of studies performed [1]-[3], [5], [8], [11]-[14].

232 Pattern Recognition Methodologies

Due to the rise of RS methods and the ever-increasing quantity of data collected from
more advanced sensors, a need to facilitate and optimise the detection of various objects
in images was created as its interpretation becomes increasingly more problematic to be

done manually [6], [13].

The means by which it was achieved, was by utilizing Machine Learning and
Computer Vision methodologies, thereby allowing for the recognition of patterns present
in both aerial and satellite imagery, from which it becomes possible to automatically
extract information [27] that will allow the identification and classification of megalithic

structures in existing images [6].

As such, in the field of archaeology, these methods have come to represent a “non-
intrusive restrictive search” [6, p. 1], serving as a tool of optimization of traditional
fieldwork [6], [14], [27], allowing for diminishing its high monetary cost and time-
consuming tasks [6], [14]. Further, such methods represent the capacity to protect the

megalithic structures cultural heritage and avoid their destruction [2], [5], [6].

10
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2.4. Satellite Imagery Types

Due to the different sensors available to capture satellite data, different authors
approach the field with different types of imagery. Some put greater emphasis in the
spectral differences present [2], [5], [8], while others prefer to capture and use spatial
features with greater clarity [1], [3], [12], [13]. Finally, some attempt to get the best of
both approaches by recurring to the fusion of different types, one spectral and one spatial,

of imagery [7], [9]-[11], [14].

24.1 LiDAR and Panchromatic Imageries
PAN and LiDAR sensors grant the capture of imagery with greater spatial features and
higher resolution. PAN sensors allow for the capture of a large span of wavelengths,
present in the visible spectrum of light, in a single band [8], [14]. This type of sensors
produces imagery of higher spatial resolution [2], [8], which enable the extraction of more

spatial features and thus the visualization of variances [9].

LiDAR sensors possess the capability of generating high resolution terrain models [1],
[3], [12], [13], for the visualization of high-resolution terrain spatial features. To do so,
they use “pulsed laser beams to obtain precise three-dimensional (3D) information about
the terrain” [12, p. 3] and recorded in point clouds [3], [11]. The point clouds are then
processed in order to generate Digital Elevation Models (DEM) [1] or Digital Terrain
Models (DTM) [1], [3], [10], [12], [13], which allow to use highly accurate levels of
elevation to discover and visualize different topographic features [1], [10], [11]. As stated,
“by incorporating 3D data, the detection of archaeological features becomes easier” [28,
p. 5].

Thus, LiDAR data has become one of the most frequently used data in archaeological

studies of recent times, to perform surveys and prospection of new sites [1], [3], [12],

[28].

242 Multispectral and Hyperspectral Imageries
MS and HS sensors grant the opportunity of detecting higher spectral differences in
captured imagery.
MS sensors are equipped to be able to “capture data within the visible and non-visible

spectrum, encompassing a portion of the ultraviolet region, the visible, and the IR region”

11
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[2, p. 2], presenting the captured information divided by bands, each representing a small
part of the total wavelength of the light spectrum [2], [8], [14]. Over time, it has come to
be considered the standard means by which ground cover and soil types should be
classified [2], by making use of specific spectral bands or a combination (an Index) of
these spectral bands [8], corroborated by spectral features presenting a higher degree of
separability [9]. However, according to [5, p. 659], this type of sensors “usually lack in
spatial and spectral resolutions necessary in identifying buried archaeological
structures”, whose low spectral resolution stems from the lack of possible captured bands
from their limited spectrum while the low spatial resolution stems from its sensors

focusing on the capture of spectral data.

HS sensors obtain information relative to the optical, physical and chemical properties
of the materials and surface of the earth [29]. The main differences between MS and HS
stem from the higher number of bands captured and represented in HS with respect to MS
[2], [10], [26], [29]. An MS sensor presents up to around 20 spectral bands [2] while a
HS sensor presents usually from 100 to 200 bands or higher [2], [29], [30], [2], [29], [30].
Moreover, the MS spectral bands are spread out in the lights spectrum [10], [26], whereas,
for the HS, spectral bands are adjacent to each other [5], [26], [29], which gives the HS
sensors the capacity to obtain useful information by creating dense spectral signatures
[10], where each pixel represents the complete spectrum [5] and effectively overcomes

the resolution drawback of MS sensors [5].

Both sensors can be used to create composite features, such as indexes for vegetation
and water, being helpful for the discovery of vegetation and nearby water bodies [10],
[11], [29]. Additionally, HS sensors are more suited to map mineralogy of land materials

[29].

243 Image Fusion

As stated, some of the works have pursued the benefits of several types of imagery
simultaneously, by means of a combination of imagery types, in which one type focuses
on the capture of spectral features and the other focuses on capturing detailed spatial

features, using the previously described sensors.

This technique, called image fusion or pan-sharpening, is a way to integrate the spatial
detail of a high-resolution PAN or LiDAR image and the colour information of a low-
12
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resolution MS or HS image to produce and make use of a high-resolution MS or HS image
[6],[31], [32], allowing for an increase in interpretation capabilities and, overall, resulting

in more reliable information [7].

There have been many image fusion methods created and applied to fuse two differing
images [7], [32], with some stating that there exists over a hundred variations of this
technique [31]. Overall, the most effective and popular are: Intensity, Hue, Saturation
(IHS) [7], [31], [32]; Principal Components Analysis (PCA) [7], [31], [32]; wavelet base

fusion [31], [32]; and arithmetic combinations [31].

However, each of these methods have limitations, which are further exacerbated by
the different sensors of origin and respective imagery characteristics [7], [31]. The main
problem is colour distortion [7], [8], [31], that is, the distortion of “the spectral
characteristics of the original multispectral images to different extents” [7,p. 1]. To solve
this problem, various new methods, such as: synthetic variable ratio, Gram-Schmidt
transform and smoothing filter-based intensity modulation [7], and new strategies of
applying existing and tested methods, such as the case of the IHS method stretching each
I, H and S band in accordance with the individual dataset [31], of image fusion were

developed.
2.5. Image Classification Main Approaches

As mentioned, the explosive growth of available data lead to the need for the creation
of automatic ways to extract information from it. Currently, for classification, the most
commonly used approaches in the field of image analysis are: classification based in pixel
analysis and based in objects [2], [13]. Nevertheless, a new approach has recently gained
the researchers attention: usage of convolutional neural networks (CNNs) to
automatically extract information from images [23]. These three approaches are next

described.

2.5.1 Pixel-Based Classification

As implied by the name, this technique makes use of pixels, the smallest element of
an image [13], [23]. In it, the individual pixel attributes serve as a basis for classification
by assembling similar values of adjacent pixel attributes to recognize (or not) an

archacological feature [13], [23], [28]. The aim of this approach is “to establish a per-
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pixel relationship with a certain class category based on the attribute information of itself

and its spatial neighbourhood” [13, p. 3].

To achieve its goal, the approach must rely on “the separability of the different classes”
[23, p. 1], usually measured though the computation of a distance metric or a separability

index [5], [13].

2.5.2 Object-Based Classification

This method is a two-step process, with one being object-based image analysis

(OBIA) and the other being classification [1], [2], [13].

OBIA, as the name implies, encompasses techniques that, when applied, result in
either an image being split into meaningful and homogeneous segments of non-
overlapping objects based on a specific criteria (shape, scale, etc.) [1], [2], [13], [28],
[33], or in the definition of specific multiscale characteristics from which it may base the
segmentation of the image [28], [34]. As such, its goal is to “subdivide the image into
homogeneous segments that describe the target features (pit, burial mound, etc.) as
correctly as possible” [13, p. 4]. The segmentation parameters are obtained through a
trial-and-error process on the user part [1], through use of point-based, edge-based,

region-based, or combinations of these, segmentation techniques [13], [33].

In fact, it has given rise to another discipline, the Geographic OBIA (GEOBIA),
whose purpose is essentially the same as OBIA but for its application with Earth’s
geographic components [13], [28]. This has caused the term to cover the majority of

OBIA’s applications in the field of archaeology [28].

The classification technique is based on the segments obtained, where each segment
is allocated a corresponding class based on the target object characteristics, e.g.:
geometry, spectral values, neighbourhood relationships or semantic groupings [1], [2],
[13]. The idea is “fo pass the segments through a series of decision rules, which serve to
merge or split segments, and assign class labels to segments, according to user-specified

rules” [1, p. 4], where the rules are the objects properties of the employed target [13].

253 Convolutional Neural Network Classifiers

This method works through a “system of interconnected neurons that pass messages

to each other” [23, p. 3] forming an artificial neural network capable of modelling

14
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complex functions and being used as frameworks to classify input data [23]. In order to
categorize and classify images, the input data is either an image, interpreted as a
numerical grid of pixel values ranging from 0 to 255 depending on their colour intensity,
or a derived set of features from the image with its goal being predicting the correct class

of the associated image [23], [35].

They work through the junction of three components, the convolutional layer
responsible for analysing the inputs, the pooling layer capable of summarizing the
information obtained from a convolutional layer and the fully connected layer that makes
use of the summarizations as inputs to classify the input image [35], [36]. Through this
approach they learn to generalize and draw features from a large set of labelled images,
without relying on handcrafted rules or parameter sets, and whose excellent results have

consistently outperformed humans in visual object detection rates [36].

This approach’s main advantage is the use of transfer learning that allows to extend
pre-trained CNNs (e.g.: GoogleNet, AlexNet and OverFeat) on extensive datasets of
labelled images, that have been proved to possess enough representation power to perform
recognition tasks on different types of target images and thus make use of them in fields
originally restricted by the small size of labelled data to learn from, such as archaeology,
with extracted features being proven to be useful in image classification in RS images

1361, [37].

2.6. Archaeological Methodologies

Applications for the extraction, detection, and classification of objects in images have
been used in a variety of different fields of study successfully. Some of these fields
include archaeology [1]-[3], [5], [8], [12]-[14], [28], forestry surveillance and
classification [9], [10], urban building and greenery identification [11], cartography,

surveillance, reconstruction and location [6].

When applied to archaeology, these applications come with a major drawback: each
application is created based on the specific features of a particular region and for a certain
structural monumental typology, which results in a non-generalizable solution for other

applications in different geographical or cultural contexts. This stems from the very high
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structural polymorphism present in archaeological remains, originating from differences
in culture and available materials in the territory, presenting highly divergent

characteristics or environmental insertions [6].

Currently, even at a more abstract level, where replication of methodologies could be
possible, no approach is consensual on which type of images to use or even if a
combination of certain types of images should be used, or which of the previous

classification approaches is more appropriate to use.

In the context of using PAN and MS type images, which are usually fused in order to
obtain both spectral and spatial features, the use of vegetation indexes proved to be a
crucial factor for archaeological detection through enhancement of crop marks created
due to near-surface monuments [2], [8], [38]. The results being further improved by the
utilization of edge extraction algorithms, which emphasize, enrich and extract superficial

anomalies [8].

On the other hand, on the usage of only PAN imagery, it is imperative to speak of the
work of [14], who explored and proposed a method to detect circular patterns in
agricultural lands through template matching methodologies. Other authors have focused
on using only MS image type through the use of linear combinations applied to the
different MS visible-near infrared bands to derive a set of components allowing to
distinguish between the crop marks, the background soil and the remaining healthy
vegetation, depending on the vegetations phenological cycle [39]-[41]. On the last case,
the crop mark component was proven to be able to be used separately as a detection tool
while others have instead made use of the separability index to detect the buried

monuments.

When using HS type images, these are commonly fused with high-resolution PAN or
LiDAR image type, that increase the capacity of detecting and the outlining of features
[2]. This type of images is highly used for crop mark detection and detection of buried
archaeological monuments, due to its capacity of in-depth spectrum analysis of land soil
and vegetation. When alone, Nonlinear Principal Component Analysis (NLPCA) to
obtain land cover types and biophysical information, followed by use of Separability
Index to measure difference between tonal anomalies detected by NLPCA and
surrounding areas, has been used to great effect to detect buried structures [5].
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Alternatively, the recent use of LiDAR imageries that make use of DTMs and from
them perform a multiscale topographic analysis, by calculating an integral image and
respective topographic deviation in order to obtain a Multiscale Topographic Position,
has proved to be advantageous to semi-automatic feature detection and visual
interpretation [3]. Other authors have opted to use inverted pit detection methods to detect
buried monuments, in the form of mounds, by inverting LIDAR DTMs before applying
the detection method [1]. And some works have made use of LiDAR data for
identification based on archaeological morphology in the form of concentric circles

patterns [12].

