

Mobile Application to Identify Recyclable Materials

António Francisco Serol Sequeira

Master in Computer Engineering

Supervisor:
Prof. Dra. Ana Maria Carvalho de Almeida, Associate Professor,
Iscte Instituto Universitário de Lisboa

Co-supervisor:
Prof. Dr. Luís Miguel Martins Nunes, Associate Professor,
Iscte Instituto Universitário de Lisboa

October, 2020

Mobile Application to Identify Recyclable Materials

António Francisco Serol Sequeira

Master in Computer Engineering

Supervisor:
Prof. Dra. Ana Maria Carvalho de Almeida, Associate Professor,
Iscte Instituto Universitário de Lisboa

Co-supervisor:
Prof. Dr. Luís Miguel Martins Nunes, Associate Professor,
Iscte Instituto Universitário de Lisboa

October, 2020

Direitos de cópia ou Copyright

©Copyright: António Francisco Serol Sequeira.

O Iscte - Instituto Universitário de Lisboa tem o direito, perpétuo e sem limites geográficos, de

arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de

forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar

através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos

educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.

Mobile Application to Identify Recyclable Materials

i

Acknowledgments

I would like to thank the following people, without whom I would not have been able to

have made it through this dissertation.

To both my supervisors Professor Ana Almeida and Professor Luís Nunes for teaching

me so much about machine learning and for their willingness for providing guidance and

feedback that substantially improved the quality of this dissertation.

To my family, especially my parents for their constant support that they have shown

me though this project and for always doing the possible and the impossible for me.

To my girlfriend, Raquel, for her love and all the support that she shows every day on

both the small and big life problems.

Finally, to my friends, for understanding that I could not be there for some occasions

due to the time required for this dissertation.

Mobile Application to Identify Recyclable Materials

iii

Resumo

Nesta dissertação é proposto um sistema para ajudar o consumidor a reciclar

eficientemente. O sistema é composto por uma aplicação móvel que captura imagens de

lixo e classifica a sua categoria usando um modelo de aprendizagem automática.

Consegue também comunicar com um servidor para atualizar o modelo com versões

melhoradas e enviar as imagens para o servidor para contribuir para a criação de modelos

mais precisos.

Foi demonstrado através de um protótipo totalmente funcional que o sistema proposto

funciona. Algumas imagens de lixo foram categorizadas correctamente, mas o modelo de

aprendizagem automática produzido durante este projeto não é preciso o suficiente, em

qualquer categoria de lixo, para usar em cenários da vida real.

As principais contribuições deste estudo são um compêndio de informação na área de

visão de computador e aprendizagem automática para categorizar lixo, e um sistema

protótipo funcional que utiliza elementos de contribuição colaborativa e aprendizagem

automática para ajudar o consumidor a reciclar mais eficientemente.

Palavras-Chave: Visão de Computador; Aprendizagem Automática; Reciclagem;

Contribuição Colaborativa; Gestão de lixo.

Mobile Application to Identify Recyclable Materials

v

Abstract

This dissertation proposes a system to help the consumer recycle efficiently. The

system is composed by a mobile application that can capture images of waste and classify

their category through the usage of a machine learning model. Furthermore, this

application can communicate with a server to update the model with new improved

versions and also upload the images to the server in order to contribute to the creation of

more precise model versions.

The system has been validated by a fully working prototype. Although the proof of

concept has been achieved, with some types of waste items correctly categorized, the

machine learning model produced is not precise enough to be used in real-life scenarios,

that is, for any type of waste.

The main contributions of this study are a compendium of information in the area of

computer vision and machine learning to categorize waste, and a working prototype

system that utilizes crowdsourcing and machine learning elements to help the consumer

recycle more efficiently.

Keywords: Computer Vision; Machine Learning; Recycling; Crowdsourcing; Waste

Management.

