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 ABSTRACT 

 
      We expose how a parameter, then called  𝜃, analogous to the parameter 𝜂 proposed in 
[1] to characterize the M|G|∞  queue busy period distribution, is also worthwhile to 
characterize the M|G|∞ queue busy cycle distribution. The parameters 𝜃 and 𝜂  are both 
modifications of the peakedness proposed in [3]. 

     Keywords: 𝑀|𝐺|∞, busy cycle, peakedness, modified peakedness.   

 

1. INTRODUCTION 

     In a 𝑀|𝐺|∞ queue system, 𝜆 is the Poisson process arrivals rate, 𝛼 is the mean 

service time, 𝐺(. )  is the service time distribution function and so 𝛼 = ∫ [1 −
∞

0

𝐺(𝑡)] 𝑑𝑡, as it happens with any positive distribution. The traffic intensity is defined as 

                                                       𝜌 = 𝜆𝛼        (1.1). 

Upon its arrival a customer finds immediately an available server. And each customer 

service is independent from the other customers’ services. 

    In the operation of this queue, as it happens with any other, there is a sequence of idle 

and busy periods. An idle period followed by a busy period is a busy cycle. Call I, B and 

Z the idle period, the busy period, and the busy cycle, respectively, time length random 

variable. Obviously, 

𝑍 = 𝐼 + 𝐵           (1.2). 

    As I and B are independent, see [3], the following relation: 

�̅�(𝑠) = 𝐼(̅𝑠)�̅�(𝑠)    (1.3) 

among the respective Laplace transforms holds, where 

𝐼(̅𝑠) =
𝜆

𝜆 + 𝑠
         (1.4), 

since the idle period is exponentially distributed with parameter 𝜆, as it happens with 

any queue with Poisson arrivals, and 
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                        �̅�(𝑠) = 1 +
1

𝜆
(𝑠 −

1

∫ 𝑒−𝑠𝑡−𝜆−∫ [1−𝐺(𝑣)]𝑑𝑣
𝑡
0 𝑑𝑡

∞
0

)   (1.5). 

    The goal of this paper is to introduce a parameter,𝜃, which is a modification of the 

peakedness, for the Z random variable and show that it is useful to characterize the Z 

distribution. In section 2 it is introduced the peakedness for the 𝑀|𝐺|∞ queue system 

busy cycle distribution and studied its properties. Then, in section 3, Having in mind the 

analysis performed in section 2, it is introduced the modified peakedness for the 𝑀|𝐺|∞ 
queue system busy cycle distribution, which is thought as an improvement of the 

peakedness. In the end we present a bibliographic list related with this subject. 

         This paper is a revised and updated version of [2]. 

2. THE Z RANDOM VARIABLE PEAKEDNESS 

      For the random variable Z, the peakedness, here called q, is given by, see [1], 

𝑞 = �̅�(1
𝛼⁄ )   (2.1) 

and, being p the peakedness for B, it holds 

                                                        𝑞 =
𝜌

𝜌+1
𝑝   (2.2). 

Of course, 𝑞 ≤ 𝑝. 

    It is easy to confirm that  

𝑞 = ∑(−1)𝑛
𝐸[𝑍𝑛]

𝑛! 𝛼𝑛
 (2.3)

∞

𝑛=0

 

and so, q includes information of Z every order centered at the origin moments such as 

p includes information of the B every order centered at the origin moments. 

    For the collection of service times’ distribution
1
, see [5], 

𝐺(𝑡) = 1 −
(1 − 𝑒−𝜌)(𝜆 + 𝛽)

𝜆𝑒−𝜌(𝑒(𝜆+𝛽)𝑡 − 1) + 𝜆
, 𝑡 ≥ 0, −𝜆 ≤ 𝛽 ≤

𝜆

𝑒𝜌 − 1
  (2.4), 

𝑞 = 𝛼
𝑒−𝜌(𝜆 + 𝛽)(𝜌 + 1) − 𝛽

(𝜌 + 1)(𝑒−𝜌(𝜌 + 𝛼𝛽) + 1)
, −𝜆 ≤ 𝛽 ≤

𝜆

𝑒𝜌 − 1
          (2.5) 

and 

 
1 In this case the distribution function of Z is a mixture of exponentials, see [6]: 

 