On a final note, recently developed environments such as Google Earth Engine have
allowed the creation of applications in various disciplines by easing data access and
permitting geospatial analysis at planetary scale [42], [43], including for archaeology.
According to [6], images from these engines have, in some cases, been successfully

applied to identify monuments [43]-[45]).

As it can be observed in Table 1, which constitutes a summary of the works reviewed,
in archaeology, no unique approach to either extract information or to classify objects in

an image exists.
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Table 1: Used methodologies in applications created for automated identification of archaeological areas of interest.

Year Country Bibliography Data Type Detection Method Approach
2006 Italy [8] PAN/MS Edge Detection Object-based
2007 Italy [38] PAN/MS Edge Detection Object-based
2009 Greece [2] PAN /MS /HS / Aerial Predictive Modelling Object-based
2009 Norway [14] PAN/MS Decision Trees Object-based
2013 Italy [5] HS Spectral Separability Index (SST) Pixel-based
2013 Greece [40] MS SSI & Visual Interpretation Pixel-based
2013 Hungary [39] MS / Ground HS / Aerial Edge Detection / Photointerpretation Object-based
2014 China [44] Google Earth VHR Edge Detection: Canny Edge Detector Object-based
2016 Tonga [1] LiDAR Inverted Mound Algorithm / Homogeneity Object-based
2016 Sweden [13] LiDAR Minimum Distance: Euclidean / Mahalanobis Pixel-based
2016 Austria [13] LiDAR Homogeneity Object-based
2016 Italy [41] MS /PAN SSI/ Minimum Distance Pixel-based
2017 Greece [43] MS /PAN SSI/ Visual Interpretation Pixel-based
2018 France [3] LiDAR Random Forest Object-based
2018 | Austria/Italy [46] Airborne HS Ranked SSI/ Visual Interpretation Pixel-based
2018 Greece [46] MS Ranked SSI / Visual Interpretation Pixel-based
2019 Spain [12] LiDAR Landform Classification Object-based
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2.7. Conclusions

While the results presented in the related literature show high levels of false positives,
the automatic methodologies for monument’s detection in images discussed enable a
quicker and easier method of detecting new archaeological monuments, allowing to
restrict human ground prospection to zones of higher likelihood of bearing buried

monuments and surveillance in areas difficult to reach.

Different types of monuments and ground may need different methodologies to detect
and classify the archaeological structures. These should be based in the diverse
characteristics, whether the monument is buried or exposed, and on the surrounding
environment. The utilization of image fusion methodologies, that fuse spectral features
with detailed spatial features of a different image type, has showed to be, in this aim, the

better approach to analyse an image.

Over the recent years, there has been a shift in the types of images used, from PAN to
LiDAR as it allows for greater and more accurate morphological characteristics by
changing the paradigm from a two-dimensional to 3D data, and from MS to HS that are
capable of capturing far more distinct and accurate environmental characteristics. When
it comes to the choice of image type to be used, the preference depends on the
archaeological object to be detected. Usually, for buried structures, the preferences go for
HS to detect through the buried object’s spectral information or, if mounds exist, LIDAR
to construct a 3D model of the mound’s presence and shape. Meanwhile, when the
evidence of archaeological presence involves vegetation, there is a preference for MS and
it’s respective spectral indices, i.e., for crop marks identification, and for a fusion of MS
and PAN types when exposed structures are intended due to their mixing of general shape

with identification of basic spectral material identification (vegetation, soil, water, ...).

Finally, no studies of this type have been undertaken in Portugal nor over this specific

archaeological monument.
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Chapter 3 — Methodology

Accordingly with the DSR methodology, after the initial phases where the problem
has been identified, the respective motivation described, and the objectives for the
intended solution defined, and after the description of the state of the art, this chapter will
describe the methodological development and main research stages that have been
performed. Beginning by the extraction of spectral and spatial features from the various
image types through the development of the required spectral indices, spectral material
signatures and spatial analysis of pixels groups, experiments in the creation of a
supervised machine learning method capable of detecting whether certain areas in the
satellite image can be identified as presenting high likelithood for a dolmen’s being

present.

To ensure that the objectives are achieved with optimal results, several techniques
were tried and tested to ensure peak performance of the developed algorithms. The
following steps will explain the theoretical basis for the techniques used, as described
upon the conceptual system’s architecture in Figure 3. All the needed implementations

used MATLAB.

This chapter is divided into eight sections. Starting by a conceptual architecture for the
developed recognition system, the next section describes the prior processing of images.
Then, a discussion of the used image’s colour spaces follows, succeeded by the basis of
the image enhancements techniques and by the spectral band combinations used to form
the various spectral indices. Next, the testing of image fusion methods is described,
followed by a section describing feature extraction methods. Finally, the classifier models

used are detailed.

3.1. Conceptual System’s Architecture

Based on the related literature (Chapter 2), two conceptual models, capable of
automatically detecting areas of archaeological interest with a high likelihood of
containing monuments were created Figure 3: one using HS imagery and another using a

fusion of MS and PAN imagery.
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Figure 3: Proposed workflow and system’s architecture.

3.2. Prior Processing

To facilitate their use by the end-user, when the satellite acquires each image of the
differing types, they undergo several processes before their delivery up to specific
standards of quality requested for the current project, the “Ortho Ready Standard Level
2A” (ORS2A) for the PAN and MS types and level 1A for the HS type. These standards
of image quality allow for images to be in correctly mapped coordinate spaces, to improve
feature classification and identification as well as performing image enhancements more

flexibly, and for end-users to get any project running far more easily [47].

Any products obtained from the Proba-1 satellite are level 1A and undertake no
additional pre-processing before delivery. This means that the received products (images)
are the raw representation of the captured Top-of-Atmosphere (TOA) radiance by the on-

board instruments.

For the WV-2 satellite, all images received were ORS2A, where radiometric,

geometric and sensor corrections (like the ones next described) have been applied and
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images have been mapped into a cartographic projection at a constant base elevation in

order to allow for orthorectification [47].

3.2.1 Masking

A process commonly used in image processing, where all the pixels outside a fixed
boundary are set to intensity value 1, effectively turning them black. It is used on
occasions where those pixels are irrelevant to what is being considered. It possesses the

side effect of boosting computation as those pixels stop being considered.

32.2 Radiometric Correction

As stated by [48, p. 16], the raw (digital numbers) WV-2 imagery “undergoes a
radiometric correction process to reduce visible banding and streaking in WorldView-2
products”. This is necessary since any change in detector response, in gain or offset, lens
falloff and contamination on the focal plane manifests as either streaks or banding in the
raw image. Thus, for any products of the WV-2 satellite, a Relative Radiometric
Correction method is applied, responsible for minimizing these image artefacts that
include a non-uniformity correction and a dark offset subtraction, in accordance with

formula (1):

_ Poet,pana — ADet,Band
Apet,and =

M

BDet,Band

where q is the radiometrically corrected detector data for specific detector Det and band
Band, p the raw detector data, A the dark offset for a specific image acquisition, and B

the detector relative gain.

Finally, the outputted detector data g is spatially resampled to create the delivered

image with radiometrically corrected image pixels.

323 Geometric and Sensor Correction

The WV-2 ORS2A products are projected at a constant base elevation to a plane

through use of map projections in order to allow for orthorectification, normalizing the
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topographic relief present through unrefined elevation models, either by averaging the
elevations obtained or using elevation values supplied by end-users [25], [47].
Simultaneously, the ORS2A products have their sensors corrected in such a way that the
“correction blends all pixels from all detectors into the synthetic array to form a single
image” [25, p. 427], that is, blends the pixels of overlapped areas from different sensors

such that it returns a single synthetic array capable of forming an image.

3.24 Colour Space

Applications like computer graphics, image processing, and computer vision make use
of different colour space models, that is, mathematical models capable of representing
colour information. Usually, this information is represented using either three or four
different colour components, where the displayed colour produced from such models
depends on the respective parameters and equipment’s used [49]. Thus, the same feature
extraction method applied to differing colour spaces extracts separate significant features
to train different classification models, as each colour space represents distinct

characteristics of the image.

In essence, the different colour space representation permits to take full advantage of
the inherent multiple visual information captured through the spectral bands on either the

HS or MS image type.

3.24.1 RGB Colour Space

The TrueColor space, commonly called the RGB colour space, is composed by a 3D
cartesian coordinate system of the values present in the Red, Green and Blue bands in any
image, showcasing all possible colours by adding the values in each of three primary
colours. White is the sum of the maximum of all three values and black the absence (null
value) of all of them. Chrominance and luminance components are intermixed with the
three bands, making it inefficient for colour analysis and colour based segmentation
algorithms [49]. From this colour space, any other possible colour space is obtainable

through the application of linear or non-linear transformations [49] as it can be next seen.
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3.24.2  HSV Colour Space

The Hue, Saturation and Value (HSV) colour space is, similarly to the RGB colour
space, a 3D cartesian coordinate system representing: the hue, capable of representing
the type or shade of all possible colours and thus can be used for distinguishing colours;
the saturation, referring to the percentage of white light mixed with a pure colour/hue;
and the value, embodying the perceived light intensity (brightness) of the colour, that is
the amount of light illuminating a colour, being similar to the intensity or luminance
characteristics [49], [50]. Further, this colour space possesses the advantage of
describing the colours similarly to how the human eye perceives them and possessing
the capability of separating chromatic and achromatic components from the image [49],

[50].

To transform from the RGB to the HSV colour space the following equations (2)-(4)
must be applied, where the variable R represents the Red Band, the G the Green Band,
and the variable B the Blue Band:

1
5 *(2*R—G-B
H = arcos 2 ( ) @)
JR-G)2—(R—-B)*(G—B)
G max (R,G,B) — min (R,G,B) 3)
B max (R, G, B)
V =max (R,G,B) “4)

3.3. Theoretical Basis for Image Enhancements

Following its collection, a series of experiments to individually enhance each type of
image was implemented, with the intuit of increasing their respective quality to allow for

a better extraction of points of interest and thus, features.

This type of processing focused mainly on transforming the received radiance data to
reflectance data and in reducing the noise level present in the HS images, enhancing the
spectral capabilities of the MS images to obtain higher returns on developed indexes, as

well as the enhancement of spatial information through fine-tuning PAN images for easier
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detection. Further, spatial resolution enhancement is done through image fusion methods,

described below, between the MS and PAN type images.

3.3.1 MS and PAN Image Enhancements

Throughout the years, this type of techniques has been focused on an effort to improve
both an image’s appearance and, in images of low luminance taken in environments
lacking in natural light sources, its details [S1]-[53]. It serves to increase the
interpretability of the information contained in an image for human viewers or, in the case
of automated processes, deliver higher quality feature input by increasing the distinctions
between an image’s features. Thus, its goal is to manipulate images to produce an image
more appropriate for a specific purpose [54], [55]. Several techniques have been
developed to enhance certain features of an image, such as: contrast, noise level,

boundaries, sharpness and edges [53], [54].

According to [56], [57], one of the most frequent problems associated with satellite
imagery is their contrast, that is, the difference in reflected luminance (the colour and
brightness values) between two adjacent surfaces in the captured image, stemming from
the possibility of being captured during periods of either dense darkness or brightness,
and thus causing loss of information in areas that are uniformly dark or light, respectively.
Therefore, this is a technique that enhances an image directly on its pixels’ intensity level,
enabling the production of images with subjectively better perception to end-users than

the originals [51], [53], [58].

Variations of this technique have thus become one of the most widely required and
used processing methods to improve feature visualization [57]. Some of the most popular
variations used have been Decorrelation Stretching, Linear Contrast Stretching, Gamma

Correction and General Histogram Equalization [56, p. 81].