Mobile Application to Identify Recyclable Materials

vii

Contents

Acknowledgments .. i

Resumo ... iii

Abstract ... v

Contents ... vii

List of Tables .. ix

List of Figures .. xi

Abbreviations ... xiii

Chapter 1 – Introduction ... 1

1.1. Motivation .. 2

1.2. Research Questions .. 2

1.3. Objectives .. 3

1.4. Research methodology ... 3

1.5. Scientific Contribution ... 4

1.6. Structure and organization of the dissertation ... 4

Chapter 2 – Literature Review .. 7

2.1. Methodology .. 7

2.2. Related Work ... 8

2.2.1. Robotic Systems ... 8

2.2.2. Smart Trash Systems .. 10

2.2.3. Mobile Applications ... 11

2.2.4. Case Studies .. 12

2.3. Results from the Literature .. 12

Chapter 3 – MobileNet ... 21

Chapter 4 – High-level Architecture ... 25

Chapter 5 – ML Model Processor ... 31

5.1. MobileNet v2 ... 32

5.1.1. Methodology ... 33

5.1.2. Results .. 34

5.1.3. Converting to mobile .. 38

5.1.4. Repository ... 38

5.2. SSD MobileNet v2 ... 39

5.2.1. Methodology ... 40

5.2.2. Results .. 42

5.2.3. Converting to mobile .. 48

5.2.4. Repository ... 48

Mobile Application to Identify Recyclable Materials

viii

Chapter 6 – REST API ... 49

6.1. Architecture ... 50

6.2. Endpoint Definition ... 51

6.3. Testing ... 51

6.4. Repository .. 51

Chapter 7 – Mobile Application .. 53

7.1. Architecture ... 54

7.2. Available Actions .. 54

7.3. Testing ... 61

7.4. Repository .. 62

Chapter 8 – Conclusions and recommendations ... 63

8.1. Main conclusions ... 63

8.2. Contributions to the scientific and business community 64

8.3. Limitation of the study ... 65

8.4. Future work .. 66

Bibliography .. 67

Appendices .. 71

Appendix A .. 73

Model Endpoints ... 73

/model/download/ ... 73

/model/version/ ... 73

/model/upload/ .. 74

User Endpoints .. 74

/users/login/ .. 74

/users/register/ ... 75

/users/logout/ .. 75

Appendix B ... 77

Mobile Application to Identify Recyclable Materials

ix

List of Tables

Table 2.1 – List of databases .. 8
Table 2.2 – Search criteria .. 8

Table 2.3 – Synthetized results from the literature ... 16

Table 4.1 – Trashnet dataset details.. 27
Table 4.2 – Real life images dataset distribution.. 29

Table 5.1 – Test dataset results confusion matrix with Mobilenet v2 36
Table 5.2 – Precision results for Test dataset by category with Mobilenet v2 36
Table 5.3 – Real dataset results confusion matrix with Mobilenet v2 37
Table 5.4 – Precision results for Real dataset by category with Mobilenet v2 37

Table 5.5 – Test dataset results confusion matrix with SSD Mobilenet v2.................... 46
Table 5.6 – Precision results for Test dataset by category with SSD Mobilenet v2 46

Table 5.7 – Real dataset results confusion matrix with SSD Mobilenet v2 47
Table 5.8 – Precision results of Real dataset by category with SSD Mobilenet v2 47

Mobile Application to Identify Recyclable Materials

xi

List of Figures

Figure 2.1 – Search process .. 7
Figure 2.2 – Algorithm Distribution ... 13

Figure 2.3 – CNN Architecture Distribution .. 14
Figure 2.4 – Dataset Distribution ... 14
Figure 2.5 – Accuracy benchmarking results with Trashnet dataset 15

Figure 3.1 – The structure of an example CNN [41] .. 21

Figure 3.2 – MobileNet body architecture [44] .. 22
Figure 3.3 – Factorization of standard convolution [44] .. 23
Figure 3.4 – Representation of MobileNet layer except the last layer [44].................... 23

Figure 4.1 – High-level system architecture ... 25
Figure 4.2 – Cardboard category image samples ... 28
Figure 4.3 – Glass category image samples ... 28

Figure 4.4 – Metal category image samples ... 28
Figure 4.5 – Paper category image samples ... 28
Figure 4.6 – Plastic category image samples .. 28
Figure 4.7 – Trash category image samples ... 28
Figure 4.8 – Image samples for real life purpose test ... 29

Figure 5.1 – Example of fine-tuning [46] ... 32
Figure 5.2 – Model training accuracy ... 35
Figure 5.3 – Model training loss ... 35

Figure 5.4 – Example of SSD MobileNet architecture [51] ... 39

Figure 5.5 – mAP results from Tensorboard .. 43
Figure 5.6 – mAP IOU results from Tensorboard .. 44
Figure 5.7 – Loss metrics from Tensorboard ... 45

Figure 6.1 – REST API architecture [56] ... 49

Figure 6.2 – Django project structure ... 50

Figure 7.1 – Mobile application architecture.. 54

Figure 7.2 – Mobile application experience flow ... 55
Figure 7.3 – Entry screen .. 56
Figure 7.4 – Select image screen .. 56
Figure 7.5 – Evaluation screen ... 57

Figure 7.6 – Capture image screen ... 58
Figure 7.7 – Confirm image screen .. 59
Figure 7.8 – Login screen ... 60

Figure 7.9 – Menu screen ... 61

Figure B.1 – User register testing ... 77

Figure B.2 – User login testing ... 77
Figure B.3 – Model version testing .. 77
Figure B.4 – Model download testing .. 78

Figure B.5 – Model upload testing ... 78

Mobile Application to Identify Recyclable Materials

xii

Figure B.6 – User logout testing ... 78

Mobile Application to Identify Recyclable Materials

xiii

Abbreviations

API – Application Programming Interface

COCO – Common Objects in Context

CNN – Convolutional Neural Network

CPU – Central Process Unit

CSV – Comma-Separated Value

GINI – Garbage in Images

GPU – Graphics Processing Unit

HTTP – Hypertext Transfer Protocol

HKNN – Hyperplane Nearest Neighbors

IoT – Internet of Things

IOU – Intersection Over Unit

KNN – K-Nearest Neighbors

mAP – Mean Average Precision

ML – Machine Learning

MVC – Model View Controller

PASCAL – Pattern Analysis, Statistical modelling and Computational Learning

RF – Random Forest

R-CNN – Regions Convolutional Neural Network

ReLU – Rectified Linear Union

REST – Representational State Transfer

SDK – Software Development Kit

SIFT – Scale Invariant Feature Transform

SSD – Single Shot Detector

SVM – Support Vector Machine

UI – User Interface

Mobile Application to Identify Recyclable Materials

xiv

URL – Uniform Resource Locator

VOC – Visual Object Class

XML – Extensible Markup Language

Chapter 1 – Introduction

1

Chapter 1 – Introduction

Waste is defined as “any substance or object which the holders discards or intends or is

required to discard”1. Our societies generate waste at an increasing and alarming rate.

