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Resumo
A marcha tem sido um tema muito investigado nos últimos anos. Através

da análise da marcha é possível detetar patologias, o que torna esta análise muito
importante para avaliar anómalias e consequentemente, ajudar no diagnóstico e na
reabilitação dos pacientes. Existem alguns sistemas para analisar a marcha, mas
habitualmente, ou estão sujeitos a uma interpretação subjetiva, ou são sistemas
usados em laboratórios especializados com equipamento complexo, o que os torna
muito dispendiosos e inacessíveis. No entanto, tem havido um esforço significa-
tivo com o objectivo de disponibilizar sistemas mais simples e mais precisos para
análise e classificação da marcha. Esta dissertação revê os sistemas de análise
e classificação da marcha desenvolvidos recentemente, apresenta uma nova base
de dados com videos de 21 sujeitos, a simular 4 patologias diferentes bem como
marcha normal, e apresenta também uma aplicação web que permite ao utilizador
aceder remotamente a um sistema automático de classificação e assim, obter a clas-
sificação prevista e mapas de características respectivos de acordo com a entrada
dada. O sistema de classificação baseia-se no uso de imagens de representação da
marcha como a Gait Energy Image (GEI) e Skeleton Gait Energy Image (SEI),
que são usadas como entrada numa rede neuronal convolucional VGG-19 que é
usada para realizar a classificação. Este sistema de classificação corresponde a um
sistema baseado na visão. Em suma, a aplicação web desenvolvida tem como final-
idade mostrar a utilidade do sistema de classificação, tornando possível o acesso a
qualquer pessoa.

Palavras-chave: Análise da marcha, Classificação da marcha, Aprendizagem
profunda, Aplicação Web, Servidor Web
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Abstract
Gait has been an extensively investigated topic in recent years. Through the

analysis of gait it is possible to detect pathologies, which makes this analysis very
important to assess anomalies and, consequently, help in the diagnosis and reha-
bilitation of patients. There are some systems for analyzing gait, but they are
usually either systems with subjective evaluations or systems used in specialized
laboratories with complex equipment, which makes them very expensive and inac-
cessible. However, there has been a significant effort of making available simpler
and more accurate systems for gait analysis and classification. This dissertation
reviews recent gait analysis and classification systems, presents a new database
with videos of 21 subjects, simulating 4 different pathologies as well as normal
gait, and also presents a web application that allows the user to remotely access
an automatic classification system and thus obtain the expected classification and
heatmaps for the given input. The classification system is based on the use of gait
representation images such as the Gait Energy Image (GEI) and the Skeleton Gait
Energy Image (SEI), which are used as input to a VGG-19 Convolutional Neural
Network (CNN) that is used to perform classification. This classification system
is a vision-based system. To sum up, the developed web application aims to show
the usefulness of the classification system, making it possible for anyone to access
it.

Keywords: Gait analysis, Gait classification, Deep learning, Web Applica-
tion, Web Server
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Chapter 1

Introduction

This chapter is divided into four different sections. In the first section, the

context and motivation are presented, where it is explained why gait analysis is

important, how over the years it has evolved and also the difficulty of analysing

gait through older methods and how new methods, with the help of technology,

can actually make the analysis more precise. In the second section, the objectives

of this dissertation are presented and, in the third section, the contributions that

were made are described. Finally, the fourth section is the outline section where

an overview of the upcoming chapters is made.

1.1 Context and Motivation

Since this dissertation is about gait analysis, it makes sense to explain the

meaning of the word "gait". The dictionary describes this word as "a particular

way of walking". The way of walking has been studied since it was noticed that

several pathologies are reflected in gait. Several researchers and medical doctors

have recognized a relationship between human gait and diseases such as strokes,

multiple sclerosis, Parkinson’s disease, dementia and aging related impairments.

Analysing gait by its indicators and monitoring it over time can help specialists

with precise and early diagnosis of such disorders.

1



Chapter 1. Introduction

Neurodegenerative disorders [12, 13], aging [14] and injuries can affect gait and

can lead to walking impairments or pathological gait. There are several indicators

which can be extracted from people’s gait, such as step length and joint angles,

which can be analyzed in order to validate if gait is normal or impaired and, in case

of impairment, they can be used to identify which type of pathology is affecting the

subject’s gait. These indicators can be very helpful to identify gait impairments.

As illustrated in Figure 1.1, the most common way of gait assessment consists

of a medical expert observing a patient walking in controlled conditions, e.g. in

a clinical environment, and sometimes can be followed by a survey, in which the

patient is asked to give a subjective evaluation regarding her/his gait. Different

indicators can help to identify different pathologies and these indicators can be

extracted by a variety of systems in many ways. For example, indicators such as

gait speed can help to identify poor balance and significantly slower paces which

are symptoms of some neurological diseases, while step length can help to identify

multiple sclerosis which often shows several gait alterations such as shorter steps

and less gait speed.

Figure 1.1: Medical expert observing a patient walking.

2
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Alternatively, there are automated systems, developed by specialized com-

panies, that can vary from sensors in laboratories and sophisticated equipment,

which can be very expensive and thus having it in a clinical environment may not

be viable, to vision-based systems, which are simpler and easier to use, at least to

have them in a clinical environment.

There has been a rise of new systems and technologies trying to solve the

problem of obtaining objective measures from gait indicators and classifying gait,

especially vision-based systems because of the lower cost and simplicity of calibra-

tion. These systems can be:

• Sensor-based Systems - which can be divided into systems with wearable

sensors and systems with non-wearable sensors. The main goal of systems

with wearable sensors is to measure gait kinematics and kinetics through

the attached body sensors. The main advantage of wearable sensors is that

they can operate in uncontrolled environments due to the fact that these

sensors are attached to the body. The main disadvantage also comes from

the fact that they are attached to the body, which can be intrusive for the

patient and even affect their gait, which obviously can lead to inaccurate

measurements. The systems with non-wearable sensors include floor sensors

and force sensors. These sensors are limited in their length, which restricts

the number of steps that can be measured and analyzed, but in return are

not invasive for the person who is using them.

• Vision-based Systems - which also can be divided into appearance-based

systems and model-based systems. These systems can vary in usage from

fully equipped specialized laboratories to the use of a single video camera,

which means less cost. These systems, based on a single camera have gained

popularity, especially due to the success of automatic analysis systems based

on deep learning vision systems. The main disadvantage of non wearable

sensors, including vision-based systems, is the fact that they can only be

operated in controlled environments. All automated gait classification sys-

tems, including those based on vision, require a training step that needs to

3
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have access to a representative dataset of walking cycles from normal and

impaired gait, in order to learn the classifier parameters. Such datasets can

be really challenging to obtain, due to the fact that having samples of gait

from real patients, that suffer from the pathologies to be detected is not

easy, for instance due to the privacy and ethical issues involved. This is why

all the publicly available datasets were captured from volunteers simulating

different types of gait pathologies, and even the acquisition of such datasets

can be very time consuming and the obtained gait samples will never fully

replicate the impairments that affect a real patient.

The analysis of human gait has become a popular theme of research, as it

can help people in many areas like sports, security/identification and medicine.

For instance, in medicine, gait analysis can reveal key information about people’s

neurological diseases such as Parkinson’s disease [15–17], multiple sclerosis [18–20],

cardiopathies [21] and so on. In this field, the most common way to analyze a per-

son’s gait is the evaluation made by medical expert watching the patient walking.

This method can lead to some uncertainty because it is based on human observa-

tion and it can be subjective. This dissertation work develops a web application

that allows anyone with access to this application to evaluate the video of a per-

son’s gait. Such a web application could have a fundamental role, diagnosing less

urgent patients and leaving only more urgent patients to medical doctors. A prac-

tical and current example of the usefulness of such web application is in the case

of a pandemic outbreak (e.g., COVID-19), in which overcrowding hospitals and

medical centers are to be avoided. However, the usefulness of this web application

is not limited to pandemic times. Well after this crisis has passed, this type of web

application could still help remote populations and people with less resources to

have access to such classification systems, since only an internet connection and a

simple camera are needed.

4
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1.2 Objectives

The first step of this work is to perform a review of the state of the art re-

garding gait analysis and gait pathology classification systems. Then there are

three main objectives to achieve with this dissertation work: (i) to acquire a new

gait dataset replicating a selection of gait pathologies, notably parkinsonian, hemi-

plegic, diplegic and neurophatic gait; (ii) to develop a simple and non-intrusive

solution for the automatic classification of gait videos as normal or as showing

evidence of one of the gait pathologies to be included in the dataset; and (iii) to

develop a web application allowing to remotely upload a gait video or a gait image

representation of a walking cycle, and automatically compute a classification of

the uploaded gait data into one of the classes included in the dataset. The last

two objectives of this work are contained in one contribution, which is the gait

classification web application.

1.3 Contributions

Aside from the state of the art review in which Sensor-based Systems and

Vision-based Systems are discussed, there are two main contributions of this work:

• Acquisition of a new gait dataset - "Gait-IT" — The first contri-

bution is the acquisition of a new gait dataset, containing sequences of 21

subjects simulating 4 types of pathologies as well as performing normal gait.

Each subject performed 2 severity levels per pathological gait type and 4

sequences per severity level besides normal gait. This acquisition was made

in a professional studio.

• Gait classification web application — The second contribution of this

dissertation is a web application, allowing to remotely execute the gait

pathology classification system, which is made available as a web service.

