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a b s t r a c t

A customized finite-difference field solver for the particle-in-cell (PIC) algorithm that provides higher
fidelity for wave-particle interactions in intense electromagnetic waves is presented. In many problems
of interest, particles with relativistic energies interact with intense electromagnetic fields that have
phase velocities near the speed of light. Numerical errors can arise due to (1) dispersion errors in
the phase velocity of the wave, (2) the staggering in time between the electric and magnetic fields
and between particle velocity and position and (3) errors in the time derivative in the momentum
advance. Errors of the first two kinds are analyzed in detail. It is shown that by using field solvers
with different k-space operators in Faraday’s and Ampere’s law, the dispersion errors and magnetic
field time-staggering errors in the particle pusher can be simultaneously removed for electromagnetic
waves moving primarily in a specific direction. The new algorithm was implemented into Osiris
by using customized higher-order finite-difference operators. Schemes using the proposed solver in
combination with different particle pushers are compared through PIC simulation. It is shown that the
use of the new algorithm, together with an analytic particle pusher (assuming constant fields over a
time step), can lead to accurate modeling of the motion of a single electron in an intense laser field
with normalized vector potentials, eA/mc2, exceeding 104 for typical cell sizes and time steps.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The interaction of relativistic charged particles with laser
ields has attracted extensive attention in plasma and accel-
rator physics. Examples of current research in frontier areas
n which relativistic wave particle interactions are important
nclude plasma-based acceleration of electrons/positrons and ions
1–6], direct laser acceleration [7], quantum electrodynamic
aser–plasma interactions [8], free-electron lasers [9] and stochas-
ic wave-particle interactions [10–14]. The particle-in-cell (PIC)
lgorithm [15–17] has been used for nearly half a century to study
ow plasmas and beams interact with radiation. It has also be-
ome a powerful tool for modeling a variety of plasma and beam
hysics processes. Most current electromagnetic PIC codes use

✩ The review of this paper was arranged by Prof. David W. Walker.
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E-mail addresses: lifei11@ucla.edu (F. Li), xuxinlu@slac.stanford.edu
X. Xu).
ttps://doi.org/10.1016/j.cpc.2020.107580
010-4655/© 2020 Elsevier B.V. All rights reserved.
the finite-difference time-domain (FDTD) method as it is simple,
versatile and straightforward to parallelize. The grid-based FDTD
method discretizes the time-dependent Maxwell’s equations us-
ing a central-difference approximation for both space and time
domains. The resulting discretized set of equations is solved in
a leapfrog manner in time, with the electric and magnetic field
components interlaced in space when using the Yee mesh grid
[18]. Many numerical issues can arise due to the discretization,
requiring careful use to avoid subtle spurious effects. Examples of
known issues include improper numerical dispersion, numerical
Cerenkov radiation and the associated numerical Cerenkov insta-
bility (NCI) [19–22], finite-grid instability [23–26] and numerical
errors in the fields that surround relativistic particles [27]. These
errors do not always decrease proportionately with decreasing
cell size and time step, making it important to deeply understand
the cause of these effects in order to most efficiently remedy
them.

Generally, the impact of numerical issues is problem-specific,

and in many cases, no single algorithm can solve all problems.

https://doi.org/10.1016/j.cpc.2020.107580
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http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107580&domain=pdf
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In this article, we consider intense laser fields interacting with
particles that co-propagate with the laser fields at speeds close
to the speed of light. This situation arises in high-intensity laser–
plasma interactions and plasma-based acceleration. It has been
recognized for some time that errors arise when computing the
trajectory of single particles in the fields of intense light waves
(lasers) [28–30]. In this work, we analyze several reasons for
these errors and propose a solution that can be implemented into
PIC codes that utilize finite-difference and FFT-based algorithms
[15,17].

We will show that the dominant error is often due to numer-
ical dispersion. Although, numerical dispersion errors for various
Maxwell solvers are well known, the effect that this plays on
single particle motion in intense laser fields is not well known.
The time–space discretization causes an electromagnetic wave to
propagate across the grid with errors in its dispersion relation
that vary between Maxwell solvers and can depend on time step
and cell size. These errors are of large concern particularly when
the particle is co-moving with the laser close to the speed of light.
In such a scenario, small errors in the phase velocity can lead to
large differences in the resonant interactions between waves and
particles. The trajectory of particles in phasespace is therefore
very sensitive to these numerical errors. The spectral method
[15,21,31–33], i.e., solving Maxwell’s equations in Fourier space,
can remove numerical errors due to spatial derivatives. Some
refer to this as a pseudo-spectral method when grids are used.
Furthermore, one can use these methods to exactly integrate the
fields forward in time assuming the current is constant during
a time interval (time step). This method, called the pseudo-
spectral analytical time-domain (PSATD) method [17,34], can thus
provide a numerical-dispersion-free scheme for light propagating
in vacuum. However, the PSATD method is not free from spurious
effects when particles are included. Another advantage with FFT-
based methods is that unlike the standard FDTD method the
entire algorithm improves in accuracy as the time step is reduced,
including the particle advance. Therefore, convergence can be
investigated by reducing the time step while keeping cell size
fixed. While the use of FFT-based solvers can improve dispersion,
they do so at a cost of decreased computational efficiency and
parallel scalability unless a local FFT-based approach is used
[35]. However, many existing codes are based on finite-difference
methods, and shifting these to FFT-based algorithms can require
major changes to the software. Therefore, an FDTD method is
desired that exhibits good dispersion characteristics and that im-
proves in accuracy when the time step is reduced while keeping
the cell size fixed.

The second important numerical issue specific to relativis-
tic particle-laser interaction is the inaccurate evaluation of the
Lorentz force during the particle push. This numerical artifact was
first identified by Lehe et al. [28]. He performed some numerical
tests to identify the sensitivity of the issue. Here we present an
analysis of this issue as well as a possible solution. This inaccuracy
is caused by the time staggering (by a half time step) between
the electric and magnetic field components for time centering
of the field equations. In reality, the electric and magnetic fields
in a plane wave are exactly equal in phase (and equal in am-
plitude when in vacuum for cgs or normalized units), so an
ultra-relativistic particle in a co-propagating laser feels nearly
vanishing transverse Lorentz force: the force is proportional to
(1 −

vz
c )E⊥ ≈

1
2γ 2 E⊥, where E⊥ is the transverse electric field,

vz the longitudinal velocity of the particle, γ the Lorentz factor
and c the speed of light. However, due to the time staggering
of E and B fields that exists in a standard second order time
centered solver, the magnetic field defined at the same time as
the electric field has errors of O(∆t2). These can be corrected if
the field has a known frequency (or if there is a known dispersion
relation). These inaccuracies in the fields can lead to errors in the
motion of a single particle that accumulate in time. To solve this
problem, a higher-order interpolation in time has been proposed
[28] to approximate the magnetic force. This method can reduce
the error in Lorentz force (assuming the wave is moving at the
proper phase velocity), by using values of B at earlier time steps,
e.g., Bn+ 1

2 ,Bn− 1
2 and Bn− 3

2 . This could reduce the time step error
to better than second order but it needs more values of B from
arlier time steps. Alternatively, the PSATD method without time
taggering could be employed which will be simultaneously free
f both numerical dispersion and errors in the Lorentz force from
he staggering E and B.

