

Detection of dish manufacturing defects using a deep learning-based

approach

Afonso Luís Costa Barbosa da Silva

Master in Telecommunications and Computer Engineering

Supervisor:

Prof. Doctor Tomás Gomes da Silva Serpa Brandão, Assistant Professor,

ISCTE-IUL

Co-Supervisor:

Prof. Doctor João Carlos Amaro Ferreira, Assistant Professor,

ISCTE-IUL

October, 2020

Detection of dish manufacturing defects using a deep learning-based

approach

Afonso Luís Costa Barbosa da Silva

Master in Telecommunications and Computer Engineering

Supervisor:

Prof. Doctor Tomás Gomes da Silva Serpa Brandão, Assistant Professor,

ISCTE-IUL

Co-Supervisor:

Prof. Doctor João Carlos Amaro Ferreira, Assistant Professor,

ISCTE-IUL

October, 2020

iv

Direitos de cópia ou Copyright

©Copyright: Candidate full name.

O Iscte - Instituto Universitário de Lisboa tem o direito, perpétuo e sem limites geográficos, de

arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou

de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o

divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos

educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.

v

Resumo

O controlo de qualidade é fundamental para assegurar o bom funcionamento de um processo

industrial. Este trabalho propõe a utilização e adaptação de um algoritmo, baseado em

aprendizagem profunda, como parte integrante de um sistema automático de controlo de

qualidade numa fábrica de pratos de porcelana. Este sistema receberá imagens adquiridas em

tempo real por câmaras fotográficas colocadas diretamente sobre a linha de produção. O

algoritmo utilizado classificará os pratos presentes nas imagens como "defeituoso" ou "sem

defeito". O objetivo do sistema será, portanto, a deteção de pratos defeituosos, fazendo com

que menos pratos com defeito cheguem ao mercado, contribuindo assim para uma melhor

reputação da fábrica.

Este sistema é baseado na aplicação de uma rede neuronal convolucional. Este tipo de redes

requer um elevado número de dados para ser treinado de modo a conseguir realizar a

classificação de imagens. Uma vez que a pandemia de COVID-19 se fez sentir em maior escala

em Portugal na altura do desenvolvimento deste trabalho, foi impossível a obtenção de imagens

provenientes da fábrica. Devido a este contratempo, os dados utilizados neste trabalho foram

gerados artificialmente. Ao fornecer imagens completas de pratos ao algoritmo, o mesmo

atingiu uma taxa de acerto da deteção de defeitos de 92,7% com o primeiro conjunto de dados

e 91,9% com o segundo. Ao fornecer ao algoritmo segmentos de 100x100 pixéis da imagem

original, o mesmo atingiu 91,6% de taxa de acerto, o que se traduziu numa taxa de acerto de

52,0% na classificação das imagens completas de pratos.

Palavras-chave: Controlo de qualidade, aprendizagem profunda, rede neuronal

convolucional, classificação de imagem.

vii

Abstract

Quality control is essential to ensure the smooth running of an industrial process. This work

proposes to use and adapt a deep learning-based algorithm that will integrate an automatic

quality control system at a porcelain dish factory. This system will receive images acquired in

real time by high resolution cameras directly placed on production line. The algorithm proposed

in this research work will classify the dishes presented in the images as "defective" or "without

defect”. Therefore, the objective of the system will be the detection of defective dishes, causing

fewer defective dishes to reach the market, thus contributing to a better reputation of the factory.

This system is based on the application of an algorithm called Convolutional Neural

Network. This algorithm requires a large amount of data to be trained and to perform the image

classification. Since the COVID-19 pandemic was felt on a larger scale in Portugal at the time

of the development of this research work, it was impossible to obtain data directly from the

factory. Due to this setback, the data used in this work was artificially generated. By providing

the complete images of dishes to the algorithm, it achieved a defect detection accuracy of 92.7%

with the first dataset and 91.9%. with the second. When providing the algorithm 100x100 pixel

segments of the original images, using the second created dataset, it reached 91.6% accuracy in

the classification of these segments, which translated into a 52.0% accuracy rate in the

classification of the complete dish images.

Keywords: Quality control, deep learning, convolutional neural network, image

classification.

ix

Acknowledgements

I would like to acknowledge the person who supported me the most in all stages of the

development of this thesis. Renata, without your support and motivation, I would never have

succeeded. I love you the most.

I would also like to thank my professors Tomás Brandão and João Ferreira for all the

availability in times of pandemic, never making me feel alone or lost with this research work.

To INOV INESC Inovação, for developing the script that generated realistic examples.

Finally, I would like to thank my family for all their support.

xi

Contents
Resumo .. v

Abstract ... vii

Acknowledgements .. ix

List of Figures .. xiii

List of Tables ... xv

List of Acronyms .. xvii

Chapter 1. Introduction .. 1

1.1 Motivation ... 1

1.2 Context .. 1

1.3 Objectives .. 3

1.4 Work Contributions ... 3

1.5 Document Structure ... 5

Chapter 2. Literature Review ... 7

2.1 Basic Concepts and Definitions .. 7

2.1.1 Machine learning .. 7

2.1.2 Deep learning ... 10

2.2 Related Work ... 16

2.2.1 Main CNN Architectures .. 16

2.2.2 Product Defect Detection ... 19

Chapter 3. Proposed System ... 23

3.1 Quality Control Scheme .. 23

3.2 Classification Algorithm ... 26

3.3 Data Acquisition .. 27

3.4 Preliminary Dataset Development ... 29

3.4.1 Original Images .. 29

3.4.2 Data Augmentation Techniques ... 30

3.4.3 Preliminary Dataset .. 32

3.5 Realistic Dataset Development ... 33

3.5.1 Dish Image Generator .. 33

3.5.2 Script Backend ... 34

3.5.3 Script Frontend ... 34

3.5.4 Realistic Dataset ... 36

Chapter 4. Preliminary CNN Architecture Experiments .. 37

4.1 Hyperparameter Settings ... 37

4.2 First CNN Architecture Experiment .. 38

xii

4.3 Architecture Modification Experiments .. 43

4.4 Transfer Learning Tests ... 47

Chapter 5. Realistic Dataset Evaluation .. 51

5.1 Full Image Classification ... 51

5.1.1 Adapted Architecture ... 51

5.1.2 Transfer Learning ... 54

5.2 Classification Based on Image Parts ... 56

5.2.1 Dataset Balance .. 59

5.2.2 Dish Classification Results ... 66

Chapter 6. Conclusions and Future Work .. 69

6.1 Conclusion ... 69

6.2 Future Work .. 70

References .. 73

xiii

List of Figures

Figure 2.1 – Artificial Neural Network [2]. .. 9

Figure 2.2 – Kernel application [3]. .. 11

Figure 2.3 – Padding example [4]. .. 11

Figure 2.4 – Pooling demonstration, adapted [5]. ... 12

Figure 2.5 – Overfitting illustration [6]. .. 13

Figure 2.6 – Dropout example, crossed units have been dropped [7]. .. 14

Figure 2.7 – Different skip connection schemes [8]. ... 15

Figure 2.8 – VGG Architecture [11]. ... 18

Figure 2.9 – Architecture of the first CNN used, where S refers to the Stride [23]. 20

Figure 2.10 – Examples of defected beans, [24]. .. 21

Figure 2.11 – System summary [31]. .. 22

Figure 2.12 – Porcelain dish defect detection system proposed in [32]. ... 22

Figure 3.1 – Most Common Dish Production Defects (Simulated). ... 24

Figure 3.2 – Automated Quality Control System. ... 25

Figure 3.3 – First architecture setup. ... 27

Figure 3.4 – Data acquisition. ... 28

Figure 3.5 – Example of some of the original dishes. ... 29

Figure 3.6 – Example of some of the original dishes with defects. ... 30

Figure 3.7 – Example of a 90-degree rotation. .. 31

Figure 3.8 – Example of shift. ... 31

Figure 3.9 – 1.1x original image is on top and 0.9x original image is down. 32

Figure 3.10 – Frontend example with default values. ... 35

Figure 3.11 – Example of defect contour (in red). .. 35

Figure 4.1 – Evaluation with learning rate = 0.00005. .. 39

Figure 4.2 – Evaluation with learning rate = 0.00010. .. 39

Figure 4.3 – Evaluation with learning rate = 0.00015. .. 40

Figure 4.4 – Solution to diverge training and validations values. ... 41

Figure 4.5 – Results for the dataset modification. ... 42

Figure 4.6 – Second architecture tested. .. 43

Figure 4.7 – Results for the second architecture modification per epoch. .. 44

Figure 4.8 – Third architecture tested. .. 45

Figure 4.9 – Results for the third architecture modification, per epoch. ... 46

Figure 5.1 – Accuracy and loss evolution per epoch. .. 52

Figure 5.2 – Confusion matrix of the validation data. ... 53

Figure 5.3 – Dish parts, a) with defect; b) without defect; c) with dish and background. 57

Figure 5.4 – Confusion matrix of the unbalanced dataset. .. 58

Figure 5.5 – Confusion matrix after rotational techniques .. 60

Figure 5.6 – Accuracy and Loss over the number of epochs. ... 61

Figure 5.7 – Confusion matrix after manual dataset balance. ... 62

Figure 5.8 – Example of a hardly detected defect. .. 63

Figure 5.9 – Accuracy and Loss values over epochs. .. 64

Figure 5.10 – Confusion matrix of the weight classes experiment. .. 65

Figure 5.11 – Confusion matrix applied to the entire dish. ... 67

file:///C:/Users/afons/Desktop/Tese_14_Setembro/Tese_Afonso_Silva_73456.docx%23_Toc53154255
file:///C:/Users/afons/Desktop/Tese_14_Setembro/Tese_Afonso_Silva_73456.docx%23_Toc53154255
file:///C:/Users/afons/Desktop/Tese_14_Setembro/Tese_Afonso_Silva_73456.docx%23_Toc53154266
file:///C:/Users/afons/Desktop/Tese_14_Setembro/Tese_Afonso_Silva_73456.docx%23_Toc53154266

xv

List of Tables

Table 3.1 – Distribution of the preliminary dataset. .. 32

Table 3.2 – Distribution of realistic dataset... 36

Table 4.1 – Summary of architectural experiences. .. 47

Table 4.2 – Transfer Learning results.. 48

Table 5.1 – Dataset distribution for the first experiment. .. 52

Table 5.2 – Precision, Recall and F1-score values of the previous test. ... 54

Table 5.3 – Accuracy of the Transfer Learning architectures. .. 55

Table 5.4 – Precision, Recall and F1-score values for VGG16 architecture. .. 55

Table 5.5 – First 100x100 dataset distribution. ... 58

Table 5.6 – Second dataset distribution. .. 59

Table 5.7 – Dataset distribution with the first method .. 60

Table 5.8 – Precision, Recall and F1-score values of the manual balance. ... 63

Table 5.9 – Precision, Recall and F1-score values with class weights. ... 66

Table 5.10 – Precision, Recall and F1-score values applied to the entire dish...................................... 67

xvii

List of Acronyms

ML – Machine learning

AI – Artificial Intelligence

ANN – Artificial Neural Network

CNN – Convolutional Neural Network

ReLU – Rectified Linear Unit

GPU – Graphics Processing Unit

GB – Gigabyte

PCA – Principal Component Analysis

ILSVRC – ImageNet Large Scale Visual Recognition Challenge

1

Chapter 1. Introduction

1.1 Motivation

Quality control is manually performed in many factories around the world. Most industries

allocate human resources whose function is to examine each produced piece in order to detect

manufacturing defects. This procedure is expensive for a company and is susceptible to human

error.

In factories that produce thousands of products per day, it is almost impossible for the

personnel to keep up the rhythm without getting eyesight fatigue. That may result in

misjudgments for some of the produced pieces, and therefore defective products may end up in

the market, causing damage to the company reputation. Additionally, manual inspections may

become a limiting factor in terms of speed of production if the company policy is to inspect all

the products. A standard alternative policy is to inspect a small subset of the produced products

in order to maintain the production rhythm. In such cases, the company will obtain statistical

information about the percentage of defects that occur along their mass production lines, but

many uninspected defective products will end up in the market.

Therefore, manual quality control may lead to degraded product shipping and consequent

loss of potential profit. In order to minimize these losses, or at least get a better defect detection

rate in mass production lines, companies are starting to rely on automated defect detection

procedures.

