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Abstract 
 

The relationship between risk and returns its already very popular in financial markets, being 

the center of hundreds of studies nowadays. Within this wide range of researches, the firm size 

presents some impact on this relationship, being the smaller firms considered more risky and 

therefore, tending to reward investors with higher returns. But after all, to what extent is the 

firm size related with the volatility of such returns? Until today, few authors focused on this 

topic, motivating our study. 

In representation of the small and large firms we considered the Russell 2000 and Russell 1000 

indexes and concluded that the behavior of the returns differs between these two types of firms. 

According to our empirical evidence, the small firms are more volatile on the short-run, while 

the larger firms appear to be more affected by the shocks in a long-term perspective. Quite 

surprisingly, the negative shocks seem to affect more large firms than the smaller firms. 

Additionally, we focused our attention on the volatility spillovers across firms and, through the 

analysis of the FEVD, we concluded that the error variance of the Russell 1000 contributes to 

explain the error variance of the Russell 2000 in 84.78849%. Based on the DCC model, we 

confirmed the presence of volatility transmissions, since the conditional correlation tend to 

increase in periods of crisis. 

 

Key words: Volatility, Volatility spillover, Firm size, Heteroscedasticity models 
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Resumo 
 

A relação entre risco e retorno já é bastante popular nos mercados financeiros, sendo o centro 

de centenas de estudos hoje em dia. Dentro deste vasto leque de estudos, a dimensão das 

empresas apresenta implicâncias nesta relação, sendo que empresas mais pequenas são 

consideradas mais arriscadas e por isso tendem a recompensar os investidores com um nível 

de retorno mais elevado. 

Mas afinal, até que ponto é que a dimensão da empresa está relacionada com a volatilidade dos 

retornos? Até agora são poucos os autores que se concentraram nesta relação temporal, 

motivando assim o nosso estudo. 

Em representação das pequenas e grandes empresas considerámos os índices Russel 2000 e 

Russell 1000, e concluímos que o comportamento dos retornos difere entre tipos de empresas. 

De acordo com a nossa evidência, as pequenas empresas têm tendência a ser mais voláteis a 

curto prazo, enquanto que no longo-prazo as grandes empresas são mais afetadas pelos 

choques. Curiosamente, as más noticias parecem afetar mais as grandes empresas do que as 

empresas de menor dimensão. Adicionalmente, concentrámos a nossa atenção nas transmissões 

de volatilidade entre empresas e, através da análise da FEVD, concluímos que o erro da 

variância do Russell 1000 contribui para explicar em 84.78849% o erro da variância do Russell 

2000. Com base no modelo DCC percebemos que existem transmissões de volatilidade, uma 

vez que as correlações condicionais tendem a aumentar em períodos de crise. 

 

Palavras-chave: Volatilidade, Transmissão de volatilidade, Capitalização bolsista, Modelos 

de heterocedasticidade 

 

Classificação JEL: C58, G17 
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1 Introduction 
 

The concern about the study of the stock market volatility arrives from its impact on 

investment, being crucial to understand how the market behaves in order to make better choices 

and manage risk (De Santis & İmrohoroǧlu, 1997). The stock prices fluctuations reflect “(…) 

changes in various aspects of our society such as economic, political, monetary, and so forth.” 

(Gregoriou, 2009, p.5). 

Nowadays the stock market is a subject of exhaustive research and there is an endless 

number of investigations dedicated to the study of the trade-off between expected return and 

risk of stock prices. Banz (1981) proposed the firm size as a driver of this relationship. Besides 

this purpose, the firm size was used for many others such as the study its impact on the 

relationship between both earnings and cash flows, and security returns (Charitou, Clubb, & 

Andreou, 2001), its impact on the exports (Bonaccorsi, 1992; Calof, 1994) and on 

organizational structure (Child, 1973; Pugh, Hickson, Hinings, & Turner, 1969), the study of 

its relationship with profits (Stekler, 1964; Samuels and Smyth, 1968), among others. 

It is already known that the firm size can be seen as a measure of risk (Berk, 1995) but, 

besides the approach to this variable being very extensive, few have focused on relating it with 

the volatility of stock returns. 

Based on the few studies available, the volatility of returns tends to vary across time and 

across different types of firms (Cheung & Ng, 1992). This leads us to the fundamental 

questions: to what extent is the market capitalization related to returns volatility? Are the 

returns of small firms more volatile than large firms? The main objective of this dissertation is 

to fill this lack in literature and be capable of answering these questions, along with the study 

of possible volatility spillovers between these two types of firms. More specifically, we aim to 

study the behavior of U.S. stock market and see if small stocks react differently from large 

stocks, and if these shocks are transmitted across firms. 

By compiling the most important literature review conclusions, we defined all our study 

objectives. Therefore, we aim to confirm if: 

• Small firms present more autocorrelation than large firms (Fisher, 1966); 

• The shocks are more persistent on larger firms (Chelley-Steeley & Steeley, 1995);  

• Impact tend to be higher to small firms (Chelley-Steeley & Steeley, 1995); 

• Asymmetric impact of news is stronger for portfolios constituted by small firms 

(Chelley-Steeley & Steeley, 1996); 
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• Volatility spillover across firms: large firms volatility play an important role in 

predicting both volatility and mean return of smaller firms (Chelley-Steeley & Steeley, 

1996); 

• Negative relationship between the stock price volatility and firm size (Baskin, 1989; 

Habib, Kiani, & Khan, 2012; Hussainey, Mgbame, & Chijoke-Mgbame, 2011; Nazir, 

Nawaz, Anwar, & Ahmed, 2010). 

 

To obtain these conclusions we will consider the GARCH models because, as we will see 

at the end of the literature review, due to the characteristics of stock returns, the standard 

deviation is not the most adequate to estimate stock returns volatility. To conclude about the 

volatility of returns of the different types of firms in study, we will consider the multivariate 

GARCH models. 

In section 2 we have the literature review which starts by introducing the stock returns 

stylized facts, and by giving a background on the factors that may affect the stability of stock 

market volatility. Next, we study the behavior of the prices and understand the most popular 

reasons for such events to happen and confirm if there is evidence of an association to market 

capitalization (small and large firms). In the end, we see that in time series problems the normal 

standard deviation is not recommended and introduce the best methods to do the estimation of 

the volatility. 

In section 3 we present the methodology where we describe the models mentioned 

previously, and the statistical tests we are going to use to obtain our conclusions. Finally, in 

section 4, we have the empirical study where we present the results and conclusions of our 

study. 
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2 Literature review 
 

The financial asset prices and returns entail some well-known characteristics, mentioned as 

stylized facts, that are important to be aware of (Cont, 2001): 

• No autocorrelation; 

• Fat tails and Conditional Fat tails: the distribution of returns show pareto tails, before 

and after accounting the conditional variance models (less heavy after accounting for 

these models); 

• Gain/loss asymmetry: there are more losses than gains; 

• Aggregational Gaussianity: the distribution of a high frequency sample returns tend to 

proxy normality; 

• Intermittency: the returns tend to exhibit high fluctuations; 

• Volatility clustering: the absolute and squared returns show autocorrelation or, by other 

words, show some persistence in these nonlinear functions of returns. This is a sign of 

the existence of volatility clustering; 

• Leverage effect: reflects the nonlinear dependence of returns and portraits a negative 

relationship between returns and the level of volatility; 

• Autocorrelation of absolute returns decay slowly to zero; 

• Volume/volatility relationship. 

  

As seen by Mandelbrot (1963) and Fama (1965) the returns seem to fit better a stable 

Paretian distribution with exponent < 2, as firstly suggested by Mandelbrot (1963), than a 

Gaussian distribution. This means that a fat-tailed, or leptokurtic distribution, is more 

reasonable to describe the distribution of returns, as evidence proves that there is a larger 

number of observations in the tails of the distribution.  

In addition to these characteristics, Cont (2001) also defends the importance verifying the 

presence of two more characteristics: stationarity and ergodicity. According with him, the 

statistical properties of the asset returns must not depend on time (stationarity), and the 

observations must be independent and identically distributed (ergodicity) to be adequate to 

forecast it. Enders (2015) calls a series stationary when the long-term mean and variance are 

constant, having no trend. In other words, stationarity pictures the long-term reversion to the 

mean and, according to the theory of efficient markets, this term is violated and we observe the 

presence of non-stationarity when the series has a unit root. This is a very common 
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characteristic of the financial asset prices, unlike the returns, that tend to follow stationarity 

(Pagan, 1996). So, a non-stationary series can exhibit two different types of trend: deterministic 

trend (trend-stationary series) and stochastic trend (difference-stationary series). If the trend is 

deterministic the best method is to remove the trend by detrending, that is, “regressing a 

variable on a constant and time and saving the residuals”. On the other hand, if the trend is 

stochastic, revealed by the presence of a unit root, we remove it by differencing the series 

(Enders, 2015, p.189). 

The volatility clustering stylized fact is one of the most popular and it is the technical term 

to the reaction of the stock market to the shocks: “… good news may tend to be followed more 

often by good news, and bad news may tend to be followed more often by bad news than by 

good news.” (Fama, 1965, p.37). This behavior of returns is also known as ARCH effect, and 

its associated either to new information in the market, which tends to arrive in clusters, or to 

the reaction of the market to such information (Engle, Ito, & Lin, 1990).  

According to the Efficient Market Hypothesis, changes in prices have a random-walk 

behavior, meaning they are not correlated with past values (Enders, 2015). This lack of 

autocorrelation of returns reflect the liquidity of the markets (Cont, 2001), as in efficient 

markets the successive price changes are independent (Fama, 1965). 

The stock market has been exhaustively studied over the years and there are nowadays 

innumerable investigations available on volatility of financial markets, which discuss the 

reasons for the fluctuations of prices. 

Considering a widespread data including the Civil War, World War I, the Great 

Depression, World War II, the OPEC oil shock, and the post-1979 period, Schwert (1988) 

observed that the stock market volatility recorded the higher levels of volatility during these 

periods of crisis. 

One of the reasons studied by Schwert (1988) for the lack of stability in the stock market 

was Corporate Profitability, through the analysis of three variables: Payout Ratio, the Dividend 

Yield, and the Earnings Yield. Concerning the Payout Ratio, he observes that between 1929 

and 1940 both Payout Ratio and stock volatility increased while, in the period 1973-1940, the 

variables had opposite behaviors. These distinct behaviors suggest that there is not a reliable 

trend to assure the effectiveness of a relation between the Payout Ratio and the stock market 

volatility. In terms of both Dividend and Earnings Yield, there was no evidence proving any 

trend at all. These results lead to the conclusion that the proof supporting that corporate 

profitability is related to market volatility is not very strong. 
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The next proposed reason regarded changes in Macroeconomic Variables (Inflation, 

Money Growth, Industrial Production, Bank Clearings, and Liabilities of Business Failures). 

Schwert (1988) found that, besides these variables being susceptible to higher levels of 

volatility in periods of crisis, only the Industrial Production contributes to understanding stock 

market volatility. In general, their evidence supports that the macroeconomic variables are not 

sustainable sources in the contribution to explain stock returns volatility. Considering stocks 

of New York Stock Exchange, Officer (1973) tries to relate the market factor (returns on 

stocks) to Business Fluctuations, the Formation of Securities and Exchange Commission, the 

Effect of Margin Requirements, and the increase in the number of stocks listed on the New 

York Stock Exchange. In accordance with Schwert (1988), he found that the only variable 

whose volatility helped explain the volatility in market factor was the Business Fluctuations, 

measured by Industrial Production. 

In terms of stock market trading activity, periods of high trading activities correspond to 

periods with higher level of volatility (Schwert, 1988). This is in agreement with a study made 

by French & Roll (1986) who found that, during the period of January 1963 and December 

1982, the stocks listed on the New York and American Exchanges recorded 70 times more 

volatility per hour on trading days than on non-trading days. The possibility of an association 

of trading and non-trading volatility to the firm size was studied but unfortunately, it was not 

found any relation. Amihud & Mendelson (1987) go further and study the level of volatility in 

two different trading mechanisms: opening transitions (also known as periodic clearing house) 

and closing transactions (also denoted by continuous dealership market). For 29 of 30 Dow 

Jones stocks, they conclude that, due to accumulated information, the variance of the opening 

transaction is 20% higher than closing transactions, existing, therefore, an higher level of 

volatility at the periodic clearing house. 

This leads to the next argument: periods of high volatility are related to periods with an 

increase in information (Amihud & Mendelson, 1987; Beaver, 1968; French & Roll, 1986; 

Christie, 1982). Some events as earnings announcements are seen as moments that reveal 

enough information to be capable of influencing positively changes in prices and trading 

volume (Beaver, 1968). French & Roll (1986) discusses the higher volatility recorded on 

business days and defends that the Public Information, Private Information, and Pricing Errors 

are the main reasons for this evidence, as all these moments tend to happen during the business 

hours. Taylor (2005, p.22) states that there are several ways of news impacting prices: “(…) 

relevant news about the asset and its cash flows, macroeconomic news, divergent beliefs about 

the interpretation of the news, and changes in investor sentiment.”. 
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One of the most studied relationships in finance is the association of the level of volatility 

to stock returns, and the majority of authors reach the same conclusion: stock returns and future 

volatility are negatively related (Black, 1976; Christie, 1982; Beckers, 1980; Cheung & Ng, 

1992). The most popular reason to justify the association of periods with high volatility to 

periods where prices stand at a lower level is the leverage effect proposed by Black (1976). As 

the equity value is more sensitive to changes in the prices than the debt value, a decrease in the 

price will cause an increase in leverage effect, turning the stocks more risky (Beckers, 1980). 

The leverage effect states that bad and good news have different impacts on volatility, 

introducing an asymmetry of the news impact (Engle and Ng, 1991). Accordingly, Koutmos & 

Saidi (1995) affirm that bad news (associated to a decrease in prices) tend to affect the volatility 

2.3 times more than good news. In conformity with these results, during recessions, the prices 

of stocks tend to decrease, influencing positively the leverage effect and increasing the 

volatility of stock returns (Schwert, 1988). 

Besides the leverage effect, the contribution of the riskless interest rate to explain the 

changes in prices seemed relevant to Christie (1982). He found that the volatility of equity 

depends positively on the riskless interest rate or, in other words, the higher the riskless interest 

rate, the lower the leverage ratio and the higher will be the volatility of equity. 

As the leverage effect is not enough to explain the negative relation between stock returns 

and future volatility (“predictive asymmetry”), the volatility feedback effect, also referred to 

as “no news is good news”, aims to explain this feature along with the negative skewness 

(“contemporaneous asymmetry”) and the excess kurtosis (Campbell & Hentschel, 1992). The 

volatility feedback states that all large news (good or bad) cause an increase in volatility, 

increasing the returns, and lowering the prices. The main difference between good and bad 

news is that, for negative shocks, this effect is more intense, generating excess kurtosis. 

Unlike them, Poterba & Summers (1986) do not agree that volatility shocks have a higher 

impact on prices and defends that volatility is not persistent and that an increase of the market 

volatility by 50% only decreases the share prices by 11%, supporting that the market volatility 

is not efficient on explaining changes in prices. 

The next possible explanation for the stock market volatility behavior is the time-varying 

risk premia considered by French, Schwert, & Stambaugh (1987). They concluded that the 

expected risk premium displayed a positive and negative relation with expected and unexpected 

changes in volatility, respectively. 

Being the relationship between risk and return one of the most studied fields in finance, 

the inclusion of the firm size raised some interest to numerous authors. 
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The variables suggested to proxy the firm size, also referred as market value, are by now 

very extensive and there are a lot of different possible measures such as, for example: 

1. Total Assets (Agarwal, 1979; Al-Khazali & Zoubi, 2005; Habib et al., 2012; Hopkins, 

1988; Kimberly, 1976; Shalit & Sankar, 1977); 

2. Total Sales (Agarwal, 1979; Hopkins, 1988; Kimberly, 1976; Shalit & Sankar, 1977); 

3. Book Value of Equity (Al-Khazali & Zoubi, 2005; Shalit & Sankar, 1977); 

4. Capacity (Kimberly, 1976); 

5. Employment (Agarwal, 1979; Hopkins, 1988; Kimberly, 1976; Shalit & Sankar, 1977); 

6. Number of Clients (Kimberly, 1976); 

7. Market Capitalization (Al-Khazali & Zoubi, 2005; Berk, 1995; Vuolteenaho, 2002), 

defined by Hussainey, Mgbame, & Chijoke-Mgbame (2011) as the multiplication of 

the share price by the number of shares issued. 

 

Kimberly (1976) found that more than 80% of the studies included in his research used the 

number of employees to measure firm size. Hopkins (1988) defends that, besides the firm size 

being an extensive concept, the firm assets and employment level are the most considered, 

while Shalit & Sankar (1977) argue that assets and stockholders equity are better measures for 

firm size rather than employment and sales. Hopkins (1988) states that, for all industries, the 

decisive mark to distinguish the size of the firm is assets value of $200,000,000 while for Fraser 

(1996), the differential mark stands at a market capitalization of £100,000,000. That is, firms 

with less than $200,000,000 in assets or less than £100,000,000 of market capitalization are 

characterized as small firms.  

The interchangeability of these measures was extensively studied and the results differ 

substantially from author to author. As referred by Hopkins (1988, p.100) “Interchangeability 

cannot be assumed a priori in all cases.”. Considering a data set of 6057 firms of ten different 

industries for the period from 1999 to 2002, Al-Khazali & Zoubi (2005) conclude that the 

adequate variable to define firm size depends on the business industry and that is why the 

conclusions about the best measure are very distinct. Additionally, Shalit & Sankar (1977)  

believe that the variables that adequately measure firm size depend on the purpose of the study. 

According to Berk (1995), the firm size, the earnings to price ratio, the dividend yield, 

leverage, and the book-to-market equity are good variables to accurately explain future asset 

returns variation as they are cross-sectionally correlated with returns. Besides this, he also 

defends that the firm size can be seen as a measure of risk, as large firms tend to have larger 

market values, rising expected returns and lowering riskiness. 
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Between 1936 and 1975, stocks of small firms show higher returns as a way of 

compensating investors for the higher degree of uncertainty comparatively to large firms. This 

adjustment of returns to the level of risk to which the investors are exposed is entitled as size 

effect. Nevertheless, it is not proved that the market value of the firm is the reason for such 

relationship or if there is another reason linked to it (Banz, 1981). Besides the literature about 

this trade-off being extensive, these studies focus only on the expected returns and not on its 

volatility. 

Although few, some researchers were interested in this question and have focused on 

studying the temporal relation between firm size and volatility returns. Some authors, not 

primarily worried about the relationship between firm size and returns volatility, found a 

negative impact of firm size on volatility. 

The relationship between dividend policy and stock volatility was the focus of many 

studies and all authors used the same approach: consider size, debt, earnings volatility, asset 

growth and payout ratio as control variables (Baskin, 1989; Habib et al., 2012; Hussainey et 

al., 2011; Nazir et al., 2010). The size of firms was considered to be an important variable to 

include in this study because of its capacity of impacting price volatility through dividend 

policy. As larger firms are more diversified and, thereby, less affected by changes in individual 

markets while smaller firms have less information available, increasing the risk to which 

investors are exposed, the choice of dividends will differ across different types of firms. This 

introduces a firm size-price volatility relationship and justifies its inverse relation, defending 

the capacity of the firm size of controlling price volatility (Baskin, 1989). This evidence is 

supported for 2344 U.S. public corporations (Baskin, 1989), for the UK stock market 

(Hussainey et al., 2011), and for the Pakistan Stock Exchange (Habib et al., 2012; Nazir et al., 

2010). Thus, according to these authors, the stock price volatility tends to increase with the 

decrease of firm size. Following Nazir, Nawaz, Anwar, & Ahmed (2010), the main reason for 

this is the lack of diversification of small firms, which causes the stocks to be less liquid. 