In this article, we present a finite-difference (FD) based algo-
ithm that simultaneously eliminates numerical dispersion along
ne direction and corrects for errors in the v × B force from the
ime staggering of the fields. This is done by first identifying the
esired k-space operators for the curl operations in Ampere’s and
araday’s laws (these operators can easily be used in an FFT-based
olver and adapted for any time step), then using the method
escribed in Ref. [36] to construct a customized FD solver that
eplicates the desired k-space operators. The solver also includes
correction to the current in order to guarantee that Gauss’s law

s satisfied at each time step.
A third numerical issue is the inaccuracy of the particle pusher.

he Boris pusher [37,38] uses a second-order (leapfrog) operator
or the time derivative and a split operator for the electric force
nd rotation from the v × B force. The momentum is advanced a
alf time step from E , then rotated a full-time step from v × B,
nd then advanced a second half step from E . The rotation can
e done exactly with only small adjustments [17,37]. The main
ource of the error in the Boris push is that v is not known at
he correct half time step, so an average is used. In addition,
relativistic code has v = p/mγ , so there are several choices

or defining v during the rotation since neither p nor γ are
nown at the half step. Recently, there have been several ideas
or improving on the Boris pusher; some of these were motivated
o model the motion of charged particles in high-amplitude laser
ields. Vay [39] and Higuera and Cary (HC) [40] suggested using
ifferent definitions for γ during the magnetic field rotation. A
omprehensive comparison of these particle pushers can be found
n Ref. [41]. Recently, Arefiev et al. [29] proposed using a sub-
ycling technique when the fields were very large. This method
ssentially recovers the analytic result when small enough time
teps are used. Gordon et al. [30] showed that a covariant pusher
ould be exact if the fields are constant during a proper time step.
ery recently, Pétri [42] proposed an exact or analytic pusher (for
onstant fields over a time step) in which a mapping between
he proper and lab time for each particle is required. We have
mplemented the HC and an extension of the ideas of the Gordon
nd Pétri pushers into Osiris [43]. We find that when combined
ith our proposed solver, the HC pusher agrees very well with the
nalytic pusher (and theory) until the laser strength parameter
0 =

eE
meω0c

exceeds 103 for relativistically drifting particles,
where e the elementary charge, me the electron static mass and
ω0 the laser frequency. We will leave the details of our analytic
pusher and comparison of the various pushers for a separate
publication.

This paper is organized as follows: In Section 2, we elaborate
on the origins of the first two numerical errors mentioned above.
In Section 3, a novel Maxwell solver amenable to FD methods is
proposed, which greatly improves (1) the dispersion characteris-
tics and (2) evaluation of the transverse Lorentz force. An analysis
of the dispersion relation for electromagnetic waves at all angles
is provided. The Courant–Friedrichs–Lewy (CFL) stability condi-
tion and current correction for charge conservation are discussed.
In Section 4, Osiris simulation results based on the new solver are
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presented. We compare the simulation results for a single particle
in a laser field in vacuum using the new solver with the standard
Boris, Higuera–Cary and analytic pushers against analytic theory.
The results show that the standard second-order Maxwell solver
can lead to significant errors whereas the proposed solver can
provide accurate results. We also compare simulation results
with and without the new solver for a more collective behavior
commonly referred to as direct laser acceleration (DLA). We then
offer a summary and directions for future work in Section 5.
Lastly, more detailed analysis and details of the customized solver
are provided in three Appendices.

2. Some error sources in PIC codes

In this section, we provide details on the errors in the elec-
tromagnetic fields and the forces on charged particles interacting
with these fields when using FD and some FFT-based PIC codes.
The analysis is primarily based on the spectral method by per-
forming a discrete Fourier transform in time and space for general
FD operators in space and time. In such an analysis, the FD
operators map to frequency and wave number operators that
are functions of the true frequency and wavenumber. We do the
analysis in Maxwell’s equations which are linear in the fields for
a given current.

2.1. Numerical dispersion

Because of the space and time discretization of the PIC algo-
rithm, the grid (or mesh) can be viewed as a special medium in
which the electromagnetic wave is subject to a dispersion relation
different than that in a vacuum. The numerical dispersion relation
leads to a phase velocity that deviates from the speed of light,
causing inaccuracies in the computation of particle motion. We
will show later that this error is generally the largest amongst
those discussed here when using a standard FDTD PIC code.

The numerical dispersion relation can be derived from the
discrete Faraday’s and Ampere’s laws as

dtB = −dE × E, dtE = dB × B − J , (1)

where dt and dE,B are the generalized FD operators. For the
emainder of the article, we use the normalized units in which
, me and e are equivalently viewed as unity, and the variables
aving time and length dimensions are normalized to reciprocals
f arbitrary frequency ωn and wavenumber kn ≡ ωn/c. The
patial operators used in Faraday’s and Ampere’s laws can be
ifferent. Note that the operator used in Ampere’s law should be
he same as that assumed in the continuity equation for a charge-
onserving scheme where Gauss’s law is maintained or that used
irectly to solve Gauss’s law. Performing a Fourier transform gives

ω]t B̃ = [k]E × Ẽ, [ω]t Ẽ = −[k]B × B̃ − iJ̃ , (2)

where an overtilde represents a Fourier transform, [ω]t and [k]E,B
are the counterparts of the discrete FD operators in Fourier space.
By ignoring the source term J , the numerical dispersion relation
n vacuum can be obtained as

ω]
2
t − [k]B · [k]E = 0. (3)

In the above derivation, Gauss’s law i[k]B · Ẽ = 0 is used. If we
ssume that the laser field propagates in the 1̂-direction, then
ts wavenumber has only a k1 component and the numerical
ispersion relation becomes

ω]
2
t − [k]B1[k]E1 = 0. (4)

In the standard leapfrog PIC algorithm, the electric field E is
defined on the grid a half time step away from the magnetic field
B. Therefore, the operator [ω]t has the form [ω]t = sin
(

ω∆t
2

)
/∆t

2 ,
for which the phase velocity is given as

βφ ≡
ω

k1
=

2
k1∆t

arcsin
(

∆t
2

√
[k]B1[k]E1

)
, (5)

where ∆t is the time step and ω is the frequency of the electro-
magnetic wave. For the Yee mesh, where the electric and mag-
netic field components are stored on the staggered grid points in
space as well, FD operators for [k]B1 and [k]E1 of arbitrary order
have the form

[k]B1,E1 =

p/2∑
j=1

CB,E
j

sin
[
(2j − 1) k1∆x1

2

]
∆x1/2

, (6)

where p is the order of accuracy and CB,E
j is the stencil coefficient.

In a conventional PIC algorithm, we usually use the same solver
stencil for both Faraday’s and Ampere’s equations, i.e., [k]B1 =

[k]E1 = [k]1. For example, the standard Yee solver of second-order
accuracy has [k]B1 = [k]E1 = sin( k1∆x1

2 )/∆x1
2 .

Fig. 1 shows the [k]1, ω, and phase velocity (βφ ≡ ω/k1) as a
function of k1 for FD solvers of different accuracy. We can see that
the dispersion relation and phase velocity of the second-order
solver (Yee) can deviate significantly from real physics. Although
higher-order solvers decrease the deviation, even seemingly triv-
ial discrepancies in the phase velocity can still have cumulative
effects on particle dynamics in long-duration (distance) simula-
tions. For example, if we set the cell size to ∆x1 = 0.2k−1

0 (5
oints within a laser skin depth k−1

0 ) and the time step to ∆t =

.5∆x1, the phase velocity of the k0 ≈ 0.03kg1 mode is βφ =

.99875 (which corresponds to γφ = 20) for the second-order
ee solver. For these parameters, an ultra-relativistic particle
ould undergo an artificial backward phase shift of one laser
avelength after 5 × 104 time steps (800 laser cycles), gaining

ess energy than it would otherwise. However, a mildly relativistic
article with γ ≈ 20 would stay in phase with a light wave
oving slower than the speed of light, enabling increased energy
ain from the laser. The k0 mode of the 8th-order solver is super-
uminal, as shown in Fig. 1(c), and the phase velocity is estimated
o be βφ ∼ 1.00042. This would cause an artificial forward phase
hift of one laser wavelength after 1.5×105 time steps (2400 laser
ycles) for an ultra-relativistic particle. Therefore, the numerical
rrors can become important for both moderately and highly
elativistic particles (in long duration simulations) due to errors
n the phase velocity. For modes with higher k1, which are present
or a light wave packet, the phase velocity deviation and artificial
hase shift are more severe.