Each European Union inhabitant in 20162 generated on average 5.0 tons of waste, only

37.8 % of this waste was recycled with 45,7% being landfilled. This means that 3,11 tons

of waste per inhabitant were landfilled, incinerated or deposited in the environment.

These statistics show that recycling still has a great margin for improvement and that

waste that does not get recycled may end up polluting the air, water and soil since landfills

take up land space. Incineration is also an alternative way to treat waste, yet this solution

may result in emissions of air pollutants. Increasing the efficiency of recycling is a

mandatory step to reduce the pollution to the environment, reduce health impacts and to

achieve better resource efficiency.

Recycling is defined as any operation with the aim of recovering waste materials,

reprocessing them into products, materials or substances that can be used again after being

processed3. Not all waste can be recycled in the same way, it is important to categorize

and separate it. An important level of waste segregation is achieved at the end point of

the recycling lifecycle, where factories specialized in waste segregation use semi-

autonomous methods to separate the trash. However, waste segregation is achieved at

multiple levels and, at the consumer level, it is achieved by using different containers.

Yet, for this to be efficient, the consumer needs to know in which container he/she should

put the waste. Moreover, the consumer needs to be motivated to do so mainly because

this task can be more elaborated than what could be expected. For instance, if you have a

paper bag that has a plastic window, where should you throw out this waste: the paper

container, the plastic container?

Computers have proven to surpass humans at certain tasks, especially in repetitive

tasks. Based on this premise, machine learning (ML) has been successfully used in the

implementation of waste segregation systems for identification of waste categories based

on image recognition as explained in Chapter 2. On the other hand, smartphones, at each

1 Definition from Article 3 in website: https://eur-lex.europa.eu/legal-

content/EN/ALL/?uri=CELEX:32008L0098
2 From website: https://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_statistics
3 Definition from website: https://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Glossary:Recycling_of_waste

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32008L0098
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32008L0098
https://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Recycling_of_waste
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Recycling_of_waste

Chapter 1 – Introduction

2

generation, are increasing their processing power and camera’s resolution. Joining

together ML and smartphones seems like a natural match for present and future

applications that can analyze images and classify them, thus helping the consumer to

separate waste for recycling.

It is known that ML requires large amounts of data to produce reliable models.

Depending on the type of problem solving to be achieved by using ML, these models

might require a flow of new data to keep updating them in order to successfully solve an

evolving problem of classification. Applying crowdsourcing concepts in such system can

help secure this flow of data. Crowdsourcing can be defined as outsourcing work to a

group of agents, where traditionally this work would be assigned to a designated agent

[1].

1.1. Motivation

As stated, there still exists a great margin for improving recycling rates at the consumer’s

level. As such, the creation of systems that help the users understand how to recycle is

important. Since nowadays almost everyone has a smartphone, an application that helps

users with the task in hand seems to be an idea. Yet, due to the large amounts of data

required for training precise ML models and to maintain them updated, it is important to

secure a flow of data. Using crowdsourcing techniques can help such requirements with

a continuous flow of new data. For this a centralized server is required to receive the

images captured by the application. These images will be used to train improved ML

models that can be downloaded by the application.

1.2. Research Questions

The purpose of this research is to create an ML model for usage in an application for

smartphones, to analyze waste images and classify them into its specific recycling

category. Nevertheless, several questions remain.

RQ1: Considering the requisites of an ML model, which types of ML algorithms are

best suited for the classification of waste images within a smartphone application?

Chapter 1 – Introduction

3

RQ2: Is it possible to create an accurate (that is, achieving over 90% precision) but yet

light weight model (enabling a quick classification: under three seconds) able to run in

smartphones?

RQ3: Is the most cited public available dataset of waste images diverse enough to

produce a ML model that can classify waste into its specific recycling category in a real-

life scenario?

1.3. Objectives

This work’s main objective is to create a mobile application that can help people to

recycle. The system can work by image acquisition (capturing an image) and classifying

it into a respective recycling category. The application will be able to send the captured

images to a Representational State Transfer (REST) Application Programming Interface

(API) and reinforce the model present in the application by updating it with the most

recent ML model available through the API. For this, the main research questions will be

investigated.

Furthermore, this work intends to synthetize the related work in the area of computer

vision that uses ML to categorize waste in order to create a compendium for present and

further investigation.

1.4. Research methodology

The research methodology used in order to achieve the purposed objectives for this work

was the Design Science Research model, focused on the design and development. The

following are this dissertation’s proposed developments:

1) Creation of a multi-classifier ML model capable of identifying waste in images and

classify it into its specific recycling category.