Considering the variability of the degree of sun incidence on the area under study,
depending on the time of day that the images were taken, and thus the variability of the
luminance that may be present in the different areas of an image, it was found to be
pertinent to implement and test several of the above described Contrast Adjustment

techniques to the received images.
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3.3.1.1  Histogram Equalization

For the present work, two methods for implementing a histogram equalization (HE)
technique were tested: a general HE and a contrast-limited adaptive histogram
equalization (CLAHE), that, at its essence, is a fusion of an adaptive and a contrast-

limited HE approaches.

The general HE is a widely adopted technique for its simplicity, ease of
implementation and good performance in enhancing low contrast among a variety of
images, through making an image histogram as uniform as possible [51], [53], [58]. It
works by remapping the intensity values through a transform function adaptively obtained
from a cumulative density function (CDF), by means of flattening the density distribution
and stretching the images’ grey levels dynamic range [51]—-[53]. This technique assumes
an uniform quality level across the entire image, as it produces only one grey level map
that provides the same enhancement across the image [59], [60]. However, its main
drawback stems from errors in the shifting of the image mean brightness that cause
enhanced images to develop unnatural enhancements in certain areas and artefacts

originating from intensity saturation effects [51], [52], [58].

According to [61], the algorithm used by MATLAB to apply the standard HE is Aisteq,

that minimizes the grayscale transformation T by using

histeq = |C,(T(1)) = Co(k)| ®)

where Cj 1s the cumulative histogram of the image and C; is the histograms cumulative
sum for all intensities k, with k varying in intensity value ranges depending on the
respective image class from [0, 1], [0, 255], [0, 65535] to [-32768, 32767]. This
transformation is applied under the constraints that T must be monotonic and
Cq (T(k)) cannot exceed Cy(k) by more than half the distance between the histogram
counts at k. To map the image’s grey levels to the new respective values it makes use of

an inbuilt grayscale transformation.

Another method, CLAHE, is an adaptive approach that works under the opposite
assumption: that the distribution of the grey level changes from an image area to another
[59], [60]. Thus, the adaptive HE approach works by computing several histograms, each
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of a section of the image, and by mapping each pixel based on the local section grey level
distribution, where the transformation function applied is proportional to the CDF
obtained from the pixel neighbours’ intensity values [59], [60]. Thus, while this technique
allows the improvement of local contrasts and edge definitions in the different images
sections, it possesses the drawback that it tends to magnify noise in homogeneous sections

of the image [60].

Conversely, the contrast limiting approach allows to solve issues surrounding the
general HE application on cases where the distribution is highly localized, as these result
in mapping transformation curves having slopes that cause similar grey levels to highly
differ. When applied simultaneously with the adaptive method, allows for the limitation
of the drawback of noise amplification [59], [60]. Regarding the contrast amplification of
the adaptive HE method, it stems from the slope of the transform function that it is
proportional to the neighbourhood CDF [60]. Thus, when adding this function to the
contrast limiting HE in order to create the CLAHE method, it works by limiting the
amplification through clipping of the histogram at certain values before computing the
local neighbourhood CDF, thus limiting the slopes present in the CDF and therefore on
the transformation function, where the clip limit (value for the clipping of the histogram)
depends on the histogram normalization and thus on the size of the neighbourhood region

[54], [59], [60].

Thus, in accordance with [61], the MATLAB’s function that applies CLAHE is
adapthisteq that operates on tiles (composed of small regions of the image that are
clipped) and calculates the contrast transform function described above (Zisteq function)
for each tile individually, after which, the neighbouring tiles are combined using bilinear

interpolation to eliminate artificially induced boundaries.

3.3.1.2  Decorrelation Stretch

In addition to the above described methods, a Decorrelation Stretch (DS) technique
was also tested. It serves as a method of decreasing high correlations between the different
bands present in the images, a problem often found in MS images sets, thereby producing
more colourful images through enhancing the colour separation, with it highlighting

subtle differences as it improves visual interpretation and facilitates feature
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discrimination [54], [55]. During this process, the “original color values of the image are

mapped to a new set of color values with a wider range” [55, p. 115].

3.3.1.3  Linear Contrast Stretch

Linear Contrast Stretch or simply Contrast Stretching (CS), adjusts local contrast,
highlighting the darker and lighter areas with finer details permitting the detection of
variations in the data more easily, and displays a contrast improved image, through an
expansion of the original range of intensity values of the image to span the range of
intensity of the device, darkening pixels bellow certain intensity level while brightening
pixels above certain intensity level [54], [55]. Among the variety of its types, the focus
of this work was on the linear method of Minimum-Maximum Linear Contrast Stretch,
that in accordance with [54, p. 14], the “original minimum and maximum values of the
data are assigned to a newly specified set of values that utilize the full range of available

brightness values”.

According to [55, p. 115], this type of CS originates from using a linear thresholding

function, that can be described as:

s =T=x*(r) (6)

where s and r denote the intensity values of output and input at any image position (x, y),

respectively, with T representing the thresholding function to be applied.

3.3.1.4 Gama Correction

Another example of image enhancement is through gamma correction (GC) (or Power
Law Transformation). It’s a non-linear adjustment method, making use of logarithmic
transformations, that is more effective the greater the possible range of intensity values
to brighten [62], [63], being frequently used to improve either the detail or the contrast of
lower intensity values [63]. In cases where the obtained gamma value is 1, then it will
map new intensity values linearly, for cases lower than 1, it will map them with greater
weight towards brighter (higher) intensity values, and for gamma values higher than 1, it

will instead map them with greater weight towards darker (lower) intensity values [63].
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According to [63], the GC methods possess the following basis form:

S = CxRY (7)

where S represents the resultant gamma corrected intensity level, R represents the input
intensity level and C and y being positive constants. Further, as seen in formula (8), € can

be added, in case of an input being zero, to offset and obtain a measurable output.

S=CxR+ e ®)

332 HS Image Enhancements

On the HS type images front, the enhancements were directed for the transformation
and extraction of reflectance information on individual pixels, which necessitated the
calculation of TOA reflectance values from the original radiance values of the image. All
algorithms and software used for these transformations are based on the open source
developed tool BEAM and respective CHRIS/Proba Toolbox, a software that provides
extensions to the base BEAM platform allowing to perform the following tasks: noise
reduction, cloud screening, atmospheric correction, geometric correction, TOA

reflectance calculation and feature extraction [64].

From the possible methods, only noise reduction and TOA reflectance calculation were
able to be applied to the received images, with the remaining methods erroring due to

missing metadata information.

3.3.2.1 Noise Reduction

In accordance with [64], this tool was developed with the express purpose of removing
and/or correcting coherent noises commonly known as vertical stripping and drop-outs,
two kinds of noise that frequently affect the HS images captured by remote sensing
instruments. Broadly speaking, drop-outs occur when the instrument randomly fails and
produces anomalous values, usually zero or negative values, in some odd pixels which
disrupt future operations as they are heavily affected by these pixels. On the other hand,

vertical stripping is an error usually found in push-broom sensors types, stemming from
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irregularities on the entrance of the spectrometer originating from temperature dilation,

that results in images gaining complex vertical patterns.

In order to correct and remove these two types of problems, [65] described the
implemented algorithms on the software in detail. In summary, it’s a four step process:
first it detects and corrects drop-outs by detecting the negative or zero anomalous values
and replacing them with a weighted, by its similarity (inverse of the Euclidean Distance)
to the corrected pixel, average of a 3x3 neighbourhood pixels values; the second step is a
preliminary correction of vertical stripping through an estimation of the cause, the slit,
gained from a prior characterization of vertical stripping pattern kept on a look-up-table
and the sensors temperature at the given moment of acquisition; in the third step, a robust
correction method is further applied to the vertical stripping problem, that is capable of
estimating the remaining vertical stripping for each band; and finally, on the fourth step,
the estimated coefficients to correct vertical stripping are applied to correct the column

values [64], [65].

3.3.2.2  TOA Reflection Calculation

As stated above, products delivered by the Proba-1 satellite return the captured TOA
radiance data. This type of data was not useful for the current classification test. As such,

it needed to be converted to TOA reflection before it could be used.

According to [64], the estimation for TOA apparent reflection is:

m xL(x,y,4)
cos(9 (x, y)) * [(A;)

where L(x,y, A;) is the sensor captured radiance at the (x, y) location of the image, I(4;)

)

p(x'y'Ai) =

represents the extra-terrestrial solar irradiance corrected for acquisition date and
convolved with CHRIS sensor spectral bands, and 8(x, y) the angle between illumination
direction and the perpendicular vector to the surface represented by the ‘Solar Zenith

Angle’ attribute provided in the CHRIS metadata.

The solar irradiance I(1) is provided in mW/m?>nm from 200 to 2400 nm, in
accordance with the work of [66], then corrected to the Julian day of year of acquisition

(based on received image metadata), J, in accordance with formula (70):
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1
_ . (10)
1@ (1 —0.01673 * c0s(0.9856 * (J — 4) * w/180))2 1@

Then it is resampled to the CHRIS sensor spectral channels due to the referenced solar
irradiance displaying a different spectral sampling, forming I(4;), where i represents a
specific CHRIS band, and thus representing the mean solar irradiance for a given band
obtained through the integration of solar irradiation and spectral response, following:

JUSi)* 1) «d A

I(AL)= fowsl(l)*d*/’{

(11

where, for simplicity, the spectral response of a CHRIS band, S;(4), is a bell-shaped
function that hinges on the mid-wavelength, 4;, and the band width, A4;, of the band (with

both values being present in the band metadata file) derived through the function:

1

Tosmy M T A <A<+ A4 (12)

S;() =

3.4. Basis of Spectral Index Development

To make use of the spectral information obtained, the proceeding step was to create
indices that allowed to categorize the presence of different features in the region, in
accordance with the expert defined ontology of this subject. Thus, the focus lied in

developing indices for the detection of vegetation, water, and ground material types.

In line with [46], [67], the efficient use of spectral reflectance measurements for any
detection lies with identifying the most highly correlated spectral wavelength, usually a
ratio of two or more spectral bands, with the specified target physical parameter on an
acquired image, which severely limits the regions of interest on the spectrum. Spectral
Indices may be derived both from MS and HS type images, where HS derives them
through use of narrow spectral bands while MS can only derive them if the target spectral

feature encompasses a great range of the spectrum [46].

The literature indicates the existence of hundreds of indices, as can be seen in the
following index creation database [68] that tracks possible indices by satellite sensor and
index application, of which several were chosen to be created and tested. The following

points describe the indices that were used in this work.
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34.1 Vegetation Indices

Indices that quantitively measure biomass and vegetative growth through use of unique
vegetational spectral information, derived mainly from the range where the transition of
the strong chlorophyll pigment absorption identified in the visible red band and the high
reflectance of the leaf’s mesophyll in the near infrared band occurs, with the final purpose

of estimating the image pixels that represent alive and green vegetation [8], [38], [46].

The Normalized Difference Vegetation Index (NDVI) is the most widely used and well
known index, indicating photosynthetic activities in plants and thus where variation in its
values indicate variations in the accessibility of water and nutrients, being found to be
related to the green leaf area index [8], [38]. Its normalization stems from the need to
lessen the effects of possible variations induced by atmospheric contamination, with its
values, if high, allowing to classify pixels as being covered by healthy vegetation and, if

low, categorizing pixels as being covered by stressed or diseased vegetation [38].

According to [68], the NDVI can be obtained by using the following formula, where
NIR represents a near infrared spectral band encompassing the wavelengths around
800nm (790-810nm) and the RED represents a visible red spectral band encompassing
from 620nm to 700nm:

NIR — RED (13)

DVl = ————
NDV NIR + RED

In this work, this index can be calculated, using the WV-2 satellite images, by
substituting the NIR variable by either of the satellite’s NIR1 or NIR2 band alongside the
RED variable being the detected Red band and, on the other hand, from the same formula
it’s also possible to calculate the Red Edge NDVI by substituting the RED variable with
the Red Edge band instead [68].