.2. Inaccurate calculation of the Lorentz force

In order to illustrate how the time staggering between E and
leads to a spurious force exerted on the particles from a laser

ield, we start from the particle pusher used in the PIC algorithm.
or simplicity, we assume the laser is polarized in the 2̂-direction
the other transverse direction being the 3̂-direction). A particle
ith charge q is pushed according to

γ n+ 1
2 β

n+ 1
2

2 − γ n− 1
2 β

n− 1
2

2

∆t
= q

⎛⎝En
2 − β̄n

1 ×
B
n− 1

2
3 + B

n+ 1
2

3

2

⎞⎠ , (7)

where the laser fields E2 and B3 are interpolated from the spatial
grid points and βi refers to the velocity of the particle in the î-
direction. The superscript ⟨·⟩

n represents the quantities at t =

n∆t , and the overbar ¯⟨·⟩ represents interpolation in time. Since
the magnetic field components are defined on the half time step
whereas the Lorentz force is evaluated at the integer time step, B
3



4 F. Li, K.G. Miller, X. Xu et al. / Computer Physics Communications 258 (2021) 107580

n

t

e
s
p
t
n
m
c

b

t
f

2

a
t
c

Fig. 1. (a) The operator [k]1 of the standard solvers with different orders of accuracy as a function of k1 . (b) The numerical dispersion relation, ω vs. k1 . (c) The
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eeds to be interpolated in time. In the standard PIC algorithm,

his is usually fulfilled by simply averaging, i.e., B̄n
3 = (B

n− 1
2

3 +

B
n+ 1

2
3 )/2, as shown in Eq. (7). Because of the averaging, B̄n

3 does not
qual En

2 with sufficient precision for particles moving near the
peed of light in the 1̂-direction, which introduces errors when
ushing the macro-particles and hence errors to each particle’s
rajectory. It should be noted that although the field compo-
ents are also stored on spatially staggered grid points for a Yee
esh, our derivation shows that the spatial staggering has no
ontribution to the spurious Lorentz force.
From the discretized Maxwell equations in Eq. (2), the relation

etween Ẽ2 and B̃3 is

B̃3 =
[k]E1
[ω]t

Ẽ2, (8)

from which it can be shown (see Appendix A) that in two di-
mensions the transverse Lorentz force exerted on the particle
is

F̃2(ω, k1, k2)
q

=

[
Ẽ2(ω, k1, k2) − β̄1B̃3(ω, k1, k2) cos

ω∆t
2

]
× S̃(−k1, −k2), (9)

where S̃ is the Fourier transform of the interpolation function. The
factor of cos ω∆t

2 is due to the time staggering and corresponding
average in Eq. (7), but the spatial staggering has no impact as
aforementioned. Combining Eqs. (8) and (4), we have

F̃2
q

= Ẽ2

[
1 − β̄1

√
[k]E1/[k]B1 cos

ω∆t
2

]
S̃. (10)

For the standard PIC algorithm with [k]E1 = [k]B1, the factor
cos ω∆t

2 cannot be eliminated from Eq. (10). The correct cancella-
ion, which results in F̃2 = qẼ2(1− β̄1)S̃, is therefore unattainable
or any solver with identical [k]E1 and [k]B1 operators.

.3. Coupling of the dispersion and Lorentz force errors

It should be noted that the two numerical errors just described
re not separable. It is possible that total error in the particle’s
rajectory is actually less than that from each on their own. This
an be illustrated qualitatively by a simple case where a particle
with velocity β1 co-propagates with a monochromatic plane wave
with amplitude E0 and frequency ω0. The 2̂-component of the
orentz force in the presence of the time staggering and numer-
cal dispersion is thus F∗

2 = E0(1 − β1 cos
ω0∆t

2 ) cos{[k]0(βφt −

1) + φ0}, where βφ is the phase velocity, φ0 is the initial phase,
nd [k]0 is the wavenumber k0 under numerical dispersion. Since
he analytical force is F2 = E0(1 − β1) cos[k0(t − x1) + φ0] (note
0 = k0), it can be shown the instantaneous error in the force
F2 = F2 − F∗

2 at time t is

F2 = E0(1−β1)[cosφ−cos(φ+δφ)]−2E0β1 sin2 ω0∆t
4

cos(φ+δφ)

(11)

where φ ≡ k0(t − x1) + φ0 is the analytical phase and δφ ≡

k]0(βφ −1)x1 is the phase error induced by numerical dispersion.
The first term in Eq. (11) originates purely from the numerical
dispersion while the second term couples both the dispersion
and time-stagger errors together. If we use the Yee solver as an
example, the two terms are non-vanishing and δφ is negative.
Considering a particle residing at φ = 0, the signs of the two
terms are opposite, partially canceling the force error. The total
error in F2 may thus be smaller than the error from only one
term. In light of this coupling between errors caused by numerical
dispersion and time staggering, reducing errors from only one
source might not necessarily improve overall accuracy. Therefore,
finding a solution that can simultaneously reduce both the errors
is of particular importance.

3. Improved Maxwell solver

3.1. Improved dual [k]1 operator

In order to provide accurate modeling of intense laser–matter
interactions, it is first important to accurately model how a sin-
gle particle interacts with an intense electromagnetic wave. To
achieve this using PIC codes, we need to improve both the nu-
merical dispersion relation and compensate for the spurious force
induced by the time stagger of the E and B fields. The idea is
to determine the [k]E1 and [k]B1 operators (in Fourier space) that
minimize or eliminate errors in both the dispersion relation and
Lorentz force, and then to develop FD operators (in real space)
that provide those desired [k] and [k] operators. If one is
E1 B1
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using an FFT-based algorithm, the desired operators can be used
in Fourier space directly.

To minimize the dispersion errors, the [k]E1 and [k]B1 oper-
ators should be properly selected so that the numerical version
of the ratio k21/ω

2 approximates the real physics as much as
possible:

[k]E1[k]B1
[ω]

2
t

→
k21
ω2 . (12)

Furthermore, to minimize spurious terms in the Lorentz force we
would like simultaneously find a [k]E1 and [k]B1 to best approxi-
mate the Lorentz force:

1 − β̄1
√

[k]E1/[k]B1 cos
ω∆t
2

→ 1 − β̄1. (13)

he first condition is satisfied by setting [k]E1[k]B1 = [k]21,t ,
here [k]1,t ≡ sin( k1∆t

2 )/∆t
2 . Substituting this relationship into

the second condition then leads to,

[k]E1 =
[k]1,t

cos(ω∆t
2 )

, [k]B1 = [k]1,t cos(
ω∆t
2

). (14)

It is difficult to ensure that these equations are simultaneously
satisfied in general due to the ω dependence inside the cosine
terms. We are interested in ensuring that this relationship is
satisfied for light waves propagating in tenuous plasmas where
ω ≈ k1 therefore we replace ω = k1 in Eq. (14) and obtain

[k]E1 =
[k]1,t

cos k1∆t
2

, [k]B1 = [k]1,t cos
k1∆t
2

. (15)

We note that for modes with ω = k1 a non-zero error in the
Lorentz force remains, but in general the magnitude is smaller
than those of the standard method. Note that choosing [k]1 =

[k]1,t is exactly the solver proposed by Xu [27] to reduce field er-
rors surrounding relativistic particles. This numerical-dispersion-
free solver adopts identical operators, i.e., [k]E1 = [k]B1 = [k]1,t .
Our proposed scheme can be simply viewed as a time-staggered-
correction version of this solver. For simplicity, we will call the
solver associated with the [k]1,t operator the Xu solver in the
remainder of the article. Such operators can be readily achieved
by spectral (FFT) based solvers, but are impossible to be matched
exactly by standard FD solvers. To approximate these operators
using a FD method in broad regions of k1 space, we follow the
methodology in Ref. [36]. The target forms for [k]B1 and [k]E1
are achieved by extending the solver stencil and customizing its
coefficients. The number of stencil coefficients is increased from
p/2 to arbitrary M , where M > p/2. The detailed method of
fitting the [k]E1 and [k]B1 operators using customized coefficients
is described in Appendix B.

