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Abstract: Using an agent-based model of malaria, we present numerical evidence that in communities
of individuals having an affinity varying within a broad range of values, disease transmission may
increase up to 300%. Moreover, our findings provide new insight into how to combine different
strategies for the prevention of malaria transmission. In particular, we uncover a relationship
between the level of heterogeneity and the level of conventional and unconventional anti-malarial
drug administration (ivermectin and gametocidal agents), which, when taken together, will define
a control parameter, tuning between disease persistence and elimination. Finally, we also provide
evidence that the entomological inoculation rate, as well as the product between parasite and
sporozoite rates are both good indicators of malaria incidence in the presence of heterogeneity in
disease transmission and may configure a possible improvement in that setting, upon classical
standard measures such as the basic reproductive number.
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1. Introduction

Since the turn of the century, world malaria annual incidence decreased from 14.6 cases per
100 human inhabitants (pHHI), in 2000 [1], to 5.7 cases, in 2018 [2]. This improvement is the result of
adequate public health policy involving preventive actions such as vector control, implementation
of rapid diagnostic testing (RDT), drug administration of artemisinin combined therapy (ACT),
widespread use of barrier protection measures such as long-lasting insecticide-treated bed nets
(LLIN), and mixed barrier protection through vector control measures such as indoor insecticide
residual spraying (IRS). However, the risk of malaria resurgence still represents a constant menace
in regions where disease transmission was assumed to be previously controlled. During the year
2018, sub-Saharan African malaria incidence was still unacceptably high, at a rate of 22.9 annual cases
pHHI [2]. The causes for these resurgence scenarios are still unclear and appeal to more realistic
models that may uncover the essential mechanisms leading to them.

The presence of heterogeneity in malaria may influence disease transmission in multiple
ways [3]. It may concern different human and vector densities, several forms of diversity in
human age distribution, cultural, social, and genetic population backgrounds, as well as a variable
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host-acquired immunity from previous infections. It may also relate to differences in climate conditions,
land topography, local altitudes, housing structure, human migration, and the unequal use of
preventive and treatment measures [4,5]. Indeed, heterogeneous mosquito biting has been reported
as a possible factor for enhancing malaria transmission: human hosts who are bitten most will later
on infect a larger number of mosquitoes [6] and will be more likely to behave simultaneously as
super-receivers, as well as super-spreaders [7,8]. Moreover, not all human beings are equally attractive
to mosquitoes. Multiple factors seem to influence the mosquito feeding routine. During day time,
the mosquito vision apparatus seems to be the most effective mosquito guidance system. However,
at night time, olfactory cues may play a more important role in mosquito host-seeking behavior.
The affinity of the disease vector Anopheles is related to the presence of specific odors in the human
host, namely different chemical stimuli called kairomones such as the CO2 percentual fraction in
human exhaled air or the presence of some aliphatic carboxylic acids in the human skin. Human CO2

breathing may be the single most important factor conditioning mosquito feeding preferences [5].
Furthermore, different Anopheles subspecies may display different levels of anthropophillic mosquito
feeding habits [9–12]. Furthermore, infectious hosts may display higher mosquito bite attractiveness
as a result of the presence of high levels of gametocytemia [13–15].

However, till the 90’s, most of the models of malaria dynamics assumed homogeneous
transmission, while a precise and objective quantitative approach to realistic scenarios was still
lacking. In 1997, Woolhouse defined a specific model for the presence of heterogeneity in malaria
transmission, naming it the 20/80 rule [16]. This rule assumes that 80% of all mosquito bites will
occur in 20% of the human population, being inspired by Wilfredo Pareto’s original work on the
distribution of world wealth [17]. This smaller super-spreader subgroup [8] concentrates the effect of
repeated biting leading to a proportional increase in the risk of disease transmission to human hosts.
Furthermore, it stands as a privileged reservoir with a higher probability of mosquito reinfection as a
result of higher gametocytemia levels. In identical endemic conditions, this fact alone may increase
several-fold the probability of disease transmission [16]. We will refer to this Pareto–Woolhouse rule
as the PW-rule. For a review comparing the major malaria transmission models, see [18].