1.2 Context

Quality assurance in industrial production is essential for the long-term success of the producing

entity. Current automation levels in industrial production require quality inspection procedures

with little or even without human intervention, in order to keep the production pace. For an

automatic quality inspection to be considered effective, it should achieve the accuracy of the

human level or more. To maintain competitiveness, entities with mostly automatic production

lines seek to achieve quantity and quality with automation without compromising each other.

For this purpose, confidence in automated quality control processes is of great relevance. It is

2

important to know a priori what types of defects can appear in products during their production.

In addition, trust in one or more operators is required in order to ensure the effectiveness of

automatic quality control. A high number of false positives can drastically reduce this

confidence, dissipating any advantage in the use of automatic processes for these inspections.

Methodologies based on computer vision and deep learning are a real alternative to

overcome these challenges, given their recent state-of-the-art results in image classification and

detection tasks. Quality control based on machine learning is potentially cheaper to implement

on a production line compared to traditional approaches, such as paying some employees to

perform this control. Considering the availability of online open source environments for

machine/deep learning algorithm development as well as cheap hardware in terms of cameras

and computers, it is expectable that more and more companies start relying on these approaches

[1].

The use of traditional machine learning approaches would require the identification and

extraction of features that, in some way, are relevant for the detection of possible defects.

Adapting a traditional machine learning system to other cases, such as detecting additional types

of defects for which it had not been initially developed or applying it to the inspection of

different products, would also require the identification and extraction of additional features.

These feature identification and extraction processes could prove to be more difficult than using

deep learning-based approaches, where feature identification and extraction processes are

embedded in the system’s training. Algorithms based on deep learning acquire a higher rate of

effectiveness the more data is provided to them, which is a situation like a production line it is

a win-win situation since it is possible to obtain a large dataset quickly and therefore a

significant increase in the accuracy of the trained model.

Given the vast number of produced dishes by the factory in question, this work proposes

the use of a deep learning-based algorithm capable of classifying dishes as defective or non-

defective. This work was made possible thanks to the collaboration between ISCTE-IUL and

INOV INESC Inovação.

3

1.3 Objectives

The main objective of this work is to adapt a deep learning-based algorithm capable of

performing an automated classification process of dish images into two classes: “defective” or

“non-defective”, allowing automated quality control inspections in a porcelain dish factory.

The algorithm performs this classification based on images that are collected along the

production line. The porcelain dish factory managers are aware of two possible types of defects

in the dishes produced on the mass production line. These are stitches and cracks, which will

be detailed in Chapter 3. It is also possible that, at the end of the production line, a dish will

have more than one defect. Nevertheless, and according to the factory managers themselves,

manufactured dishes containing more than four defects are extremely rare.

Deep learning-based algorithms that are gaining popularity in image classification and

recognition tasks are those based on convolutional neural networks (CNN). CNN's may present

different architectures, which makes its computational cost differ from case to case.

Architectures previously explored in other works showed great results in image classification

and detection and are available in the form of online libraries. It is important to mention that

training a CNN typically requires a larger amount of labelled data when compared with the use

of traditional machine learning algorithms. In the context of this work, a significant amount of

dish images, with and without defects, must be provided for the algorithm’s training, in order

to allow adequate learning of the relevant characteristics of these two classes of dishes for

correct classification. It is also necessary to identify the defects generated in the production line

in order to label the images of the dataset.

Since CNN’s are widely used in image classification and recognition applications, and they

obtain excellent accuracy results in these types of problems, it was decided to explore this class

of machine learning algorithms in this thesis.

1.4 Work Contributions

The COVID-19 pandemic conditioned the operation of several companies during 2020. At the

time of this project, the factory that would supply the image dataset shut down its production

lines, invalidating the use of image data acquired in real conditions. Since the main contribution

4

of this project was to use deep learning to detect defects in dishes, it was necessary to setup an

image dataset that would allow training and testing an image classifier. This setup avoided an

indefinite project stall, allowing to make progress even with this setback.

Since a dataset containing images of defective industrial dishes was not available online,

the adopted solution was to create an artificial dataset by downloading a set of images of dishes

that were found online and manually inserting the defects into those images. Posteriorly, data

augmentation techniques were used to increase the number of samples and thus, a relatively

large dataset was created.

This dataset had certain limitations since the defects were manually inserted and did not

effectively represent the actual defects produced at the factory in question. Several experiments

were performed since it was the only source of data available until mid-June. Based on these

experiments, the architecture of the adapted algorithm that obtained the best results in terms of

accuracy and processing time was chosen for further developments.

During the month of June, the factory provided a few dishes directly from the production

line. It was decided in INOV that, with these few dishes available, a possible solution to

progress with the project would be to develop an image generator that uses the texture of these

dishes in order to generate a large quantity of dish images identical to real ones. Not only would

the texture be similar, but the defects inserted into these images would be more realistic since

at that point in time, the INOV developers had already been able to observe defects in real

dishes.

When developing and subsequently running this image generator, a new dataset with a large

number of realistic images was created. However, one of the factors that made difficult to pre-

process the data related to this dataset was the resolution of the generated images. This image

generator aimed to create a more realistic dataset, and the images generated by it had a similar

size to the high-resolution images that would be captured by the cameras placed at the

production line. Generally, the input layer of CNN admits images that have much smaller

dimensions. This new dataset was used in the training and validation of the adapted algorithm.

Once the results of accuracy, precision, recall and F1-score were obtained, it was possible to

perform experiments in order to try to improve the previous mention metrics and reduce false

positive results, since these are the ones that most harm the firm's profits.

Two possibilities of classifying these images were tested. The first was to classify the entire

image of the dish resized to a low resolution. These low-resolution images result from a

5

subsampling of that acquired on the production line. The second was to individually classify

pieces of the image and then classify the entire image of the dish based on the results obtained

in classifying these pieces.

In the first possibility, resizing the entire image of the dish causes loss of image quality,

which can harm the classification performed by the algorithm. To check whether it would be

possible to obtain higher results in accuracy, precision, recall and F1-score, the second

possibility consisted in dividing the initial image into smaller segments, using image crops

without any resizing operation (and therefore keeping the original image quality).

Subsequently, these segments of the image are individually classified and based on their

classifications, the entire dish image is classified, in order to compare the two possibilities

tested.

Regarding the algorithm, simple CNN architectures with low computational cost were

tested, as well as transfer learning architectures. A simple CNN architecture is more adaptable

to the specific problem to be solved since all parameters are trainable. Transfer learning

architectures are more generic, which does not allow a full adaptation to the problem in

question, since only the last layers of the classifier (fully connected layers) are trained. In

addition, these architectures are computationally heavier.

In these comparisons, the key factors are the data processing time – which is the time it

takes to train the algorithm with the dataset – as well as the accuracy of the algorithm.

1.5 Document Structure

This thesis is organized according to six chapters, whose contents are as follows:

▪ In Chapter 1 is where the context and motivation for carrying out this research work are

exposed. In addition, the objectives are also defined in this chapter.

▪ Chapter 2 presents an introduction to the main machine learning concepts and

algorithms used in the scope of the thesis. Additionally, this chapter also includes a brief

state-of-the-art that presents previous works related to the use of machine learning for

image-based industrial defects detection;

▪ Chapter 3 contains the proposed solution for the automatic quality control system. The

difficulties and setbacks felt in carrying out this research work are also explained in

6

detail. Due to delays caused by the COVID-19 pandemic, two artificial datasets used to

obtain results in this work were created. As stated earlier, during a large part of this

dissertation the only source of data was the dataset where the defects were manually

inserted. The second dataset was created since there was a need to represent the data in

a more realistic way. As soon as the samples of the production line were received, the

creation of this dataset started with the goal of obtaining results that were closer to the

possible values obtained when using data from the factory;

▪ Chapter 4 illustrates the experiments and comparisons performed on the dataset with

the manually inserted defects in order to find out which architecture leads to the best

results for this binary classification. These tests and comparisons were carried out

during the lockdown time, in order to allow the research work to progress;

▪ In Chapter 5, the results obtained using the realistic dataset are displayed. To create this

realistic dataset, a script developed in INOV was used. This script works as an image

generator and generates images of dishes with or without defect. These images are based

on the real samples received from the factory. This chapter also explores and discusses

the advantages/disadvantages of classifying segments of the original instead of

classifying the image as a whole;

▪ Chapter 6 presents the main conclusions of this work, and considerations for future

work are also described.

7

Chapter 2. Literature Review

This chapter aims to provide a better understanding of the technologies used for the

development of an automated defect detection system based on image classification. Later, it

also provides a literature overview of some work related to the main goal of this thesis.

2.1 Basic Concepts and Definitions

2.1.1 Machine learning

The ability to learn is one of the main characteristics of intelligence, making it crucial for both

human cognitive development and artificial intelligence (AI) [13].

Machine learning (ML) in the field of AI that can be considered as the science that allows

computers to act without being explicitly programmed to do so. In machine learning, the

algorithms are used to provide and select the necessary information for the machine to detect

certain patterns or similarities on data in order to perform correct predictions. This whole

process typically requires a large amount of data for training.

2.1.1.1 Types of learning

According to Stephen Marsland [17], machine learning algorithms can be classified in the

following categories:

▪ Supervised Learning – A large dataset with the corresponding correct answers, called a

training set, is provided. Based on this set, the algorithm generalizes a response in order

to get the correct results from predictions performed on new data. Generally, there is

also the testing set, where new data is provided in order to evaluate the prediction. This

method is also called Learning from exemplars;

8

▪ Unsupervised Learning – Also known as Density Estimation, in unsupervised learning,

the correct answers are not provided with the training set. It is up to the algorithm to

identify similarities in the data and group them according to those;

▪ Reinforcement learning – T his learning method trains algorithms based on a penalty

and reward system. A reinforcement learning algorithm learns based on the rewards and

penalties obtained through the actions it takes. For instance, if the agent (who uses the

algorithm) gets a penalty, he realizes that that action should not be taken in the future;

▪ Evolutionary learning – Biological evolution can be portrayed as a learning process.

Biological organisms adapt from generation to generation in order to obtain more and

better chances of survival. This is what these evolutionary learning methods try to do.

Each attempt can be considered as a generation. From generation to generation, there is

a progression towards the objective. Typically, later generations tend to get better results

than previous generations, whether in image classification or game completion.

2.1.1.2 Artificial Neural Networks

Artificial neural networks (ANN) are computing systems that were inspired and structured

based on biological neuronal networks found in the brains of humans and animals [14]. Besides,

these ANN’s are one of the most popular methods of supervised learning.

The brain consists of a highly connected network of neurons that communicate with each

other through electrical pulses. These electrical pulses are transmitted from neuron to neuron

through the dendrites and captured by the axon terminal. Between these two elements is the

axon, responsible for retransmitting (or not) the electric pulses that the neuron receives, and for

selecting the next neuron where the pulse should go afterwards. Therefore, the millions of

neurons present in the human brain are all connected. This is called a neural network [15].

An artificial neural network consists of several units grouped in layers. The input layer is

the initial layer where data enters the network. The output layer is the last layer of the ANN

that returns the results computed by the system. Between these two are the hidden layers.

Depending on the complexity of the problem to be solved, there is no definite number indicating

how many hidden layers should exist per ANN.

9

Each unit in these layers is called a neuron. Each neuron in a certain layer is typically

connected to all the neurons in the next layer. The links between layers have a specific weight

associated. This weight is simply a number (positive or negative, integer or decimal) that

represents the value of the information passing through the link. Each neuron performs a

weighted sum of the information arriving at all input links and adds a term called bias (an offset

value) to it. The result of this sum is received by an activation function which, depending on

the result, activates or not the neuron. These activation functions are intended to make the

network more robust, allowing it not to be susceptible to slight variations.

A widely used activation function is the sigmoid function, which transforms the values it

receives into values between 0 and 1 through the following function: 𝜃(𝑥) =
1

1+ 𝑒−𝑥 [16]. This

function is often used because it has limits, it is differentiable and, for all real input values, has

a non-negative derivative, which allows an easier and more efficient computation both for

training and for testing. Figure 2.1 shows an example of a simple Artificial Neural Network

architecture.

Figure 2.1 – Artificial Neural Network [2].