This contribution also includes the gait pathology classification system, which

is also an objective of this dissertation. The interface of this web application

5
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was developed targeting two different types of users, making available two

types of interfaces:

– Basic - who can upload a video of a patient walking and have access not

only to the output of the gait pathology classification system, but also

to a saliency map [22] and a heatmap of class activations [23] displayed

for a Gait Energy Image (GEI), which can be helpful in the patient’s

diagnosis, as the important features extracted by the Convolutional

Neural Network (CNN) are represented in these maps. This user can

also have the analysis results sent to him/her by email, for storage and

possibly for later analysis by a medical expert;

– Advanced - which displays more possibilities for the user, being possi-

ble to upload videos, GEIs and Skeleton Energy Image (SEI)s. In that

way the user can test their own GEI and SEI in the classification system

and they can also have access to the feature map corresponding to the

chosen layer and channel of the deep learning model used. It is also

possible to extract a saliency map and a heatmap of the uploaded gait

representation, being possible to understand what features the CNN

extracted from the uploaded gait representation.

1.4 Outline

This work is organized as follows. Chapter 1, which corresponds to the cur-

rent chapter, briefly introduces the context and motivation for the current work,

along with a set of objectives and contributions for the dissertation. In Chapter

2, the various systems currently used for gait analysis and classification will be

reviewed and analyzed. Chapter 3 presents a new gait dataset called GAIT-IT

dataset, including a complete description of how it was captured, what is included

and how it is organized. Chapter 4 is divided into two sections: (i) the classifica-

tion system which can be used to classify the input images between normal and

different types of pathological gait; (ii) the proposed web application in which it is

possible to upload a gait representation as input and to remotely execute the gait

6



Chapter 1. Introduction

pathology classification system. In Chapter 5, the experiments and results of the

classification system are presented. Finally, Chapter 6 concludes the dissertation

with a summary of the achievements of this work and also some suggestions for

future work.
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Chapter 2

State of the Art on Gait Analysis

This chapter presents an overview of the existing systems that extract biomed-

ical indicators from gait videos, emphasizing the recent solutions using deep learn-

ing vision-based systems. Recent progress with the incorporation of new technolo-

gies has given rise to devices and techniques which allow an objective evaluation

of several gait features, resulting in an efficient measurement and providing medi-

cal doctors with a large amount of reliable information about patients’ gait. This

reduces the error margin caused by subjective techniques. Automatic gait analysis

systems can be classified according to two different types: sensor-based systems

and vision-based systems, as illustrated in Figure 2.1. The gold standard for clin-

ical evaluation is to use a so-called optoelectronic motion capture system [24],

because of the accuracy of the features obtained. A disadvantage of this type of

system is that it can only be operated in special laboratories due to the complex

setup and the need for calibrations before use.

2.1 Sensor-based Systems

Sensors are devices which measure physical properties such as pressure, mag-

netism, or a particular motion. These systems use such devices to acquire signals

representing human motion. Sensors can be attached to the body of the individual,

such as the feet, knees or hips to measure different characteristics of the human

9
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Figure 2.1: High-level overview of the different kind of systems in the field.

gait, or can be setup up on the floor. This section offers a brief overview of the

different types of sensor-based systems used to acquire signals for gait analysis.

2.1.1 Systems with wearable sensors

These type of sensors can capture signals that can be interpreted by the

systems to estimate certain indicators/features relating to: i) kinematics, focused

on the movements of the lower limbs and joints; ii) kinetics, focused on forces

involved in producing movement; iii) Electromyography (EMG) which makes it

possible to obtain the resulting electric activity from muscle contractions during

locomotion.

There are various advantages in using wearable sensor-based systems. They

can acquire gait over long periods of time and can also operate in uncontrolled

environments, so they are not restricted to special laboratories. One of the dis-

advantage of these systems is that setting up an individual with such systems

requires clinical professionals, due to the fact that all sensors placed in the body

(such as the feet, knees or hips) must be precise. This is described in sev-

eral reviews [25, 26]. Additionally, they are also susceptible to noise and inter-

ference from external factors, caused by the possible uncontrolled environment.
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Force Sensors

These sensors measure the forces involved in the production of movement (gait

kinetics). Force sensitive resistors [27] measure the Ground Reaction Force (GRF)

under the foot and can return a voltage proportional to the measured pressure.

These sensors are typically attached to the insole of shoes [28, 29]. The weight

placed on the sensors is inversely proportional to its resistance, and that provides

the change in potential. A novel calibration method of insole sensors to estimate

Vertical Ground Reaction Force (VGRF) during walking using theWii Balance

Board (WBB) was presented in [1], as illustrated in Figure 2.2.

Figure 2.2: Task executions and walkway with measuring devices [1].
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Inertial Sensors

Using a combination of gyroscopes and accelerometers and sometimes mag-

netometers, these sensors are electronic devices that can measure an object’s ve-

locity, acceleration, orientation, and gravitational forces. These systems are called

Inertial Measurement Unit (IMU) systems and are one of the most widely used

systems in gait analysis. In [30], a system with inertial sensors to quantify gait

symmetry and gait normality was developed. A gyroscope is a device used for mea-

suring orientation and angular velocity. Accelerometers calculate the acceleration

by measuring the net force acting on them. In [31], an algorithm was presented

to estimate gait features, from on-body mounted inertial sensors, showing a differ-

ence in step length below 5% when considering median values of the camera-based

gold standard system. The miniaturization of these sensors makes it possible to

integrate them on instrumented insoles for gait analysis, such as the Veristride in-

soles developed by Bamberg et al., which additionally include especially designed

pressure sensors for distributed plantar force sensing, Bluetooth communication

modules and an inductive charging system, as illustrated in Figure 2.3.

Figure 2.3: Instrumented insole: (a) inertial sensor, Bluetooth, microcontroller
and battery module; (b) coil for inductive recharging; and (c) pressure sensors.
Reproduced with permission from Stacy Morris Bamberg (Veristride, Salt Lake

City, UT, USA). [2]
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Electromyography (EMG)

The EMG is an electrical manifestation of contracting muscles. EMG is the

process of recording electrical signals. The EMG signal can be obtained from

the subject by either measuring invasively with wire or needle electrodes, or non-

invasively with surface electrodes, as illustrated in Figure 2.4. In [32], the appli-

cation of Surface Electromyography (SE) is useful for non-invasive assessment of

relevant pathophysiological mechanisms potentially hindering the gait function.

In a study performed by Wentink et al. [33], when the prosthetic leg is leading,

it was determined that EMG signals measured at the prosthetic leg can be used

for prediction of gait initiation. Compared to inertial sensors, EMG can predict

initial movement up to 138ms in advance.

Figure 2.4: Brainquiry Wireless EMG/EEG/ECG system [2]
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2.1.2 Systems with non-wearable sensors

These systems can extract features from people’s gait without attaching any

sensor to an individual’s body. One of the advantages of these systems is that

they are not invasive. This subsection describes a category of non-wearable sen-

sors, called floor sensors, and the other category, called vision-based systems, are

described in section 2.2.

Floor sensors

These sensors can be pressure mats [34], which are able to quantify the pres-

sure patterns under the feet, or force platforms [35], that can quantify, along with

the centre of pressure, the horizontal and shear components of the forces applied.

Figure 2.5: Floor sensor for gait analysis. (a) Steps recognized; (b) time
elapsed in each position; (c) profiles for heel and toe impact; and finally (d)

image of the prototype sensor mat on the floor. [2]
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As illustrated in Figure 2.5, these systems are setup on the floor to capture

information about the gait of individuals walking over it. Force plates are the gold

standard for measuring GRF due to the high accuracy measurements they make

possible, but they are usually expensive for clinical sites and they are also limited

by the available space since they are placed on the ground.

2.2 Vision-based Systems

These systems can be divided into: i) model-based systems, which try to

model the individuals body (by segmenting the different body parts into indepen-

dent shapes, or in the form of a human skeleton model) to perform pathological

classification; and ii) appearance-based systems, that rely on the spatiotemporal

information obtained from motion patterns of the individuals.

2.2.1 Model-based Systems

Model-based systems use depth-sensing cameras or multiple calibrated 2D

cameras. The duration of gait cycle, stance phase, swing phase [36], step length,

step width and other indicators [37] are the features that these systems try to ac-

curately estimate, using the captured 3D skeletal model. In [38], it was performed

classification of gait as being either normal or impaired, capturing a 3D position of

the skeletal joint during a gait cycle (2 steps) and a classification accuracy of 98%

was achieved. Features such as the stride length, stride time and stride velocity

[39] are used in multiple 2D calibrated cameras to perform classification of gait

pathological types.

2.2.2 Appearance-based Systems

Appearance-based systems produce gait representations which do not contain

any prior knowledge of human body. Typically, the original images are not suitable

for analysis, and background subtraction is usually applied on the acquired image

sequences, in order to isolate the observed subject and produce a sequence of binary

silhouette shapes. These systems use a single 2D camera to perform classification of
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gait across different gait related pathologies based on spatio-temporal information

extracted. The features acquired may vary from biomechanical features, such as

step length, leg angles and gait cycle time [3], to biometric gait representations,

such as GEI [40] and SEI presented in [6].

In [3], after pre-processing the images to obtain a binary silhouette, appearance-

based techniques are applied to detect Heel Strike (HS) and Toe Off (TO) events,

as shown in Figure 2.6.

Figure 2.6: External heel and toe estimation [3].

These events can be detected by first defining a bounding box around the

lower part of the silhouette, in which the foot length is the with of the bounding

box when its value is maximum during the gait sequence. After this, external heel

and toe of each frame are calculated as the minimum and maximum silhouette

pixels in the horizontal axis (x). Next, using these points and the foot length, a

bounding box for each foot is obtained and the internal heel and toe are estimated

as the minimum and maximum values of x in each foot bounding box.

2.3 Deep Learning Vision Systems

The use of deep learning vision systems has been frequent in the field of gait

recognition and gait pathological analysis. These methods, after processing raw

input data (videos or images) and turning them into a pre-processed version of the

input data (described further in this section), can execute image feature extraction

and classification. This section starts by defining briefly what is deep learning

and neural networks in a more general point of view. It is almost impossible to

define deep learning without first defining Artificial Intelligence (AI) and Machine
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Learning (ML). Usually AI is defined as the effort to automate intellectual tasks

normally performed by humans [4]. ML is a sub-field of AI, as illustrated in Figure

2.7.