Spatial variation in malaria incidence and exposure to infected mosquitoes in Tanzania has been
related to the presence of clusters of higher malaria incidence among infants [19]. These were defined
as hotspots of malaria transmission, with higher mosquito bite exposure. In this case, while a small
group of children (around 10%) experienced several malaria episodes, there was no clinical evidence of
malaria symptoms in two thirds of all children. A stronger human exposure to Anopheles mosquito may
also result from spatial factors such as a closer distance to vector breeding sites, prolonged outdoor
human activities, and human genetics responsible for the production of odors more attractive to
mosquitoes [20]. In some African villages, the existence of hotspots supports continuing transmission
during the dry season, while acting as a source of infection for the rest of the village during the wet
season [20]. Within a few districts of Bangladesh with stable hotspots, the malaria incidence distribution
was remarkably similar to the heterogeneity of the 20/80 rule described by Woolhouse [16,21].

In Figure 1, it is possible to see that human and mosquito infection prevalence time series are
clearly influenced by model heterogeneity. Comparing two typical scenarios, one in which the number
of bites is distributed uniformly among the human population (Figure 1a) and another where the
PW-rule of 20/80 is applied (Figure 1b), the model predicts that heterogeneity clearly promotes malaria
persistence in both mosquito and human populations.

In this paper, we provide quantitative evidence that malaria spreading effectiveness is
strongly sensitive to heterogeneous affinity. Section 2 describes the agent-based malaria model
used in simulating different scenarios of malaria spreading, introducing a parameter for measuring
heterogeneous affinity. In Section 3.1, we investigate the possible transitions from elimination to
disease persistence, focusing on the role of three parameters: heterogeneous affinity, level of drug
administration, i.e., the fraction of human population at risk undertaking ivermectin treatment,
and human-to-mosquito (H-to-M) transmission efficiency. In particular, we use a model validation
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procedure evaluating the impact of human ivermectin treatment in mosquito survival, when compared
to similar results obtained from previous research [22,23]. In Section 3.2, we discuss further which
measurable quantities can in real situations better predict malaria incidence. Section 4 concludes
the paper.

Figure 1. Human and mosquito infection prevalence (a) in a scenario of homogeneous affinity,
namely 20% of the human individuals receive 20% of mosquitoes bites, and (b) in a heterogeneous
scenario when 20% of the human individuals receive 80% of mosquitoes bites. In both cases,
intermediate human-to-mosquito transmission efficiency is considered, wh = 0.500.

2. Methods, Model, and Analysis Tools

There are many factors influencing heterogeneous affinity in mosquito and human populations.
Some of the most important are the existence of hotspots, genetic propensity, migratory human
behavior, and particular geophysical conditions. Instead of considering these different factors
separately, we will look at their collective effect in a small fraction of human individuals receiving
the majority of mosquito bites. In other words, we will parameterize a sort of Pareto rule in its more
modern formulation, according to Woolhouse [16].

2.1. Implementing Heterogeneity in Malaria Spreading

Our model extends a previous agent-based malaria model introduced in [24], now incorporating
heterogeneous affinity. We consider a system of Nm = 4000 mosquitoes and Nh = 2000 human
individuals, both including healthy and infected individuals, henceforth represented as M0 and
H0 and as Mi and Hi, respectively (Nm = M0 + Mi and Nh = H0 + Hi). Although the density
of mosquitoes in the field may be higher than the one considered here, we model the number of
mosquitoes as a smaller effective fraction of the overall mosquito mass that randomly bites a human
individual, on average, twice a day, with a uniform distribution, and ranging from no bites to four daily
bites. The algorithm keeps track of all attributes for each agent, human or mosquito, for a particular
age, time since infection, and immunity status. All simulations take place during a time period of
30 years. More details and a flowchart describing the computer implementation of the agent-based
model are given in [24].