𝑃(𝑍 ≤ 𝑡) = 1 −
(1−𝑒−𝜌)(𝜆+𝛽)

𝜆−𝑒−𝜌(𝜆+𝛽)
𝑒−𝑒−𝜌(𝜆+𝛽)𝑡 +

𝛽

𝜆−𝑒−𝜌(𝜆+𝛽)
𝑒−𝜆𝑡 , 𝑡 ≥ 0, −𝜆 ≤ 𝛽 ≤

𝜆

𝑒𝜌−1
 



       -𝛽 = −𝜆 

𝑞 = 0     (2.6) 

                - 𝛽 = 0 (𝑀|𝐺1|∞ system) 

𝑞𝐺1 =
𝜌

𝑒𝜌 + 𝜌
   (2.7) 

                - 𝛽 =  
𝜆

𝑒𝜌−1
  (𝑀|𝐺2|∞ system) 

𝑞𝐺2 =
𝜌2

𝑒𝜌(𝜌 + 1) + 𝜌2 − 1
   (2.8) 

                For the systems: 

                - 𝑀|𝐷|∞ (constant service times) 

                                                      𝑞𝐷 =
𝜌

𝑒𝜌+1+𝜌
   (2.9) 

                - 𝑀|𝑀|∞ (exponential service times) 

                                               𝑞𝑀 =
𝑒𝜌−𝜌−1

(𝜌+1)(𝑒𝜌−1)
   (2.10). 

     For the service times 𝐺1, 𝐺2, 𝐷 and 𝑀, q depends only on 𝜌 and is given by very 

simple expressions. Except 

𝐸[𝑍] =
𝑒𝜌

𝜆
   (2.11), 

that depends on service time only by its mean
2
, it is the only parameter with simple 

expression, for the distribution of Z, to the 𝑀|𝑀|∞ systems, confer with [7]. 

       For service times distributions related with the exponential distribution, important in 

reliability theory: 

      -If the service time distribution is NBUE-New Better than Used in Expectation with 

mean 𝛼, ∫ [1 − 𝐺(𝑣)]𝑑𝑣 ≥ ∫ 𝑒−
𝑣

𝛼 𝑑𝑣
∞

𝑡

∞

𝑡
,  [8, p. 273], and 

                                       𝑞𝑁𝐵𝑈𝐸 ≤
𝑒𝜌−𝜌−1

(𝜌+1)(𝑒𝜌−1)
   (2.12), 

      -If the service time distribution is NWUE-New Worse than Used in Expectation 

with mean 𝛼, ∫ [1 − 𝐺(𝑣)]𝑑𝑣 ≤ ∫ 𝑒−
𝑣

𝛼𝑑𝑣
∞

𝑡

∞

𝑡
,  [8, p. 273], and 

 
2 It is usual to say that it is “insensible” to the service time distribution. 



                                              𝑞𝑁𝑊𝑈𝐸 ≥
𝑒𝜌−𝜌−1

(𝜌+1)(𝑒𝜌−1)
   (2.13).                                      

      For any G (.) and H (.) service times distributions functions such that 1 − 𝐺(𝑡) ≤

1 − 𝐻(𝑡) 

𝑞𝐺 ≥ 𝑞𝐻   (2.14). 

 

3. THE PARAMETER 𝛉 

   The modified peakedness for Z , called 𝜃 is given by, see [1], 𝜃 =
𝑞−(1−

𝑒𝜌

𝜌
)

𝑒𝜌

𝜌
−1

, that is 

                                                          𝜃 = 𝑞
𝜌

𝑒𝜌−𝜌
+ 1    (3.1). 

It was taken out of q the parts that do not depend on the service time’s distribution form, 

check expression (2.3), and then it was standardized dividing by the common part. 