34.2 Water Index

These indices are designed to highlight and map surface water features while
simultaneously suppressing information unrelated to water and can thus separate water
from non-water according to the selected threshold value [69], [70]. Many of the created
indices require the use of a shortwave-infrared band not present in the received images,

however the used WV-2 sensor, as asserted above, captures an eight-banded image of
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which one of them is the coastal band that is sensitive to water areas and has the potential

for water research and bathymetric studies [69].

The Normalized Difference Water Index (NDWI) has been extensively used to
delineate water areas, being originally designed to account for the differences between
green and NIR spectral bands, by taking into account the strong absorption by water
features and the high reflectance by vegetation and soil features detected in NIR band
[69]. Much like it happens with NDVI, its normalization serves the purpose of lessening
the effects of potential variations generated by atmospheric contamination. However, and
as stated above, adapting this index to the WV-2 satellite implies not only changing the
original green band to the more water sensitive coastal band but the original NIR band

with the NIR2 band.

Thus, according to [70], the NDWI adapted to a WV-2 satellite image can be obtained

by using the following formula:

COASTAL — NIR2 (14)
COASTAL + NIR2

where the both the NIR2 and the COASTAL variables are substituted by the respective

NDWI =

bands of the same name.

343 Shadow Index

In remote sensing, shadows are considered to be mutual features that can be divided
in two classes, a self-shadow (direct light not illuminated as part of the object) and cast
shadow (the direction of the light source in the object), and three categories, being either
cloud shadows, shadows by natural features or shadows by urban features [71]. Thus, this
type of index is developed to automatically detect shadows though highlighting and

mapping shadowed areas while suppressing the remaining information available.

The Shadow Detection Index (SDI) was developed to be used with the WV-2 satellite
spectral bands in mind and is thus optimized to make use of the Blue, NIR1 and NIR2
bands, that have been found to be effective and capable of differentiating, and thus
detecting, between areas of shadow and non-shadow, with the index having been proven

to be able to distinguish between dark objects and shadows [71].
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Thus, according to [71], the SDI developed is obtained through the following formula,

where all variables are substituted by the respective bands of the same name:

<Dl — NIR2 — BLUE NIRL (15)
" NIR2 + BLUE

344 Soil Index

Much like the aforementioned indices, this type of indices focus on their capacity to
identify and delineate areas where soil is the material that either dominates the
background or the foreground of satellite images [72]. However, in remote sensing, soil
is difficult to detect due to its complex physical and chemical compositions, its regional
differences and the lack of a direct connection between soil abundance and its spectral

signatures [73].

The Normalized Difference Soil Index (NDSI), according to [72], while normally
making use of SWIR and NIR bands to represent the difference in reflectance values in
soil areas, can instead delineate said areas by taking into account the unique differences
present in soil response values between the Green and Yellow spectral bands due to the
lack of SWIR bands in the WV-2 satellite. Much like it happens with the former
Normalized Difference indices, its normalization serves the purpose of lessening the

effects of potential variations generated by atmospheric contamination.

According to [72], the NDSI applied to the WV-2 satellite is obtained through the
following formula, where the two variables are substituted by the respective spectral

bands of the same name:

GREEN — YELLOW (16)
NDSI =
GREEN + YELLOW
34.5 Feature Difference Index

This indices display their importance when attempting to detect and map areas that are
in direct contrast to the presented background information in which, in the case of remote
sensing technologies, the background information can be assumed to be the natural
occurrences and the direct contrast the areas that can be identified as being opposed to

natural, and thus man-made [72].
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The Non-Homogeneous Feature Difference (NHFD) classifies areas which contrast
against the background owing to non-homogeneous features generally responding and
standing out brighter than the background, through the differences present in the Red

Edge and Coastal spectral bands affording the ability to segregate them [72].

In accordance with [72], the NHDF for use in WV-2 satellite outputs can be obtained
through the following formula, where the variables are substituted with the respective

spectral band of the same name:

NHFD = RED EDGE — COASTAL (17)
" RED EDGE + COASTAL
3.4.6 Built-up Presence Index

This type of index are generally applied for their usefulness in detecting and mapping
asphalt and concrete surfaces, with emphasis in road extraction, both in urban and non-
urban areas [74], [75]. In the available WV-2 spectral bands, the Blue and NIR bands are
the closest in terms of wavelength to the available and displayed feature that best
describes asphalt roads, the appearance of iron-oxide stemming from the oxidation

process and exposure of rocky components, at the 520nm to 870nm [75].

While the Built-up Areas Index (BAI) makes full use of the above described
phenomenon of capturing the presence of iron-oxide in said spectral bands to segregate
and classify the individual pixels as either belonging to a road network or not, it has also
been proven that while accurately extracting the roads it simultaneously misclassifies

major water bodies as roads [75].

As stated by [74], [75], the BAI applied to the WV-2 satellite sensors is applied
according to the following formula, where each of the variables is substituted with the

respective spectral band of the same name:

= BLUE — NIR (18)
" BLUE + NIR

3.5. Image Fusion Methods

Considering the results obtained from the pre-processing of the MS and PAN images
and from the research performed on the object to detect, an understanding that neither
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image would be able to detect the object alone arose, as they are usually covered by
vegetation, which implies the need to detect it through the MS image, and are in
possession of a diameter ranging from 2 to 5 meters, implying the need of PAN image for

more detailed spatial information.

As defined above, image fusion or pan-sharpening is a process to make optimal use of
the benefits present in both the Pan and MS images, and respective spectral indices,
through the integration of high-resolution spatial data of the PAN image and the spectral
information of the MS image to generate and make use of a high-resolution MS or HS
image, with the goal of increasing the interpretation capabilities through the production
of more reliable information while losing the least amount of either spectral or spatial
information possible (Rahmani, Strait, Merkurjev, Moeller, & Wittman, 2010; Zeng et
al., 2010; Zhang, 2004).

Of the existing methods of image fusion, two different types were tested. They are

explained in the following sections.

3.5.1 IHS Transform

The IHS (Intensity, Hue, Saturation) transformation method is one of the most widely
used and effective image fusion techniques, as stated above, owing to its basic
computation, efficiency and producing fused images of high spatial resolution with low
spectral resolution [32]. According to both [31], [32], [76], the IHS generally works
through resizing the MS image to the same size as the PAN image and converting the MS
colour image from the RGB (Red, Green, Blue) space, where the individual bands of the
RGB can be any combination of the possible 8 MS bands available, into a IHS colour
space, where the I component resembles, and is thus replaced by, the PAN image, after

which the reverse IHS transformation is applied to transform it into the fused RGB image.

For each pixel, the IHS fusion, according to [76], is calculated according to the

described three-step procedure:

First:
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Second: The I component is replaced with the PAN image, needing no calculation.
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Where F(X) is the fused image of the X band, for X = R, G, B.

352 BROVEY Transform

Like its IHS counterpart, the Brovey Transform is also one of the most popular and

effective image fusion methods, though based instead on arithmetic combinations [31],

[32]. In accordance to [31], in essence it works by multiplying each MS band by the PAN

band and then dividing each result by the sum of the MS bands. The resultant image of

this transformation emphasizes spatial information in degradation of spectral information,

leading to colour distortion when the spectral range of the input images are different or

they have significant long-term temporal changes [33], [77]. The following formula

defines how to compute each individual RGB band to produce the Brovey fused image,

according to [77]:

R,., =——— % PAN 21)
new =~ R+G+B)
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G pow = —————— PAN (22)
new =R+ G+B)

-5 23)
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3.6. Feature Extraction

Taking into consideration the resultant fused images, some methods of feature
extraction were tested and applied to delineate desirable areas of high likelihood where
the dolmens may be present. These methods will thus attempt to define and delineate the

zones of interest where archaeologists should focus their efforts.

3.6.1 Circular Hough Transform
The Circular Hough Transform (CHT) technique, a variation of the Hough Transform,
is capable of isolating, and thus detect, feature shapes (i.e.: lines, ellipses, circles, etc) in
an image, in this case circles, that requires said features being specified in parametric
form [78]. This method is often used due to having been proven to be tolerant to gaps in
the features descriptions while remaining relatively unaffected by noise, occlusion and

varying levels of illumination present in the image [61], [78].

According to [61], [78], the algorithm that calculates the circular shape follows the
equation (24):

(x—x)?+ = y0)? =17 oK

where r represents the circle radius and (x,, y,) represents the coordinates of the circle

centre. Further, the MATLAB’s function (imfindcircles) employed CHT algorithm

possesses three essential steps:

e Computes the accumulator array, where foreground pixels of high gradient are
designated candidate pixels which cast votes, in a pattern that forms a

complete circle of fixed radius, in the accumulator array.
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e Estimates the centre from the accumulated votes through detecting the peaks

in the accumulator array where the candidate’s pixels vote patterns coincide.

e [Estimate the radius of the circle, either through radial histograms or through
encoding radius information when forming the accumulator array alongside

the possible centre locations.

3.6.2 Bag-of-Visual Words

The Bag-of-Visual Words (BoVW) feature extraction method was made to manage
both the variability of spectral and spatial content in RS images and has attracted attention
for its capability of constructing midlevel representation of features instead of low-level
ones, therefore permitting the visual vocabulary to possess semantic understanding of
geospatial objects and low computation complexity through employment of patch-level
detection and description that divide images into subregions of objects comprised of

multiple homogeneous components [79], [80].

Training : = i Histogram generating Classifier Learning
Dataset !|nagc 1' s Clustering - K visual words _‘_. (New feature) i (SVMs)
Feature ! (K-means) | e - |
Dataset G ! Visual vocabulary irtial wokd ! AT gt s
eri 5} |- i i | Classifier Model
p| Descriptors) . g i"‘ 1 kil =™ (SVMs) —

Figure 4: BoVW Framework Source: [80].

As observed in Figure 4, typically this method’s framework comprises of the following
steps, after which the resultant global feature representation is fed into the chosen

classifier model:

e Feature Extraction, using patch detection and description to form feature

vectors from the objects.

e Feature Pre-Processing, due to extracted features usually possessing high
dimensionality and strong correlation between them, it is normally necessary
to apply the PCA method, a statistical procedure using orthogonal transform
where, usually, the resultant number of variables is less than the original
number (leading to dimensional reduction), to map them into a set of linearly

uncorrelated variables called principal components.

40



Methodology

e (Codebook Generation, executed during the training phase of the method using
a method of unsupervised learning (either K-means Clustering or Gaussian
Mixture Models), where each cluster centres is assigned as a visual word, and

thus creating the visual vocabulary that describes the object.

e Feature Encoding, where each extracted patch is assigned to the closest visual
word through Euclidean Distance and a histogram, that represents an object, is

created by counting the occurrences of each visual word [79], [80].

3.7. Classifiers

In an effort to reduce the number of areas of high likelihood of dolmen presence
following the automatic identification of circles in the images, an ensemble of several
different classifiers was trained, tested and implemented to automatically classify each
obtained circle as either showing dolmen presence or not. The following sub-sections will

expand on the theoretical basis of the classifiers used.

3.7.1 Logistic Regression
The Logistic Regression classification approach considers the existence of a nonlinear
relationship between the independent variables (e.g.: nominal, ordinal, interval or ratio
scale measurements), considered as predictors of the dependent ones, and the dependent
variables, present in binary format, that takes the form of a Bernoulli Distribution owing
to the binary format of the dependent variable [81]. Accordingly, this relationship is
expressed through the following equation (25) [81]:

1 (25)

p= 14+ e72

where p is the probability, ranging from 0 to 1, of the occurrence of object detection (in
this case, the dolmen) and z is the linear combination of related independent variables

that allows to determine the probability of occurrence.
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3.7.2 K-Nearest Neighbours

The K-Nearest Neighbours classification method has been widely used owing to its
simplicity, flexibility, and consistently high performance, that classifies new data through
storing of all the data used to train the model and then calculating a similarity measure
(distance function) between the new and stored data, setting the new data as the same
class as the majority of its k-nearest neighbours classes [82]-[84]. In this method, K is
commonly calculated through cross-validation, however small and odd K values are
usually selected to break ties while larger K values have better precision due to reducing

noise [82], [83].