Heterogeneous affinity is here defined by the PW-rule parameter:

θ =
Ph
Pb

, (1)

giving the quotient between the percentage Ph of the group with the most bitten humans and the
percentage Pb of the bites that the group will receive. Next, we describe the relation between the
basic reproduction number of the Ross–Macdonald model [25,26] and the heterogeneity affinity rule
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introduced above. The basic reproductive number R0 represents the number of secondarily infected
humans that result from a single infectious human, and it is defined as:

R0 =
ma2bc
qhqm

(1 + α) = R̄0(1 + α), (2)

where m is the mosquito density, a is the human feeding rate, b and c represent respectively the
mosquito-to-human (M-to-H) and human-to-mosquito (H-to-M) transmission efficiencies, and qh and qm

are, respectively, the human daily recovery rate and the mosquito daily mortality rate. Parameter α ≥ 0
was used in previous studies accounting for the effects of heterogeneous affinity [3,5,8,16,20,27–29] and
corresponds to the so-called index of biting disparity, which has been included by assuming that the
previous basic reproductive number corresponds to the homogeneous basic reproductive number R̄0.

From empirical studies [8,16,19,20], parameter α is known to assume values in the range 0 < α <

αmax . 4. Next, we introduce an explicit definition for α, to map it from parameter θ:

α = αmax

(
1− exp

(
− (log θ)2

2σ2

))
, (3)

where σ = | log (20/80)| to settle the PW-rule of 20/80 as the heterogeneous affinity deviating from the
homogeneous state by one standard deviation, and αmax = 4. A sketch of α as defined in Equation (3)
as a function of θ, while Equation (1), is shown in the inset of Figure 2.
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Figure 2. Malaria incidence as a function of heterogeneous affinity α as defined in Equation (3).
The inset shows the change in heterogeneous affinity with θ, as defined in Equation (1).

In the present paper, the authors intend to define a specific metric for heterogeneity quantification
in the form of its possible impact on local disease transmission, equivalent to the effect of a small
migrating gametocyte-carrier population in the increase of disease resurgence risk. The utility of
preventive treatment with ivermectin in the context of high heterogeneity in disease transmission
while in the presence of different levels of background gametocytemia in the human population is
also analyzed in terms of effective disease prevention. This intervention may be used as an adjuvant
therapy to other anti-human-to-mosquito transmission measures resulting in gametocytemia reduction,
by the use of effective drugs such as artemisinin, primaquine, or methylene blue [30–33]. Therefore,
following also our previous study in [24], in this paper, we also consider two important aspects of
malaria spreading in the presence of heterogeneity, which enable us to use our previous results in
the discussion of a possible new insight into improving the control of malaria transmission. The two
aspects are (i) gametocytemia reduction by the use of specific treatment with primaquine, methylene
blue, or artemisinin derivatives and (ii) ivermectin prevention.
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2.2. Human-to-Mosquito Transmission and Drug Administration in a Heterogeneity Setting

At least two mosquito bites are required to complete the human-mosquito-human malaria
transmission cycle. However, it is the presence of gametocytes in the blood at the human-to-mosquito
transmission stage that stands as the most critical step in the persistence of malaria transmission.

Because human hosts can present a wide range of gametocytemia levels on different occasions
and during a finite period of time, the effectiveness of human-to-mosquito transmission assumes
a stochastic nature, conditioning some form of heterogeneity in the process. In the present model,
human-to-mosquito transmission efficiency wh is defined as the fraction between the number τg of
days with positive gametocytemia and the expected total duration τd of the disease, as [24]:

wh =
τg

τd
. (4)

Here, we consider the typical value τd = 150 days. The time period with potential gametocyte
production is usually longer than the disease symptomatic phase, which is of a shorter duration.
The assumed value of 150 days represents a reasonable approximation to the upper range of the
expected average disease duration. Gametocytemia duration was defined as an essential model
parameter, tunable through a dynamically equivalent action by the potential use of a gametocidal
drug agent. In the present model, heterogeneity is analyzed at different levels of disease H-to-M
transmission (from wh = 0.400 to wh = 0.800).