      After the expressions seen in the former section, it is possible to obtain simple  

expressions for 𝜃𝐺1  , 𝜃𝐺2,  𝜃𝐷  and 𝜃𝑀 depending only on ρ. And evidently the  

properties of q extend to 𝜃. It is easy to show that 

 

 1 ≤ 𝜃 ≤
𝜌2

(𝑒𝜌+1)(𝑒𝜌−𝜌)
+ 1     (3.2)   

  

for any service time distribution, concluding so that 

 

                                           lim
𝜌→∞

𝜃 = 1     (3.3). 

       Computing 𝜃 for some service times distributions, taking various values of  𝜌, were 

obtained the values presented in Table 1 (P means the power distribution with 

parameter3 c=.5). 

              Table1. Values of 𝜃 for some service times distribution functions 

G ρ=.5 ρ=1 ρ=5 ρ=10 ρ=15 ρ=20 

G1 1.0573588 1.0841882 1.0000456 1.0000000 1.0000000 1.0000000 

G2 1.0357639 1.0575796 1.0000383 1.0000000 1.0000000 1.0000000 

D 1.0247402 1.0373147 1.0000171 1.0000000 1.0000000 1.0000000 

M 1.0376733 1.0654280 1.0002254 1.0000000 1.0000000 1.0000000 

P 1.0359789 1.0646113 1.0004005 1.0000001 1.0000000 1.0000000 

 

 
3 𝛼 =

𝑐

𝑐+1
 .  



       For this service time distribution 𝜃𝑃 was computed directly from (2.1) and (3.1).  

      When 𝜌 assumes great values: above  𝜌 = 10  for some service times distributions 

and 𝜌 = 20 for others, under some conditions, the busy period is practically 

exponentially distributed [9 and 10]. In the same conditions 𝜃 is practically 1. 

      It is interesting to compare the values of  𝜃, in Table 1, with the values of η, in Table 

2, got from [1], computed in the same conditions, being the most relevant  

            Table2. Values of η for some service times distribution functions 

G ρ=.5 ρ=1 ρ=5 ρ=10 ρ=15 ρ=20 

G1 3.3469730 1.7488465 1.0013731 1.0000002 1.0000000 1.0000000 

G2 2.4633636 1.5121659 1.0011518 1.0000002 1.0000000 1.0000000 

D 2.0123054 1.3319113 1.0005158 1.0000001 1.0000000 1.0000000 

M 2.5414941 1.5819767 1.0067837 1.0000454 1.0000000 1.0000000 

P 2.4721612 1.5747122 1.0120525 1.0001526 1.0000000 1.0000000 

 

to note that η≥ 𝜃, being the major differences for the lowest traffic intensities. 

4. CONCLUSIONS 

    The parameter  𝜃, specified in e4xpression (3.1), incorporates information on the whole 
moments of Z centered at the origin. 

    It assumes different values when the distributions of Z differ as functions of the service 
distribution. 

    And there are simple bounds for 𝜃 depending only on the traffic intensity ρ. 

    Even for the 𝑀|𝑀|∞ system, with analytically intractable parameters in the case of the 
distribution of Z,  𝜃 is written in a quite simple expression. This queue system, very 
important from the applications point of view, see [11 − 17], is a quite strange case 
because not even its markovian properties, owing to the exponential inter-arrival times 
and services, brings the expectable analytical simplicity. 

    It is even admissible that close values of 𝜃, for different service time’s distributions, 
indicate resemblance of the respective Z distributions behaviors. 

    So 𝜃 is a parameter that can help to characterize the distribution of Z, discriminating 
among different service time distributions. 

    This parameter, 𝜃 , may be included in the class of other composite parameters, as for 
instance the kurtosis or the skewness, see [18], that are used to characterize probability 
distributions putting an emphasis in their probability functions or probability density 
functions graphic characteristics. But it is more complete and more complex than any of 
the two examples here called, since incorporates the whole distribution centered at the 
origin moments. Because of that, its interpretation in probability functions or probability 
density functions graphic characteristics terms is not so obvious and it is an interesting 
open field of investigation. 
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