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Abstract 

The prediction of stock prices dynamics is a challenging task since these kind 

of financial datasets are characterized by irregular fluctuations, nonlinear 

patterns and high uncertainty dynamic changes. 

The deep neural network models, and in particular the LSTM algorithm, have 

been increasingly used by researchers for analysis, trading and prediction of 

stock market time series, appointing an important role in today’s economy. 

The main purpose of this paper focus on the analysis and forecast of the 

Standard & Poor’s index by employing multivariate modelling on several 

correlated stock market indexes and interest rates with the support of VECM 

trends corrected by a LSTM recurrent neural network. 
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1. Introduction 

Over the years, the usage of standard econometric practices has proven its usefulness. Several 

models, such as ARIMA (AutoRegressive Integrated Moving Average), VAR (Vector 

AutoRegression) and VECM (Vector Error Correcting Model), have been employed to 

analyze financial and macroeconomic variables in order to forecast or to extract dependencies 

and different causality relations between them.  

One of the most popular econometric models, according to (Mills & Markellos, 2008) are 

error-correcting mechanisms. These models stem from the idea that common time series can 

have a long-term dependency on a stochastic trend. One major advance in this area came 

from Granger’s representation theorem (Engle & Granger, 1987), which shows precisely that 

a cointegration relation can be represented by the error correction model (ECM). 

In addition, given the recent popularity of machine learning techniques in econometrics, 

LSTM (Long Short-Term Memory) models have been engaged to financial indexes in order 

to try to predict market fluctuations. Examples of this are (Nelson, Pereira, & Oliveira, 2017) 

which use LSTM to predict BOVESPA (São Paulo Stock Exchange) within a 15 minute time 

window. They report accuracies of 53–55%. Another approach was that of (Fischer & Krauss, 

2017) which studied daily Standard & Poor’s data from 1992 to 2015. 

Recently there has been an insurgence of hybrid models which combine both traditional 

econometric and time series methods with machine learning algorithms. Authors such as 

(Terui & van Dijk, 2002), (Zhang, 2003) and (Zhang & Qi, 2005) explore the idea that a 

single model can’t fully recognize the true data generating process or identify all the 

characteristics of a time series. 

(Kim & Won, 2018) propose a new hybrid model to forecast KOSPI 200 stock price volatility 

by combining LSTM recurrent networks with various generalized autoregressive conditional 

heteroscedasticity (GARCH)-type models. A different approach was that of (Wan, Guo, Yin, 

Liang, & Lin, 2020) which proposed a brand new LSTM hybrid model called CTS-LSTM. 

The purpose os this model is to forecast correlated time series by capturing any complex non-

linear patterns existing between the variables. 

In this paper we propose a multivariate approach which firstly analysis the overall trend of 

the considered data by using a VECM and lately corrects the non-captured patterns by using 

a LSTM (Long Short-Term Model) neural network. The VECM model is applied to capture 

the linearity in the original data and the resulting residuals are used as input for the LSTM 

algorithm with the purpose to extract nonlinear behaviour and to complete prediction. 
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2. Modeling the dataset by using VECM and LSTM algorithms 

The main goal of this analysis is to infer the accuracy of long term predictions using both 

VECM and LSTM models but also to get benefit from each techniques by displaying what 

they do the best, namely, trend estimations (VECM) and pattern recognition (LSTM). 

Our model philosophy is that of filtering the data, followed by the interpretation of the 

underlying patterns. We achieve this by using a VECM model to assert and predict the overall 

trend of the data and then apply an LSTM network to the VECM residuals. 

2.1. Data handling and VECM fitting 

The dataset we are going to use includes: Dow Jones, NASDAQ and Standard & Poor’s 500 

market indexes and the 3 month Treasury bill rate, sampled weekly, as can be observed in 

Figure 1. The data were cut short in time domain so that every series spaned over the same 

time period. All market indexes are the closing price on every Friday of the month and luckily 

the treasury bill rate was also available on the same day so no resampling or data shifting was 

required.  