In the case of heterogeneous transmission, the combination of several anti-malarial strategies is
crucial to achieve epidemic control [3]. The possibility of quarantine may be ineffective in malaria
asymptomatic patients. Even gametocyte carriers may briefly show only asexual forms of the most
dangerous parasite Plasmodium falciparum (Pf ) in their peripheral blood. With new laboratory assays
for early disease diagnosis, diagnostic accuracy in migrant populations may improve. However,
deciding which migrants should be treated with effective anti-malaria treatment at admittance
is debatable.

Ivermectin has proven effective against Plasmodium falciparum infection, by selective killing of
Anopheles mosquitoes shortly after a successful bite, before the parasite is able to complete its sporogonic
development [22,34–39], and apparently without any form of direct toxicity to the parasite [40].
This ivermectin selective killing action on biting mosquitoes may be extremely effective in disease
prevention, by reducing the need for treatment with artemisinin derivatives, thus lowering the risk of
artemisinin drug-resistance expansion [37].

Ivermectin prevention was introduced in the present model as an adjustable parameter δiv,
according to a previously published definition [24]. The δiv parameter results from the product of
ivermectin administration probability piv (in the range between 0.0, with no ivermectin prevention,
and 0.50, with ivermectin prevention in 50% of the human population) and the ivermectin-induced
mosquito mortality constant parameter (giv = 0.50):

δiv = piv × giv . (5)

This mathematical implementation of the ivermectin effect is based on the knowledge that
approximately half of all mosquitoes will die during the first four days after feeding on a human-host
under ivermectin treatment [22]. As described below, we will validate such implementations in our
model, looking into mosquito survival distribution curves and comparing them with Chaccour’s
original results. We also evaluate if there is any correlation between mosquito mortality as a
result of ivermectin human treatment when compared to mosquito mortality occurring during the
parasite incubation period inside the mosquito, according to what would be expected from theoretical
predictions.

At this point, we clarify a few aspects to address the limitations of our approach and better
establish the context of this agent-based simulation scenario. In order to include the effect of ivermectin
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in our model, we needed to use a simplified computational procedure replicating the consequences
of mosquito feeding on human individuals under ivermectin treatment. Although this procedure
may be considered overly simplistic, it is, none the less, computationally efficient, being based on
a simple Bernoulli process in order to decide the fate of the mosquito after feeding on a human
individual under ivermectin. In this way, one does not take into account aspects that could be
addressed in the clinical context, namely ivermectin pharmacokinetics and pharmacodynamics [23].
Our validation procedure focuses on comparing mosquito survival data from our model simulation
with data from empirical mosquito survival data, such as presented in [22]. We did not include any
other pharmacokinetic concept in our computational algorithm, as we considered the assumption
from published data, that 50% of mosquitoes would die within four days after feeding on a human
host under ivermectin treatment, valid. In our computational algorithm, we pretend to simulate
ivermectin toxicity with a simpler procedure, ignoring other more complex pharmacokinetic concepts.
The impact of ivermectin in inducing mild mosquito mortality in the time spent during disease
incubation is, most likely, the critical factor in reducing disease transmission with ivermectin treatment,
as the effect of ivermectin in global mosquito density is mainly residual. Our validation procedure
was essentially based on determining the mosquito survival distribution curves from our model
and whether they would be compatible with the expected results obtained from our pharmacokinetic
assumptions for the mosquito survival distribution curves, when compared to empirical data, such as
presented in [22].

2.3. Predictive Rates for Assessing the Strength of Malaria Transmission and the Annual
Entomological Inoculation

Field malaria transmission is difficult to monitor, requiring various methods to measure different
aspects of disease transmission [41]. Here, we consider three metrics to monitor the intensity of malaria
transmission: (a) malaria incidence (MI), (b) parasite rate (X) for human individuals, and (c) sporozoite
rate (Z) for mosquitoes.