According to [82], there are three possible distance functions used to calculate distance
for continuous variables, the Euclidean, Manhattan, and Minkowski (equations (26)-(28))

and one for categorical variables, the Hamming Distance (equation (29)):

K
Zi_l(xi - ¥i)? (26)

k
Z, lx; — il 27)
i=1

k Yq
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3.7.3 Support Vector Machines

The Support Vector Machine classification technique is a non-parametric supervised
learning method whose goal is the production of a model capable of predicting the target
class value for given data attributes, training the model through mapping feature vectors
into a higher dimensional space and finding a linear hyperplane that is capable of
separating this higher dimensional space with maximal margin [82], [84]. To do so, it

trains the model according to the following equation (30) [82]:
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l
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where @ maps feature vectors to higher dimensional space, C > 0 is the penalty
parameter of the error term and K (xl-,x]-) =@ x(x) * D= (xj) is a possible kernel

function (e.g.: Linear, Polynomial, etc).

3.7.4 Naive Bayes
The Naive Bayes classification method i1s one of the most competitive learning
algorithms that as seen wide usage in RS classifications owing to its highly scalable
learning, it estimates the probability of an observation belonging to a predefined category
through defining a model based on the Bayes theory where, based on the variables present
in the used training data, it defines the prior probability of each class originating from a

conditional probability estimation where the independence of the predictor variables is

assumed [81], [83], [84].

According to [81], [83], [84], the estimated probability of being a certain class is
obtained based on the following equation (31):

P(D|R) * P(R) 31
P(D)

P(h|D) =
where P(h|D) is the estimated probability of belonging to class h given the variables D
(also denominated posterior probability), P(D|h) is the probability of D given h (also
called likelihood), P(h) is the prior probability of categorical hypothesis h (denominated
prior) and P (D) is the prior probability of training data variables D (also called evidence),
where due to this method assuming the conditional independence of predictor variables,

P(D|h) can also be calculated through equation (32):

k
D;
PDIR) = HP(;) (32)
3.7.5 Linear Discriminant Analysis

The Linear Discriminant Analysis classification technique is used to discriminate
between different groups according to the individual related features of each possible
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class while identifying the features with the greatest contribution towards class separation
and creating a predictive model, composed of a discriminant function based on a linear
combination of said strongest variables, that is capable of predicting a class for new data
by calculating individual class centroids, i.e.: the mean value of the discriminant scores,
from the training data and , finally, predicting the most likely class for new data by
calculating as many linear equations functions as there are classes and from them compute

and choose the highest classification score, taking it as the predicted class [82], [85].

The discriminant function, according to [82], [85], takes the form of the following

formula:

D=VixX,+ Vo s Xy + Vax Xs+ -+ VixX; + a (33)

where D is the discriminant function, V the discriminant coefficient or weight for that
attribute, X the features of the attribute, « is a constant and i is equivalent to the number

of predictor variables.

3.7.6 Decision Trees

The Decision Trees classification method has become increasingly important owing
to their computation efficiency and conceptual simplicity where, unlike in other
approaches, instead of simultaneously using a set of features to classify in a single step,
it instead performs the classification based on a multistage or hierarchical decision
scheme or a tree like structure that are composed of a root node, that holds all the data, a
set of internal nodes, or splits, and a set of terminal nodes, called leaves, where each node
makes a binary decision that splits a class from the remaining ones until no more decision
splitting may be made, at which point the terminal leaf node is reached, in a process

known as top-down approach [86]-[88].

Alongside the DT possessing the ability to automatically execute feature selection and
complexity reduction, its basic concept of splitting complex decisions into several simpler
ones allows for a more interpretable solution and of both the predictive and generalization
capability of the classification [86]-[88]. Finally, if the target variable is a discrete value
this process is known as decision tree classification, while if it’s a continuous value it is

known as decision tree regression [88].
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3.7.7 Ensemble

Ensemble methods work by combining the predictions of several, usually weak,
classifiers into a single composite classifier that has generally been found to be more
accurate than any of its individual parts and capable of being used to reduce the error of
its weaker parts [86], [87]. Another example of an ensemble method is boosting, in which
rather than making use of different classifiers, it instead generates a series of the same
classifier iteratively where the training set chosen emphasizes the selection of incorrect
classifications more times than correctly classified samples of the previous classifier,
becoming a method capable of improving the algorithms performance and reducing the
errors of its weaker classifiers by aggregating the generated classifiers into a composite

classifier and having them vote on the same sample [86], [87].
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Geographical Area, Images, and Image Enhancement

Chapter 4 — Geographical Area, Images, and Image Enhancement

The following chapter will expand on the geographical region that was studied,
alongside the received and used images, ending with the steps taken to enhance the

received images and demonstrating the obtained enhanced final products.

Thus, this chapter is divided into three sections, one presenting the geographic
information of the researched region, another presenting the technical information of the
PAN, MS and HS images, and ending with one section that presents the various

techniques attempted to enhance the utilized images.

4.1. Geographical area of the case study

The area being studied is the region of Pavia in Mora, Alentejo, Portugal, since it is
the one for which we have expert data and knowledge to assess the success of the

classification. It encompasses an area of 185 km?.

In accordance with [4], it’s a territory composed mainly of alkaline granites,
granodiorites, tonalites and trondhjemite. According to different authors, this territory
houses the most extensive plateaus of Portugal, with local topography curves averaging
an altitude rounding the 200m without a high percentage of variation for either declivity

or relief [4], [89].

This area is situated in central Alentejo, a region comprised of the three major
hydrographic basins in the south of Portugal. More precisely, the region of Mora is in the
tertiary basin of the river Tejo [4]. According to [4], [18]), this type of landscape.
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Figure 5: Area of study (Pavia, Mora) within the map of Portugal.

4.2. Satellite Images used

To study this region, three different types of satellite images were used: PAN, MS, and
HS.

4.2.1 Panchromatic and Multispectral Images

Regarding the PAN and MS types, due to the unavailability of satellite images
containing Pavia’s total area, it was necessary to use two tiles of separate images for both

imagery types and, as such, this work makes use of two PAN and two MS images.

With one PAN and one MS image captured by the WV-2 satellite, collected on
separate occasions (30 of August, 2018 and 14 of March, 2019), with both sets possessing
0% of cloud coverage and the most recent being 19.6° off-nadir and the remaining being
from 26° to 26.4° off-nadir viewing angle. Both sets present individual images that are
ORS2A, in which radiometric, geometric and sensor corrections are applied and mapped
to a cartographic projection at a constant base elevation. The originally received image

sets alongside the expertly identified visible dolmen locations can be seen in Figure 6.
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A) B)

Figure 6. Images received on the first set, B), and on the second set, A), where red points indicate approximate
locations of expert identified visible dolmens.

The PAN images present a pixel spatial resolution of 50cm, presenting an average
collected ground sample distance of 0.517m and 0.564m, while the MS images have a
pixel spatial resolution of 2m, displaying an average collected ground sample distance of
2.067m and 2.257m. Additionally, the captured MS images possess eight bands that allow
to showcase spectral differences, these being: Coastal, Blue, Green, Yellow, Red, Red
Edge, Near Infrared (NIR) 1 and NIR2. In Figure 7 depicts a plot with each bands’ relative
range of wavelengths alongside their relative response level, while the following Table 2,
states the comprehensive full range of captured wavelengths and respective spatial

resolutions possible.
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Figure 7:WorldView-2 Relative Spectral Response (nm) Source: [48].
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Table 2: WorldView-2 satellite characteristics of the Visible-Near Infrared Spectrum Source: [47].

Coastal Blue Green  Yellow Red Red Near Near Pan Spatial
Blue (nm) (nm) (nm) (nm) Edge IRI IR2 (nm) Resolution
(nm) (nm) (nm) (nm)
WorldView-2 PAN: 0.50m
396 — 442 — 506 — 584 — 624 — 699 — 765 — 856 — | 447 -
458 515 586 632 694 749 901 1043 808
Others: 2m

This different spatial resolution results in the images respective pixel resolutions
diverging widely. On the first collected set of images (30 of August, 2018), the MS pixel
resolution is 8335x6209x8, while in the PAN it is 33340x24836. On the second set (14
of March, 2019), the MS resolution is 8335x9428x8 with the PAN being 33340x37712.

All of them are represented in 16 bits per pixel.

According to [24], the role of each MS bands, in regards to how they generally affect

and are affected by, can be summarized as:

e Coastal Blue: While aiding in vegetative analysis due to being absorbed by
healthy plants, its main purpose is for bathymetric experiments. It is
considerably affected by atmospheric scattering and can prove useful for
enhancements to atmospheric correction techniques.

e Blue: It is absorbed by the chlorophyll present in plants, provides good water
penetration and is less affected by atmospheric scattering and absorption than
Coastal Blue.

e Green: Puts more focus on the peak reflectance values of healthy vegetation,
making it an ideal for plant vigour estimates. Alongside the Yellow band, it
makes them useful in differentiating between types of plants.

e Yellow: important for feature classification, it serves as a method of detection
for “Yellowness”, the unhealthiest, of plants in water or land.

e Red: Is absorbed by healthy plants materials, thus serving as one of the key
bands for vegetation discrimination, and as proved its usefulness in classifying

bare soils, roads, and other geographical features.
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e Red Edge: Strategically adjusted to put the focus on the high reflectivity of
vegetation response, it is effective in evaluating plant health and classifying
vegetation.

e Near Infrared 1 (NIR1): Effective in estimating a plants biomass and the
moisture contents present, it serves mainly for splitting vegetation from water
bodies, detecting vegetation types and distinguishing between soil types.

e Near Infrared 2 (NIR2): While partially overlapping with the NIR1 Band, it
is less affected by the atmosphere, enabling a larger analysis of the vegetation

and execution of studies over biomass.

422 Hyperspectral Images

Regarding the collected HS image, it is composed of a set of five images individually
taken and captured by the Proba-1 satellite using the aboard instrument Compact High
Resolution Imaging Spectrometer (CHRIS). This tool captures one image as closely as
possible to the +/- 55°, +/- 36° and 0° observation angles for an established target [90],
[91]. The HS image was collected on the 8 of January 2020, possessing thirty-seven
spectral bands related to land channels and a resolution of 748 rows and 766 columns and
a nadir ground sampling distance of 17 meters. This image and respective set of images
that compose it, are then processed until achieving the Level 1A, by applying radiometric
and wavelength calibrations to ensure accurate image representations, returning the

captured TOA radiance levels [64], [90], [92].

In accordance with the satellite’s technical, Annex A shows the minimum, middle and
maximum values possible for the wavelength in each bands’, in nanometres, alongside
the pixels respective width for the thirty-seven and eighteen band image respectively. An

example of a band of this image is present in Figure 8.
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Figure 8: Band 27 of the original HS image received.

4.3. Image Enhancements Techniques

Before being able to implement any pattern recognition techniques or spectral
information extraction, the received images needed to undergo certain procedures to both
pre-process and enhance them. As such, and in accordance with the proposed workflow

in Figure 3, each image underwent several image enhancements techniques.

4.3.1 Hyperspectral Imagery Enhancements

As stated above, the captured HS images return not the needed reflectance values but
instead the TOA radiance levels, thus two methods were experimented to both enhance

and convert the original radiance values to the desired reflectance values.

Regarding the experiment of implementing Noise Reduction through the previously
described algorithm (see Noise Reduction), instead of removing and correcting the noises
commonly known as vertical stripping and drop-out pixels, it added vertical stripping to
the image, as it can be seen in Figure 9 on the right. Due to the obtained results proving
that the implementation of this algorithm worsens the images instead of improving them,

it was decided to not use it to process the HS images moving forward.
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Figure 9: Visible differences between the original HS image received (lefi) and HS image after undergoing Noise
Reduction (right) that now presents vertical stripping.

The following step was the conversion of TOA radiance pixel values to TOA

reflectance pixel values through the TOA Reflectance Calculation algorithm previously

described. While it did not have any outward effect in the way pixel values can be seen

in an image, it rescaled and altered the resultant pixel values graphs. In Figure 10, it is

possible to see an example of comparison between the radiance graph and the reflectance

graph produced for a randomly assigned pixel.

40,000

35,000

30,000

25,000

20,000

15,000

Watts/nm/m™ 2/str

10,000

micro!