Cheung & Ng (1992) were the first researchers mainly focused on investigating the 

relationship between firm size and returns volatility. Using an AR(1)-EGARCH(1,2)-in-mean 

model, they observed that negative impacts on prices have distinctive effects on firms with 

different market capitalizations. These negative shocks carry more dramatic consequences for 

small capitalization firms, triggering an higher level of volatility. In order to analyze the 

relationship between two variables (being, in this study, the firm size, the debt-to-equity ratio, 

and the coefficients of the model), they consider the nonparametric test Spearman rank 

correlation coefficients. Based on this test, they prove the existence of a negative relation 
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between debt-to-equity ratio and firm size, and a negative relation between D/E ratio and 𝜃" 

(coefficient that measures the relationship between volatility and prices). Shortly, they support 

that negative shocks have more impact than positive shocks, and that smaller firms do not have 

the same capability to face these shocks, being more volatile than the larger firms. 

Although the GARCH models are the most appropriate to this type of problem, Duffee 

(1995) chose to use the normal standard deviation and then, applied the Spearman Rank 

Correlation Coefficient to measure the level of correlation of the firm size, debt-to-equity ratio, 

and the firm volatility. Based on this coefficient, the results lead to the same already described: 

negative relation between firm size and volatility, and positive relation between debt-to-equity 

ratio and volatility. His main conclusions were that the lower the firm, the higher the debt-to-

equity ratio and the higher will be the volatility of the firm. In accordance with Black (1976), 

Christie (1982) and Cheung & Ng (1992), they found a negative relationship between the stock 

returns and future changes in stock returns volatility, and positive relationship between stock 

returns and today’s volatility, revealing positive skewness in the returns. Duffee (1995) 

experienced that both of these conclusions concerning the relationship between stock returns 

and changes in volatility were stronger for firms with lower market capitalization. Even though 

he agrees with the most popular explanation for the negative relationship presented before, he 

is not sure the leverage effect is the only reason for such event, ending up emphasizing that 

there must be other factors that associate the debt-to-equity ratio to the stock returns-future 

changes in stock returns volatility relationship. 

Indexes or portfolios of small firms tend to present more serial correlated returns than large 

firms because, as concluded by Fisher (1966), these types of firms are less active in trading 

than larger firms. So, comparing with large firms, the prices of small firms tend to adjust slower 

to new information, revealing non-synchronous price adjustments. This lack of studies 

including the returns autocorrelation structure encouraged Chelley-Steeley & Steeley (1995, 

1996) to study the conditional mean and variance of returns. Their main goal was to analyze 

four portfolios constituted by UK stocks sorted by market capitalization, between January 1976 

and December 1991. In order to face autocorrelation, and to see if there was any association 

between the impact and persistence of shocks and the firm size, they used an ARMA(1,1)-

GARCH(1,1)-M model to estimate the conditional mean and variance of returns. The role of 

information on current volatility appears to be more critical to portfolios constituted by smaller 

firms than large ones. As the former are firms that do not trade as frequently, they seem to have 

more leptokurtic and autocorrelated returns and be more affected by shocks on volatility 

(Chelley-Steeley & Steeley, 1996) . Thus, the impact tend to be higher to small firms, as stated 
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by Chelley-Steeley & Steeley (1995, p.435) “(…) the volatility of small firm portfolio returns 

is more clustered than the volatility of large firm portfolio returns.”, but more persistent for 

large firm portfolios. As confirmed by the analysis of the half-life of the shocks, the duration 

is only seven trading days for the small firm portfolios while, for large firm portfolios, it is 

more than the double, reaching twenty trading days. This increased duration is associated with 

mechanical rules in trading. 

As already referred by previous authors, the leverage effect also seemed to change under 

market capitalization differences. According to Chelley-Steeley & Steeley (1996), this 

asymmetric impact of news is stronger for portfolios constituted by small firms. 

Additional to these findings, Chelley-Steeley & Steeley (1996) also experienced events of 

volatility spillover across firms. In line with a study made by Conrad, Gultekin, & Kaul (1991), 

large firms volatility play an important role in predicting both volatility and mean return of 

smaller firms. 

Volatility spillovers are also mentioned by Harris & Pisedtasalasai (2006) as transmissions 

of volatility between markets, and are considered useful events to conclude about market 

efficiency, portfolio management, and financial analysis (pricing). According with their study, 

it was recorded volatility spillovers between large and small firms, and vice versa. In the first 

case, the large firm’s volatility affect positively the small firms. By contrary, the volatility 

effects of small firm’s gave negative consequences on large firm’s volatility. This means that 

an increase of small firms’ volatility will imply a decrease in large firms’ volatility. The main 

doubt stood at the reasons for such transmissions, remaining the uncertainty of the origins of 

these spillovers until Harris & Pisedtasalasai (2006) prove that what causes it is not the non-

synchronous trading but the new information arriving to the market. 

The main tools used to estimate and forecast assets volatility are the univariate models, 

whereas the first and most known are the Autoregressive Conditional Heteroskedasticity and 

Generalized Autoregressive Conditional Heteroskedasticity models. These models assume the 

lack of stability on variance that is, existence of heteroscedasticity, filling the gap of the 

traditional least squares model. Besides this, they also account for the stylized fact volatility 

clustering. So, we can say that these models emerged to meet the need of financial analysis, 

being used for innumerous ends: risk management, analysis and selection of portfolio or assets, 

assets pricing, among others (Engle, 2001). The Autoregressive Conditional Heteroskedasticity 

model of Engle (1982) emerged with the main objective of correcting a lack in modeling time 

variation and include higher order moments in the estimation of time-varying volatility. This 

model deals with volatility clustering and considers that the estimation of variance is a linear 
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function of the past squared value. (Bollerslev et. al, 1992). Despite this model being 

revolutionary, Bollerslev (1986) quickly found a crucial disadvantage and decided to estimate 

the variance by giving less relevance to old information. Although these models have changed 

the world of volatility estimation, there was one important feature that was not considered: the 

asymmetric impact of news. To face this, there were developed innumerous of variants for the 

univariate models: Threshold Autoregressive Conditional Heteroskedasticity model of Zakoian 

(1994) , GJR model of Glosten, Jagannathan, & Runkle (1993), Asymmetric Power 

Autoregressive Conditional Heteroskedasticity model by Ding, Granger, & Engle (1993), 

among others. 

Even after countless variants of the univariate class of models, there are some conclusions 

that can only be achieved by considering multivariate models. These models are considered to 

applications as asset pricing, portfolio management, hedging strategies, and Value-at-Risk 

forecast, and allow us to do a reliable analysis of the impact of some assets on the domestic 

and foreign assets, or market in general (Orskaug, 2009). Examples of these models are the 

Constant Conditional Correlation of Bollerslev (1990) and the Dynamic Conditional 

Correlation of Engle (2002). 
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3 Methodology 
 

We will follow an approach similar to Chelley-Steeley & Steeley (1995, 1996) with the 

difference that, instead of creating two market-based portfolios, we will consider the adjusted-

close prices for the past ten years of two indexes of Russel US index: Russell 2000 and Russell 

1000. 

A common way to treat the data is to divide it into two phases: in-sample and out-of-sample 

periods. This is helpful because a good in-sample model can be poorer and produce 

unsatisfactory out-of-sample results. So, the in-sample period is used to estimate the parameters 

of the model while the motivation behind the out-of-sample is to evaluate the performance of 

the forecast and see if the model produces reliable predictions. The sample size assigned to the 

out-of-sample part depends on the time horizon we want to predict, being the most common 

20% of the data (Hyndman & Athanasopoulos, 2018). 

 
3.1 Conditional Mean Models 

 
“To make a forecast is to infer the probability distribution of a future observation from the 

population, given a sample of past values.”. This has led to the need for tools capable of 

adequately estimate different stochastic processes. This lack of models was addressed by the 

stationarity stochastic processes (Autoregressive, Moving Average, Autoregressive Moving 

Average), and non-stationary processes (Autoregressive Integrated Moving Average) (Box et 

al., 2016, p.19). 

 

The Autoregressive (AR) Model, also referred to as autoregressive process of order p 

AR(p), consists of modeling a process �̃�% based on the past values and a random innovation 𝛼%: 

�̃�% = 𝜙)�̃�%*) + 𝜙,�̃�%*, + ⋯+ 𝜙.�̃�%*. + 𝛼% (3.1) 

�̃�% = 𝑧% − 𝜇 (3.2) 

 

The Moving Average (MA) Model, or moving average process of order q MA(q),  defines 

the process �̃�% as a finite function of the past 𝛼%. The moving average process is given by: 

�̃�% = 𝛼% − 𝜃)𝛼%*) − 𝜃,𝛼%*, − ⋯− 𝜃1𝛼%*1 (3.3) 
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Combining these two components, we have the Autoregressive Moving Average (ARMA) 

process, a set of autoregressive and moving average terms: 

�̃�% = 𝜙)�̃�%*) + ⋯+ 𝜙.�̃�%*. + 𝛼% − 𝜃)𝛼%*) − ⋯− 𝜃1𝛼%*1 (3.4) 

(1 − 𝜙)𝐵 − 𝜙,𝐵, − ⋯− 𝜙.𝐵.)�̃�% = (1 − 𝜃)𝐵 − 𝜃,𝐵, − ⋯− 𝜃1𝐵1)𝛼% (3.5) 

𝜙(𝐵)�̃�% = 𝜃(𝐵)𝛼% (3.6) 

 

Regarding the stationarity and invertibility conditions of the ARMA model, it depends on 

the ones from the AR and MA models. In order to the AR process be stationary, the roots of 

the autoregressive operator	𝜙(𝐵) = 0 must lie outside the unit circle (that is, their absolute 

value must be higher than 1). In terms of invertibility, to the MA process be invertible, the 

roots of 𝜃(𝐵) = 0 must lie outside the unit circle. Following these, the ARMA process is 

stationary and invertible if the roots of 𝜙(𝐵) = 0	and 𝜃(𝐵) = 0 lie outside the unit circle, 

respectively. 

 

However, the process can be non-stationary, leading to the need of a class of models that can 

estimate this type of data. The Autoregressive Integrated Moving Average (ARIMA) Model 

emerged as a non-stationary process, designed to deal with this very common characteristic of 

the financial time series data. This model introduces the integrated term d, which corresponds 

to the number of differences needed to transform the series into a series with stationary nature 

(in most cases, the first difference or, at maximum, the second difference, is enough to remove 

the trend (Box et. al, 2016)). The generalized autoregressive operator	𝜑(𝐵) is a nonstationary 

autoregressive operator and can be written as a function of the stationary autoregressive 

operator 𝜙(𝐵): 

𝜑(𝐵) = 𝜙(𝐵)(1 − 𝐵)9 (3.7) 

𝜑(𝐵)𝑧% = 𝜙(𝐵)(1 − 𝐵)9𝑧% = 𝜃(𝐵)𝛼% (3.8) 

𝜙(𝐵)𝑤% = 𝜃(𝐵)𝛼% (3.9) 

 

Where the integrated part is represented by 𝑤%, which is described as 𝑤% = (1 − 𝐵)9𝑧% = ∇9𝑧%. 

 

So, the ARIMA (p,d,q) process, constituted by autoregressive, integrated and moving average 

terms, is given by: 

𝑤% = 𝜙)𝑤%*) + ⋯+ 𝜙.𝑤%*. + 𝛼% − 𝜃)𝛼%*) − ⋯− 𝜃1𝛼%*1 (3.10) 
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3.2 Univariate Conditional Heteroskedastic Models 

 
3.2.1 Autoregressive Conditional Heteroskedasticity (ARCH) 

 
The Autoregressive Conditional Heteroskedasticity (ARCH) model of Engle (1982) is the 

pioneer of a wide range of models that considers that past values are rich in information useful 

to forecast conditional variance. This model is very respected in econometrics due to their 

predictive power (as it uses the past values to forecast the future), due to its capacity of 

estimating the volatility of an asset (revealing its usefulness in portfolio management), and its 

capability of capturing the ARCH effect caused by misspecification (due to omitted variables 

or structural changes) (Engle, 1982). It incorporates the well-known stylized fact volatility 

clustering and can be denoted by ARCH (q), where the q corresponds to the persistence of 

volatility (Bera & Higgins, 1993). 

Engle (1982) defines the more general form of an ARCH process where the conditional 

volatility changes with past errors as: 

𝑦% = 𝜖%ℎ%
)/, (3.11) 

 

Assuming 𝜖% is independent and identically distributed (i.i.d) with mean 𝐸(𝜖%) = 0 and 

variance 𝑉(𝜖%) = 1 

𝑦%|𝜓%*)~𝑁(0,ℎ%) (3.12) 

ℎ% = 𝛼G + 𝛼)𝑦%*),  (3.13) 

ℎ% = ℎ(𝑦%*), 𝑦%*,, …	, 𝑦%*., 𝛼) (3.14) 

Where, 

ℎ%: variance 𝜎%,; 

𝜓%*): information at time t-1; 

p: order of the ARCH process; 

𝛼: a vector of unknown parameters. 

 

Assuming that the conditional mean of 𝑦% corresponds to 𝑥%𝛽 that is, a linear combination 

of lagged endogenous and exogenous variables included in the information set 𝜓%*) with 𝛽: 

𝑦%|𝜓%*)~𝑁(𝑥%𝛽,ℎ%) (3.15) 

ℎ% = ℎ(𝜖%*), 𝜖%*,, …	, 𝜖%*., 𝛼) (3.16) 

𝜖% = 𝑦% − 𝑥%𝛽     where 𝛽 is a vector of unknown parameters (3.17) 
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As the information set can also consider both current and lagged	𝑥’s, we can write the 

variance in a broader form: 

ℎ% = ℎL𝜖%*), …	, 𝜖%*., 𝑥%, 𝑥%*), … , 𝑥%*., 𝛼M = ℎ(𝜓%*), 𝛼) (3.18) 

 

The coefficients 𝛼"	must be constant and nonnegative for all values of	𝑖. Regarding the 

stationarity of the series, the theorem 2 presented in the seminal paper of Engle (1982) states 

that for the variance of a first-order linear ARCH process be finite, that is, covariance 

stationary, the roots must lie outside the unit circle. 

 

3.2.2 Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

 
Similar to the transition from AR to ARMA model, we have the evolution from ARCH model 

to Generalized Autoregressive Conditional Heteroskedastic (GARCH) model. The ARCH 

model requires a long and fixed lag structure in conditional variance, which could end up 

calling into question the validity of the nonnegativity constraints. So, the GARCH model 

emerged with the need of facing this undesirable characteristic and allowing the lag structure 

to be more flexible and have higher memory (Bollerslev, 1986). In other words, the GARCH 

is a more parsimonious model and represents an high or infinite order ARCH process (Bera 

and Higgins, 1993). According to Bollerslev (1986, p.309) “In the ARCH (𝑞) process the 

conditional variance is specified as a linear function of past sample variances only, whereas 

the GARCH (𝑝, 𝑞) process allows lagged conditional variances to enter as well.”. The values 

of 𝑝 and 𝑞 determine the type of process we have, being transformed into other processes if 

some values are assumed: (1) If 𝑝 = 0: the model corresponds to a simple ARCH (𝑞) and, (2) 

if	𝑝 = 𝑞 = 0: the 𝜀% is white noise (WN). The general GARCH (𝑝, 𝑞) is defined as: 

𝜀%|𝜓%*)~𝑁(0,	ℎ%) (3.19) 

𝜀% = 𝑦% − 𝑥%R𝑏 (3.20) 

ℎ% = 𝛼G +T𝛼"𝜀%*",

1

"U)

+T𝛽"ℎ%*"

.

"U)

= 𝛼G + 𝐴(𝐿)𝜀%, + 𝐵(𝐿)ℎ% (3.21) 

Where,  

𝜀%: a real-valued discrete-time stochastic process; 

𝜓%*): information set at time t-1; 

𝑥%R: vector of explanatory variables; 

𝑏: vector of unknown parameters. 
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In order to the term 𝜀% be covariance stationary, the sum of the alpha and beta terms must 

be lower than 1 (Bollerslev, Chou, & Kroner, 1992). A common event in high frequency data 

is that this sum results in a value close to one, being an indicator that we have an integrated 

model and the volatility is highly persistent (Bollerslev, Engle, & Nelson, 1994). 

In order to assure the validity of de model the coefficients must assume nonnegative values, 

demanding the following inequality restrictions: 

	𝑝 ≥ 	0, 𝑞 > 0 

𝛼G > 0, 𝛼" ≥ 0, 𝑖 = 1,… , 𝑞 

𝛽" ≥ 0, 𝑖 = 1,… , 𝑝 

(3.22) 

 

However, some events as misspecification or sampling errors can drive to the negativity 

of coefficients, leading Nelson & Cao (1992) to investigate the flexibility of these inequality 

conditions. According to their study, these assumptions do not need to be so strict as demanded 

by Bollerslev (1986), and there are some cases where the nonnegativity of the conditional 

variance is not disputed:  

• 𝑝 = 1: According to the theorem 1 presented in their paper, the inequality constraints 

are only more flexible for 𝛼" with	𝑖 ≥ 2. The remaining conditions must be fulfilled 

otherwise, the conditional variance will not assume positive values; 

• 𝑝 = 2: As in the previous case, the restrictions are more flexible and allow the 𝛽) to 

assume negative values; 

• 	𝑝 ≥ 3: In this case, the evidence is not so clear and is more challenging to prove. 

 

3.2.3 Exponential Generalized Autoregressive Conditional Heteroskedasticity 

(EGARCH) 

 
Engle (1982) tested an exponential form of the ARCH model and showed that the variance 

remained positive no matter which value is assumed by the coefficient alpha, unless when 𝛼) 

is different from 0, leading to a model with infinite variance. Given these results, he recognizes 

that this form of the model should be studied more carefully. 
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Besides the ARCH and GARCH models successfully accounting for volatility clustering, 

Nelson (1991) highlighted a few drawbacks which need to be considered in order to find a 

more reliable model: 

• The inverse relationship between stock returns and volatility found by Black (1976) (in 

both ARCH and GARCH models the only important feature is the size and not the sign 

of the unanticipated stock returns); 

• The coefficients of the model must assume values equal to or above 0; 

• Hard to interpret the persistence of shocks to conditional variance. 

 

Therefore, the Exponential Generalized Autoregressive Conditional Heteroskedasticity 

(EGARCH) model hypothesized by Nelson (1991) arises as model capable of dealing with 

these three drawbacks. Instead of requiring nonnegative coefficients, the sign of the conditional 

variance 𝜎%, is approached differently and, in order not to compromise the sign of 𝜎%, and 

keeping it positive, the variance is modeled by taking the logarithm of 𝜎%,. By doing this, the 

𝛽\ can assume any value without questioning the sign of 𝜎%,. The EGARCH can be represented 

by an infinite MA (33) or by an ARMA process (34):  

 
𝑙𝑛	(𝜎%,) = 𝛼% +T𝛽\	𝑔(𝑧%*\)

`

\U)

									𝛽) = 1 (3.23) 

 
𝑙𝑛	(𝜎%,) = 𝛼% +

(1 + 𝜓)𝐿 +⋯+ 𝜓1𝐿1)
(1 − ∆)𝐿 +⋯+ ∆.𝐿.)

	𝑔(𝑧%*)) (3.24) 

Where {𝛼%}%U*`,` and {𝛽\}\U),` are real, nonstochastic, scalar sequences. 

 

The asymmetric effect is measured by 𝑔(𝑧%), which consists of the set of size and sign of 𝑧%. 

In order to have accurate results, the 𝑔(𝑧%) must be a linear combination of 𝑧% and |𝑧%|: 

𝑔(𝑧%) = 𝜃𝑧% + 𝛾[|𝑧%| − 𝐸|𝑧%|] (3.25) 

 

Where {𝑔(𝑧%)}%U*`,` is a zero-mean, i.i.d random sequence and both 𝜃𝑧% and 𝛾[|𝑧%| − 𝐸|𝑧%|] 

have mean zero. 