2.1.1.3 Back propagation

Back Propagation is a training method that was first published in the 1970s [18]. This method

was later used to optimize artificial neural networks and, more recently, used in Deep Learning.

Back Propagation is a process that propagates the total loss of the system back onto the neuronal

network. This allows evaluating the neural link contributions to the overall loss, updating its

weights in order to reduce its value.

10

2.1.2 Deep learning

Deep learning is a subset of machine learning. This subset can be interpreted as a set of machine

learning techniques that aim to transmit knowledge to computers so that they reach conclusions

that would be normal for humans but on a large scale.

2.1.2.1 Convolutional Neural Networks

There is a type of neural network called convolutional neuronal network (CNN) that stands out

for its efficiency in solving image detection and classification problems, adaptability, as well

as its ease of developing.

CNN’s are inspired by the visual cortex of the human brain and have been widely applied

in image recognition and object detection [10]. A CNN used to classify images is intended to

accept an image as input and return the class to which the image belongs as output. This process

is inherent in humans, and it even becomes difficult to explain how we know we are looking at

a dog when we see a picture of a dog we have never seen before in our life. We can say that it

is through empirical knowledge, but a CNN would "look" at this image in a very different way.

CNN “sees” the displayed image as a matrix of pixels. Similarly to a regular neural network,

CNN is also organized into layers, neurons and weights. What diverges in a CNN structure is

that this network seeks to make the input image increasingly abstract as it progresses through

the network. Each neuron at each layer receives a fraction of the image and aims to treat it

according to the type of layer it is in and according to the parameters applied to that specific

layer. Not always a neuron has a direct link to all the next layer’s neurons. Thanks to open

source platforms such as TensorFlow (Google open source platform) or Pytorch (Facebook

open source platform), CNN’s are relatively easy to program or modify.

CNN’s have different types of layers, which can be organized according to the following

categories:

▪ Convolutional Layer – This type of layer applies a convolution kernel (usually with

quadratic graduation) to its input data matrix. The kernel slides along with the entire

matrix and, at each point of it, produces an internal product between its values and the

11

values presented in the image, returning a single output, as explained Figure 2.2. The

first layer in CNN is always a convolutional layer.

Figure 2.2 – Kernel application [3].

When computing this inner product, it is necessary to use padding. Padding consists of

adding 0's around the image so that the filter can effectively apply the inner product to all pixels

in the matrix. An example is shown in Figure 2.3.

Figure 2.3 – Padding example [4].

It is also important to mention stride. Stride is a kernel parameter that indicates the number

of units in which the kernel moves through the matrix. For the value (1, 1), the kernel moves

one pixel horizontally and one pixel vertically each time. Changing this field influences how

the filter is applied as well as the resulting image size after this layer.

12

▪ Activation Layer – Activation layer (or nonlinear layer) is placed after each

convolutional layer, having an activation function that assigns nonlinear properties to

the input matrix resulting from the previous convolutional layer. The choice of the

activation function to be used is usually configurable when developing a CNN.

One of the most used activation functions is the Rectified Linear Unit (ReLU). This

function changes the value of the negative pixels to 0 and keeps positive values. Being

a nonlinear function, but with many properties of a linear function, this function makes

training models easier to optimize [3].

▪ Pooling Layer – It aims to reduce the number of pixels in the matrix, making it more

abstract. This reduces the computational time to process it. Like the convolutional layer,

it uses a kernel that slides along the matrix. To shrink the image, maximum pooling,

average pooling or even minimum pooling can be used. Maximum pooling selects the

largest of the values covered by the filter dimension in each portion of the matrix.

Minimum pooling makes the same selection but with the smallest of the covered values.

The average pooling returns the average of the values covered by the filter. A brief

example of these three types of pooling is demonstrated in Figure 2.4.

Figure 2.4 – Pooling demonstration, adapted [5].

▪ Fully Connected Layer – This type of layers is associated with the final decision about

the class to which the initial image presented as input belongs. It has this designation

because all the neurons in this layer are linked to all the neurons in the previous layer,

13

as is the case in all the layers of regular artificial neural networks mentioned above. This

layer is represented by a vector with the number of positions equal to the number of

neurons in the layer. The resulting vector contains at each position a percentage, which

indicates the probability of the input image belongs to the class represented at that same

position. The class with the highest percentage is the class predicted for the input image.

The SoftMax activation function is often used for this distribution of values since it

expresses the probability of an image belonging to a given class, which is a clearer

concept both for the network developer and generic people unrelated to the algorithm

development.

2.1.2.2 Overfitting

Overfitting occurs when an algorithm fits the training data too well, performing poorly on the

classification of new samples. The network learns specific details of the training set images and

is unable to correctly classify new images that do not contain those specific details. Figure 2.5

shows an overfitting illustration.

Figure 2.5 – Overfitting illustration [6].

The black line represents the ideal boundary for separation of two distinct classes. The

green line represents an example of overfitting, where the classes are separated to the smallest

detail.

14

2.1.2.3 Data Augmentation

Data augmentation is a method that aims to increase the amount of data used in CNN training

and avoid overfitting. This method consists of handling the data before applying it to the

network in order to increase the size of the training set since new examples are created based

on the existing ones. Additionally, this method allows to highlight important details and

normalize secondary details. Cropping, shifting or rotating are some of the techniques that are

commonly used.

2.1.2.4 Dropout

Dropout consists of “turning off” some neurons from the network during training. The neurons

that are turned off do not contribute to the training of the network and the consequent back

propagation. Thus, whenever an image enters the network as input, CNN has a different

architecture, but all these architectures share the same weights in the links. This technique

reduces the complex adaptations that neurons create with each other since one neuron cannot

rely on the presence of another neuron, as it may or may not be turned off. Therefore, each

neuron is forced to learn more robust features that will be useful for classifying the image with

another set of neurons other than the set that was previously required. Figure 2.6 shows a dropout

example in a neural network.

Figure 2.6 – Dropout example, crossed units have been dropped [7].

15

2.1.2.5 Skip Connections

The skip connections method consists of dividing the network into modules, called residual

blocks. Instead of entering one of these blocks, the data is added to the output of the module,

which allows greater data flow within the network and a decrease in overfitting and in execution

time. As demonstrated in Figure 2.7, this method can assume different schemes.

Figure 2.7 – Different skip connection schemes [8].

2.1.2.6 Transfer Learning

Building a CNN from scratch is a time-consuming process due to the complexity of the training

procedures, as well as quite expensive in terms of computational memory. Given the fact that

there are several open sources platforms with available CNN’s with practical examples and

architectures, researchers try to explore the hypothesis of reuse the knowledge acquired by some

networks and modifying the final output in order to match their own classification objectives.

Transfer Learning is motivated by these practices and attempts to improve the traditional

method of machine learning by accessing knowledge of one or more tasks from the original

network and using it to improve the learning of the new network [19].

Knowledge transfer techniques represent the progress of making machine learning as

efficient as human learning [20].

The procedure is to use the same initial layers with the same weights. Then, replace the last

layers (fully connected layers) with others that have the desired classification method. There

are three comparison measures that allow evaluating if transfer learning is really being effective.

16

The first comparison measure is based on comparing the initial performance achieved using

only the transferred knowledge with the initial performance of the network without training.

The second measure is done by comparing the time the network takes to learn the task for which

it was designed using only the transferred knowledge with the time it would take to train it from

scratch. Finally, the third measure consists in comparing the results of the network classification

with the transferred knowledge and the trained knowledge. If any of these measures indicates a

better network performance that was not learned by transfer, a negative knowledge transfer has

been performed. One of the main challenges of transfer learning is to develop transfer methods

that do not lead to these negative transfers, producing positive transfers between appropriately

related tasks.

2.2 Related Work

This section is divided into two parts. The first one contains the state of the art in convolutional

neural networks architectures. The second part addresses to the application of machine learning

to manufacturing defect identification and classification problems.

2.2.1 Main CNN Architectures

Recently, some CNN architectures have been developed with exceptional effectiveness in

image classification. These architectures have a certain number of layers. However, it is

possible to create a CNN combining as many layers as we like. It is important to remember that

networks with more layers are deeper and more complex, and logically, more time, memory

and computational performance will be required.

LeNet5 is the first relevant model for CNN's technological progress, given its complexity

and effectiveness. The model was suggested in [9]. This model is characterized by seven layers.

The first six layers use the Tanh activation function. The Tanh activation function maps pre-

activation to itself by generating values from -∞ to ∞. This function is used because, besides

being easy to implement, it implements a wide form of nonlinear regression. The last layer is a

fully connected layer with ten neurons, which uses the SoftMax function to return a vector with

ten positions as output in order to classify the initial image. The purpose of this model was to

17

recognize which digit was drawn by hand in the initial image, with each position of the output

vector corresponding to a digit from 0 to 9.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has been around since

2010 and aims to evaluate algorithms for object detection and large-scale image classification.

The ImageNet database has millions of images from various categories, and every year a portion

of this database is used for this challenge. The winner of the challenge is determined based on

the top 5 error percentages of the algorithm used. The one with the lowest error percentages

wins. In 2010 and 2011, having the lowest error rate, around 25% was considered a great rating,

but in 2012 everything changed due to the AlexNet model, which achieved a 15% error rate.

The AlexNet model [10] is a CNN composed of eight layers, five convolutional layers and

three fully connected layers. The first convolutional layer receives 224x224x3 RGB images.

The second layer performs max pooling. The third, fourth and fifth layers are linked together

without any kind of pooling. The first two fully connected layers have 4096 neurons each and

the last one outputs using SoftMax in a 1000 position vector relative to the 1000 image classes

that were being used in the classification challenge. This model is quite innovative, not so much

because of the choices of layers, but for three other reasons. The first is the use of the ReLU

activation function, which has substantially improved the computational speed, which caused

the disuse of the Tanh function. The use of multiple GPUs was also crucial to the success of

this model [21]. In 2012, top GPUs contained 3GB of memory (currently this value would be

relatively low). This model allowed one GPU to be used for one half of the training set and

another GPU for the other half, which not only allows the training model to be larger but also

allows the network to train faster. The other significant reason for the decrease of the error

percentage was overlapping pooling, which grants the stride value of a kernel that applies to

pool a larger value than kernel's height and width. This allowed improvements between 0.3 and

0.4%. This architecture has about 60 million parameters to train and, at the point of publication,

the authors pointed out that their architecture was “one of the largest convolutional neural

networks to date on the subsets of ImageNet” [10].

Due to the complexity of the network, to avoid overfitting, it was necessary to use data

augmentation techniques such as horizontal flips and Principal Component Analysis (PCA) in

RGB images, in order to increase their relevance. Dropout was also used to train the network.

18

In 2014, both the first and second challenging approaches of the ILSVRC achieved

significant improvements in comparison with the previous years, so it is important to mention

both.

The runner up was the VGG architecture proposed in [11], which achieved an error

percentage of 7.8%. There are two versions of this architecture, VGG16 and VGG19 where 16

and 19 represent the number of layers in the network. Similarly to the AlexNet model, VGG

uses several convolutional layers with 3x3 kernels, as shown in Figure 2.8. The main difference

between these two is that this network stacked more layers onto AlexNet but used smaller size

filters. To reduce the initial image size, max pooling is again used, and the last 3 layers are also

fully connected layers, the first two having 4096 neurons each, and the last one having a

thousand neurons and using SoftMax to organize and return the prediction. This architecture

was trained on four different GPUs for two to three weeks. This last sentence demonstrates one

of the main disadvantages of this architecture, which is the speed to train, due to the 138 million

parameters. However, it is one of the most widely used architectures for image classification

nowadays.

Figure 2.8 – VGG Architecture [11].

Despite the astonishing result obtained by the VGG architecture, the first place in the 2014

ILSVRC was won by GoogleNet architecture, also known as InceptionV1 [12].

19

Later, more advanced versions of this architecture would be developed. GoogleNet was

developed by Google. The percentage error obtained by this architecture was 6.7%, which is

very close to human effectiveness in an image classification challenge. Some of the methods

used to achieve these results were the various convolutional layers with 1x1, 3x3 and 5x5

kernels where it was up to the network to decide which kernel combination was most efficient

for handling a specific input. This method dramatically decreases the number of operations

performed and increases the depth and width of the images. Another method that had an impact

on the error percentage of this architecture was the use of global average pooling at the end of

the network instead of using Fully Connected Layers. This change has improved the error

percentage by 0.6%. This architecture has twenty-two layers and 4 million architecture

parameters, which reduces the computational resources required compared to the VGG’s

architectures.

