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RESUMO 

O estudo tem como objectivo criar um modelo markoviano para a previsão de séries temporais 

e medir a eficácia deste nas previsões de preços das ações. No estudo, o novo previsor foi 

inspirado em várias técnicas de aprendizagem de máquinas e incluiu abordagens estatísticas e 

probabilidades condicionais. Ou seja, as cadeias de Markov são a principal inspiração das 

técnicas para a aprendizagem das máquinas. 

Para ser capaz de processar séries temporais com algorítmo do tipo Cadeias de Markov, a 

nova técnica é desenvolvida com base em preços diários e ações. Foram considerados treze 

anos de preços diários de ações para teste dos modelos. 

Para medir a eficácia do novo previsor, foram obtidos resultados comparados com 

métodos convencionais, como os modelos ARIMA, a regressão linear, a regressão a partir da  

árvore de decisão. Esta comparação foi efetuada com base no Erro Absoluto Médio Percentual 

(MAPE) e na Raiz do Erro Quadrático Médio (RMSE). De acordo com os resultados obtidos, o 

novo previsor tem melhor desempenho do que a regressão da árvore de decisão, e o ARIMA 

tem o melhor desempenho entre eles. 

 

Palavras-chave: Séries Temporais, Aprendizagem das Máquinas, Cadeias de Markov, Previsão 

Códigos de Classificação: 2240, 4100 
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ABSTRACT 

The study aims to create a Markovian model for forecasting financial time series and 

measure its effectiveness on stock prices. In the study, the new forecaster was inspired by 

several machine learning techniques and included statistical approaches and conditional 

probabilities. Namely, Markov Chains and Hidden Markov Chains are the main inspiration for 

machine learning techniques.  

To be able to process time series with Markov Chains like algorithm, new transformation 

developed with the usage of daily stock prices. Thirteen years of daily stock prices have been 

used for the data feed.  

For measuring the effectiveness of a new predictor, the obtaıned results are compared with 

conventional methods such as ARIMA, linear regression, decision tree regression and support 

vector regression predictions. The comparisons presented are based on Mean Absolute 

Percentage Error (MAPE) and Root Mean Square Error ( RMSE). According to the achieved 

results, the new predictor performs better than decision tree regression, and ARIMA performs 

best among them. 

 

Keywords: Time Series, Machine Learning, Markov Chains, Forecasting 

Classification Codes: 2240, 4100 

  



 
 

 



 
 

vii 
 

 

CONTENTS 

 

ACKNOWLEDGEMENT ............................................................................................................... i 

RESUMO ................................................................................................................................... iii 

ABSTRACT ................................................................................................................................. v 

CONTENTS .............................................................................................................................. vii 

TABLE OF FIGURES ................................................................................................................. xi 

CHAPTER 1 INTRODUCTION ................................................................................................... 1 

CHAPTER 2 LITERATURE REVIEW ......................................................................................... 3 

CHAPTER 3 METHODOLOGY .................................................................................................. 7 

3.1. Markov Chains ............................................................................................................. 7 

3.1.1. Probabilistic Distribution and State Space ............................................................. 7 

3.1.2. Transition Probability Matrices .............................................................................. 8 

3.1.3. Hidden Markov Chains .......................................................................................... 9 

3.2. Methods for Comparison .............................................................................................12 

3.2.1. ARIMA .................................................................................................................12 

3.2.2. Linear Regression ................................................................................................14 

3.2.3. Decision Tree Regression ....................................................................................15 

3.2.4. Support Vector Regression ..................................................................................15 

3.3. The New Method ........................................................................................................16 

3.3.1. Transformation .....................................................................................................17 

3.3.2. Markov Process ...................................................................................................20 

3.3.3. Hidden Markov Probabilities by Sets of Waves ....................................................28 

3.3.4. Label Growths ......................................................................................................30 

3.3.5. Final Estimations .................................................................................................31 



viii  
 

3.4. Evaluation ...................................................................................................................32 

3.4.1. Root Mean Square Error (RMSE) ........................................................................33 

3.4.2. Mean Absolute Percentage Error (MAPE) ............................................................34 

3.4.3. Forecast Length Adjustment for All Other Methods ..............................................34 

CHAPTER 4 EMPIRICAL STUDY .............................................................................................37 

4.5. Data ............................................................................................................................37 

4.5.1. Obtaining Data .....................................................................................................37 

4.6. Transformed Data .......................................................................................................38 

4.6.1. Sequence ............................................................................................................39 

4.6.2. Altitude.................................................................................................................40 

4.6.3. Label ....................................................................................................................43 

4.7. Probabilities and Corresponding Estimated Growths for Sets .....................................44 

4.8. Forecast Length ..........................................................................................................44 

4.9. ARIMA Application ......................................................................................................45 

4.9.1. Data Preparation ..................................................................................................45 

4.9.2. Data Transformation ............................................................................................46 

4.9.3. Model Selection ...................................................................................................47 

4.9.4. Parameter Estimation ..........................................................................................48 

4.9.5. Model Checking ...................................................................................................49 

4.10. Prediction Results ...................................................................................................51 

4.10.1. Comparison and Test Results ..........................................................................52 

4.10.2. RMSE Scores ...................................................................................................53 

4.10.3. MAPE Scores ...................................................................................................53 

4.10.4. Best Performer for Each Prediction ..................................................................54 

CHAPTER 5 CONCLUSION .....................................................................................................55 

5.11. Limitations and Suggestions for Further Studies ......................................................55 

5.11.1. Combined  Methods .........................................................................................55 



 
 

ix 
 

5.11.2. Transformation With Threshold ........................................................................56 

5.11.3. Non-Parametric Density Function .....................................................................56 

5.11.4. Selective Estimates ..........................................................................................56 

BIBLIOGRAPHY .......................................................................................................................58 

APPENDIX ................................................................................................................................63 





 
 

xi 
 

 

 

TABLE OF FIGURES 

Figure 3.1 Hidden Markov Chains Illustration ............................................................................10 

Figure 3.2 Working Scheme ......................................................................................................17 

Figure 3.3 Wawe Occurance .....................................................................................................21 

Figure 3.4 Markov Process Illustartion ......................................................................................28 

Figure 3.5 Forecast Length .......................................................................................................34 

Figure 3.6 Forecast Length Adjustment ....................................................................................35 

Figure 4.1The Navigator Company Closing Prices and Volume ................................................38 

Figure 4.2 Sequences ...............................................................................................................40 

Figure 4.3Altitudes ....................................................................................................................41 

Figure 4.4 Altitudes and Sequences ..........................................................................................42 

Figure 4.5 Labels and Sequences .............................................................................................43 

Figure 4.6 Non-Parametric Density Functions ...........................................................................44 

Figure 4.7 Forecast Length .......................................................................................................45 

Figure 4.8 Growth Charts ..........................................................................................................46 

Figure 4.9 Autocorrelation Functions .........................................................................................47 

Figure 4.10 ARMA(1,1) Residuals Density ................................................................................49 

Figure 4.11 Ljung-Box Test .......................................................................................................50 

Figure 4.12 The New Predictor Versus ARIMA and Linear Regression .....................................52 

Figure 4.13 The New Predictor Versus Decision Tree Regression and Support Vector 

Regression ................................................................................................................................53 

Figure 4.14 Prediction by Prediction Scores ..............................................................................54 

Figure 5.1 The New Predictor TOP*  Versus ARIMA .................................................................57 

 

  



  
 

 

  



Markovian Model for Forecasting Financial Time Series 
 

1 

 

CHAPTER 1 

INTRODUCTION 

The thesis aims to create a new predictor by chopping and conducting data and applying 

statistical models based on Markov chains to forecast time series. Time-series prediction 

roots go back to centuries ago. Humans tried to estimate many events by observing and 

saving them in a timely manner, then finding related patterns to dominate nature or their 

species. For example, Egyptian governors recorded Nile river floods to prevent possible 

damage and founded out floods follow specific patterns. They did even leverage this 

information to increase agriculture around the river beds (Hawkins, 2005). 

Technology has improved tremendously since then. It gives us tools to record events 

in a healthier way and for more extended periods of time or by shorter time intervals. 

Moreover, it provided more powerful tools for computational methods. Today's forecasts 

go beyond the seasonality effect. Of course, it would be wrong to attribute this only to the 

development of technology. Mathematicians, scientists, business people and many more 

have been striving for centuries to get healthier predictions. With the same purpose, this 

thesis aims to provide a new Markovian model for forecasting time series. 

Machine learning is adjusting programs to optimize a performance criterion using 

sample data or past experience. Machine learning uses statistics for building mathematical 

models. Its core task is making interference from a sample (Alpaydın, 2010). 

Models can be defined with some parameters. The learning is the execution of the 

program to optimize the parameters of the model using the experience. The model might 

make predictions for the future or describe observations to gain knowledge from data or 

both (Alpaydın, 2010). Artificial intelligence gives decisions or takes actions according to 

machine learning predictions or descriptions.  

The new forecaster is inspired by Hidden Markov Chains, Decision Tree Expected 

Benefit and Gaussian type Non-parametric density function. Hidden Markov chains are re-

examined and modified for the desired output and shape of the transformed data. 

As expected, to be able to predict future events, the new predictor requires already 

observed events description, data. Data has been preprocessed for this study until it gets 
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a multidimensional form. The historical stock price of The Navigator Company is selected 

as data, and the new predictor aims to forecast future stock prices as output. 

The Navigator Company is interested in forestry products, which are mainly pulp & 

paper, tissue, and energy. It operates on modern, large-scale industrial units. 

The Navigator Company is Portugal's third-biggest exporter and the largest national 

added value generator. It approximately generates 1% of GDP, around 0,3% of all 

Portuguese exports of goods, and near 6% Portuguese containerized cargo. Their 

products are shipped to approximately 130 countries, with emphasis on Europe and the 

USA, thus achieving the most expansive international presence among Portuguese 

companies (http://en.thenavigatorcompany.com, 2020). 

Stock prices are converted to the multidimensional form as sequence and altitude. By 

classifying altitudes, another attribute of transformed data, labels are created. Even though 

the final estimations are given as the price itself (input shape), Hidden Markov Chains are 

constructed by classified data to be able to function. Therefore, the new method might be 

called a supervised machine learning technique. 

For the new predictor, by Hidden Markov Chains, sequence and label group 

occurrence probabilities are calculated, then Gaussian non-parametric density functions 

are fitted to each group. The growth with the highest likelihood according to density 

function is selected as expected growth (a derivative of logarithmic price) of the related 

group. The final output is calculated with the decision tree expected benefit method. 

The predictions are compared to conventional methods such as ARIMA, Decision tree 

regression, linear regression, support vector regression estimations to evaluate the 

performance of the new model. Comparison results are given by mean absolute 

percentage error (MAPE), root mean square error (RMSE). 

The next chapter presents literature reviews of inspired methodologies and similar 

studies. The third chapter introduces existing theories and evaluation techniques. Also, the 

new methodology for this study is presented in the third chapter. The fourth chapter 

contains empirical studies application of the developed methodology, the application of 

conventional methods, and the comparison of results. The last chapter is dedicated to 

sharing conclusions.   
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CHAPTER 2 

LITERATURE REVIEW 

Over the years, many research efforts have been carried out for proper characterization, 

modeling, and forecasting financial time series (Tyree & Long, 1995; Hussain, Knowles, 

Lisoba, & El-Deredy, 2008; Sewell, 2009). The linear statistical models, such as 

exponential smoothing (Lemke & Gabrys, 2010) and autoregressive integrated moving 

average (Box, Jenkins, Reinsel, & Ljung, 2016), have been used for forecasting financial 

time series. Within the last decades, researchers have extensively used the random walk 

model for forecasting financial time series (Meese & Rogoff, 1983). At present, ARIMA is 

the most dominant linear model in the financial time series (especially, exchange rate) 

literature (Zhang, 2003). Various modifications, such as RW with drift and error correction 

terms, have also been developed (Sun, 2005; Ghazali, Hussain, Nawi, & Mohamad, 2009). 

Meanwhile, economists are concerned with modeling volatility in asset returns. This is 

important as volatility is a measure of risk, and a premium for investing in risky assets is 

desirable for investors. For this purpose, returns are modeled as independent and 

identically distributed over time. In a classic work, Mandelbrot applied stable Paretian 

distributions to characterize the distribution of returns (Mandelbrot, 1963). Rachev and 

Mittnik’s work (2000) contains an informative discussion of stable Paretian distributions 

and their use in finance and econometrics. 

The first conditional heteroskedasticity model was autoregressive conditional 

heteroskedasticity (ARCH). According to Engle (2004), finding a model that could assess 

the validity of Friedman's (1977) conjecture that the unpredictability of inflation was a 

primary cause of business cycles was the original idea. Unpredictability caused by this 

uncertainty would affect investment behaviors. Following this idea required a model in 

which this uncertainty could change over time. For parameterizing conditional 

heteroskedasticity in a wage-price equation, Engle (1982) applied his resulting ARCH 

model. Bollerslev (1986) and Taylor (1986) simultaneously proposed the conditional 

variance, which is also a linear function of its own. The model called generalized ARCH 

(GARCH) 

Linear models can be relatively poor for capturing economic behavior for a western 

economy subject to the business cycle; one example would be a linear (Box, Jenkins, 

Reinsel, & Ljung, 2016) model of output growth, where the properties of output growth in 
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expansions are quite different from recessions (Hamilton, 1989; Sichel, 1994). Highly 

volatile regimes caused by shock accumulation can be different from relatively less volatile 

financial regimes as well. 

With a different perspective, Ralph Nelson Elliott proposed in the 1930s that market 

prices unfold in specific patterns, which practitioners today call Elliott waves, or 

simply waves. Elliott wave analysts hold that each individual wave has its own signature or 

characteristic, which typically reflects the moment's psychology (Poser, 2003). 

R.N. Elliot defines patterns as dominant or corrective trends and introduces them as 

sequenced waves. Dominant trends consist of five waves in order, and corrective trends 

consist of three waves particularly (Volna, Kotyrba, Janosek, Habiballa, & Brazina, 2013). 

For this reason, R.N. Elliott claimed that there are certain patterns among price 

movements.   

On the other hand, A Markov chain is a stochastic model describing a sequence of 

possible events in which the probability of each event depends only on the state attained 

in the previous event (Gagniuc, 2017). The theory has been created by Russian 

mathematician Andrey Markov. Following years theory finds many applications in fields 

such as meteorology, biology, chemistry, bioinformatics, information technology, and 

economy (Gagniuc, 2017). 

W.K. Hastings composed Markov chains and Gibs Sampling methods and introduced 

Monte Carlo Markov Models (MCMM). MCMM describes price movements as drift and 

impulse. Their sequential relations are calculated by Markovian models (HASTINGS, 

1970). 

Leonard E. Baum used Markov Chains, not only for one independent variable but two. 

He used conditional probability to identify their relations to predict one by another with 

Markov probabilities (Baum & Petrie, 1966). One of the theory's first application was 

speech recognition (Baker, 1975). Although today it has wide usage over many fields such 

as computational finance (Sipos, et al., 2016), sequence classification (Blasiak & 

Rangwala, 2011) and DNA motif discovery (Wong, Chan, Peng, Li, & Zhang, 2013). 

As an extension of the HMM, a hidden semi-Markov model (HSMM) is traditionally 

defined by allowing the underlying process to be a semi-Markov chain. Each state has a 

variable duration, which is associated with the number of observations produced while in 
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the state. The HSMM is also called “explicit duration HMM” (Ferguson, 1980), “hidden 

semi-Markov model” (Murphy, 2002) and segment model (Ostendorf, Digalakis, & Kimball, 

1996) in the literature, depending on their assumptions and their application areas. 

The first approach to the hidden semi-Markov model was proposed by Ferguson 

(1980) which is partially included in the survey paper by Rabiner (1989). This approach 

suggests the explicit duration HMM different than the implicit duration of the HMM. It 

suggests that the state length or duration is generally distributed depending on the current 

state of the underlying semi-Markov process. It also depends on the “conditional 

independence” of outputs.  

Levinson replaced the probability mass functions of duration with continuous 

probability density functions to form a continuously variable duration HMM (Levinson, 

1986). As Ferguson (1980) pointed out, an HSMM can be realized in the HMM framework 

in which both the state and its state occupancy time. This idea was exploited in 1991 by a 

2-vector HMM (Krishnamurthy, Moore, & Chung, 1991) and a duration-dependent state 

transition model (Vaseghi, 1991). Similar approaches were proposed in many applications.  

For the probability estimation Parzen (1962) used kernels and defines the probability 

function as  

 
𝑓መ௛(𝑥) = 𝑛ିଵ ෍ 𝐾௛(𝑥 − 𝑋௜)

௡

௜ୀଵ

 (2.1) 

Where ℎ is called the bandwidth and 𝐾 is a kernel. While Gaussian kernels are used, 

Turlach (1993) suggests using the loss function to minimize the estimation distance 

between the density estimator and the real density function to decide optimal bandwidth. 
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CHAPTER 3 

METHODOLOGY 

The new method is developed based on Markov chains. It is necessary to compare its 

results with traditional methods to evaluate its overall performance. Hence, ARIMA, linear 

regression, decision tree regression, support vector regression has been chosen to use for 

comparison.  

The methodology chapter is divided into four subsections. In the first subsection, 

Markov chains is introduced. The second subsection contains methodologies for traditional 

predictors that are used for comparison. The third chapter is dedicated to discuss and 

introduce a new methodology. The fourth subsection introduces evaluation techniques that 

are used in the study. 