 

More specifically, the coefficient 𝜃 measures the asymmetric impact of shocks on changes on 

volatility. The asymmetric effect is granted by 𝑔(𝑧%) because the slope depends on the value 
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of 𝑧%: if (1) 0 < 𝑧% < ∞, the function 𝑔(𝑧%) is linear with slope 𝜃 + 𝛾, and if (2) −∞ < 𝑧% ≤

0, the function 𝑔(𝑧%) is linear with slope 𝜃 − 𝛾. 

 

The segment 𝛾[|𝑧%| − 𝐸|𝑧%|] of 𝑔(𝑧%) is responsible for measuring the magnitude/size effect: 

• 𝛾 > 0 and 𝜃 = 0: When the magnitude of 𝑧% is above the expected value, there is a 

positive innovation in 𝑔(𝑧%); 

• 𝛾 = 0 and 𝜃 < 0: The innovations in conditional variance and in returns have opposite 

signs. 

 

Regarding 𝑧%, it can assume three different distributions: normal distribution, student-t 

distribution, and generalized error distribution (GED). The density function of GED is 

described as: 

𝑓(𝑧) =
𝑣	𝑒𝑥𝑝 n−o12p |𝑧/𝜆|

rs

𝜆2()t)/r)Γ(1/𝑣)
 (3.26) 

 

Where Γ(.) is a gamma function, and the following conditions are necessary: 

−∞ < 𝑧 < ∞ 

0 < 𝑣 ≤ ∞ 
(3.27) 

𝜆 = v2(*,/r)Γ(1/𝑣)/Γ(3/𝑣)w
)/,

 (3.28) 

 

The parameter 𝑣 measures the type of the distribution of both 𝑧% and errors: 

• 𝑣 = 2: The distribution of 𝑧% is normal; 

• 𝑣 < 2: The distribution of 𝑧% is leptokurtic; 

• 𝑣 > 2: The distribution of 𝑧%	is platykurtic. 

 

The stationary and ergodicity of the EGARCH model depend on the persistence of shocks. 

In the GARCH model, the measurement of the persistence of shocks in variance is not clear 

and depends on different interpretations. In the case of the EGARCH, the 𝑙𝑛	(𝜎%,) is said to be 

strictly stationary and ergodic if the shocks do not persist and if we eliminate the deterministic 

trend. The conditions for the strict stationarity and ergodicity are described on theorem 2.1 

presented by Nelson (1991) which shortly states that, if 𝑙𝑛	(𝜎%,) is described by a first-order 

autoregressive process with coefficient ∆, it is strictly stationary and ergodic if |∆| < 1. 
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3.2.4 GJR (Glosten- Jagannathan-Runkle) 

 
Besides the studies about the risk and return tradeoff being extensive, the investors reward for 

the increased level of risk has not received so much attention temporally. Even so, the time 

behavior of this tradeoff was studied by a few researchers and the conclusions about the 

relationship between the expected returns and the conditional variance differ from author to 

author. Glosten, Jagannathan, & Runkle (1993) suspect that this disagreement is driven by the 

difference in methodology. The main distinction between the different studies available were 

the methods used whereupon, for the studies which was observed a positive or inexistent 

relationship, the GARCH-M model was used. Therefore, Glosten, Jagannathan, & Runkle 

(1993) recognize the GARCH-M model as an insufficient to model the data and generated the 

Glosten Jagannathan Runkle GARCH (GJR-GARCH) model, a modified version of the 

GARCH-M model. This version considers the EGARCH model of Nelson (1991) as the basis, 

complementing it with the following features: 

• Deterministic seasonal dummies: January and October are considered months where 

the volatility tends to be higher. January is a more volatile month because 2/3 of the 

firms use the calendar year as a fiscal year, leading to an increase of information in 

beginning of the year. Regarding the month of October, it was included due to the 

October 1987 crash, but there is no plausible reason for this yet; 

• Asymmetric effect on conditional variance; 

• Nominal interest rate: The short-term nominal interest rate is considered to be a good 

auxiliary tool to the estimation of future volatility of excess returns as it can reflect the 

expectations of inflation. 

 

According to Bollerslev, Engle, & Nelson (1994, p.2970), the GJR-GARCH model “(…) 

allows a quadratic response of volatility to news with different coefficients for good and bad 

news, but maintains the assertion that the minimum volatility will result when there is no 

news.”: 

𝜎%, = 𝑤 + T [𝛼"t𝐼(𝜀%*"
"U),1

> 0)|𝜀%*"|, + 𝛼"*𝐼(𝜀%*" ≤ 0)|𝜀%*"|,] + T 𝛽y𝜎%*y,

yU),.

 (3.29) 

 

Where 𝐼(. ) is an indicator function. 
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Additionally, regarding the properties of data, Glosten, Jagannathan, & Runkle (1993) take 

two more conclusions: 

• Differing only on the frequency of the data, they disagree with Nelson (1991) and 

defend that the conditional volatility does not record much persistence. That is, the 

monthly data point out to the almost inexistence of persistence in volatility, in contrary 

to daily returns of Nelson (1991) that reveal a positive relationship between the 

frequency of data and persistence; 

• Positive and negative unexpected returns have different impacts (positive returns lead 

to a decrease in volatility while negative returns lead to an increase in volatility) while, 

according to Nelson (1991), both positive and negative have the same consequences 

(higher volatility). 

 

3.2.5 Asymmetric Power Autoregressive Conditional Heteroskedasticity (APARCH) 

 
The main focus of Ding, Granger, & Engle (1993) was to analyze the autocorrelation of the 

series. They investigated the level of autocorrelation for different forms of the returns and, 

besides proving that the absolute returns were more autocorrelated than the squared returns, 

they did not found a conceivable motive for considering that the conditional volatility should 

be a linear function of the lagged squared residuals or the lagged absolute residuals. 

By analyzing the power transformation |𝑟%|9, with d assuming a broad range of values, they 

found significant positive autocorrelation at least up to lag 100, proving that the market stock 

returns have long-term memory. So, Ding, Granger, & Engle (1993) introduced a new and 

broader model that incorporates seven different models and a power transformation capable to 

deal with the long-term memory along with the leverage effect and volatility clustering already 

considered previously. More details about these models are presented in the appendix A of 

their paper. The new model was entitled Asymmetric Power Autoregressive Conditional 

Heteroskedasticity (APARCH) and is given by: 

 

𝜀% = 𝜎%𝑒%							𝑒%~𝑁(0,1) (3.30) 

𝜎%| = 𝛼G +T𝛼"(|𝜀%*"| − 𝛾"𝜀%*")| +T𝛽y𝜎%*"|

1

yU)

.

"U)

 (3.31) 
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Where the following conditions are demanded: 

𝛼G > 0 

𝛼" ≥ 0	𝑓𝑜𝑟	𝑖 = 1,… , 𝑝 

−1 < 𝛾" < 1	𝑓𝑜𝑟	𝑖 = 1,… , 𝑝 

𝛽y ≥ 0	𝑓𝑜𝑟	𝑗 = 1,… , 𝑞 

 

 

 

(3.32) 

3.2.6 Threshold Autoregressive Conditional Heteroskedasticity (TGARCH) 

 
The Threshold GARCH (TGARCH) model of Zakoian (1994) is very similar to the GJR model, 

allowing the 𝜎% to behave differently to both sign (the asymmetric response to shocks) and 

magnitude of the innovations. The main differentiator of this model is that it approaches the 

conditional standard deviation instead of the conditional variance and, therefore, can be 

described as: 

𝜀% = 𝜎%𝑍% (3.33) 

𝜎% = 𝛼G +T𝛼"t𝜀%*"t

1

"U)

− 𝛼"*𝜀%*"* +T𝛽y𝜎%*y

.

yU)

 (3.34) 

 

Where, 

𝑍% is i.i.d and independent of 𝜀%*)	for all t, with mean 0 and variance 1; 

𝜀%*): information at time t-1; 

(𝛼"t)"U),1, (𝛼"*)"U),1 and (𝛽y)yU),. are real scalar sequences; 

The positive and negative parts of the real-value discrete-time process	

𝜀% are described by 𝜀%t = max(𝜀%, 0) and 𝜀%* = min(𝜀%, 0).  

 

Considering that 𝛼"t = 𝛼"* = 𝛼", we can also write a new version of the TGARCH model. 

This adaptation is similar to the GARCH and it entails the same drawback, as the model 

developed by Bollerslev (1986), and only accounts for the magnitude of the shocks: 

𝜎% = 𝛼G +T𝛼"|𝜀%*"| +T𝛽y𝜎%*y

.

yU)

1

"U)

 (3.35) 

 

Zakoian (1994) estimated four different models (GARCH, threshold GARCH, exponential 

GARCH, and GARCH with absolute values) and concluded that both EGARCH and 
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TGARCH, the ones which similarly approach the asymmetric effect, achieve identical results. 

At the end, the TGARCH stands out due to the inclusion of the standard deviations instead of 

variances, which allow it to react more efficiently to large shocks. The main differences 

between the EGARCH model and the TGARCH are that in the latter the volatility is a function 

of nonnormalized shocks and the asymmetry effect can be different for the different lags (for 

example, 𝛼)t − 𝛼)* > 0 while 𝛼,t − 𝛼,* < 0). 

 

3.3 Multivariate Conditional Heteroskedastic Models 

 
3.3.1 Conditional Mean: Vector Autoregressive (VAR) 

 
The Vector Autoregressive (VAR) model is a multivariate model composed by more than one 

time series, being more advantageous than the univariate models when we want to analyze the 

relationship between two or more series. We should take this model into account when we want 

to analyze the impact of one variable to another and see how much it contributes to its forecast 

(Granger causality test), do an impulse response analysis (see if a shock in one variable affects 

the other variable), or do a forecast error variance decomposition (see how much of the forecast 

variance of a variable affects another variable) (Hyndman & Athanasopoulos, 2018). 

 

Enders (2015) defends that the VAR model is recommended when are there are doubts 

about the nature of the variables, being defined with the goal of including exogenous variables. 

If we consider a first-order VAR constituted by two stationary time series 𝑦% and	𝑧%, we can 

write our model as: 

𝑦% = 𝑏)G − 𝑏),𝑧% + 𝛾))𝑦%*) + 𝛾),𝑧%*) + 𝜀�% (3.36) 

𝑧% = 𝑏,G − 𝑏,)𝑦% + 𝛾,)𝑦%*) + 𝛾,,𝑧%*) + 𝜀�% (3.37) 

 

Where 𝜀�% and 𝜀�% must be white-noise and have no correlation. Regarding the impacts of series 

on the other, it is measured by the −𝑏), and 𝛾), (for the impact of a change in 𝑧%), and−𝑏,) 

and 𝛾,) (for the impact of a change in 𝑦%). 
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3.3.2 Constant Conditional Correlation (CCC) 

 
The Constant Conditional Correlation (CCC) of Bollerslev (1990) is a multivariate 

heteroscedasticity model that approaches the conditional variance, conditional covariance, and 

conditional correlation. The CCC model considers that the conditional variance and covariance 

are not constant over time, but the conditional correlation is. This model proved to be a success 

in asset pricing, hedging strategies, and in other vast number of applications, with the main 

advantage being the easiness of its estimation. We can describe it by considering the Nx1 time-

series vector 𝑦%: 

𝑦% = 𝐸(𝑦%|𝜓%*)) + 𝜀% (3.38) 

𝑣𝑎𝑟(𝜀%|𝜓%*)) = 𝐻% (3.39) 

 

Where, 

𝜓%*): 𝜎 at time t-1; 

𝜀%: error term; 

𝐻%: time-varying conditional covariance. 

 

The conditional correlation between two assets can vary between -1 and 1 and is given by 𝜌"y%: 

𝜌"y% =
ℎ"y%

�Lℎ""%ℎyy%M
 (3.40) 

Where ℎ"y% is the 𝑖𝑗%� element of the matrix 𝐻%. 

 

If we rewrite this in order of the conditional variances ℎ"y%, and respect the conditions 𝑗 =

1,… ,𝑁	and 𝑖 = 𝑗 + 1,… ,𝑁, we obtain the constant conditional correlations: 

ℎ"y% = 𝜌"y%�(ℎ""%ℎyy%) (3.41) 

 

Besides the definition on (3.41), the conditional covariance matrix can also be defined as: 

𝐻% = 𝐷%Γ𝐷% (3.42) 

 

Where 𝐷% represents the matrix diagonal which, in turn, represents the variance of the assets 

𝜎)%, …, 𝜎�%, and Γ represents a NxN time invariant matrix with the elements 𝜌"y�(𝜔"𝜔y). 
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3.3.3 Dynamic Conditional Correlation (DCC) 

 
The Dynamic Conditional Correlation (DCC) model surged with the requirement of models 

capable of capturing the time-varying propriety of correlations, as usually an increase in 

volatility can have an impact on the level of conditional correlation too (Billio, Caporin, & 

Gobbo, 2006). Therefore, DCC is very similar to the CCC, adapting only the constant 

conditional correlations rule. The main benefit of this model is that we can include as many 

parameters as we want, without relying on the number of series we have in our model (Engle, 

2002). The approach is somewhat different from other multivariate models: the two main 

phases to estimate this model are (1) to estimate a univariate GARCH model, and (2) use 

its standardized residuals and proceed with the multivariate estimation. The definition of this 

model is very similar to the CCC, with the difference that here, the correlation matrix 𝑅%, is not 

constant over time (Engle & Sheppard, 2001): 

𝑟%|ℱ%*)~𝑁(0, 𝐻%) (3.43) 

𝐻% = 𝐷%𝑅%𝐷% (3.44) 

 

Where 𝐷% represents the diagonal of the k x k matrix, which in turn represents standard 

deviations. 

 

However, the standard DCC model did not consider the asymmetries of news, leading 

Cappiello, Engle, & Sheppard (2006) to originate the Asymmetric Generalized Dynamic 

Conditional Correlation (AG-DCC) model: 

 

𝑄% = (𝑄� − 𝐴R𝑄�𝐴 − 𝐵R𝑄�𝐵 − 𝐺R𝑁�𝐺) + 𝐴R𝜀%*)𝜀%*)R 𝐴 + 𝐵R𝑄%*)𝐵 + 𝐺R𝑛%*)𝑛%*)R 𝐺 (3.45) 

 

Where, 

A, B, and G: matrix diagonal parameters; 

𝑛%: 𝐼[𝜀% < 0] ∘ 𝜀% with ∘ illustrating the Hadamard product; 

𝑁�: 𝐼[𝑛%𝑛%R ]; 

𝑄�: 𝑇*) ∑ 𝜀%𝜀%R�
%U) ; 

𝑁�:	𝑇*) ∑ 𝑛%𝑛%R�
%U) . 
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In order to permit different correlations across assets, Billio, Caporin, & Gobbo (2006) 

also provided a new form of the DCC model called Flexible Dynamic Conditional Correlation 

(FDCC) model. The main drawback of this model is that the unconditional correlation is not 

considered. The conditional covariance matrix 𝐻% is defined similarly, differing on the 

correlation matrix 𝑅% representation: 

𝐻% = 𝐷%𝑅%𝐷% (3.46) 

𝑅% = (𝑄%∗)*)𝑄%(𝑄%∗)*) (3.47) 

𝑄% = 𝑐𝑐R + 𝑎𝑎R ∘ 𝜂%𝜂%R + 𝑏𝑏R ∘ 𝑄%*) (3.48) 

 

Where, 

𝐷%: diagonal of the conditional standard deviations matrix, that is, 𝐷% =

𝑑𝑖𝑎𝑔(𝜎)),%, 𝜎,,,%, … , 𝜎\\,%); 

𝑄%∗: diagonal of the conditional correlation matrix, that is, 𝑄%∗ =

𝑑𝑖𝑎𝑔(�𝑞)),%, �𝑞,,,%, … ,�𝑞\\,%); 

𝜂%: standardized residuals; 

c, a, and b: k-dimensional vectors. 

 

3.4 Statistical tests 

 
3.4.1 Unit Root Tests 

 
3.4.1.1 Augmented Dickey-Fuller Test 

 
One of the most popular unit root tests is the Augmented Dickey-Fuller (ADF), an improved 

version of the Dickey-Fuller test of Dickey & Fuller (1979), which considers that the errors are 

independent and homoscedastic. The ADF test is a more general test that, contrary to the simple 

Dickey-Fuller test that is only suitable to the first-order autoregressive process, includes lagged 

changes and, therefore, is destined to higher-order autoregressive processes (Enders, 2015). 

Despite the usefulness of this test, it entails a few drawbacks highlighted by Enders (2015): 

• The process needs to be correctly specified, including all autoregressive terms, in order 

to be able to do an accurate estimate of the value and standard error of 𝜌; 

• The correct specification of the test may depend on moving average component; 

• Only tests for a single unit root; 
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• Does not consider the possibility of the data exhibiting seasonality and, therefore, being 

necessary to do a seasonal difference; 

• Does not consider the possibility of having structural breaks in data. 

 

According to Dickey & Fuller (1979), the value of 𝜌 reveals the nature of the time series 

𝑦% where (1) |𝜌| < 1 corresponds to a stationary series, (2) 𝜌 = 1 to a random-walk, and (3) 

|𝜌| ≥ 1 designates a non-stationary series. So, the null hypotheses relies on this and tests if the 

series is non-stationary or, by other words, if it has a unit root: 

 

HG: 𝜌 = 1 

H): 𝜌 < 1 

 

To help us interpret all the results, it is important to present the following table provided 

by Enders (2015): 

 
Table 3.1- Dickey-Fuller Test Summary 

Model Hypothesis Test Statistic 

∆𝑦% = 𝛾𝑦%*) + 𝜀% 𝛾 = 0 𝜏 

∆𝑦% = 𝛼G + 𝛾𝑦%*) + 𝜀% 
𝛾 = 0 𝜏  

𝛼G = 𝛾 = 0 𝜙) 

∆𝑦% = 𝛼G + 𝛾𝑦%*) + 𝛼,𝑡 + 𝜀% 

𝛾 = 0 𝜏¢ 

𝛼G = 𝛾 = 0 𝜙, 

𝛼G = 𝛾 = 𝛼, = 0 𝜙£ 

Source: Enders (2015) 

 

Where the gamma statistics are obtained by: 

 

𝜙" =
¤𝑆𝑆𝑅(𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑) − 𝑆𝑆𝑅(𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑)𝑟 ¨

¤𝑆𝑆𝑅(𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑)𝑇 − 𝑘 ¨
 (3.49) 
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Where, 

SSR (restricted): The sum of the squared residuals from the restricted model; 

SSR (unrestricted): The sum of the squared residuals from the unrestricted model; 

R: Number of restrictions; 

T: Number of observations; 

K: Number of parameters estimated in the unrestricted model. 

T-k: degrees of freedom in the unrestricted model. 

 

3.4.1.2 PP Test 

 
An alternative to the ADF test is the Phillips-Perron (PP) test proposed by Phillips (1987). In 

this new test, the null and alternative hypotheses are the same as ADF but, contrary to them, it 

is assumed that the errors are dependent and heterogeneously distributed. As we have seen 

before, in economic series the trend may not be stochastic but linear/deterministic, and it is 

frequently detected the existence of a drift. So, Phillips& Perron (1988) expanded the concept 

of the PP test and included the cases where we have a random walk with drift and/or a random 

walk with drift and a linear trend.  

 

3.4.1.3 KPSS Test 

 
Kwiatkowski, Phillips, Schmidt, & Shin (1992) represent a time series as a set of three 

components (deterministic trend, a random walk, and a stationary error) and propose the 

stationarity test KPSS. This test takes a distinct approach and treats the null and alternative 

hypotheses differently, defining in the opposite way of the previous two tests. Instead of 

considering that the null hypothesis states that the series is non-stationary, the KPSS considers 

the absence of unit root. So, the null hypothesis corresponds to stationarity, i.e., the series is 

not a random walk. 

HG: Variance of the random walk = 0 

H): Variance of the random walk ≠ 0 

 

It is important to perform these two types of tests because, as the hypothesis that they test are 

different, besides trying to conclude if the series is stationary, we can observe the cases where 

the lack of information does not allow us to conclude about this characteristic. 