Malaria incidence is defined as the confirmed malaria cases per person per unit of time and,
in particular, as the annual number of confirmed malaria cases per 100 inhabitants at risk. The parasite
rate X is given by the fraction of infected humans and is also known as the prevalence of infection
in humans [6,42]. This rate is obtainable from the slide positivity rate (SPR), which is defined as the
number of microscopy-confirmed malaria tests per 100 suspected cases examined [43]. SPR is useful in
establishing temporal trends in malaria and simple to implement at peripheral health facilities. It only
considers laboratory confirmed cases of malaria and may also be derived from rapid diagnostic testing
(RDT-PR) [44]. SPR has been associated with malaria incidence and identified as a strong predictor of
malaria transmission in Yunnan province, China [45]. The sporozoite rate Z represents the fraction of
infected mosquitoes [42,46].

Although these two indices, Z and X, are commonly used separately in malaria research [42],
we combined their behavior with respect to heterogeneity, introducing a “global infection rate” G
parameter, which is given by the product of both rates:

G ∼ ZX , (6)

where the pre-factor is introduced in order to have the result in the form of a squared percentage.
Related to these predictive rates is the annual entomological inoculation rate (EIR) defined as:

EIR = 365 m a Z , (7)

where, as stated above, m is the mosquito density and a is the human feeding rate.
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3. Results

3.1. From Disease Persistence to Elimination in a Scenario of Increasing Heterogeneity

3.1.1. Heterogeneity and Ivermectin

The present model was implemented for sets of ten simulations in three heterogeneity scenarios,
defined by the following values of heterogeneity affinity: low (θ = 1, 0.66), intermediate (θ = 0.5, 0.4),
and strong (θ = 0.33, 0.29, 0.25). See Equation (1). These values are equivalent to the set of PW-rules
of 20/20, 20/30, 20/40, 20/50, 20/60, 20/70, and 20/80, respectively. Our results show a consistent
linear correlation between 30 year average malaria incidence and increasing levels of heterogeneity,
suggesting that heterogeneity strongly promotes malaria transmission (Figure 2).

Next, we analyze how heterogeneity in disease transmission is influenced by ivermectin treatment,
i.e., by the level of drug administration. In the absence of ivermectin administration, malaria incidence
is three times higher in high heterogeneity simulations related to the PW-rule of 20/80 (θ = 0.25),
for which around 150 annual cases pHHI are observed, when compared to simulations in full
homogeneity (θ = 1.0) where one observes ∼50 annual cases pHHI. The curve in Figure 3a for
piv = 0 clearly shows this pattern. Moreover, this pattern is significantly reduced if ivermectin is used
by even a small fraction of 5% of the general population, and a major decline in malaria incidence,
very close to disease extinction, can be achieved by using ivermectin treatment in 20% of the general
population, in the high heterogeneity scenario (PW-rule of 20/80, θ = 0.25).

An important feature is revealed in Figure 3b: isolines of constant malaria incidence fit
approximately a linear relation α + spiv with s ' −18. If malaria incidence is plotted as a function of
this linear relation, we uncover a transition from disease persistence to elimination at α− 18piv ∼ −1.
Our results suggests that an increase in malaria transmission due to heterogeneity can be overcome
when the population fraction under ivermectin treatment is such that piv & (α + 1)/18.
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Figure 3. (a) Malaria incidence as a function of the heterogeneous affinity α and the ivermectin
probability piv, showing that isolines of malaria spreading are approximately a linear combination of
both variables. (b) Malaria incidence as a function of the linear combination α + sPiv with s = −18,
showing a transition from disease persistence to elimination. In all cases, the human-to-mosquito
transmission efficiency is held constant at wh = 0.5.

It is important to stress that our model predicts a higher impact of ivermectin in disease
transmission when compared to previous empirical results [38]. Our agent-based model is a simplified
version of real events concerning the consequences of iterating mosquito bites in human individuals,
in a closed and well controlled simulation environment. However, despite this limitation as a tool
for exploring hypothetical scenarios, the ivermectin algorithm in the model simulation presents
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realistic results at a more qualitative level, in compliance with the expected ivermectin-induced
mosquito mortality.