 

3.1. Markov Chains  

3.1.1. Probabilistic Distribution and State Space 

Let 𝐼 be a countable set. Each 𝑖 ∈ 𝐼 is called a state, and 𝐼 is called the state-space. 𝜆 =

(𝜆௜: 𝑖 ∈ 𝐼) is a measure on 𝐼 if 0 ≤ 𝜆௜ < ∞ for all 𝑖 ∈ 𝐼. Additionally, if the total mass ∑ 𝜆௜௜∈ூ  

equals 1, then 𝜆 is a probability distribution. We work throughout with probability space 

(𝛺, 𝐹, 𝑃). Recall that random variable 𝑋 with values in 𝐼 is a function 𝑋: 𝛺 → 𝐼. Suppose:  

 𝜆௜ = 𝑃(𝑋 = 𝑖) = 𝑃({𝜔: 𝑋(𝜔) = 𝑖}) (3.1) 

Is setted. Then 𝜆 defines a probability distribution of the distribution of 𝑋. 𝑋 can be thought 

of as modeling a random state which takes the value 𝑖 with probability 𝜆௜. Note that a 

matrix 𝑃 = (𝑝௜௝: 𝑖, 𝑗 ∈ 𝐼) is stochastic if every row (𝑝௜௝: 𝑖, 𝑗 ∈ 𝐼) is a probabilistic distribution 

(Norris, 1997). 

A discrete parameter stochastic process {𝑋(𝑓), 𝑡 =  0, 1, 2, … } is said to be a Markov 

process if, for any set of 𝑛 time points 𝑡ଵ < 𝑡ଶ < ⋯ < 𝑡௡ in the index set of the process, the 

conditional distribution of 𝑋(𝑡௡), for given values of 𝑋(𝑡ଵ), … , 𝑋(𝑡௡ିଵ) depends only on 

𝑋(𝑡௡ିଵ), the most recent known value; more precisely, for any real numbers 𝑥ଵ, … , 𝑥௡ 

 𝑃[𝑋(𝑡௡) < 𝑥௡|𝑋(𝑡ଵ) = 𝑥ଵ, … , 𝑋(𝑡௡ିଵ) = 𝑥௡ିଵ] = 𝑃[𝑋(𝑡௡) < 𝑥௡|𝑋(𝑡௡ିଵ) = 𝑥௡ିଵ] (3.2) 

Intuitively, one interprets the equation that, given the "present" of the process, the "future" 

is independent of its "past" (Norris, 1997). 
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Markov processes are classified according to the nature of the index set of the 

process and the nature of the state space. A real number 𝑥 is said to be a possible value, 

or a state, of a stochastic process {𝑋(𝑡), 𝑡 ∈ 𝑇} if there exists a time 𝑡 in 𝑇 such that the 

probability𝑃[𝑥 − ℎ < 𝑋(𝑡) < 𝑥 + ℎ] is positive for every ℎ >  0. The set of possible values 

of a stochastic process is called its state space (Parzen, 1965). 

 

3.1.2. Transition Probability Matrices 

In order to specify the probability law of a discrete parameter Markov chain {Xn} it suffices 

to the state for all times ∞ >  𝑚 >  0 and states j and k, the probability mass function 

 𝑝௝(𝑛) = 𝑃[𝑋௡ = 𝑗] (3.3) 

and the conditional probability mass function 

 𝑝௝,௞(𝑚, 𝑛) = 𝑃[𝑋௡ = 𝑘|𝑋௠ = 𝑗] (3.4) 

The function 𝑝௝,௞(𝑚, 𝑛) is called the transition probability function of the Markov chain. 

Since for all integers q, and any q time points 𝑛ଵ < 𝑛ଶ < ⋯ < 𝑛௤ and states 𝑘ଵ, … , 𝑘௤ 

 𝑃 ቂ𝑋௡భ
= 𝑘ଵ, … , 𝑋௡೜

= 𝑘௤ቃ

= 𝑝௞భ
(𝑛ଵ)𝑝௞భ,௞మ

(𝑛ଵ, 𝑛ଶ)𝑝௞మ,௞ଷ(𝑛ଶ𝑛ଷ) … 𝑝௞೜షభ,௞೜
൫𝑛௤ିଵ, 𝑛௤൯ 

(3.5) 

A Markov chain is said to be homogeneous (or to be homogeneous in time or to have 

stationary transition probabilities) if 𝑝௝,௞(𝑚, 𝑛) depends only on the difference 𝑛 —  𝑚. We 

then call  

 𝑝௝,௞(𝑛) = 𝑃[𝑋௡ା௧ = 𝑘|𝑋௧ = 𝑗] 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑡 > 0 (3.6) 

the n-step transition probability function of the homogeneous Markov chain {𝑋௡}. In words, 

𝑝௝,௞(𝑛) is the conditional probability that a homogeneous Markov chain now in state j will 

move after n steps to state k. The one-step transition probabilities 𝑝௝,௞(1) are usually 

written simply 𝑝௝,௞ in symbols, 

 𝑝௝,௞ = 𝑃[𝑋௧ାଵ = 𝑘|𝑋௧ = 𝑗] 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑡 ≥ 0 (3.7) 

The transition probabilities of a Markov chain {𝑋௡} with state-space {0,1,2, … } are best 

exhibited in the form of a matrix: 
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𝑃(𝑚, 𝑛) =

⎣
⎢
⎢
⎢
⎡
𝑝଴,଴(𝑚, 𝑛) 𝑝଴,ଵ(𝑚, 𝑛) 𝑝଴,ଶ(𝑚, 𝑛) … 𝑝଴,௞(𝑚, 𝑛) …

𝑝ଵ,଴(𝑚, 𝑛) 𝑝ଵ,ଵ(𝑚, 𝑛) 𝑝ଵ,ଶ(𝑚, 𝑛) … 𝑝ଵ,௞(𝑚, 𝑛) …

⋮ ⋮ ⋮ … ⋮ …
𝑝௝,଴(𝑚, 𝑛) 𝑝௝,ଵ(𝑚, 𝑛) 𝑝௝,ଶ(𝑚, 𝑛) … 𝑝௝,௞(𝑚, 𝑛) …

⋮ ⋮ ⋮ … ⋮ …⎦
⎥
⎥
⎥
⎤

 

Note that the elements of a transition probability matrix 𝑃(𝑚, 𝑛) satisfy the conditions: 

 𝑝௝,௞(𝑚, 𝑛) ≥ 0            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗, 𝑘 (3.8) 

,   

 ෍ 𝑝௝,௞(𝑚, 𝑛) = 1

௞

    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗, 𝑘 (3.9) 

Given a 𝑝 ×  𝑞 matrix A and a 𝑞 ×  𝑟 matrix B, 

𝐴 = ൦

𝑎ଵଵ 𝑎ଵଶ … 𝑎ଵ௤

𝑎ଶଵ 𝑎ଶଶ … 𝑎ଶ௤

⋮ ⋮ … ⋮
𝑎௣ଵ 𝑎௣ଶ … 𝑎௣௤

൪ , 𝐵 = ൦

𝑏ଵଵ 𝑏ଵଶ … 𝑏ଵ௥

𝑏ଶଵ 𝑏ଶଶ … 𝑏ଶ௥

⋮ ⋮ … ⋮
𝑏௤ଵ 𝑏௤ଶ … 𝑏௤௥

൪ 

the product C = AB of the two matrices is defined as the 𝑝 ×  𝑟 matrix whose element 𝑐௝௞, 

lying at the intersection of the jth row and the kth column, is given by 

 
𝑐௝௞ = 𝑎௝ଵ𝑏ଵ௞ + 𝑎௝ଶ𝑏ଶ௞ + ⋯ + 𝑎௝௤𝑏௤௞ = ෍ 𝑎௝௜𝑏௜௞

௤

௜ୀଵ

 (3.10) 

Similarly, given two infinite matrices A and B, one can define the product 𝐴𝐵 as the 

matrix C whose element 𝑐௝௞, lying at the intersection of the jth row and the kth column, is 

given by 

 𝑐௝௞ = ෍ 𝑎௝௜𝑏௜௞

௜

 (3.11) 

(Norris, 1997). 

 

3.1.3. Hidden Markov Chains 

In previous chapters, how Markov states depend on each other is discussed, especially by 

only one step. Additionally, it is good to keep in mind that our transformed data is discrete 

and has two-dimensional observations as sequence and altitude. 

The case of discrete data includes several possibilities: univariate unbounded counts, 

univariate bounded counts, including binary observations, observations of categories, and 
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multivariate versions of these. Hidden Markov models consist of two parts: first, an 

unobserved parameter process {𝑋௧ ∶  𝑡 ∈  𝑁} that is a Markov chain on (1, 2, .. , m), and 

second, an observed process {𝐶௧ ∶  𝑡 ∈  𝑁} such that the distribution of 𝐶௧ is determined 

only by the current state 𝑋௧, irrespective of all previous states and observations. (The 

symbol 𝑁 denotes the natural numbers.) This structure is represented summarized by the 

following equations, in which 𝐶(௧) and 𝑋(௧) denote the histories of the processes 𝐶௧ and 𝑋௧ 

from time 1 to time t:  

 𝑃ൣ𝑋௧ห𝑋(௧ିଵ)൧ = 𝑃[𝑋௧|𝑋௧ିଵ], 𝑡 = 2,3, … (3.12) 

, 

 𝑃(𝐶௧ |𝐶(௧ିଵ), 𝑋(௧)) =  𝑃(𝐶௧  |𝑋௧), 𝑡 ∈  𝑁 (3.13) 

The Markov chain is assumed here to be irreducible, aperiodic, and (unless it is stated 

otherwise) homogeneous (Rabiner & Juang, 1986). 

 

 

Figure 3.1 Hidden Markov Chains Illustration 
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The example scheme above presents the basis of HMC. While blue arrows present 

Markov Chain transmissions and regarding probabilities, black arrows present HMC 

emission transmissions and regarding probabilities.  

State A, State B, and State C present example hidden states which follow Markov 

properties. 𝑝஺,஺, 𝑝஺஻, and  𝑝஺஼  denote transition probabilities from State A to State A, State 

A to State B, State A to state C. 𝑝஺஻, 𝑝஻஻, and  𝑝஻஼  denotes transition probabilities from 

state B to State A, State B to State B, State B to State C. 𝑝஼஺, 𝑝஼஻, and  𝑝஼஼ denote 

transition probabilities from State C to State A, State C to State B, State C to state C 

respectfully. 

State 1 and State 2 presents an example of output or emission states. P(A1) and 

P(A2) denote emission probabilities while Markov State is A and emission probabilities are 

1 and 2. P(B1) and P(B2) denote emission probabilities while the output state is B and 

emission probabilities are 1 and 2. P(C1) and P(C2) denote emission probabilities while 

the output state is C and emission probabilities are 1 and 2, respectfully.While the hidden 

states depend on the time, the emission states depend on the initial hidden states. 

For example, let us consider hidden states A, B, and C occur on a daily basis and 

assume that today's state is A. Let the P' (B2) denotes the probability of having hidden 

state B and outcome state 2 tomorrow. P' (B2) can be calculated as follow: 

 𝑃′(𝐵2) = 𝑝஺஻ × 𝑃(𝐵2) (3.14) 

Here, State A to State B Markov transmission is the initial condition; when the initial 

state is B having outcome state 2 is the desired outcome for having B2 state in one day. 

If hidden states are irrelevant and the expected hidden state not necessarily to be B, 

having desired output state 2 in one day P' (2) can be calculated as follow: 

 𝑃ᇱ(2) = 𝑃ᇱ(𝐴2) + 𝑃ᇱ(𝐵2) + 𝑃′(𝐶2)

= 𝑝஺஺ × 𝑃(𝐴2) + 𝑝஺஻ × 𝑃(𝐵2) + 𝑝஺஼ × 𝑃(𝐶2) 
(3.15) 

For this study, consider the sequence Status of waves as hidden states and the label 

status of waves as desired output states. Therefore, each time sequence probability 

calculations have been done according to the Markov process, and probabilities are 

considered as initial conditions for emission probabilities. (Rabiner & Juang, 1986). 
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3.2. Methods for Comparison 

3.2.1. ARIMA 

Exponential smoothing and ARIMA models are the two most widely used approaches to 

time series forecasting. ARIMA models aim to describe the autocorrelations in the data 

(Hyndman & Athanasopoulos, 2018). For further investigation, let us check autoregressive 

and moving average processes. 

 

1.1.1.1. Autoregressive Process 

The autoregressive process can be thought as, 𝑧௧෥  from the linear filter of stationary time 

series and consider B as the backward shift operator: 

 
𝑧௧෥ = ෍ 𝜋௝𝑧̃௧ି௝

ஶ

௝ୀଵ

+ 𝑎௧ (3.16) 

,   

 𝐵𝑧௧ = 𝑧௧ିଵ ,   𝐵௭೟

௝
= 𝑧௧ି௝ (3.17) 

 

where the shock input is white noise 𝑎௧. Thus, 𝑧௧෥  can be introduced with transfer 

function ϕ-1(B) as follow strictly: 

 𝑧௧෥ = 𝜙ଵ𝑧̃௧ିଵ + 𝜙ଶ𝑧̃௧ିଶ + ⋯ + 𝜙௣𝑧̃௧ି௣ + 𝑎௧ (3.18) 

Where 𝜙ଵ, 𝜙ଶ, … , 𝜙௣ symbols are a finite set of weight parameters and different than 

zero. Also, Box and Jenkins define presented autoregressive process with an order of 𝑝 or 

only AR(𝑝) (Box, Jenkins, Reinsel, & Ljung, Time Series Analysis Forecasting and Control, 

2016). 

 

3.2.1.1. Moving Average Process 

When time series is presented as linear form; 

 
𝑧௧෥ = 𝑎௧ + ෍ 𝛹௝𝑎௧ି௝

ஶ

௝ୀଵ

 (3.19) 
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Consider only the first q of Ψ weights are non-zero. Thus, the process may be written 

as : 

 𝑧௧෥ = 𝑎௧ − 𝜃ଵ𝑎௧ିଵ − 𝜃ଶ𝑎௧ିଶ … − 𝜃௤𝑎௧ି௤ (3.20) 

Where −𝜃ଵ,− 𝜃ଶ,..,− 𝜃௤ for the finite set of weight parameters. We can call the process 

as moving average process of order q or only MA(q) (Box, Jenkins, Reinsel, & Ljung, 

2016). 

 

3.2.1.2. Autoregressive Moving Average 

In previous parts, The autoregressive process and the moving average process have been 

introduced adequately. The autoregressive moving average can be thought of as a mixture 

of these two processes. Thus, mathematically it can be presented as follow: 

 𝑧௧෥ = 𝜙ଵ𝑧̃௧ିଵ + 𝜙ଶ𝑧̃௧ିଶ + ⋯ + 𝜙௣𝑧̃௧ି௣ − 𝜃ଵ𝑎௧ିଵ − 𝜃ଶ𝑎௧ିଶ … − 𝜃௤𝑎௧ି௤ + 𝑎௧ (3.21) 

Or 

 𝜙(𝐵)𝑧̃௧ = 𝜃(𝐵)𝑎௧ (3.22) 

Where p is the order of autoregression, and q is the order of moving average. We can 

name the all process shortly ARMA(p, q). Once again, principally, the time series should 

be stationary (Box, Jenkins, Reinsel, & Ljung, 2016). 

After presenting essential relative concepts and terms, we can proceed to the method 

that will be followed. The method includes four steps to obtain the optimum ARMA model: 

 

3.2.1.3. Data preparation for ARIMA 

It involves transformations and differencing. Realtime data is mostly non-stationary. 

Transformations of the data can help stabilize the variance in a time series where the 

variation changes with the level. Differencing natural logarithmic closing prices applied as 

data transformation (Nelson & GRANGER, 1979). 𝐺௧ = ln(𝑃௧) − ln (𝑃௧ି௞) for integration 

level k.  

Thus, with the transformation, we can obtain a stationary time series and avoid 

heteroscedasticity.  
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3.2.1.4. Model selection 

In the Box-Jenkins framework, we can use ACF and PACF based on the transformed and 

differenced data to try to identify potential ARMA processes that provide a good fit to the 

data. Later developments have led to other model selection tools such as Akaike's 

Information Criterion which we are going to include as well (Tong, 1975). 

 

3.2.1.5. Parameter Estimation  

It means finding the values of the model coefficients, which provide the best fit for the data.  

 

3.2.1.6. Model Checking  

Model-checking involves testing the assumptions of the model to identify any areas where 

the model is inadequate. If the model is insufficient, it is necessary to go back to Step 2 

and try to identify a better model.  

 

3.2.2. Linear Regression 

The simple linear regression model is a model with a single regressor x that has a 

relationship with a response y that is a straight line or linear. This simple linear regression 

model is 

 y(x) = β଴ + βଵx +  ε (3.23) 

where the intercept β଴ and the slope βଵ are unknown constants and ε is a random error 

component.  

The parameters β଴  and βଵ are called regression coefficients. These coefficients have 

a useful interpretation. The slope βଵ is the change in the mean of the distribution of y 

produced by a unit change in x. If the range of data on x includes x = 0, then the intercept 

β଴ is the mean of the distribution of the response y when x = 0 (MONTGOMERY, PECK, & 

VINNING, 2012). 

For modeling time series with linear regression, logarithmic difference transformation 

applied. For observed values 𝑃௧, growth for estimation length as estimated sequence 

selected. For depended variable 𝑃௧ା௘̅ೞ
, according to the length adjustment (will be 



Markovian Model for Forecasting Financial Time Series 
 

15 

mentioned in the following chapters), data shifted one unit so it is the target variable as 

future growth for the training dataset. 

 

3.2.3. Decision Tree Regression 

The decision tree is the visualization form that has a root node and the leaf node. The leaf 

node contains the results. There are two types of nodes present in the decision tree: the 

inner node and the terminal node.  

Two types of decision trees can be drowned in the forecasting: the classification tree 

and the other is the regression tree. Classification tree analysis is preferable when the 

prediction result needs to be classified into which class the data belongs, and when the 

predicted result can be considered a real number, Regression tree analysis is more 

efficient (Navin, 2013). 

A decision tree is a method to find the target value and check the possibility of the 

trends with the different branches. In the decision tree, all instances are represented as 

the attribute values. It automatically performs the reduction of the complexity, selection of 

the features and regarding predictive analysis.  