2) Creation of a prototype REST API that will communicate with the mobile

application to receive feedback from it (in the form of images captured in the application)

and also update the ML model of the application.

Chapter 1 – Introduction

4

3) Creation of a prototype Android application, capable of taking a picture and process

it into the ML model to get a classification. It should be able to also communicate with a

REST API.

4) Field test the prototype system with real life scenarios.

1.5. Scientific Contribution

This dissertation presents the following contributions:

• Compendium of information in the area of computer vision and ML to

categorize waste.

• Working prototype system to help people to recycle.

The research on the literature, that was conducted during the development of this

dissertation, has been synthetized in a scientific paper submitted to the journal

Environmental Technology ID TETR-TENT-2020-1177. At the moment of the

conclusion of this dissertation it is still under review having been sent to the reviewers

and undergoing the normal revision process.

1.6. Structure and organization of the dissertation

The present study is organized in nine chapters. These chapters will reflect the different

phases until its conclusion.

The first chapter introduces the theme of the study along with its motivation, research

questions and objectives. This chapter also describes the research methodology utilized

in the study.

The second chapter focuses on the literature related with the work that is being studied.

It is subdivided in the methodology applied to the literature review, the categorization of

the related work in the field and a synthetization of this work. It also presents some results

based on the information that can be taken from the literature.

The third chapter reflects the ML architecture to be used in this dissertation. It

describes the architecture and introduces concepts that will help understand the work done

in upcoming chapters.

Chapter 1 – Introduction

5

The fourth chapter reflects the architecture of the system. It defines a high-level

overview of the system. Each module of the system is briefly described in this section

while also specifying the technology used. This chapter also describes the dataset that

will be used in the training of the ML model for the application. It contextualizes the

origin, categorization, and format of the data.

The fifth chapter specifies how the ML model, to be used in the application, is trained.

It describes all the steps taken, tests and results.

The sixth chapter presents the REST API information. This chapter will describe the

technology used to build the API, the architecture that was used to model the code, the

documentation of the code and how to use the API and a section that describes the tests

that were done to make sure the API was functioning as expected.

The seventh chapter describes how the mobile application was built, explaining the

technology that was used, the architecture of the code and how it was tested to make sure

it was functional as required.

The eighth and last chapter presents the conclusions from this study as well as some

recommendations, limitations and proposed future works.

Chapter 2 – Literature Review

7

Chapter 2 – Literature Review

This chapter will describe the literature review methodology and will provide a summary

of all the related work found during the review.

2.1. Methodology

The present literature research was carried between September 2019 and October 2020,

focusing on the theme of Computer Vision applications in the field of recycling systems.

Mainly, the intent was to search for scientific papers that described developments or

theories falling into the categorization of recycling waste with the help of ML.

The search method used in this study is described by Figure 2.1. The first step was to

carry out a systematic search in the available scholar databases (Table 2.1). For this, a list

of search criteria was used (Table 2.2). In step two, the results from step one were

validated with filters that consisted in the following criteria: the language must be

English, the work must be a scientific text, the content is relevant to the paper’s topic, the

work is not duplicated.

Figure 2.1 – Search process

Chapter 2 – Literature Review

8

Table 2.1 – List of databases Table 2.2 – Search criteria

Databases Search Strings

IEEE Xplore Digital Library Machine learning waste classification

Google Scholar Computer vision waste classification

B-On Computer vision recycling materials

Research Gate Waste segregation

ACM Digital Library Recyclable goods

Springer Link Image recognition recycling

 Garbage classification

This search yielded 57 papers and the filtering processing ended with 39 scientific

papers concerning the related work in the area of computer vision applied to the

classification of recyclable waste. This related work will be described in Section 2.2 and

the synthesis of the results as well as some conclusions will be described in Section 2.3.

2.2. Related Work

The literature has many examples of how image classification through ML may help to

achieve automation in recycling systems. Some just use image classification others use it

as part of a more complex system. This section will describe the examples found in the

literature in order to clarify a generalized view of the possibilities in this area.

2.2.1. Robotic Systems

Some researchers propose robotic systems which enable the automation of garbage

handling. The robotic systems can also be sub categorized in similarity of

implementation.

Chapter 2 – Literature Review

9

Conveyor Belt Systems

In this type of implementations, the system revolves around a conveyor belt where the

waste is processed, such as “a robotic grasping system for automatically sorting garbage

based on machine vision” [2], where the system is composed of three main parts: a

camera, a conveyor belt and a manipulator for object grasping. The camera images are

used to located and classify the objects with Regions Convolutional Neural Network (R-

CNN) that identifies a subset of regions in the image that might contain an object and

then tries to classify the objects in the images. Another study presents a method to classify

waste in a conveyor belt, through the usage of a high-speed camera and the extraction of

texture features combined with a probabilistic neural network to classify the waste [3].

Some researchers suggest another way for classification of plastic bottles in a conveyor

belt system can be achieved through the usage of image classification by a Support Vector

Machine (SVM) algorithm [4]. An implementation shows a conveyor belt system that is

able to classify different grades of paper only through image processing techniques using

the K-Nearest Neighbors (KNN) algorithm [5]. The authors of [6] suggest another design

for a system that can identify solid waste in a conveyor belt and grab the waste with a

robotic arm using a Hyperplane Nearest Neighbors (HKNN) algorithm.