The following year, 2015, the ILSVRC was won by the ResNet architecture [22]. This was

surprising due to the percentage of error obtained by this architecture, 3.6%. The key to success

is a 152-layer architecture, thus, a much deeper network. Thanks to the skip connections method

it was possible to train this network with even less complexity compared to the VGG

architecture. This architecture has 26 million parameters, and it was innovative because it made

it possible to use more layers without compromising model’s generalization power.

2.2.2 Product Defect Detection

In this thesis, image classification is relevant because the main goal of the thesis is to classify

dishes as “with defect” or “without defect”. The detection and localization of defects are

important in most of the industrial and non-industrial areas.

The work developed in [23] had the goal of detecting scratches on car paints based on

images. The authors used two CNN’s. The first CNN used was meant to detect and extract only

the car region from the original image. This CNN obtained an accuracy of 98.3% in the

extraction of the vehicle. The provided database for training this architecture consisted of 380

images with a resolution of 2340x4160 pixels. Three hundred twenty images were used for

training, and 60 were used for testing. Figure 2.9 shows the architecture and some details of this

CNN.

20

Figure 2.9 – Architecture of the first CNN used, where S refers to the Stride [23].

Then, the authors used the output of the first CNN as an input of the second CNN

architecture. This CNN divides the resulting image from the previous one into multiple sections

in order to detect the smaller details. The dataset provided to this architecture consisted of 15510

images, where 6190 of them presented painting scratches. On both categories (with and without

scratches), 80% of the images were used for training, and the remaining 20% were used for

testing. The result was accuracy of 96.89% in the detection of scratches in the input car region

image.

In other work, the authors of [24] propose the use of a 10-layer CNN to detect and classify

different types of coffee beans defects. Data acquisition was performed by placing the coffee

beans on a white paper sheet before the photo was taken. Figure 2.10 shows examples of defected

beans and an example of a normal bean.

Coffee beans had five different types of defects that were manually labelled by experts. The

ratio between train, validation and test was about 10:2:1. The highest classification accuracy

obtained was 98.8% for black beans. The lowest classification accuracy obtained was 67.5%

for broken beans.

21

Figure 2.10 – Examples of defected beans, [24].

In [25], a pre-trained CNN architecture was adapted in order to detect two types of defects

in LED chips. The adapted architecture was proposed in [26]. The authors used two datasets

containing normal chips and defective chips with two types of defects, including line blemishes

and scratch marks. The dataset size was increased by data augmentation techniques such as

rotation, flipping, shifting, noising and blurring the original images collected. The proportion

of training and testing images in both pieces of training were 4:1. The dataset consisted of 30000

images.

To detect and classify defects on metallic surfaces, another CNN architecture was

suggested in [27]. The original images were captured by an industrial microscope. In order to

train a suitable network, the authors used data augmentation techniques such as rotation,

translation, zoom, etc. These operations increased the size of the training and testing sets.

In [28] and [29], the authors used CNN’s to detect pavement cracks, both using TensorFlow.

While [28] developed a 10-layer CNN architecture, [29] tested different structures in order to

find the most accurate. The work presented in [29] combines CNN to detect the cracks and PCA

to classify them as longitudinal, transverse and alligator cracks. The authors obtained correct

classified rate percentages with and without the use of PCA and compared the results. This

work obtained an accuracy of around 97% in detecting longitudinal and transverse cracks.

The authors of [30] and [31] reported high accuracy results on detecting defects in train

railways. In [30], an architecture based on the VGG16 model was used, while in [31] a different

approach was followed by using a three-stage architecture in which each stage had a different

CNN model. [30] tried to apply different techniques and parameters to their architecture by

generating seven different models. The results obtained show that these techniques can affect

22

the performance of the algorithm. The work proposed in [31] is more focused on the catenary

support of the railways. The 3-stage system can be summarized in Figure 2.11.

Figure 2.11 – System summary [31].

Stage 1 CNN architecture is based on a VGG model. Stage 2 CNN is based on a ResNet

model. Stage 3 CNN has seven layers and classifies the input images has normal, missing, or

latent missing. SSD (which stands for single-shot multi-box detector) and YOLO (which stands

for you only look once) are deep learning-based image object detection methods.

In [32], different machine learning algorithms such as Logistic Regression, Linear

Discriminant Analysis, k-Nearest Neighbors, CART Decision trees, Naïve Bayes, Support

Vector Machines, Random Forest and CNN were used in order to detect four types of defects

in porcelain products. Their results show that CNN was the algorithm with the best accuracy,

reaching a mean of 89% defect detection accuracy. The CNN architecture used was quite

simple, with only 3 layers. An overview of the proposed system can be observed in Figure 2.12.

Figure 2.12 – Porcelain dish defect detection system proposed in [32].

23

Chapter 3. Proposed System

This chapter starts by presenting a brief description of the factory’s current quality control

procedures. Subsequently, the defined requirements of the project are presented. The adapted

deep learning-based image classification algorithm is also detailed in this Chapter, as well as

the built image datasets for training and testing it. The aim of the present work was to be used

in the production lines of a Vista Alegre group's porcelain factory in Aveiro, which is the

leading supplier of IKEA brand dishes in Portugal.

3.1 Quality Control Scheme

Currently, Vista Alegre group's porcelain factory in Aveiro daily produces four to five thousand

dishes. Two workers are assigned to quality control posts. Their function is to detect and to

remove the dishes that present one or more defects at the end of the production line. This quality

control scheme cannot be done throughout its production due to limiting factors such as the

temperature of the dishes or the manufacturing line speed. The workers assigned to the quality

control post do not have the capacity to inspect all produced products, mainly due to the

following reasons:

▪ High number of produced dishes – each employee would have to inspect more than two

thousand dishes per day, and even by doubling the number of employees assigned to

this post, the number of dishes inspected by each worker would still be high;

▪ Eyesight fatigue and lack of focus – the defects that are sometimes found in the dishes

are minimal and can easily go unnoticed. It is also very hard to keep the required level

of concentration for inspecting hundreds of dishes during long periods of time.

Misjudgments can, therefore occur frequently.

The current quality control at the factory is carried out using an estimate for the defective

dish production ratio. Form the 4-5 thousand dishes produced per day, only 200 samples are

inspected for quality control. Based on the manual quality control inspections, the factory

managers estimate that about 10% of the produced dishes contain some type of defect. Most of

the defective dishes that are sent to the stores are not sold, which may potentially harm the

24

company’s reputation and, consequently, its profit. From the few possible types of defects that

may occur during the production of a dish, the main types of defects identified by the factory

managers are the stitches and the cracks, illustrated in Figure 3.1.

Figure 3.1 – Most Common Dish Production Defects (Simulated).

Based on conversations with the factory managers, the set of requirements necessary for this

project’s realization are as follows:

▪ Define a set of high-resolution cameras capable of capturing the dish defects with

enough detail. The cameras should also be sufficiently fast in order to capture sharp

images of the dishes moving in the manufacturing line;

▪ Installation of cameras in different parts of the production line, in cooperation with the

factory's workers. After installation, the cameras should acquire a large set of images,

which will be subsequently labelled in order to setup a dataset for training and testing

the machine learning algorithms;

25

▪ Development/Adaptation of a deep learning-based algorithm with the ability to perform

binary classification (defective / non-defective) on dish images acquired on the

production line;

▪ Evaluation of the algorithm’s classification results and comparing these with the results

of the manual inspection in the quality control.

The proposed automated quality control system for the detection of dish defects will follow

the diagram represented in Figure 3.2.

Figure 3.2 – Automated Quality Control System.

The proposed system implies placing the cameras at critical points along the production

line and capturing images of all the dishes passing through their field of view. Once these

images are acquired, they are then submitted to the classifier algorithm that should classify the

dish as defective or not. Depending on the result, the dish may be removed from the production

line by the factory workers or by an automatic system which can be implemented in the future.

This mechanism would enable quality control in real-time as well as more efficient resource

usage. In addition, it will be possible to identify a much larger number of defective dishes when

compared with the current manual sampling quality control procedure. Therefore, it is necessary

to optimize the developed classifier with the goal of minimizing the number of false positives,

while not compromising the detection of defective dishes.

26

In the first phase of the system’s implementation, the dishes classified as defective will be

tagged by a small “invisible” ink stain. At the end of the production line, factory employees

would be checking to see if the dishes with the paint stains were defective or not. When there

are enough verifications made by the factory workers, an evaluation of the performance of the

algorithm will be made under real test conditions. Based on these evaluations, some adjustments

might be necessary for the classifier.

After this analysis, the second phase of the system’s implementation would include

mechanisms for automatic production line removal of the dishes classified as defective. This

would increase production efficiency and thus fulfil the ultimate objective of the project.

The realization of this work involves the collaboration between ISCTE-IUL and INOV

INESC Inovação. This dissertation is focused on the development of the binary classification

algorithm for the dish images. The choice of cameras, as well as their placement directly on the

production line, are not in the scope of this dissertation. The complexity of the problem will

also be simplified by considering the frontal side of the dishes only.

In the following section is detailed the first CNN architecture used in this research work.

3.2 Classification Algorithm

Since no deep learning-based algorithms for detecting defects in manufactured dishes were

found in the literature (namely those based on CNN’s), it was decided to start from a simpler

CNN architecture as a trade-off solution between the implementation complexity, the time

required for training and achieved results. Therefore, a possibility would be to investigate

compromise solutions in other problem domains.

One possible CNN architecture that fulfills the above criteria is the one proposed by student

Carolina Gonçalves in her dissertation [33]. This algorithm aims to identify image regions

containing the presence of the invasive plant species Acacia Longifolia. It starts by splitting a

high-resolution aerial image acquired by a drone into smaller squared images which are then

submitted to an image classifier. The classification algorithm is based on a CNN architecture

and classifies the images int two possible classes, "with" and "without" invasive plant species.

Since the CNN architecture used in this work was relatively simple and achieved high

classification accuracy in a binary classification case, it was decided to use it as the starting

point for the present work development. Nonetheless, the original architecture described in [33]

27

was subsequently adapted and modified by considering the results obtained in the experiments

for the specific case of this dissertation.

The starting CNN architecture used in the scope of this dissertation is depicted in Figure

3.3.

Figure 3.3 – First architecture setup.

The inputs of the CNN are 100x100 pixel images. The kernel size in all Convolutional

Layers and MaxPooling Layers is five, and the Stride is 1 in all these layers as well.

This architecture is very simple, containing a MaxPooling Layer for every two

Convolutional Layers. The final stages of the CNN are two Fully Connected Layers that are

basically a “classic” neural network-based classifier. The last layer generates an output that

allows classifies the dish as “with defect” or “without defect”. The experiences related to

adaptations of this architecture are described in Chapter 4.

3.3 Data Acquisition

This section describes the original procedures for obtaining the dataset, the problems caused by

the COVID-19 pandemic that led to the failure of obtaining this dataset in a timely manner, and

the workaround solutions that were implemented.

28

It was previously defined that the dataset used for CNN training and validation would be

obtained directly from the production line. Figure 3.4 illustrates the intended data acquisition.

The first step, as stated earlier, would be to install cameras at different locations of the

factory’s production line. That would allow to quickly obtain a dataset with a large number of

images. Then, the images would be stored in a database. Access to the database would allow

data labelling, performed by the factory employees. Finally, it would be possible to perform the

training and testing in different classification models.

The project was scheduled to start on March 1st, 2020. However, the global health crisis

due to the Covid-19 pandemic hit Europe in large numbers around that time, and the factory

that should provide the images stopped its production. The project was set to standby, as it was

not possible to obtain a dataset under real conditions. In order to overcome this situation,

alternative solutions for getting image data have been carried out.

The following two sections explain what was done to generate the data that was used for

training the CNN models proposed in the scope of this thesis. Section 3.4 describes the process

of creating a dataset only with images of dishes found online, introducing the defects in those

dishes manually. In Section 3.5, it is explained how a script developed by INOV Inovação,

which functioned as a generator of dish images, was used to obtain a more realistic dataset.

Figure 3.4 – Data acquisition.