It starts from the root node and step by step, and it goes down until the terminal node 

to interprets the result (Navin, 2013). 

 

3.2.4. Support Vector Regression 

Vapnik's SVM technique is based on the Structural Risk Minimization (SRM) principle. The 

objective of SVM is to find a decision rule with good generalization ability through selecting 

some particular subset of training data, called support vectors. This method nonlinearly 

maps the input space into high dimensional feature space, then constructs an optimal 

separating hyperplane (Cortes & Vapnik, 1995).  
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An important characteristic of SVR is that here the training process is equivalent to 

solving a linearly constrained quadratic programming problem. So, the SVM solution is 

always unique and globally optimal (Adhikari & Agrawal, 2013). 

 

3.3. The New Method 

While shaping the new model, the following steps were followed briefly.  

 Firstly, the data obtained was transformed into multidimensional data by passing 

through a number of transformations, and since the Markov chains are state-based 

(Norris, 1997), the transformed data is classified into adequate labels in order for 

the Markov chains to work.  

 Following the principles of Markov Chains, new sets of waves that are going to be 

used for estimations are formed. 

 The principles of hidden Markov chains were used to compute dependent 

probabilities based on these sets. 

 Using the non-parametric density function, most likely expected growth rates from 

these sets were calculated. 

 And finally, the growth rates and probabilities obtained were processed using the 

decision tree expected benefit method, the expected growth and the corresponding 

time frame of this growth were determined. 
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Figure 3.2 Working Scheme 

The figure above presents the steps followed. The following chapters explain related 

methodologies respectfully the presentation. 

 

3.3.1. Transformation 

Most of the time serie models are based on specific rules and design parameters for their 

own requirements. The stationarity condition might be given as an example for the ARIMA 

process, which is a highly common methodology for modeling time series.  

There are many academic and non-academic studies about the topic. The power 

transformation (Hwang & Kim, 2004), logarithmic transformation (Nelson & GRANGER, 

1979), arcsin transformation, square-root transformation (Bromiley & Thacker, 2002) 

methods can be given as an example to obtain data that is following related model 

requirements such as heterogeneity, stationarity, reduced skewness. 

A different approach has been developed to represent the data with different 

attributions in this study. The new transformation function is developed for transforming 

daily closing prices to waves.  

Wave is a term for variables in the converted data. The method is about detecting 

consecutive daily growths that have the same sign in the sense of positivity and negativity. 
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Accordingly, it creates waves by grouping consecutive daily growths. As an example, 

if today's return sign is equal to yesterday's, the method adds today's growth to the current 

wave. If the return sign is different from yesterday's return sign, the current wave brakes, 

and it creates a new wave starting from the last closing time. Waves are two-dimensional 

observations that include sequence and altitudes. These two properties of waves will be 

introduced in the next sections. 

 

3.3.1.1. Attributions of Waves 

Waves have three subdomains that are sequence, altitude, and the label. The label is not 

directly observable. Instead, it is a product of altitude. Therefore, Wave transformation 

output contains two-dimensional observation. 

𝑆𝑒𝑞൫𝑊௡೟
൯: 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑣𝑒 𝑛 𝑖𝑛 𝑑𝑎𝑦 𝑡 

𝐴𝑙𝑡൫𝑊௡೟
൯: 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑣𝑒 𝑛 𝑖𝑛 𝑑𝑎𝑦 𝑡 

𝐿𝑎𝑏൫𝑊௡೟
൯: 𝐿𝑎𝑏𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑣𝑒 𝑛 𝑖𝑛 𝑑𝑎𝑦 𝑡 

 

3.3.1.1.1. Sequence 

The sequence (wavelenghth) of the wave presents consecutive days that have the same 

return sign. Thus, it is presented with the time unit, which is the day format in this study, 

respectfully to the obtained dataset. It can be defined as the length of the wave as well. It 

shows the duration of the wave with days unit.  

 𝑆𝑒𝑞(𝑊௡ೣశ೎
): ∆𝑡 (3.24) 

 𝑆𝑒𝑞(𝑊௡ೣశ೎
) = (𝑥 + 𝑐) − 𝑥 (3.25) 

 𝑆𝑒𝑞(𝑊௡ೣశ೎
) = 𝑐 (3.26) 

Where 𝑊௡ೣశ೎
 presents the wave n in day x+c, 𝑡௫ is the starting date of the wave, 𝑡௫ା௖ 

is the last date of the wave.  

𝑃௧: 𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑐𝑘 𝑓𝑜𝑟 𝑑𝑎𝑦 𝑡 

𝑅௧: 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐ℎ 𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑜𝑟 𝑑𝑎𝑦 𝑡 ∴ 𝑅௧ = ln(𝑃௧ − 𝑃௧ିଵ) 
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𝑆𝑒𝑞(𝑊௡) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑆𝑒𝑞(𝑊௡೟

) = 𝑆𝑒𝑞 ቀ𝑊௡(೟షభ)
ቁ + 1          𝑖𝑓  

|𝑅௧|

𝑅௧
=

|𝑅௧ିଵ|

𝑅௧ିଵ

𝑆𝑒𝑞(𝑊௡೟
) = 𝑆𝑒𝑞 ቀ𝑊௡(೟షభ)

ቁ + 1           𝑖𝑓  𝑅௧ = 0

∃𝑊௡ାଵ 𝑎𝑛𝑑   𝑠𝑒𝑞(𝑊௡ାଵ೟
) = 1           𝑖𝑓  

|𝑅௡|

𝑅௡
≠

|𝑅௡ିଵ|

𝑅௡ିଵ

 (3.27) 

The sequence of waves depends on the return sign. If the day's return has the same 

sign as the last day's return or the day has zero return, the wave continues, and the 

sequence of it grows one unit respectfully. Otherwise, the wave breaks, and a new wave 

starts. 

 

3.3.1.1.2. Altitude 

Another essential attribute of the wave is altitude. It presents the natural logarithmic growth 

of the wave from the beginning of the wave until it breaks. Therefore it is a scale for wave 

power or natural logarithmic growth of closing prices along with the wave. It does not have 

a unit because it is a growth indicator that means the logarithmic proportion of quantities 

with the same units. 

𝑃௧: 𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑐𝑘 𝑓𝑜𝑟 𝑑𝑎𝑦 𝑡 

𝑅௧: 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐ℎ 𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑜𝑟 𝑑𝑎𝑦 𝑡 

 𝑅௧ = ln(𝑃௧) − ln (𝑃௧ିଵ) (3.28) 

 
𝐴𝑙𝑡(𝑊௡ೣశ೎

) = ෍ 𝑅௧

௫ା௖

௧ୀ௫

 (3.29) 

Where 𝐴𝑙𝑡(𝑊௡೟
) presents the altitude of the wave 𝑛 in day 𝑡, 𝑥 is the first date of the 

wave, 𝑥 + 𝑐 is the last date of the wave. 

 

3.3.1.1.3. Label 

The label of the wave is additional attribution of the wave. It is an assistance attribution to 

function hidden Markov Chains. It is calculated by classifying the quantiles of negative and 

positive attitudes.  
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Let the D=d1,d2,…,d10 to present decile intervals of altitude of positive waves. Waves 

that are in related decile interval will be a label with L=1,2,…,10 respectfully. A similar 

approach is applied for negative waves if D- =d-
-1, d-

-2,…, d-
-10 denotes decile intervals of 

altitude of negative waves. Therefore, waves in related decile intervals will be labeled with 

L=-1,-2,…,-10. 

 

3.3.2. Markov Process 

In this part, the Markov process will be applied to transformed data. These sections will be 

aimed at applying the Markov process by rearranging it according to the wave structure. 

To be able to do that, several wave sets suitable for the purpose were formed and The 

Markov probabilities are calculated over these sets. 

 

3.3.2.1. Set of All Observed Waves 

Let the S denotes observed waves from the first wave until the current wave: 

𝑊௡ୀ௠: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑊𝑎𝑣𝑒 

𝑊௡ୀଵ: 𝐹𝑖𝑟𝑠𝑡 𝑊𝑎𝑣𝑒 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

 
𝑆 = {𝑊௡: ෍ 𝑊௡

௠

௡ୀଵ

} (3.30) 

In the presentation above, n denotes the consecutive index of waves, which start from 

the first wave "1" until the current wave that is presented by 𝑊௠ and denotes the last 

observed wave at the observation moment where 𝑛 ∈ 𝑁 . Therefore S includes all waves 

that have been observed, and it is the population of observed waves. 

 

3.3.2.2. Set of Continue or Break Waves 

Core principles and general formulation for Markov Process are discussed and presented 

in chapter 3.1. Only one step forward event estimation will be applied to transformed data 

to increase estimation accuracy, prevent a class of states or irreducible classes and 

calculation simplicity.  



Markovian Model for Forecasting Financial Time Series 
 

21 

Let the sequence of waves 𝑆𝑒𝑞(𝑊௡) presents states for the Markov Chains. If we 

organize the equation (3.6) accordingly, we will obtain the following presentation. 

 𝑃[𝑆𝑒𝑞(𝑊௡) = 𝑧|𝑆𝑒𝑞(𝑊௡
(௡ିଵ)

) = 𝑧ଵ, … , 𝑧௡ିଵ)] = 𝑃[𝑆𝑒𝑞(𝑊௡) = 𝑧|𝑆𝑒𝑞(𝑊௡ିଵ)

= 𝑧௡ିଵ)] 
(3.31) 

One step estimation refers that the current event only depends on the last observed 

event, not more. Thus, to determine the current wave’s sequence, which might not be 

finished yet, we can use Markov probabilities by forming the probability vector based on 

the previous wave sequence.  

The presentation above would be efficient if sequences were observable at once but 

consider that waves do not occur at once. They are the product of continuous observation 

of the closing prices. The closing prices are periodic. When the stock exchange is closed, 

a new closing price occurs. Nevertheless, the wave transformed data is not periodic, and 

the new wave does not necessarily occur at the end of every day; a new wave occurs 

respectfully to descriptions in chapter 3.3.1.1.1. 

 

Figure 3.3 Wawe Occurance 
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Thus the current wave always has the potential to grow more and the possibility of 

having the current sequence as more than one day. Those possibilities create the 

necessity to scrutinize the Markov process for waves. 

Because when the discrete event occurs at once, probabilities have been calculated 

only by observations made. However, in the case of waves, the current sequence of the 

current wave might provide additional information. The current wave's sequence logically 

can not be less than the current sequence. Thus, state-space for the Markov process 

should not include waves with less sequence than the current wave's current sequence. 

Shrinking state space, according to the current sequence, makes using pre-defined 

transition matrixes impractical because transition matrixes are efficient when probability 

vectors are constant and pre-defined. In contrast, probability vectors vary on the current 

sequence for the current wave that should be estimated. Therefore, defining probability 

vectors according to the current sequence of the current wave will be wise.  

Let 𝑆஼஻ denotes Set of Continue or Break Waves, which is formed to determine if the 

current wave is going to continue or break. Every wave which exists in the continue or 

break set has the same altitude sign as the current wave (positive or negative). Every 

wave that exists in the continue or break set's previous wave has a sequence equal to the 

previous wave’s sequence. Every wave that exists in the continue or break set has an 

equal or bigger sequence than the current wave's current sequence. Every wave in the 

break or continue set is an element of the set of waves. Simply 𝑆஼஻ can be presented as 

below: 

 

𝑆஼஻ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑊௡: 𝑊௡ ∈ 𝑆

𝑊௡: 𝑆𝑒𝑞(𝑊௡ିଵ) = 𝑆𝑒𝑞(𝑊௠ିଵ)

𝑊௡: 𝑆𝑒𝑞(𝑊௡) ≥ 𝑆𝑒𝑞(𝑊௠)

𝑊௡:
|𝐴𝑙𝑡(𝑊௡)|

𝐴𝑙𝑡(𝑊௡)
=

|𝐴𝑙𝑡(𝑊௠)|

𝐴𝑙𝑡(𝑊௠)

 (3.32) 

Respectfully to the description of 𝑆஼஻ and 𝑆 that is the set of all waves. 𝑆 is the 

superset of continue or break set of waves 𝑆஼஻ ⊂ 𝑆 . In other words, the continue or break 

set of waves is the subset of the set of waves.  
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3.3.2.3. Set of Continue Waves 

Let 𝑆஼ denote the set of Continue Waves and every wave which exists in the continue set 

has a greater sequence than the sequence of the current wave. Every wave which exists 

in the continue set is a member of the continue or break set of waves. 

 
𝑆஼ = ൝

𝑊௡: 𝑊௡ ∈ 𝑆஼஻

𝑊௡: 𝑆𝑒𝑞(𝑊௡) > 𝑆𝑒𝑞(𝑊௠)
 (3.33) 

𝑆஼஻ is the set of all continue or break waves. Therefore, it includes the "continue set of 

waves" 𝑆஼ ⊂ 𝑆஼஻ or the continue set of waves is the subset of the set of continue or break 

waves. 

 

3.3.2.4. Set of Break Waves 

Let Sb denotes the set of break waves. Every wave which exists in the break set's has an 

equal sequence with the sequence of the current wave and every wave which exists in the 

break set is a member of the continue or break set of waves. 

 
𝑆஻ = ൝

𝑊௡: 𝑊௡ ∈ 𝑆஼஻

𝑊௡: 𝑆𝑒𝑞(𝑊௡) = 𝑆𝑒𝑞(𝑊௠)
 (3.34) 

𝑆஼஻ is the set of all continue or break waves. Therefore, it includes the "break set of 

waves," 𝑆஻ ⊂ 𝑆஼஻. In other words, the break set of waves is the subset of the set of 

continue or break waves. 

 𝑆஻ ∪ 𝑆஼ = 𝑆஼஻ (3.35) 

The set of all continue or break waves is the union of the set of break waves and the 

set of continue waves. 

 

3.3.2.5. Continue or Break Probabilities 

S, SCB, SC and SB are described and introduced above. In this part, let us determine the 

probabilities to continue or break with the help of the mentioned wave sets. 

 
𝑃஼(𝑊௠) =

|𝑆஼|

|𝑆஼஻|
 (3.36) 

In the equation above, 𝑃஼(𝑊௠) denotes the probability of the current wave to continue. 

The probability of the current wave to continue is equal to the size of the set of continue 
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waves divided by the size of the set of Continue or Break Waves. Because, while 𝑆஼஻ 

includes all possible outputs in the frame of the Markov process, 𝑆஼ presents the desired 

outputs suggesting that the current wave is going to continue; its sequence will be greater 

than the current sequence. 

 
𝑃஻(𝑊௠) =

|𝑆஻|

|𝑆஼஻|
 (3.37) 

In the equation above, 𝑃஻(𝑊௠) denotes the probability of the current wave to break. 

The probability of break is equal to the size of the set of break waves divided by the size of 

the set of the continue or break waves. Because, while 𝑆஼஻ includes all possible outputs in 

the frame of the Markov process, 𝑆஻ presents the desired outputs suggesting that the 

current wave is going to break; its sequence will be the same as the current sequence. 

Chapter 3.3.2.2 explains that the set of continue or break waves is the union of the set 

of continue waves and the set of break waves. Therefore, the sum of probabilities of 

continue and break is explicitly equal to one. 

 𝑆஻ ∪ 𝑆஼ = 𝑆஼஻ ∴ |𝑆஼| + |𝑆஻| = |𝑆஼஻| (3.38) 

So, 

 𝑃஼(𝑊௠) + 𝑃஻(𝑊௠) = 1 (3.39) 

Chapter 3.3.2.3 and 3.3.2.4 mentioned that the set of continue or break waves is a 

superset of the set of continue waves and the set of the break waves. Therefore, the sizes 

of the subsets are equal or less than the size of the continue or break waves set. 

 
𝑆஻ ⊂ 𝑆஼஻ ∴ 0 ≤

|𝑆஻|

|𝑆஼஻|
≤ 1 (3.40) 

and, 

 
𝑆஼ ⊂ 𝑆஼஻ ∴ 0 ≤

|𝑆஼|

|𝑆஼஻|
≤ 1 (3.41) 

Additionally, any output of 𝑆஼ or 𝑆஻ does not overlap. Those three conditions are proof of 

the continue and break probabilities are real and exist as a probability vector for this level. 

 

3.3.2.6. Sequence Sets of Waves 

The advantages of using adjusted probability vectors depending on the current sequence 

of the current wave have been discussed in the previous chapter. Additionally, another 
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practical necessity occurs to estimate the next wave when wave transformation is applied 

to the closing prices. If the current wave's sequence has been estimated as the current 

sequence of the current wave, it means there is a high likelihood for the current wave to 

break at the end of the previous day. In other words, the growth sign of stock price is going 

to change. Thus, the approach will not forecast a future price. Instead, it will estimate the 

end of the wave which is already actualized. 

Since the purpose of the study is forecasting future prices, providing preliminary 

estimates would be inefficient. Therefore, an additional condition is applied to Markov 

properties. Consider that if the growth sign change today, it means the current wave is 

going to end at the end of yesterday. To be able to estimate the next wave's sequence 

initial condition would be the current wave is going to be 𝑊௠ାଵ and the previous wave is 

going to be 𝑊௠. Thus, The Markov process should be reconstructed according to 𝑊௠ାଵ 

instead of 𝑊௠.  

With the extra condition, the wave is going to continue to grow with probability  𝑃஼(𝑊௠) 

or the wave is not going to continue to grow with probability 𝑃஻(𝑊௠).  

 

3.3.2.7. Sequence SubSets if Current Wave Continue and the Probability 

If the current wave continues, there will be a few possible sequence outcomes of it. 

Markov process is used to determine the probability of occurrence of each possible 

sequence; Markov states are sequences. 

Let 𝑃௭(𝑆𝑒𝑞(𝑊௠)) represent the probability that the current wave's sequence is going to 

be Z. 𝑧 =  𝑚, 𝑚 + 1, … , 𝑗 where j is the observed maximum sequence upon all observed 

waves and m is the current sequence of the current wave. 𝑆஼ௌ೥
 presents the set of waves 

which are an element of 𝑆஼ and has a specific sequence of z.  𝑆஼ௌ೥
= {𝑊௡  ∈  𝑆஼| 𝑆𝑒𝑞(𝑊௡) =

𝑍} According to the description, there are sequence subsets for every sequence observed 

from m+1 to j. Therefore, the union of sequence subsets from m+1 to j is equal to the 

continue set of waves. 