After collecting the data from the Reuter-Thomson Datastream platform (Reuters-Thomson, 

2020) we test all time series for stationarity by using the Augmented Dickey–Fuller unit root 

test (ADF) (Dickey & Fuller, 1979; Dickey & Fuller, 1981). This test indicates that the four 

time series are non-stationary with p-values well above 5% significance level (0.9945, 

0.9989, 0.9959, 0.6274).  The log-returns are stationary (based on ADF test), which is 

conducent to a VECM analysis, on the assumption that cointegration exists. From this point 

on, all numerical results presented in the text in the form of 4-tuples are related to each of the 

variables in the order presented in Figure 1. 
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Figure 1. Macroeconomic variables and stock indexes in study. 

We establish two major datasets: the training set for the VECM estimation and a test set 

which we use to benchmark VECM’s prediction capabilities as well as to supply the input 

for the LSTM algorithm to effectively “correct”. The training dataset runs from 5 of February 

1971 until 12 of May 2013 while test set goes from 19 of May 2013 until 17 of April 2020. 

In the VECM model fitting procedure we minimize Akaike Information Criteria (AIC) in 

order to determine the optimal lag, which in this case is of 2 time steps (weeks in our time 

binning). The cointegration was detected by adopting the Johansen methodology (Johansen, 

1988; Johansen, 1992) where both trace and maximum eigenvalue tests conclude that exist 

three cointegration vectors for the optimal lag order of 2.  
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After the model was established we use the VECM(2) with 3 cointegration vectors to estimate 

the parameters and to extract the residuals (for the training set) and to forecast (for the test 

set). Note that these residuals were then scaled in order to comply with the LSTM network 

which will use them as input. These results can be found in Figure 2. 

 

Figure 2. VECM model applied to data (left) and the corresponding residuals (right). 

We estimated an average percentual deviation of the VECM model from data in the training 

sample given by (1.489%, 0.901%, 2.234%, 1.196%). The prediction results based on 

VECM, ilustrated in  Figure 2, strongly deviate from the data as time passes but this was to 

be expected given the extremely long prediction range (about 7 years), resuming to only 

predict the global trend.  

2.2. LSTM network 

After the residuals were extracted and scaled to a 0 to 1 grading, we introduce them as input 

in our LSTM network. 

We split the “forecast” dataset of the VECM into two subsets in order to create a “validation” 

and a new “test” datasets for the LSTM’s training and benchmarking. The new time intervals 

splits are given by: 1971-02-19 to 2013-04-12 for training, 2013-04-19 to 2019-04-12 for 

validation and 2019-04-19 to 2020-04-17 for testing. 

This network’s configuration, presented in Figure 3 (namely the number of time steps, batch 

size, training epochs and hidden layer configuration) came from a long run of trial and error. 

167



Comparative multivariate forecast performance for the G7 Stock Markets 

  

  

 

Figure 3. Diagram of the LSTM Recurrent Neural Network deployed. 

 

Table 1 synthesize the different parameters that define our LSTM arquitecture. We use Keras 

and Tensorflow from Python. In order to normalize the data we use the  MinMaxscaler, which 

scales and translates each feature individually such that will belong to the given range on the 

training set, e.g. between zero and one. To avoid using Sigmoid functions, ReLU (Rectified 

Linear Unit) activation functions became a popular choice in deep learning and even 

nowadays provides outstanding results. An optimizer is one of the two arguments required 

for compiling a Keras model. We used Adam, an algorithm for first-order gradient-based 

optimization of stochastic objective functions, based on adaptive estimates of lower-order 

moments. Finally, we present the values exploit for the number of time steps, hidden layers, 

learning rate, batch size and training epochs. 
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2.3. Results 

After training, the network was used to predict the residuals of the time series in order to 

correct the VECM forecasts. This was merely done by adding the LSTM prediction to the 

VECM prediction after the scaling was inverted.  

The results are presented in Figure 4. The average percentual deviation of this approach from 

the data is 28.192%. 

Table 1. LSTM architecture. 

Data normalization MinMaxScaler 

Activation function ReLU 

Optimizers Adam 

Loss Function Mean Squared Error 

Input dimension 4 (timestep) x 4 

Output dimension 1 (forecast) 

Hidden layers [50, 50] 

Learning rate 1.E-3 

Batch Size 32 

Training epochs 30 
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Figure 4. VECM prediction and the VECM with LSTM correction. 