 



The relationship between firm size and volatility of stock returns 
 

 29 

3.4.2 Normality Tests 

 
Checking the normality of errors is crucial to some methods, which depend on the confirmation 

of this assumption to guarantee its validity. This motivated Shapiro & Wilk (1965) to develop 

the Shapiro-wilk test. The main problem of this test is that it is more recommended for small 

samples, not being the most accurate when we have a  large sample. 

An alternative to the Shapiro-wilk test is the Kolmogorov-Smirnov test proposed by 

Lilliefors (1967), which is more convenient in cases for which we do not know the mean and 

variance of our process. 

Besides these two tests, Jarque & Bera (1987) proposed one of the most popular tests to 

conclude about the normality of the errors. This test is known for its asymptotic validity and 

the incorporation of the coefficients of skewness (𝑏)) and kurtosis (𝑏,). The aim of the test is 

defined by the null hypothesis, which states that the errors are normally distributed, and test 

statistics is given by: 

𝐽𝐵 = 𝑛 ¬
𝑏)
6 +

(𝑏, − 3),

24 ¯ (3.50) 

 

3.4.3 Autocorrelation Diagnostic 

 
According to Hyndman & Athanasopoulos (2018), the residuals are the result of the difference 

between the fitted values (estimates) and the real observations, and the analysis of these are 

crucial to understand if the process was adequately estimated, using all information possible to 

enrich the model. To this to happen, the residuals must show no autocorrelation and zero mean. 

Despite these characteristics, there are two more that are convenient to check, although it does 

not call into question the precision of our study: constant variance and normal distribution of 

the residuals. To check the lack of autocorrelation we can resort to the analysis of the 

autocorrelation function (ACF), or perform the portmanteau tests. Through the ACF we 

confirm the residuals are white noise if the autocorrelation values are near zero or if 95% of 

the ACF spikes are within the levels of significance outlined by blue dashed lines, which 

correspond to ±2/√𝑇. 

Regarding the portmanteau tests, we will consider the Box-Pierce test proposed by Box & 

Pierce (1970), with the following test-statistic: 

𝐵𝑃 = 𝑛T𝑟\,~𝑥(³),
³

\U)

 (3.51) 
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Where n corresponds to the number of observations, m to the maximum lag, and 𝑟\ is the 

autocorrelation coefficient at lag k defined considering uncorrelated random deviates 𝛼:	

𝑟\ =
∑𝛼%𝛼%*\
∑𝛼%,

 (3.52) 

 

The null hypothesis states that the autocorrelation coefficients are zero, meaning that the series 

exbibit a random behavior: 

	HG: 𝜌) = 𝜌, = ⋯ = 𝜌³ = 0 

H): ∃𝜌³ ≠ 0 

 

To face some problems generated by the use of Box-Pierce test, Ljung & Box (1978) suggested 

a new test defined by: 

𝐿𝐵 = 𝑛(𝑛 + 2)T
𝑟\,

(𝑛 − 𝑘)~𝑥(³)
,

³

\U)

 (3.53) 

  

3.4.4 Conditional Heteroskedasticity 

 
The result of the a conditional heteroscedasticity test is crucial to confirm that we need the 

ARCH family. We can do this by applying the Ljung-Box test to the square of the residuals, or 

by performing the ARCH LM test proposed by Engle (1982). Let the white noise error process 

is represented by 𝜇%, the null and alternative hypotheses of the latter are described as: 

HG: α) = α, = ⋯ = α¶ = 0 

H): 𝑒%, = αG + α)𝑒%*), + ⋯+ α¶𝑒%*., + 𝜇% 

 

3.4.5 Sign Bias test 

 
We can check if the squared standardized residuals are i.i.d by applying the sign bias, negative 

sign bias and positive sign bias tests. The sign bias test comprises the effect of all shocks, either 

positive or negative, while the two remaining tests aim to make a distinction. The negative sign 

bias test focus only on the negative shocks and, as the name already predicts, the positive sign 

bias test centers on the impact of the positive shocks on volatility. Besides these tests, we can 

plot the news impact curve, which demonstrates how the volatility of today is affected by a 

shock that occurred yesterday (Engle & Ng, 1991). 

 



The relationship between firm size and volatility of stock returns 
 

 31 

3.4.6 Information Criteria 

 
The optimal orders of p and q to fit the data have a negative impact on the Sum of Squares of 

the estimated Residuals (SSR) and degrees of freedom, being difficult to find sometimes. As 

the number of parameters p and q increase, there is an increased number of coefficients to be 

estimated. On the other hand, we can observe a decrease in the SSR and a loss of degrees of 

freedom. In order to understand to what extent these consequences compensate, the two most 

used measures are the Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC), also referred to as Schwarz Information Criterion (SIC). The main difference 

between them is that the AIC is more suitable for small samples while the BIC is more 

appropriate to large samples. This means that the BIC is a more parsimonious criteria, with 

asymptotical value, giving more truth wordy results, while the AIC may tend to choose models 

with an excess of parameterization. Let T represents the number of observations, L the 

maximized value of the likelihood function, and n the number of parameters (q + p + constant 

term), these two criteria can be described as (Enders, 2015): 

𝐴𝐼𝐶 = 𝑇𝑙𝑜𝑔(𝑆𝑆𝑅) + 2𝑛 = −2 ln(𝐿) + 2𝑛 (3.54) 

𝐵𝐼𝐶 = 𝑇𝑙𝑜𝑔(𝑆𝑆𝑅) + 𝑛𝑙𝑜𝑔(𝑆𝑆𝑅) = −2𝑙𝑛(𝐿) + 𝑛𝑙𝑛(𝑇) (3.55) 

  

3.4.7 Loss Functions 

 
The procedure of separating the data into two different groups may generate doubts regarding 

the effectiveness of each model. Therefore, in order to conclude which is the most accurate 

model in forecasting out-of-sample, we need to resort to some loss functions. 

These measures consider the unpredictable part of the observation and can belong to 

different classes of measures: the scale-dependent errors, the percentage errors, and scaled 

errors. Within the scale-dependent errors, we have the Mean Absolute Error (MAE) and the 

Root Mean Square Error (RMSE), which are less flexible measures and do not allow to make 

comparisons between different series. This disadvantage is approached by percentage errors, 

which already allows to make comparisons between different series. However, it also entails 

some disadvantages: the measure is not valid when the forecasted value is zero (being infinite 

or undefined), it is only accurate on a ratio scale, and they are more affected by negative errors 

than on positive errors. Regarding this class of models, we will consider the Mean Percentage 

Error (MPE) and Mean Absolute Percentage Error (MAPE). Since these measures rely on the 

forecast errors 𝑒%, obtained by the difference between the value from forecast 𝑦% and its real 
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value 𝑦¹%, we are going to choose the model with the lower value (Hyndman & Athanasopoulos, 

2018). 

 

3.4.7.1 Mean Absolute Error 

𝑀𝐴𝐸 =
∑ |𝑒%|�
%U)

𝑇 =
∑ |𝑦% − 𝑦¹%|�
%U)

𝑇  (3.56) 

 
3.4.7.2 Mean Square Error 

𝑀𝑆𝐸 =
∑ 𝑒%,�
%U)

𝑇 =
∑ (𝑦% − 𝑦¹%),�
%U)

𝑇  (3.57) 

 
3.4.7.3 Root Mean Square Error 

𝑅𝑀𝑆𝐸 = »∑ 𝑒%,�
%U)
𝑇 = »∑ (𝑦% − 𝑦¹%),�

%U)
𝑇  (3.58) 

 
3.4.7.4 Mean Percentage Error 

𝑀𝑃𝐸 =
∑ ¼𝑦% − 𝑦¹%𝑦%

½ ∗ 100�
%U)

𝑇  (3.59) 

 
3.4.7.5 Mean Absolute Percentage Error 

𝑀𝐴𝑃𝐸 =
∑ |𝑦% − 𝑦¹%|

𝑦%
�
%U)

𝑇 =
∑ |𝑒%|

𝑦%
�
%U)

𝑇  (3.60) 

 

Where T correspond to the number of observations. 
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3.4.8 Granger Causality Test 

 
As the VAR is a bi-directional model, its use only makes sense if the two-time series have 

some kind of influence on each other. To see if this happens, we will apply  the granger 

causality Granger (1969). By using this test, we can conclude if a stationary series 𝑋% Granger 

causes a stationary series 𝑌%, and vice versa: 

𝑋% =T𝛼y𝑋%*y

³

yU)

+T𝑏y𝑌%*y

³

yU)

+ 𝜀% (3.61) 

𝑌% =T𝑐y𝑋%*y

³

yU)

+T𝑑y𝑌%*y

³

yU)

+ 𝜂% 
(3.62) 

 

Where 𝜀% and 𝜂% are white noise series with no correlation, and the 𝛼y, 𝑏y, 𝑐y, and 𝑑y are 

estimated coefficients. 

The coefficients that will dictate whether the series are bidirectional, that is, both series causes 

each other, are the 𝑏y and 𝑐y. Therefore, if (1) 𝑏y > 0 we say the series 𝑌% Granger causes 𝑋%, 

and if (2) 𝑐y > 0, the series 𝑋% Granger causes 𝑌%, revealing a feedback relationship. 
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4 Empirical Study 
 
4.1  Stock Index Prices  

 
4.1.1 Stock Index Prices Description 

 
As we already said previously, we will divide our sample in two parts for in-sample and 

out-of-sample analysis. Our sample is comprehended by the period 01/07/2010 and 

31/07/2020, making a total of 2539 daily observations. Within this period, we will define our 

periods as follows: 

• In-sample: from 01/07/2010 to 02/07/2018;  

• Out-of-sample: from 03/07/2018 to 31/07/2020. 

 
In Figure 4.1 we can assess the graphical representation of the respective time series, with 

the blue line representing the index of small firms and the grey line in the representation of the 

large firm index. From the lack of predictability of the series, revealed by the frequent increases 

and decreases of the prices over time, it is clear the presence of a stochastic trend. The 

behaviour of both series suggests that we have a non-stationary series. We will confirm this 

later by using the unit root tests and by plotting the ACF and partial ACF (PACF). 

The steepest falls occur in both indexes around the same time, with the index of the small firms 

appearing to be more sensitive, revealing more intense reactions (higher losses).  
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Figure 4.1- Stock price behavior during the last ten years 
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During the last years, although both indexes present quite similar tendencies, the stock 

prices of the index that represents the small companies presented higher values than the Russell 

1000. 

Between 2010 and 2011 both indices showed a growing trend, with the first big drop in 

2011. In July 2011 the American stocks started to fall, ending days later the first sharp drop in 

prices after the 2008 crisis. The American indexes Dow Jones Industrial, S&P500 and Nasdaq 

Composite registered drops between 5.6% and 6.9%, causing a lot of concern to investors who 

chose to start selling. The reasons for the loss of more than 6% in early August 2011 was related 

to the European debt crisis and the fear that the fall in stocks would lead to a possible new 

American crisis. The prices of the Russell 2000 and Russell 1000 dropped from its maximum 

of 865.29 and 758.45 on April 29th to 609.49 and 604.42 on September 29th, respectively. After 

April 29th the stocks of the Russell 2000 recorded a slight increase, registering 858.11 on July 

7th , but ended up going down after this period, until October 3rd. The Russell 1000 recorded a 

similar path, with an increase to 753.32 on July 7th. 

After this period, stocks showed a positive evolution until 2015, when a fall of the Chinese 

currency affected the American stock markets. This event triggered a new crisis, which 

registered a historic level of volatility in the New York markets, matching the behavior 

recorded in the "Black Monday" in the 1987 American crisis. This downturn generated a 65% 

loss in the value of oil and caused stocks to fall worldwide. In the Shanghai composite index, 

the stocks fell 8.5%, in Europe the drop was quantified in 5%, and in Brazil and Indonesia was 

recorded a 4% drop. Regarding the United States, the industrial Dow Jones registered a loss of 

3.6%, the SP500 of 3.9%, and the Nasdaq composite of 3.8%. On March 21st and March 23rd, 

it was registered a maximum of 1189.55 on the Russell 1000 and 1295.80 on the Russell 2000. 

These values fell to 1041.77 and 1083.91 on August 25th and September 29th, respectively. 

The behavior observed in 2015 was extended to the next year and at the beginning of 2016 

things were not looking very optimistic. The American stock prices fell 10%, leading investors 

to value other assets such as gold, which ended up appreciating. The main boosters of the fall 

in stock prices were the historical drop in oil prices, which had not recorded so many losses 

since 2004, the China slowdown, and the change in interest rate policy. The maximum of the 

Russell 2000 (1110.44) and Russell 1000 (1116.84) were recorded on January 5th, and fell on 

February 11th to 953.72 and 1005.89, respectively. 

In the upcoming years, the stocks maintained a constant upward trend until 2018 when the 

trade war between Trump and China, the deceleration of the global economic growth, the 

increase in interest rates, the Brexit, and the new regulation in the technology sector, stimulated 
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a new crisis. This outbreak had consequences across the globe with the three major United 

States indices (S&P500, Dow Jones Industrial Average, Nasdaq Composite) dropping from 4% 

to 6%. Outside the United States, the German index DAX decreased 18%, the French index 

CAC40 dropped 11%, and the British index FTSE went down 12.5%. The month of December 

turned out to be the worst Christmas month since the Great Depression. The price of the Russell 

2000 and Russell 1000 was 1740.75 on August 31st and 1624.28 on September 20th, ending 

both to fall on December 24th to 1266.92 and 1298.02, respectively. After this event, the 

increasing behavior is predominating, with the stock prices of the Russell 1000 index having a 

sharper growth than the stock prices of the Russell 2000 index. In March, the large firm index 

started to show prices notoriously higher than small firms and both indices kept a similar 

growing pattern until 2020 when, almost at the end of our sample, in March 2020, the prices 

suffer the biggest fall ever, triggered by the COVID-19 pandemic. 

This crash generated a high level of concern by the investors that feared we could reach a 

20% loss, entering in a bear market for the first time since the 2007-2009 crisis. The bear 

market was officialized when it was announced the disease COVID-19 was a pandemic, 

causing serious reactions by the three major American indexes. These indexes recorded a loss 

of 23% on March 12th, compared with their high in February 2020. In regards to our data, the 

Russell 2000 had its 2020 maximum on January 16th with 1705.22 and the Russell 1000 on 

February 19th with 1875.24. After the announcement that the coronavirus fulfilled the 

requirements to be called a pandemic, the Russell 2000 fell dramatically to 991.16 on March 

18th and the Russell 1000 to 1224.45 on March 23rd. From a percentage point of view, there 

was a loss of 41.97% and 34.70% in the Russell 2000 and Russell 1000, respectively. After 

this severe period, the prices show high oscillations keeping, however, a growing trend. 

 

4.1.2 Unit Root Tests 

 
We can check the stationarity of the series either by analyzing the ACF of the series, or by 

performing the unit root tests. Based on the ACF, we conclude the series is non-stationary  if 

exists any dependency of the series (revealed by the slow decay to zero of the autocorrelations 

spikes) (Hyndman & Athanasopoulos, 2018).   

 
To compute this type of tests we considered the “urca” package in the program R. To perform 

the ADF test we used the “ur.df” function, which was specified as follows: 
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•  “type”: the test regression can assume three different forms: (1) “none” (there is no 

intercept and no trend), (2) “drift” (there is an intercept), and (3) “trend” (there are an 

intercept and a trend). We considered these three forms; 

• “lag”: in order help us define the optimal lag length to our model we considered the 

BIC information criteria by using the “selectlags” part.  

 

Table 4.1- Augmented Dickey-Fuller Test applied to Russell 2000 stock prices 

Type 
Test 

Statistic 
Lags 

Significance levels Value of the test-

statistic 10pct 5pct 1pct 

None tau1 7 -1.62 -1.95 -2.58 0.5503 

Drift 
tau2 

7 
-2.57 -2.86 -3.43 -1.7397 

phi1 3.78 4.59 6.43 2.0235 

Trend 

tau3 

7 

-3.12 -3.41 -3.96 - 3.4543 

phi2 4.03 4.68 6.09 4.394 

phi3 5.34 6.25 8.27 6.0791 

 
 
Table 4.2- Augmented Dickey-Fuller Test applied to Russell 1000 stock prices 

Type 
Test 

Statistic 
Lags 

Significance levels Value of the test-

statistic 10pct 5pct 1pct 

None tau1 9 -1.62 -1.95 -2.58 1.5265 

Drift 
tau2 

9 
-2.57 -2.86 -3.43 -0.6673 

phi1 3.78 4.59 6.43 1.8164 

Trend 

tau3 

9 

-3.12 -3.41 -3.96 -4.9402 

phi2 4.03 4.68 6.09 9.2422 

phi3 5.34 6.25 8.27 12.2548 

 

Regarding the test regression with an intercept and a trend, we can conclude about the 

presence of a unit root in the series by comparing the value of test-statistics to the 𝜏¢ (tau3 in 

the output) significance levels. Starting by analysing the Russell 2000, the results are a little 

bit odd, as the value of the test-statistic leads us to different conclusions. The value of the test-

statistic (-3.4543) is lower at the significance levels 10% (-3.12) and 5% (-3.41), leading us to 
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reject the null hypotheses and conclude that the series presents a stationary behavior. At the 

significance level 1% (-3.96) the value of the test statistic is higher, leading to the non-rejection 

the null hypotheses, meaning that the series has a unit root. The problem with this version of 

the test is that the series may not have a drift and/or a trend and, therefore, the tau3 may give 

unreliable results. So, we rely on the 𝜙£ (phi3 in the output) to test if 𝛼G, 𝛾 and 𝛼, equal zero 

(see Table 3.1). As the value of the test-statistic (6.0791) is lower than the critical significance 

levels at 5% (6.25) and 1% (8.27), we do not reject the null and conclude that the series has a 

unit root but does not have a deterministic trend. By contrary, at the significance level 10% 

(5.34) we conclude that, as the value of the test-statistic is higher, at least one of the coefficients 

is different from zero. 

As it does not include a trend to some significance levels, we proceed to the analysis of 

type “drift” (test regression with intercept). After analyzing the value of the test-statistic (-

1.7397), we can observe that it is higher than the 𝜏  (tau2 in the output) significance levels. So, 

we do not reject the null and conclude that the series is non-stationary. As we did to the type 

“trend”, we rely on the 𝜙) (phi1 in the output) and conclude that, as the value of the test-statistic 

(2.0235) is lower than the critical values, we do not reject the null and conclude that the series 

has a unit root but does not have a drift. 

As it was confirmed that there is not a drift nor a trend, the most adequate way to check 

the stationarity of the series is by relying on 𝜏 (tau1 in the output). As the value of the test-

statistic (0.5503) is higher than the critical values, we do not reject the null hypothesis and, 

therefore, the evidence points to the existence of a unit root. 

In terms of the index of large firms, the value of the test statistic of the	𝜏¢ (-4.9402) is lower 

than all significance levels and, therefore, we reject the null. Following the same line of thought 

the index of small firms, we need to look at the 𝜙£ to see if this type of regression is the most 

trustable. As the value of the test-statistic (12.2548) is higher than all critical values (for 

different significance levels), we should reject the null hypothesis, meaning that at least one of 

the coefficients is different from zero. The same happens to the 𝜙, (phi2 in the output) 

significance levels. Given these results, we cannot be sure if the series has a deterministic trend 

nor a drift, and if the results given by 𝜏¢ are reliable. To understand this, we will evaluate the 

type “drift”. Based on the value of the test statistic (-0.6673) we do not reject the null and 

conclude that the series has a unit root. However, after looking at the significance levels of 𝜙), 

as these are higher than the value of the test-statistic (1.8164), we do not reject the null and 

conclude that the series has a unit root and no drift. So, the most adequate way to check the 
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stationarity of the series is by analyzing the 𝜏. In this case, as the value of the test-statistic 

(1.5265) is higher than the critical values, we do not reject the null hypothesis and can affirm 

that the series has a unit root. 