 
𝑆஼ = ራ 𝑆஼ௌ೥

௝

௭ୀ௠ାଵ

 (3.42) 

Every wave for sequence subset is chosen from the continue set of waves. Therefore, 

the continue set of waves is a superset for every conditional sequence subset 𝑆஼ௌ೥
⊂ 𝑆஼. 
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The probability of each sequence occurs for the current wave can be calculated as below: 

 
𝑃௭൫𝑊௠ೞ

൯ =
|𝑆஼ௌ೥

|

|𝑆஼|
 (3.43) 

Therefore, every sequence probability is equal or more than zero and equal or less than 

one. The sum of the sequence probabilities is equal to one. 

 0 ≤ 𝑃௭൫𝑊௠ೞ
൯ ≤ 1 (3.44) 

, 

 
෍ 𝑃௭൫𝑊௠ೞ

൯

௝

௭ୀ௠ାଵ

= 1 (3.45) 

Additionally, any output does not overlap. Those three properties prove that the array 

contains every sequence probability for the continuing condition is a probability vector, and 

it exists. 

 

3.3.2.8. Sequence SubSets if Current Wave Break and The Probability 

A discrete-time Markov chain is a sequence of random variables X1, X2, X3, ... with the 

Markov property, namely that the probability of moving to the next state depends only on 

the present state and not on the previous states:  

 𝑃(𝑋௡ାଵ = 𝑥|𝑋ଵ = 𝑥ଵ, 𝑋ଶ = 𝑥ଶ, … , 𝑋௡ = 𝑥௡) = 𝑃(𝑋௡ାଵ = 𝑥|𝑋௡ = 𝑥௡) (3.46) 

If the current wave breaks, it means that one more wave will be added to the S, the 

current wave will be Wm+1, and the previous wave will be Wm. Therefore, a new set of 

waves will be required to define sequence probabilities for the break condition.  

 

𝑆ே஻ =

⎩
⎪
⎨

⎪
⎧

𝑊௡: 𝑊௡ ∈ 𝑆

𝑊௡: 𝑆𝑒𝑞(𝑊௡ିଵ) = 𝑆𝑒𝑞(𝑊௠)

𝑊௡:
|𝐴𝑙𝑡(𝑊௡)|

𝐴𝑙𝑡(𝑊௡)
=

|𝐴𝑙𝑡(𝑊௠ାଵ)|

𝐴𝑙𝑡(𝑊௠)

 (3.47) 

𝑆ே஻ denotes the new break set, which is described in the presentation above. In 

previous chapters, the Markov process applied to the current wave, which already exists 

and takes into account the previous wave 𝑊௠ିଵ while matching waves. Here, waves that 

members of the new break set 𝑊௡ ∈ 𝑆ே஻ follow different rules because if the current wave 

breaks, it will be the previous wave and the Markov process should be applied accordingly 
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with matching waves with the same sequence of if current wave breaks 𝑊௡: 𝑆𝑒𝑞(𝑊௡ିଵ) =

𝑆𝑒𝑞(𝑊௠). 

𝑆ே஻ௌ೥
 presents the set of waves which are an element of 𝑆ே஻ and has a specific 

sequence of z. 

 
𝑆ே஻ௌ೥

= ൜
𝑊௡  ∈  𝑆ே஻

𝑆𝑒𝑞(𝑊௡) = 𝑧
 (3.48) 

According to the description above, there are sequence subsets for every sequence 

observed. Therefore, the union of sequence subsets from one to j is equal to the new 

break set of waves. 

 
𝑆ே஻ = ራ 𝑆ே஻ௌ೥

௝

௭ୀଵ

 (3.49) 

Every wave for sequence subset is chosen from the new break set of waves. 

Therefore, the new break set of waves is a superset for every conditional sequence 

subset. 

 𝑆ே஻ௌ೥
⊂ 𝑆ே஻ (3.50) 

The probability of each sequence occurs for the current wave can be calculated as 

below: 

 
𝑃௭൫𝑊௠ାଵೞ

൯ =
|𝑆ே஻ௌ೥

|

|𝑆ே஻|
 (3.51) 

 

Therefore, every sequence probability is greater than or equal to zero and less or 

equal to one. The sum of the sequence probabilities is equal to one. 

 0 ≤ 𝑃௭൫𝑊௠ାଵೞ
൯ ≤ 1 (3.52) 

, 

 
෍ 𝑃௭൫𝑊௠ାଵೞ

൯

௝

௭ୀଵ

= 1 (3.53) 

Any output does not overlap. The last three properties prove that the array contains 

every sequence probability for the breaking condition is a probability vector, and it exists. 

Please find below the figure depicting the sets that follow this entire Markov process. 

The set from which the arrow comes out contains all the members of the set at the end of 
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the arrow. Markers on arrows represent Markov probabilities. Set names are given in 

accordance with the above definitions. 

 

Figure 3.4 Markov Process Illustartion 

 

3.3.3. Hidden Markov Probabilities by Sets of Waves 

The second conditional probability step was added to estimate the next sequence 

according to the Markov Process. The third conditional step would be necessary according 

to Hidden Markov Process. Consider that the sequence of the wave and the altitude of the 

wave are separate indicators. The label of the wave has been calculated according to the 

altitude of the wave. Thus, the label of the wave and the sequence of the wave are 

different variables that can be used for the Hidden Markov chains.  

 𝑃௟ಹಾ಴
= 𝑃൫𝑊௠௦

= 𝑧ห𝑊௠௟
= 1,2, … , 10൯˅ 𝑃൫𝑊௠ାଵ௦

= 𝑧ห𝑊௠ାଵ௟
= −10, −9, … , −1൯ where 

𝑃௟ಹಾ಴
 denotes Hidden Markov Chain label output probabilities, 𝑃൫𝑊௠௦ห𝑊௠௟൯ denotes label 

output possibilities with initial continue and have a sequence of z conditions for the current 

wave.  𝑃൫𝑊௠ାଵ௦ห𝑊௠ାଵ௟൯ denotes label output possibilities with initial conditions: The 

current wave breaks and the next wave( does not exist yet) has a sequence of z.  
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𝑃(𝑊௠ೞ
) and 𝑃(𝑊௠ାଵೞ

) are hidden Markov probabilities (emission probabilities). They are 

pre-calculated probabilities and contains known values. Thus, for the label probabilities 

calculations, the prior Markov chain process is relevant and can be considered as 

absolute. While 𝑃௟ಹಾ಴
should be calculated based on these prerequisites, only the 

corresponding state-space will be used and occurrence at the same time is vitally 

important. 

Until now, break or continue sets, sequence subsets of break or continue sets 

described so far. Another set of waves can be defined as label subsets. 𝑆௭௟ denotes a set 

of waves with label 𝑙 for sequence z. for 𝑙 =-10, -9,…, -1, 1, 2,…, 10. Every each label 

presents a decile of wave's growth in all observed wave's growth S, separately for 

negative and positive values. 

 𝑆௡ =  { 𝑊௡ ∈ 𝑆| 𝐴𝑙𝑡(𝑊௡) < 0} (3.54) 

and, 

 𝑆௣ =  { 𝑊௡ ∈ 𝑆| 𝐴𝑙𝑡(𝑊௡) > 0} (3.55) 

Since Waves cannot have zero altitudes by definition, negative and positive definitions 

above do not include zero points.  𝑆௡ denotes a set of waves with negative altitude. 𝑆௣ 

stands for a set of waves with a positive altitude. 

By definition, all negative waves tagged with the label from minus ten to minus one 

and all of them belong to label subsets as same as all positive waves belong to positive 

label subsets in the same way. Therefore the union of all label subsets is equal to S.  

 
𝑆௡ = ራ ራ 𝑆௭௟

ିଵ

௟ୀିଵ଴

௝

௭ୀଵ

 (3.56) 

, 

 
𝑆௣ = ራ ራ 𝑆௭௟

ଵ଴

௟ୀଵ

௝

௭ୀଵ

 (3.57) 

and, 

 𝑆 = 𝑆௣ ∪ 𝑆௡ (3.58) 

Every sequence set does not have to include all wave labels therefore 𝑆௭௟ can be an empty 

set, but it exists. 
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The conditional probability of having a wave with label 𝑙 with the condition of having 

sequence z can be defined as follow: 

 
𝑃௟ = (𝑊௡: 𝑆𝑒𝑞(𝑊௡) = 𝑧|𝐿𝑎𝑏(𝑊௡) = 𝑙) =

|𝑆௭௟|

|𝑆௭|
 (3.59) 

Therefore, every label probability is greater than or equal to zero and less than or equal to 

one. The sum of the sequence probabilities is equal to one. 

 0 ≤ 𝑃(𝑊௡: 𝑆𝑒𝑞(𝑊௡) = 𝑧|𝐿𝑎𝑏(𝑊௡) = 𝑙) ≤ 1 (3.60) 

, 

 
෍ 𝑃൫𝑆𝑒𝑞(𝑊௡) = 𝑧ห𝑊௡೗

൯ + ෍ 𝑃൫𝑆𝑒𝑞(𝑊௡) = 𝑧ห𝑊௡೗
൯

ଵ଴

௟ୀଵ

ିଵ

௟ୀିଵ଴

= 1 (3.61) 

Furthermore, the outputs do not overlap. The last three properties prove that the array 

contains every label probability for the sequence z condition. Therefore, it is a probability 

vector, and it exists. 

 

3.3.4. Label Growths 

In chapter 3.3.2.1, we start to create subsets of our data, and finally, in chapter 3.3.2.8, we 

indicate the data until the last subsets. The label subsets contain various amounts of 

observations depending on its initial conditions. The amount of observations varies. Some 

of the subsets are the empty set, some of them contain less than seven observations, and 

some of them have more than a hundred observations. A variety of amount of 

observations urges different approaches. 

For subsets that its distribution is available, the non-parametric Gaussian density 

function is fitted and the highest local peak point of the non-parametric density function is 

selected as the estimated growth (Scott, 1992). 

Non-parametric density functions rely on kernel estimators. The kernel estimator is 

probably the most commonly used estimator and is certainly the most studied 

mathematically. It does, however, suffer from a slight drawback when applied to data from 

long-tailed distributions. Because the window width is fixed across the entire sample, there 

is a tendency for spurious noise to appear in the tails of the estimates; if the estimates are 

smoothed sufficiently to deal with this, then essential detail in the main part of the 

distribution is masked (Silverman, 1986). 



Markovian Model for Forecasting Financial Time Series 
 

31 

For subsets with less than three waves or showing a long tail property, the altitude 

average of the set element waves is taken as the estimated growth with the following 

formula: 

 
𝐺௘(𝑆௭௟) =

∑ 𝐺௜
௡
௜ୀଵ

𝑛
 (3.62) 

Where 𝐺௘(𝑆௭௟) denotes growth estimation of label subset, 𝐺௜ denotes the growth of 

wave 𝑖 which is included on the subset 𝑆௭௟ and 𝑛 denotes the total number of waves which 

is included in the subset 𝑆௭௟. 

This simple approach is assumed efficient for sets that do not have a long tail or do 

not have more than seven members because subsets have little probability of occurring 

than ones with more members. With this reasoning, we can say that regarding waves have 

little chance to be the next wave. 

 

3.3.5. Final Estimations 

3.3.5.1. Final Probabilities 

Three types of possibilities have been identified in the last sections. The probability of 

continue or break of the wave is the first possibility as 𝑃஼(𝑊௠) and 𝑃஻(𝑊௠), and the 

sequence probabilities 𝑃௭൫𝑆𝑒𝑞(𝑊௠)൯ were discussed as the second. These two possibilities 

were calculated according to the Markov process. The last probability 𝑃௟ was the label 

possibilities that are calculated respectfully to the hidden Markov process.  

With all these initial conditions, final probabilities can be written as 

൫𝑃஼(𝑊௠)ห𝑃௭൫𝑆𝑒𝑞(𝑊௠)൯ ห𝑃௟൯ and  𝑃(𝑃஻(𝑊௠)ห𝑃௭൫𝑆𝑒𝑞(𝑊௠)൯ห𝑃௟). It only can be described as 

two different probability because two different Markov probability vector was created for 

continue condition and break condition. 

The final number of probabilities changes each time because the Markov process 

generates a different number of possible wave sequences greater than zero, relative to the 

previous wave sequence or the current wave sequence. 

According to the definitions, every possibility is conditional and it is based on the 

principle that the initial condition is fulfilled. Consequently, the final probabilities can be 

written as the product of all conditional probabilities which are 𝑃(𝐵), 𝑃(𝐶); 𝑃(𝑆஼), 𝑃(𝑆஻); 

𝑃(𝐿) is equivalent of 𝑃(𝐵) ×  𝑃(𝑆஻) ×  𝑃(𝐿)  or 𝑃(𝐶) ×  𝑃(𝑆஼) ×  𝑃(𝐿).  
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Currently, a probabilistic dataset with probability to occur, sequence indication and 

growth indication is captured. This dataset suggests many probabilities. Having one 

estimation for the variable growth (it is a derivative of price) is desirable. Hence, with the 

help of the created dataset, a decision tree with label leaves can be constructed for 

sequence and growth separately. 

 

3.3.5.2. Final Growth 

Growth estimation is calculated as the decision tree average benefit of the probabilistic 

dataset with taken account growth indicators. Thus, estimated growth can be presented 

with the following formula: 

 
𝑒̅௚ =

∑ (𝑃௜ × 𝑔௜)
௡
௜ୀଵ

∑ 𝑃௜
௡
௜ୀଵ

 (3.63) 

Where 𝑃௜ and 𝑔௜ denotes wave's probability of occurring and waves estimated growth 

respectfully.  

 

3.3.5.3. Final Sequence 

Growth estimation is calculated as the decision tree average benefit of the probabilistic 

dataset with taken account sequences. Thus, estimated growth can be presented with the 

following formula: 

 
𝑒̅௦ =

∑ (𝑃௜ × 𝑠௜)௡
௜ୀଵ

∑ 𝑃௜
௡
௜ୀଵ

 (3.64) 

Where 𝑃௜ and 𝑠௜denotes wave's probability of occurring and wave's sequence 

respectfully. When calculating according to this formula, the result can be a decimal 

number instead of an integer. That creates complications for the daily price dataset. 

Hence, the target sequence is rounded to integers.  

 

3.4. Evaluation 

Two evaluation methods are used and analyzed for the study. They are root mean square 

error (RMSE) and mean absolute percentage error (MAPE). This chapter follows with an 

introduction for both evaluation methods. 
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3.4.1. Root Mean Square Error (RMSE) 

The root mean square error (RMSE) is a widely used method to compare forecast 

accuracies. In the early 1980s' Carbone and Armstrong (1982) asked 145 forecasting 

experts what error measures they preferred when generalizing the accuracy of different 

forecasting methods. Practitioners selected the Root Mean Square Error (RMSE) more 

frequently than any other tests, although it is not unit-free. Academicians had a strong 

preference for the RMSE.  

Although there are other pieces of evidence (Armstrong & Collopy, 1992), prove that 

not unit-free methods can be misleading, RMSE was also included in this study as it is a 

widespread comparison method. 

The average model-estimation error can be written generically as 

 

𝑒ஓ = ൥෍ 𝑤௜

௡

௜ୀଵ

|𝑒௜|
ஓ ෍ 𝑤௜

௡

௜ୀଵ

൙ ൩

ଵ
ஓൗ

 (3.65) 

Where 𝛾 ≥  1 and 𝑤௜ is a scaling assigned to each |𝑒௜|ஓ according to its hypothesized 

influence on the total error (Willmott & Matsuura, 2005). The average error is most 

commonly taken with γ = 2; that is, as the root-mean-square error (RMSE) where 

 
𝑅𝑀𝑆𝐸 = ቈ

∑ |𝑒௜|ଶ௡
௜ୀଵ

𝑛
቉

ଵ
ଶൗ

 (3.66) 

The stated rationale for squaring each error, 𝑒௜ = (𝑃ത − 𝑂ത ) where 𝑃ത and 𝑂ത are predicted 

and observed values, is usually 'to remove the sign' so that the 'magnitudes' of the errors 

influence the average error measure (Willmott & Matsuura, 2005). 

All forecasting methods are applied to natural logarithmic differences, as presented 

previously. Thus, all of them estimates natural logarithmic differences ( ln(𝑃௧ା௡ 𝑃௧⁄ ) ), not 

the closing price itself. This transformation reversed to assess the estimated closing price 

(𝑒̅௉) as  

 𝑒̅௉ = 𝑃௧ × 𝑒୪୬(௉೟శ೙ ௉೟⁄ ) (3.67) 
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3.4.2. Mean Absolute Percentage Error (MAPE) 

Mean Absolute Percentage Error (MAPE) is a unitless evaluation method because it is 

calculated by using the absolute error in each period divided by the observed values that 

are evident for that period. Averaging those fixed percentages is the second step for the 

final calculation. This approach is useful when the size or size of a prediction variable is 

significant in evaluating the accuracy of a prediction. MAPE indicates how much error in 

predicting compared with the real value (Khair, Fahmi, Al Hakim, & Rahim, 2017). MAPE 

can be generalized as the following formula: 

 

𝑀𝐴𝑃𝐸 =
∑

|𝑦௜ − 𝑦௜
ᇱ|

𝑦௜

௡
௜ୀଵ

𝑛
 × 100% 

(3.68) 

 

3.4.3. Forecast Length Adjustment for All Other Methods 

By the nature of transformed data, the new predictor forecasts as further as forecasting 

length. Thus, the method predicts prices for a different amount of days each time, depends 

on the estimated sequence.  