Mobile Systems

Here, the system is mobile and can move freely in an environment in order to reach

static waste as proposed in the development [7] of a robot equipped with a thermal

imaging camera, proximity sensor and a robotic arm. The robot employs a bag-of-features

and a multi-class SVM in order to identify and classify recyclable materials. One other

study proposes a design for a semi-autonomous robot that would segregate recyclable and

non-recyclable waste using a content based image retrieval method that contains a bag-

of-features [8]. Another work proposes to quantify littering in urban environments with a

camera mounted on top of a vehicle and facing the ground. The images captured are then

used to feed a deep Convolutional Neural Network (CNN) so it could classify the waste

along with its position and timestamp [9]. Another work suggests a robot that can

categorize items for recycling through the automatic localization of the items using depth

image analysis, grab them with a mechanical arm and place them in the corresponding

recycling bin. This last part is achieved with a CNN algorithm for recognition and

categorization [10]. The authors of [11] demonstrate a robotic system that is able to collect

Chapter 2 – Literature Review

10

and segregate waste, through the usage of a CNN model for image classification. In [12]

an idea for a construction waste recycling robot is present, with the aim of identifying and

classifying nails and screws within a construction waste scene with the usage of a R-CNN

algorithm. [13] propose a micro-unmanned aerial vehicle capable of detecting litter in

real-time through the usage of a CNN with object detection algorithm and benchmarks

three different detection algorithms in the study.

Miscellaneous Systems

This category concerns systems that are abstract in its implementation, presenting a

system that can recognize and classify waste, but not specifying how to do it. [14]

mentions a computer that is able to classify what is biodegradable and non-biodegradable

through image analysis, object detection and classification with CNN. A different

approach proposes the identification of different type of plastics to conclude whether the

plastic can be recycled or not [15]. To achieve this, both visual and physical properties

are used in the classification process. The authors of [16] suggest a “a multilayer hybrid

deep-learning system” that can automatically identify waste through the usage of a CNN

algorithm.

2.2.2. Smart Trash Systems

Some studies propose systems that can receive trash, analyze and classify it based on

features of the item. These systems can be sub categorized in different types.

Reverse Vending Machines

This type of systems allows the end user to submit some waste, such as drinking cans

or water bottles and receive back for example, a voucher or money. [17] presents an

Internet of Things (IoT) implementation along with a CNN algorithm to be able to

recognize plastic waste, three different architectures of CNN were tested. In [18] a design

for a Bottle Recycling Machine to collect used bottles and classify them through the usage

of a CNN algorithm can be found. The authors of [19] suggest an IoT implementation

along with a CNN algorithm in order to create a more efficient Reverse Vending Machine.

Chapter 2 – Literature Review

11

This study tested four different architectures of CNN, as well as two different

programming languages that were benchmarked in the implementation of the system.

Smart Bins

This type of implementation refers to systems that introduce technology to the concept

of trash bins in order to sort the trash in an intelligent way. The authors of [20] present a

smart trash bin system to receive waste, classify it and place it automatically in the

correspondent container by using a KNN algorithm. Another work presents an intelligent

waste separator, dubbed “Trashcan”, with the purpose of replacing the recycle bins. This

system can identify incoming waste and place it into different containers by using a KNN

algorithm [21]. [22] proposes the design for a robotic trash bin that can locate, identify

and classify trash into organic waste, non-organic and non-waste by using an SVM

algorithm. Another study suggests an IoT smart waste segregation bin that with the help

of sensors can identify and categorize waste that is deposited inside it by using a KNN

algorithm [23].

2.2.3. Mobile Applications

A type of implementation suggested in the literature is applications for mobile devices

that can harness their image and processing power. This is the type of implementation

that is closer to what is purposed in this work, more details on how the work differs from

these implementations will be specified in Chapter 3. [24] proposes an Android

application equipped with a ML model, based on the MobileNet architecture, that allows

for a photo to be taken with the camera and classify waste present in the photo into glass,

paper, cardboard, plastic, metal or other trash. Another study proposes a smartphone app

named “SpotGarbage” that is able to detect, geo-tag and classify garbage in an image,

taken with the camera, by using a CNN algorithm [25]. The authors of [26] also propose

a mobile application that allows citizens to report uncollected garbage. They convey that

this application “has been successfully deployed and has seen more than a million

complaints registered across many Indian cities”. This system uses a CNN algorithm to

classify the images. In [27] the authors present a CNN architecture “CompostNet” with

the purpose of classifying compostable, recyclable and landfill materials. A mobile

Chapter 2 – Literature Review

12

application for IOS was created as a proof of concept to show the capabilities of the

architecture.

2.2.4. Case Studies

In the literature survey several studies focused only in benchmarking of ML algorithms.

However, the datasets generally used are specific to one study only. Such is the case with

[28] that analyses the performance of two different algorithms in two different datasets

from public and private environments. [29] tested several architectures of a CNN

algorithm in order to understand the most efficient approach for the datasets. Another

paper discusses the viability of optical identification of recyclable waste in construction

and demolition sites and compares the SVM and Random Forest (RF) algorithms [30]. In

[31] the authors benchmark multiple CNN algorithm architectures and propose an

optimized deep convolutional neural network architecture to classify recyclable objects.