Figure 2.7: High-level structure of artificial intelligence, machine learning, and
deep learning in [4]

.

ML can be defined, in fact, as an application of AI that provides systems the

ability to automatically learn and improve from experience without being explicitly

programmed. Machine learning algorithms are often categorized as:

• Supervised Machine Learning algorithms - which can apply what has

been learned in the past to new data using labeled examples to predict future

events.

• Unsupervised Machine Learning algorithms - are used when the in-

formation used to train them is neither labeled nor classified.

• Reinforcement Machine Learning algorithms - is a learning method

that interacts with its environment by producing actions and discovers errors

or rewards. Trial and error search and delayed reward are the most relevant

characteristics of reinforcement learning.

As illustrated in Figure 2.7, Deep Learning (DL) is a subfield of ML and uses

algorithms inspired by the structure and function of the brain called Artificial

Neural Network (ANN). ANN are composed of layers of nodes, which are de-

signed to behave similarly to a neuron in the brain. The first layer of a Neural
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Network (NN) is called the input layer, followed by hidden layers and finally the

output layer, as shown in Figure 2.8.

Figure 2.8: Artificial Neural Network architecture example showing the differ-
ent layers.

2.3.1 Image Pre-processing

There are a lot of different forms in which an image or a video can be trans-

formed into input data. Since raw data is rarely used directly as input data in this

context, this is a fundamental stage. In this subsection, an overview about pre-

processing techniques will be made, such as background subtraction, and different

types of image representations, such as Gait Energy Images (GEIs), Skeleton Gait

Energy Images (SEI), pose heatmaps and optical flow images.

Background Subtraction

Usually, background subtraction is the first step of Deep Learning Vision

Systems when classifying gait. The main goal of such technique is to distinguish

the static background from the detected foreground objects, storing a mask of the

pixels belonging to the foreground as a binary image, representing the background
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pixel values in black and the others in white (foreground). This technique is widely

used for surveillance purposes. Mixture of Gaussians model is the most common

approach and it was developed by Stauffer and Grimson [41]. Bouwmans et al.

[42] made a survey of the numerous improvements of the original MOG.

Deep Learning Vision Systems, when used to performed gait classification

using silhouettes, depend on the quality of the used silhouettes, which makes the

background subtraction step of the utmost importance, due to the fact that it can

have a significant influence in the quality of a silhouette.

Optical Flow Computation

The definition of optical flow is the motion of objects between consecutive

frames of a sequence, caused by the relative movement between the object and

camera. Optical Flow images can be an input for CNN and in [43], it was shown

that it was advantageous, rather than using single frames only for the videos

recognition taks.

Gait Energy Image (GEI) Computation

A very popular biometric gait representation when classifying different gait

pathology types is GEI [44]. Such representation contains the dynamic gait infor-

mation about a full gait cycle, compressed into one image. After obtaining the

binary images corresponding to a full gait cycle, a GEI is computed as in 2.1.

GEI(x, y) =
1

N

NX

i=1

Bi(x, y) (2.1)

as proposed by Han and Bhanu [44], where N represents the number of frames in

one (or multiple) gait cycle(s) and Bi(x, y) is a binary silhouette image, with x

and y pixel coordinates. The main advantage of this representation is the fact that

it represents relevant information such as body posture, amplitude of movement

and gait symmetry from a full gait cycle, in one image.
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Figure 2.9: Gait sequence through a series of key silhouettes, and the resulting
Gait Energy Image (GEI) [5]

This gait representation is commonly used in deep learning systems, especially

in the ones using CNNs.

Skeleton Gait Energy Image (SEI) Computation

This representation was proposed in [6], having achieved better results than

GEI representation with the VGG-19 architecture and the GAIT-IST dataset to

train. The first step to compute this representation is to obtain the skeleton joints

from the videos of people’s gait. To obtain this information, the OpenPose system

[11] is used, as exlplained in more detail in Chapter 3. Such algorithm can take the

captured videos as input and return, from each frame of the video, 2D coordinates

from different parts of the body. After having all these coordinates for all the

frames, the skeleton is drawn using the OpenCv library [45].

Figure 2.10: Down-sampled set of skeleton frames corresponding to one com-
plete gait cycle (left) and respective SEI (right)[6].
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The last step of computing this representation is similar to GEI. After having

all gait cycles, a SEI is the mean image of all binary skeleton images corresponding

to a full gait cycle, as illustrated in the right side of Figure 2.10.

2.3.2 Convolutional Neural Networks

CNNs are one of the most used deep learning architectures. They have proved

to be very accurate in areas such as image recognition and classification. CNNs

have gained popularity as a good image recognition system in the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) [46]. ImageNet is a large visual dat-

set and its purpose is to help develop visual object recognition software research.

A CNN is a class of deep neural networks that can successfully capture the spatial

dependencies in an image through the application of relevant filters. These filters

capture more and more specific features, as the layers progress, so that more com-

plex structures in the image are detected. The performance of silhouette-based

gait recognition systems has increased since the use of deep CNNs, such as VGG-

16 in [47]. In the medicine field, CNNs have also shown improvement in detecting

Alzheimer’s disease as seen in [48], with transfer learning. Due to the fact that

there are not many datasets for gait pathology classification publicly available and

the ones available are small datasets, training data can be insufficient for training.

CNNs need a significant number of images for the model to be trained effectively.

This recurring problem is expected to result in problems such as overfitting, but

it can be resolved by:

• Data Augmentation - is one of the techniques that can be used to avoid

insufficient data when training the model. Images are the input data for

CNNs, so image augmentation is performed by flipping the image horizon-

tally or vertically, rotating the image by a specified degree, shifting one part

of the image like a parallelogram, zooming in or zooming out and changing

brightness or contrast. Such a technique can be applied as a pre-processing

step before training the model or can be applied in real time. In [7], image

augmentation was performed over 160 GEIs on the training dataset by using
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small shifts, shear, zoom and horizontal flipping, generating a total of 480

GEIs.

• Transfer Learning - is a machine learning technique where a model devel-

oped to address one issue is reused as a starting point to address another

related issue. This is a popular approach in deep learning where pre-trained

models are used as the starting point on computer vision tasks. In [7] pro-

posed system, it is used a VGG-19 model pre-trained in ImageNet [46] and

to fine-tune the model parameters, part of the network is retrained with gait

GEIs from the available dataset.

Figure 2.11: Feature extraction (VGG-19) architecture [7]

22



Chapter 2. State of the Art on Gait Analysis

Many authors, like Verlekar et al. [7], used the CNN for feature extraction,

fine-tuning a pre-trained VGG-19 network to extract features from GEI im-

ages, as illustrated in Figure 2.11. The first fully connected layer is taken

as a feature vector and Linear Discriminant Analysis (LDA) and Principal

Component Analysis (PCA) are used for classifcation between normal gait

and four types of gait abnormality, achieving an accuracy of 95% using the

DAI Gait Dataset 2 [40]. In [6], using the same feature extraction technique

and LDA to classify the different pathologies instead of using the last layer

of the CNN to classify showed several improvements. The overall validation

accuracy improved from 43.3% to 76.7% performing a cross-dataset scenario

in which GAIT-IST [6] was used to train the model and DAI Gait Dataset

2 [40] to test it.

2.3.3 3D Convolutional Neural Networks

3D Convolutional Neural Networks extend the convolutional filters to a third

dimension, which corresponds to time, in that way they can take in consideration

spatio-temporal information. In [8], one of the earliest implementations of such

architectures was made, for action recognition purposes. As illustrated in Figure

2.12, the input is composed of seven frames, which represent the size of time

dimension of the convolutional filters.

Figure 2.12: 3D CNN architecture for human action recognition [8].

In [49], the first large scale application of 3D convolutional networks was done

with the objective of classifying sports. In the work of Simonyan and Zisserman
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[50], two CNNs were used, one operating on individual RGB images and the other

one operating on optical flow. By combining their softmax activations using an

SVM good results were obtained. In [51], it was also used a 3D CNN, but with a

deeper structure fully exploiting spatio-temporal features for video classification.

2.3.4 Recurrent Neural Networks (RNN)

The main difference between a Recurrent Neural Network (RNN) and the

basic feed forward neural networks is that RNNs can learn from prior inputs while

generating outputs. These networks are influenced not just by weights applied on

inputs, but also by a “hidden” state vector representing the context based on prior

input. Long Short Term Memory (LSTM) recurrent networks have gained pop-

ularity due to the fact that LSTM operations allow the LSTM to keep or forget

information, so they have the capability of modeling both short and long term

dependencies. This special RNN structure has proven to be powerful in several

previous studies [52–55].

Usually these networks are used for forecasting problems, such as weather fore-

casting. In [56], a ConvLSTM network approach was presented in which the idea

of FC-LSTM was extended. Most recently, this approach has been used for human

gait recogition [9], where a variation of Gait Energy Images, i.e. frame-by-frame

GEI (ff-GEI) was presented, which aims at expanding available and trainable gait

data. This ConvLSTM network consists of three convolutional layers, three pool-

ing layers, one fully connected (FC) layer, three LSTM layers, and one soft-max

layer as illustrated in Figure 2.13. The ff-GEIs are fed into three two-tuple sets

(convolutional layer and pooling layer). A CNN is used for feature extraction

in each image frame and then LSTM is used to classify each frame, considering

temporal information.

2.3.5 Generative Adversarial Networks

Generative Adversarial Network (GAN) are convolution based networks that

rely on the generation of new data. Usually, in gait analysis, the generation of

new data consists in changing the input view angle or eliminating the impact of
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Figure 2.13: The architecture of the proposed gait recognition network based
on Conv-LSTM [9] .

clothes and objects being carried by the subject, due to the fact that the shape of

the silhouette can change.