Example prediction lengths for one wave is presented in the figure below:  

 

Figure 3.5 Forecast Length 

When the market closes on 22.10.2018, the new wave starts because the growth sign 

turns to positive from negative. Positive growth continues two days until the end of 

24.10.2018. After the market closes, the method tells us the current wave is going to 

continue, most likely until its sequence reaches four business days, which is equal to the 

end of 24.10.2018. It predicts two business days further.  
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Depending on the wave sequence, prediction lengths vary from one day to five days 

for this test dataset. The chart below presents the forecast length for each prediction for 

the test dataset. 

 

Figure 3.6 Forecast Length Adjustment 

 

 

  



Markovian Model for Forecasting Financial Time Series 

36 

 

  



Markovian Model for Forecasting Financial Time Series 
 

37 

 

CHAPTER 4 

EMPIRICAL STUDY 

This chapter is dedicated to applying previously discussed and introduced 

methodologies and sharing the results of them. It contains six subsections as; Data 

to introduce the data that used in the study, transformed data to apply 

transformation which is introduced in chapter 3.3.1, probabilities and corresponding 

estimated growth of sets to present probabilities, sequences and growths for 

subsets which presented in chapter 3.3.3, forecast length for forecast length for 

each prediction during the test, ARIMA application to show how ARIMA criteria 

applied and selected for the data and finally Prediction results to present results for 

all forecasting methods that examined.  

 

4.5. Data 

The Navigator Company's daily stock prices have been chosen for the study, as 

mentioned before. The Navigator Company is listed on the Euronext Lisbon Stock 

Exchange.  

 

4.5.1. Obtaining Data 

www.investing.com has been used for obtaining daily prices from 01.01.1996 to 

31.12.2019. The website has services like providing historical stock prices, portfolio 

creation and tracking, financial news feed and broker information. investing.com provides 

a gateway to obtain historical prices for python programming tools, which has been used in 

this study for major calculations and visualizing the data as well as obtaining historical 

stock prices.  

The chart below presents daily closing prices and volume for regarding dates. 
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Figure 4.1The Navigator Company Closing Prices and Volume 

Sharing all six thousand-twenty-two observation is insufficient because of the space 

occupation. Thus, for further understanding of the data, the key statistics table created as 

follows. 

 

Definition Open High Low Close Volume 

count 6022 6022 6022 6022 6022 

mean 2.167635 2.190017 2.143343 2.167579 797133.5 

std 1.010219 1.020117 0.998371 1.009677 1770980 

min 0.82 0.83 0.76 0.81 0 

25% 1.36 1.38 1.34 1.36 202597.5 

50% 1.92 1.94 1.89 1.92 432760 

75% 2.83 2.85 2.79 2.83 847462.5 

max 5.99 6.05 5.93 5.99 80520000 

Table 4.1. Key Statistics for Prices 

4.6. Transformed Data 

Respectfully to the presented method in chapter 3.3.1, let the transformed data be 

presented in the following chapters. The chapter will follow with presenting sequences, 

altitudes and labels with the relationship between each other. 
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4.6.1. Sequence 

First, the transformation for dates from 14.11.2019 to 26.11.2019 will be demonstrated. 

Nine days price table for regarding dates are presented in the next table: 

Date Open High Low Close Volume Currency 

14.11.2019 3.58 3.58 3.54 3.56 295650 EUR 

15.11.2019 3.58 3.62 3.57 3.62 623410 EUR 

18.11.2019 3.64 3.64 3.56 3.57 601400 EUR 

19.11.2019 3.58 3.63 3.57 3.59 785950 EUR 

20.11.2019 3.6 3.6 3.52 3.54 630270 EUR 

21.11.2019 3.53 3.54 3.47 3.51 510770 EUR 

22.11.2019 3.5 3.54 3.49 3.53 387440 EUR 

25.11.2019 3.58 3.65 3.57 3.61 1220000 EUR 

26.11.2019 3.63 3.63 3.57 3.62 866770 EUR 

Table 4.2 Sample Price 

There would be five waves created respectfully to sequence formula and definition for 

regarding dates. As we can observe in Table 4.2, in the first, second and third days sign of 

return has changed for each day. Thus, different waves would be suitable for each day. On 

the date 19.11.2019, two days have negative returns in a row. Thus, one wave would fit 

into regarding two dates. After date 21.11.2019, consecutive four days have positive 

returns. Thus, one wave with sequence four would be adequate for regarding dates. The 

last five wave's sequence can be presented as in the next table. Prices have assumed 

dropping or rising from the last closing price. Thus, the start date of the wave presents a 

closing price of the date before. 

wave start date Sequence(days) 

1 14.11.2019 1 

2 15.11.2019 1 

3 18.11.2019 1 

4 19.11.2019 2 

5 21.11.2019 3 

Table 4.3. Sequences 

After a brief demonstration above, the following explanations present all waves 

between 01.01.1996 and 31.12.2019, as in the study.  
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While two thousand four hundred fifty-six waves created for regarding dates, one 

thousand fifty-nine of them has sequence one. This is approximately equivalent to forty-

three percent of all waves. As expected,  the largest number of waves have this 

sequence.Five hundred sixty-five of the waves have sequence two, three hundred thirty-

eight of them have sequence three. Hundred eighty-three of them have sequence four. 

Since the average number for each sequence group is one hundred forty-four, sequence 

clusters for one, two, three and four have more wave than the average number of cluster 

groups. 

One hundred fifteen of them have sequence five. Seventy-four of them have 

sequence six. Forty-three of them has sequence seven. Thirty-one of them have sequence 

eight. Seventeen of them have sequence nine. Eleven of them have sequence ten. Twenty 

waves have sequence vary between eleven to seventeen. Sequence wave clusters with 

more than four sequences are below the average amount of one hundred forty-four.While 

the minimum sequence of all waves is one as expected, the maximum sequence observed 

as seventeen in the transformed data. Low sequences are more populated than high 

sequences in general. The bar chart below presents the wave amount for each sequence 

group. 

 

Figure 4.2 Sequences 

4.6.2. Altitude 

According to the sample closing prices in the previous chapter, corresponding altitudes of 

the last five waves are presented in the table below. 
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wave start date Altitude(natural log ) 

1 14.11.2019 0.0167135 

2 15.11.2019 -0.013908 

3 18.11.2019 0.0055866 

4 19.11.2019 -0.022536 

5 21.11.2019 0.030858 

Table 4.4. Altitude 

As can be easily noticed, each altitude sign is different from the previous altitude sign 

with a sense of negativity and positivity because the wave's altitudes are equal to the sum 

of the growths with the same sign. 

 

Figure 4.3Altitudes 

The preceding figure helps to visualize how altitudes change over time. It is presented 

with the histogram to understand its distribution briefly. While the following table presents a 

brief key statistics of altitudes, the next figure shows the linear relationship between 

sequences and altitudes: 
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Description Value 

Count of waves 2456 

Mean of Altitudes 0.000563 

Standard Deviation of Altitudes 0.039982 

Minimum Altitude -0.228715 

Lower 25 Percentile of Altitudes -0.017094 

Median of Altitudes 0.000141 

Higher 75 Percentile of Altitudes 0.017544 

Maximum Altitude 0.264693 

Skewness 0.031997 

Kurtosis 4.6741 

Table 4.5. Key Statistics of Altitudes 

 

 

Figure 4.4 Altitudes and Sequences 

On the positive side, the slope is 41,712 for the linear fit. The sequence is expected to 

be 41,712 days for the altitude to increase one unit. On the negative side, the linear slope 

is -40,708. The sequence is expected to be 41,712 days for the altitude to decrease one 

unit. 
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4.6.3. Label 

According to the sample closing prices in chapter 4.2.1, corresponding labels of the last 

five waves are presented in the table below. 

wave start date label 

1 14.11.2019 5 

2 15.11.2019 -5 

3 18.11.2019 1 

4 19.11.2019 -7 

5 21.11.2019 8 

Table 4.6. Labels 

Since labels are products of altitudes, each label sign is different from the previous 

label sign with a sense of negativity and positivity as same as altitudes. 

While absolute values of labels grow, the corresponding sequence for the wave also 

shows a tendency to grow. This situation occurs because of the nature of waves. Labels 

are classified altitudes and altitudes are the sum of consecutive growths. The following 

figure helps to visualize the change of the group sizes. Bubble sizes are arranged 

according to the population of the sequence and label peers.  

 

Figure 4.5 Labels and Sequences 
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4.7. Probabilities and Corresponding Estimated Growths for Sets 

Different wave sets are defined and discussed in the methodology part. For each forecast, 

the break or continue probability, sequence probability, label probability and expected 

growth corresponding to these sets are determined. Relative probability table for the 

forecast in date22/11/2019 added to the appendix.  

The four label subset groups that are most likely to occur on 22/11/2019 presented as 

follows as the histogram, non-parametric Gaussian kernel density function, and estimated 

growth accordingly.

 

Figure 4.6 Non-Parametric Density Functions 

Growth estimates have been calculated by non-parametric density function for 112 of 

label subsets where the total label subsets amount is 320 in regarding date. The arithmetic 

mean has made the rest of the growth estimation for the subset growth. 

 

4.8. Forecast Length 

Chapter 3.4.3 mentioned that all forecast lengths for each predictor were adjusted as the 

new predictor’s forecast length. With the new predictor, 776 business days prediction has 
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been made in 301 times, with an average of 2,578 business days ahead forecasts during 

the test. Forecast lengths are illustrated with the bar chart in the figure below. 

 

Figure 4.7 Forecast Length 

 

4.9. ARIMA Application 

4.9.1. Data Preparation 

The Navigator company stocks were obtained for the study. Stocks are trading on the 

Lisbon stock exchange. In this work, only daily closing prices in between 01.01.1996 and 

31.12.2019 will be used.  

We can use the ADF test to analyze stationarity for the closing price (MacKinnon, 

2010). ADF test is applied to daily closing prices, and the following results are obtained: 

Augmented Dickey-Fuller Stationary Test Results for Daily Natural 

Growth: 

Values 

ADF Test Statistic -1.593110 

P-Value 0.487054 

# Lags Used 33 

# Observations Used 5988 

Critical Value (1%) -3.431443 

Critical Value (5%) -2.862023 

Table 4.7. Augmented Dickey-Fuller Stationary Test 
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P-value is higher than the critical value %05. Thus, we do not reject the null 

hypothesis of the Augmented Dickey-Fuller test. We can say; The time series of closing 

prices are not stationary. There is a unit root, as we suspected. 

 

4.9.2. Data Transformation 

ADF test result shows us our data is not stationary. As discussed before for the ARMA 

process, the time series should be stationary. To obtain a stationary time-series, the first 

difference over natural logarithmic daily closing prices can be used (Dritsaki, 2018). Thus, 

Transformed values which can be called natural logarithmic growth for each day's closing 

price obtained by the following formula, 

 𝐺௧ = ln(𝑋௧) − ln( 𝑋௧ିଵ) (4.1) 

Where 𝐺௧ shows daily natural logarithmic growth and 𝑋௧ presents daily closing price 

for day t. Thus, this transformation allows us to apply the ADF test for stationarity once 

again. Daily natural logarithmic growth data's 23 years chart, histogram and density graphs 

as follows. 

 

Figure 4.8 Growth Charts 

ADF test applied to transformed data to be sure if results do not have a unit root. 

Therefore they are stationary. 
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Augmented Dickey-Fuller Stationary Test Results for Daily Natural 

Growth: 

Values 

ADF Test Statistic -76.141877 

P-Value 0.000000 

# Lags Used 0 

# Observations Used 6020 

Critical Value (1%) -3.431437 

Critical Value (5%) -2.862020 

Table 4.8. Augmented Dickey-Fuller Stationary Test for Growth 

P-value is greater than critical values. Thus, we reject the null hypothesis of the 

Augmented Dickey-Fuller test. We can say; The time series of transformed closing prices, 

which is Daily Natural Growth, is stationary and ready to be processed by ARMA. 

 

4.9.3. Model Selection 

After obtaining stationary data, we can try to estimate p and q parameters for ARMA and 

find the best model for the data. Therefore, captured data slashed and split into two 

categories which are training and testing groups. Training data selected as the first 95 

percentile of all given data which includes the first 5719 observations. The testing data 

selected as the last five percentile of all assigned data which contains the final 302 

observations.  For choosing a good model, ACF and PACF graphs will help to determine p 

and q parameters. Therefore, they have created from training data as follows: 

 

Figure 4.9 Autocorrelation Functions 
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ACF Graph shows us p parameter for the AR process can be suggested as 0, 1 or 2 

because the level for the first and second lags is highly close to 0.05 line and further 

investigation required. 

PACF Graph gives us a clue, q parameter for the MA process can be suggested in 

between 0 to 2 because the change in levels occur dramatically and values are very close 

to critical level 0.05. Further investigation is required. 

 

4.9.4. Parameter Estimation 

ACF and PACF do not help enough to be sure about ARMA(p,q) orders. Thus, Akaike's 

Information Criterion involves for preselected parameters and the following Statistics for 

mentioned orders obtained as follows: 

Arima Log Likelihood, AIC and BIC comparison table:  

Dep. Variable Model Log Likelihood AIC BIC 

Daily Natural Growth ARMA(0, 0) 15312.14 -30620.28 -30606.977 

Daily Natural Growth ARMA(0, 1) 15313.132 -30620.265 -30600.31 

Daily Natural Growth ARMA(0, 2) 15313.643 -30619.287 -30592.68 

Daily Natural Growth ARMA(0, 3) 15314.041 -30618.082 -30584.825 

Daily Natural Growth ARMA(0, 4) 15315.603 -30619.206 -30579.297 

Daily Natural Growth ARMA(1, 0) 15313.106 -30620.212 -30600.257 

Daily Natural Growth ARMA(1, 1) 15314.393 -30620.786 -30594.179 

Daily Natural Growth ARMA(2, 0) 15313.653 -30619.305 -30592.699 

Table 4.9. ARMA Model Comparison 

According to the results in table 14, the ARMA (1,1) process has the lowest value of 

AIC (-30620.786). Thus, p and q parameters were captured by 1 and 1. Summary statistics 

for the ARMA(1,1) model presented in the next table. 
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Model: ARMA(1, 1) 

Log Likelihood 15314.393 

S.D. of innovations 0.017 

AIC -30620.786 

BIC -30594.179 

HQIC -30611.524 

  coef std err z P>|z| [0.025 0.975] 

const 0.0003 0 1.184 0.236 0 0.001 

ar.L1.log -0.783 0.121 -6.469 0 -1.02 -0.546 

ma.L1.log 0.8005 0.117 6.872 0 0.572 1.029 

  Real Imaginary Modulus Frequency 

AR.1 -1.277 +0.0000j 1.277 0.5 

MA.1 -1.2491 +0.0000j 1.2491 0.5 

Table 4.10. ARMA(1,1) Statistics 

 

4.9.5. Model Checking  

ARMA(1,1) process results obtained for training data with given parameters and the 

formula above. Residual distribution follows given PDF below: 

 

Figure 4.10 ARMA(1,1) Residuals Density 

Results for ACF and PACF were not precise and AICs were close in previous 

chapters; therefore, analyzing residuals will provide a better understanding of the model. 
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Thus Ljung-Box test is applied to ARMA(1.1) residuals and the following p-value table for 

mentioned lags and chart for p values obtained. 

 
lag:1 lag:2 lag:3 lag:4 lag:5 lag:6 lag:7 lag:8 lag:9 lag:10 

P_val 0.013 0.014 2.953 4.245 4.458 5.170 7.204 8.531 8.900 9.158 

Table 4.11. Ljung-Box Test 

 

Figure 4.11 Ljung-Box Test 

In the Ljung-box test, p-value "-0.0013" obtained for the first lag and value "-0.0014" 

obtained for lag order 2. Results give us a clue: there can still be autocorrelation in 

residuals. Therefore, Parameters need to be changed and adjusted for a higher degree of 

AR process. 

Raising AR degree one and using ARMA (2,0) instead of ARMA(1,1) would be more 

appropriate even if AIC criteria is higher than ARMA(1,1) process.  
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Model: ARMA(2, 0) 

Log Likelihood 15313.653 

S.D. of innovations 0.017 

AIC -30619.305 

BIC -30592.699 

HQIC -30610.043 

  coef std err z P>|z| [0.025 0.975] 

const 0.0003 0 1.190 0.234 0 0.001 

ar.L1.log 0.0186      0.013 1.409 0.159 -0.007 0.045 

ar.L2.log      -0.0138 0.013     -1.046 0.296 -0.040       0.012 

Roots 

 Real Imaginary  Modulus Frequency 

AR.1             0.6735           -8.4758j            8.5025 -0.2374 

AR.2 0.6735 +8.4758j 8.5025 0.2374 

Table 4.12. ARMA(2,0) Statistics 

After concluding parameters of p and q as 2 and 0, the AR process and the MA process 

can be written as follow. AR(2) process with coefficients 0.0186 and -0,0138: 

 𝑧௧෥ = 𝑎௧ + 0.0186𝑎௧ିଵ − 0.0138𝑎௧ିଶ (4.2) 

MA(0) process with coefficient 0; therefore, it is not included in the general formula.In 

mixed ARMA(2,0) process constant will be 0.0003. Thus, the general formula for mixed 

AR(2) and MA(0) processes, which is ARMA(2,0), will be: 

 𝑧௧෥ = +0.0186𝑎௧ିଵ − 0.0138𝑎௧ିଶ + 0.0003 + 𝜀௧ (4.3) 

 

4.10. Prediction Results 

The new predictor, ARIMA, linear regression, decision tree regression and support vector 

regression were introduced separately. Obtaining evaluation scores of all methods would 

be appropriate to identify the performances and have a proper comparison. For this study, 

two evaluation methods, which are Root Mean Square Error (RMSE) and Mean absolute 

percentage error (MAPE), applied to all machine learning predictions. 

Since the original dataset contains daily stock prices from 01.01.1996 to 31.12.2019, it 

includes six thousand twenty-two observations. Although, after wave transformation 

applied, the total number of observations dropped to two thousand four hundred fifty-six. 