5,000

Spectrum View

500 600 700 800 400 1,000
Wavelength (nm)

—=&— Pin 1_radiance

di

0.325
0.300
0.275
0.250
0.225
0.200
0175
0.150
0125
0.100
0,075
0.050
0.025
0.000

Spectrum View

P
£
4 Q 4 4
AT \ Ai
AT
B ohen &
L“‘&Mf
500 500 700 800 900 1,000

Wavelength (nm)

— & Pin1_toa_refl

Figure 10: Comparison between original HS image radiance values received (left) and HS image after undergoing
TOA Reflection Calculation method (right) presenting reflection values, in the y axis.
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432 Panchromatic Imagery Enhancements

To enhance PAN imagery, the focus lied in checking and applying different contrast
enhancing techniques. The first step was to extract from each image seen in Figure 11 a
histogram, which revealed that the data concentrates itself within an extremely small part
of the available dynamic range for both images. To compensate for this issue, different
contrast enhancement techniques were tested to obtain the most fitted PAN image
possible, including: HE, CLAHE, GC and CS. While Figure 12 shows the comparison
between the original and the corrected histograms, Figure 13 and Figure 14 display the
influence of the application of the different methods to each of the original images (where
A) HE; B) CLAHE; C) CS; D) CS followed by CLAHE), Figure 15 showcases the best
obtained results from applying the GC to the images.

Figure 11: Original received PAN images, with the left being the image of the second set and the right being of the
first set.
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Figure 12: Comparison between original images Histograms (Left) and resultant corrected Histograms (Right).

Figure 13: Comparison between contrast enhancement methods on the PAN image received on the first set.
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Gamma Correetion for Gamima Vaius =1
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Figure 15: Best obtained results when applying Gamma Correction method to the received PAN images.
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From the results obtained in Figure 13 and Figure 14, some conclusions can be
reached: first, that neither the application of a single HE method or CLAHE method
produce any usable results, with HE merely whitening the image and CLAHE losing
nearly all visual information; and secondly, that only with the application of a CS method
can any favourable result be achieved, as a single CS method allowed to extract an image
with contrast but still relatively dull, and the application of a CLAHE method following
it corrected this limitation and permitted to acquire an image with striking contrasts and
enhanced edge definitions. Finally, Figure 15 demonstrates that the application of GC to
the received images produce results that lose most definition and thus, should also not be

considered.

433 Multispectral Imagery Enhancements

On enhancing MS imagery, the focus lies in checking and applying different contrast
enhancing techniques as well as checking the correlation of the bands used to form the

differing indexes and, if necessary, enhance it through decorrelation techniques.

A) B

Figure 16: MS images received on the first set, B), and on the second set, A).

As depicted by Figure 16, the originally obtained images are dull, presenting very light
contrast. To understand the reason for the said dullness, an exploration of their individual

band histograms and respective correlations was made, whose results can be seen in the
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standard band histogram shown in Figure 18 (for each individual band histogram, see

Appendix A) and the RGB band correlation in Figure 17.

Blue
Blue

Green

Figure 17: RGB band correlations for each of the MS image, on the left being for the second set while the right being
for the first set of images.
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Figure 18: Standard example of band Histogram obtained for each band of each MS image.
Additionally, Figure 19 explores the band correlations between both the spectral band
7 and 8, representing the NIR bands, with the bands 3 and 2, the green and blue bands,

necessary for any calculation of the Vegetation Indices.

From the histogram that was extracted (Figure 18), the data can be seen to concentrate
itself within an extremely small part of the available dynamic range and thus, producing
a dull image. Furthermore, the correlations extracted and displayed in Figure 17 that
describe the degree of relationship between the colour component bands of each pixel,

show high levels of correlation between bands lending to monochromatic dull images.
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Figure 19: NIRI and NIR2 band correlations with Green and Blue bands for each of the MS image, on the left being
for the second set while the right being for the first set of images.

To correct this, similarly to the processing of the PAN images, different contrast
enhancement techniques were tested to obtain the best possible MS image, including HE,
CLAHE, GC and CS., Figure 20 displays the resultant corrected band histograms while
Figure 21 shows the corrected band correlations.
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Figure 20: Corrected histograms representation of the Red, Green and Blue bands, with the upper three histograms
belonging to the second set and the lower three to the first set of MS images.
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Green 0 0 Red

Figure 21: Corrected RGB band correlations for each of the MS image, on the left being for the second set while the
right being for the first set of images.

However, while in both Figure 17 and Figure 19 the shown correlation between bands
is somewhat sparse, after the corrections performed to enhance the images, Figure 21
continues to demonstrate an extremely high correlation between the visible bands,
maintaining a monochromatic dull image. To remedy this situation, a DS method was
applied to attempt to further segment the spectral information of each band, allowing to

obtain the band correlations seen in Figure 22.

Blue
Blue

Green e a1 Red Green -5 -2 Red

Figure 22: Corrected and Decorrelated RGB band correlation for each of the MS image, on the left being for the
second set while the right being for the first set of images.

The decorrelated RGB bands in Figure 22 show a marked improvement in
transforming the monochromatic image into an enhanced colour image, where each pixel
main colour is easily visible. While linear correlation is still present, it can only be seen
for higher ranges of pixel values in comparison to the low ranges present in Figure 17 and

Figure 21.

Figure 23 and Figure 24 were the derived showcasing of the obtained images after

applying different methods to the original ones, where: A) represents CS; B) represents
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HE; C) represents CLAHE; D) represents CS followed by CLAHE; E) represents DS; F)
represents CS followed by DS; G) represents CS followed by CLAHE and subsequently
DS.

E) F) G)

Figure 23: Derived images after application of contrast enhancement methods on the MS image received on the
second set.

E) F) G)

Figure 24: Derived images after application of contrast enhancement methods on the MS image received on the
second set.

From this procedure, we can conclude the potential processes to be used, depending
on the final objective. For the extraction of Spectral Indices, the process that uses DS and
contrast enhancement methods should be applied to cases where the most essential part

was the spectral information itself and thus, was applied only to extract Spectral Indices,
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while the process that utilizes only contrast enhancement methods was to be applied for

general purposes, such as image fusion.
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Chapter 5 — Implementation, Results Analyses and Discussion

The following steps will expand on the experimented and implemented techniques
ending with a description of the flowchart final developed algorithm, showcasing the
products obtained by each of the individual steps and, finally, displaying the results

obtained with its use.

This chapter is divided in three sections, one presenting the obtained results for each
of the conceptualized steps in the system alongside conclusion taken from them, and one

presenting the final and restructured system architecture.

5.1. Implementation Results

In accordance with the previously proposed system workflow in Figure 3, two
different methods of dolmen detection were experimented with: one making use of MS
and Pan type imagery and one using exclusively the HS images. In this chapter, the

implementations using both imageries are explained.

5.1.1 HS Material Signature Method

This system’s original objective is, essentially, to extract the reflectance values of the
image’s pixels for the range of wavelength present in the spectral bands of the HS image
and individually compare them to the reflectance values of the isolated dolmen’s material
obtained in laboratory and publicized in an online spectral library, with the intuit of
determining areas of high likelihood of dolmen presence through detecting the

monuments composing material’s presence in certain pixels.

To prove this systems viability, the average spectral reflectance of all the pixels with
dolmen’s expert identification was compared to the average spectral reflectance of several
areas of surrounding pixels where no dolmens are known to be present. This comparison
serves as a test to see if the presence of the dolmen has any effect in the extracted spectral
reflectance values along the different bands when compared to areas where no dolmens
are known to exist, such as the pixels immediately surrounding the various pixels with
dolmen presence and areas randomly extracted from the region, and from this difference

assign the continuous bands spectral reflectance values as signalling the presence of the
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dolmens’ material composition. Unfortunately, nearly all pixels found are inserted in
similar backgrounds of natural areas and thus present similar reflectance values along the
spectral bands, with the only difference being one dolmen found in the middle of the town
of Pavia, whose unique case among dolmens hindered its impact in extracting the unique

material spectral signature of the dolmens.

For this project to be viable, there should be a visible difference between the presence
and absence of a dolmen in the pixels to make it possible to assign the difference to the
presence of a unique material. The results of this test can be seen in Figure 25 where the
pixel reflectance percentage values are shown for several NxN grids of adjacent pixels
without dolmen presence, centred on expertly identified dolmen pixels.
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Figure 25: Comparison between pixel reflectance percentage values (y axis) and spectral wavelength in bands (x
axis) for a NxN grid of surrounding pixels centred on an identified dolmen pixel.

Figure 25 shows that the average spectral reflectance values are maintained
independently of the considered area, indicating that the spectral information of the region
where the dolmens are inserted is the same as the ones outside the location of the
monument permitting to conclude that this method is incapable of recognizing the

dolmens material signature.

While we can conclude that achieving a direct method of object recognition will be
virtually impossible, these images possess great levels of spectral information of far more

detailed levels than the MS images. However no experiments were carried out in their
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use, such as spectral indices extraction, as the total geographic area they covered was too
small to be considered worthy of being studied in regards to the creation of an automatic
machine learning method, further limiting the already small number of available

identified dolmen locations.

5.1.2 PAN and MS Data Fusion Method

In this system, following the first step of the implementation to pre-process and
enhance the received images, the extraction of spectral indices was attempted.
Afterwards, the resultant indices and images were fused into a single image on which

feature extraction methods were applied.

5.1.2.1 Image Fusion Methods

Following both the procedures of image enhancement and index extraction, a method
to tie the information together was applied, this being the image fusion techniques. As
previously described, two different techniques were applied to fuse the PAN and MS
images: IHS and Brovey transformation method. The following Figure 26 and Figure 27
show the results of the application of these methods to a single part of the full image of
the first set. chosen due to the previously identified presence of three dolmens by an
expert, encompassing one tenth of both the length and width of the image and applied to
the MS RGB bands, based on an image enhancement without the application of the DS
method.

Figure 26: IHS Transformation applied to the contrast enhanced PAN and RGB MS partial image.
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Figure 27: Brovey Transformation applied to the contrast enhanced PAN and RGB MS partial image.

5.1.2.2  Spectral Indices Extraction

As stated already, several vegetational, water, shadows, soil, man-made and road
indices were extracted, according to the previously described formulas, to search for the
presence of these elements in the image’s area as an indicator for a dolmen’s presence.
According to the experts opinion, these are commonly found, either covered by vegetation
or their presence causing vegetational growth outside of the norm, and are usually located
in areas close to water sources and standing out from the background soil. The images
showcasing the results obtained from the various extracted spectral indices can be seen in

Appendix B.
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Figure 28: Example of CHT classification experiment Simple Detection on a partial False RGB image of the second
set.

5.1.2.3  Circle Detection Method

To detect any identifiable spatial circular feature, either a full circle or a partial circle,
associated to the dolmens present in the images, in an attempt to detect both the
monuments identified by an expert and any possible new dolmen in open air, a CHT
method was applied in three possible ways, in search of the best possible result of

automatically detecting expertly identified dolmens.

The first experiment, hereafter described as experiment Simple Detection, is based on
applying the CHT directly on the fused image (i.e.: Figure 26), followed by the
application of one of each of the spectral indices developed (vegetation, water, soil,
shadow, man-made structures and road) to mask the said image. Then, any circle whose
radius is below 1.15m and above 3.25m and in whose isolated image, irrespective of the

index detected, the original image occupies at least 20 percent of it is cut out. Figure 28
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showcases the results on a small False RGB (formed by substituting the Blue band in
RGB colour space with the NIR1 band, forming the NRG colour space) partial image
where the blue dots signify possible monument locations, and the green squares identify

the true and expertly defined location of the dolmens.

Figure 29: Example of CHT classification experiment Masked Detection on a partial False RGB image of the second
set.

The second experiment, hereafter described as experiment Masked Detection, applies
the CHT on the resultant image after applying and masking the original image with one
of each spectral index developed and from its results cut any whose radius is below 1.15m
and above 3.25m. Figure 29 showcases the results on a small False RGB partial image
where, once more, the blue dots signify possible monument locations and the green

squares identify the true and expertly defined location of the dolmens.