In conclusion, we confirm that both Russell 2000 and Russell 1000 series is a random walk 

and that it has non-stationary behavior. 

 

To run the PP test, we considered the “ur.pp” function, settled as: 

•  “type”: we considered the “Z.tau” type; 

• “model”: we can chose between “constant” and “trend”, in order to include the 

deterministic component of the test regression (that is, test the cases whether there is a 

trend or not). We only considered the constant model, as we saw in the ADF test that 

the trend model may not be the best; 

• “lags”: reveals the number of lags considered for the error term correction. We 

performed both “short” and “long” lags. 

 
Table 4.3- Phillips-Perron Test applied to Russell 2000 stock prices 

Type Model Lags 
Significance levels Value of the 

test-statistic 10pct 5pct 1pct 

Z-tau Constant 
Short 

-2.567667 -2.86318 -3.435868 
-1.7807 

Long -1.8036 

 
Table 4.4- Phillips-Perron Test applied to Russell 1000 stock prices 

Type Model Lags 
Significance levels Value of the 

test-statistic 10pct 5pct 1pct 

Z-tau Constant 
Short 

-2.567668 -2.863181 -3.435869 
-0.6498 

Long -0.6735 

 

The value of the test-statistics of the Russell 2000 (-1.7807 and -1.8036) and Russell 1000 

(-0.6498 and -0.6735) are higher than the critical values to both short and long lags. This 

implies the non-rejection of the null hypothesis and confirms the presence of a unit root in both 

indexes.  

 

Regarding the KPSS, the function used in R to run this stationary test was the “ur.kpss”: 
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• “type”: is related to the deterministic part of the series, being considered “mu” when 

the deterministic part is constant, and “tau” when is constant with a linear trend; 

•  “lags”:  corresponds to the maximum number of lags used for the correction of the 

error term. This can be obtained by �4 ∗ (𝑛/100)À  or �12 ∗ (𝑛/100)À , depending on if 

we choose "short" or “long”. On contrary, if the option "nil" is used, the error term is 

not corrected.  

 
Table 4.5- Kwiatkowski-Phillips-Schmidt-Shin Test applied to Russell 2000 stock prices 

Type Lags 
Significance levels Value of the test-statistic 

10pct 5pct 2.5pct 1pct  

Tau 

Short 

0.119 0.146 0.176 0.216 

1.1328 

Long 0.4031 

Nil 9.9047 

Mu 

Short 

0.347 0.463 0.574 0.739 

25.1489 

Long 8.4977 

Nil 224.8546 

 

Table 4.6- Kwiatkowski-Phillips-Schmidt-Shin Test applied to Russell 1000 stock prices 

Type Lags 
Significance levels 

Value of the test-statistic 
10pct 5pct 2.5pct 1pct 

Tau 

Short 

0.119 0.146 0.176 0.216 

0.6853 

Long 0.2563 

Nil 5.8589 

Mu 

Short 

0.347 0.463 0.574 0.739 

27.2502 

Long 9.1938 

Nil 243.7732 

 

As we can observe, the value of the test-statistic is higher than the critical values obtained 

for the four different significance levels (and to the different types and lags). Therefore, we 

reject the null hypotheses and the series is non-stationary. 
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4.1.3 Autocorrelation and Partial Autocorrelation Functions 

 
As we said previously, the behaviour of a random walk series is also reflected in its ACF and 

PACF. If we plot these two functions for both Russell 2000 and Russell 1000 we can confirm 

this lack of stationarity. According to Figure 4.2 and Figure 4.3, both indexes show an ACF 

with slow decay to zero and, therefore, a high degree of persistence in autocorrelation lags is 

confirmed. This leads us to confirm the previous results and conclude that the data has non-

stationary behaviour. 

 

 

 

 

 

 

 

 

 

 

So, the results obtained in these two sub-sections, reinforce that we have an integrated 

series and therefore our data is better described by the ARIMA conditional mean model. 

 

4.2  Stock Index Returns 

 
As we said previously, we need to face the non-stationarity identified through the unit root 

tests. To do this, we consider the continuously compounded returns (𝑟%) for the indexes Russell 

2000 and Russell 1000:  

𝑟% = ln(𝑃%) − ln(𝑃%*)) = ln ¼
𝑃%
𝑃%*)

½ (4.1) 

 

Where 𝑃% are the prices of the indexes at time 𝑡 (𝑡 = 0,… , 𝑡 = 2539). 

 

 

 

 

Figure 4.2- Autocorrelation and Partial 
Autocorrelation Functions of the Russell 2000 Stock 

Prices 

Figure 4.3- Autocorrelation and Partial 
Autocorrelation Functions of the Russell 1000 

Stock Prices 
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As we can see in Figure 4.4 and Figure 4.5, after considering the continuously compounded 

returns, the series does not show a stochastic trend anymore and it is clearly observable the 

existence of the stylized fact volatility clustering. If we look more carefully to the graphs we 

can see that the index that represents the small capitalization firms oscillates more than the one 

from large firms. This means that in periods of higher volatility, the small firms show an 

increased response, relatively to higher firms. By the plot of squared and absolute returns we 

can confirm the persistence, revealed by the existence of clusters:  

 

 

 

 

 

 

 

 

 
Table 4.7- Stock returns descriptive statistics 

 Minimum 25th Quartile Median Mean 75th Quartile Maximum 

Russell 2000 -0.15399 -0.00562 0.00094 0.00035 0.00747 0.08976 

Russell 1000 -0.13010 -0.00341 0.00066 0.00046 0.00524 0.09041 

 

Table 4.7 contains the descriptive statistic of the continuously compounded returns, where we 

can confirm that the mean is now around zero.  

 

Figure 4.6- Squared and Absolute Daily 
Returns of Russell 2000 

Figure 4.7- Squared and Absolute Daily 
Returns of Russell 1000 

Figure 4.4- Russell 2000 Continuously Compounded 
Returns 

Figure 4.5- Russell 1000 Continuously Compounded 
Returns 
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Figure 4.11- Russell 1000 Stock Returns 
Histogram with the normal distribution 

4.2.1 Normality 

 
By the analysis of the QQ plots, we see that the dots clearly distanced themselves from the line, 

indicating that none of the indexes is normally distributed. In regards to the histograms, we see 

there is a slight deviation from normality but the graphs are not very clear.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To clarify, we present some tests to confirm the lack of normality in Table 4.8: 
Table 4.8- Normality Tests applied to Stock Returns 

 Russell 2000 Russell 1000 

Jarque-Bera Test   

𝜒, 19763 35933 

p-value < 2.2e-16 < 2.2e-16 

Kolmogorov-Smirnov Test   

w 0.088581 0.11805 

p-value < 2.2e-16 < 2.2e-16 

Skewness Coefficient -1.037408 -0.9855515 

Kurtosis Coefficient 16.51229 21.32764 

Figure 4.8- Russell 2000 Stock 
Returns QQ plot 

Figure 4.9- Russell 1000 Stock 
Returns QQ plot 

Figure 4.10- Russell 2000 Stock Returns 
Histogram with the normal distribution 
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By relying on the Jarque-Bera and Kolmogorov-Smirnov tests, we conclude that the data is not 

normally distributed, as the p-value is lower than the significance level 0.05 to all three tests. 

We do not present results for the Shapiro-Wilk’s test because it is not very relevant in our study 

as it most appropriate to small samples. Regarding the skewness and kurtosis coefficients, the 

data is considered normal if these coefficients equal zero and three, respectively. In our data, 

the coefficient of skewness is negative for both indexes, revealing that the data is negatively 

skewed, or skewed to the left. In terms of the coefficient of kurtosis, as the value of the 

coefficient is higher than 3 to both small and large firms, the data is leptokurtic or, by other 

words, fat tailed, meaning that it has more observations in the tails. Contrary to Chelley-Steeley 

& Steeley (1996), the small firms present less leptokurtosis than large firms. 

 

4.2.2 Unit Root Tests 

 
As we can see in ADF test (Annex A and Annex B), PP test (Annex C and Annex D), and 

KPSS test (Annex E and Annex F) the evidence points to the absence of a unit root and 

therefore differencing the series solved the non-stationary problem. 

 

4.3 Conditional Mean Model 

 
4.3.1 Box-Jenkins Methodology 

 
To help us determine the estimates for the parameters of the conditional mean model, we will 

consider the Box-Jenkins methodology. This method is constituted by three different phases: 

identification, estimation, and the diagnostic of the residuals. In the first phase, the aim is to 

identify the most adequate process to fit our data (that is, find the values for the orders for the 

ARIMA process).According to Anderson (1977), the order of q and p are obtained by analyzing 

the ACF and PACF, respectively, for the first k lags (where k corresponds to the minimum 

between 20 and n/4). The second and third steps consist of estimating the coefficients of the 

process and doing a diagnostic of the residuals to confirm that they are white noise, respectively 

(Enders, 2015). Both of these functions aim to evaluate the relationship between two 

observations with the difference that, in the ACF, we consider the effect of the lags (Hyndman 

& Athanasopoulos, 2018). 
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As we can see in Figure 4.12 and Figure 4.13, the estimates for the coefficients do not converge 

to zero at any lag, being difficult to conclude about the optimal order of the process through 

the analysis of these graphs: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So, in order to find the best orders, we followed the same line of thought of Maganlal 

(2019) and estimated the model until the orders p=3 and q=3, considering d=0, as we know a 

piori that our process is better characterized by an ARMA, since we already computed the 

continuously compounded returns. 

 

Figure 4.12- Autocorrelation and Partial Autocorrelation Functions of the 
Russell 2000 Stock Returns 

Figure 4.13- Autocorrelation and Partial Autocorrelation Functions of the 
Russell 1000 Stock Returns 
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Table 4.9- Information Criteria of ARMA (p,0,q) Models 

 Russell 2000 Russell 1000 

Orders (p, d, q) AIC BIC AIC BIC 

(0,0,0) -14 379.88 -14 368.2 -15 649.88 -15 638.2 

(0,0,1) -14 413.9 -14 396.38 -15 698.58 -15 681.06 

(0,0,2) -14 447.25 -14 423.89 -15 727.9 -15 704.54 

(0,0,3) -14 456.48 -14 427.29 -15 731.54 -15 702.35 

(1,0,0) -14 422.12 -14 404.6 -15 708.77 -15 691.26 

(1,0,1) -14 442.91 -14 419.55 -15 721.96 -15 698.61 

(1,0,2) -14 453.84 -14 424.64 -15 729.25 -15 700.06 

(1,0,3) -14 454.49 -14 419.46 -15 734.07 -15 699.04 

(2,0,0) -14 452 -14 428.64 -15 728.93 -15 705.58 

(2,0,1) -14 451.43 -14 422.23 -15 726.97 -15 697.78 

(2,0,2) -14 492.18 -14 457.15 -15 792.68 -15 757.65 

(2,0,3) -14 491.16 -14 450.29 -15 733.93 -15 693.06 

(3,0,0) -14 452.85 -14 423.65 -15 727.05 -15 697.86 

(3,0,1) -14 454.48 -14 419.44 -15 729.6 -15 694.56 

(3,0,2) -14 454.11 -14 413.23 -15 736.1 -15 695.23 

(3,0,3) -14 453.47 -14 406.76 -15 734.66 -15 687.95 

Note: the highlighted results correspond to the lowest information criteria values. 
 

Based on both information criteria, the best process to define both indexes is an ARMA with 

autoregressive order equal to 2 and moving average order equal to 2, that is, an ARIMA (2,0,2). 

 

4.3.2 Autocorrelation tests 

 
As we said formerly, we need to do a diagnostic of the residuals and check if they are generated 

by a white noise process and, therefore, conclude if it is in accordance with the Efficient Market 

Hypothesis. To check if the residuals are autocorrelated we consider the Box-Pierce and Ljung-

Box portmanteau tests, obtained by performing the function “box.test”. According with the 

documentation of the test, the number of lags should be higher than “fitdf”, which corresponds 

to the sum of the autoregressive and moving average orders of the ARIMA process. Hyndman 

& Athanasopoulos (2018) suggests that we should consider 10 lags or, if that is too large, one 

fifth of the number of observations in our series. So, based on this, we considered ten lag. 
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Table 4.10- Box-Pierce and Ljung-Box Tests applied to the residuals 

 Russell 2000 Russell 1000 

Box-Pierce Test 

𝜒, 

p-value 

 

14.873 

 

21.254 

0.02127 0.001651 

Ljung-Box Test  

𝜒, 

p-value 

 

14.924 

0.02086 

 

21.32 

0.001607 

 

As the p-value is lower than the significance level 5%, we should reject the null hypothesis 

and conclude that there is some autocorrelation and, therefore, the process was not generated 

by a white noise process. Contrary to some studies already presented in the literature review, 

the index constituted by large firms seems to present more autocorrelation than the index of 

small firms. 

If we plot the ACF of residuals and square residuals, we observe some interesting 

properties. By the ACF of the residuals, represented by Figure 4.14 and Figure 4.15, we can 

confirm that the residuals are not autocorrelated, as some of the autocorrelation values are 

outside the significance level. This conclusion is contrary to what we were expecting but, in 

some cases, we cannot eliminate 100% of the autocorrelation. 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.14- ACF Applied to the Residuals of 
the Russell 2000 ARMA Model 

Figure 4.15- ACF Applied to the Residuals of 
the Russell 1000 ARMA Model 
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By the ACF of the squared residuals (Figure 4.16 and Figure 4.17), we see that, by its slow 

decay to zero, the residuals are not linearly independent and therefore, the ergodicity property 

is not confirmed. This suggests the existence of conditional heteroscedasticity: 

 

 

 

 

 

 

 

 

 

 

 

Regarding normality, we can see by the histograms (Figure 4.18 and Figure 4.19) and by 

the tests on Annex G, that the residuals are slightly skewed and, therefore, do not follow a 

normal distribution: 

 

 

 

 

 

 

 

 

 

4.3.3 Conditional Heteroskedasticity 

 
What will dictate whether it is necessary or not to use the conditional heteroskedastic models 

is the existence of conditional heteroscedasticity. Although we are practically certain that the 

data display this ARCH effect, as the conditional mean model does not deal with this problem, 

it is crucial to perform some tests to check it. To do this, we used the function “arch.test” from 

the “aTSA” package, and applied it to the residuals of the ARIMA(2,0,2) model: 

 

Figure 4.18- Russell 2000 Residuals 
Histogram Figure 4.19- Russell 1000 Residuals 

Histogram 

Figure 4.16- ACF of the Russell 
2000 Squared Residuals 

Figure 4.17- ACF of the Russell 
1000 Squared Residuals 
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Table 4.11- Lagrange Multiplier Test 

Order 
Russell 2000 Russell 1000 

LM p-value LM p-value 

4 1094 0 1143 0 

8 534 0 523 0 

12 349 0 329 0 

16 251 0 239 0 

20 190 0 189 0 

24 153 0 155 0 

 

Based on the Lagrange Multiplier test, as the p-value is lower than the significance level 5%, 

we should reject the null hypothesis and affirm that there exists conditional heteroscedasticity 

or ARCH effect. 

 
Table 4.12- Ljung-Box Tests applied to the squared residuals 

 Russell 2000 Russell 1000 

Ljung-Box Test  

𝜒, 

p-value 

 

1844 

< 2.2e-16 

 

2477.4 

< 2.2e-16 

 

According to the Ljung-Box test applied the square of residuals, as the p-value is lower than 

the significance level 5%, we should reject the null hypotheses, confirming the result obtained 

through the Lagrange Multiplier test. Therefore, we should proceed with the estimation of the 

conditional variance models. 
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4.4 Univariate Conditional Variance Models 

 
4.4.1 In-sample analysis 

 

To estimate the conditional variance models we used the “ugarchspec”, “ugarchfit” and 

“ugarchforecast” functions of the rugarch package. The "ugarchspec" allows to specify the 

model we want to estimate by choosing the ARMA model, conditional variance model, and 

type of distribution. The model distribution is specified in the "distribution.model" part and, 

within the different distributions we can choose, we opted to estimate the models for the normal 

distribution, student-t distribution, and GED distribution. Concerning the models themselves, 

they are defined in the "model" part and, in line with what we defined in the methodology 

section, we will consider: “sGARCH”, “eGARCH”, “gjrGARCH”, “apARCH” and, within the 

group “fGARCH”, the “TGARCH”. The “ugarchfit” is used to fit the model and we only 

defined the "spec" (where we selected the model specified before), and the "data" where we 

considered the in-sample period. In the “solver” option, we chose the “hybrid” since it is the 

safest choice. By using this type of solver, we avoid having to define additional characteristics, 

such as the "solver.control" and "fit.control", decreasing the probability of error in the 

estimation of the models. In short, the hybrid solver starts by estimating the model by the 

“solnp” solver and re-estimates it (using the “nlminb”, “gosolnp”, and “nloptr” options) until 

the one that best matches the model is found, ignoring the cases where convergence problems 

occur (Lin, 2019). Lastly, we used the “ugarchforecast” to make the out-of-sample forecasts. 

 

Regarding the orders of the models, we took into account the Bollerslev, Chou, & Kroner 

(1992) article, and chose 𝑝 = 𝑞 = 1, as they claim that it might be sufficient to obtain a good 

estimation: 
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Table 4.13- GARCH (1,1) model estimates (the results in brackets represent the p-values) 

 Normal Distribution Student-t Distribution GED Distribution 

 
Russell 

2000 

Russell 

1000 

Russell 

2000 

Russell 

1000 

Russell 

2000 

Russell 

1000 

Conditional Mean Estimates     

mu 
0.000647 

(0.002897) 

0.000697 

(0.00000) 

0.000819 

(0.00000) 

0.000697 

(0.00000) 

0.000852 

(0.000000) 

0.000750 

(0.000000) 

ar1 
-0.468338 

(0.000000) 

0.491746 

(0.00000) 

-0.012534 

(0.80126) 

0.491746 

(0.00000) 

0.000085 

(0.998619) 

0.531469 

(0.000000) 

ar2 
-0.912683 

(0.000000) 

0.436425 

(0.00000) 

0.866683 

(0.00000) 

0.436425 

(0.00000) 

0.862393 

(0.000000) 

0.372548 

(0.000000) 

ma1 
0.446344 

(0.000000) 

-0.543935 

(0.00000) 

-0.029588 

(0.49942) 

-0.543935 

(0.00000) 

-0.042562 

(0.273051) 

-0.599911 

(0.000000) 

ma2 
- 0.902555 

(0.000000) 

-0.419057 

(0.00000) 

-0.880137 

(0.00000) 

-0.419057 

(0.00000) 

- 0.873460 

(0.000000) 

-0.341742 

(0.000000) 

Conditional Variance Estimates     

omega 
0.000006 

(0.000000) 

0.000004 

(0.009728) 

0.000004 

(0.15709) 

0.000004 

(0.009728) 

0.000005 

(0.559399) 

0.000003 

(0.10485) 

alpha1 
0.105757 

(0.000000) 

0.158538 

(0.000000) 

0.083293 

(0.000001) 

0.158538 

(0.00000) 

0.095479 

(0.000000) 

0.157612 

(0.000000) 

beta1 
0.849722 

(0.000000) 

0.797203 

(0.00000) 

0.890518 

(0.00000) 

0.797203 

(0.00000) 

0.868746 

(0.000000) 

0.812429 

(0.000000) 

shape - - 
8.384303 

(0.00000) 
- 

1.486666 

(0.000000) 

1.207678 

(0.000000) 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 
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The outputs corresponding to the conditional mean model are given by "mu", "ar1", “ar2”, 

“ma1” and "ma2", which report the intercept, autoregressive, and moving average components. 

Regarding the conditional variance models, the "omega" corresponds to the constant/intercept, 

while the "alpha1" and "beta" are ARCH and GARCH terms, respectively. In addition to these, 

we have the “shape”, which reports the number of degrees of freedom. 