A GAN has a discriminator network, which takes as input either generated

data or real data and classifies it as being either real or generated, and also has

a generative network which is made of an encoder and decoder that encodes the

input data and then generates new data based on the distribution of training

data. In [57], a method named GaitGAN was proposed. This approach differs

from the traditional GAN, which has only one discriminator, in that GaitGAN

contains two discriminators. One is a fake/real discriminator which can make the

generated gait images to be realistic. Another one is an identification discriminator

which ensures that the the generated gait images contain human identification

information. In [58], a Two-Stream Generative Adversarial Network (TS-GAN)

method is proposed for cross-view gait recognition purposes. For any view of

gait representations, GAN can restore it to the corresponding standard view, to

learn view invariant gait features, having the global-stream that can learn global

contexts and the part-stream that can learn local details. The two streams were

combined to learn final identities and the proposed method was evaluated on two
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widely used gait datasets: CASIA-B and OU-ISIR.
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Gait-IT Dataset Acquisition

Due to the difficulty of obtaining gait sequences from real patients and also

due to the privacy and ethical issues involved, there are currently not many pub-

licly available gait datasets dedicated to the study of pathological gait. For this

reason, it was decided to create a new dataset in the context of this dissertation,

called the GAIT-IT dataset. The acquisition of this dataset was a collaboration

with Pedro Albuquerque, a master’s degree student of Electrical and Computer

Engineering (MEEC) at Instituto Superior Técnico - Universidade de Lisboa, and

Fundação para a Computação Científica Nacional (FCCN) which provided the

recording studio and the necessary resources to make the dataset acquisition. This

collaboration made it possible to have more volunteers for the experiment than

would otherwise be available and the shared knowledge also allowed to better

define the acquisition conditions (and, accordingly, instruct the subjects how to

proceed).

This chapter first overviews the most important pathological gait datasets

publicly available. This is followed by a description of each pathological gait that

will be considered for the acquisition of this dataset, as well as a full description of

how the dataset acquisition was made. Finally, the chapter ends with a description

of the image pre-processing operations, for the reader to understand how the

various components available in the dataset were obtained.
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3.1 Existing Gait Datasets

The existing gait datasets were created with two different objectives, notably:

i) for gait recognition purposes; or ii) for pathological gait analysis. For gait

recognition purposes, subjects are typically required to walk normally, possibly at

different speeds, with different types of shoes, with different clothing or carrying

different items. Currently, there is a significant number of such datasets publicly

available. For this dissertation, however, the focus is the study of pathological

gait and, therefore, the following overview focuses on publicly available datasets

for this purpose, which are summarized in Table 3.1 and are much fewer than those

available for recognition purposes. The four pathological gait datasets included in

Table 3.1 were all captured from a canonical viewpoint and recorded in controlled

environments.

The first dataset, the DAI gait dataset 1 [59], contains binary silhouettes of

5 walking individuals, corresponding to a total of 30 gait sequences. It has 15

sequences considered normal gait, and another 15 sequences of random abnormal

gait simulations. The individuals are captured walking over a distance of 3 m

using the RGB camera of a Kinect sensor and also using a smartphone.

The second dataset, the DAI2 gait dataset [60], was also created considering

5 walking individuals, but contains a total of 75 gait sequences. Every person

simulates four pathologies (Parkinson’s, diplegia, hemiplegia and neuropathy), as

well as a normal walking gait sequence. Each condition was recorded 3 times,

while walking along a distance of 8 m.
1
http://hdl.handle.net/10045/70567

Datasets Y ear Individuals Sequences GaitType Total
DAI [59] 2016 5 3 2 30
DAI2 [60] 2017 5 3 5 75
INIT [5] 2018 10 2 8 (limitations) 80

GAIT�IST [6] 2019 10 4 5 360

Table 3.1: The most notable pathological gait datasets publicly available
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The third dataset, the INIT gait dataset 2 [5], contains binary silhouettes of

ten individuals (nine males, one female), consisting of a total of 160 sequences.

Every subject is recorded 2 different times in a studio, at 30 fps, capturing multiple

gait cycles and simulating seven different gait impairments (in addition to a normal

gait sequence): i) right arm motionless; ii) half motion of the right arm; iii) left

arm motionless; iv) half motion of the left arm; v) full body impairments; vi) half

motion of the right leg; and vii) half motion of the left leg.

The fourth and largest dataset, the GAIT-IST gait dataset 3[6], simulated by

10 walking individuals, contains a total of 360 gait sequences. The dataset includes,

for each gait type, sequences with 2 severity levels, 2 directions of walking and 2

repetitions per participant, except for the normal gait, due to the fact that it

does not have different severity representations. The four pathological gait types

are the same considered in DAI2. The video capture was done using a cellphone

camera with a resolution of 1280 ⇥ 720 pixels, supported on a tripod at a height

of about 1.5 m and at a distance of about 4 m from the target.

3.2 Proposed Gait Dataset

Due to the very limited number of publicly available gait datasets dedicated

to the study of pathological gait, it was decided to acquire a new dataset for

this purpose called GAIT-IT dataset. For this dataset, the abnormal types of

gait chosen were the following: diplegic, hemiplegic, neuropathic and parkinsonian

gaits. This choice was made based on the fact that there were already two datasets

(i.e., DAI2 and Gait-IST) simulating these abnormal types of gait, making it

possible to perform cross-dataset tests. These abnormal types of gait are also

defined by a set of symptoms and movements that can be easily simulated. All

volunteers were instructed to simulate two severity levels for each of the following

pathological gait types, according to the given instructions:
2
https://www.vision.uji.es/gaitDB/

3
http://www.img.lx.it.pt/GAIT-IST/
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• Hemiplegic gait - The subject stands with unilateral weakness on the

affected side (which in this case is the right side), arm flexed, adducted

and internally rotated. With ambulation, the right leg moves in a circular

movement. The left side of the body remains normal. In the first severity

level, the right arm is slightly flexed and leaning against the waist, and the

affected leg makes smaller circular motions. In the second severity level, the

affected arm is leaning against the chest, the hand is closed and the affected

leg emphasizes the circular motion.

Figure 3.1: Frontal/side views example of the first severity level of the hemi-
plegic gait simulation.

Figure 3.2: Frontal/side views example of the second severity level of the
hemiplegic gait simulation.

• Diplegic gait - Also known as scissors gait, both sides of the body are

affected. The subject walks dragging both legs in circular movements and

scraping the toes against the floor. In the first severity level, the arms

are flexed, the body is leaning slightly forward and the legs make a smooth

circular motion. In the second severity level, the arms are leaning against the

chest, knees are closer together and the legs make a bigger circular motion.

Figure 3.3: Frontal/side views example of the first severity level of the diplegic
gait simulation.
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Figure 3.4: Frontal/side views example of the second severity level of the
diplegic gait simulation.

• Neuropathic gait - Also known as steppage gait or equine gait, it is char-

acterized by attempting to lift the legs high enough during walking so that

the foot does not drag on the floor. The difference between severity levels

is that in the second level of severity it almost seems that the subject whips

his/her leg, because of the foot drop.

Figure 3.5: Frontal/side views example of the first severity level of the neuro-
pathic gait simulation.

Figure 3.6: Frontal/side views example of the second severity level of the
neuropathic gait simulation.

• Parkinsonian gait - The subject is stooped with the head and neck forward,

with flexion at the knees. The subject walks with slow little steps, while

slightly shaking his/her body. The second level of severity consists only

in a slight exaggeration of these symptoms, with smaller steps and more

inclination of the body.

Figure 3.7: Frontal/side views example of the first severity level of the parkin-
sonian gait simulation.
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Figure 3.8: Frontal/side views example of the second severity level of the
parkinsonian gait simulation.

3.3 Dataset Acquisition

A total of 21 subjects (19 males and 2 females) in the age range of 19-56

years old participated in the dataset acquistion, as illustrated in Figure 3.9. Each

subject performed 2 severity levels per pathological gait type, 4 sequences per

severity level besides normal gait. Considering that there were 2 subjects repeating

the experience (on another day and with different clothes), this makes a total of

828 sequences.

Figure 3.9: Histogram representing the age range of the 21 subjects who have
participated in the GAIT-IT dataset aquisition

Sequences were acquired using three different cameras:

• The first camera (4K professional camera) was placed approximately 3 m

from the target at 1.75 m from the ground, pointing at an empty chroma-

keying background to capture the side view.

• The second camera (4K professional camera), at the same height as the first

camera, was placed facing the target to capture a frontal view of the subject.

This camera was synchronized with the previous one.
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• Finally, the third camera was a cellphone camera with a resolution of 720p,

supported on a tripod at a height of about 1.5 m, to also obtain a side view,

but with a different quality. The scene was illuminated with artificial lighting

all the time. All the studio information is available at FCCN’s website 4.

In each take, the subject walks parallel to the first camera plane, two times

from left to right and another two times from right to left, making a total of 4

sequences. In the first and third cameras, it was possible to capture at least 3 gait

cycles and, in the second camera, it was only possible to capture at least 2 gait

cycles, due to the fact that the frontal view does not capture the full body during

all the recording time. The number of gait cycles extracted from the subjects’

gait varied between gait types and subjects. The Gait-IT dataset is organized by

gait type, including the 21+2 subjects, and contains 4 different representations:

silhouettes, skeletons, GEIs and SEIs. These representations are saved by view

(side view and frontal view) in 2 different folders, and contain 4 sequences per

severity level in abnormal gait types and 4 sequences for the normal gait type.

3.4 Image Pre-Processing

The obtained images have to go through several processing stages in order

to obtain the desired representations, notably silhouettes, skeletons, GEI, and

SEI. There are many possible representations, but the ones used in this work (in

Chapter 5) are: i) the GEI since they were also used in [59], [60] and [6]; and ii)

the SEI used in [6].