The third experiment, hereafter described as Simultaneous Detection, is the

simultaneous application of both the above described Simple Detection and Masked
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Detection approaches, while maintaining the exclusion of any result whose radius is
below 1.15m and above 3.25m and in whose isolated image, irrespective of the index
detected, the original image occupies at least 20 percent of its present in approach A

(Figure 30).

Figure 30: Example of CHT classification experiment Simultaneous Detection on a partial False RGB image of the
second set.

Table 3 demonstrates each methods’ capability in terms of detecting circles where the
presence of dolmens has been previously identified by an expert both the three
experiments applied to both images, while Table 4 was created to showcase and compare

the total number of detected circles for the complete image.
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Table 3: Expertly detected identified visible dolmens in circles for each experiment and image.

Simple Masked Simultaneous Expert Defined Best Total
Detection Detection Detection Dolmens (max.) Percentage
First Set Image 6 4 7 13 +54 %
Second Set g 11 15 18 483 %
Image
Independent 10 13 17 18 +94 %
Dolmens

Table 4: Detected circles from CHT where there exists no previously identified dolmen, for each experiment and
image.

Simple Detection Masked Detection Simultaneous Detection
First Set Image 122.937 184.292 275.721
Second Set Image 180.505 379.932 496.972
Total 303.442 564.224 772.693

Analysing both tables, it is easy to note that experiment Simultaneous Detection, that
integrates both precursory approaches of Simple Detection and Masked Detection and
elimination of overlapped detected circles, is the one that returns the highest number of
identified dolmens, while simultaneously returning the highest number of detected
circles., If both the detected visible dolmens and detected dolmens in each image are
added together, the experiment Masked Detection attains a value of 14 dolmens and
564.225 circles whereas the experiment Simple Detection detects 13 dolmens and
303.442 circles. Thus, it can be concluded that Masked Detection is slightly better at
detecting dolmens but suffers from a higher number of false positive circles (260.783)

when compared to Simple Detection.

Finally, comparing Table 3 and Table 4 and taking into consideration the objective of
detecting the highest possible number of visible dolmens, experiment Simultaneous
Detection was chosen as the best tested method to consider for the remaining of the
research. Further, taking into regard the extremely high number of false positives circles
detected in comparison to the small value of true dolmens discovered, several steps were

taken to try and reduce false circle dolmens while maintaining the maximum possible
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number of true positive dolmens. These steps and results will be explained in the

following sub-sections.

513 Delimitation of Areas Using Expert Knowledge

To delimitate the considered area to classify as possible dolmen locations, the
knowledge of an expertly defined ontology for the dolmen insertion in the territory under
study was used. Based on this ontology, such monuments are usually inserted on rural
and elevated terrain zones, near rock outcrops and close (around less than 2km) to natural
water sources, while defining both urban and agricultural plantation zones as not
presenting said monuments due to them being destroyed for construction or agricultural

activities.

From the available information, no defined urban/rural, agricultural, of elevated terrain
or rock outcrops zones could be defined, leaving only possibility of defining regions
based on water source proximity. Thus, areas found to be further away than 1.2km from
a relatively large water source were masked and presented as not feasible for dolmen
locations. The following figures (Figure 31 and Figure 32) demonstrate the differences
between the originally received set of images and the resultant regions based on water
proximity in accordance with the expert knowledge. With this method’s implementation
the detection of identified dolmens was unchanged. However, the number of false circles
detected has dropped due to the reduction in the area of interest thus obtained. The
reduction of area of interest in the first set of images (Figure 32) is of around 8.61%,
while for the second set of images (Figure 31) it is around 5.04%. Table 5 displays the

resultant false circles for each of the three experiments and two images.
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Figure 31: Difference between the received second set of images (left) and the ontology-based water regions (right).

Figure 32: Difference between the received first set of images (left) and the ontology-based water regions (right).

Table 5: Detected circles from CHT where there exists no previously identified dolmen, for each experiment and
ontology-based water defined region image.

Simple Detection Masked Detection Simultaneous Detection
First Set Image 102.537 160.874 237.277
Second Set Image 159.076 346.615 450471
Total 261.613 507.489 687.748

An analysis of Table 4 and Table 5 allow to conclude that the falsely detected
dolmens by the CHT was effectively reduced: experiment Simple Detection eliminated
+13.8% of circles in both images, Masked Detection removed £10.1% of circles in total

and Simultaneous Detection removed +11% of circles in both images when comparing
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with the number of circles detected in the original images, therefore, proving the
effectiveness of an ontology-based definition for restricting areas with higher likelihood
of dolmen’s presence, allowing for only searching for the objects in question within the

defined boundaries.

514 Circle Classification Models

As analysed above, the application of the CHT circle detection technique retrieved an
extremely high number of circles, independently of the type of experiment and of image,
with the lowest number being around 120.000 and the highest around 500.000 (see Table
4). The application of ontology based defined regions, the number of circles for probable
dolmen identification, although still high, dropped for a lowest of around 100.000 and a
highest of around 450.000 (see Table 5). As such, to further reduce the erroneously
detected circles, several classification models were tested, trained and implemented with
different techniques, in such a way that the models effectively eliminated, or at least
minimized, the loss of any of the circles detecting previously identified dolmens. To train
these models, each detected circle was classified as either being a dolmen or not and then

a square RGB image of 28 per 28 pixels centred on the circle was extracted and saved.

These models (see Classifiers) were trained recurring to the MATLAB Classification
Learner app that allowed, based on the discovered visual features obtained through the
application of BoVW method, to easily train a variety of cross-validation models of
different types. It also chooses to apply (or not) a PCA when training and tunes the model
by searching for the best hyperparameters for each model, allowing for their easy
comparison and exporting. Finally, an ensemble of five of the best trained models was
created and used to independently classify each detected circle as being a dolmen or not,
deleting any circle that below a defined threshold, in this case three, of votes classifying

as being dolmen.

Further, two different experiments were made for the training of the models: one that
only considered the originally extracted dolmen circles and one that performed data
augmentation by applying rotation to the images, in 90° degree angles, performing a full
circle mapped rotations. However, when comparing the confidence of the two models for

circles that encapsulate known dolmens, it was found that the model without rotation
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affected the detection of previously identified dolmens when taking into consideration
the majority-of-three voting system, by not being able to correctly classify one of the truly
detected dolmens, while the model with rotation did accurately classify all the existent
dolmens. Nevertheless, both schemes had clear effects on the number of falsely identified
circles. Table 6 showcases those erroneously identified circles numbers obtained through
method Simultaneous Detection for each image and experiment, with or without rotation,
applied during training.

Table 6: Detected circles with more than three model votes through method Simultaneous Detection, where there
exists no previously identified dolmen, for models trained with or without rotation.

Without Rotation With Rotation
First Set Image 114.979 117.925
Second Set Image 215.398 207.873
Total 330.377 325.798

From an analysis of the results described in Table 6, when taking into consideration
that when applied with rotation was able to capture one more of the known dolmens, one
that was partially inserted within a tree, in addition to the fact that the model with rotation
enabled to obtain less misclassified circles allows to conclude that the developed model

with rotation is overall better at detecting dolmens.

5.1.5 HSV Colour Space Detection Implementation

After the application of the CHT circle detection technique and retrieval of detected
circles in False RGB images, it was found that this method retrieved an extremely high
number of circles independently of the type of experiment and image it was applied on
(see Table 4), while detecting a very low number of circles that truly possess dolmens. In
efforts to both capturing more circles capable of detecting dolmen presence and
diminishing even more the incorrectly classified circles, the best implemented process
concluded from the previous sub-sections were directly applied to a converted HSV

colour space of the original RGB image.

From this process, Table 7 was obtained were the number of identified dolmens

captured before applying supervised classification is described. Table 8, on the other
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hand, showcases the number of circles of known dolmens initially captured through a
model with rotations of 90° degree angles applied to the dolmen dataset, alongside the

respective misclassified number of circles.

Table 7. CHT applied to HSV colour space displaying truly detected dolmens in circles for experiment Simultaneous
Detection with ontology defined regions.

Dolmens Captured Through Expert Defined Best Total
Simultaneous Detection Dolmens (max.) Percentage
First Set Image 7 13 +54 %
Second Set Image 16 18 +89 %
Independent 17 18 £94 9
Dolmens

Table 8: CHT applied to HSV colour space displaying detected and false positive dolmens in circles for experiment
Simultaneous Detection with ontology defined regions, after application of automatic classification model.

Simultaneous Expert Defined Dolmens Best False Positive
Detection Classifier (in Simultaneous Percent Dolmens Classifier
(Rotation) Detection) ercentage (Rotation)
First Set Image 5 7 +71 % 107.400
Second Set 16 16 100 % 204.754
Image
Independent 16 17 +94 % -
Dolmens

Total - - - 312.154

Comparing the results displayed in Table 3 and Table 7, its noticeable that the
application of CHT to the HSV colour space can detect one more of the known dolmens
than its application to the False RGB colour space. Further, analysing Table 3, Table 6
and Table 8, it can be seen that while it couldn’t classify two known dolmens in the first
image set but could classify one more in the second image set, the misclassified dolmens
of the model that applied the 90° degree angles rotation to the dolmen dataset are lower

in the HSV colour space than the False RGB.

After analysing the obtained results, it was found that the reason the model couldn’t
identify the two missing dolmens was that both of them were not at least partially covered
by vegetation, that is, what the model learned was not how to identify dolmens but instead
how to identify trees with nearby rocks. This is also one of the main reasons for the great
number of erroneously classified circles, as such features are common in the area. Finally,
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taking into consideration that when this models equivalent was applied to the False RGB
colour space, it was able to capture one extra dolmen due to the fact it was partially
inserted within a tree, it can be concluded that the same behaviour is being observed on

both model cases.

To solve this issue, another way was experimented to create and train the models for
the classifiers through two steps: first, due to noting that the number of partially covered
dolmens was much higher than the naked dolmens, several partial captures of said
dolmens were extracted and added to the dataset; second, having proved that models with
at least some rotation added were better able to isolate the dolmens and had proved
beneficial in reducing incorrect classifications, for each of the images present in the
dataset twenty-four rotations of 15° degree angles were applied to further augment the
data. From this solution Table 9, demonstrates the number of circles of known dolmens
captured through said model of partial dolmen images and 15° degree angle rotations,

alongside the respective misclassified number of circles.

Table 9: Detected and misclassified dolmens in circles for experiment Simultaneous Detection in HSV colour space
with ontology defined regions, after application of a data augmented automatic classification model.

Simultaneous Detection Expert Defined Dolmens False Positive

Classifier (Rotation + (in Simultaneous Perf:;tta . Dolmens Classifier
Partials) Detection) 8 (Rotation + Partials)
First Set Image 7 7 100 % 32.763
Second Set 14 16 +88 % 57.211
Image
Independent 15 17 +88 % =
Dolmens
Total - - - 89.974

Comparing the results displayed in Table 8 and Table 9, although this new model did
not prove capable of detecting all the initially verified dolmens through CHT it
demonstrated the ability to cut the number of incorrectly classified circles in over +71.2%,
reducing the total number of false positives from 312.154 with the previous model to
89.974 in the new one. While the total number of true positives obtained in both image
sets did not change, the total independently recognized dolmens did with the loss of two

of the known dolmens present.
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Although it can be seen in Table 7 that CHT applied to HSV had already proved
incapable of detecting one of them, majorly due to the complete lack of any indication of
its presence and near complete degradation (as can be seen in Figure 33, showing the
HSV and the Google Earth image of the monument location side by side), in the case of
the two misclassified dolmens, the CHT was capable of detecting some circularity being
present either near the monument (e.g.: Figure 34) or on the monument’s physical location
(e.g.: Figure 35), resulting in obtaining an image with only an incomplete partial piece of
the monument at their edge or due to the advanced levels of degradation of the monument

in question the classification models not detecting them as dolmen locations, respectively.

The following Figure 34 and Figure 35 showcase the side by side comparison of the
HSV and Google Earth images of the erroneously classified dolmen locations whilst
Figure 36 and Figure 37 present the HSV and Google Earth image comparison of

correctly classified dolmens.