One other study suggests the usage of an SVM algorithm for an intelligent sorting system

for trash [32]. The authors of [33] propose the classification of garbage via image analysis

through the usage of Scale invariant Feature Transform (SIFT) to extract the

characteristics of the image garbage label. [34] suggest a method that is able to sort two

types of materials, polycoat containers and Polyethylene Terephthalate bottles by using

the SVM algorithm to classify the objects. One research describes a way of sorting

polycoat containers from plastic bottles through the usage of image intensity data and a

SVM algorithm [35]. In [36] the authors explore the SVM and CNN algorithms with the

purpose of efficiently classifying garbage into six different recycling categories. Another

work analyses multiple CNN algorithm architectures mixed with SoftMax and SVM

classifiers to categorize garbage into different recycling types [37]. The author of [38]

evaluates five different ML algorithms applied to the classification of trash for

comparison. In a study the authors experiment with Transfer Learning and learning rates

in a R-CNN algorithm with the objective of detecting waste objects in images [39].

2.3. Results from the Literature

Analyzing all the papers that reference ML algorithms usage for image classification

applied to waste, we can synthetize this information and conclude that the CNN algorithm

has a higher predominance with 51 entries followed by SVM with 11 as it can be seen in

Chapter 2 – Literature Review

13

Figure 2.2 which presents the distribution of the algorithm usage within the universe of

papers that were reviewed. The number of entries is superior to the number of papers

because some papers review multiple algorithms.

Figure 2.2 – Algorithm Distribution

Drilling down the analysis into the most used algorithm (CNN), we have a universe of

different architectures as it can be seen in Figure 2.3, where the AlexNet architecture is

the most predominant with eight entries followed by the MobileNet with five entries.

AlexNet was introduced in 2012 and was a winner of the Imagenet Challenge [37].

MobileNet was introduced in 2017 as a class of efficient models for mobile and embedded

vision applications [40]. For the analysis of the CNN architectures the entries where the

architecture was not specified were excluded since they had no value for this specific

analysis which was meant to identify the predominant architectures.

Chapter 2 – Literature Review

14

Figure 2.3 – CNN Architecture Distribution

Figure 2.4 – Dataset Distribution

It is not possible to objectively benchmark the majority of results present in the

literature. While the predominant metric used to evaluate the results is Accuracy,

surpassing by far any other measure. Only five studies used the same dataset (Trashnet)

for testing their algorithms. The majority (Figure 2.4) uses datasets that either were left

unspecified or were self-created for the study and with different image sizes. In the small

universe of studies that used the Trashnet dataset and the same metric to evaluate results,

therefore allowing for an objective benchmarking, the results (Figure 2.5) indicate that

CNN algorithms yield the best results, with all the tested architectures surpassing the

other algorithms. Within the CNN architectures universe, GoogleNet presents the best

results with 97,86% accuracy, followed by VGG-16 with 97,46% and AlexNet with

97,23%. These accuracy results are specific to the classification of garbage in recycling

categories.

Chapter 2 – Literature Review

15

Figure 2.5 – Accuracy benchmarking results with Trashnet dataset

Table 2.3 presents a synthesis of the reviewed papers relevant information, that is

related with ML algorithms used for image classification applied to waste. The

“Algorithms and Results” column presents the ML algorithms used along with extra

information, when available, such as the specific architecture, object detection

algorithms, metrics used and results. The “Dataset” column defines the dataset that was

used in the studies (when specified) along with its size and the images’ resolution.

Chapter 2 – Literature Review

16

Table 2.3 – Synthetized results from the literature

Paper Algorithms and Results Dataset

[9]

CNN (OverFeat-GoogLeNet architecture)

- 63.2% Precision in cigarette butts’ class

- 77,35% Precision in leaves class

Self-created dataset with 25

different types of waste and 18.676

images at 640x480 pixels

[2]

RPN + CNN (VGG-16 architecture)

- 3% False negative rate

- 9% False positive rate

Self-created dataset with 1999

images at 600x1200 pixels

[14]
CNN (does not specify the architecture)

- No results presented
Nonexistent dataset

[7]
SVM

- 94.3% Accuracy

Self-created dataset with 500 images

at 320x240 pixels

[28]
CNN (capsule-Net architecture)

- 96% Accuracy

Self-created dataset with 19046

images at 256x256 pixels

[29]

CNN (multiple architectures)

- DenseNet121 – 95% Accuracy

- DenseNet169 – 95% Accuracy

- Inception-V4 -94% Accuracy

- MobileNet – 84% Accuracy

Trashnet dataset with 2527 images

at 512x384 pixels

[24]

CNN (MobileNet architecture with transfer

learning from model trained on ImageNet

Large dataset)

- 87.2% Accuracy

Trashnet dataset with 2527 images

at 512x384 pixels

[41]

CNN (AlexNet architecture)

- 83% Accuracy

SVM (with bag of features)

- 94.8% Accuracy

Self-created dataset with 2000

images at 256x256 pixels

[17]

CNN (multiple architectures)