29

3.4 Preliminary Dataset Development

A possible solution that could eventually provide this work with sufficient image data would

be to use an online dataset containing manufactured dishes with and without defects. However,

after an internet search, no datasets with the desired data have been found. Therefore, it was

decided to create an artificial dataset from dish images found on online stores that resembled

the images provided by the factory. At this time, since access to the factory was not allowed

and the project was still at a very early stage, we had not yet been supplied with actual examples

of produced dishes on the mass production line.

Since training a CNN requires a large amount of data, after downloading a set of online

dish images, defects were manually inserted onto those images, and data augmentation

techniques were used in order to generate a large amount of images that would allow training

of the algorithm properly. By creating a dataset that allows the training of a deep learning

algorithm, it is possible to generate models. A dataset properly labeled by the factory workers

can be later be provided to these models, which would allow obtaining results faster. If these

models did not generate the desired results, adjustments in the models could be performed.

3.4.1 Original Images

A mass production line guarantees the same environment and similar illumination conditions

on the acquisition of images for all produced products. Assuming similar image acquisition

conditions, 10 images of dishes, all with a clear background, were downloaded from online

stores. A few dish image examples are shown in Figure 3.5.

Figure 3.5 – Example of some of the original dishes.

30

As previously mentioned, after an internet search, it was not possible to find images of

dishes with manufacturing defects. The adopted solution was to manually insert defects in those

10 original images. An effort to diversify the inserted defects was made, not only in terms of

shape and number but also with respect to their location on the dish. The result was 10 images

of dishes with defects and 10 images of dishes without defects. Examples of images with

manually inserted defects are shown in Figure 3.6.

Figure 3.6 – Example of some of the original dishes with defects.

3.4.2 Data Augmentation Techniques

In order to train a CNN, a large set of images is required. When the dataset does not have

enough images to train the CNN, it is possible to apply data augmentation techniques to

generate additional images. In this work, since there were only 10 images of dishes without

defect and 10 images of dishes with defect, many data augmentation techniques were used. To

perform these augmentations, a few MATLAB scripts were developed. The first developed

script had the function of generating images based on the rotation data augmentation technique.

An input image is rotated from 0 to 330 degree, with steps of 30 degrees. For each rotation step,

the output image is stored. This script was applied to the 20 original images, from each resulted

220 additional images. A rotation example is illustrated in Figure 3.7.

31

Figure 3.7 – Example of a 90-degree rotation.

Afterwards, a second script was developed. This time, the script had the goal of shifting the

previous 220 images 1 to 5 pixels in all directions (right/left and up/down, individually) and

added them in the previous folder. Figure 3.8 shows an example of the result of this script.

Figure 3.8 – Example of shift.

The last developed script had the goal of changing the intensity of the pixels. To do that,

the values of the pixels were multiplied by a value in the range from 0.9 to 1.1 with steps of

0.02. The values below 1.0 turned the images darker, while the values above 1.0 turned the

images brighter. These augmentations were performed to all the images obtained with the

earlier techniques used. With all these augmentations, it was possible to create a dataset with

thousands of dish images with and without defect. Figure 3.9 shows an example of this last

procedure.

32

Figure 3.9 – 1.1x original image is on top and 0.9x original image is down.

3.4.3 Preliminary Dataset

After applying the data augmentations techniques described in the last subsection, a dataset

with 61911 dish images was generated. The images of this dataset are organized according to 2

classes (dishes with and without defects). The total number of images depicting dishes without

defects is 30938, and the remaining 30973 images are of dishes with one defect. The final

dataset distribution is synthesized in Table 3.1.

The images were saved in two different folders according to their class. This is an important

practice in deep learning because each class of the model must be properly labelled and

separating the classes assigning them to different local folders makes this task a lot easier.

All the images were resized to 100x100 pixels using bilinear interpolation, in order to

normalize image size in the dataset and to allow them to be submitted to the CNN input. On the

other hand, the resizing procedure reduced the initial quality of the images.

Image distribution of the preliminary dataset

Total number of images With defect Without defect

61 911 30 973 30 938

Table 3.1 – Distribution of the preliminary dataset.

33

The dataset described in Table 3.1 was used in order to be able to implement the CNN

architecture and subsequent adjustments. As at the time there was no access to real data, and

there was no forecast of when this would happen since there was confinement due to Covid-19.

Thus, this was the solution found for the work not to freeze.

It was known at this time that the dataset in realistic terms it was far from the conditions

under which the system is supposed to work. Consequently, the results obtained in the tests

performed could not represent reliable approximations to the results obtained when evaluating

the classifier with real data. The two key factors that conditioned this dataset were:

▪ Generated defects - The defects generated in this dataset are easily visible to the naked

eye, which might not be the case in real defects from the factory's production line;

▪ Resolution - The cameras to be installed on the production line will acquire high

resolution images (5184x3888 pixels). Therefore, the resolution of the preliminary

dataset images is too low when compared to the resolution of the images to be acquired

in the production line.

Due to the reasons presented above, a more realistic dataset was subsequently generated. This

dataset generation is described in the next section.

3.5 Realistic Dataset Development

This section describes the generation of the images of dishes that represent the more realistic

dataset. The creation of this dataset was possible since the factory’s employees sent some

samples of dishes directly manufactured on the production line to INOV Inovação. This way,

it was possible to provide the script textures from the dishes and recreate two types of known

defects mentioned in Section 3.1 (cracks and stitches).

3.5.1 Dish Image Generator

A dish image generator was created at INOV Inovação. This dish image generator aims to create

a simulated environment as similar as possible to the factory’s environment. This way, the

results obtained will be more reliable for implementation in a real scenario. In the following

34

two subsections it is explained how the script backend (what the script does at the image

processing level) and frontend (the user interface) works.

3.5.2 Script Backend

The scripting backend was developed to allow the generation of defects in a random position

on the dish surface. This script also allows adding (or not) noise, either into the dishes, into the

background, or on both.

It is also possible to insert shadows on the generated images of dishes. For this purpose, a

developed function multiplies the value of the outermost pixels of the dish’s surface by a static

variable, in order to dusk them and simulate a shadow.

As for the inserted defects, it is possible to increase or decrease their length, as well as their

intensity (increasing or decreasing the intensity of the pixels). In addition, the script backend

also provides the support for the generation of the defect’s contours, which allows the user to

quickly check the defect’s location in the image since sometimes they are difficult to discern

by observing the image.

The output images of the script have a default size of 5184x3888 pixels, in order to simulate

the resolution of the images captured by the cameras that will be placed on the production line.

These images are therefore too large to be immediately provided to a CNN, so additional image

preprocessing procedures are required. Further details can be found in Chapter 5. of this

dissertation.

3.5.3 Script Frontend

The script frontend allows quick manipulation of the parameters used to generate defects on the

surface of the dish, using checkboxes and sliding windows. By clicking on the preview button,

it is possible to find a sketch of the first generated image by the script. It is also possible to edit

the parameters and perform a new preview if the first results are not desirable. Figure 3.10 shows

a frontend example of the script.

35

Figure 3.10 – Frontend example with default values.

When generating the dishes, by clicking on the export button, the script offers an option to

choose the number of dishes that will be generated. If the number is greater than 1, all the dishes

generated will have the same parameters (e.g., types, number of defects and length of the

defects), but the inserted defects will be randomly distributed across the dish surface.

Finally, for a faster location of the defects generated by the script on the dishes, by clicking

on the button show contours, the defects are overlapped by a reddish color that allows an easier

visual inspection, since this color stands out from the rest the surface of the dish. Figure 3.11

illustrates an example of the defect contour.

Figure 3.11 – Example of defect contour (in red).

36

3.5.4 Realistic Dataset

Using this script, 25200 images of dishes were generated. The images of this dataset are once

again organized according to 2 classes (dishes with and without defects). The total number of

images depicting dishes without defects is 12600, and the remaining half are images of dishes

with one or more defects. This final dataset distribution is shown in Table 3.2.

As these images had large dimensions, a substantially larger memory space was needed in

order to store them compared to the space needed to store the preliminary dataset.

Image distribution of the realistic dataset

Total number of images With defect Without defect

25 200 12 600 12 600

Table 3.2 – Distribution of realistic dataset.

The dataset described in table 3.2 was provided to the CNN architecture that obtained the

best results (these results are shown in Chapter 4.) when trained and validated with the

preliminary dataset. The results obtained with this realistic dataset are described in Chapter 5.

37

Chapter 4. Preliminary CNN Architecture Experiments

This chapter describes tests and experiments performed using the CNN architecture presented

in Section 3.2 of the previous chapter. These tests include modifications on the dataset structure

and on the architecture of the CNN. Some of these tests were performed due to errors related

to the lack of memory. Others were only performed for fine tuning the CNN.

As previously said in Chapter 3, since this dataset was the only one available for several

months, many tests with different architectures were performed using its data. Comparisons

were also performed in order to evaluate which parameters best suited the problem in question.

The use of pre-trained architectures (Transfer Learning) was also evaluated.

The main goal of these tests was to understand if the models could generalize details of the

dishes when classifying these. With these experiments, it would be possible to ascertain whether

the models had the capacity to acquire knowledge from images of dishes and whether it is

possible to distinguish defective dishes from non-defective ones.

To understand the performance of the model, the values of the accuracy and loss of the

models were compared. The loss is a measure used in the training of the model that is calculated

throughout the chosen loss function. The accuracy is calculated by dividing the correct number

of associations between the images and the respective labels by the total number of images in

the dataset.

Another relevant variable in the performance of the model is the time it required for

training, considering the available resources.

All the experiments were carried out using a Nvidia GeForce GTX 1050 4 GB, with 8 GB

of RAM and an Intel ® Core™ i5-7300HQ CPU @ 2.50GHz.

4.1 Hyperparameter Settings

In order to train the CNN architecture described in Section 3.2, it was necessary to define the

optimization and the loss functions. The chosen optimization function was Adam function [34]

while chosen the loss function was the MSELoss (Mean Squared Error Loss). This function

creates a criterion that measures the mean squared error between each element in the input x and

label y. The activation function used between the Convolutional and MaxPooling layers and for

38

the first Fully Connected Layer was the Rectified Linear (ReLU). The last Fully Connected

Layer uses a SoftMax activation function since it is the output layer. A dropout rate of 0.5 was

used after every Convolutional Layer.

80% of the dataset images described in Section 3.4 of the previous chapter were used for

training the CNN, and the remaining 20% were used for testing the validation loss and accuracy.

Additionally, the batch size as set to 64. It was decided to train repeatedly this CNN

architecture with variations on the learning rate with the goal of realizing which was the best

value. Once the best result was obtained, the number of training epochs could be increased.

The next section illustrates the evolution of the training and validation accuracy and loss in

the experiments performed.

4.2 First CNN Architecture Experiment

To be able to obtain a good visualization of the information on the value of accuracy and loss

over the training period, it is not only better to represent this evolution graphically, but also

increase the number of epochs. The following tests were started by changing the learning rate

values to check if there would be some significant impact. The number of training epochs was

set to 25. The xx axis represents the number of epochs while the yy axis represents accuracy and

loss, respectively. Figure 4.1, Figure 4.2 and Figure 4.3 show the generated graphics.

39

Figure 4.1 – Evaluation with learning rate = 0.00005.

Figure 4.2 – Evaluation with learning rate = 0.00010.

40

Figure 4.3 – Evaluation with learning rate = 0.00015.

The difference between a learning rate of 0.00015, 0.00010 and 0.00005 does not seem to

be relevant. In total, the CNN took about 179 minutes, or two hour and fifty-nine minutes to

train in all these experiments.

By analyzing these two plots, it is also possible to conclude that the values of training

accuracy and validation accuracy are very similar, as well as the values of training loss and

validation loss.

Although the validation images were not provided to CNN during training, they are very

similar to the ones that were used for that purpose. Remember that the 60000 images dataset

under use was generated by applying data augmentation techniques to 10 initial dish images.

Therefore, since the images on training and validation sets are very similar, their learning curves

overlap, and all the dish images end up correctly classified.

This classification performed by the algorithm seemed too easy, as it correctly hit all the

results. To verify how the CNN is able to learn to identify defects in different dish models from

those used in training, the proposed solution was to change the dataset structure. All the images

of two of the original dishes were removed from the training set and saved in another location.

The removed images were used on the validation set, while the training set was composed of

41

the remaining ones. Thus, after training, CNN no longer considers any previous knowledge of

the dish models in the validation set. This solution is illustrated in Figure 4.4.