3.1.2. The Role of Transmission Efficiency Combined with Ivermectin Treatment in the
Heterogeneous Scenario

In the present model, human-to-mosquito transmission efficiency wh is related to the time of
gametocytemia duration and reveals a strong correlation with malaria incidence in high heterogeneity
scenarios. However, this correlation is consistently suppressed with higher rates of ivermectin
prevention, as shown in Figure 4a.

In this case, as shown in Figure 4b, isolines of constant malaria incidence fit approximately a
linear relation wh + spiv with s ' −4.2, and malaria incidence is approximately proportional to this
linear combination.
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Figure 4. (a) Malaria incidence as a function of the human-to-mosquito transmission efficiency wh
and the ivermectin probability piv, showing that isolines of malaria spreading are approximately a
linear combination of both variables. Therefore, we plot in (b) the malaria incidence as a function of
the linear combination wh + sPiv with s = −4.2, clearly showing a gradual transition from elimination
to endemic prevalence. In all cases, the PW-rule of 20/80 was used, corresponding to θ = 0.25.

3.1.3. Mosquito Survival Patterns

In the present model, ivermectin is responsible for a consistent reduction in mosquito life
expectancy resulting in lower chances for Plasmodium parasites to mature to the stage of sporozoite
inside the mosquito, after feeding on a gametocyte-carrier human host. With a higher fraction of
human hosts on ivermectin treatment, mosquito mortality is higher during the initial period of the
mosquito life time before the necessary ten days for parasite maturation inside the mosquito gut.
See Figure 5.

Average mosquito mortality, during the 10 day parasite incubation time period as a direct
result of ivermectin treatment, is influenced by the fraction of human hosts on ivermectin treatment.
Mosquito mortality was consistently stable and independent of different heterogeneity levels in
all simulations with identical model parameters. In Figure 5a, we show the mosquito survival
distribution curve for ta 30 year time for different values of ivermectin probability and fit it with an
exponential function:

N = A exp (γt) (8)

with γ and A, which vary linearly with piv, as shown in Figure 5b,c.
The intersection point in Figure 5a around 10 days coincides approximately with the parasite

incubation time period inside the mosquito, as ivermectin-induced mosquito mortality is typically
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higher during the first ten days of treatment and becomes residual thereafter. The incubation time period
found in our simulation is of the same order of magnitude of the value found in other studies [37].

Figure 5. (a) Mosquito survival distribution curve for 30 year time series (five samples), uncovering
an intersecting point around 10 days. The exponential fit N = A exp (γt) has parameters, γ and A,
which vary linearly with Piv as shown in (b,c). In all cases, high heterogeneity (θ = 0.25) and low
human-to-mosquito transmission efficiency (wh = 0.5) are fixed.

3.1.4. Validation of the Ivermectin Parameter

A theoretical approach to model validation is usually difficult to implement when evaluating
a computational algorithm equivalent to the use of ivermectin in a human population. Still, in this
section, we describe a model validation procedure by graphically comparing the results from our
model, incorporating ivermectin as a quantitative parameter in terms of mosquito survival, with data
from previous research [22].

As shown in Figure 6, the differences found in mosquito survival between the ivermectin human
treatment group and the human control group are small. However, notice that mosquito survival
at 12 days is slightly higher in the model simulation, close to 20%, when compared to the residual
survival in the empirical data [22]. This difference can be explained by the implementation of a
more conservative computational algorithm in our model, in terms of mosquito survival. Globally,
our model survival curves were quite similar in shape to those of Chaccour’s original paper, suggesting
that this ivermectin model may reproduce acceptable model simulations, with mosquito survival
results within the expected range.

Figure 6. Validation of the ivermectin model: (a) mosquito survival curve in empirical series as a result
of ivermectin treatment in 100% of all human individuals when compared to the untreated human
control group [22] and (b) mosquito survival curve as a result of model simulation of ivermectin
treatment in 100% of all human individuals when compared to a model simulation with no treatment
in the control group.
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3.2. Towards Parameters for Assessing Malaria Incidence

3.2.1. Utility of Plasmodium Infection Metrics

An important issue addressed in our model concerns the presentation of malaria burden results.
For that purpose, we used a point analysis of annual malaria incidence per 100 inhabitants as a reliable
metric of malaria transmission intensity. However, we also tested an alternate rate resulting from the
combination of two other well-known and reliable infection rates: sporozoite rate (Z) and parasite rate
(X).