The large dataset was the necessity to obtain healthy results, especially after sub-grouped 
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the waves. The test dataset does not have the same obligation to evaluate the accuracy of 

predictions.  

Most machine learning algorithms divide the original dataset into two as eighty percent 

training and twenty percent test datasets. For this study, the test dataset contains the last 

five percent of transformed data, which is equivalent to three hundred one predictions, 

starts from 23.10.2018. Thus, all 2019 is included in the test. 

For the testing phase, the extended window method was used. Therefore, after one 

prediction was tested, while the next prediction is testing; The tested variable was included 

in the training dataset and no variables were removed from the training dataset as well. 

 

4.10.1. Comparison and Test Results 

For each method presented, the same test runs simultaneously and the prediction length 

for the methods adjusted according to new predictors forecasting length. Thus, every 

method is tested for the same forecasting length. The results chart can be found in the 

appendix for each method. 

The following comparison charts are created according to prediction results. The 

prediction results for the corresponding predictors presented on the right-hand top legend. 

Background color adjusted according to the left-hand bottom legend explanation. Since the 

new predictor's forecasting length varies, the prediction made days are used as x-axis 

dates instead of predicted dates to prevent overlap on figures. 

 

Figure 4.12 The New Predictor Versus ARIMA and Linear Regression  
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Figure 4.13 The New Predictor Versus Decision Tree Regression and Support Vector Regression 

 

4.10.2. RMSE Scores 

RMSE calculated for the new predictor, ARIMA, linear regression, decision tree 

regression, and support vector regression predictions with the presented methods. The 

following table presents scores respectfully. 

 New 

Predictor 

ARIMA LR DTR SVR 

RMSE 0.108497 0.098542 0.098984 0.120516 0.099658 

Table 4.13. Root Mean Square Error Comparison 

As shown in Table 4.15, among five predictors, ARIMA performs best, linear 

regression second, support vector regression third, new predictor fourth and decision tree 

regression worst according to RMSE scores.  

 

4.10.3. MAPE Scores 

RMSE calculated for the new predictor, ARIMA, linear regression, decision tree 

regression, and support vector regression predictions with the presented methods. The 

following table presents scores respectfully. 

 New 

Predictor 

ARIMA LR DTR SVR 

MAPE 0.023370 0.020878 0.020974 0.025838 0.021112 

Table 4.14. Mean Absolute Percentage Error Comparison 



Markovian Model for Forecasting Financial Time Series 

54 

As shown in Table 4.3, among five predictors, ARIMA performs best, linear regression 

second, support vector regression third, the new predictor fourth and decision tree 

regression worst according to MAPE scores.  

 

4.10.4. Best Performer for Each Prediction 

Besides MAPE and RMSE, let us compare the results, prediction by prediction. The test 

period has been selected as 301 predictions in the study, as mentioned before. Among 

301 predictions: The decision tree regression estimates closest to real 89 times; the new 

predictor forecast closest to real 82 times; support vector regression forecast closest to 

real 64 times; ARIMA has the best prediction 41 times; linear regression has the best 

prediction 24 times.  

 

Figure 4.14 Prediction by Prediction Scores 
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CHAPTER 5 

CONCLUSION 

After comparing the new predictor, results show that there are better options on stock price 

estimations. Namely, ARIMA performs best upon other methods. Nevertheless, there is 

evidence that the new Markovian model performs better than some other models. The 

model applied only on stock prices, with other financial instruments or with a different type 

of time series; it might perform better.  

Although stock markets are efficient, ideally unpredictable (Fama, 1970), different type 

or combined models, such as neural networks, with multi-factor variables may provide 

better results with multivariate data feed than one-dimensional data by reducing 

unexpected impulse.  

Hidden Markov Chains and Markov Chains are considered memoryless processes. 

Even though it has many benefits in many fields, when investors, executives, producers, 

and consumers are related, they keen to keep patterns in mind for more than one step 

ahead. 

ARIMA is a well-defined model that is studied by many mathematicians and 

practicians. Even to compete on scores on estimations with ARIMA and have better results 

than other well-defined estimators are promising. From my perspective, there are a few 

points in the study that might be constructed better. I want to continue with points where I 

faced limitations and suggestions for further studies. 

 

5.11. Limitations and Suggestions for Further Studies 

5.11.1. Combined  Methods 

Recurrent neural networks (RNN) are able to take multivariate data into account. This 

study showed that while the newly developed Markovian model failed to beat the ARIMA in 

the RMSE and MAPE comparisons, it gave accurate predictions more times than ARIMA. 

Those two methods or more can be processed with RNN, and non-linear and linear 

methods can be combined for better predictions.  
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5.11.2. Transformation With Threshold 

Suggested transformations for the study contain many waves that have a wavelength 

(sequence) one. The proposed transformation creates noise for the data. Different kinds of 

transformation methods can be proposed. Phetchanchai, Selamat, Rehman, and Saba 

(2010) proposed to index time series with volatility threshold and name it Zigzag-

Perceptual indexing. This method can be used to create waves instead of grouping daily 

returns directly. This method will prevent or reduce the generation of noise relative to the 

current transformation. 

 

5.11.3. Non-Parametric Density Function 

In chapter 3.3.4, Fitting non-parametric density functions were introduced. Some of the 

label subsets, especially ones that have a low amount of members, do not show the 

feature of Gaussian distribution, have long tails or do not have an efficient number of 

members. Thus, the model can not fit density functions properly. For those subsets, 

arithmetic means applied, and the average value is captured as an associated growth rate.  

Better interpretation over all subsets can be made.  

 

5.11.4. Selective Estimates 

In this study, the Decision tree was constructed related to Markov chain transmission 

probabilities. Instead of a decision tree expected benefit method, a selective process with 

logic operators might be developed, and the model can be forced to give prediction only 

when it is appropriate.  

Relatively to the study, selecting the wave with the highest probability has been tried. 

When the model predicts according to maximum probability, results show that its 

estimations are very aggressive and volatile, sometimes it predicts better than ARIMA and 

from the current version itself, but when it fails, it fails too much. The situation affects 

evaluation scores dramatically.  

The figure below presents the comparison of results if the model does not build a 

decision tree; instead, it selects the wave that has the highest probability to occurs as an 

estimation. Note that the mentioned method has not been wholly introduced and presented 
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in the previous chapters. Thus, the following figure may be for informational purposes only, 

not part of the methods itself. 

 

Figure 5.1 The New Predictor TOP*  Versus ARIMA 
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APPENDIX 

 

Prediction 

Date 

Predictio

n Length 

Predicted  

Date 

New  

Predictor 

ARIMA LR SVR DECT Real 

23.10.2018 3 26.10.2018 4.062 4.052 4.053 4.025 4.008 4.22 

24.10.2018 3 29.10.2018 4.027 4.041 4.043 4.014 4.126 4.33 

25.10.2018 3 30.10.2018 4.166 4.228 4.230 4.207 4.181 4.4 

26.10.2018 3 31.10.2018 4.187 4.221 4.220 4.197 4.171 4.4 

29.10.2018 2 31.10.2018 4.306 4.330 4.331 4.305 4.252 4.4 

30.10.2018 2 1.11.2018 4.368 4.400 4.401 4.376 4.300 4.21 

31.10.2018 3 5.11.2018 4.390 4.401 4.402 4.374 4.350 4.12 

1.11.2018 2 5.11.2018 4.272 4.214 4.214 4.182 4.295 4.12 

2.11.2018 3 7.11.2018 4.238 4.172 4.175 4.142 4.305 4.14 

5.11.2018 3 8.11.2018 4.196 4.122 4.123 4.094 4.052 4.13 

6.11.2018 3 9.11.2018 4.176 4.151 4.152 4.124 4.185 4.11 

7.11.2018 3 12.11.2018 4.108 4.141 4.142 4.115 4.160 4.03 

8.11.2018 3 13.11.2018 4.068 4.131 4.132 4.104 4.146 4.03 

9.11.2018 3 14.11.2018 4.043 4.111 4.112 4.084 4.109 4 

12.11.2018 3 15.11.2018 3.988 4.032 4.033 4.004 4.127 3.95 

13.11.2018 3 16.11.2018 3.980 4.031 4.033 4.004 3.877 3.91 

14.11.2018 3 19.11.2018 3.970 4.001 4.002 3.975 4.101 3.92 

15.11.2018 3 20.11.2018 3.914 3.952 3.953 3.925 3.980 3.83 

16.11.2018 4 22.11.2018 3.909 3.912 3.913 3.885 3.946 3.77 

19.11.2018 5 26.11.2018 4.011 3.921 3.922 3.896 3.965 3.7 

20.11.2018 3 23.11.2018 3.844 3.832 3.833 3.806 3.750 3.64 

21.11.2018 2 23.11.2018 3.869 3.841 3.843 3.816 3.860 3.64 

22.11.2018 3 27.11.2018 3.774 3.772 3.772 3.746 3.746 3.6 

23.11.2018 3 28.11.2018 3.695 3.643 3.644 3.616 3.640 3.77 

26.11.2018 3 29.11.2018 3.705 3.700 3.702 3.677 3.640 3.78 

27.11.2018 3 30.11.2018 3.622 3.602 3.602 3.577 3.656 3.7 

28.11.2018 2 30.11.2018 3.707 3.769 3.771 3.748 3.790 3.7 

29.11.2018 2 3.12.2018 3.737 3.781 3.780 3.760 3.780 3.84 

30.11.2018 2 4.12.2018 3.708 3.702 3.702 3.677 3.683 3.7 

3.12.2018 2 5.12.2018 3.795 3.839 3.841 3.817 3.832 3.7 

4.12.2018 3 7.12.2018 3.743 3.703 3.702 3.677 3.699 3.61 

5.12.2018 3 10.12.2018 3.718 3.701 3.703 3.676 3.680 3.54 
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6.12.2018 3 11.12.2018 3.701 3.701 3.702 3.677 3.699 3.54 

7.12.2018 3 12.12.2018 3.644 3.612 3.613 3.587 3.610 3.58 

10.12.2018 3 13.12.2018 3.616 3.542 3.543 3.517 3.612 3.53 

11.12.2018 3 14.12.2018 3.610 3.541 3.542 3.518 3.476 3.51 

12.12.2018 3 17.12.2018 3.618 3.580 3.581 3.559 3.669 3.42 

13.12.2018 3 18.12.2018 3.525 3.531 3.532 3.508 3.431 3.5 

14.12.2018 3 19.12.2018 3.489 3.511 3.512 3.488 3.685 3.49 

17.12.2018 3 20.12.2018 3.438 3.422 3.423 3.398 3.396 3.45 

18.12.2018 3 21.12.2018 3.491 3.500 3.502 3.478 3.391 3.53 

19.12.2018 3 24.12.2018 3.463 3.491 3.491 3.470 3.469 3.53 

20.12.2018 3 27.12.2018 3.417 3.451 3.452 3.428 3.455 3.47 

21.12.2018 3 28.12.2018 3.522 3.530 3.531 3.509 3.503 3.55 

24.12.2018 3 31.12.2018 3.551 3.531 3.531 3.510 3.570 3.6 

27.12.2018 2 31.12.2018 3.470 3.472 3.472 3.448 3.470 3.6 

28.12.2018 2 2.01.2019 3.536 3.550 3.551 3.529 3.550 3.64 

31.12.2018 2 3.01.2019 3.584 3.600 3.600 3.580 3.513 3.58 

2.01.2019 3 7.01.2019 3.620 3.640 3.641 3.619 3.622 3.77 

3.01.2019 2 7.01.2019 3.570 3.582 3.582 3.558 3.630 3.77 

4.01.2019 2 8.01.2019 3.686 3.749 3.751 3.729 3.732 3.78 

7.01.2019 2 9.01.2019 3.720 3.771 3.770 3.750 3.825 3.77 

8.01.2019 3 11.01.2019 3.745 3.781 3.782 3.757 3.749 3.87 

9.01.2019 2 11.01.2019 3.728 3.771 3.772 3.747 3.769 3.87 

10.01.2019 2 14.01.2019 3.821 3.810 3.812 3.787 3.797 3.89 

11.01.2019 2 15.01.2019 3.878 3.870 3.871 3.848 3.845 3.96 

14.01.2019 3 17.01.2019 3.901 3.891 3.891 3.867 3.940 4.13 

15.01.2019 2 17.01.2019 3.983 3.960 3.961 3.937 3.909 4.13 

16.01.2019 2 18.01.2019 3.986 3.971 3.971 3.947 3.989 4.15 

17.01.2019 2 21.01.2019 4.059 4.129 4.131 4.107 4.179 4.12 

18.01.2019 2 22.01.2019 4.112 4.151 4.151 4.127 4.042 4.13 

21.01.2019 2 23.01.2019 4.106 4.121 4.122 4.095 4.100 4.16 

22.01.2019 2 24.01.2019 4.162 4.131 4.132 4.104 4.030 4.15 

23.01.2019 2 25.01.2019 4.210 4.161 4.162 4.135 4.212 4.24 

24.01.2019 2 28.01.2019 4.115 4.151 4.152 4.125 4.148 4.14 

25.01.2019 2 29.01.2019 4.227 4.240 4.242 4.215 4.305 4.2 

28.01.2019 3 31.01.2019 4.157 4.142 4.142 4.115 4.180 4.27 

29.01.2019 2 31.01.2019 4.204 4.200 4.203 4.174 4.193 4.27 

30.01.2019 2 1.02.2019 4.279 4.300 4.301 4.276 4.270 4.28 

31.01.2019 2 4.02.2019 4.245 4.272 4.272 4.245 4.231 4.21 

1.02.2019 2 5.02.2019 4.313 4.281 4.282 4.254 4.260 4.26 

4.02.2019 3 7.02.2019 4.210 4.212 4.213 4.184 4.290 4.25 
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5.02.2019 2 7.02.2019 4.270 4.261 4.262 4.234 4.293 4.25 

6.02.2019 2 8.02.2019 4.329 4.320 4.321 4.295 4.477 4.19 

7.02.2019 2 11.02.2019 4.249 4.252 4.252 4.224 4.240 4.18 

8.02.2019 2 12.02.2019 4.201 4.192 4.193 4.163 4.110 4.25 

11.02.2019 2 13.02.2019 4.185 4.181 4.183 4.154 4.116 4.15 

12.02.2019 3 15.02.2019 4.254 4.250 4.252 4.225 4.205 4.22 

13.02.2019 3 18.02.2019 4.167 4.152 4.152 4.124 4.148 4.23 

14.02.2019 2 18.02.2019 4.196 4.171 4.173 4.144 4.282 4.23 

15.02.2019 2 19.02.2019 4.251 4.221 4.222 4.195 4.150 4.32 

18.02.2019 3 21.02.2019 4.271 4.231 4.232 4.205 4.350 4.4 

19.02.2019 2 21.02.2019 4.374 4.320 4.321 4.295 4.270 4.4 

20.02.2019 2 22.02.2019 4.410 4.420 4.421 4.396 4.420 4.39 

21.02.2019 2 25.02.2019 4.376 4.401 4.402 4.374 4.366 4.38 

22.02.2019 2 26.02.2019 4.398 4.391 4.393 4.363 4.300 4.4 

25.02.2019 2 27.02.2019 4.364 4.381 4.383 4.353 4.388 4.36 

26.02.2019 3 1.03.2019 4.432 4.401 4.402 4.373 4.390 4.32 

27.02.2019 3 4.03.2019 4.343 4.362 4.363 4.333 4.393 4.41 

28.02.2019 3 5.03.2019 4.287 4.312 4.313 4.283 4.242 4.43 

1.03.2019 3 6.03.2019 4.361 4.321 4.323 4.293 4.324 4.45 

4.03.2019 3 7.03.2019 4.437 4.410 4.411 4.384 4.421 4.37 

5.03.2019 3 8.03.2019 4.485 4.431 4.431 4.404 4.447 4.3 

6.03.2019 3 11.03.2019 4.512 4.451 4.452 4.423 4.457 4.33 

7.03.2019 3 12.03.2019 4.378 4.372 4.373 4.343 4.316 4.26 

8.03.2019 3 13.03.2019 4.307 4.302 4.304 4.272 4.430 4.27 

11.03.2019 3 14.03.2019 4.360 4.331 4.333 4.303 4.357 4.33 

12.03.2019 3 15.03.2019 4.260 4.262 4.263 4.233 4.320 4.3 

13.03.2019 2 15.03.2019 4.303 4.271 4.273 4.243 4.370 4.3 

14.03.2019 2 18.03.2019 4.364 4.330 4.332 4.304 4.420 4.29 

15.03.2019 2 19.03.2019 4.275 4.302 4.302 4.274 4.335 4.31 

18.03.2019 2 20.03.2019 4.246 4.291 4.293 4.263 4.170 4.26 

19.03.2019 3 22.03.2019 4.345 4.311 4.312 4.284 4.289 4.07 

20.03.2019 3 25.03.2019 4.249 4.262 4.263 4.234 4.260 4.05 

21.03.2019 3 26.03.2019 4.203 4.232 4.233 4.203 4.215 4.02 

22.03.2019 3 27.03.2019 4.120 4.073 4.074 4.043 4.154 4.03 

25.03.2019 3 28.03.2019 4.089 4.051 4.054 4.023 4.074 4.04 

26.03.2019 3 29.03.2019 4.074 4.021 4.022 3.995 3.736 4.08 

27.03.2019 3 1.04.2019 4.078 4.031 4.032 4.005 3.960 4.16 

28.03.2019 3 2.04.2019 4.100 4.041 4.042 4.016 4.000 4.16 

29.03.2019 3 3.04.2019 4.139 4.081 4.082 4.056 4.213 4.19 

1.04.2019 3 4.04.2019 4.186 4.160 4.161 4.136 4.093 4.18 
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2.04.2019 3 5.04.2019 4.218 4.161 4.161 4.136 4.159 4.16 