Figure 33: Google Earth and HSV image of the undetected CHT Gongala 3 monument location, side by side.

Figure 34: Google Earth and HSV image of the erroneously classified Oliveira 1 monument location, side by side.
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Figure 37: Google Earth and HSV image of the correctly classified Adua 1 monument location, side by side.

Finally, taking into consideration what was learned through the Literary Review, this
system results are great for an area of such size, as it has been found that the larger the
area and the smaller the monument in question, the greater the number of false positives,

with the inverse also applying.

5.2. System Architecture Restructure

Based on the results obtained during the implementation of the conceptual model,
shown in Figure 3, said model can now be reconstructed after factoring in the discovered
inability of use of HS images, the application of a knowledge-based method based on the

defined ontology to delineate region of interest, the varied types of spectral indices
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applied to discard unnecessary information and the multiple layers of classification
applied to take into consideration varied obtained features. Thus, Figure 38 shows the

reconstructed system architecture and workflow.
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5.3. Discussion of Results
Based on the experiments carried out in all three image types, several results stand out.

First of all, we proved that the HS images provided were could not be used to extract
a spectral material signature of the dolmens. This fact is due to a combination of (i) large
pixel size resolution when compared to the dolmen’ small dimension and (ii) the fact that.
the monuments composing materials are in fact commonly found spread throughout the
area of implementation. Further, the total area the HS image captures is a very small part
of the whole area of study, limiting the usefulness of the spectral information extracted
and eliminating a large part of the expertly positioned dolmens from consideration,

leading to the HS images not being used alongside the other images type.

The experiments carried out in the creation of a system using PAN and MS images
proved that dolmen detection is more accurate in the HSV colour space over traditional
RGB colour space. Further, the system demonstrated that spectral indices can further
define partially obstructed dolmens, allowing for the dolmens to show various degrees of
circularity. Additionally, the developed system showed that expert knowledge based on
ontologies can be, at least in part, used to delineate areas of high probability of dolmen
presence and, finally, proved that an ensemble of several supervised classification models
can classify detected circles (through CHT) such that it can capture most of the known
dolmens for automated detection while eliminating the number of erroncously detected

circles in over £87.2%.

82



83

Implementation, Analysing and Discussion of Results



Conclusion and Future Work

Chapter 6 — Conclusion and Future Work

This thesis investigated the possibility of creating an automatic system capable of
using satellite imagery for identification of ground areas presenting high likelihood of the
presence of archaeological monuments — dolmens. For this end, information captured in
various types of image — MS, HS and PAN — was used in experiments to enable a system
that, in the case study at our disposal, detected the greatest possible number of dolmens
in a set of previously identified dolmens, knowledge provided by a human expert. The
system was tunned so as to minimize the number of erroneously classified regions as

showing high probability for dolmens implantations.

This chapter is divided in four sections presenting the conclusions, the study
contributions to the academic and business-level, and, finally, the inherent limitations and

direction for future research.

6.1. Main Conclusions

Taking this thesis objectives into consideration, it was possible to prove that the type
of Hyperspectral image obtained from the Proba-1 CHRIS satellite sensor could not be
used for the creation of a dolmens’ material signature, mostly because of the fact that the
surrounding environment was rich in the material used in the monument’s fabric. This
also happens, in part, due to the difference in size between the pixel’s image resolution
and the dolmen’s physical size. The pixel in the HS image covers a ground area of 17m
per 17m, while the dolmen, at best, encapsulates a diameter of around six meters. Thus,
the HS images can neither be used to enable a system capable of automatically defining
small regions of high likelihood of presence of dolmens within an image, nor for obtaining
information to be fused into a system using MS and Pan images to delineate areas of

interest where to apply circle detection on.

On the other hand, in successfully creating a system using Panchromatic and
Multispectral images that proved capable of detecting dolmen locations of up to fifteen
of eighteen of the previously identified dolmens (around 83% of accuracy), this system
proved that, at least partly, the expertly defined ontology of the dolmen (the domain

knowledge) is of added-value for increasing the performance of automated dolmen
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detection systems. In this case, the knowledge that dolmens are usually inserted near
relevant water sources was transferred and used to enhance the automatic classification
of image areas of higher probability of dolmen’s presence. Further, while it is possible to
detect some of the more visible and striking dolmens in satellite imagery through direct
application of a circle detection method, only with the use of spectral information and
respective creation of spectral indices was it possible to eliminate pixels of known
unwanted substances, allowing to define circular or partially circular regions presenting
higher probabilities for the location of dolmens that demonstrated capacity of capturing

areas with visual obstacles for clear dolmen visualization.

The developed system also allowed to conclude that dolmens are easier to detect when
using the HSV colour space of the satellite imagery, returning both slightly better
detection of verified dolmen locations and a lower number of erroneously classified
dolmen sites. Finally, it. was possible to identify the possibility of using supervised
machine learning methods to create models capable of automatic classification of
individual locations as being possible dolmen locations based on similarity of visual
features to previously expertly defined sites. The developed supervised model allowed to

eliminate around 87.2% of false positives.

6.2. Contributions
6.2.1 Academic Implications

This thesis mainly contributes with a preliminary work on automated remote sensing
classification systems in satellite images of archaeological monuments in Portugal, while
simultaneously contributing towards the start of research on image automated

classification for heritage detection.

Further, it offers proof of concept towards the effectiveness of usage of an existent
ontology of environmental dolmen insertion for defining macro regions where dolmens
can be expected to be present and thus, be used for the construction of a mixed

knowledge-based classification system.
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6.2.2 Business-Level Implications

Meanwhile, this proof of concept enables further research into an automatic tool for
aiding archaeologists in the detection of new dolmens, without needing to recur to time-
consuming ground cover of whole regions, and simultaneously aiding in identifying zones

of cultural importance to be protected in rural and agricultural regions.

6.3. Study Limitations

This study main limitations are found in the collected Hyperspectral images. Several
factors contributed for these limitations. First, the images that ESA sent us only covered
a small part of the total region of interest. On the other hand, the ground sampling
distances and, thus, the correspondent pixel size, were too big for the needed level of
ground analysis required, leading to problems in analysing the much smaller monuments.
Finally, the total number of spectral bands captured were too low: 37. Far more spectral

bands were needed to develop spectral material signatures with high accuracy.

A big limitation was also found in the decayed state of most of the monuments in the
case study area, having caused the loss of the former circular shape the monuments were
built with, and leaving mostly irregular shapes to be detected. This fact led to some
monuments simply being undetectable since the system was unable to distinguish
between them and common rock formations present in the region. Other limitations
involve the low number of previously identified dolmens located in the region leading to
a low number of previously annotated images for the training phase of the classifier

models, which necessarily hinders learning.

6.4. Future Research

Megalithic monuments present local and fragrant specificities, preventing the
application of existent automated approaches to new geographical areas. While
archaeological remains automatic detection systems using aerial and satellite images have
already began to gain traction in recent years, such has been noted to happen mostly on

foreign countries, and therefore leaving a significant lack of such systems being
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developed and applied to Portuguese regions and monuments, leaving much room for

growth.

While this dissertation proved successful in using an already developed ontology to
aid in detection, it would be of interest to develop the system in order to encapsulate all
of the regions where the archaeological monuments in question have been detected, and
expand on the system by adding new domain knowledge, based on the ontology, capable

of further refining areas of high probability of presence.

This thesis makes use of Panchromatic and Multispectral image types only. Different
image types, such as Hyperspectral and LiDAR, could provide distinct and more
interesting avenues for the automatic detection of dolmens, providing that the spatial
resolution is fine enough for isolating smaller patches of ground and enable new paths for

signature identification and discovery of new features related to dolmens’ height.
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Annexes e Appendixes

Annex A

Proba-1 CHRIS satellite characteristics of the wavelengths of each band for the 37-band image Source: [91].

Band Minimum (nm Middle (nm Maximum (nm Width (nm

H2 9

H4 546 551 556 10

Hé6 9

H8 666
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Appendix B

Atmospherically Resistant Vegetation Index 2 applied to the image of the second set, for values superior to a
threshold ranging from 0.9 to 0 with decrements of 0.1.
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Atmospherically Resistant Vegetation Index 2 applied to the image of the first set, for values superior to a threshold
ranging from 0.9 to 0 with decrements of 0.1.

Difference Vegetation Index applied to the image of the second set, for values superior to a threshold ranging from
0.9 to 0 with decrements of 0.1.
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Difference Vegetation Index applied to the image of the first set, for values superior to a threshold ranging from 0.9
to 0 with decrements of 0.1.

Enhanced Vegetation Index applied to the image of the second set, for values superior to a threshold ranging from
0.9 to 0 with decrements of 0.1.
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Enhanced Vegetation Index applied to the image of the first set, for values superior to a threshold ranging from 0.9 to
0 with decrements of 0.1.

Green Normalized Difference Vegetation Index applied to the image of the second set, for values superior to a
threshold ranging from 0.9 to 0 with decrements of 0.1.
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Green Normalized Difference Vegetation Index applied to the image of the first set, for values superior to a threshold
ranging from 0.9 to 0 with decrements of 0.1.

Normalized Difference Chlorophyll Vegetation Index applied to the image of the second set, for values superior to a
threshold ranging from 0.9 to 0 with decrements of 0.1.
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Normalized Difference Chlorophyll Vegetation Index applied to the image of the first set, for values superior to a
threshold ranging from 0.9 to 0 with decrements of 0.1.
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Red Edge Normalized Difference Vegetation Index applied to the image of the second set, for values superior to a
threshold ranging from 0.9 to 0 with decrements of 0.1.

Red Edge Normalized Difference Vegetation Index applied to the image of the first set, for values superior to a
threshold ranging from 0.9 to (0 with decrements of 0.1.
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Renormalized Difference Vegetation Index applied to the image of the second set, for values superior to a threshold
ranging from 0.9 to 0 with decrements of 0.1.

Renormalized Difference Vegetation Index applied to the image of the first set, for values superior to a threshold
ranging from 0.9 to 0 with decrements of 0.1.
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Soil Adjusted Vegetation Index applied to the image of the second set, for values superior to a threshold ranging from
0.9 to 0 with decrements of 0.1.

Soil Adjusted Vegetation Index applied to the image of the first set, for values superior to a threshold ranging from
0.9 to 0 with decrements of 0.1.
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Wide Dynamic Range Vegetation Index applied to the image of the second set, for values superior to a threshold
ranging from 0.9 to 0 with decrements of 0.1.

Wide Dynamic Range Vegetation Index applied to the image of the first set, for values superior to a threshold
ranging from 0.9 to 0 with decrements of (.1
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NDVI Vegetation Index applied to the image of the second set, for values superior to a threshold ranging firom 0.9 to
0 with decrements of 0.1.
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NDVI Vegetation Index applied to the image of the first set, for values superior to a threshold ranging from 0.9 to 0
with decrements of 0.1.
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NDWI Water Index applied to the image of the second set, for values superior to a threshold ranging firom 0.9 to 0
with decrements of 0.1.
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NDWI Water Index applied to the image of the first set, for values superior to a threshold ranging from 0.9 to 0 with
decrements of 0.1.
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NDSI Soil Index applied to the image of the second set, for values superior to a threshold ranging from 0.9 to 0 with
decrements of 0.1.
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NDSI Soil Index applied to the image of the first set, for values superior to a threshold ranging from 0.9 to 0 with
decrements of 0.1.
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SDI Shadow Index applied to the image of the second set, for values superior to a threshold ranging from 0.9 to 0
with decrements of 0.1.

115



SDI Shadow Index applied to the image of the first set, for values superior to a threshold ranging from 0.9 to 0 with
decrements of 0.1.
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NHFD Index applied to the image of the second set, for values superior to a threshold ranging from 0.9 to 0 with
decrements of 0.1.
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NHFD Index applied to the image of the first set, for values superior to a threshold ranging from 0.9 to 0 with
decrements of 0.1.

BAI Index applied to the image of the second set, for values superior to a threshold ranging from 0.9 to 0 with
decrements of 0.1.
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BAI Index applied to the image of the first set, for values superior to a threshold ranging from 0.9 to 0 with
decrements of 0.1.
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