Based on the previous tests, the number of training epochs was increased in order to check

the behavior of the training and validation values over more time. The learning rate was set to

0.00010 as this value is a middle term of the ones tested previously. The batch size was again

set to 64. The hyperparameters setup was as follows:

▪ Learning rate = 0.0001;

▪ Batch size = 64;

▪ Epochs = 100.

Figure 4.5 shows the evolution of the accuracy and loss using this setup along 100 training

epochs.

Figure 4.4 – Solution to diverge training and validations values.

42

Figure 4.5 – Results for the dataset modification.

.

Each epoch took about 7 minutes and 10 seconds, which ended up in total training time of

approximately 11 hours and 56 minutes.

The values of accuracy and loss are no longer the same for the training and validation sets.

By observing the learning curves, the CNN overfits to the dish model images used for training,

since not only the training accuracy reaches the maximum value of 1 and the training loss

reaches the minimum value of 0, but also the validation accuracy, as well as the validation loss,

cannot reach the same values, which makes the training and validation curve very distant.

Considering the process of generating the dataset, it can be concluded that the dataset is not

sufficiently representative for generalizing the defects detection for different dish models. For

the validation curves to approach the training curves, it would be necessary for the dataset to

contain more models of dish images. Although the validation accuracy and loss values are very

unstable throughout most of the epochs, they begin to being less unstable around epoch 75.

The following section describes experiments performed on the CNN architecture and their

respective results.

43

4.3 Architecture Modification Experiments

Additional tests regarding the architecture of the CNN were also carried out with the goal of

understanding the impact of the MaxPooling layers on the performance of the CNN. The first

architecture modification done was to remove the Convolutional Layer 4 and the respectively

MaxPooling Layer, as shown in Figure 4.6.

Figure 4.6 – Second architecture tested.

These architecture modifications also affected some specifications of the layers. The layers

of the CNN that appear after the removed layer changed the size of the input and output matrix.

Kernel size and Stride are not affected since those values are manually defined.

The main difference in this architecture is the fact that a MaxPooling Layer is skipped,

which hugely modifies the resulting matrix size in the following Convolutional Layers and

substantially increases the features of the first Fully Connected Layer. Figure 4.7 shows the

evolution of the accuracy and loss values per epoch.

44

Figure 4.7 – Results for the second architecture modification per epoch.

Accuracy values seem to be slightly higher, and loss values seem slightly lower. However,

since the features of the first Fully Connected Layer increased substantially (due to the fact that

one less Max Pooling Layer did not halved the size of the matrix to be processed), the training

time of the CNN has substantially increased from approximately 12 to 20 hours. This

architecture took about 1200 minutes or 20 hours to train. The accuracy and loss values begin

to be less unstable around epoch 80. The problems with overfitting mentioned in the previous

architecture are equal since the dataset used was the same.

Another architectural modification was done by removing the last Convolutional Layer and

the subsequent MaxPooling Layer, generating an architecture that is detailed in Figure 4.8.

45

Figure 4.8 – Third architecture tested.

Similarly to the previous architecture, one MaxPooling Layer was skipped, which affected

the number of features received in the first Fully Connected Layer. The other Convolutional

Layers did not have any changes since the removal of the Convolutional Layer 6 did not

influence the previous layers.

46

Figure 4.9 – Results for the third architecture modification, per epoch.

As shown in Figure 4.9, this architecture was also trained for 100 epochs. Since the scale of

the graphics is the same, it should be noted that the accuracy values of this architecture rarely

exceed 0.9 (or 90%) while the loss values are higher (except for rare exceptions) than 0.1 (or

10%). These facts show that there was a decrease in the overall performance of CNN compared

to the other two experiences. Although the values do not stabilize, it is possible to verify that

around the 90th epoch, the accuracy values start to decrease while the loss values start to

increase. This architecture took about 915 minutes or 15 hours and 15 minutes to train.

The overfitting problem happens again as well as the representativeness problem since the

dataset used was still the same. Although several data augmentations have been performed in

this preliminary dataset, these are not enough to dispel the fact that there are too many images

generated from so few original images.

The results of the accuracy values presented in Table 4.1 represent the accuracy obtained in

the 100th epoch of each experiment.

47

Summary of the architectural experiences

 Accuracy in % Time in Minutes

Original Architecture 92.7 716

First Modification 94.5 1 200

Second Modification 78.9 925

Table 4.1 – Summary of architectural experiences.

To summarize, the first architectural modification was removing the Convolutional Layer

4 from the original architecture. The second architectural modification was removing the

Convolutional Layer 6 from the original architecture.

The model obtained with the first modification in the CNN architecture was the one with

the highest validation accuracy and the lowest validation loss, which makes it the one with the

best accuracy results. However, this algorithm turned out to be heavier than the original

architecture. The difference in training time between this architecture from which

Convolutional Layer 4 was removed and the original architecture is approximately 500 minutes

(8 hours and 20 minutes).

Bearing in mind that the most relevant factors for the adaptation of this algorithm were its

performance and training time, it was considered that both architectures are good to progress in

the work. It was decided to proceed with the original architecture since this architecture has a

fast training time. Besides, this architecture has already shown great results in the binary

classification application described in [33].

The second architectural modification was discarded since the validation accuracy, and

validation loss do not reach such high values.

4.4 Transfer Learning Tests

The Pytorch platform includes pre-trained architectures that can easily be adapted to the

purpose of classifying a specific dataset. To adapt these pre-trained architectures, it is necessary

to fine-tune the last Fully Connected Layer without changing the previous weights of the CNN

that were setup during the pre-train process. Fine-tuning consists of changing the number of

48

outputs of CNN to the number of classes to be classified. Experiments using the following

architectures were performed:

▪ AlexNet;

▪ VGG16;

▪ ResNet18;

▪ InceptionV3.

These architectures were chosen because they obtained good image classification and

detection results in the ILSVRC challenge mentioned in section 2.2.1.

The images were resized and normalized to the specific requirements of the architecture,

and the batch size was also redefined due to memory constraints. The higher the batch size, the

less time it takes to the CNN to process the dataset. In the other hand, more computational

memory is needed. Having this in mind, these experiments were performed with the batch size

equal to 32 in all architectures except in the inceptionV3, since this architecture is the heaviest

in terms of computational memory. The batch size used in this last architecture was equal to 8.

The results of these experiments are shown in Table 4.2.

Transfer Learning Results

 Accuracy in % Time in minutes

AlexNet 75.8 480

VGG16 95.2 2 150

ResNet18 90.2 990

InceptionV3 82.1 4 800

Table 4.2 – Transfer Learning results.

Table 4.2 shows that VGG16 model was the model that obtained better results in terms of

validation accuracy.

The results of VGG16 exceeded the results of the previous, adapted CNN architecture.

However, VGG16 took 2150 minutes or 35 hours and 50 minutes to train. The number is

considerably higher than the number of hours that the adapted architecture took to process the

dataset (8 hours and 53 minutes). In a simple classification task of only two classes (with or

49

without defect), despite the improvement in the accuracy values, it was considered that

architecture so dense that requires a high computational capacity such as VGG16 is not

necessary to the purpose of this work. In addition, it is practically impossible to adapt a learning

transfer architecture to a specific problem since these are very dense architectures and not all

their parameters are configurable.

It is also relevant to note that the InceptionV3 architecture was the one that took the longest

to process the data. This was mainly because its computational weight is very high. Since the

computational resources are limited, in order to obtain results with this architecture, it was

necessary to decrease the batch size, which increased the training time.

Despite the accuracy of VGG16 being superior to the accuracy obtained by the adapted

CNN architecture, it was considered that its computational weight was too high, and it was

more favorable to progress in this project with the adapted architecture.

The following chapter contains experiences and results of using the chosen architecture

with a more realistic dataset.

51

Chapter 5. Realistic Dataset Evaluation

This chapter describes the experiments performed using the dataset generated through the script

developed at INOV INESC Inovação. This dataset was used since it allows to obtain more

realistic dishes images, compared to the dataset mentioned in Section 3.4 of Chapter 3. In

addition to experiments with images of the entire dishes presented in Section 5.1, experiments

with segments of the original images were also carried out in Section 5.2. These last

experiments had the goal to evaluating the advantages and disadvantages of classifying each

segment individually.

5.1 Full Image Classification

The following subsections contain the results of the experiments with the images generated by

the script described in Section 3.5 of Chapter 3. Although these are not images of real dishes,

they are images that allow classifying industrial dishes closer to reality.

5.1.1 Adapted Architecture

The model generated with the original, adapted architecture in Chapter 4. was retrained and

retested with images generated by this image generator.

Twenty-five thousand two hundred images were generated to perform these tests. Half of

the images used (12600) represented defective dishes, while the other half represented non-

defective dishes, as said in Chapter 3. 23200 images were used to train the CNN while 2000

were used to validate the results. These distributions are illustrated in Table 5.1. To perform

these tests, the generated dishes of the class “with defects” contained between 1 to 4 defects,

since in a production line it is unlikely that a dish will be produced with more than 3, a fact

provided by the managers of the factory. The generated defects were alternated, with dishes

with only cracks, dishes with only stitches and dishes with both. The intensity and length of the

defects was also generated in a varied way to cover a wider range of possible real defects. The

generated dishes did not present noise or shadows since they can disturb the accuracy results.

52

Dataset distribution

 Total number of

images

Images with defect Images without defect

All Data 25 200 12 600 12 600

Training Data 23 200 11 600 11 600

Validation Data 2 000 1 000 1 000

Table 5.1 – Dataset distribution for the first experiment.

All the images generated by the script were resized using the torchvision.transforms python

function, that uses bilinear interpolation, to match the input conditions of the CNN. The

accuracy and loss evolution is shown in Figure 5.1.

Figure 5.1 – Accuracy and loss evolution per epoch.

In order to ascertain which classifications were wrong, the confusion matrix for this model

was generated and depicted in Figure 5.2. A confusion matrix evaluates the performance of a

53

classification model. The size of this confusion matrix is 2x2 since this CNN has 2 target

classes. This confusion matrix was generated using the validation set results achieved at the last

epoch of the CNN training.

Figure 5.2 – Confusion matrix of the validation data.

By analyzing this confusion matrix, it can be noticed that this model correctly classifies all

dishes that contain defects. 16.2% of these dishes are wrongly classified as “with defect”. The

accuracy of CNN is 91.9%.

It is now possible to compute the precision, recall and F1-score of the model. Precision

evaluates how accurate are the predictions for a given class. The precision is computed as

 precision =
True Positives

True Positives + False Positives
 . (5.1)

Recall can be interpreted as the measure that calculates the fraction of the actual positives

that are correctly classified by the model. This measure is given by

 recall =
True Positives

True Positives + False Negatives
 . (5.2)

The F1-score combines the two previous measures in order to obtain a measure that covers

the entire range of values of the confusion matrix. F1-score is calculated as

 F1 =
precision × recall

precision + recall
 . (5.3)

54

Table 5.2 shows the results of these calculations. These values allow a better interpretation

of the confusion matrix.

 Precision Recall F1-Score

Without Defect 1.00 0.84 0.91

With Defect 0.86 1.00 0.92

Table 5.2 – Precision, Recall and F1-score values of the previous test.

The precision value of the dishes “without defect” as well as the recall value of the dishes

with defect reaches the maximum value of these parameters, 1.00 since all the defective dishes

are correctly classified.

The precision value for dishes with the defect is an important parameter of this research

work since the factory wants to minimize the number of non-defective dishes wrongly classified

as "defective". 0.86 is a reasonable value, although a value closer to 1.00 would be better. It

was preferable that some defective dishes were miss classified instead of non-defective dishes,

as this represents a waste of properly produced dishes.

5.1.2 Transfer Learning

In addition to the adapted CNN architecture, the four previously architectures used for Transfer

Learning used in section 4.4 were also reevaluated using the realistic dataset. These experiments

were performed because the dataset used in this chapter is different, which modifies the results,

compared to those obtained in the previous Chapter 4. Table 5.3 synthesizes the accuracy results.

55

Accuracy of the Transfer Learning architectures

 Accuracy

AlexNet 73.1

VGG16 88.3

ResNet18 86.8

InceptionV3 87.4

Table 5.3 – Accuracy of the Transfer Learning architectures.