- LeNet – 93% Accuracy

- AlexNet – 93% Accuracy

- SqueezeNet – 87% Accuracy

Not specified

[8]
CBIR

- No results presented.
Not specified

Chapter 2 – Literature Review

17

[18]
CNN (architecture not specified)

- 96% Accuracy

Self-created dataset with 500 images

with unspecified resolution

[3]
PNN

- 98% Accuracy
Not specified

[20]
KNN

- 98.33% Accuracy

Self-created dataset with 60 images

with unspecified resolution

[16]
CNN (AlexNet architecture)

- 98.2% Accuracy

Self-created dataset with 5000

images at 640x480 pixels

[21]
KNN

- 98% Accuracy

Self-created dataset with 60 images

with unspecified resolution

[30]

SVM

- 98.7% Accuracy

Random Forest

- 97.8% Accuracy

Self-created dataset with 1000

images with unspecified resolution

[31]

CNN (multiple architectures)

- ResNet50 – 75% Accuracy

- MobileNet – 76% Accuracy

- InceptionResNetV2 – 90% Accuracy

- DenseNet121 – 95% Accuracy

- DenseNet169 – 82% Accuracy

- DenseNet201 – 85% Accuracy

- Xception – 85% Accuracy

- RecycleNet – 81% Accuracy

Trashnet dataset with 2527 images

at 512x384 pixels

[32]
SVM

- 97.3% Accuracy
Not specified

[10]
CNN (AlexNet architecture)

- 77% Accuracy
Not specified

[33]
SIFT

- 89.9% Accuracy

Self-created dataset with 192 images

at 500x375 pixels

[34]
SVM

- 92.85% Accuracy
Not specified

[35]
SVM

- 96% Accuracy
Not specified

[22]
SVM

- 82.7% Accuracy

Self-created dataset with 1000

images with unspecified resolution

Chapter 2 – Literature Review

18

[25]
CNN (GarbNet architecture)

- 87.69% Accuracy

Garbage in Images (GINI) dataset

with 2561 images with unspecified

resolution

[4]
SVM

- 94.7% Accuracy

Self-created dataset with 1446

images at 672x512 pixels

[15]

SVM

- 75.6% Accuracy

KNN

- 95.1% Accuracy

Decision Tree

- 92.6% Accuracy

Logistic Regression

- 73.1% Accuracy

Not specified

(Yang & Thung,

2016)

SVM

- 63% Accuracy

CNN (AlexNet architecture)

- 22% Accuracy

Self-created dataset with 2400

images at 384x384 pixels

[12]
R-CNN

- 89.1% Precision
Not specified

[11]
CNN (LeNet-5 architecture)

- No Results Presented
Not specified

[37]

CNN (Multiple architectures + SoftMax &

SVM classifiers)

- MobileNet – 76% Accuracy

- Inception ResNetV2 – 90% Accuracy

- DenseNet121 – 85% Accuracy

- DenseNet169 – 82% Accuracy

- DenseNet201 – 85% Accuracy

- Xception – 85% Accuracy

- AlexNet – 97.23% Accuracy

- GoogLeNet – 97.86% Accuracy

- ResNet – 94.22% Accuracy

- VGG-16 – 97.46% Accuracy

- SqueezeNet – 90.17% Accuracy

- RecycleNet – 81% Accuracy

Trashnet dataset with 2527 images

at 512x384 pixels

[26]
CNN (AlexNet architecture)

- 85% Accuracy

Self-created dataset with 21000

images at 128x128 pixels

Chapter 2 – Literature Review

19

[38]

CNN

- 89.81% Accuracy

SVM

- 56.67% Accuracy

XGB

- 70,1% Accuracy

RF

- 62,61% Accuracy

KNN

- 52,5% Accuracy

Trashnet dataset with 2527 images

at 512x384 pixels

[5]
KNN

- 93% Accuracy
Not specified

[6]
HKNN

- No Results Presented
Not specified

[23]
KNN

- 99% Accuracy
Not specified

[19]

CNN (multiple architectures)

- LeNet – 93% Accuracy

- AlexNet – 93% Accuracy

- SqueezeNet – 87% Accuracy

- MobileNet – 88% Accuracy

Not specified

[13]

CNN (multiple architectures + detectors)

- VGG-16 with SSD detector – 56%

Precision

- R-FCN – 53% Precision

- YOLO - 40% Precision

Trashnet dataset with 2527 images

at 512x384 pixels

[27]
CNN (CompostNet architecture)

- 77.3% Accuracy

Trashnet dataset with 2527 images

at 512x384 pixels

[39]
R-CNN

- 81,6% Precision

Trashnet dataset with 2527 images

at 512x384 pixels

Some conclusions can be taken from the 39 papers that were validated as relevant for

the topic and were thoroughly analyzed in this review.

 One of the most important conclusions to highlight is the fact that some studies present

self-built datasets, with different image sizes and categories, while others use datasets

Chapter 2 – Literature Review

20

available in the community (Trashnet and GINI), making it extremely difficult to compare

approaches. With regards to the ML algorithms used, it can be concluded that Neural

Networks and SVM are the types of algorithms most used in this field of study. A

recurring factor, the inconsistency between results, even considering the same algorithm,

is highlighted by multiple studies, with the authors concluding that further work using

more available data and real-life scenarios is needed to support their findings.