We define the G-rate as the result from the product of both sporozoite and parasite rates.
See Equation (6). With the background of different heterogeneity scenarios, we found a consistent
correlation of the G-rate with malaria annual incidence, when compared to the established role of
the parasite rate in defining the intensity of malaria transmission. Comparing the different plots in
Figure 7, one sees that in the presence of transmission heterogeneity, malaria incidence correlates better
with the G-rate, than with any of the other rates, Z or X, separately.
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Figure 7. Scatter-plot between annual malaria incidence per 100 inhabitants and (a) the Z-rate, (b) the
X-rate, and (c) the ZX-rate. In each case, we merge different levels of heterogeneity and at three different
levels of ivermectin treatment, namely piv = 0.00, 0.10, and 0.20. Independently of the heterogeneous
affinity and ivermectin probability, there is a very accurate relationship given by MI ∼

√
ZX.

3.3. Performance of Classical Ross–Macdonald Parameters in Heterogeneity-Driven Scenarios

We determined the combined influence of ivermectin treatment on two important
Ross–Macdonald model classical metrics, at different levels of heterogeneity affinity: the annual
entomological inoculation rate (EIR), defined in Equation (7), and the basic reproductive number (R0),
at different levels of heterogeneity (Figure 8a,b).

As expected, mosquito mortality progressively increases with higher percentual use of ivermectin
in the general population. When the ivermectin treatment rate reaches the value of 0.20, i.e., nearly 93%
of all mosquito deaths occur during the 10 days after the initial blood meal, when the parasite is still
developing into the next transmissible form, explaining the effectiveness of this drug in blocking
disease transmission.

Nonetheless, our simulations indicate that EIR is a better indicator than R0 in the prediction of
malaria transmission, as shown in Figure 8c,d. A possible explanation for this observation is that EIR
values are consistently higher with increasing levels of heterogeneity.



Appl. Sci. 2020, 10, 8696 11 of 15

piv

(a)

0.00

0.05

0.10

0.15

0.20

α

0.0

0.5

1.0

1.5

2.0

R0

0.5

0.6

0.7

0.8

0.9

1.0

p
iv

(b)

0.00

0.05

0.10

0.15

0.20

α

0.0

0.5

1.0

1.5

2.0

EIR

1

2

3

4

5

0.4 0.5 0.6 0.7 0.8 0.9 1

R
0

0

40

80

120

160

M
a
la

ri
a
 I

n
c
id

e
n
c
e

0 1 2 3 4 5 6

EIR

(c) (d)

Figure 8. (a) The basic reproduction number, Equation (2), and (b) the annual entomological inoculation
rate, Equation (7), both as a function of the ivermectin probability piv and heterogeneous affinity
α. In (c,d), we show the scatter-plots of the basic reproduction number and annual entomological
inoculation rate, respectively, with the corresponding values of malaria incidence. Clearly, there is a
significantly stronger correlation of malaria incidence with EIR than with R0.

Additional simulations were performed for other classical Ross–Macdonald model
parameters, such as the human feeding rate a, mosquito-to-human transmission parameter b,
and human-to-mosquito transmission parameter c, with different results according to the heterogeneity
level. While a is not significantly affected by heterogeneity, we find a consistent reduction in b with
increasing levels of heterogeneity; on the contrary, c is positively and linearly correlated with higher
heterogeneity levels.

The level of heterogeneity at which c became higher in magnitude than b was above the level
corresponding to the PW-rule of 20/60, where we had previously found an inversion of human
infection prevalence. From this relation between b and c, one may assume the possible existence of
some form of proportionality of the fraction c

b with the biting disparity index α.