The LSTM’s additive correction introduced some temporal variation but it was not able to 

correct for such a large shift from the forecast to the data. This shortage can be attributed to 

the discrepant change in the behaviour of the residual dataseries presented in Figure 2. 

3. Conclusions and Prospects 

The approach of making an unbiased long term “trend” prediction of the different time series 

and then attempting to correct them using an LSTM network proved to be difficult.  

The residual series sharply change and the LSTM was not able to take that into account during 

its training since only a simple residual series was provided. This conduces to the introduction 

of two new objectives in future analysis, namely, an adjustment in the forecasting range and 

a change in the training philosophy. 

This model yielded a MAPE of 28.192% when prediciting the Standard & Poor’s stock 

market index. This might be attributed to the usage of a relatively small dataset.  

We plan to expand this analysis to daily data but that will constrain our choices due to data 

availability of macroeconomic variables on these high frequency samplings. 

170



Diana Mendes, Nuno Ferreira, Vivaldo Mendes 

  

  

References 

Dickey, D. A., & Fuller, W. A. (1979, June). Distribution of the Estimators for 

Autoregressive Time Series With a Unit Root. Journal of the American Statistical 

Association, 74(366). doi:10.2307/2286348 

Dickey, D. A., & Fuller, W. A. (1981, Jul). Likelihood Ratio Statistics for Autoregressive 

Time Series with a Unit Root. Econometrica, 49(4), pp. 1057-1072. doi:10.2307/1912517 

Engle, R. F., & Granger, C. W. (1987, Mar). Co-Integration and Error Correction: 

Representation, Estimation, and Testing. Econometrica, 55(2), pp. 251-276. 

doi:10.2307/1913236 

Fischer, T., & Krauss, C. (2017). Deep learning with long short-term memory networks. FAU 

Discussion Papers in Economics. doi:10.1016/j.ejor.2017.11.054 

Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic 

Dynamics and Control, 12(2-3), pp. 231-254. doi:10.1016/0165-1889(88)90041-3 

Johansen, S. (1992, June). Cointegration in partial systems and the efficiency of single-

equation analysis. Journal of Econometrics, 52(3), pp. 389-402. doi:10.1016/0304-

4076(92)90019-N 

Kim, H., & Won, C. H. (2018, Aug). Forecasting the volatility of stock price index: A hybrid 

model integrating LSTM with multiple GARCH-type models. Expert Systems with 

Applications, 103, pp. 25-37. doi:10.1016/j.eswa.2018.03.002 

Mills, T. C., & Markellos, R. N. (2008). The Econometric Modelling of Financial Time 

Series. Cambridge University Press. doi:10.1017/CBO9780511817380 

Nelson, D. M., Pereira, A. C., & Oliveira, R. A. (2017, May). Stock market's price movement 

prediction with LSTM neural networks. International Joint Conference on Neural 

Networks (IJCNN) (pp. 1419-1426). IEEE. doi:10.1109/IJCNN.2017.7966019 

Reuters-Thomson. (2020). Datastream. Retrieved from 

https://www.refinitiv.com/en/products/datastream-macroeconomic-analysis/ 

Terui, N., & van Dijk, H. K. (2002). Combined forecasts from linear and nonlinear time series 

models. International Journal of Forecasting(18), pp. 421-438. doi:10.1016/S0169-

2070(01)00120-0 

Wan, H., Guo, S., Yin, K., Liang, X., & Lin, Y. (2020, March 5). CTS-LSTM: LSTM-based 

neural networks for correlatedtime series prediction. Knowledge-Based Systems, 191. 

doi:10.1016/j.knosys.2019.105239 

Zhang, G. P. (2003, Jan). Time Series Forecasting Using a Hybrid ARIMA and Neural 

Network Model. Neurocomputing, 50(17), pp. 159-175. doi:10.1016/S0925-

2312(01)00702-0 

Zhang, G. P., & Qi, M. (2005, Feb). Neural network forecasting for seasonal and trend time 

series. European Journal of Operational Research, 160(2), pp. 501-514. 

doi:10.1109/TNN.2007.912308 

 

171