As we can see in Table 4.13, almost all the significance tests present p-value lower than 

5% being, therefore, all the estimates for the coefficients statistically significant except the 

first-order autoregressive, first-order moving average for the Russell 2000 under student-t and 

GED distributions, and the omega coefficient to the Russell 2000 under student-t distribution, 

and both indexes with GED distributions. This is not problematic since the main focus of our 

study is on the conditional variance part. Regarding the omega, we do not see this as an obstacle 

to the study because, if the omega is equal to zero and meet the requirements to 𝜀% be covariance 

stationary as we have seen it should be (that is, the sum of alpha1 and beta1 is less than one), 

the conditional variance of the model will tend to decrease, which is not what we aspire (Lin, 

2019). 

As we saw in methodology, there are some properties of the GARCH model that we have 

to confirm if they are observed. The first one is related to the nonnegativity of the coefficients 

and, as we can see, as the estimates for the parameter alpha1 and beta1 always show positive 

values, so this condition is satisfied and the model is valid. The second has to do with the sum 

of alpha and beta and, as this result in a value below 1, the 𝜀% is covariance stationary. 

The estimates of alpha1 report the short-run persistence of shows on conditional volatility, 

while the beta1 reports the long-run persistence. Based on these, we can see that in the index 

constituted by small firms the value of alpha1 is lower and the value of beta1 is higher. This 

means that a shock has a greater immediate impact on large companies but that, in a longer 

time horizon, it affects more the small companies. 
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Table 4.14- EGARCH (1,1) model estimates (the results in brackets represent the p-values) 

 Normal Distribution Student-t Distribution GED Distribution 

 
Russell 

2000 

Russell 

1000 

Russell 

2000 

Russell 

1000 

Russell 

2000 

Russell 

1000 

Conditional Mean Estimates     

mu 
0.000288 

(0.140513) 

0.000427 

(0.002679) 

0.000506 

(0.010477) 

0.000586 

(0.000000) 

0.000561 

(0.005461) 

0.000561 

(0.000000) 

ar1 
-0.980976 

(0.000000) 

-0.148191 

(0.170760) 

0.214451 

(0.014113) 

0.358546 

(0.000000) 

-1.091724 

(0.000000) 

0.177616 

(0.002461) 

ar2 
-0.052596 

(0.000398) 

0.516892 

(0.000000) 

-0.599847 

(0.000000) 

0.285929 

(0.000000) 

-0.151901 

(0.000000) 

0.570781 

(0.000000) 

ma1 
0.942345 

(0.000000) 

0.095361 

(0.356905) 

0.172277 

(0.044765) 

-0.411449 

(0.000000) 

1.039518 

(0.000000) 

-0.229735 

(0.000172) 

ma2 
0.025895 

(0.000000) 

-0.528563 

(0.000000) 

0.614169 

(0.000000) 

-0.262739 

(0.000000) 

0.111314 

(0.000012) 

-0.546872 

(0.000000) 

Conditional Variance Estimates     

omega 
-0.278672 

(0.000000) 

-0.548892 

(0.000000) 

-0.223436 

(0.000000) 

-0.466002 

(0.000000) 

-0.245985 

(0.000000) 

-0.522222 

(0.000049) 

alpha1 
-0.126142 

(0.000000) 

-0.179854 

(0.000000) 

-0.132613 

(0.000000) 

-0.212433 

(0.000000) 

-0.125579 

(0.000000) 

-0.200088 

(0.000000) 

beta1 
0.969012 

(0.000000) 

0.942808 

(0.000000) 

0.975735 

(0.000000) 

0.952734 

(0.000000) 

0.973307 

(0.000000) 

0.947054 

(0.000000) 

gamma1 
0.113938 

(0.000000) 

0.197039 

(0.000000) 

0.112804 

(0.000000) 

0.193906 

(0.000000) 

0.112462 

(0.000000) 

0.200485 

(0.000002) 

shape - - 
9.987331 

(0.000001) 

5.505072 

(0.000000) 

1.560709 

(0.000000) 

1.263061 

(0.000000) 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 
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In the EGARCH model, we do not anticipate any problems in terms of the significance of the 

coefficients. The conditional variance estimates are all statistically significant unlike some 

conditional mean coefficients, where this changes slightly. This only happens with the normal 

distribution where the intercept estimate is insignificant for the Russell 2000 and, for the 

Russell 1000, the insignificant coefficients are the first-order autoregressive and first-order 

moving average. This is not problematic since removing it would not affect the overall 

accuracy of the results. Under the student-t and GED distributions, all the estimates are 

statistically significant. 

As we can see in Table 4.14, the estimate for the parameter alpha1 assumes negative values, 

which confirms the existence of the leverage effect, and based on this coefficient, it seems that 

larger firms are more affected by the arrival of bad news. The additional coefficient gamma1 

is a specific coefficient of this model, which represents the asymmetry component of the series 

and confirms the existence of the leverage effect by its nonnegativity. 

The results of beta1 meet the same conclusion of the GARCH model: shocks to small firms 

are more persistent than to large firms.  

The alpha1 results are quite surprising so we verified if they have any validity by checking 

if the difference of the estimates is statistically significant with the following procedure:  

−2 <
𝛼¹ÄÅÆÆÇÈÈ	,GGG−𝛼¹ÄÅÆÆÇÈÈ	)GGG

�(𝜎ÄÅÆÆÇÈÈ	,GGG), + (𝜎ÄÅÆÆÇÈÈ	)GGG),
> 2 

 

(4.2) 

As the values are all above 2, the difference is statistically significant and the results given by 

alpha1 are reliable. 
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Table 4.15- GJR-GARCH (1,1) model estimates (the results in brackets represent the p-values) 

 Normal Distribution Student-t Distribution GED Distribution 

 
Russell 

2000 

Russell 

1000 

Russell 

2000 

Russell 

1000 

Russell 

2000 

Russell 

1000 

Conditional Mean Estimates     

mu 
0.000391 

(0.058465) 

0.000476 

(0.000004) 

0.000622 

(0.001376) 

0.000675 

(0.000000) 

0.000572 

(0.006401) 

0.000623 

(0.000000) 

ar1 
-0.248721 

(0.357339) 

0.212278 

(0.000000) 

-0.220820 

(0.334866) 

0.386037 

(0.000000) 

-0.109418 

(0.435313) 

0.246980 

(0.000000) 

ar2 
0.635211 

(0.003855) 

0.742587 

(0.000000) 

0.668730 

(0.000744) 

0.525178 

(0.000000) 

-0.596839 

(0.000000) 

0.658794 

(0.000000) 

ma1 
0.212171 

(0.423028) 

-0.247063 

(0.000000) 

0.180176 

(0.419134) 

-0.435422 

(0.000000) 

0.068594 

(0.614770) 

-0.298505 

(0.000000) 

ma2 
-0.649303 

(0.001815) 

-0.724282 

(0.000000) 

-0.684677 

(0.000253) 

-0.503287 

(0.000000) 

0.620751 

(0.000000) 

-0.634562 

(0.000000) 

Conditional Variance Estimates     

omega 
0.000005 

(0.00000) 

0.000004 

(0.000000) 

0.000004 

(0.000000) 

0.000003 

(0.000000) 

0.000005 

(0.000000) 

0.000004 

(0.000000) 

alpha1 
0.005482 

(0.347708) 

0.007907 

(0.178516) 

0.000000 

(0.999999) 

0.000000 

(1.000000) 

0.000000 

(0.999992) 

0.000000 

(1.000000) 

beta1 
0.876664 

(0.00000) 

0.811451 

(0.000000) 

0.887942 

(0.000000) 

0.803632 

(0.000000) 

0.879190 

(0.000000) 

0.806809 

(0.000000) 

gamma1 
0.148273 

(0.00000) 

0.250010 

(0.000000) 

0.151543 

(0. 00000) 

0.315522 

(0.000000) 

0.160613 

(0.000000) 

0.289259 

(0.000000) 

shape - - 
9.459432 

(0.000000) 

5.216912 

(0.000000) 

1.555863 

(0.000001) 

1.244586 

(0.000000) 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 
 

In GJR-GARCH (1,1) model, the results are not so easy to interpret. In the case of the Russell 

2000, some conditional mean estimates that are insignificant: the intercept, the first-order 

autoregressive coefficient, and the first-order moving average coefficient, under the normal 

distribution, and the first-order autoregressive and moving average coefficients, under the 
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student-t and GED distributions. Regarding the conditional variance estimates, both the Russell 

2000 and Russell 1000 have alpha1 as the only insignificant estimate. 

The sum alpha1 and beta1 give values below 1 as desired. The beta1 estimates are higher 

to the Russell 2000, leading us to conclude that the shocks are more persistent to smaller firms, 

as already concluded by previous estimations. The gamma1 assumes positive values, leading 

to the confirmation of the leverage effect, which is in line with the EGARCH model results. 

As gamma1 is higher to the index that represents large firms, this model suggests that bigger 

firms tend to suffer more with bad news than smaller firms. 

 
Table 4.16- APARCH (1,1) model estimates (the results in brackets represent the p-values) 

 Normal Distribution Student-t Distribution GED Distribution 

 
Russell 

2000 

Russell 

1000 

Russell 

2000 

Russell 

1000 

Russell 

2000 

Russell 

1000 

Conditional Mean Estimates     

mu 
0.000327 

(0.142210) 

0.000754 

(0.00000) 

0.000750 

(0.000000) 

0.000494 

(0.000008) 

0.000717 

(0.000000) 

0.000578 

(0.00000) 

ar1 
-0.461466 

(0.000000) 

0.168755 

(0.00000) 

-0.003055 

(0.696957) 

-1.941397 

(0.00000) 

0.284064 

(0.000000) 

0.173506 

(0.00000) 

ar2 
-0.914098 

(0.00000) 

0.833437 

(0.00000) 

0.897745 

(0.000000) 

-0.942821 

(0.00000) 

0.625097 

(0.000000) 

0.701100 

(0.00000) 

ma1 
0.437494 

(0.000000) 

-0.193381 

(0.00000) 

-0.030418 

(0.000369) 

1.924727 

(0.00000) 

-0.332999 

(0.000000) 

-0.219482 

(0.00000) 

ma2 
0.904223 

(0.00000) 

-0.809005 

(0.00000) 

-0.901743 

(0.000000) 

0.925809 

(0.00000) 

-0.608938 

(0.000000) 

-0.679856 

(0.00000) 

Conditional Variance Estimates     

omega 
0.000000 

(0.920537) 

0.000000 

(0.945287) 

0.000000 

(0.852477) 

0.000301 

(0.043904) 

0.000000 

(0.891706) 

0.000153 

(0.274256) 

alpha1 
0.040227 

(0.380881) 

0.054776 

(0.00004) 

0.052254 

(0.147586) 

0.130785 

(0.00000) 

0.049627 

(0.020137) 

0.122870 

(0.00000) 

beta1 
0.899470 

(0.00000) 

0.793466 

(0.00000) 

0.872788 

(0.000000) 

0.854776 

(0.00000) 

0.880203 

(0.000000) 

0.837823 

(0.00000) 

eta11 
0.359249 

(0.059534) 

0.607892 

(0.00000) 

0.373325 

(0.000337) 

1.000000 

(0.00000) 

0.263108 

(0.000616) 

0.895991 

(0.00001) 
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lambda 
2.773365 

(0.00000) 

2.909401 

(0.00000) 

2.624991 

(0.000000) 

1.050871 

(0.00000) 

2.821246 

(0.000000) 

1.225206 

(0.00000) 

shape - - 
8.811127 

(0.000000) 

5.453903 

(0.00000) 

1.503147 

(0.000000) 

1.249678 

(0.00000) 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 

 

Regarding the APARCH (1,1) estimates, the Russell 1000 has all estimates statistically 

significant under the student-t distribution and, under normal distribution and GED 

distribution, only has insignificant omega. In terms of the Russell 2000, we will analyze one 

distribution at a time. Under the normal distribution, the conditional mean estimates for the 

intercept, omega, alpha1, and eta11 are not statistically significant. Under student-t the first-

order autoregressive coefficient, omega, and alpha1 are insignificant. Finally, under GED 

distribution, only the omega fails at being statistically significant. 

As in the models presented before, the persistence in volatility is measured by the sum of 

alpha1 and beta1. In accordance with previous results, the alpha1 presents lower values to the 

Russell 2000, indicating that the small firms have less short-term persistence. By contrary, the 

beta1 suggests longer term persistence to the small firms. This is in line with the previous 

models. 

In the APARCH model the asymmetry coefficient is given by eta11, and it assumes higher 

values to the Russell 1000 index, confirming the conclusions of the EGARCH and GJR-

GARCH model: the negative impact of news is confirmed and seems to be higher to larger 

firms. Regarding the power coefficient, represented by lambda, under the normal distribution, 

it is higher to the Russell 1000 under the normal distribution, while under the student-t and 

GED distributions it is higher to the Russell 2000. In these last two cases, the small firms seem 

to assume higher volatility. 
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Table 4.17- TGARCH (1,1) model estimates (the results in brackets represent the p-values) 

 Normal Distribution Student-t Distribution GED Distribution 

 
Russell 

2000 

Russell 

1000 

Russell 

2000 

Russell 

1000 

Russell 

2000 

Russell 

1000 

Conditional Mean Estimates     

mu 
0.000263 

(0.22252) 

0.007494 

(0.00000) 

0.000454 

(0.030285) 

0.001706 

(0.000000) 

0.000599 

(0.003453) 

0.00187 

(0.000000) 

ar1 
-1.959102 

(0.00000) 

1.353717 

(0.00000) 

0.292526 

(0.000000) 

0.917869 

(0.000000) 

-0.234454 

(0.000000) 

0.61092 

(0.000000) 

ar2 
-0.960310 

(0.00000) 

-0.353188 

(0.00000) 

-0.980054 

(0.000000) 

0.082494 

(0.000000) 

0.618467 

(0.000000) 

0.38956 

(0.000000) 

ma1 
1.945689 

(0.00000) 

-1.391022 

(0.00000) 

-0.292346 

(0.000000) 

-0.974553 

(0.000000) 

0.190578 

(0.000000) 

-0.67221 

(0.000000) 

ma2 
0.946361 

(0.00000) 

0.403717 

(0.00000) 

0.994523 

(0.082187) 

0.024567 

(0.000000) 

-0.630666 

(0.000000) 

-0.32602 

(0.000000) 

Conditional Variance Estimates     

omega 
0.000472 

(0.00000) 

0.000345 

(0.00000) 

0.000391 

(0.000000) 

0.000372 

(0.000000) 

0.000410 

(0.000078) 

0.00041 

(0.000000) 

alpha1 
0.081067 

(0.00000) 

0.117793 

(0.00000) 

0.080901 

(0.00000) 

0.125563 

(0.000000) 

0.078975 

(0.000000) 

0.12151 

(0.000000) 

beta1 
0.895713 

(0.00000) 

0.871132 

(0.00000) 

0.902553 

(0.00000) 

0.860403 

(0.000000) 

0.901045 

(0.000000) 

0.85717 

(0.000000) 

eta11 
0.956151 

(0.00000) 

1.000000 

(0.00000) 

1.000000 

(0.00000) 

1.000000 

(0.000000) 

0.908135 

(0.000000) 

1.000000 

(0.000000) 

shape - - 
9.809112 

(0.000000) 

5.552442 

(0.000000) 

1.562198 

(0.000001) 

1.25817 

(0.000000) 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 
 

Lastly, we have the TGARCH (1,1) model. Regarding the significance of the estimates, this is 

one of the models with less problems of significance. The Russell 1000 has all estimates 

statistically significant, while in the Russell 2000 the conditional mean intercept is insignificant 

under the normal and student-t distributions, and the second-order moving average coefficient 

is insignificant under the student-t distribution. The results are in line with the previous models.  
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Table 4.18- Sign Bias test 

 Model distribution Model p-value 

Russell 2000 

Normal Distribution 

GARCH (1,1) 0.0002217 

EGARCH (1,1) 0.06763 

GJR-GARCH (1,1) 0.005673 

APARCH (1,1) 0.004072 

TGARCH (1,1) 0.11403 

Student-t Distribution 

GARCH (1,1) 0.0001434 

EGARCH (1,1) 0.0495 

GJR-GARCH (1,1) 0.009114 

APARCH (1,1) 0.001946 

TGARCH (1,1) 0.1434 

GED 

GARCH (1,1) 0.0002409 

EGARCH (1,1) 0.06672 

GJR-GARCH (1,1) 0.005729 

APARCH (1,1) 0.001937 

TGARCH (1,1) 0.05942 

Russell 1000 

Normal Distribution 

GARCH (1,1) 0.0004227 

EGARCH (1,1) 0.1524 

GJR-GARCH (1,1) 0.003306 

APARCH (1,1) 0.004515 

TGARCH (1,1) 0.06805 

Student-t Distribution 

GARCH (1,1) 0.0004227 

EGARCH (1,1) 0.2125 

GJR-GARCH (1,1) 0.02862 

APARCH (1,1) 0.15939 

TGARCH (1,1) 0.13199 

GED 

GARCH (1,1) 0.0003412 

EGARCH (1,1) 0.1884 

GJR-GARCH (1,1) 0.03805 

APARCH (1,1) 0.003800 

TGARCH (1,1) 0.03280 

 

By analyzing the sign bias test in Table 4.18, we can see that in the GARCH model, the p-value 

is lower than the significance level, meaning the leverage effect was not considered in the 

estimation of the model. On contrary, in the asymmetric models, although this is not so obvious 
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in some of them, the leverage effect is already contemplated. As the p-value is above the 

significance level, the null hypothesis is not rejected, and the leverage effect was well captured 

by the models. 

Table 4.19- Information Criteria Measures 

   AIC BIC 

Russell 

2000 

Normal 

Distribution 

GARCH (1,1) -6.1951 -6.1728 

EGARCH (1,1) -6.2263 -6.2013 

GJR-GARCH (1,1) -6.2184 -6.1934 

APARCH (1,1) -6.2084 -6.1806 

TGARCH (1,1) -6.2291 -6.2040 

Student-t 

Distribution 

GARCH (1,1) -6.2169 -6.1919 

EGARCH (1,1) -6.2432 -6.2154 

GJR-GARCH (1,1) -6.2352 -6.2074 

APARCH (1,1) -6.2287 -6.1981 

TGARCH (1,1) -6.2457 -6.2178 

GED 

GARCH (1,1) -6.2173 -6.1922 

EGARCH (1,1) -6.2406 -6.2127 

GJR-GARCH (1,1) -6.2336 -6.2058 

APARCH (1,1) -6.2254 -6.1947 

TGARCH (1,1) -6.2394 -6.2115 

Russell 

1000 

Normal 

Distribution 

GARCH (1,1) -6.8409 -6.8186 

EGARCH (1,1) -6.8885 -6.8634 

GJR-GARCH (1,1) -6.8781 -6.8531 

APARCH (1,1) -6.8666 -6.8388 

TGARCH (1,1) -6.8886 -6.8636 

Student-t 

Distribution 

GARCH (1,1) -6.8409 -6.8186 

EGARCH (1,1) -6.9456 -6.9177 

GJR-GARCH (1,1) -6.9402 -6.9124 

APARCH (1,1) -6.9470 -6.9164 

TGARCH (1,1) -6.9525 -6.9247 

GED 

GARCH (1,1) -6.9103 -6.8853 

EGARCH (1,1) -6.9467 -6.9189 

GJR-GARCH (1,1) -6.9412 -6.9134 

APARCH (1,1) -6.9448 -6.9142 

TGARCH (1,1) -6.9501 -6.9223 

Note: the results highlighted in grey correspond to the lowest information criteria values. 
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Concerning the worst model, it ended up being the GARCH model, as we were already 

excepting, given its characteristics. Within the asymmetric models, we can conclude by the 

analysis of the information criteria that the best model to estimate the Russell 2000 and the 

Russell 1000 is the TGARCH (1,1) under the student-t distribution. 

 
Table 4.20- ARCH LM Tests applied to the Standardized Squared Residuals 

  Russell 2000 Russell 1000 

ARCH LM Test 

ARCH Lag [3] 0.2099 0.14059 

ARCH Lag [5] 0.3555 0.37458 

ARCH Lag [7] 0.5245 0.01174 

 

Based on the ARCH LM test applied to the squared residuals, as the p-value is higher than 

5%, we confirm there is no ARCH effect anymore. 