3.4.1 Binary Silhouette Extraction

To obtain the binary silhouette representation, after extracting the raw frames

from the captured videos, the extracted frames were converted into binary silhou-

ette images. All the videos were captured in a recording studio as mentioned
4
https://www.fccn.pt/en/collaboration/studio/
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(a) Frontal view back-

ground

(b) Side view back-

ground

(c) Frontal view background HSV

representation

(d) Side view background HSV repre-

sentation

Figure 3.10: Side and frontal views of the chroma-key background and their
respective HSV histograms.

before, so the background subtraction task was simplified since the uniform il-

lumination and colour of the background allowed using segmentation techniques

based on chroma-keying techniques.

For this task, an image of the chroma-keying background was used to extract

the HSV (hue, saturation, value) representation of the background color, as shown

in Figure 3.10. HSV is an alternative colour space representation of the original

RGB (red, green, blue) color representation and it was possible to have the mea-

sured values of: i) hue, which is the most important component since it is the

color appearance; ii) saturation, which determines how intense the color is; and

iii) value, which determines the lightness of an image.

Figure 3.11: Background subtraction of a side view silhouette (left) and frontal
view silhouette (right).

After having all the measured values from both background views (side and

frontal views), it was possible to apply a filter in all silhouette frames and identify

the pixel values within the range of the measured values in HSV representation. In
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that way, as illustrated in Figure 3.11, it was possible to convert them into binary

images, representing those pixel values in black (background) and the others in

white (foreground).

3.4.2 Silhouette Size Normalization

After background subtraction, image resizing is the next stage and it is very

important in the pre-processing stage, due to the fact that input sizes and shapes

can vary, depending on the system that is going to be used after. The size normal-

ization step is really important, there are different input sizes for different systems

and approaches. For instance, typical CNNs usually require a fixed image input

size. CNNs such as VGG-19, VGG-16, and ResNet50 require an image input size

of 224⇥ 224, but Xception requires an input size of 299⇥ 299.

Figure 3.12: Computation of the bounding box of the silhouette (left) and its
full resized silhouette (right).
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As can be seen in Figure 3.12, by using a bounding box around the foreground

object, a cropped image of the silhouette is obtained. After that, it is possible to

measure the height of the image and then the image is padded with zeros from

both sides until the with of the image is equal to the height, forming a perfect

square. That way the image is prepared to be resized to any size because it will

always be resized by its mass center. Finally, the image was resized to the desired

width and height, 224⇥ 224 pixels, since this is the input size typically expected

by existing CNNs (such as VGG-19).

3.4.3 Gait Energy Image (GEI)

After the resizing stage, it is now possible to obtain the gait energy image

representation. To obtain such a representation, we need to obtain a full gait

cycle from which a GEI will be extracted. Since a full gait cycle contains two

walking steps, we need to count the steps of each subject. This is accomplished

by measuring the step size and drawing the corresponding evolution along time,

as illustrated in Figure 3.13.

Figure 3.13: Final resized silhouette image with feet euclidean distance repre-
sentation (left) and a plot of its width along a full gait sequence (right)
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The step size is measured by applying the findContours() function from

openCV library to the lower part of the silhouette, finding the contours of both

legs and in that way it is possible to have the coordinates of the leftmost point of

the left leg and the rightmost point of the right leg, illustrated in the left side of

the Figure 3.13. These points correspond to the heel of the back leg and the toe

of the front leg, respectively. The euclidean distance in a two dimensional space

between points p and q, if p = (p1, p2) and q = (q1, q2), is given by:

d(p, q) =
p
(q1� p1)2 + (q2� p2)2 (3.1)

The euclidean distance between these two points was computed, as we can see in

the right side of Figure 3.13. By measuring this this distance along time, makes

it possible to count the steps of each gait sequence, since each step corresponds

to the maximum distance between these two points. For each full gait cycle (i.e.,

two steps), a GEI is computed by the equation presented in Chapter 2, Section

2.3.1. The result is a grey-level image with the mean values of each pixel across

all frames, comprising motion features of a full gait cycle in a single image.

As mentioned before, the frontal and side cameras were synchronized, so all the

frontal and side frames were extracted with the same frame rate. In that way, it

was also possible to obtain frontal view GEIs, as illustrated in Figure 3.14. There

are less frontal GEIs than side GEIs, since the proximity between the subject and

the frontal camera in some moments was such that the camera could not capture

the full body of the subject.

Figure 3.14: Side view GEI (left) and frontal view GEI (right) of the same
subject at the same exact moment of the sequence (normal gait).
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3.4.4 Skeleton Extraction

The OpenPose system [11] is used to compute skeleton joints information from

gait videos. The algorithm can extract a set of 2D coordinates, for each frame,

from videos of walking people, corresponding to different parts of the human body,

as shown in Figure 3.17. The system architecture consists of a multi-stage CNN,

as illustrated in Figure 3.15.

Figure 3.15: CNN architecture in [10].

The network predicts a set of 2D confidence maps, corresponding to the loca-

tion of different body parts, as well as a set of Part Affinity Field (PAF)s able to

encode the level of association between parts. The PAFs are a feature representa-

tion introduced by this work that preserves location and orientation information

about the limbs. The confidence maps and PAFs are ultimately parsed to output

2D coordinates of the anatomical keypoints.
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Figure 3.16: Pose output format of detected body parts using OpenPose
[11]. Extracted coordinates: 0-Nose, 1-Neck, 2-RightShoulder, 3-RightElbow,
4-RightWrist, 5-Left Shoulder, 6-Left Elbow, 7-Left Wrist, 8-Hip (Middle), 9-
Hip (Right), 10-Right Knee, 11-Right Ankle, 12-Left Hip, 13-Left Knee, 14-Left
Ankle, 15-Right Eye, 16-Left Eye, 17-Right Ear, 18-Left Ear, 19-Left Big Toe,
20-Left Small Toe, 21-Left Heel, 22-Right Big Toe, 23-Right Small Toe, 24-Right

Heel

After having a set of body part coordinates for each frame of the videos, as

illustrated in Figure 3.16, the skeletons are then obtained by drawing a line be-

tween pairs of extracted keypoint coordinates according to these labels.
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(a) Rendered skeleton on a side

view frame

(b) side view binary skeleton

(c) Rendered skeleton on a

frontal view frame

(d) frontal view binary skeleton

Figure 3.17: Side and frontal views of the openPose extraction coordinates
and respective skeleton representation

3.4.5 Skeleton Gait Energy Image (SEI)

The SEI representation was first introduced in [61], showing better results in

the classification task of the proposed system than the GEI representation. The

SEI is obtained in the same way GEI is obtained. However, instead of silhouette

frames, SEIs are obtained with skeleton frames. Steps are calculated through the

euclidean distance between the leftmost point and the rightmost point of the skele-

ton legs, as done above for the GEI representation. Each step corresponds to the

maximum measured euclidean distance between feet and, for each full gait cycle,

one SEI is computed.
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Figure 3.18: Side view SEI (left) and frontal view SEI (right) of the same
subject at the same exact moment of the sequence (normal gait)

The frontal view SEI, as illustrated in the right side of Figure 3.18, was

computed without the head of the subject. Due to the fact that there were many

frames in which the head did not appear because of the proximity of the camera

and its perspective. It was decided to remove the head of the subject for this

representation, since it is not an important feature of this representation for gait

classification.

3.5 Final Remarks

The GAIT-IT dataset was achieved due to the fact that there are currently

not many publicly available gait datasets dedicated to the study of pathological

gait. This dataset is organized by pathology gait type folders, where inside of each

folder there is a list of 21+2 subjects. For each subject folder there are 5 more

folders: i) GEI, which is further divided into a side view folder, containing all

the side view GEIs by severity level, and a frontal view folder, containing all the

frontal view GEIs by severity level; ii) SEI, which is also further divided into a side

view folder, containing all the side view SEIs by severity level, and a frontal view

folder, containing all the frontal view SEIs by severity level; iii) Silhouettes, where

all the silhouette frames extracted from the recorded videos are stored. These

silhouettes are organized by side view and frontal view; iv) Skeletons, which were

extracted from the open pose system. The Skeletons are also organized by side

view and frontal view; v) Pose, which is also organized by side view and frontal

view, and contains all the body part coordinates for each skeleton frame.
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Chapter 4

Proposed Gait Classification Web

Application

This chapter presents the proposed gait classification application, which con-

tains two main components:

• Classification System - that is able to accept a visual representation of

a person’s gait, in the form of a GEI or a SEI, and classify the gait as

being either normal or impaired, and in the case of being impaired as either

parkinsonian, hemiplegic, diplegic or neurophatic gait;

• Web Interface - able to accept a gait input and to remotely execute the gait

pathology classification system, which is made available as a web service.

The ultimate goal of this work is to allow anyone with access to this appli-

cation to evaluate the video of a person’s gait, by uploading a video (which is

converted into GEI), a GEI or a SEI gait representation.

4.1 Classification System Description

This classification system is divided into: image pre-processing, feature ex-

traction and classification, as illustrated in Figure 4.1.
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Figure 4.1: Diagram of the classification vision system steps.

As in [6], when using GEIs as input, fine-tuning involved re-training the last

3 convolutional blocks of the VGG-19 convolutional base. For the SEI represen-

tation, the best results were achieved by retraining all blocks except the first one.

Fine-tuning is done using backpropagation, considering categorical cross entropy

as the loss function, Stochastic Gradient Descent (SGD) with the Nesterov mo-

mentum variation as the optimizer and a learning rate of 0.0002.

The training and validating are made by the classification system. After the

pre-processing step, described in Chapter 3, Section 3.4, the CNN performs feature

extraction in the desired input images (GEI or SEI), as illustrated in Figure 4.2,

in order to obtain a feature vector for every image input. After performing feature

extraction, the last layers of the CNN perform classification between 4 pathologies

and normal gait. There are two different input representations (GEIs and SEIs)

for the CNN and in that way there are two CNNs, one trained and validated with

GEIs and another one trained and validated with SEIs.