3.04.2019 3 8.04.2019 4.214 4.191 4.192 4.165 4.194 4.16 

4.04.2019 2 8.04.2019 4.150 4.181 4.182 4.155 4.187 4.16 

5.04.2019 3 10.04.2019 4.124 4.161 4.162 4.134 4.214 4.14 

8.04.2019 3 11.04.2019 4.052 4.161 4.162 4.134 4.195 4.18 

9.04.2019 2 11.04.2019 3.996 4.122 4.122 4.094 4.153 4.18 

10.04.2019 2 12.04.2019 4.148 4.141 4.142 4.114 4.156 4.24 

11.04.2019 2 15.04.2019 4.187 4.181 4.182 4.155 4.180 4.29 

12.04.2019 2 16.04.2019 4.256 4.240 4.241 4.215 4.267 4.3 

15.04.2019 3 18.04.2019 4.278 4.291 4.291 4.265 4.368 3.99 

16.04.2019 3 23.04.2019 4.380 4.301 4.302 4.275 4.330 3.99 

17.04.2019 2 23.04.2019 4.224 4.202 4.203 4.173 4.143 3.99 

18.04.2019 2 24.04.2019 4.115 3.994 3.995 3.963 4.079 3.91 

23.04.2019 2 25.04.2019 4.100 3.991 3.994 3.964 3.934 3.94 

24.04.2019 2 26.04.2019 4.017 3.912 3.913 3.885 3.921 3.97 

25.04.2019 2 29.04.2019 3.944 3.941 3.942 3.915 3.890 3.97 

26.04.2019 2 30.04.2019 3.978 3.971 3.971 3.947 4.053 3.94 

29.04.2019 2 2.05.2019 4.020 3.971 3.972 3.946 4.010 3.91 

30.04.2019 2 3.05.2019 3.909 3.941 3.942 3.916 3.928 3.84 

2.05.2019 2 6.05.2019 3.884 3.911 3.912 3.885 3.895 3.77 

3.05.2019 3 8.05.2019 3.836 3.842 3.843 3.815 3.797 3.64 

6.05.2019 2 8.05.2019 3.788 3.772 3.773 3.745 3.665 3.64 

7.05.2019 3 10.05.2019 3.765 3.712 3.713 3.686 3.684 3.56 

8.05.2019 3 13.05.2019 3.726 3.642 3.643 3.616 3.729 3.45 

9.05.2019 2 13.05.2019 3.691 3.601 3.602 3.577 3.614 3.45 

10.05.2019 3 15.05.2019 3.682 3.561 3.562 3.537 3.584 3.46 

13.05.2019 2 15.05.2019 3.566 3.452 3.452 3.427 3.468 3.46 

14.05.2019 3 17.05.2019 3.469 3.461 3.462 3.438 3.510 3.52 

15.05.2019 3 20.05.2019 3.574 3.461 3.461 3.439 3.440 3.39 

16.05.2019 3 21.05.2019 3.589 3.510 3.511 3.489 3.490 3.42 

17.05.2019 2 21.05.2019 3.594 3.521 3.521 3.499 3.540 3.42 

20.05.2019 3 23.05.2019 3.430 3.392 3.392 3.368 3.465 3.35 

21.05.2019 2 23.05.2019 3.434 3.420 3.422 3.398 3.420 3.35 

22.05.2019 3 27.05.2019 3.380 3.401 3.401 3.379 3.350 3.36 

23.05.2019 3 28.05.2019 3.331 3.351 3.352 3.329 3.298 3.31 

24.05.2019 3 29.05.2019 3.315 3.351 3.352 3.329 3.418 3.21 

27.05.2019 3 30.05.2019 3.386 3.361 3.361 3.340 3.284 3.22 

28.05.2019 3 31.05.2019 3.307 3.311 3.312 3.289 3.180 3.2 

29.05.2019 3 3.06.2019 3.242 3.212 3.212 3.189 3.171 3.16 

30.05.2019 3 4.06.2019 3.248 3.221 3.222 3.199 3.148 3.23 
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31.05.2019 3 5.06.2019 3.181 3.201 3.201 3.180 3.210 3.19 

3.06.2019 3 6.06.2019 3.139 3.161 3.162 3.140 3.180 3.21 

4.06.2019 3 7.06.2019 3.223 3.230 3.231 3.211 3.230 3.2 

5.06.2019 3 10.06.2019 3.182 3.191 3.191 3.171 3.175 3.21 

6.06.2019 2 10.06.2019 3.227 3.210 3.211 3.190 3.236 3.21 

7.06.2019 3 12.06.2019 3.176 3.201 3.201 3.181 3.205 3.27 

10.06.2019 2 12.06.2019 3.233 3.211 3.211 3.190 3.209 3.27 

11.06.2019 2 13.06.2019 3.297 3.300 3.301 3.281 3.264 3.32 

12.06.2019 2 14.06.2019 3.255 3.271 3.271 3.251 3.195 3.26 

13.06.2019 2 17.06.2019 3.321 3.320 3.321 3.300 3.279 3.21 

14.06.2019 3 19.06.2019 3.263 3.261 3.261 3.240 3.260 3.24 

17.06.2019 3 20.06.2019 3.218 3.211 3.212 3.189 3.088 3.24 

18.06.2019 3 21.06.2019 3.256 3.240 3.241 3.220 3.220 3.25 

19.06.2019 3 24.06.2019 3.286 3.241 3.241 3.221 3.216 3.23 

20.06.2019 3 25.06.2019 3.318 3.241 3.241 3.220 3.239 3.25 

21.06.2019 3 26.06.2019 3.331 3.251 3.251 3.230 3.255 3.31 

24.06.2019 3 27.06.2019 3.216 3.231 3.231 3.210 3.270 3.35 

25.06.2019 2 27.06.2019 3.268 3.251 3.251 3.230 3.249 3.35 

26.06.2019 2 28.06.2019 3.319 3.310 3.311 3.291 3.337 3.36 

27.06.2019 3 2.07.2019 3.350 3.350 3.351 3.331 3.397 3.41 

28.06.2019 2 2.07.2019 3.404 3.361 3.361 3.340 3.434 3.41 

1.07.2019 2 3.07.2019 3.417 3.410 3.411 3.390 3.472 3.37 

2.07.2019 2 4.07.2019 3.434 3.411 3.411 3.390 3.427 3.37 

3.07.2019 2 5.07.2019 3.360 3.371 3.372 3.349 3.410 3.34 

4.07.2019 3 9.07.2019 3.344 3.371 3.372 3.349 3.410 3.21 

5.07.2019 2 9.07.2019 3.281 3.341 3.342 3.319 3.265 3.21 

8.07.2019 2 10.07.2019 3.267 3.341 3.342 3.319 3.265 3.21 

9.07.2019 3 12.07.2019 3.270 3.212 3.212 3.189 3.198 3.2 

10.07.2019 3 15.07.2019 3.235 3.211 3.212 3.189 3.198 3.24 

11.07.2019 2 15.07.2019 3.176 3.201 3.201 3.180 3.230 3.24 

12.07.2019 3 17.07.2019 3.205 3.201 3.201 3.180 3.230 3.19 

15.07.2019 5 22.07.2019 3.283 3.240 3.241 3.221 3.340 3.2 

16.07.2019 5 23.07.2019 3.325 3.241 3.241 3.221 3.340 3.27 

17.07.2019 2 19.07.2019 3.188 3.191 3.192 3.170 3.189 3.17 

18.07.2019 2 22.07.2019 3.157 3.161 3.162 3.140 3.170 3.2 

19.07.2019 3 24.07.2019 3.197 3.171 3.171 3.150 3.160 3.28 

22.07.2019 3 25.07.2019 3.239 3.200 3.201 3.181 3.230 3.24 

23.07.2019 3 26.07.2019 3.295 3.270 3.271 3.251 3.306 3.23 

24.07.2019 3 29.07.2019 3.311 3.281 3.281 3.261 3.175 3.16 

25.07.2019 3 30.07.2019 3.238 3.241 3.242 3.220 3.253 3.09 
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26.07.2019 3 31.07.2019 3.203 3.231 3.232 3.210 3.305 3.05 

29.07.2019 3 1.08.2019 3.141 3.161 3.162 3.140 3.180 3.01 

30.07.2019 3 2.08.2019 3.093 3.091 3.092 3.070 3.153 2.9 

31.07.2019 3 5.08.2019 3.093 3.051 3.052 3.030 3.050 2.84 

1.08.2019 3 6.08.2019 3.029 3.011 3.012 2.991 2.937 2.82 

2.08.2019 3 7.08.2019 2.969 2.902 2.902 2.881 2.872 2.82 

5.08.2019 5 12.08.2019 2.924 2.841 2.842 2.821 2.738 2.84 

6.08.2019 3 9.08.2019 2.899 2.821 2.821 2.802 2.853 2.86 

7.08.2019 2 9.08.2019 2.896 2.821 2.821 2.802 2.836 2.86 

8.08.2019 3 13.08.2019 2.890 2.890 2.891 2.873 2.913 2.91 

9.08.2019 3 14.08.2019 2.850 2.861 2.861 2.843 2.880 2.87 

12.08.2019 3 15.08.2019 2.819 2.841 2.841 2.822 2.820 2.85 

13.08.2019 3 16.08.2019 2.900 2.910 2.911 2.893 2.910 2.93 

14.08.2019 3 19.08.2019 2.865 2.871 2.871 2.853 2.890 2.99 

15.08.2019 3 20.08.2019 2.835 2.851 2.851 2.832 2.846 2.95 

16.08.2019 3 21.08.2019 2.914 2.930 2.931 2.913 2.894 3.01 

19.08.2019 3 22.08.2019 2.963 2.990 2.991 2.974 2.999 3.02 

20.08.2019 2 22.08.2019 2.944 2.951 2.951 2.932 2.916 3.02 

21.08.2019 2 23.08.2019 3.003 3.010 3.011 2.992 3.057 2.99 

22.08.2019 2 26.08.2019 3.030 3.021 3.021 3.003 3.076 3.03 

23.08.2019 2 27.08.2019 2.978 2.991 2.991 2.971 3.000 3.03 

26.08.2019 2 28.08.2019 3.035 3.030 3.031 3.012 2.951 2.99 

27.08.2019 2 29.08.2019 3.058 3.031 3.031 3.012 2.982 3.03 

28.08.2019 2 30.08.2019 2.984 2.991 2.991 2.971 2.938 3.07 

29.08.2019 2 2.09.2019 3.035 3.030 3.031 3.011 3.029 3.06 

30.08.2019 2 3.09.2019 3.075 3.070 3.071 3.052 3.035 3.03 

2.09.2019 2 4.09.2019 3.037 3.061 3.061 3.042 3.037 3.08 

3.09.2019 2 5.09.2019 3.007 3.031 3.031 3.011 3.090 3.1 

4.09.2019 3 9.09.2019 3.083 3.080 3.081 3.061 3.065 3.16 

5.09.2019 3 10.09.2019 3.119 3.100 3.101 3.082 3.065 3.24 

6.09.2019 3 11.09.2019 3.154 3.120 3.121 3.101 3.095 3.29 

9.09.2019 3 12.09.2019 3.178 3.160 3.161 3.142 3.149 3.24 

10.09.2019 2 12.09.2019 3.249 3.240 3.241 3.222 3.277 3.24 

11.09.2019 2 13.09.2019 3.243 3.290 3.291 3.272 3.219 3.29 

12.09.2019 3 17.09.2019 3.233 3.241 3.241 3.220 3.239 3.27 

13.09.2019 2 17.09.2019 3.291 3.290 3.291 3.270 3.289 3.27 

16.09.2019 2 18.09.2019 3.324 3.311 3.311 3.291 3.345 3.2 

17.09.2019 2 19.09.2019 3.262 3.271 3.271 3.250 3.319 3.23 

18.09.2019 2 20.09.2019 3.216 3.201 3.202 3.179 3.090 3.21 

19.09.2019 3 24.09.2019 3.247 3.230 3.231 3.210 3.177 3.18 
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20.09.2019 3 25.09.2019 3.191 3.211 3.211 3.190 3.193 3.16 

23.09.2019 2 25.09.2019 3.244 3.221 3.221 3.200 3.150 3.16 

24.09.2019 3 27.09.2019 3.172 3.181 3.181 3.160 3.198 3.22 

25.09.2019 3 30.09.2019 3.140 3.161 3.162 3.140 3.185 3.28 

26.09.2019 3 1.10.2019 3.120 3.151 3.151 3.130 3.156 3.18 

27.09.2019 3 2.10.2019 3.211 3.220 3.221 3.201 3.460 3.11 

30.09.2019 3 3.10.2019 3.271 3.280 3.281 3.262 3.312 3.02 

1.10.2019 2 3.10.2019 3.207 3.182 3.181 3.160 3.160 3.02 

2.10.2019 2 4.10.2019 3.162 3.111 3.112 3.089 3.110 3.04 

3.10.2019 2 7.10.2019 3.107 3.022 3.022 3.000 2.979 3.04 

4.10.2019 3 9.10.2019 3.057 3.040 3.041 3.021 2.978 3.08 

7.10.2019 3 10.10.2019 3.098 3.041 3.041 3.022 3.029 3.14 

8.10.2019 3 11.10.2019 3.111 3.051 3.051 3.031 2.970 3.32 

9.10.2019 3 14.10.2019 3.171 3.080 3.081 3.062 3.075 3.26 

10.10.2019 2 14.10.2019 3.191 3.140 3.141 3.122 3.089 3.26 

11.10.2019 2 15.10.2019 3.230 3.319 3.320 3.304 3.393 3.28 

14.10.2019 3 17.10.2019 3.261 3.261 3.261 3.242 3.308 3.3 

15.10.2019 2 17.10.2019 3.298 3.281 3.282 3.259 3.320 3.3 

16.10.2019 2 18.10.2019 3.327 3.291 3.291 3.270 3.320 3.27 

17.10.2019 3 22.10.2019 3.344 3.301 3.301 3.280 3.210 3.32 

18.10.2019 2 22.10.2019 3.245 3.271 3.271 3.250 3.230 3.32 

21.10.2019 2 23.10.2019 3.330 3.340 3.341 3.320 3.308 3.33 

22.10.2019 3 25.10.2019 3.300 3.321 3.321 3.300 3.237 3.3 

23.10.2019 2 25.10.2019 3.354 3.331 3.331 3.309 3.529 3.3 

24.10.2019 2 28.10.2019 3.380 3.331 3.331 3.310 3.250 3.3 

25.10.2019 2 29.10.2019 3.285 3.301 3.302 3.279 3.269 3.24 

28.10.2019 2 30.10.2019 3.268 3.301 3.302 3.279 3.269 3.22 

29.10.2019 2 31.10.2019 3.235 3.241 3.242 3.219 3.203 3.23 

30.10.2019 2 1.11.2019 3.206 3.221 3.222 3.199 3.196 3.28 

31.10.2019 2 4.11.2019 3.241 3.231 3.231 3.210 3.290 3.44 

1.11.2019 2 5.11.2019 3.282 3.280 3.281 3.261 3.240 3.49 

4.11.2019 2 6.11.2019 3.380 3.439 3.441 3.423 3.350 3.48 

5.11.2019 3 8.11.2019 3.422 3.490 3.491 3.472 3.438 3.56 

6.11.2019 3 11.11.2019 3.457 3.481 3.481 3.459 3.516 3.59 

7.11.2019 2 11.11.2019 3.551 3.570 3.571 3.549 3.618 3.59 

8.11.2019 3 13.11.2019 3.532 3.561 3.561 3.539 3.608 3.58 

11.11.2019 2 13.11.2019 3.605 3.591 3.592 3.568 3.550 3.58 

12.11.2019 3 15.11.2019 3.535 3.541 3.542 3.518 3.620 3.62 

13.11.2019 2 15.11.2019 3.589 3.580 3.582 3.558 3.560 3.62 

14.11.2019 3 19.11.2019 3.538 3.561 3.562 3.538 3.650 3.59 
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15.11.2019 2 19.11.2019 3.618 3.620 3.622 3.598 3.610 3.59 

18.11.2019 3 21.11.2019 3.565 3.571 3.572 3.548 3.590 3.51 

19.11.2019 2 21.11.2019 3.610 3.591 3.592 3.568 3.635 3.51 

20.11.2019 3 25.11.2019 3.535 3.541 3.542 3.518 3.540 3.61 

21.11.2019 3 26.11.2019 3.496 3.511 3.512 3.488 3.470 3.62 

22.11.2019 3 27.11.2019 3.556 3.531 3.532 3.508 3.420 3.54 

25.11.2019 3 28.11.2019 3.621 3.610 3.611 3.589 3.722 3.56 

26.11.2019 3 29.11.2019 3.658 3.621 3.621 3.599 3.620 3.49 

27.11.2019 2 29.11.2019 3.543 3.542 3.542 3.518 3.530 3.49 

28.11.2019 2 2.12.2019 3.580 3.561 3.562 3.537 3.568 3.51 

29.11.2019 3 4.12.2019 3.496 3.491 3.492 3.468 3.653 3.54 

2.12.2019 2 4.12.2019 3.529 3.511 3.512 3.488 3.602 3.54 

3.12.2019 3 6.12.2019 3.456 3.461 3.462 3.438 3.460 3.61 

4.12.2019 2 6.12.2019 3.525 3.540 3.541 3.519 3.586 3.61 

5.12.2019 3 10.12.2019 3.504 3.531 3.531 3.509 3.547 3.58 

6.12.2019 2 10.12.2019 3.596 3.610 3.611 3.589 3.707 3.58 

9.12.2019 2 11.12.2019 3.623 3.611 3.611 3.589 3.570 3.6 

10.12.2019 2 12.12.2019 3.562 3.581 3.582 3.558 3.570 3.62 

11.12.2019 2 13.12.2019 3.620 3.601 3.602 3.578 3.580 3.62 

12.12.2019 2 16.12.2019 3.656 3.621 3.621 3.598 3.603 3.64 

13.12.2019 3 18.12.2019 3.670 3.621 3.622 3.598 3.600 3.57 

16.12.2019 2 18.12.2019 3.749 3.641 3.642 3.618 3.580 3.57 

17.12.2019 3 20.12.2019 3.592 3.601 3.602 3.578 3.545 3.53 

18.12.2019 3 23.12.2019 3.542 3.571 3.572 3.547 3.533 3.57 

19.12.2019 3 24.12.2019 3.492 3.551 3.552 3.528 3.609 3.58 

20.12.2019 3 27.12.2019 3.451 3.531 3.532 3.508 3.503 3.61 

23.12.2019 2 27.12.2019 3.569 3.570 3.572 3.548 3.829 3.61 

24.12.2019 2 30.12.2019 3.592 3.581 3.581 3.559 3.322 3.6 

27.12.2019 2 31.12.2019 3.636 3.611 3.611 3.588 3.602 3.59 

Table 0.1 Every Prediction 
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State 
Indication