 
Table 4.21- Ljung-Box Test applied to the Standardized and Standardized Squared Residuals 

  Russell 2000 Russell 1000 

Ljung-Box Test 

(Standardized 

Residuals) 

Lag [1] 0.07858 0.5723 

Lag [11] 0.02340 0.9996 

Lag [19] 0.07269 0.5340 

Ljung-Box Test 

(Standardized Squared 

Residuals) 

Lag [1] 0.6059 0.88469 

Lag [5] 0.3765 0.73582 

Lag [9] 0.5256 0.09983 

 

The results of the Ljung-Box test applied to the standardized residuals point to the lack of 

autocorrelation of the residuals, as the p-value is higher than the significance level 5%, meaning 

that the models fit well the data and that there is no autocorrelation anymore, revealing the 

white noise behavior of the residuals (in terms of autocorrelation). Regarding the Ljung-Box 

test applied to the standardized squared residuals, the test result confirms the one obtained 

through the ARCH LM test in Table 4.20. 
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In Figure 4.20 we have the news impact curve, obtained through the function 

“newsimpact”. We can see that the greater the shock, the greater is the impact on volatility. In 

the worst case scenario (𝜀%*) = −0.3), the index of large companies reaches a higher level of 

volatility when compared to small companies. This is in line with the conclusion we took in 

the EGARCH model, GJR-GARCH model, APARCH model, and TGARCH model. 

 

 

 

 

 

 

 

 

 

 

 

 
 
4.4.2 Out-of-sample analysis 

 
To forecast the variance of our series, we will rely on the “ugarchforecast” function of the 

rugarch package. With this function, we can do a normal forecast or a rolling window forecast, 

by establishing the condition n.roll > 0. In our study we opted by a rolling window forecast and 

defined the function as follows: (1) in the “fitORspec” we considered the model specified in 

the in-sample analysis, (2) the forecast horizon was defined as n.ahead=1, and (3) the in-sample 

part of the sample as considered as the data. Regarding the size of the rolling window, we 

follow the procedure of Costa (2017) who, for a sample of 30 years of data, considered three 

rolling window sizes (500, 1000, and 2000), and the loss functions to see which produces the 

most desirable results. As our sample is one-third of the one of him, the length of the out-of-

sample part obviously needs to be much smaller. So, considering a similar proportion of him, 

we consider the rolling window sizes equal to 150, 250, and 500. 

 

 

 

Figure 4.20- News Impact Curve of the TGARCH (1,1) Model with Student-t 
Distribution 
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Table 4.22- Out-of-sample Loss Functions (rolling window size = 150) 

   MAE MSE RMSE MPE 

Russell 

2000 

Normal 

Distribution 

GARCH (1,1) 0.00974801 9.933115e-05 0.009966501 -7482.911 

EGARCH (1,1) 0.009569345 9.901964e-05 0.009950861 -7345.762 

GJR-GARCH (1,1) 0.009968744 0.0001079851 0.01039159 -7652.355 

APARCH (1,1) 0.009935126 0.000106549 0.01032226 -7626.548 

TGARCH (1,1) 0.009628144 0.0001002336 0.01001167 -7390.898 

Student-t 

Distribution 

GARCH (1,1) 0.00969853 9.856645e-05 0.009928064 -7444.929 

EGARCH (1,1) 0.009470779 9.81173e-05 0.009905417 -7270.099 

GJR-GARCH (1,1) 0.009963287 0.0001090672 0.01044353 -7648.166 

APARCH (1,1) 0.01002689 0.0001097942 0.01047827 -7696.99 

TGARCH (1,1) 0.009601962 0.0001004446 0.01002221 -7370.8 

GED 

Distribution 

GARCH (1,1) 0.00972828 9.928793e-05 0.009964333 -7467.766 

EGARCH (1,1) 0.009536755 9.881266e-05 0.009940456 -7320.745 

GJR-GARCH (1,1) 0.009925408 0.0001077877 0.01038209 -7619.088 

APARCH (1,1) 0.009966427 0.0001077205 0.01037885 -7650.576 

TGARCH (1,1) 0.009617487 0.0001001669 0.01000834 -7382.718 

Russell 

1000 

Normal 

Distribution 

GARCH (1,1) 0.008575753 8.63918e-05 0.009294719 -11546.59 

EGARCH (1,1) 0.008384099 8.6349e-05 0.009292416 -11288.54 

GJR-GARCH (1,1) 0.008803 9.883435e-05 0.009941547 -11852.56 

APARCH (1,1) 0.008759997 0.0001010622 0.01005297 -11794.66 

TGARCH (1,1) 0.008515273 9.150533e-05 0.009565842 -11465.16 

Student-t 

Distribution 

GARCH (1,1) 0.008575753 8.63918e-05 0.009294719 -11546.59 

EGARCH (1,1) 0.008594657 9.405119e-05 0.009697999 -11572.04 

GJR-GARCH (1,1) 0.009132695 0.0001117689 0.01057208 -12296.47 

APARCH (1,1) 0.008809985 9.903203e-05 0.009951484 -12307.2 

TGARCH (1,1) 0.008341287 8.940135e-05 0.009455229 -11230.9 

GED 

Distribution 

GARCH (1,1) 0.008638807 8.888032e-05 0.009427636 -11631.49 

EGARCH (1,1) 0.00845968 8.998204e-05 0.009485886 -11390.31 

GJR-GARCH (1,1) 0.008949544 0.0001058005 0.01028594 -12502.16 

APARCH (1,1) 0.008697265 9.614114e-05 0.009805159 -11710.19 

TGARCH (1,1) 0.008221612 8.565862e-05 0.009255194 -11069.77 

Note: the highlighted results correspond to the smallest loss function values. 
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Table 4.23- Out-of-sample Loss Functions (rolling window size = 250) 

   MAE MSE RMSE MPE 

Russell 

2000 

Normal 

Distribution 

GARCH (1,1) 0.009096771 8.624781e-05 0.00928697 -6982.997 

EGARCH (1,1) 0.008842096 8.470834e-05 0.009203713 -6787.5 

GJR-GARCH (1,1) 0.009238573 9.188248e-05 0.009585535 -7091.85 

APARCH (1,1) 0.009158076 8.981417e-05 0.009477034 -7030.058 

TGARCH (1,1) 0.008971994 8.680921e-05 0.009317146 -6887.215 

Student-t 

Distribution 

GARCH (1,1) 0.00898191 8.441644e-05 0.009187842 -6894.826 

EGARCH (1,1) 0.008712503 8.329084e-05 0.009126382 -6688.021 

GJR-GARCH (1,1) 0.009175791 9.17018e-05 0.009576106 -7043.656 

APARCH (1,1) 0.00926296 9.270876e-05 0.009628539 -7110.57 

TGARCH (1,1) 0.008892501 8.611928e-05 0.009280047 -6826.193 

GED 

Distribution 

GARCH (1,1) 0.009045924 8.561285e-05 0.009252721 -6943.966 

EGARCH (1,1) 0.008794183 8.422679e-05 0.009177515 -6750.721 

GJR-GARCH (1,1) 0.00917047 9.118469e-05 0.009549068 -7039.572 

APARCH (1,1) 0.00920791 9.104699e-05 0.009541855 -7068.312 

TGARCH (1,1) 0.008948853 8.661189e-05 0.009306551 -6869.451 

Russell 

1000 

Normal 

Distribution 

GARCH (1,1) 0.007315047 6.39782e-05 0.007998637 -9849.145 

EGARCH (1,1) 0.007097424 6.321803e-05 0.007950977 -9556.133 

GJR-GARCH (1,1) 0.007538531 7.261942e-05 0.008521703 -10150.05 

APARCH (1,1) 0.007518343 7.400673e-05 0.008602717 -10122.87 

TGARCH (1,1) 0.007045891 6.489713e-05 0.008055875 -9486.747 

Student-t 

Distribution 

GARCH (1,1) 0.007315047 6.39782e-05 0.007998637 -9849.145 

EGARCH (1,1) 0.007201841 6.782906e-05 0.00823584 -9696.722 

GJR-GARCH (1,1) 0.007698939 8.026059e-05 0.008958827 -10366.03 

APARCH (1,1) 0.007344141 7.115089e-05 0.008435099 -9888.319 

TGARCH (1,1) 0.00690591 6.337316e-05 0.007960726 -9298.274 

GED 

Distribution 

GARCH (1,1) 0.007281629 6.476662e-05 0.008047771 -9804.15 

EGARCH (1,1) 0.007123838 6.534296e-05 0.008083499 -9591.696 

GJR-GARCH (1,1) 0.007586069 7.649119e-05 0.008745924 -10214.05 

APARCH (1,1) 0.007329075 6.952797e-05 0.008338343 -9868.033 

TGARCH (1,1) 0.006859419 6.130593e-05 0.007829811 -9235.678 

Note: the highlighted results correspond to the smallest loss function values. 
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Table 4.24- Out-of-sample Loss Functions (rolling window size = 500) 

   MAE MSE RMSE MPE 

Russell 

2000 

Normal 

Distribution 

GARCH (1,1) 0.009362832 9.061018e-05 0.009518938 -7187.236 

EGARCH (1,1) 0.009187828 8.886905e-05 0.009427038 -7052.896 

GJR-GARCH (1,1) 0.009377556 9.23935e-05 0.009612154 -7198.538 

APARCH (1,1) 0.009411219 9.293506e-05 0.009640283 -7224.379 

TGARCH (1,1) 0.009195052 8.894421e-05 0.009431024 -7058.442 

Student-t 

Distribution 

GARCH (1,1) 0.009290694 8.93286e-05 0.009451381 -7131.86 

EGARCH (1,1) 0.009098004 8.779129e-05 0.0093697 -6983.944 

GJR-GARCH (1,1) 0.009338915 9.231679e-05 0.009608163 -7168.876 

APARCH (1,1) 0.00942651 9.382249e-05 0.009686201 -7236.117 

TGARCH (1,1) 0.009122751 8.803564e-05 0.009382731 -7002.941 

GED 

Distribution 

GARCH (1,1) 0.00931784 8.987794e-05 0.009480398 -7152.698 

EGARCH (1,1) 0.009154241 8.849423e-05 0.009407137 -7027.114 

GJR-GARCH (1,1) 0.009330517 9.191462e-05 0.009587211 -7162.429 

APARCH (1,1) 0.009395108 9.280195e-05 0.009633377 -7212.012 

TGARCH (1,1) 0.009203291 8.923079e-05 0.009446205 -7064.766 

Russell 

1000 

Normal 

Distribution 

GARCH (1,1) 0.006711045 5.156324e-05 0.007180755 -9035.903 

EGARCH (1,1) 0.006616419 5.166629e-05 0.007187927 -8908.497 

GJR-GARCH (1,1) 0.006837636 5.63506e-05 0.007506704 -9206.349 

APARCH (1,1) 0.006830005 5.741847e-05 0.007577498 -9196.073 

TGARCH (1,1) 0.006436601 5.042796e-05 0.007101264 -8666.386 

Student-t 

Distribution 

GARCH (1,1) 0.006711045 5.156324e-05 0.007180755 -9035.903 

EGARCH (1,1) 0.006702999 5.475009e-05 0.007399331 -9025.07 

GJR-GARCH (1,1) 0.006914903 6.062344e-05 0.007786106 -9310.383 

APARCH (1,1) 0.006670217 5.488928e-05 0.00740873 -8980.932 

TGARCH (1,1) 0.006296262 4.902417e-05 0.007001726 -8477.429 

GED 

Distribution 

GARCH (1,1) 0.006646178 5.149369e-05 0.00717591 -8948.565 

EGARCH (1,1) 0.006634776 5.302413e-05 0.007281767 -8933.213 

GJR-GARCH (1,1) 0.006834864 5.824316e-05 0.007631721 -9202.616 

APARCH (1,1) 0.006683731 5.421477e-05 0.007363068 -8999.127 

TGARCH (1,1) 0.00625536 4.767109e-05 0.006904426 -8422.358 

Note: the highlighted results correspond to the smallest loss function values. 
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In Tables 4.25, 4.26, and 4.27 we present the loss functions results obtained for the three rolling 

window sizes. Based on these tables we can see that the results were not very sensitive to the 

size of the rolling window, as the loss function point to the same conclusion in all three cases. 

Relying on MAE, MSE, and RMSE, the best model to fit both series are: (1) Russell 2000: 

EGARCH (1,1) under student-t distribution with rolling window size equal to 250, (2) Russell 

1000: TGARCH (1,1) under GED distribution with rolling window size equal to 500. On the 

other hand, if we consider the MPE, other models are preferred: (1) Russell 2000: APARCH 

(1,1) under student-t distribution, (2) Russell 1000: GJR-GARCH (1,1) under student-t 

distribution. We opted by considering the models chosen by the majority of the loss functions. 

As we can see in the figures displayed below, the unconditional variance of the Russell 2000 

shows a growing trend (Figure 4.21), while the rolling variance shows an high oscillation 

through time, with a tendency of decrease at the end of our forecast series (Figure 4.22): 

 

 

 

 

 

 

 

 

 

Contrary to the Russell 2000, the Russell 1000 unconditional sigma starts decreasing at the end 

of the forecast series (Figure 4.23), and the rolling sigma, although more stable through a long 

period, records a slightly higher variance at almost the end of forecast (Figure 4.24): 

 

 

 

 

 

 

 

 

 

 

Figure 4.21- Forecast Unconditional Sigma 
(n.roll=0) for Russell 2000 

Figure 4.22- Forecast Rolling Sigma vs |Series| for 
Russell 2000 

Figure 4.23- Forecast Unconditional Sigma 
(n.roll=0) for Russell 1000 

Figure 4.24- Forecast Rolling Sigma vs |Series| for 
Russell 1000 
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4.5 Multivariate Conditional Variance Models 

 
4.5.1 VAR Model 

 
4.5.1.1 VAR Model Estimation 

 
In order to confirm if two series Granger cause each other we can run the granger causality test 

in R program by performing the “causality” function, with the following options: 

1. Russell 2000 Granger cause Russell 1000: x and y are the Russell 2000 and Russell 

1000 time series returns, respectively; 

2. Russell 1000 Granger cause Russell 2000: x and y are the Russell 1000 and Russell 

2000 time series returns, respectively. 

 

Considering that the null hypotheses of the test is defined as non-causation we conclude that, 

as the p-values are less than the significance level 5% (Annex H), we can conclude that both 

null hypotheses are rejected, leading to the conclusion that the Russell 2000 does Granger cause 

Russell 1000, and vice-versa. 

As we have seen before, the stationarity condition of both series was already checked before 

estimating the univariate conditional variance models. Therefore, we can proceed with the 

estimation of the VAR model. 

To choose properly the order of the VAR model, we opted by running the “VARselect” 

function, where we considered a time series constituted by the two indexes daily returns, and 

the type of deterministic regressors was kept on the default setting (“const”). Based on the HQ 

and SC results, the best order is 8 and 3, respectively. We will rely on the result given by the 

SC, as suggested by Hyndman & Athanasopoulos (2018), and consider estimate a more 

parsimonious model. 

 

4.5.1.2 Diagnostic Testing 

 
After estimating the multivariate model, we performed the multivariate ARCH test and 

concluded that, as the p-value is lower than the significance level 5%, there exists 

heteroscedasticity (Annex I). To check the autocorrelation, we used the portmanteau tests and 

the Breusch-Godfrey LM test. All three tests point to the same conclusion: as the p-value is 
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below the significance level 5%, we should reject the null hypotheses and state that there exists 

serial correlation (Table 4.25). 

Table 4.25- Multivariate Autocorrelation Tests 

 
Portmanteau Test 

(asymptotic) 

Portmanteau Test 

(adjusted) 

Breusch-Godfrey 

LM test 

𝜒, 190.16 190.84 85.981 

p-value < 2.2e-16 < 2.2e-16 3.707e-10 

 

Regarding the multivariate normality tests, we can see in Annex J that the normality 

distribution of the residuals is not confirmed. 

 

In Figure 4.25 we have the CUSUM test, which is usually used to do a stability test. Based on 

this plot, as the red line was never exceeded, we can assume that there are no structural breaks. 

 

 

 

 

 

 
 
 
 
 
 
4.5.1.3 Policy Simulations 

 
Starting with the impulse response analysis, we see in the figures below that a shock in Russell 

1000 has a big impact on the returns of the index of small firms (Figure 4.26). On the contrary, 

the shocks in Russell 2000 do not seem to affect that much the index Russell 1000 returns 

(Figure 4.27). We can also notice that in Figure 4.27 the responses become insignificant after 

period 6, while in Figure 4.26 this happens earlier in period 4: 

 

 

 

 

Figure 4.25- Stability test plot 



The relationship between firm size and volatility of stock returns 
 

 70 

 

 
 
 
 
 
 
 
 
 
 
 
 
Next, we present the Forecast Error Variance Decomposition (FEVD), which allows us to 

check if the error variance of one variable contributes to explain the error variance of other 

variables. Based on the  FEVD presented in Table 4.26, we can conclude that the Russell 1000 

contributes more to the variance of the error of the Russell 2000, than the Russell 2000 does to 

the Russell 1000. We can see that in 5 days, the Russell 2000 returns contribute only 0.4% to 

the Russell 1000 returns while the Russell 1000 returns contribute 84.78849% to the Russell 

2000 returns. 

 
Table 4.26- Table of Forecast Error Variance Decomposition Summary 

$russell1000.ret.ts   

 russell1000.ret.ts russell2000.ret.ts 

[1,] 1.0000000 0.000000000 

[2,] 0.9973890 0.002610974 

[3,] 0.9964170 0.003582969 

[4,] 0.9951585 0.004841535 

[5,] 0.9951062 0.004893779 

$russell2000.ret.ts   

 russell1000.ret.ts russell2000.ret.ts 

[1,] 0.8437904 0.1562096 

[2,] 0.8458409 0.1541591 

[3,] 0.8472378 0.1527622 

[4,] 0.8478528 0.1521472 

[5,] 0.8478849 0.1521151 

 

Figure 4.26- Russell 2000 Impulse Response to a 
shock in Russell 1000 

Figure 4.27- Russell 1000 Impulse Response to a 
shock in Russell 2000 
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This can be confirmed by the analysis of Figure 4.28, where we can observe that the variation 

of Russell 1000 returns contribute more to Russell 2000 returns variation than vice versa: 

 

 

 

 

 

 

 

 

 

 

So, according to both impulse response and forecast error variance decomposition analysis, we 

can conclude that there are transmissions of volatility from large to small firms, contributing 

to explain some of its behavior, while the small firms do not contribute as much to explain the 

behavior of large firms volatility. 

 

4.5.2 DCC Model 

 
After performing the test proposed by Engle & Sheppard (2001) to decide between constant 

and dynamic correlations, we obtained a p-value (0.03418031) lower than the 5% significance 

level, leading us to reject the null hypotheses. Therefore, we are in the presence of non-constant 

conditional correlations, which demands a more adequate model as the DCC model. For this 

reason, we do not present the estimation results of CCC model. 

We started by estimating the asymmetric model GJR-GARCH (1,1) as Billio, Caporin, & 

Gobbo (2006) did, using the same R function used in the Univariate Conditional Variance 

Models section. In order to do the specification of the model we used the function “dccspec”, 

considering two different distributions (normal and student-t distributions). For the estimation 

we considered the “dccfit” function.  