Figure 4.2: Diagram representing the high-level architecture of the classifica-
tion system.
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The classification step, represented in Figure 4.3, is made by the direct clas-

sification using the VGG-19, after the feature extraction step and after obtaining

the feature vectors.

Figure 4.3: Diagram of the classification step implemented.

The architecture of the system proposed in [6] was used. Although the GAIT-

IT dataset is the largest dataset publicly available in this field, problems such as

overfitting are still likely to occur, due to the fact that the data is still not enough

to be able to to completely retrain the network. Transfer leaning, explored in [62],

[6] and [7], was the chosen technique to overcome this issue, using a VGG-19 deep

neural network [63], pre-trained on a subset of the ImageNet dataset [64], and fine-

tuned using the selected pathological gait dataset. The VGG-19 takes as input

images of size 224⇥ 224 with 3 channels, which go through 5 convolutional blocks

for feature extraction, each consisting of consecutive convolutional layers followed

by a max-pooling layer, as illustrated in Figure 4.4. Classification is then made

with a set of 3 fully connected (FC) layers at the end of the architecture. The first

two FC layers have 4096 units, corresponding to the size of the flattened feature

vector output by the fifth convolutional block. The third and last FC layer has a

softmax activation function and was modified to have 5 units corresponding to the

5 gait classes considered here for classification: diplegic, hemiplegic, neuropathic,

parkinsonian and normal gaits.
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Figure 4.4: Architecture of the VGG-19 network, with the third fully con-
nected layer modified. The first FC-4096 corresponds to the layer whose output

is used as a feature vector [6].

4.2 Web Interface Description

The major advantage of this web interface is to have remote access to the

classification system described in Section 4.1, thus making it possible for everyone

with an internet connection to access it and test it. The gait classification web

application has two different interface modes:

• Basic - The first interface mode could be used by medical doctors, nurses

and technicians, who could use the web application in a clinical environment

or a hospital. It could be used as a first stage of the diagnosis process or

simply to help the medical doctor to detect and extract important features

from the patient’s gait. These users will be able to upload a video into

the web application, generate a GEI and get the predicted pathology by

the classification system. They will also have access to saliency maps and

heatmaps to better understand what features the classification system gave

more importance to. If the user so desires, all this information can be sent

by email to the patient through the web application, automatically.

• Advanced - The second interface mode could be used by researchers in this

field or students with interest in this field, with the necessary deep learning

skills, but also healthcare professionals with expertise and experience in this

web application. These users will have access to more features than the

users in the previous group. Like the users in the previous group, they have

the possibility to upload a video, but in addition to this they also have the

possibility to directly upload a GEI or a SEI. This additional possibility is

due to the fact that these users may want to use the web application to test
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their own GEI or SEI in the classification system. They not only have access

to saliency maps and heatmaps, but also to the feature map extracted from

a certain layer and channel chosen by the user. This allows these users to

better understand the filters applied by the CNN in each layer and channel.

The use of a web service allows an outside web application to have access to the

classification system, even if it is not written in the same programming language.

The web application was developed using Hyper Text Markup Language (HTML),

Cascading Style Sheets (CSS) and Javascript for the front-end and Python for the

back-end. The main goal of such a web application is to allow the user to access

the trained model and its pathology classification from an outside application

and that is only possible using a web service. The web service used for this web

application was Flask 1, which allowed to deploy the previous trained models.

The fact that Flask is written in Python and allows using frameworks such as

Tensorflow and Keras is fundamental since these frameworks were used before to

train and validate the models. Flask is a lightweight Web Server Gateway Interface

(WSGI), which is a specification that describes how a web server communicates

with web applications and how web applications can be chained together to process

one request. Deploying a model into a web service allows the user to access it from

the web application. By uploading the models input into the web application, it

is possible to make a Hypertext Transfer Protocol (HTTP) request to the web

service, and the web service sends back a HTTP response to the web application,

as shown in Figure 4.5. HTTP is a protocol designed to enable communications

between clients and servers.
1
https://flask.palletsprojects.com/en/1.1.x/
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Figure 4.5: Web application request and response.

The communication between server and client is what allows the user of the

web application to have access to the classification system and all the different

maps representing the extracted features, since both can only be obtained by

requesting it to the server.

4.3 Gait Classification Web Application Scenarios

In this section, two different scenarios will be presented, corresponding to the

two possible modes, to help the reader better understand the gait classification

web application and its functionality.

The first scenario is a simulation of the basic interface mode, in which the user

uploads a video (of the patient’s gait) into the web application. After uploading it,

the user can ask the application to generate a GEI and get the automatic system

classification result. The user will also be able to see a saliency map and a heatmap,

highlighting which areas of the GEI contributed most to the classification decision.

Finally, it is possible to automatically send all the information about the patient’s

diagnosis to the application user, or even to the patient, by email.

The second scenario simulates the advanced interface mode, in which the user

can directly upload a GEI and/or a SEI, using the web interface in the same web

page. Afterwards, the user will be presented the classification result obtained by

the automatic gait classification system. For each uploaded gait representation,

GEI and/or SEI, the corresponding pre-trained CNN model is used by the web

service. After getting the classification result for the uploaded GEI and/or SEI, the
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user can choose to visualize detailed information about the feature maps created by

the CNN for this input - there is an option to select the CNN layer and a specific

channel of the layer to be visualized. The user will also be presented with the

saliency map and the heatmap, illustrating the areas of the GEI and/or SEI that

contributed most to the obtained classification result. It is therefore possible to

compare the maps and the extracted features for the different gait representations.

4.3.1 First Scenario: Basic Mode

In this scenario, the basic interface mode is considered. This mode is es-

sentially for users such as medical doctors, nurses and technicians, to use it in a

clinical environment or in a hospital for a first diagnosis of the patient or even to

help the medical doctor to extract features from the patients gait. By clicking on

the diagnosis button, presented in the home page, as shown in Figure 4.6, the user

can start the patient’s diagnosis on the Gait Classification Web Application.

Figure 4.6: Gait Classification Web Application home page
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To choose how the diagnosis will be done, the user has to choose which type

of interface mode he/she wants to use. As mentioned before, the interface mode

considered in this scenario is the basic mode, as illustrated in Figure 4.7 where

that option is highlighted.

Figure 4.7: Selection of interface mode in the Gait Web Application: Basic.

After choosing the basic mode, an interface with all the possible interactions

with the user is presented, as shown in Figure 4.8.

Figure 4.8: Web page with all the available interactions for the basic interface
mode.
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Here, the user can upload the patient’s video into the web application and

generate a GEI for it. After generating the GEI, the user is informed of the

predicted classification for the uploaded gait video sequence. This sequence is

presented in Figure 4.9.

Figure 4.9: On top, it is possible to observe the uploaded video; On the bottom
left, the generated GEI; On bottom right, the predicted classification.

In addition to this, the user is also shown the saliency map and the heatmap

(described in Section 4.4) of the generated GEI, as illustrated in Figure 4.10. In

this way, it is possible to observe which features were extracted by the CNN.
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(a) (b)

Figure 4.10: (a) Saliency map of the generated GEI. (b) Heatmap of the
generated GEI.

Figure 4.11: Form of the Gait Web Application to insert the email address of
the patient to which the results will be automatically sent to.

Finally, the user can send an email to the patient with all the information

of the diagnosis by just filling in the form with the patient’s name and email, as

illustrated in Figure 4.11. The email, of which an example is given in Figure 4.12,

will be automatically sent by the server.
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Figure 4.12: Email sent by the Gait Web Application automatically.

4.3.2 Second Scenario: Advanced Mode

In this scenario, the advanced interface mode is considered. This mode is for

users such as researchers, students in the field or even experienced users of this web

application which can understand the input gait representations (GEI and SEI).

It could be used to compare not only the results from the same person and from

different gait representations, but also to compare the extracted features from the

saliency map and heatmap. This choice is made by selecting the advanced mode

option available on the page, as shown in Figure 4.13. This interface mode will

have more options available since the user can now upload a GEI and/or a SEI,

instead of the original video, as illustrated in Figure 4.14.
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Figure 4.13: Selection of interface mode in the Gait Web Application: Ad-
vanced.

Figure 4.14: Web page showing the two possible selections for the advanced
interface mode: video or gait representations.

The possibility of uploading GEIs and SEIs only makes sense for this type of

users because these gait representations are only typically known by researcher-

s/students in the field or someone used to this representations, not by general

healthcare professionals. In the gait classification web application, to upload these

representations, the user chooses "Gait Representations", as illustrated in Figure

4.14, having the possibility to upload a GEI and/or a SEI, as shown in Figure

4.15.

The user uploads a GEI and/or a SEI of the same person, as shown in Figure
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Figure 4.15: Web page showing the possible gait representations that can be
uploaded into the Gait Web Application.

4.16 to check the differences in the predicted results and extracted features from

the different maps.

Figure 4.16: Upoaded GEI and SEI with the respectives predicted classifica-
tions.

After getting the predicted classifications, the user extracts the feature maps

from both classifications, by choosing the desired layer and channel (described in

Section 4.4), as illustrated in Figure 4.17.
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Figure 4.17: Feature maps of the second layer and seventh channel from both
gait representations.

Finally, to better understand the different features extracted from the CNN,

the user gets a saliency map and a heatmap for each gait representation. In Figure

4.18, it is possible to observe that in GEI the main focus was the torso orientation

and hands, while in SEI the main focus was the elbows and the torso orientation.

In both maps of the gait representations, the feet were also an extracted feature,

although with less importance than the others.

Figure 4.18: Saliency maps and heatmaps of the uploaded gait representations.
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4.4 CNN Deep Feature Visualisation

NN are usually seen as "black boxes" because they are not always transparent

and it can be confusing to understand how NN learn features and make decisions.