In Fig. 2 we present results for the k1-space operators, the
numerical dispersion errors and the Lorentz force errors for a
16-coefficient customized stencil with ∆x1 = 0.2k−1

0 and ∆t =

0.5∆x1. In Fig. 2(a) the [k]E1 (blue line) and [k]B1 (red line)
operators are shown as functions of k1. Although they seem to
deviate more from their individual ideal forms than do the stan-
dard higher-order solvers [see Fig. 1(a)], the resulting numerical
dispersion relation [ω]t =

√
[k]E1[k]B1 denoted by the yellow line

is clearly better than for the standard operators [see Fig. 1(b)]. In
Fig. 2(b), we compare the phase velocity errors when using [k]E1
and [k]B1 fitted with different stencil widths. It can be seen that
within the range 0 < k1 < 0.3kg1, a negligible phase velocity
error (∼ 10−5) is achieved using only 8 stencil coefficients. Since
the high-k modes [k1 > 0.3kg1 in Fig. 2(b)] with relatively large
phase velocity errors can usually be filtered out as they lie outside
the Fourier modes of physical importance, such a result is good
enough for most cases. The comparison in Fig. 2(b) shows that
the dispersion relation can be further improved by using solvers
with wider stencils. For example, increasing the number of stencil
coefficients from 8 to 16 improves the accuracy of the phase
velocity by nearly two orders of magnitude.

In Fig. 2(c), we compare the errors in the Lorentz force for a
plane wave with different solvers, as defined by the cancellation
factor F ≡

√
[k]E1/[k]B1 cos ω∆t

2 [see Eq. (10)], where ω is cal-
ulated under numerical dispersion. In the continuous limit, this
actor should be unity, F = 1. For the standard Yee solver and any
thers with [k]B1 = [k]E1, the F factor has a noticeable deviation
n almost the entire first Brillouin zone, k1 < kg1. Even for the Xu
solver (green line), which exhibits the correct dispersion relation,
we still have a very large deviation in the F factor. However,
the proposed solvers with different stencil widths significantly
improve the F factor. Within a considerably wide range of k1, the
ancellation factors are very close to 1, as seen in Fig. 2(c). The
ery high k modes will be filtered out as mentioned before; the

proposed solver thus provides an improved dispersion relation
and field cancellation for the k1 range of interest.

We close this subsection by noting that we have described
a choice for the k-space operators that reduce errors associated
with the second time advance of the fields in Maxwell’s equa-
tions. This operator is obtained by essentially eliminating errors
for plane electromagnetic waves propagating in vacuum. These
choices have some similarities to the PSATD algorithm where E
and B are staggered in time (in the PSATD the algorithm is in
k-space while in our case the algorithm is in real space using
FD operators). For light waves propagating in a tenuous plasma
where the correction to the Lorentz force requires knowledge
of the dispersion relation of light (see Eq. (10)), the proposed
solver will significantly reduce the errors. However, for moderate
or overdense plasmas, the new solver will have errors of O(∆t2)
as before. In addition, when nonlinearities modify the dispersion
relation of the modes, so long as the modes move near the speed
of light then the new proposed solver will have significantly less
errors than the standard solver.

3.1.1. Obliquely traveling waves
Although the proposed solver is designed for electromagnetic

waves propagating parallel to the 1̂-direction, its numerical dis-
persion relation is still more accurate than that of the Yee solver
even when the incident wave travels within a considerable angle
range. The errors with the proposed solver gradually increase
with increasing angle until they are identical to those with the
Yee solver for propagation at π/2 with respect to the 1̂-direction
(maintaining consistent time step and cell sizes). To illustrate
this feature, we assume an obliquely incident plane wave with
wave vector k0 traveling in the x1-x2 plane (k3 = 0). Let the
incident angle be θ , so that k1 = k0 cos θ and k2 = k0 sin θ .
Since k2 is now non-vanishing, we need to include [k]E2 and
[k]B2 operators when calculating the phase velocity using Eq. (5).
Here, for both the Yee and proposed solvers, the operators in x2
have identical forms, [k]E2 = [k]B2 = sin

(
k2∆x2

2

)
/

∆x2
2 . Using

he operators defined in Eq. (15) for the proposed solver and
k]E1 = [k]B1 = sin

(
k1∆x1

2

)
/

∆x1
2 for the Yee solver, we can write

the phase velocity in a unified form,

vφ =
2

k0∆t
arcsin

⎡⎣∆t
2

×

√(
sin(ηk0∆t cos θ/2)

η∆t/2

)2

+

(
sin(k0∆x2 sin θ/2)

∆x2/2

)2
⎤⎦ , (16)
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Fig. 2. (a) Calculated [k]E1 and [k]B1 operators fitted by the coefficient customization method (using a 16-coefficient stencil). The yellow line represents the numerical
ispersion relation, [ω]t =

√
[k]E1[k]B1 . (b) Error in phase velocity for solver stencils with varying number of coefficients. (c) Comparison of the cancellation factor

F ≡
√

[k]E1/[k]B1 cos ω∆t
2 (ideally F = 1) between the proposed solvers with different stencils, the standard Yee solver and the Xu solver. The numerical parameters

re ∆x1 = 0.2k−1
0 , ∆t = 0.5∆x1 and kg1 ≡ 2π/∆x1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

his article.)
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here η = 1 and η =
∆x1
∆t for the proposed and Yee solvers,

espectively. Performing a Taylor expansion in θ gives

vφ =
2

k0∆t
arcsin

[
η−1 sin

(
ηk0∆t

2

)]
−

η[sin(ηk0∆t) − ηk0∆t]

2
√
(1 − cos(ηk0∆t))(2η2 − 1 + cos(ηk0∆t))

θ2
+ O(θ4).

(17)

The leading term for the proposed solver exactly equals unity
η = 1), while for the Yee solver where η =

∆x1
∆t > 1 due to

he CFL stability condition, the leading term is always less than 1.
ince the coefficient of the θ2 term is positive, waves moving at a

small incident angle will travel slightly faster than those parallel
to the 1̂-direction. Fig. 3(a) shows the phase velocity as a function
of θ according to Eq. (16) for a reasonable choice of k0 with
x1 = ∆x2 = 0.2k−1

0 . For ∆t = 0.1ω−1
0 (blue lines), much smaller

han the Courant limit ∆tCFL = 2−1/2ω−1
0 , the proposed solver

always has the smallest errors in the phase velocity (closer to the
speed of light) for all angles less than π/2. On the other hand, for
∆t ≃ ∆tCFL (red lines), the proposed solver still has smaller errors
in the phase velocity for a wide range of θ . As is well known, we
can see that for the Yee solver with ∆t ≃ ∆tCFL, there is an angle
for which the phase velocity is exactly equal to unity (for this case
with square cells the angle is π/4). For angles less than ∼ π/8, it
is clear that for both values of ∆t the proposed solver has smaller
errors in the phase velocity. It can also be seen that for a given
time step, the dispersion errors for the proposed solver converge
to those for the Yee solver (while remaining slightly smaller) as
the angle approaches π/2. This, together with the fact that the
hase velocity at small angles for the proposed solver – unlike the
ee solver – monotonically converges to unity as ∆t is reduced,
llows for convergence tests by reducing the time step (since the
ield solver and the pusher both get more accurate).

We can also consider the accuracy of the Lorentz force in the
ˆ-direction for a plane wave moving at an angle θ and a particle
oving in the 1̂-direction. A similar analysis could be done for the

orce in the 1̂-direction. The 2̂-component of the Lorentz force has
he same form as described by Eq. (9), but due to the laser moving
 p
at an angle there is also a component of k in the 2̂-direction,
making B̃3 the sum of two terms,

˜3 =
[k]E1
[ω]t

Ẽ2 −
[k]E2
[ω]t

Ẽ1, (18)

ccording to Eq. (2). Substituting into Eq. (9), we have

F̃2
q

=Ẽ2

[
1 − β̄1

[k]E1
√

[k]E1[k]B1 + [k]E2[k]B2
cos

(
ω∆t
2

)]
S̃

+ Ẽ1β̄1
[k]E2

√
[k]E1[k]B1 + [k]E2[k]B2

cos
(

ω∆t
2

)
S̃

=Ẽ0

[
cos θ − β̄1

[k]E1 cos θ + [k]E2 sin θ
√

[k]E1[k]B1 + [k]E2[k]B2
cos

(
ω∆t
2

)]
S̃,

(19)

here Ẽ0 is the complex amplitude of the plane wave and we
ave used Ẽ2 = Ẽ0 cos θ and Ẽ1 = −Ẽ0 sin θ to simplify the ex-
ression. The term introducing numerical errors is the factor κ =

[k]E1 cos θ+[k]E2 sin θ
√

[k]E1[k]B1+[k]E2[k]B2
cos ω∆t

2 , which reduces to κ =
k1 cos θ+k2 sin θ

k0
=

in the continuous limit. In Fig. 3(b) we plot κ as a function of
θ for the [k]E,B operators corresponding to the Yee and proposed
solvers. It can be seen that for the Yee solver the error is nearly
constant over all angles and gets smaller as ∆t is reduced. On
the other hand, the factor is unity for the proposed solver at an
angle of 0 and is always closer to unity (for all angles) than for
the corresponding Yee solver.