 

 

 

 

Figure 4.28- Forecast Error Variance Decomposition Plot 
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Table 4.27- DCC-GARCH model results (out of sample = 500) 

  Normal Distribution Student-t Distribution 

GJR-GARCH (1,1) 

Russell 1000 

omega 
0.000003 

(0.000001) 

0.000003 

(0.151619) 

alpha1 
0.012058 

(0.310202) 

0.000002 

(0.999949) 

beta1 
0.817249 

(0.000000) 

0.814906 

(0.000000) 

gamma1 
0.226346 

(0.000000) 

0.294585 

(0.000000) 

 shape - 
5.292852 

(0.000000) 

Russell 2000 

omega 
0.000005 

(0.000000) 

0.000004 

(0.024931) 

alpha1 
0.005284 

(0.514766) 

0.000004 

(0.999664) 

beta1 
0.875671 

(0.00000) 

0.889367 

(0.00000) 

gamma1 
0.142289 

(0.00001) 

0.147700 

(0.00001) 

 shape - 
8.852236 

(0.00000) 

DCC (1,1) 

 dcca1 
0.064790 

(0.00000) 

0.074245 

(0.000000) 

 dccb1 
0.896467 

(0.00000) 

0.884047 

(0.00000) 

 mshape - 
7.489999 

(0.000000) 

Information Criteria 

AIC -14.786 -14.843 

BIC -14.739 -14.788 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 
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As we did in the univariate case, we considered three rolling windows but, in order to do 

not waste space on this report, we only present the DCC model with a rolling window equal to 

500, as it is the one that shows lower information criteria values (the remaining can be assessed  

in the Annex K and Annex L). Additional to this we also estimated the aDCC and FDCC 

models and, for the same reason, they are presented from Annex M to Annex R. Please note 

that due to a program constrain, we could not obtain any results for the FDCC model with 

student-t distribution. 

In terms of the estimates, we have some insignificant estimates for the coefficients: (1) 

alpha1 to both Russell 2000 and 1000, under normal and student-t distribution, and (2) Russell 

1000 omega under student-t distribution. As we already pointed earlier, this is not a problem. 

Regarding the DCC joint estimates, both dcca1 and dccb1 are statistically significant, 

confirming the time-varying characteristic of the conditional correlations. This supports the 

results obtained through the estimation of the Engle & Sheppard (2001) test, confirming that 

the DCC is a better choice, when compared with the CCC. As expected, the dcca1 presents 

values close to zero, while dccb1 assumes values of almost one. We also confirm that the model 

is positive definite, as both dcca1 and dcca1 assume positive values and the sum of the dcca1 

and dccb1 produces a value below one, as stated by Engle & Sheppard (2001). 

Considering the student-t distribution, as it is expected to produce better results than the 

normal distribution since its lower information criteria values, we obtain the following graphs: 

 

 

 

 

 

 

 

In Figure 4.29, Figure 4.30, and Figure 4.31 we can see the behavior of DCC conditional 

variance, DCC conditional covariance, and DCC conditional correlation, respectively. In terms 

of the conditional variance and conditional covariance, they follow a similar path and tend to 

record an increase in periods of crisis. Regarding the conditional correlation, they show a quite 

unstable behavior through time, presenting sharper rises on more volatility periods, supporting 

the time-varying conditional correlation characteristic already seen previously. By analyzing 

these three figures, we can conclude the existence of volatility spillovers, as the conditional 

correlation tends to rise in periods of crisis, implying that both indexes affect each other. 

Figure 4.29- DCC Conditional Sigma 
vs |returns| 

Figure 4.30- DCC Conditional 
Covariance 

Figure 4.31- DCC Conditional 
Correlation 



The relationship between firm size and volatility of stock returns 
 

 74 

Moving to the forecasting part, we opted by the same rolling forecast as we did in the 

Univariate Conditional Variance Models section:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both rolling variance (Figure 4.32) and rolling covariance (Figure 4.33) show a similar 

tendency, recording a stabilization that seems to maintain in a long term perspective, with an 

high peak at the end of our forecast series. 

 

 

 

 

 

 

Figure 4.32- DCC Sigma Rolling Forecast for Russell 1000 and Russell 
2000 

Figure 4.33- DCC Covariance Rolling Forecast for Russell 1000 and Russell 
2000 
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5 Conclusion 
 

The firm size is the center of many studies nowadays, being the impact of the firm size on the 

returns a subject already deeply investigated, pointing to the well-known size effect. Banz 

(1981) is the first to question whether investors were indeed rewarded by an increased return 

when exposed to more risky assets. Besides this extensive literature, not many researchers 

focused on the volatility of such returns, which led to an open door to our study. Chelley-

Steeley & Steeley (1995, 1996) belong to the small group of authors who focused on 

understanding this relationship, and the possibility of existing volatility spillovers between the 

two different types of firms (small and large firms). 

To conclude which type of firms are more affected by the shocks, we based our study on 

the univariate models (GARCH, EGARCH, GJR-GARCH, APARCH, e TGARCH), while to 

study the volatility transmissions, the multivariate models seemed more adequate (VAR and 

DCC). Besides this, we also divided our sample into two parts to know which model was the 

most accurate to obtain our conclusions, as a good in-sample model may not be the best to 

forecast volatility. This was exactly what happened in our study. Based on the in-sample 

period, the best model for both indexes was the TGARCH (1,1) under the student-t distribution, 

while in the out-of-sample analysis, the results differed between indexes. To the Russell 2000, 

the most accurate model was the EGARCH (1,1) under student-t distribution with rolling 

window size equal to 250, while to the Russell 1000 the TGARCH (1,1) under GED 

distribution with rolling window size equal to 500 stood out. Despite the choice of the model 

being different between the two indexes, all univariate models led to similar conclusions. 

In line with Chelley-Steeley & Steeley (1995, 1996), small firms are more affected in the 

short-run, revealing higher persistence of shocks in this type of firm, while large firms are more 

affected in the long-run perspective. Nevertheless, contrary to them, the leverage effect was 

confirmed to be higher to larger firms, meaning that large firms tend to be more sensitive to 

negative shocks. Based on the APARCH model we can also conclude that there is evidence to 

affirm that small firm’s returns tend to be more volatile, which is in accordance with the studies 

mentioned in literature review (Baskin, 1989; Habib, Kiani, & Khan, 2012; Hussainey, 

Mgbame, & Chijoke-Mgbame, 2011; Nazir, Nawaz, Anwar, & Ahmed, 2010). 

In terms of the volatility spillovers across small and large firms, we opted by considering 

the multivariate models VAR and DCC. Based on these models, we confirmed the existence 

of volatility transmissions between small and large firms. By estimating the VAR model, we 
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can understand by analyzing the impulse response plot and FEVD that the volatility of one 

index has some impact on the other. More specifically, we found that the index representing 

smaller firms tend to react more strongly to shocks in the Russell 1000 index, than the opposite. 

Unfortunately, this model is not enough as our primary focus is on the conditional correlations 

between both indexes. Considering this, we used the DCC, as it ends up being a better choice 

as the conditional correlations do not show to be constant over time. In light of the DCC, we 

confirmed the increase of conditional correlation between Russell 2000 and Russell 1000 in 

periods of higher volatility, and an unstable conditional variance and covariance, depending on 

if we are looking at the periods of crisis or not. This meets the conclusion of Chelley-Steeley 

& Steeley (1996). 
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Annexes 
 
Annex A- Augmented Dickey-Fuller Test applied to Russell 2000 Continuously Compounded Returns 

Type 
Test 

Statistic 
Lags 

Significance levels Value of the test-

statistic 10pct 5pct 1pct 

None tau1 6 -1.62 -1.95 -2.58 -18.7324 

Drift 
tau2 

6 
-2.57 -2.86 -3.43 -18.773 

phi1 3.78 4.59 6.43 176.2131 

Trend 

tau3 

6 

-3.12 -3.41 -3.96 18.7854 

phi2 4.03 4.68 6.09 117.6312 

phi3 5.34 6.25 8.27 176.4463 

 
Annex B- Augmented Dickey-Fuller Test applied to Russell 1000 Continuously Compounded Returns 

Type 
Test 

Statistic 
Lags 

Significance levels Value of the test-

statistic 10pct 5pct 1pct 

None tau1 7 -1.62 -1.95 -2.58 -18.5556 

Drift 
tau2 

7 
-2.57 -2.86 -3.43 -18.7106 

phi1 3.78 4.59 6.43 175.0442 

Trend 

tau3 

7 

-3.12 -3.41 -3.96 -18.7092 

phi2 4.03 4.68 6.09 116.6802 

phi3 5.34 6.25 8.27 175.0198 

 
 
Annex C- Phillips-Perron Test applied to Russell 2000 Continuously Compounded Returns 

Type Model Lags 
Significance levels Value of the 

test-statistic 10pct 5pct 1pct 

Z-tau Constant 
Short 

-2.567668 -2.863181 -3.435869 
-57.2327 

Long -57.2098 
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Annex D- Phillips-Perron Test applied to Russell 1000 Continuously Compounded Returns 

Type Model Lags 
Significance levels Value of the 

test-statistic 10pct 5pct 1pct 

Z-tau Constant 
Short 

-2.567668 -2.863181 -3.435869 
-58.6214 

Long -58.7723 

  
 
 

Annex E- Kwiatkowski-Phillips-Schmidt-Shin Test applied to Russell 2000 Continuously 
Compounded Returns 

Type Lags 
Significance levels 

Value of the test-statistic 
10pct 5pct 2.5pct 1pct 

Tau 

Short 

0.119 0.146 0.176 0.216 

0.0197 

Long 0.02 

Nil 0.0166 

Mu 

Short 

0.347 0.463 0.574 0.739 

0.1003 

Long 0.1013 

Nil 0.0848 

 
 
 

Annex F- Kwiatkowski-Phillips-Schmidt-Shin Test applied to Russell 1000 Continuously Compounded 
Returns 

Type Lags 
Significance levels 

Value of the test-statistic 
10pct 5pct 2.5pct 1pct 

Tau 

Short 

0.119 0.146 0.176 0.216 

0.0197 

Long 0.0208 

Nil 0.0154 

Mu 

Short 

0.347 0.463 0.574 0.739 

0.0471 

Long 0.0497 

Nil 0.037 
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Annex G- Normality tests applied to ARMA model residuals 

 
Jarque-Bera Test 

Kolmogorov-Smirnov 

Test 
Shapiro-Wilk Test 

Russell 2000 < 2.2e-16 < 2.2e-16 < 2.2e-16 

Russell 1000 < 2.2e-16 < 2.2e-16 < 2.2e-16 

 

 
Annex H- Granger causality test 

H0: Russell 1000 returns do not Granger-cause the Russell 2000 returns 

F-test 6.0002 

df1 3 

df2 5056 

p-value 0.0004461 

H0: Russell 2000 returns do not Granger-cause the Russell 1000 returns 

F-test 4.7206 

df1 3 

df2 5056 

p-value 0.002717 

 

 
Annex I- Multivariate ARCH test applied to VAR residuals 

 ARCH (multivariate) 

𝜒, 2284.2 

df 45 

p-value < 2.2e-16 

 

 
Annex J- Multivariate Normality tests 

 JB Test Skewness Test Kurtosis Test 

𝜒, 25314 402.57 24911 

df 4 2 2 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 
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Annex K- DCC model under normal distribution and student-t distribution (out-of-sample = 150) 

  Normal Distribution Student-t Distribution 

GJR-GARCH (1,1) 

Russell 1000 

omega 
0.000003 

(0.000014) 

0.000003 

(0.352698) 

alpha 1 
0.010835 

(0.360292) 

0.000001 

(0.999988) 

beta1 
0.815994 

(0.000000) 

0.815728 

(0.000000) 

 gamma1 
0.234657 

(0.000000) 

0.290423 

(0.000001) 

 shape - 
5.321169 

(0.000000) 

Russell 2000 

omega 
0.000005 

(0.000000) 

0.000004 

(0.008000) 

alpha 1 
0.002004 

(0.782550) 

0.000004  

(0.999649) 

beta1 
0.877496 

(0.00000) 

0.883562 

(0.00000) 

 gamma1 
0.148069 

(0.00000) 

0.156980 

(0.00000) 

 shape - 
8.414620 

(0.000000) 

DCC (1,1) 

 dcca1 
0.068155 

(0.00000) 

0.080511 

(0.000000) 

 dccb1 
0.892191 

(0.00000) 

0.872552 

(0.00000) 

 mshape - 
7.620703 

(0.000000) 

Information Criteria 

AIC -14.763 -14.827 

BIC -14.722 -14.778 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 
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Annex L- DCC model under normal distribution and student-t distribution (out-of-sample = 250) 

  Normal Distribution Student-t Distribution 

GJR-GARCH (1,1) 

Russell 1000 

omega 
0.000003 

(0.000001) 

0.000003 

(0.480061) 

alpha1 
0.007794 

(0.493975) 

0.000000 

(0.999998) 

beta1 
0.822221 

(0.000000) 

0.822113 

(0.000000) 

 gamma1 
0.230804 

(0.000000) 

0.283224 

(0.000137) 

 shape - 
5.277542 

(0.000000) 

Russell 2000 

omega 
0.000005 

(0.000000) 

0.000004 

(0.000230) 

alpha1 
0.003713 

(0.631518) 

0.000000  

(0.999956) 

beta1 
0.875509 

(0.00000) 

0.883143 

(0.00000) 

 gamma1 
0.146926 

(0.000000) 

0.155332 

(0.000000) 

 shape - 
8.585897 

(0.000000) 

DCC (1,1) 

 dcca1 
0.065665 

(0.00000) 

0.075573 

(0.00000) 

 dccb1 
0.898235 

(0.00000) 

0.882630 

(0.00000) 

 mshape - 
7.615005 

(0.000000) 

Information Criteria 

AIC -14.749 -14.812 

BIC -14.706 -14.762 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 
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Annex M- aDCC model under normal distribution and student-t distribution (out-of-sample = 150) 

  Normal Distribution Student-t Distribution 

GJR-GARCH (1,1) 

Russell 1000 

omega 
0.000003 

(0.000014) 

0.000003 

(0.352626) 

alpha1 
0.010835 

(0.362775) 

0.000001 

(0.999988) 

beta1 
0.815994 

(0.000000) 

0.815728 

(0.000000) 

gamma1 
0.234657 

(0.000000) 

0.290423 

(0.000001) 

shape - 
5.321169 

(0.000000) 

Russell 2000 

omega 
0.000005 

(0.000000) 

0.000004 

(0.008292) 

alpha1 
0.002004 

(0.781082) 

0.000004 

(0.999648) 

beta1 
0.877496 

(0.00000) 

0.883562 

(0.00000) 

gamma1 
0.148069 

(0.00000) 

0.156980 

(0.00000) 

shape - 
8.414620 

(0.00000) 

DCC (1,1) 

 dcca1 
0.049014 

(0.000023) 

0.056756 

(0.000001) 

 dccb1 
0.894912 

(0.00000) 

0.873501 

(0.00000) 

 dccg1 
0.033099 

(0.046089) 

0.043580 

(0.020483) 

 mshape - 
7.942895 

(0.000000) 

Information Criteria 

AIC -14.765 -14.828 

BIC -14.721 -14.778 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 
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Annex N- aDCC model under normal distribution and student-t distribution (out-of-sample = 250) 

  Normal Distribution Student-t Distribution 

GJR-GARCH (1,1) 

Russell 1000 

omega 
0.000003 

(0.000001) 

0.000003 

(0.480524) 

alpha 1 
0.007794 

(0.496820) 

0.000000 

(0.999998) 

beta1 
0.822221 

(0.000000) 

0.822113 

(0.000000) 

gamma1 
0.230804 

(0.00000) 

0.283224 

(0.000138) 

shape - 
5.277542 

 (0.000000) 

Russell 2000 

omega 
0.000005 

(0.00000) 

0.000004 

(0.000250) 

alpha 1 
0.003713 

(0.629226) 

0.000000  

(0.999956) 

beta1 
0.875509 

(0.00000) 

0.883143 

(0.00000) 

gamma1 
0.146926 

(0.00000) 

0.155332 

(0.000000) 

shape - 
8.585897 

(0.00000) 

DCC (1,1) 

 dcca1 
0.047239 

(0.000025) 

0.054071 

(0.000002) 

 dccb1 
0.900539 

(0.00000) 

0.883788 

(0.00000) 

 dccg1 
0.032144 

(0.046012) 

0.039184 

(0.027452) 

 mshape - 
7.937863 

(0.000000) 

Information Criteria 

AIC -14.750 -14.814 

BIC -14.705 -14.761 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 
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Annex O- aDCC model under normal distribution and student-t distribution (out-of-sample = 500) 

  Normal Distribution Student-t Distribution 

GJR-GARCH (1,1) 

Russell 1000 

omega 
0.000003 

(0.000001) 

0.000003 

(0.151365) 

alpha 1 
0.012058 

(0.312877) 

0.000002 

(0.999949) 

beta1 
0.817249 

(0.000000) 

0.814906 

(0.000000) 

gamma1 
0.226346 

(0.00000) 

0.294585 

(0.000000) 

shape - 
5.292852 

(0.000000) 

Russell 2000 

omega 
0.000005 

(0.000000) 

0.000004 

(0.025704) 

alpha 1 
0.005284 

(0.511292) 

0.000004 

(0.999662) 

beta1 
0.875671 

(0.00000) 

0.889367 

(0.00000) 

gamma1 
0.142289 

(0.00001) 

0.147700 

(0.000001) 

shape - 
8.852236 

(0.00000) 

DCC (1,1) 

 dcca1 
0.048071 

(0.000080) 

0.054062 

(0.000015) 

 dccb1 
0.898744 

(0.00000) 

0.884658 

(0.00000) 

 dccg1 
0.029175 

(0.083207) 

0.037369 

(0.046635) 

 mshape - 
7.772682 

(0.000000) 

Information Criteria 

AIC -14.787 -14.845 

BIC -14.738 -14.787 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 
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Annex P- FDCC model under normal distribution and student-t distribution (out-of-sample = 150) 

  Normal Distribution 

GJR-GARCH (1,1) 

Russell 1000 

omega 
0.000003 

(0.000013) 

alpha 1 
0.010835 

(0.358400) 

beta1 
0.815994 

(0.000000) 

gamma1 
0.234657 

(0.000000) 

Russell 2000 

omega 
0.000005 

(0.000000) 

alpha 1 
0.002004 

(0.781464) 

beta1 
0.877496 

(0.00000) 

gamma1 
0.148069 

(0.00000) 

DCC (1,1) 

 fdcca1 
0.274308 

(0.00000) 

 fdccb1 
0.725692 

(0.00000) 

Information Criteria 

AIC -14.719 

BIC -14.678 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 
 

 

 

 

 



The relationship between firm size and volatility of stock returns 
 

 94 

Annex Q- FDCC model under normal distribution and student-t distribution (out-of-sample = 250) 

  Normal Distribution 

GJR-GARCH (1,1) 

Russell 1000 

omega 
0.000003 

(0.000001) 

alpha 1 
0.007794 

(0.492620) 

beta1 
0.822221 

(0.000000) 

gamma1 
0.230804 

(0.000000) 

Russell 2000 

omega 
0.000005 

(0.000000) 

alpha 1 
0.003713 

(0.629956) 

beta1 
0.875509 

(0.00000) 

gamma1 
0.146926 

(0.00000) 

DCC (1,1) 

 fdcca1 
0.272844 

(0.00000) 

 fdccb1 
0.727156 

(0.00000) 

Information Criteria 

AIC -14.703 

BIC -14.660 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 
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Annex R- FDCC model under normal distribution and student-t distribution (out-of-sample = 500) 

  Normal Distribution 

GJR-GARCH (1,1) 

Russell 1000 

omega 
0.000003 

(0.000001) 

alpha 1 
0.012058 

(0.308137) 

beta1 
0.817249 

(0.000000) 

gamma1 
0.226346 

(0.000000) 

Russell 2000 

omega 
0.000005 

(0.000000) 

alpha 1 
0.005284 

(0.511473) 

beta1 
0.875671 

(0.00000) 

gamma1 
0.142289 

(0.00000) 

DCC (1,1) 

 fdcca1 
0.264527 

(0.00000) 

 fdccb1 
0.735473 

(0.00000) 

Information Criteria 

AIC -14.745 

BIC -14.698 

Note: the highlighted results correspond to the coefficients that are not statistically significant. 
 