For CNNs, however, this is not the case, due to the fact that the representations

learned by CNNs are highly amenable to visualization since they correspond to

representations of visual concepts. This web application gives users the possibility

to access feature maps from different layers and channels, which are a visualization

of intermediate activations. It also gives users the possibility to obtain saliency

maps and heatmaps of class activation in an image. These representations, which

are obtained through the Keras Visualisation Toolkit [65], will be discussed in the

following sub-sections.

4.4.1 Visualizing Intermediate Activations

To visualize intermediate activations, the feature maps that are output by

various convolution and pooling layers in a network are displayed. The output

of a layer is often called its activation. This gives a view into how an input is

decomposed by the different filters learned by the network. The visualized feature

maps have three dimensions (or channels): width, height, and depth. Each of these

channels encodes relatively independent features [4]. All the layers, output shapes

(which are 4D arrays representing the batch size of the image, height, width and

depth) and parameters of the trained CNN are presented in Figure 4.19.
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Figure 4.19: Summary of all the layers and activation shapes of the classifica-
tion system model.

It is possible to observe that the size of the output image and the number of

channels of each layer vary significantly. The size of the output image varies from

224⇥ 224 pixels in the first convolutional layer to 7⇥ 7 pixels in the last pooling

layer, while the number of channels varies from 64 in the first convolutional layer

to 512 channels in the last pooling layer.
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(a)

(b)

Figure 4.20: (a) Feature map of the first convolutional layer and seventh
channel of the GEI. (b) Feature map of the first convolutional layer and seventh

channel of the SEI.

As shown in Figure 4.20, from these two examples of feature maps, it is

possible to observe that the seventh channel of the first convolutional layer appears

to encode an edge detector.
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4.4.2 Visualizing Saliency Maps and Class Activation Maps

Both maps are a way of visualising what part of the image the network is

paying more attention to. This way, it is possible to know if the model is learning

the correct features for each class.

The saliency map is the computation of the gradient of an output class and

the final result is an image where the pixels that would produce an increase in the

output value are given more importance.

The other way of visualising what CNNs learn is through Class Activation

Maps (grad-CAMs). This map instead of using the gradients with respect to the

output, obtains spatial information on the last convolution layer.

In figure 4.21, for each pathological and normal gait, a GEI, a Saliency Map

and a grad-CAM is shown. The features extracted from these GEIs are almost all

from the lower part of the body (normal, hemiplegic and neuropathic). Only in

diplegic gait and parkinsonian gait, upper body features are extracted. In diplegic

gait, hands are next to the hips. In parkinsonian gait, the torso orientation and

the fact that the hands are almost together are the features that were extracted.

In Figure 4.22, the same maps were extracted from SEIs. It is possible to observe

that the features are slightly different. For normal gait, parkinsonsian gait and

diplegic gait, the features are basically the same as in GEIs. For neuropathic

gait, besides the legs, shoulders and hips were the locations from which features

were extracted in SEI (but not in GEI). This is probably due to the fact that

these features are more explicit in this gait representation. For a similar reason,

in hemiplegic gait in SEI, the CNN looked at the affected arm. This happens

because in SEI arms are more explicit than in GEI.
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(a)

(b)

(c)

(d)

(e)

Figure 4.21: (a) Normal gait.. (b) Hemiplegic gait. (c) Parkinsonian gait. (d)
Diplegic gait (e) Neuropathic gait.
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(a)

(b)

(c)

(d)

(e)

Figure 4.22: (a) Normal gait. (b) Hemiplegic gait. (C) Parkinsonian gait. (d)
Diplegic gait. (e) Neuropathic gait.
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4.5 Final Remarks

This chapter presents the gait classification web application, which is divided

into two components, the classification system and the web interface. This web

application makes such gait classification system more useful, due to the fact that

having a web interface makes it accessible for all the people with an internet

connection and not just for researchers. This web application has a basic inter-

face mode and an advanced interface mode, allowing different users with different

objectives to use it. For instance, the basic interface mode can help healthcare

professionals to extract features from the patients gait which can help in the pa-

tients diagnosis, and the advanced interface mode can help more experienced users,

researchers or specialists in the field to compare features extracted from different

gait representations or even to compare the predicted results from the different

gait representations of the same person.
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Chapter 5

Classification Performance

Evaluation

This chapter provides pathological gait classification results computed using

the publicly available datasets (DAI2 and GAIT-IST) and the proposed GAIT-IT

dataset. The initial set of results provided are obtained by training and testing

with the same pathological gait dataset, using a cross-validation methodology.

However, this Section shows that a larger and better quality dataset can help

obtain improved classification results, especially when the trained algorithms have

to operate in conditions different from those used for training. This is simulated

with cross-dataset tests, used to compare and study the influence of the size and

image acquisition quality of each dataset. All the reported results adopt the VGG-

19 deep neural network [63], pre-trained on ImageNet dataset [64], and fine-tuned

using the selected pathological gait datasets.

5.1 Cross-validation Experiments

This set of results corresponds to training and testing using the same patholog-

ical gait dataset. Classification performance results are reported for each gait rep-

resentation (GEI and SEI), using 10-fold cross-validation, considering 3 datasets:
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• GAIT-IST - for each fold 9 subjects were used for training and the remain-

ing subject for testing, as done in [6], which means all the subjects ended up

being used for validation.

• GAIT-IT - the test set for each fold is defined as Vk = {Si, Si+1, Si+2},

where i = 2 ⇥ k � 1, k is the fold iteration and Si represents one of the

21 available subjects, following the numbered labels used for each subject

in the dataset. This arrangement had the purpose of using all subjects in

the test set at least once and providing a significant number of folds for the

cross-validation.

• GAIT-IST and GAIT-IT - in each fold a different subject from GAIT-

IST was used in the test set together with 3 subjects from GAIT-IT, mak-

ing a total of 27 subjects for training and 4 subjects for testing. The test

sets are defined as Vk = {VISTk
, VITk

} where VISTk
= {SISTk

}, VITk
=

{SITi , SITi+1 , SITi+2}, i = 2 ⇥ k � 1 and k is the fold iteration. The com-

bination of these two datasets is made to test the impact of more quantity

and two different dataset scenarios on training.

The classification accuracy on the test set was computed for each fold at the

optimal training epoch and the overall accuracy was obtained by averaging over

all folds.

Tested on
Trained on GAIT-IST GAIT-IT GAIT-IST+IT

G
E
I

GAIT-IST 94.2% - -
GAIT-IT - 94.8% -
GAIT-IST+IT - - 94.4%

SE
I GAIT-IST 98.4% - -

GAIT-IT - 93.6% -
GAIT-IST+IT - - 93.2%

Table 5.1: Summary of all classification accuracies across the same datasets
using GEIs and SEIs as inputs and re-trained on VGG-19.
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The reported results when training and testing on the same dataset are fairly

good for all the considered datasets, always above 93% average classification accu-

racy, as illustrated in Table 5.1. The best classification accuracy was achieved by

the GAIT-IST dataset using SEIs as input, reaching 98.4% classification accuracy.

5.2 Cross-Dataset Tests

Cross-dataset tests were conducted to evaluate the impact that training on

a larger dataset can have in the trained model’s generalization capability. Three

scenarios were considered: i) training on the GAIT-IST dataset and testing on the

GAIT-IT or the DAI2 datasets; ii) training on GAIT-IT and testing on GAIT-IST

or DAI2; iii) training on the combined GAIT-IST and GAIT-IT datasets and test-

ing on DAI2. Notice that, since some of the silhouettes provided in DAI2 include

significant segmentation errors, this dataset was not considered for training in the

cross-dataset tests, as it might lead the model to learn inaccurate features.

5.2.1 Training with GAIT-IST

When using the GEIs from the complete GAIT-IST dataset to train the VGG-

19 network, the model achieved its best cross-dataset results on the GAIT-IT

dataset, with 32 training epochs, and an overall accuracy of 72.4%. As expected,

the classification accuracy was lower when testing with the DAI2 dataset (55.6%),

due to the fact that DAI2 has poorly segmented silhouettes.
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Predicted Label
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l Diplegic 0.49 0.20 0.05 0.00 0.26

Hemiplegic 0.29 0.62 0.07 0.00 0.02

Neuropathic 0.01 0.10 0.85 0.02 0.03

Normal 0.01 0.17 0.03 0.80 0.00

Parkinson 0.13 0.01 0.00 0.00 0.86

Table 5.2: Confusion matrix of the classification accuracy using GEI as input
and re-trained on VGG-19 using GAIT-IST and tested on GAIT-IT.

As illustrated in Table 5.2, diplegic and hemiplegic gaits were the ones with

worst classification accuracy when GEI is used as input and VGG-19 is re-trained

using GAIT-IST and tested on GAIT-IT. The fact that these tests are made on

different datasets can justify these two pathologies having a lower classification

accuracy, due to the fact that they can have been simulated slightly different on

each dataset.

Predicted Label

D
ip

le
gi

c

H
em

ip
le

gi
c

N
eu

ro
pa

th
ic

N
or

m
al

Pa
rk

in
so

n

Tr
ue

La
be

l Diplegic 0.13 0.21 0.36 0.00 0.30

Hemiplegic 0.04 0.79 0.06 0.06 0.05

Neuropathic 0.00 0.70 0.24 0.06 0.00

Normal 0.00 0.24 0.02 0.75 0.00

Parkinson 0.02 0.03 0.09 0.00 0.87

Table 5.3: Confusion matrix of the classification accuracy using GEI as input
and re-trained on VGG-19 using GAIT-IST and tested on DAI2.