4. Discussion and Conclusions

We addressed heterogeneity as an important aspect in disease transmission, with a severe impact
on the disease prevention strategy. To that end, we used a previously described agent-based malaria
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model to simulate malaria transmission in scenarios of varying heterogeneous affinity, aiming to
identify parameters that potentiate transition from disease persistence to elimination. Emphasis was
placed on the role of preventive interventions, such as mass administration of ivermectin treatment
(possibly in combination with gametocidal therapy), as well as on the adaptability of field malaria
transmission indicators to accurately predict malaria incidence.

Human-to-mosquito transmission, which is directly related to the time length of positive
gametocytemia (wh), is fundamental in disease transmission. Mass administration of ivermectin
can potentially inhibit transmission due to its lethal effect on mosquito populations, immediately after
feeding, therefore not allowing for complete gametocyte maturation to take place inside the mosquito,
long before completing the 10 day incubation time period. Such an effect is potentiated in the settings
of high mosquito density and high human-to-mosquito transmission [22,24,35].

We found that in the presence of strong heterogeneity, the product between the sporozoite and the
parasite infection rates becomes a reliable indicator for predicting malaria transmission, performing
better than the parasite rate and sporozoite rate, separately, in identical heterogeneity settings,
in particular when taking into consideration the possibility of mass administration of ivermectin.
Furthermore, we found that among the classical Ross–Macdonald model metrics, EIR is much more
sensitive than R0 in predicting malaria incidence in high heterogeneity scenarios.

The assumptions of our model intend to assess the impact of heterogeneity in malaria transmission.
Being an agent-based model, the assessment takes place at a qualitative level. In other words,
while keeping its simplicity in order to facilitate the exploration of different scenarios, our results
provide evidence, at least at a qualitative level, of the large efficiency of ivermectin administration.
We described the quantitative output of our simulations, parameterized according to the knowledge
about both populations and drug features, but carefully revised our claims, preventing stating
quantitative conclusions, only possible with clinical trials, which is of course beyond the scope of a
computational agent-based simulation.

Moreover, our model is based on a stochastic agent-based model that we previously published [24].
The model is implemented based in a detailed multi-parameter calibration, including information
from empirical knowledge about mosquitoes, human-mosquito interaction, and the pharmacological
features of ivermectin. Here, an additional assumption is derived from a well-established concept
in economy and ecology, which is strongly connected to the presence of transmission hotspots and
disease super-spreading events, as we now report in the manuscript: 20% of the causes are responsible
for 80% of the consequences. Our model of heterogeneity was implemented as a mathematical tool
replicating that concept, in accordance to the use of the 20/80 rule in infectious disease research by
Woolhouse, in 1996.

To better explore the robustness of our results against variations of heterogeneous affinity,
we introduced a parameter that measures theat affinity. Our results show a linear relationship
between the level of heterogeneous affinity and the minimal level of ivermectin administration.
Again, the specific linear coefficients are not taken as trustworthy results, but the linear relationship
between the minimum level of drug administration and the level of heterogeneity can be presented as
one conclusion in this study.

One particular aspect uncovered in our simulations is the evidence that the annual entomological
inoculation rate seems to be a better predictor than standard quantities such as the basic
reproduction number.

Overall, our model emphasizes the importance of taking into account heterogeneity,
when predicting malaria transmission, showing that the effect of mass drug administration of
ivermectin is not only dependent on ivermectin intensity and human-to-mosquito transmission
efficiency, but that it is also clearly influenced by the presence of heterogeneity in disease transmission.

Heterogeneity is clearly illustrated by the presence of transmission hotspots, which have been
shown to be geographically distinct and able to present substantial diversity in temporal transmission
dynamics [47]. The role of these hotspots in malaria transmission may assume special importance
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in small villages in close proximity to high Anopheles mosquito density and active larval breeding
sites. Children, as well as recent immigrants coming from malaria high-risk regions should also be
considered as transmission hotspot heterogeneity sources. In our view, a combined treatment strategy
with gametocidal drugs (such as artemisinin, primaquine, or methylene blue) and mass administration
of ivermectin, specifically targeting transmission hotspots, may stand as a promising alternative
to dealing with the risk of malaria resurgence in high heterogeneity settings, deserving further
consideration in future field trials.
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