3.1.2. Behavior in a plasma
The proposed solver also gives more accurate dispersion rela-

tion for light in a plasma. In a cold and static plasma with the
ions assumed to be immobile, it can be shown (see Appendix C)
that the simple numerical dispersion relation(
[ω]

2
t − [k]E · [k]B + s(ω, k)ω2

p

) (
[ω]

2
t − s(ω, k)ω2

p

)
= 0 (20)

s satisfied when using a momentum-conserving scheme where
he interpolation function for the electric field is identical to the
eposition function for the charge (current). Here, s is an auxiliary
arameter related to the interpolation function and the aliasing
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Fig. 3. (a) Phase velocity, βφ , and (b) factor κ (see text for definition) vs. incident angle. To generate these plots, we take ∆x1 = ∆x2 = 0.2k−1
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ffect, as defined in Appendix C. After inspection, it can be seen
hat the first term in the above equation corresponds to the
lectromagnetic mode, while the second term corresponds to the
angmuir mode.
In Fig. 4 we plot the numerical dispersion relations for both

odes using the Yee and proposed solvers and compare them
gainst continuous-limit expressions for ωp = 1. To generate
hese plots, we assume the aliasing effect is negligible and only
olve Eq. (20) in the first quadrant of the fundamental Brillouin
one, i.e., (k1, k2) ∈ [0, kg1/2] × [0, kg2/2], where kgi ≡

2π
∆xi

. The
Langmuir mode is shown in Fig. 4(a), where there is no observed
difference between the Yee and proposed solvers because the
numerical dispersion relation [ω]

2
t = s(ω, k)ω2

p does not explicitly
rely on the [k]E,B operators. In both cases, the dispersion relation
epends on k because of the interpolation function. The value of

ω is ωp for k = 0, and then ω decreases as the magnitude of k
ncreases.

Fig. 4(b) shows the ω-k relation for the electromagnetic mode.
t can be seen that the Yee-solver surface resides well below the
ontinuous-limit result, while that of the proposed solver falls
n-between the two. When k2 = 0 the surface of the proposed
olver converges to the continuous limit, whereas when k1 = 0 it
converges to the curve of the Yee solver. Therefore, even though
the proposed solver was specifically designed to optimize the be-
havior of single particles interacting with electromagnetic waves
in vacuum, the proposed solver still gives a significantly more
accurate dispersion relation than does the standard Yee solver
for electromagnetic waves in a plasma. For waves propagating
roughly along the 1̂-direction in a cold plasma, the proposed
solver is nearly as accurate as it is in vacuum. We have only
plotted results for square cells, but the general conclusions still
hold for rectangular cells.

3.2. CFL stability condition

The use of different FD stencils in Ampere’s and Faraday’s
laws leads to a different Courant–Friedrichs–Lewy (CFL) stability
condition than that obtained for a conventional solver. According
to the numerical dispersion relation in Eq. (4), the following
constraint on the time step is obtained in order that ω be a real
number for a real wave number:

∆t
2

√
⎛⎝ M∑

j=1

CB
j sx1,j

⎞⎠⎛⎝ M∑
j=1

CE
j sx1,j

⎞⎠+ s2x2,1 ≤ 1, (21)
where sxi,j = sin[(2j − 1)ki∆xi/2]/(∆xi/2). We point out that
he Yee operator for the 2̂-direction is included in the above
nequality for the general 2D scenario. Noting that |sxi,j| ≤

2
∆xi

,

it can be shown that a sufficient condition (CFL limit for ∆t) for
the above inequality is

∆t ≤ 1

/√
⎛⎝ M∑

j=1

|CB
j |

⎞⎠⎛⎝ M∑
j=1

|CE
j |

⎞⎠ 1
∆x21

+
1

∆x22
. (22)

.3. Current correction for charge conservation

In a typical FDTD PIC code, the electromagnetic fields are
dvanced via Faraday’s and Ampere’s laws, while Gauss’s law is
aintained by applying a charge-conserving current deposition
cheme similar to that in Ref. [44]. The referenced deposition
cheme is second-order-accurate in all directions, which means
hat Gauss’s law is satisfied exactly for the standard second-
rder Yee solver. However, when using the proposed solver with
modified stencil in the 1̂-direction, the existing current de-
osition can no longer be charge conserving without a corre-
ponding current correction. We next show that if we modify the
econd-order-accurate current in the 1̂-direction in Fourier space
(performing an FFT only along the 1̂-direction) as follows,

J̃c,1 =
[k]1,Yee
[k]B1

J̃1, (23)

hat the continuity equation and hence Gauss’s law are satisfied
or the modified stencil, where [k]1,Yee = sin( k1∆x1

2 )/∆x1
2 is the

operator corresponding to the standard second-order Yee solver.
The existing second-order-accurate charge-conserving current

deposition satisfies the following FD representation of the conti-
nuity equation:

dtρ + dYee · Jn+
1
2 = 0, (24)

where d refers to differential FD operators. Performing a Fourier
transform in the 1̂-direction and using the corrected current from
Eq. (23), we have

dt ρ̃ + i[k]B1 J̃c,1 + i[k]2,Yee J̃2 = 0. (25)

Combining this with the divergence of Ampere’s law yields

d
(
ρ̃ + i[k] Ẽ + i[k] Ẽ

)
= 0, (26)
t B1 1 2,Yee 2
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Fig. 4. Comparison of the ω-k relation between the different solvers and theory for the (a) Langmuir mode and (b) electromagnetic mode as defined in Eq. (20). To
enerate these plots, we choose ωn = ωp = 1, kn = ωn/c = 1, ∆x1 = ∆x2 = 0.2 and ∆t = 0.5∆x1; note kg1 ≡ 2π/∆x1 . For simplicity, we neglect aliasing, i.e., only

keeping the (µ, ν) = 0 term in the summation sign of s(ω, k) (see definition in Appendix C). Note that the positions of coordinate zero are different in (a) and (b)
for better visibility. The surface of the proposed solver exactly overlaps with that of Yee solver in (a).
which indicates that Gauss’s law i[k]B · Ẽ = −ρ̃ is satisfied for
later times if it is satisfied at t = 0, where [k]B = ([k]B1, [k]2,Yee).

4. Sample simulations

In this section, we present two examples where the proposed
solver improves results from simulations. A single relativistic
charged particle co-propagating with a laser pulse is simulated
in the first example. The second is a more complicated scenario,
where an electron bunch is injected and accelerated directly by
the wakefield and laser pulse in a laser wakefield accelerator.
We used the PIC code Osiris [43,45], where the proposed algo-
rithm has been implemented. An FD solver with 16-coefficient
wide stencil was used for all the simulations in this section. As
shown in Fig. 2(b) and (c) for such a stencil there is negligible
inaccuracy relative to the exact k-space operator for k1/kg1. For
wavenumbers of interest our coefficients lead to errors less than
10−8 from the exact choice. Numerical convergence tests have
confirmed that further broadening the stencil benefits leads no
improvement in accuracy.

For a comparative study, we will show not only the results of
the proposed solver, but those of all solvers listed below:

1. Standard Yee solver.
2. Xu solver with [k]B1 = [k]E1 = [k]1,t (see Ref. [27]). This

solver is considered to have a good dispersion relation, but
because it uses identical [k]E1 and [k]B1 it does not correct
for the time-stagger errors in the magnetic field.

3. Yee solver with field time-stagger correction (Yee
t-stagger). As aforementioned, any dispersion relation can
be set as the objective in Eq. (14), not just ω = k1. By letting
[ω]t = [k]1,Yee, the solver retains the dispersion errors of
the Yee solver while possessing the time-stagger correction
in the transverse force.
4. Proposed solver, which can be viewed as the time-stagger-
corrected version of the Xu solver.