It should be noted that the VGG16 architecture was again the architecture that achieved the

best results in identifying industrial defects in dishes, with an accuracy of 88.3%. The precision,

recall and F1-score values of VGG16 are shown in Table 5.4.

 Precision Recall F1-Score

Without Defect 1.00 0.77 0.87

With Defect 0.81 1.00 0.90

Table 5.4 – Precision, Recall and F1-score values for VGG16 architecture.

The evaluated architecture in subsection 5.1.1 achieved a higher precision in the “with

defect” class compared to the VGG16. Therefore, it is proven that for this dataset, it is also not

worth using the transfer learning architectures suggested in this research work.

In order to try to improve the results obtained in this section, and based on the work [23],

the following section demonstrates the experiences and results obtained when training and

testing the CNN with small parts of the original image.

56

5.2 Classification Based on Image Parts

This section contains the results of experiments performed on smaller parts of the original

images.

The size of CNN's inputs is usually small. In the previous section, to obtain defect detection

results on dishes, the images have been down sampled to the pre-defined size of the CNN. This

down sampling resulted in a loss of image quality, which probably led to a decrease in the

effectiveness of the classification.

In [23], the authors propose to split the images of their dataset into smaller parts, in order

to detect small scratches in cars. Bearing this in mind, an alternative to image down sampling

is to split the original image a priori into parts that match CNN's input size. This way, loss of

image quality when resizing is avoided. That said, each original image was divided into

100x100 parts.

After splitting, each image part was labelled into the classes “with defect” and “without

defect”. Figure 5.3 illustrates the sub-images containing dish defects and images that simply

contain non-defective parts of the dish.

57

Figure 5.3 – Dish parts, a) with defect; b) without defect; c) with dish and background.

All images have the same dimensions. Each original image is divided into the same number

of 100x100 parts, more specifically in 2028 100x100 sub-images. Of these 2028 sub-images,

only 1223 are located on the surface of the dish. The images that only contained background

were manually removed.

To develop the segmented image dataset, 47 full dish images were generated, all with 10

defects of each type (stitches and cracks) in order to obtain more sub-images belonging to the

defective class using a smaller number of images. This allowed to significantly reduce the time

needed to create the dataset. It is important to note that there are some defects that can be found

in more than one sub-image.

58

After generating the 47 images, splitting them into 100x100 sub-images and removing the

sub-images located on the image background (i.e., sub-images located outside the dish

boundaries), the dataset ended up with 58704 100x100 images. Of these 58704, 2580 contained

defective dish parts while 56124 contains non-defective dish parts, as shown in Table 5.5.

Image distribution

Total number of images Images with defect Images without defect

58 704 2 580 56 124

Table 5.5 – First 100x100 dataset distribution.

The CNN was trained with all the image parts available in the dataset. Since only about 5%

of the dataset contains image parts with defect, it was likely that the CNN, in order to maximize

the accuracy, would classify all images without defect, since this class represents 95% of all

dataset. 500 images of each class were used to validate the results. Figure 5.4 shows the

confusion matrix obtained.

Figure 5.4 – Confusion matrix of the unbalanced dataset.

59

 As expected, the algorithm classified all dish images belonging to the class “without

defect”.

The next subsection focuses on solving problems due to imbalanced classes in the image

parts dataset, since there are far more sub-images in the "without defect" class than sub-images

in the "with defect" class.

5.2.1 Dataset Balance

This section shows the methods used to balance the dataset and the results obtained after

training and validating the adapted CNN with the new generated image parts dataset.

To try to change the tendency shown in the previous subsection, data augmentation

rotational was used with 90, 180 and 270 degrees. This allowed the number of defective images

to be increased from 2580 to 10320. Thus, the distribution of the dataset has become

approximately 20% images with defect and 80% images without defect.

The dataset was then divided into training data and validation data, as shown in Table 5.6.

Dataset distribution

 Total number of images Images with defect Images without defect

All Data 66 444 10 320 56 124

Training Data 54 704 7 385 47 319

Validation Data 11 740 2 935 8 805

Table 5.6 – Second dataset distribution.

The CNN has trained once again, and the results were clarified through the confusion

matrix regarding validation data illustrated in Figure 5.5.

60

Figure 5.5 – Confusion matrix after rotational techniques

Based on the confusion matrix, the CNN continues to classify all results as “without

defect”, due to imbalanced training data. To dispel the disparity in the difference between the

number of dish parts with and without defect in the training data, two methods were used.

The first method was to randomly remove images of segments of the dish without defect.

Those images were saved in another local folder, and the same number of defective and non-

defective images in the training and validation data were used. Table 5.7 shows the length of the

datasets.

Dataset distribution

 Total number of images Images with defect Images without defect

All Data 20 640 10 320 10 320

Training Data 14 770 7 385 7 385

Validation Data 5 870 2 935 2 935

Table 5.7 – Dataset distribution with the first method

61

Figure 5.6 depicts the evolution of the accuracy and loss values along 30 epochs, and Figure

5.7 shows the confusion matrix obtained at the last training epoch.

Figure 5.6 – Accuracy and Loss over the number of epochs.

62

Figure 5.7 – Confusion matrix after manual dataset balance.

By analyzing the learning curves in Figure 5.5, as well as the confusion matrix, it can be

concluded that the previous problem, due to an imbalanced dataset, has been overcome. It is

also possible to notice that the training and validation curves have similar values, which

indicates that overfit does not occur with this data. Since the images of this dataset are not

subject to a resize of any kind, they contain more details which facilitates the image processing

of the CNN. The confusion matrix is again related to the validation data. The CNN classified

the 100x100 segments of the dishes with an accuracy of approximately 89.6%. It is possible to

verify that 437 image parts of defective dishes were classified as non-defective, while 173

image parts of non-defective dishes were classified as defective. The parts of dishes classified

as “without defect” but that were defective are dishes in which the defects are hardly visible

because they are quite small in terms of size as well as the pixel intensity. An example of a

hardly detected defect is present in Figure 5.8. The precision, recall and F1-score values

corresponding to this confusion matrix are shown in Table 5.8.

63

Figure 5.8 – Example of a hardly detected defect.

 Precision Recall F1-Score

Without Defect 0.86 0.94 0.90

With Defect 0.94 0.85 0.89

Table 5.8 – Precision, Recall and F1-score values of the manual balance.

.

The achieved results on the evaluation metrics show that this CNN performs well on

classifying parts of the dish, with an accuracy of approximal 89.6%. It is important to mention

that the value that has more advantages in being maximized (the precision for the dishes with

defect), increased to 0.94. However, this value cannot be compared with the one previously

calculated in Section 5.1.1. since it refers only to segments of the original image and not to the

image of the entire dish. It only takes a wrong classification in one of these segments to

misclassify the entire dish.

An alternative data balancing method was to use class weighting before training the CNN.

This method balances the data by modifying the weight that each training sample contributes

to the loss function. Usually, all training classes are equally weighted in the loss function.

However, it is sometimes preferable to assign different class weights during the training

process, especially if the number of examples for each class are noticeable imbalanced. Class

weighting implies that the contribution of each example to the loss function is multiplied by the

corresponding class weight. Therefore, during the training of CNN, this algorithm will obtain

a greater loss if it classifies classes incorrectly with a greater factor. Since the CNN aims to

64

minimize the loss, the class with the higher weight will become the most relevant to the

algorithm.

To use this approach, every available image in the dataset was used. The validation set for

all these experiments was the same as the previous method, with 2935 100x100 images with

the defect and 2935 100x100 images without defect.

Several weight variations in the classes and adjustments to the number of examples in each

class were tested, in order to obtain results that match the initial expectations. Based on trial

and error, the weight values of the classes were set to 0.9 for the “with defect” class and 0.1 for

the “without defect” class.

With 35000 images of "without defect" class with a weight of 0.1 and 7385 images of "with

defect" class with a weight of 0.9, the CNN obtained an accuracy of 92.4% in the binary

classification of 100x100 segments of the original image. The confusion matrix was once again

generated from the results of the last training epoch (30th epoch). Figure 5.9 shows the evolution

of the accuracy and loss values, and Figure 5.10 the confusion matrix.

Figure 5.9 – Accuracy and Loss values over epochs.

65

Figure 5.10 – Confusion matrix of the weight classes experiment.

The CNN training lasted 30 epochs since both validation accuracy, and loss values were

stable at this point. In the first 5 epochs, CNN only achieved a validation accuracy of

approximately 20%. This happened because the weight of the "with defect" class was much

higher than the weight of the "without defect" class, which led the CNN to try to minimize

losses and classify the vast majority of validation data as belonging to the "with defect" class.

From epoch 5 to epoch 12, the CNN acquires greater knowledge through training data, which

results in an increase in accuracy values, both for training and for validation. Until epoch 30,

these values, as well as the loss values, remained stable.

From the 2935 images with defect, 2652 were correctly classified while 283 were classified

as “without defect” by the CNN. From the 2935 images without defect, 2751 were correctly

classified while 184 were classified as “with defect”. The precision, recall and F1-score values

are calculated in Table 5.9.

66

 Precision Recall F1-Score

Without Defect 0.91 0.94 0.92

With Defect 0.94 0.90 0.92

Table 5.9 – Precision, Recall and F1-score values with class weights.

The method used turned out to be "hybrid", since, in addition to having adjusted the class

weights, the number of images in the "without defect" class was also modified.

The overall accuracy obtained with this method is higher than the overall accuracy obtained

by manually balance the dataset. This method allowed to reduce the number of false negatives

(segments of the dish with defect that were classified as “without defect”) from 437 to 283. The

number of false positives (segments of the dish without defect that were classified as “with

defect”) increased from 173 to 184, but this change is not significant.

Based on the obtained results in the accuracy, as well as in the confusion matrix, it was

concluded that with this architecture, it is preferable to balance the dataset with “hybrid”

method instead of trying to balance it manually.

The following subsection compares the results the classification of dish images based on

image parts classification with those obtained by directly classifying a subsampled

representation of the full dish image, described in section 5.1.

5.2.2 Dish Classification Results

By dividing the dish images into 100x100 sub-images and identifying these segments in order

to know which dish they refer to, it is possible to try to use this strategy to improve the quality

control system of the factory. However, the accuracy percentage obtained earlier is not

comparable with the remaining percentages obtained through the classification of an entire

image of a dish, since only one misclassified segment is enough to misclassify the entire dish.

In order to test the best results obtained in the previous section, the image generator was

used once again to generate 100 new dishes. Fifty dishes were generated with defect/s while

67

the other 50 were generated without defects. These 100 dishes were again split into 100x100

sub-images and those containing background only were removed. Each generated sub-image

was identified in order to allow an association with the corresponding dish image. By providing

this data to the CNN, it was possible to verify that 29 dishes (58%) of the dishes without defects

were correctly classified, while 23 (46%) of the dishes with defects were correctly identified.

The overall accuracy of the model was 52%.

Figure 5.11 shows the confusion matrix obtained and the precision, recall and F1-score

values are calculated and described in Table 5.10.

Figure 5.11 – Confusion matrix applied to the entire dish.

 Precision Recall F1-Score

Without Defect 0.52 0.58 0.55

With Defect 0.52 0.46 0.49

Table 5.10 – Precision, Recall and F1-score values applied to the entire dish.

The overall values of precision, recall and F1-score decreased compared to the results

obtained when directly classifying a down sampled version of the full dish image. It is thus

possible to conclude that for this dataset, dividing the image into smaller segments, classifying

68

these segments and then classify the entire dish based on the segment classification does not

decrease the value of false positives, and even decreases the overall accuracy of the CNN.

It is important to emphasize that the images and results present in this thesis represent a

simulated environment. Although real textures of dishes supplied by the factory were used in

this realistic dataset, the images are generated in a local context. By the results obtained through

these data, it is difficult to say if they will be similar to the results obtained with images of

dishes from the production line, since there are not considered factors such as other types of

defects, other size of these defects, lighting, ability to capture photographs from cameras, etc.

However, it is possible to conclude that this adapted binary classification algorithm acquired

knowledge through the generated datasets, and it was optimized considering the problem that

was intended to solve, using deep learning.

69

Chapter 6. Conclusions and Future Work

6.1 Conclusion

The objective of this work was to adapt a deep learning-based algorithm capable of performing

a binary classification on dish images, in order to assist the quality control procedures at a

porcelain dish factory. This classification consisted of the detection of defects in images

provided to the algorithm. When using this algorithm together with high resolution cameras

placed directly on the factory's production line, it would be possible to perform quality control

in real time, quickly, efficiently, and less susceptible to errors.