Testing on DAI2, the pathologies with less classification accuracy were diplegic

and neuropathic gaits, as shown in Table 5.3. The adoption of different walking

styles when simulating these pathologies on each dataset can lead to a lower classi-

fication accuracy. It is also possible to observe that hemiplegic gait is predicted by
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the network when neurophatic gait is the true label 70% of the times, which means

that a similarity was detected in the way that these pathologies were simulated

on GAIT-IST and DAI2. The similarity between hemiplegic gait and neurophatic

gait can be explained by the fact that in side view it is possible to observe that

both types of gait have similarities in the leg movement, which can make GEIs

looking really close.

When using the SEI representation, the best performance was again achieved

when testing on the GAIT-IT dataset, with a classification accuracy of 68.8%, for

23 training epochs and it is possible to observe that the classification accuracy

doesn’t vary substantially, as shown in Table 5.4, from the results presented on

Table 5.2, but it is possible to observe an improvement for diplegic and neuropathic

gaits. It was not possible to test it on DAI2, because the original videos are not

available and in that way it is not possible to obtain the skeletons, thus it is not

possible to obtain the SEI representation.
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l Diplegic 0.37 0.17 0.01 0.00 0.45

Hemiplegic 0.18 0.72 0.02 0.01 0.07

Neuropathic 0.00 0.20 0.76 0.03 0.02

Normal 0.00 0.17 0.13 0.71 0.00

Parkinson 0.12 0.00 0.00 0.00 0.88

Table 5.4: Confusion matrix of the classification accuracy using SEI as input
and re-trained on VGG-19 using GAIT-IST and tested on GAIT-IT.
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5.2.2 Training with GAIT-IT

When using the GEIs from the GAIT-IT dataset to train the VGG-19 net-

work, the best overall classification accuracy (86.4% with 24 training epochs) was

obtained when testing on the GAIT-IST dataset. It is possible to observe that

hemiplegic gait was the one with lower classification accuracy, with a value of

59%. For this pathology there was a 25% misclassification rate with normal gait,

as illustrated in Table 5.5. All the other pathologies have classification accuracies

above 90% which is really positive when performing a cross-dataset test.
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l Diplegic 0.92 0.00 0.00 0.00 0.08

Hemiplegic 0.06 0.59 0.10 0.25 0.00

Neuropathic 0.00 0.02 0.95 0.03 0.00

Normal 0.00 0.00 0.06 0.93 0.00

Parkinson 0.07 0.00 0.00 0.00 0.93

Table 5.5: Confusion matrix of the classification accuracy using GEI as input
and re-trained on VGG-19 using GAIT-IST and tested on GAIT-IST.
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When testing on the DAI2 dataset and using the GEIs from the GAIT-IT

dataset to train the VGG-19 network, it is possible to observe a significant im-

provement in the classification accuracy, specially in diplegic gait and neuropathic

gait, from the one presented when using the GEIs from the GAIT-IT dataset to

train. This significant improvement from 55.6% to 78.0% shows the truly impact

of a bigger dataset when training, as illustrated in 5.6.
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l Diplegic 0.68 0.11 0.11 0.01 0.08

Hemiplegic 0.12 0.68 0.18 0.00 0.02

Neuropathic 0.08 0.06 0.85 0.00 0.02

Normal 0.00 0.02 0.27 0.71 0.00

Parkinson 0.02 0.00 0.00 0.00 0.98

Table 5.6: Confusion matrix of the classification accuracy using GEI as input
and re-trained on VGG-19 using GAIT-IT and tested on DAI2.

When using the SEI representation, the only results were presented testing

with the GAIT-IST, with an accuracy of 92%, with 17 training epochs, which can

be calculated by the mean accuracy of the classifications presented in Table 5.7.

Predicted Label

D
ip

le
gi

c

H
em

ip
le

gi
c

N
eu

ro
pa

th
ic

N
or

m
al

Pa
rk

in
so

n

Tr
ue

La
be

l Diplegic 0.88 0.03 0.00 0.00 0.08

Hemiplegic 0.00 0.92 0.05 0.03 0.00

Neuropathic 0.00 0.08 0.87 0.04 0.00

Normal 0.00 0.02 0.00 0.98 0.00

Parkinson 0.05 0.00 0.00 0.00 0.95

Table 5.7: Confusion matrix of the classification accuracy using SEI as input
and re-trained on VGG-19 using GAIT-IT and tested on GAIT-IST.
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The impact of using a larger dataset for training is obvious when testing

on the DAI2 dataset using the GEI gait representation (the SEI could not be

computed from the DAI2 contents). The overall accuracy increased to 78.0%,

with for 35 training epochs. This represents an increment exceeding 22% in the

model’s performance on this cross-dataset classification task, when compared to

the results of the model trained with GAIT-IST. This confirms that the larger

dataset used for training limited the model overfitting, a clear advantage of the

proposed GAIT-IT dataset.

To further evaluate the impact of the high-quality silhouettes provided with

the proposed GAIT-IT dataset, the VGG-19 was also trained using just the first

10 subjects of GAIT-IT (the same number available in the GAIT-IST dataset),

and used this truncated version of the dataset, named GAIT-IT(10), for training

the model in the same conditions considered when training with GAIT-IST. An

improvement of 9.8% in the cross-dataset results was observed when testing with

the DAI2 dataset, in comparison to the accuracy value obtained when training

with the GAIT-IST dataset (65.4% vs. 55.6%). This improvement seems to con-

firm the advantage of the proposed GAIT-IT dataset, even when training with the

same number of samples.

5.2.3 Training with GAIT-IST and GAIT-IT

Finally, both datasets were combined to train the VGG-19 network, corre-

sponding to a total of 33 sets of input video sequences. This includes the 10

subjects from GAIT-IST and the 21 subjects (plus the 2 subject repetitions) from

GAIT-IT. Besides further increasing the amount of available training data, this

experiment provides the model with some variety in terms of the conditions in

which the gait sequences were acquired.

As shown in Table 5.8, the best results were achieved by training the model

for 19 epochs with an overall accuracy of 81.4%, an increment of more than 25%
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and 3% in the classification performance when compared to training the model

with just the GAIT-IST and GAIT-IT, respectively.
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l Diplegic 0.59 0.09 0.26 0.00 0.06

Hemiplegic 0.06 0.70 0.20 0.00 0.04

Neuropathic 0.00 0.03 0.94 0.03 0.00

Normal 0.00 0.06 0.06 0.88 0.00

Parkinson 0.03 0.01 0.01 0.00 0.96

Table 5.8: Confusion matrix of the classification accuracy using GEI as input
and re-trained on VGG-19 using GAIT-IST and GAIT-IT combined, tested on

GAIT-IT.
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5.3 Final Remarks

The VGG-19 deep neural network trained on the proposed GAIT-IT dataset

was able to perform well on cross-dataset tests, including tests on the DAI2 dataset,

which is known to present major difficulties to state-of-the-art methods, because of

its poorly segmented silhouettes. Even though the use of the GEI gait representa-

tion allows to reduce this problem, the resulting gait features are still significantly

affected and not suited to be used in a training stage of current deep learning

solutions. A classification performance improvement of more than 22.0%, when

testing on DAI2, was achieved on the cross-dataset test when comparing training

on the proposed dataset and on the previous largest pathological gait dataset, the

GAIT-IST. The best cross-dataset performance was observed when the GAIT-

IT and GAIT-IST datasets were combined to train the VGG-19 network, thus

providing a significant amount and variety of data for the application of a deep

learning solution in the classification of abnormal gait patterns. The GEI and SEI

gait representations compact the dynamic information of a gait sequence into a

single image, allowing to reduce the problem of poorly segmented silhouettes, as

observed for instance in the DAI2 dataset.
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Chapter 6

Conclusions and Future Work

This chapter is divided into two sections: i) Achievements, where the steps

taken to fulfil the goals of the dissertation are discussed; ii) Future Work, where

proposals for further developments of the work reported in the dissertation pre-

sented.

6.1 Achievements

This dissertation work has three main objectives: i) to acquire a new dataset

simulating a selection of gait pathologies; ii) to develop a simple and non-intrusive

classification system of gait videos; iii) to develop a web application allowing to

upload a gait input into a web interface and to remotely execute the gait pathology

classification system, which is made available as a web service.

The above objectives were successfully accomplished. The main outputs of

the work include:

• GAIT-IT dataset - A new gait dataset is acquired with sequences from 21

subjects (19 males and 2 females) simulating 4 pathologies, 2 severity levels

per pathological gait type, 4 sequences per severity level besides normal gait,

with the purpose of being used for gait analysis and classification systems.
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• Gait Classification Web Application - which is able to accept a gait

input in its web interface and to remotely execute the gait pathology classi-

fication system, which is made available as a web service. The main goal is

to show that it is possible for people who are not specialists in the field to

access this classification system and prove their usefulness, in this case for

gait pathology classification and gait analysis purposes. This achievement

has two components: the classification system and the web interface which

makes two objectives accomplished.

6.2 Future Work

Having a large and representative dataset is crucial when the end goal is

classification. It is extremely difficult to obtain data for abnormal gait, due to

the difficulty of obtaining gait sequences from real patients and also due to the

privacy and ethical issues involved. One of the most common issues when data is

not enough is overfitting. Thus, the first proposal for future work would be the

acquisition of a larger dataset having real patients, instead of simulations.

Although the GAIT-IT dataset is organized by pathology and severity level, the

classification is made to differentiate only the pathologies. The second proposal is

to develop a system that classifies gait not only as reflecting a certain pathology

or corresponding to normal gait, but that would also be able to assign a severity

level when each gait pathology is detected.

The third proposal is to run the web service in a cloud virtual machine such as:

Google Cloud Platform 1, Amazon Web Services 2 or Microsoft Azure 3, among

others. In this way, it is possible to have the memory and GPU needed in the

environment and in terms of scalability is an advantage.

The fourth and last proposal is to allow the user of the web application to up-

load his/her own saved model into the web interface and be able to test all the

functionalities of the classification system on it.
1
https://cloud.google.com/

2
https://aws.amazon.com/

3
https://azure.microsoft.com/
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