The purpose of doing the comparison is to demonstrate that
both dispersion and time-staggering errors can contribute signif-
icant numerical errors to the motion of a single particle in an
intense laser and in wakefields, and that correcting one without
the other can actually make the errors larger in some cases.
Therefore, correcting both numerical artifacts is important. In
these comparisons we also use various particle pushers as de-
scribed below. We emphasize that the results can depend on the
choices of the cell size, the aspect ratio of the cells for multi-
dimensional cases and the time step, in addition to the solver
and pusher. These examples are not intended to be exhaustive,
but illustrative.

4.1. Single particle in a laser field

In the first set of 2D test simulations, we initialized a single rel-
ativistic macro-particle which co-propagates with a plane-wave
laser pulse polarized in the 2̂-direction. Fig. 5(a) shows the initial
configuration of the simulation, where moving-window (peri-
odic) boundaries are used in the 1̂-direction (2̂-direction). The
pattern colored by red and blue represents the E2 component
of the laser pulse. For simplicity, the laser is a plane wave and
has a super-Gaussian longitudinal profile with a 100 k−1

0 long
flat-top. Thus the laser field has no diffraction as it propagates,
and the particle always feels a constant laser amplitude. In this
section, the time step (∆t = 0.05ω−1

0 ) and cell sizes (∆x1 =

0.2k−1
0 , ∆x2 = 20k−1

0 ) are fixed for all the simulations. The theo-
retical results plotted in each figure (dashed lines) are calculated
using analytic solutions, e.g., see Ref. [46].
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Fig. 5. Single-particle trajectories with an initial drift of γ0 = 20 in a laser field of amplitude a0 = 0.5. (a) Initial configuration of the plane-wave electric field and
acro-particle position. Evolution of the macro-particle (b) phase, ξ = x1 − t , (c) transverse momentum and (d) Lorentz factor for different solvers. The Higuera–Cary

pusher is used in all the simulations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In the first example, a drifting particle with γ0 = 20 is
initialized inside laser fields of moderate amplitude (a0 = 0.5)
at a location where the laser electric field (vector potential) is at
a maximum (zero). In Figs. 5(b)–(d), the particle trajectories are
compared between the above-listed solvers used in conjunction
with the Higuera–Cary (HC) pusher [40]. We have found that the
HC pusher is generally better than the standard Boris pusher: it
simultaneously exhibits the advantages of the Vay pusher [39] for
relativistically drifting particles and of the Boris pusher for con-
serving the phase volume. We leave a more detailed comparison
of the choice in pushers for a later publication.

Fig. 5(b) shows the change of particle phase, ξ = x1 − t .
Since the use of the Yee-type solvers (types 1 and 3) leads to
the laser fields traveling slower than the speed of light (but still
faster than the particle), the test particle undergoes a significantly
smaller dephasing than for the Xu and proposed solvers. This
artifact in the dispersion relation is also reflected in the oscillation
period of the transverse momentum, p2, as shown in Fig. 5(c);
the Yee-type solvers have much larger oscillation periods than
the others, while the solvers with a corrected dispersion relation
(Xu and proposed) have similar periods that agree well with the
theoretical prediction.

The adverse impact induced by the time staggering is pri-
marily manifested in the oscillation amplitude; the amplitudes
of both the standard Yee and Xu solvers in Fig. 5(c) are larger
than their counterparts that have the time-stagger correction. As
is well known, p2 satisfies the canonical momentum conservation,

p2 − aL = const., (27)

where aL is the normalized vector potential of the laser pulse.
Since the test particle is initially stationary in the 2̂-direction and
placed where aL = 0, the subsequent evolution of p2 is subject
o p2 = aL. As the test particle progressively dephases, p2 should
scillate between −a0 and a0. In this regard, only the proposed
olver gives a convincing solution. Fig. 5(d) shows the change in
, where except for the proposed solver, all others overestimate
he energy gain to different degrees. It is worth noting that we
ave also done comparisons with the standard Boris pusher, and
he results are almost identical to those with the HC pusher,
mplying that the discretization error on particle velocity has little
mpact on such problems with relatively low a0.

The situation becomes more complicated, however, for larger
0 and for particles initialized at rest, in which case the numerical
rrors originating from the particle pusher can be non-negligible.
ig. 6 shows the results the cases where the particles are initial-
zed at rest. For the test case with a0 = 10 and using the HC
usher [see Fig. 6(a)], the phase ξ given by the Yee-type solvers
ignificantly deviates from the theoretical result. The Xu solver
ives much better results, and the proposed solver agrees almost
erfectly with theory. However, when we increase the laser am-
litude to a = 100 [see Fig. 6(b)], none of the tested solvers
0
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Fig. 6. Single-particle motion for a particle starting at rest in laser fields of varying amplitude. Evolution of the particle phase, ξ = x1 − t , for (a) a0 = 10 and
b) a0 = 100 using the HC pusher with various solvers. The evolution of the (c) phase, ξ , and (d) Lorentz factor of a particle in the presence of a laser field with
0 = 100 using the proposed solver combined with different particle pushers.
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ive a quantitatively correct result. Nonetheless, the proposed
olver still provides the most accurate solution among all the
ested solvers. The remaining errors are related to the particle
usher. To illustrate this, three pushers (Boris, HC and an analytic
usher that is an extension of the ideas in Gordon et al. [30]
nd Pétri [42]) are tested along with the proposed solver for
he a0 = 100 case. By ‘‘analytic’’ pusher, it is meant that an
nalytic solution is used for the evolution of the proper velocity
nder the assumption that E and B fields are constant during an
nterval of time. It can be seen in Figs. 6(c) and (d) that only the
nalytic pusher gives quantitatively correct results. The update
o the particle position is not done analytically but is done with
econd order accuracy. However, if the particles are moving near
he speed of light, then the velocity does not change much during
time step (although the momentum might). As a result the use
f leap frog advance of the particles position leads to negligible
rrors.
For even larger laser amplitudes of a0 = 1000 and a0 = 10000

see Fig. 7), the combination of the proposed solver and analytic
usher still agree well with the theoretical results for a particle
nitialized at rest, though the use of the Boris and HC push-
rs introduces significant errors. In Fig. 8, we explored different
olver–pusher combinations for an initially drifting particle with
0 = 20. For the a0 = 100 case, the use of the proposed solver
ombined with both the HC and the analytic pusher achieves
xcellent agreement with the theory. For the a0 = 10000 case,
hese two combinations still work equally well, but significant
rrors have appeared, indicating that the time step for the pusher
nd/or the cell size and time step for the field solver may not be
mall enough. In both cases, note the extreme errors when using
he standard Yee solver, even with the analytic pusher.

It should be emphasized that this result may be of great sig-
ificance for modeling ultra-intense laser and particle interaction.
ith the onset of petawatt laser systems around the world and
ulti-petawatt laser systems to be deployed in the near future,
xperiments are being conducted to examine the complex physics
hat arises from the interaction between particles and ultra-
ntense laser fields. The proposed solver and the analytic pusher
rovide the possibility for high-fidelity simulations in this physics
egime for FD-based solvers. We note that the PSATD method
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Fig. 7. Comparison of different pushers combined with the proposed solver for a particle initialized at rest. The evolution of the (a) particle phase, ξ = x1 − t , and
(b) Lorentz factor of a particle in the presence of a laser field with a0 = 1000. (c) The evolution of the Lorentz factor of a particle in the presence of a laser field
with a0 = 10000.

Fig. 8. Comparison of single-particle trajectories for different solver–pusher combinations for a particle initialized with a drift of γ0 = 20. Evolution of the (a),
(c) particle phase and (b), (d) Lorentz factor for laser fields of amplitude a0 = 100 and a0 = 10000, respectively. The green line nearly overlaps with the red one.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. 2D PIC simulation snapshots when using the (a) standard Yee solver, (b) Yee solver with time-stagger correction, (c) Xu solver and (d) proposed solver. The
background electron density distribution, including the helium electrons and the outer-shell nitrogen electrons, is colored gray. The trapped electron bunches are
colored blue. The laser electric field is shown in red and blue. The Boris pusher was used for all cases. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
should also provide corrections to the numerical dispersion and
time-staggering errors. Such a corrected PSATD method com-
bined with the analytic pushers could also provide high-fidelity
simulations of particle motion in laser fields.