Continue or 
Breake Probability

Sequence 
Probability

Label 
Indication

Label 
Probability

Final State 
Probability

State 
Indication

Continue or 
Breake Probability

Sequence 
Probability

Label 
Indication

Label 
Probability

Final State 
Probability

-10 0.000% 0.000% -10 0.000% 0.000%
-9 0.000% 0.000% -9 0.000% 0.000%
-8 0.000% 0.000% -8 0.000% 0.000%
-7 0.000% 0.000% -7 0.000% 0.000%
-6 0.000% 0.000% -6 0.000% 0.000%
-5 0.000% 0.000% -5 0.000% 0.000%
-4 0.000% 0.000% -4 0.000% 0.000%
-3 0.000% 0.000% -3 0.000% 0.000%
-2 0.000% 0.000% -2 0.000% 0.000%
-1 0.000% 0.000% -1 0.000% 0.000%
1 5.300% 1.193% 1 2.959% 0.338%
2 9.187% 2.067% 2 5.325% 0.609%
3 13.781% 3.101% 3 4.142% 0.473%
4 12.367% 2.783% 4 7.692% 0.879%
5 12.721% 2.862% 5 8.284% 0.947%
6 13.074% 2.942% 6 15.385% 1.758%
7 12.367% 2.783% 7 13.018% 1.488%
8 9.894% 2.226% 8 18.343% 2.096%
9 8.834% 1.988% 9 16.568% 1.893%

10 2.473% 0.557% 10 8.284% 0.947%
-10 0.000% 0.000% -10 0.000% 0.000%

-9 0.000% 0.000% -9 0.000% 0.000%
-8 0.000% 0.000% -8 0.000% 0.000%
-7 0.000% 0.000% -7 0.000% 0.000%
-6 0.000% 0.000% -6 0.000% 0.000%
-5 0.000% 0.000% -5 0.000% 0.000%
-4 0.000% 0.000% -4 0.000% 0.000%
-3 0.000% 0.000% -3 0.000% 0.000%
-2 0.000% 0.000% -2 0.000% 0.000%
-1 0.000% 0.000% -1 0.000% 0.000%
1 1.190% 0.111% 1 0.000% 0.000%
2 3.571% 0.332% 2 0.000% 0.000%
3 2.381% 0.221% 3 1.852% 0.046%
4 5.952% 0.553% 4 3.704% 0.093%
5 3.571% 0.332% 5 5.556% 0.139%
6 11.905% 1.105% 6 5.556% 0.139%
7 10.714% 0.995% 7 9.259% 0.231%
8 16.667% 1.548% 8 16.667% 0.417%
9 26.190% 2.432% 9 22.222% 0.556%

10 17.857% 1.658% 10 35.185% 0.880%
-10 0.000% 0.000% -10 0.000% 0.000%

-9 0.000% 0.000% -9 0.000% 0.000%
-8 0.000% 0.000% -8 0.000% 0.000%
-7 0.000% 0.000% -7 0.000% 0.000%
-6 0.000% 0.000% -6 0.000% 0.000%
-5 0.000% 0.000% -5 0.000% 0.000%
-4 0.000% 0.000% -4 0.000% 0.000%
-3 0.000% 0.000% -3 0.000% 0.000%
-2 0.000% 0.000% -2 0.000% 0.000%
-1 0.000% 0.000% -1 0.000% 0.000%
1 0.000% 0.000% 1 0.000% 0.000%
2 0.000% 0.000% 2 0.000% 0.000%
3 0.000% 0.000% 3 0.000% 0.000%
4 0.000% 0.000% 4 0.000% 0.000%
5 2.381% 0.111% 5 7.143% 0.153%
6 2.381% 0.111% 6 7.143% 0.153%
7 7.143% 0.332% 7 7.143% 0.153%
8 11.905% 0.553% 8 0.000% 0.000%
9 26.190% 1.216% 9 17.857% 0.383%

10 50.000% 2.321% 10 46.429% 0.995%

Continue, 
Total 

Sequence 
6

56.429% 8.228%

Continue, 
Total 

Sequence 
7

56.429% 3.797%

Continue, 
Total 

Sequence 
4

56.429% 16.456%

Continue, 
Total 

Sequence 
5

56.429% 4.430%

Continue, 
Total 

Sequence 
2

56.429% 39.873%

Continue, 
Total 

Sequence 
3

56.429% 20.253%
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State 
Indication

Continue or 
Breake Probability

Sequence 
Probability

Label 
Indication

Label 
Probability

Final State 
Probability

State 
Indication

Continue or 
Breake Probability

Sequence 
Probability

Label 
Indication

Label 
Probability

Final State 
Probability

-10 0.000% 0.000% -10 0.000% 0.000%
-9 0.000% 0.000% -9 0.000% 0.000%
-8 0.000% 0.000% -8 0.000% 0.000%
-7 0.000% 0.000% -7 0.000% 0.000%
-6 0.000% 0.000% -6 0.000% 0.000%
-5 0.000% 0.000% -5 0.000% 0.000%
-4 0.000% 0.000% -4 0.000% 0.000%
-3 0.000% 0.000% -3 0.000% 0.000%
-2 0.000% 0.000% -2 0.000% 0.000%
-1 0.000% 0.000% -1 0.000% 0.000%
1 0.000% 0.000% 1 0.000% 0.000%
2 0.000% 0.000% 2 0.000% 0.000%
3 0.000% 0.000% 3 0.000% 0.000%
4 0.000% 0.000% 4 0.000% 0.000%
5 0.000% 0.000% 5 0.000% 0.000%
6 5.882% 0.126% 6 0.000% 0.000%
7 5.882% 0.126% 7 0.000% 0.000%
8 11.765% 0.252% 8 9.091% 0.162%
9 5.882% 0.126% 9 0.000% 0.000%

10 70.588% 1.513% 10 90.909% 1.623%
-10 0.566% 0.109% -10 4.286% 0.405%

-9 2.264% 0.437% -9 8.214% 0.776%
-8 4.906% 0.948% -8 14.643% 1.384%
-7 7.358% 1.422% -7 16.071% 1.519%
-6 8.302% 1.604% -6 11.429% 1.080%
-5 11.321% 2.187% -5 13.929% 1.316%
-4 14.340% 2.770% -4 10.000% 0.945%
-3 16.415% 3.171% -3 7.857% 0.743%
-2 15.660% 3.025% -2 7.857% 0.743%
-1 18.868% 3.645% -1 5.714% 0.540%
1 0.000% 0.000% 1 0.000% 0.000%
2 0.000% 0.000% 2 0.000% 0.000%
3 0.000% 0.000% 3 0.000% 0.000%
4 0.000% 0.000% 4 0.000% 0.000%
5 0.000% 0.000% 5 0.000% 0.000%
6 0.000% 0.000% 6 0.000% 0.000%
7 0.000% 0.000% 7 0.000% 0.000%
8 0.000% 0.000% 8 0.000% 0.000%
9 0.000% 0.000% 9 0.000% 0.000%

10 0.000% 0.000% 10 0.000% 0.000%
-10 12.575% 0.736% -10 20.619% 0.690%

-9 16.168% 0.946% -9 29.897% 1.000%
-8 16.168% 0.946% -8 13.402% 0.448%
-7 11.976% 0.701% -7 9.278% 0.310%
-6 15.569% 0.911% -6 11.340% 0.379%
-5 8.982% 0.526% -5 6.186% 0.207%
-4 6.587% 0.386% -4 4.124% 0.138%
-3 5.389% 0.315% -3 2.062% 0.069%
-2 2.994% 0.175% -2 3.093% 0.103%
-1 3.593% 0.210% -1 0.000% 0.000%
1 0.000% 0.000% 1 0.000% 0.000%
2 0.000% 0.000% 2 0.000% 0.000%
3 0.000% 0.000% 3 0.000% 0.000%
4 0.000% 0.000% 4 0.000% 0.000%
5 0.000% 0.000% 5 0.000% 0.000%
6 0.000% 0.000% 6 0.000% 0.000%
7 0.000% 0.000% 7 0.000% 0.000%
8 0.000% 0.000% 8 0.000% 0.000%
9 0.000% 0.000% 9 0.000% 0.000%

10 0.000% 0.000% 10 0.000% 0.000%

Breake, 
Total 

Sequence 
3

43.571% 13.436%

Breake, 
Total 

Sequence 
4

43.571% 7.678%

Continue, 
Total 

Sequence 
9

56.429% 3.165%

Breake, 
Total 

Sequence 
1

43.571% 44.338%

Breake, 
Total 

Sequence 
2

43.571% 21.689%

Continue, 
Total 

Sequence 
8

56.429% 3.797%
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State 
Indication

Continue or 
Breake Probability

Sequence 
Probability

Label 
Indication

Label 
Probability

Final State 
Probability

State 
Indication

Continue or 
Breake Probability

Sequence 
Probability

Label 
Indication

Label 
Probability

Final State 
Probability

-10 34.426% 0.662% -10 40.625% 0.578%
-9 29.508% 0.568% -9 21.875% 0.311%
-8 14.754% 0.284% -8 12.500% 0.178%
-7 6.557% 0.126% -7 6.250% 0.089%
-6 6.557% 0.126% -6 6.250% 0.089%
-5 1.639% 0.032% -5 3.125% 0.044%
-4 3.279% 0.063% -4 0.000% 0.000%
-3 1.639% 0.032% -3 0.000% 0.000%
-2 1.639% 0.032% -2 9.375% 0.133%
-1 0.000% 0.000% -1 0.000% 0.000%
1 0.000% 0.000% 1 0.000% 0.000%
2 0.000% 0.000% 2 0.000% 0.000%
3 0.000% 0.000% 3 0.000% 0.000%
4 0.000% 0.000% 4 0.000% 0.000%
5 0.000% 0.000% 5 0.000% 0.000%
6 0.000% 0.000% 6 0.000% 0.000%
7 0.000% 0.000% 7 0.000% 0.000%
8 0.000% 0.000% 8 0.000% 0.000%
9 0.000% 0.000% 9 0.000% 0.000%

10 0.000% 0.000% 10 0.000% 0.000%
-10 53.333% 0.312% -10 50.000% 0.293%

-9 20.000% 0.117% -9 14.286% 0.084%
-8 0.000% 0.000% -8 0.000% 0.000%
-7 26.667% 0.156% -7 7.143% 0.042%
-6 0.000% 0.000% -6 7.143% 0.042%
-5 0.000% 0.000% -5 0.000% 0.000%
-4 0.000% 0.000% -4 0.000% 0.000%
-3 0.000% 0.000% -3 14.286% 0.084%
-2 0.000% 0.000% -2 7.143% 0.042%
-1 0.000% 0.000% -1 0.000% 0.000%
1 0.000% 0.000% 1 0.000% 0.000%
2 0.000% 0.000% 2 0.000% 0.000%
3 0.000% 0.000% 3 0.000% 0.000%
4 0.000% 0.000% 4 0.000% 0.000%
5 0.000% 0.000% 5 0.000% 0.000%
6 0.000% 0.000% 6 0.000% 0.000%
7 0.000% 0.000% 7 0.000% 0.000%
8 0.000% 0.000% 8 0.000% 0.000%
9 0.000% 0.000% 9 0.000% 0.000%

10 0.000% 0.000% 10 0.000% 0.000%
-10 66.667% 0.167% -10 100.000% 0.251%

-9 0.000% 0.000% -9 0.000% 0.000%
-8 16.667% 0.042% -8 0.000% 0.000%
-7 0.000% 0.000% -7 0.000% 0.000%
-6 0.000% 0.000% -6 0.000% 0.000%
-5 16.667% 0.042% -5 0.000% 0.000%
-4 0.000% 0.000% -4 0.000% 0.000%
-3 0.000% 0.000% -3 0.000% 0.000%
-2 0.000% 0.000% -2 0.000% 0.000%
-1 0.000% 0.000% -1 0.000% 0.000%
1 0.000% 0.000% 1 0.000% 0.000%
2 0.000% 0.000% 2 0.000% 0.000%
3 0.000% 0.000% 3 0.000% 0.000%
4 0.000% 0.000% 4 0.000% 0.000%
5 0.000% 0.000% 5 0.000% 0.000%
6 0.000% 0.000% 6 0.000% 0.000%
7 0.000% 0.000% 7 0.000% 0.000%
8 0.000% 0.000% 8 0.000% 0.000%
9 0.000% 0.000% 9 0.000% 0.000%

10 0.000% 0.000% 10 0.000% 0.000%

Breake, 
Total 

Sequence 
9

43.571% 0.576%

Breake, 
Total 

Sequence 
10

43.571% 0.576%

Breake, 
Total 

Sequence 
7

43.571% 1.344%

Breake, 
Total 

Sequence 
8

43.571% 1.344%

Breake, 
Total 

Sequence 
5

43.571% 4.415%

Breake, 
Total 

Sequence 
6

43.571% 3.263%
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Table 0.2 Probabilities 

State 
Indication

Continue or 
Breake Probability

Sequence 
Probability

Label 
Indication

Label 
Probability

Final State 
Probability

State 
Indication

Continue or 
Breake Probability

Sequence 
Probability

Label 
Indication

Label 
Probability

Final State 
Probability

-10 60.000% 0.050% -10 100.000% 0.084%
-9 0.000% 0.000% -9 0.000% 0.000%
-8 0.000% 0.000% -8 0.000% 0.000%
-7 0.000% 0.000% -7 0.000% 0.000%
-6 0.000% 0.000% -6 0.000% 0.000%
-5 0.000% 0.000% -5 0.000% 0.000%
-4 0.000% 0.000% -4 0.000% 0.000%
-3 0.000% 0.000% -3 0.000% 0.000%
-2 40.000% 0.033% -2 0.000% 0.000%
-1 0.000% 0.000% -1 0.000% 0.000%
1 0.000% 0.000% 1 0.000% 0.000%
2 0.000% 0.000% 2 0.000% 0.000%
3 0.000% 0.000% 3 0.000% 0.000%
4 0.000% 0.000% 4 0.000% 0.000%
5 0.000% 0.000% 5 0.000% 0.000%
6 0.000% 0.000% 6 0.000% 0.000%
7 0.000% 0.000% 7 0.000% 0.000%
8 0.000% 0.000% 8 0.000% 0.000%
9 0.000% 0.000% 9 0.000% 0.000%

10 0.000% 0.000% 10 0.000% 0.000%
-10 75.000% 0.125% -10 0.000% 0.000%

-9 25.000% 0.042% -9 0.000% 0.000%
-8 0.000% 0.000% -8 100.000% 0.084%
-7 0.000% 0.000% -7 0.000% 0.000%
-6 0.000% 0.000% -6 0.000% 0.000%
-5 0.000% 0.000% -5 0.000% 0.000%
-4 0.000% 0.000% -4 0.000% 0.000%
-3 0.000% 0.000% -3 0.000% 0.000%
-2 0.000% 0.000% -2 0.000% 0.000%
-1 0.000% 0.000% -1 0.000% 0.000%
1 0.000% 0.000% 1 0.000% 0.000%
2 0.000% 0.000% 2 0.000% 0.000%
3 0.000% 0.000% 3 0.000% 0.000%
4 0.000% 0.000% 4 0.000% 0.000%
5 0.000% 0.000% 5 0.000% 0.000%
6 0.000% 0.000% 6 0.000% 0.000%
7 0.000% 0.000% 7 0.000% 0.000%
8 0.000% 0.000% 8 0.000% 0.000%
9 0.000% 0.000% 9 0.000% 0.000%

10 0.000% 0.000% 10 0.000% 0.000%
-10 0.000% 0.000% -10 100.000% 0.084%

-9 0.000% 0.000% -9 0.000% 0.000%
-8 0.000% 0.000% -8 0.000% 0.000%
-7 0.000% 0.000% -7 0.000% 0.000%
-6 0.000% 0.000% -6 0.000% 0.000%
-5 0.000% 0.000% -5 0.000% 0.000%
-4 0.000% 0.000% -4 0.000% 0.000%
-3 0.000% 0.000% -3 0.000% 0.000%
-2 100.000% 0.084% -2 0.000% 0.000%
-1 0.000% 0.000% -1 0.000% 0.000%
1 0.000% 0.000% 1 0.000% 0.000%
2 0.000% 0.000% 2 0.000% 0.000%
3 0.000% 0.000% 3 0.000% 0.000%
4 0.000% 0.000% 4 0.000% 0.000%
5 0.000% 0.000% 5 0.000% 0.000%
6 0.000% 0.000% 6 0.000% 0.000%
7 0.000% 0.000% 7 0.000% 0.000%
8 0.000% 0.000% 8 0.000% 0.000%
9 0.000% 0.000% 9 0.000% 0.000%

10 0.000% 0.000% 10 0.000% 0.000%

Breake, 
Total 

Sequence 
16

43.571% 0.192%

Breake, 
Total 

Sequence 
17

43.571% 0.192%

Breake, 
Total 

Sequence 
13

43.571% 0.384%

Breake, 
Total 

Sequence 
14

43.571% 0.192%

Breake, 
Total 

Sequence 
11

43.571% 0.192%

Breake, 
Total 

Sequence 
12

43.571% 0.192%