The main topics covered in this work were image classification and deep learning, more

specifically, Convolutional Neural Networks. The literature review expressed in Chapter 2

explores these two topics, in particular, the way in which deep learning can be applied to image

classification, and the excellent results it obtains by doing it.

The COVID-19 pandemic changed the path of this work, since it caused unexpected

problems, as explained in Chapter 3. A deep learning based-algorithm needs data to be trained

and to be validated, therefore, a dataset is required. In the course of this research work, two

datasets were created. The first dataset was preliminary, used during confinement time, which

allowed the realization of experiments involving the CNN architecture. The second dataset was

later created, also artificial but more realistic. This second dataset was generated based on

samples of dishes produced directly at the factory.

Several experiments in Chapter 4. were performed during confinement time. In these

experiments performed with the preliminary dataset, different CNN architectures were used.

Transfer Learning was also explored in this chapter. The time required for the training process

and the accuracy of the different architectures were compared in order to understand if the

adapted architecture would pay off in solving this problem, compared to more dense

architectures.

After the confinement time and several months in, it was finally possible to receive samples

of dishes coming directly from the factory, which allowed the to create the realistic dataset

using the textures of the received dishes. This dataset creation used a python script developed

in INOV, whose function is to generate artificial dish images, with or without defects, from

texture samples. This second created dataset allowed to obtain more realistic data. In addition

70

to evaluating the classification model previously obtained in Chapter 4. with these new images,

it was proposed to divide them in 100x100 parts, so as not to lose much image quality during

resize and to try to improve the results. After performing this division of the original images, it

was tested whether this method would generate better results compared to the results obtained

when classifying the full dish image. The results of using the realistic dataset are shown in

Chapter 5. of this research work.

Regarding the first and main objective of this work, although the first dataset created

compromised some results due to its lack of variety of defects and lack of initial images and the

second had also limitations in terms of image quality loss after resizing the data, the results

obtained show that it was in fact possible to adapt a binary classification algorithm based in

deep learning to this specific problem. An accuracy of 92.7% with the preliminary dataset and

an accuracy of 91.9% with the realistic dataset shows that this adapted algorithm has the

capacity to classifying dishes with and without defect.

This dissertation also allows to conclude that, for this binary classification case, despite

some Transfer Learning architectures results are slightly higher – in terms of accuracy – than

the results of the adapted architecture, their computational cost as well as their training time is

also much higher. Therefore, the use of those algorithms is not worth when classifying these

industrial defects in dishes.

With the realization of this dissertation, it was also possible to conclude that the proposed

method of dividing the original image in smaller parts in order to increase the defect detection

as well as reduce the number of false positives was not effective. This division did not improve

the recall value of the class "without defect" and even decreased the overall accuracy of the

CNN.

6.2 Future Work

As previously said, despite the good results obtained in the experiments performed, it is difficult

to know whether this CNN architecture will obtain similar results in a real context. Therefore,

the next step will be to install the cameras to obtain images in real context. Once these images

are obtained, it will be possible to train and validate the CNN. Once these two steps are done,

the last procedure will be to establish whether this CNN is more effective than the factory's

current quality control system or not. It will be necessary to retrain the whole CNN with these

71

new data. Then, accuracy, loss, precision, recall and F1-score values will also be obtain. Finally,

it will be possible to modify the CNN parameters in order to improve the previous results. This

process can take time as it is not clear how the pandemic will evolve.

While it is not possible to use real images of manufactured dishes to create a dataset, it is

possible to try to improve this binary classification model. One possible way to do this is

generating more types of defects, which can reach a wider range of real defects in dishes

produced in the porcelain dish factory. A solution that could also improve the quality of the

dataset would be to resize the images with different dimension reduction algorithms, instead of

only using bilinear interpolation.

It is also possible to perform further changes in terms of the CNN architecture, more

specifically in the number and size of the kernels used in the convolutional layers, in order to

ascertain whether there are significant differences in the obtained results.

Another possible implementation of this classification model would be to use it for quality

control in other products or other factories. In this case, it would be necessary to training and

validate the model with new data since incremental learning algorithms were not used.

Regarding the false positive results, the author of this research work suggests a measure

that might improve this accuracy. The measure is to change the last activation function of the

CNN to the sigmoid function. This function is widely used in cases of binary classification

since it only exists between 0 and 1. Values closer to 0 are classified in a certain way while

values closer to 1 are classified in another. Therefore, by changing the decision threshold, it is

possible to modify the probability of the CNN to classify false positives, a priori. However, it

is necessary to ensure that changing this decision threshold does not negatively influence the

rest of the CNN classification.

73

References

[1] McKinsey & Company, Inc., “Smartening up with Artificial Intelligence (AI) - What’s

in it for Germany and its Industrial Sector?”, April 2017. [Online]. Available:

https://www.mckinsey.com/~/media/McKinsey/Industries/Semiconductors/Our%20Ins

ights/Smartening%20up%20with%20artificial%20intelligence/Smartening-up-with-

artificial-intelligence.ashx. [Accessed September 2, 2020].

[2] M. Nielsen, “Neural Networks and Deep Learning”, 2015, [E-book] Available:

neuralnetworksanddeeplearning.com [Accessed December 14, 2019].

 [3] I. Goodfellow, Y. Bengio, A. Courville, “Deep Learning”, MIT Press, 2016.

[4] A. Zhang, Z. C. Lipton, Mu Li, A. J. Smola, “Dive into Deep Learning”, 2019. [E-book]

Available: d2l.ai [Accessed December 14, 2019].

[5] W. Rawat, Z. Wang, “Deep Convolutional Neural Networks for Image Classification:

A Comprehensive Review”, Neural Computation, Sept. 2017.

[6] A. Ng, “Machine Learning”, [Online course] Available: coursera, http://coursera.com.

[Accessed December 9, 2019].

[7] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A

Simple Way to Prevent Neural Networks from Overfitting”, Journal of Machine

Learning Research, vol. 15, June 2014.

[8] Z. Wang, P. Yi, K. Jiang, J. Jiang, Z. Han, T. Lu,, J. Ma, “Multi-Memory Convolutional

Neural Network for Video Super-Resolution”, IEEE Transactions on Image Processing,

vol. 28, No. 5, May. 2019.

[9] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-Based Learning Applied to

Document Recognition”, IEEE Transactions, Nov. 2018.

[10] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks”, in Advances in neural information processing

systems 25, Jan. 2012.

[11] K. Simonyan, A. Zisserman, “Very Deep Convolutional Networks for Large-Scale

Image Recognition”, in ICLR 2015, San Diego, USA, May 7-9, 2015.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.

Vanhoucke, A. Rabinovich, “Going deeper with convolutions”, in 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2015, Boston,

MA, USA, 7-12 June 2015.

[13] P. Langley, “Elements of Machine Learning”, Journal of Logic, Language and

Information, vol. 7 Issue 1, Jan. 1998.

[14] F. Marini, R. Bucci, A.L. Magri, A.D. Magri, “Artificial neural networks in

chemometrics: History, examples and perspectives”, in Microchemical Journal 88(2),

April 2008.

[15] Edwin R. Griff, “How Neurons Work: An Analogy & Demonstration Using a Sparkler

& a Frying Pan”, in The American Biology Teacher, vol. 68, No. 7, Sep. 2006.

74

[16] J. Han, C. Moraga, “The influence of the sigmoid function parameters on the speed of

backpropagation learning”, in Mira J., Sandoval F. (eds) From Natural to Artificial

Neural Computation. IWANN 1995. Lecture Notes in Computer Science, vol. 930,

Springer, Berlin, Heidelberg, 1995.

[17] S. Marsland, “Machine Learning An Algorithmic Perspective”, 2nd edition, R.

Herbrich, T. Graepel, 2014, [E-book] Available: https://taylorandfrancis.com [Accessed

January 3, 2020].

[18] S. T. Linnainmaa, “Taylor Expansion of the accumulated rounding error”. BIT 16,

June 1976.

[19] M. Hussain, J.J. Bird, D.R. Faria, “A Study on CNN Transfer Learning for Image

Classification”, in 18th Annual UK Workshop on Computational Intelligence, UKCI

2018, Nottingham, UK, June, 2018, A. Lofti, H. Bouchachia, A. Gegov, C.

Langensiepen, M. McGinnity, Eds. vol. 840, Springer, 2018.

[20] L. Torrey and J. Shavlik, “Transfer Learning”, in Handbook of Research on Machine

Learning Applications, E. Soria, J. Martin, R. Magdalena, M. Martinez and A. Serrano,

IGI Global, Jan. 2009.

[21] X. Li, G. Zhang, H.H. Huang, Z. Wang, W. Zheng, “Performance Analysis of GPU-

Based Convolutional Neural Networks”, in 45th International Conference on Parallel

Processing, ICPP 2016, Philadelphia, PA, USA, IEEE, August 16-19, 2016.

[22] K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition”,

in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las

Vegas, NV, USA, IEEE, June 27-30, 2016.

[23] C.G.P. Suescún, J.O.P. Arenas, R.J. Moreno, “Detection of Scratches on Cars by

Means of CNN and R-CNN”, International Journal on Advance Science Engineering

Information Technology, vol. 9, No. 3, May 2019.

[24] C. Pinto, J. Furukawa, H. Fukai, S. Tamura, “Classification of Green coffee bean

images basec on defect types using convolutional neural network (CNN)”, in

International Conference on Advanced Informatics, Concepts, Theory, and

Applications, ICAICTA 2017, Denpasar, Indonesia, IEEE, August 16-18, 2017.

[25] H. Lin, B. Li, X. Wang, Y. Shu, S. Niu, “Automated defect inspection of LED chip

using deep convolutional neural network”, in Journal of Intelligent Manufacturing, vol.

30, 2019, Oct. 2017.

[26] J. Deng, W. Dong, R. Socher, L. Li, K. Li, L. Fei-Fei, “ImageNet: A large-scale

hierarchical image database”, in IEEE Conference on Computer Vision and Pattern

Recognition, 2009, Miami, FL, USA, IEEE, June 20-25, 2009.

[27] X. Tao, D. Zhang, W. Ma, X. Liu, D. Xu, “Automatic Metallic Surface Defect

Detection and Recognition with Convolutional Neural Networks”, Aug. 2018, [Online].

Available: https://www.mdpi.com/journal/applsci. [Accessed Dec. 9, 2019].

[28] Z. Fan, Y. Yu, J. Lu, W. Li, “Automatic Pavement Crack Detection Based on

Structured Prediction with the Convolutional Neural Network”, Feb. 2018, [Online].

Available: https://arxiv.org/abs/1802.02208. [Accessed Dec. 5, 2019].

75

[29] X. Wang, Z. Hu, “Grid-based Pavement Crack Analysis Using Deep Learning”, in 4th

International Conference on Transportation Information and Safety, ICTIS 2017, Banff,

AB, Canada, IEEE, Aug. 8-10, 2017.

[30] X. Xu, Y. Lei, F. Yang, “Railway Subgrade Defect Automatic Recognition Method

Based on Improved Faster R-CNN”, in Scientific Programming, vol. 2018, Article ID

4832972, Feb. 2018.

[31] J. Chen, Z. Liu, H. Wang, A. Núñez, Z. Han, “Automatic Defect Detection of Fasteners

on the Catenary Support Device Using Deep Convolutional Neural Network”, in IEEE

Transactions on Instrumentation and Measurement, vol. 67, Issue: 2 , IEEE, Feb. 2018.

[32] A. Birlutiu, A. Burlacu, M. Kadar, D. Onita, “Defect Detection in Porcelain Industry

Based on Deep Learning Techniques”, in 19th International Symposium on Symbolic

and Numeric Algorithms for Scientific Computing, SYNASC 2017, Department of

Computer Science, West University of Timisoara, Romania, Sept. 21-24, 2017.

[33] C. Gonçalves, “Identificação Automática de Plantas Invasoras em Imagens Aéreas”

Master thesis, Telecommunications and Computer Eng., ISCTE-IUL, Lisbon, 2019.

[34] D. P. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, 2014. [Online].

Available: https://arxiv.org/abs/1412.6980. [Accessed May 5, 2020]