4.2. Synergistic laser wakefield and direct laser acceleration

In this section, we will apply the proposed solver to a self-
onsistent scenario that involves ionized self-injection [47] and
cceleration from a combination of wakefields (LWFA) and di-
ect laser acceleration (DLA) [48,49]. We use 2D simulations to
llustrate the numerical issues. An ultrafast, intense laser pulse
ropagates through a neutral gas composed of helium and ni-
rogen. The helium electrons and the outer-shell electrons of
itrogen are stripped out by the leading front of the laser pulse
nd form the plasma wake. The electrons in the inner shell of
itrogen are not ionized until they reach the peak intensity of
he laser. These inner shell electrons are eventually trapped by
he wake and get accelerated. Here, the laser pulse duration is
ppropriately chosen so that the laser fills the entire first bucket
nd thus overlaps with the trapped electron bunch. Therefore,
he trapped particles are not only accelerated by the longitudinal
lectric field of the plasma wake, but also may have extra energy
ain via a process now known as direct laser acceleration (DLA)
48,49].
The simulation parameters are listed in Table 1. Fig. 9 shows
snapshots for each solver around 8000 ω−1

0 after the laser enters
the plasma. Note that the Boris pusher was used for all cases. For
Yee-type solvers [see Figs. 9(a) and (b)], the laser pulse travels
slower than for those with the Xu and proposed solvers [see
Figs. 9(c) and (d)] due to their relatively large errors in the disper-
sion relation (affecting both phase and group velocities). This is
evident by comparing the position of witness beams with respect
to the wake or of the ionization leading edge. Alternatively, the
witness beams in the simulations using solvers without time-
stagger correction in the pusher [see Figs. 9(a) and (c)] exhibit
large spurious modulation in the density distribution. By com-
parison, for the solvers applying the time-stagger correction [see
Figs. 9(b) and (d)], the density modulation is greatly mitigated.

Fig. 10 shows the acceleration contributed by the LWFA and
DLA mechanisms. To generate the energy gain plots, the LWFA
and DLA contributions are evaluated by integrating

WLWFA = −

∫ t

0
v1E1dt ′ (28)

and

WDLA = −

∫ t

v⊥ · E⊥dt ′ (29)

0
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Table 1
Parameters for synergistic LWFA–DLA simulations.

Parameters Values

Laser

a0 2.0
Wavelength λ0 0.8 µm
Focal waist w0 7 µm
Pulse duration τ 45 fs

Plasma Helium density nHe 5.0 × 1018 cm−3

Nitrogen density nN 1.7 × 1015 cm−3

Numerical

Dimension (1400, 600)k−1
0

Cell sizes (∆x1, ∆x2) (0.25, 1.0)k−1
0

Time step ∆t 0.125ω−1
0

Particles per cell 8
Particle shape Quadratic

Fig. 10. Acceleration contribution from the LWFA and DLA mechanisms for
ifferent solvers. Note that the LWFA gain for the proposed solver is nearly
dentical to that of the Yee with 10× the resolution.

ver all time steps. The integrals are averaged over 500 randomly
ampled particles from the trapped bunches. Due to the slower
hase velocity of the laser resulting from the use of the Yee-type
olvers, these trapped bunches undergo faster dephasing in the
ake and hence experience a smaller acceleration gradient over-
ll. Specifically for the Yee solver, since the transverse momenta
f the trapped bunch are significantly modulated by the spurious
orce, the DLA contribution is ultimately non-negligible.

The accuracy of the proposed solver was verified by numeri-
al convergence: simulating with the Yee solver using 10 times
igher resolution gave LWFA and DLA contributions which con-
erged to those of the proposed solver for larger time steps (and
ell sizes). We also investigated the phase space distributions of
he accelerated beam and found that only the proposed solver
ave out the results converging well to the Yee with 10x higher
esolution, while others have larger phase space volume. There-
ore, from another perspective, the convergence test indicates
hat using the proposed solver can give convincing results at a
uch lower computational cost. Another point learned from the
onvergence test is, for the selected parameters, the LWFA mech-
nism dominates the whole acceleration, therefore the numerical
ispersion error is important whereas the time-stagger error is a
elatively minor issue here.
 u
5. Conclusion

In this article, we presented and analyzed three important
origins of numerical errors that prevent high-fidelity modeling
of the interaction between relativistic charged particles and a co-
propagating laser field without the use of small cell sizes and time
steps. For a standard FDTD electromagnetic PIC code, errors in
(1) the numerical dispersion relation caused by discretization in
time and space, (2) the Lorentz force induced by advancing the
electric and magnetic fields in a time-staggered leap frog algo-
rithm and (3) the momentum advance in the particle pusher will
often lead to significant inaccuracies in the field and particle evo-
lution. To suppress errors from the first two sources, we proposed
a novel higher-order FD solver with customized stencil coeffi-
cients, which was straightforward to implement into the present
framework of the code Osiris. In addition, we compared results
with the new solver using the standard Boris, Higuera–Cary and
an analytic pusher to demonstrate that the correct choice of the
particle pusher can mitigate errors in the momentum advance.

In the proposed Maxwell solver, by introducing different [k]1
operators, i.e., [k]E1 into Faraday’s law and [k]B1 into Ampere’s
aw, the electric and magnetic force felt by a particle in a light
ave can be perfectly compensated. With [k]E1[k]B1 = [k]21,t ,
hich yields the true dispersion relation ω = k1, the pro-
osed solver is nearly free of numerical dispersion errors for a
aser propagating in the 1̂-direction. Since the charge-conserving
urrent deposition scheme is only suitable for the second-order-
ccurate solver in the present Osiris, we modified the current
eposition appropriately for the proposed solver with wider sten-
ils. We have shown that by correcting the current in Fourier
pace, both the continuity equation and Gauss’s law remain sat-
sfied at each time step.

The advantages of the proposed solver have been verified by
wo sets of simulations: (1) a single particle co-propagating with
plane wave laser and (2) LWFA with ionization injection and
LA. It is shown that the proposed solver can yield results close to
nalytic solutions, while standard solvers can distort the physics
r even lead to incorrect results. The choice of the particle pusher
as also shown to be important and can lead to additional errors.
he use of the proposed solver – in conjunction with an accurate
article pusher – enables high-fidelity simulations of particle
otion in ultra-intense laser fields. The analysis described is also
seful for standard FFT and PSATD algorithms.
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ppendix A. Lorentz force exerted on a macro-particle

Without loss of generality, we consider the two-dimensional
ase with a macro-particle of charge q described by the contin-

ous coordinates (x1, x2). The transverse component of Lorentz
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force felt by the particle is interpolated from E2 and B3 defined
on the discrete grid points as

F2(tn, x1, x2)
q

=

∑
i1,i2

En
2,i1,i2+

1
2
S
(
X i1
1 − x1, X

i2+
1
2

2 − x2

)

− β̄1

B
n− 1

2
3,i1+

1
2 ,i2+

1
2

+ B
n+ 1

2
3,i1+

1
2 ,i2+

1
2

2
S

×

(
X

i1+
1
2

1 − x1, X
i2+

1
2

2 − x2

)
,

(A.1)

where tn = n∆t is discrete time, X ik
k = ik∆xk is the position

of spatial grid points in the k̂-direction and S is the interpola-
tion function. Note that we have already considered the spatial
staggering of E2 and B3.

After a Fourier transform we have

F̃2
q

=

∑
i1,i2

En
2,i1,i2+

1
2
S̃(−k1, −k2) exp

(
jωtn − jk1X

i1
1 − jk2X

i2+
1
2

2

)

− β̄1

B
n− 1

2
3,i1+

1
2 ,i2+

1
2

+ B
n+ 1

2
3,i1+

1
2 ,i2+

1
2

2
S̃(−k1, −k2)

× exp
(
jωtn − jk1X

i1+
1
2

1 − jk2X
i2+

1
2

2

)
=

[
Ẽ2(ω, k1, k2) − β̄1B̃3(ω, k1, k2) cos

ω∆t
2

]
S̃(−k1, −k2).

(A.2)

ppendix B. Approximate [k]E1 and [k]B1 using stencil coeffi-
ient customization

In this appendix, we follow the method in Ref. [36] to con-
truct discrete operators ˜[k]E1 and ˜[k]B1 that best approximate the
esired [k]E1 and [k]B1 operators. Their corresponding solver is
ssumed to have pth-order accuracy for the partial derivative in
he 1̂-direction. In Faraday’s law, the FD operator for the partial
erivative in x1 can be written as

E
x1 fi1,i2 =

1
∆x1

M∑
j=1

CE
j (fi1+j,i2 − fi1−j+1,i2 ). (B.1)

Similarly, for Ampere’s law, we have

∂B
x1 fi1,i2 =

1
∆x1

M∑
j=1

CB
j (fi1+j−1,i2 − fi1−j,i2 ). (B.2)

Performing a Fourier transform, the corresponding operators in
k-space become

˜[k]E1,B1 =

M∑
j=1

CE,B
j

sin[(2j − 1)k1∆x1/2]
∆x1/2

. (B.3)

For a standard high-order operator, the number of coefficients
M = p/2. But here we need to extend the stencil (M > p/2)
to obtain more degrees of freedom for the purpose of fitting the
given [k]E1 and [k]B1. To simplify the notations, we normalize
[k]E1,B1, ˜[k]E1,B1 and k1 to kg1 = 2π/∆x1 herefrom. In the spirit
of the least squares approximation, a function such as

F =

∫ 1/2

0
w(k1)( ˜[k]E1,B1 − [k]E1,B1)2dk1 (B.4)

should be minimized to obtain the stencil coefficients, where
w(k ) is the weight function and ˜[k] is the approximation. In
1 E1,B1
addition, the discrete operator is subject to the constraint ∂E,B
x1 →

∂x1 + O(∆xp1), which can be guaranteed by the matrix equation
MCE,B

= e1, where CE,B
≡ (CE,B

1 , . . . , CE,B
M )T , e1 ≡ (1, 0, . . . , 0)T

and the matrix element Mij = (2j − 1)2i−1/(2i − 1)! with i =

, . . . , p/2 and j = 1, . . . ,M . Specifically for the second-order
accuracy used throughout this paper, M reduces to a row vector
with elements Mj = 2j − 1.

We introduce the Lagrangian

L = F + λT (MCE,B
− e1) (B.5)

to solve the constrained least-squares minimization problem,
where λ = (λ1, . . . , λp/2)T is a Lagrange multiplier. The stencil
coefficients can be found out by seeking extrema of L, i.e.,

∂L

∂CE,B
j

= 0, j = 1, . . . ,M and
∂L
∂λi

= 0, i = 1, . . . , p/2. (B.6)

This can be written into a matrix equation(
A MT

M 0

)(
CE,B

λ

)
=

(
bE,B

e1

)
, (B.7)

where A is anM×M matrix and bE,B is anM-dimensional column
vector, each with elements

Aij =
2
π2

∫ 1/2

0
w(k1) sin[(2i − 1)πk1] sin[(2j − 1)πk1]dk1, (B.8)

E,B
i =

2
π

∫ 1/2

0
w(k1) sin[(2i − 1)πk1][k]E1,B1dk1. (B.9)

athematically, it is usually impossible to approximate the target
perators uniformly well in the whole primary Brillouin zone,
1 ∈ [0, 1/2]. Therefore, a proper weight function w(k1) is needed
or relaxation. To ensure accurate fit in the low- and moderate-k1
egions with only loose requirement in the high-k1 region, we can
se a super-Gaussian weight function

(k1) = exp
[
− ln(2)

(
2k1
wk1

)n]
, (B.10)

where n is an integer and wk1 specifies the super-Gaussian width.
n practice, we often use n = 10 and wk1 = 0.3–0.4.

ppendix C. Numerical dispersion relation in cold plasma

We follow the theoretical framework and notation in Ref. [20]
o derive the numerical dispersion relation. From Eq. (2) we can
btain(

[ω]
2
t − [k]E · [k]B + [k]E[k]B

)
Ẽ = −iJ̃

= − ω2
p

∑
µ,ν

(−1)µ
{∫

S̃ J (−k′)
γω′ − k′

· p
p
[
[ω]t S̃E(ω′, k′)Ẽ

+
p
γ

× S̃B(ω′, k′)([k]E × Ẽ)
]

·
∂ f0
∂p

d3p

} (C.1)

where the expression for J̃ is given by use of the linearized
lasov equation after Fourier transform (See [20], Eqs. (5) and
7) for details), ωp is the plasma frequency, S̃Q is the Fourier-
transformed interpolation tensor for field Q , f0 is the equilibrium
distribution function for the plasma and (ω′, k′) is defined as

ω′
≡ ω + µωg , ωg = 2π/∆t, µ = 0, ±1, ±2, . . .

k′

i ≡ ki + νikgi, kgi = 2π/∆xi, νi = 0, ±1, ±2, . . .

We can finally rewrite Eq. (C.1) into the matrix form

ϵ(ω, k)E = 0,
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and the numerical dispersion relation can be found by vanishing
the determinant of ϵ, which is similar to the dielectric tensor.

We are interested in a uniform, cold plasma with equilibrium
distribution function f0 = δ(p1)δ(p2)δ(p3). Note that f0 is normal-
ized to the plasma density as is the original definition in Ref. [20].
If we substitute f0 into Eq. (C.1) and conduct the integration, we
can obtain all the elements in the tensor ϵ. Instead of giving out
the tedious full set of matrix elements for the 3D case, we can
learn much from the 2D limit without loss of generality. It can be
shown that the elements of ϵ in the 2D limit are

ϵ11 = [ω]
2
t − [k]E2[k]B2 − ω2

p

∑
µ,ν

(−1)µS̃J1S̃E1
[ω]t

ω′

ϵ12 = [k]E1[k]B2
ϵ21 = [k]E2[k]B1

ϵ22 = [ω]
2
t − [k]E1[k]B1 − ω2

p

∑
µ,ν

(−1)µS̃J2S̃E2
[ω]t

ω′

ϵ33 = [ω]
2
t − [k]E1[k]B1 − [k]E2[k]B2 − ω2

p

∑
µ,ν

(−1)µS̃J3S̃E3
[ω]t

ω′
,

and all other elements vanish. According to the condition det(ϵ) =

0, the numerical dispersion relation is determined by ϵ11ϵ22 −

ϵ12ϵ21 = 0 and ϵ33 = 0. Viewing these two equations in the
continuous limit, the former actually gives the dispersion relation
as the product of both Langmuir and electromagnetic modes, i.e.,
(ω2

− ω2
p)(ω

2
− k2 − ω2

p) = 0; note that in the discrete scenario
the two modes are generally coupled together. The latter gives
the dispersion relation for the electromagnetic mode. If we define
si ≡

∑
µ,ν(−1)µS̃JiS̃Ei [ω]t

ω′ to simplify the notation, the equation
ϵ11ϵ22 − ϵ12ϵ21 = 0 can be written as(

[ω]
2
t −

[k]E · [k]B + (s1 + s2)ω2
p +

√
∆

2

)
×(

[ω]
2
t −

[k]E · [k]B + (s1 + s2)ω2
p −

√
∆

2

)
= 0,

(C.2)

where

∆ = ([k]E ·[k]B)2−2ω2
p(s1−s2)([k]E1[k]B1−[k]E2[k]B2)+(s1−s2)2ω4

p .

It can be easily verified that, for the continuous limit (si → 1),
the first term in Eq. (C.2) reduces to the dispersion relation of
the electromagnetic mode and the second term corresponds to
that of the Langmuir mode. This numerical dispersion relation
can be further simplified if we assume SJi = SEi. By referring to
the explicit expression of the interpolation tensor in the appendix
of Ref. [20], we have s1 = s2 ≜ s for a momentum-conserving
scheme. In this case, ∆ = [k]E · [k]B and thus Eq. (C.2) becomes(
[ω]

2
t − [k]E · [k]B + sω2

p

) (
[ω]

2
t − sω2

p

)
= 0. (C.3)

Now the numerical dispersion relation given by ϵ11ϵ22 − ϵ12ϵ21 =

0 is identical to that given by ϵ33 = 0.
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