Next, regarding the used datasets, the studies can be divided into four categories: Self-

created dataset (15 papers), dataset Not specified (15 papers), GINI (1 paper) and

Trashnet (8 papers). For the latter, some kind of benchmark can begin to be achieved

since the same dataset was used for all the eight approaches. In this last scenario, the CNN

algorithm with a GoogLeNet architecture was the one presenting the best results.

It was concluded from the literature review that the most appropriate ML algorithm to

be used in this project is the MobileNet. Even though it isn’t the most accurate as

highlighted by the results from the literature in Figure 2.5, it was designed to effectively

maximize accuracy while dealing with the restricted resources of a mobile device.

During the development of this work a journal paper with the synthetization of the

literature analysis was submitted to a journal, this will be useful for further researchers

that are interested in the field as it works as a compendium of the information available

until the point in time when it was written. As future work it is important to keep updating

this study with all new scientific work that gets released, and to merge all the available

datasets into one that can be used by multiple researchers to further their studies in the

field and enable proper benchmarking between studies. It would also be helpful for further

researchers to benchmark the speed of classification of the algorithms.

Chapter 3 – MobileNet

21

Chapter 3 – MobileNet

The MobileNet architecture has been introduced as a sub class of CNN and are specialized

in efficient models for mobile and embedded vision applications. As seen in Chapter 2,

within this area, MobileNet seems to be the most adequate for image recognition and

classification. As such, this will be the modelling choice for this dissertation and this

chapter is dedicated to defining the ML modelling technique that will be used in this

project.

CNN is a widely used class of ML models for image classification, having been

recognized in the 2012 ImageNet competition which made it one of the most promising

ML techniques [42]. This type of class makes strong and generally correct assumptions

about the nature of images while having fewer connections and parameters which makes

them easier to train compared to standard feedforward neural networks [43]. One of the

downsides of this type of architecture is the high demand for processing when dealing

with high resolution images. Graphical Processing Units (GPU) help accelerate the

training of CNN models, with many vendors like NVIDIA creating hardware and

software specially for that [42]. A CNN is constituted by several types of convolution

layers. A CNN has less parameters than a classic neural network due to the fact that the

latter use fully connected layers exclusively while the former have each neuron connected

to only a few neurons.

A convolution is a linear transformation that has the purpose of extracting useful

features from an input [44]. A convolutional layer combines the extracted features into

feature maps as shown in Figure 3.1.

Figure 3.1 – The structure of an example CNN [42]

The convolution layer can be defined by the following parameters:

• Kernel: This parameter defines the field size (number of pixels, e.g. 3x3) in a

convolution.

Chapter 3 – MobileNet

22

• Stride: This parameter refers to the step size of the Kernel when processing an

image. The number means the number of pixels it will stride in each step.

• Padding: This parameter defines the way it will handle the borders of a sample.

• Channels: This can refer to Input and Output, as the layer takes a number of

input channels to calculate a determined number of output channels.

The MobileNet architecture is “based on a streamlined architecture that uses depthwise

separable convolutions to build light weight deep neural networks” [40] and it can be seen

in Figure 3.2.

Figure 3.2 – MobileNet body architecture [40]

A depthwise separable convolution factorizes a standard convolution into a depthwise

convolution, which applies a single filter to each input channel, and a pointwise

convolution, which combines the outputs of the depthwise convolution. An example of

the factorization can be seen in Figure 3.3 where (a) corresponds to a standard convolution

and (b) corresponds to a depthwise convolution and (c) corresponds to a pointwise

convolution. This factorization reduces the computation needed and the model size [40].

Chapter 3 – MobileNet

23

Figure 3.3 – Factorization of standard convolution [40]

Almost all convolutional layers in the architecture are followed by a batch

normalization and a rectified linear unit (ReLU) as it can be seen in Figure 3.4.

Figure 3.4 – Representation of MobileNet layer except the last layer [40]

Batch normalization standardizes the inputs to a layer for each mini batch. This

stabilizes the learning process and reduces the number of training epochs required to train

deep networks. An epoch is a training iteration. In each epoch a different model is built

with a different set of weights. A neural network will build N different models for N

epochs. Each model created for a corresponding epoch should be validated in

generalization performance. A higher epoch number does not necessarily mean a better

generalization performance [45].

The ReLU is “the standard way to model a neuron’s output f as a function of its input

x” [43]. It is a unit that uses an activation function that outputs the input directly if it is

Chapter 3 – MobileNet

24

positive, else it will output zero. The function used in the unit can be considered both

linear, for value greater than zero, and nonlinear as negative values always output as zero.

The last layer in this architecture is not followed by batch normalization and ReLU

like the previous ones and it is a fully connected layer. The purpose of this layer is to

flatten the feature maps into a two-dimension matrix, or vector. This layer performs

classification taking into account the features extracted by the previous layers [42]. This

fully connected layer feeds into a softmax layer which is the final layer of the network.

It’s main purpose is classification and it achieves that through the computation of the

possibility distribution over different labels [42].

The architecture also uses a parameter α ∈ (0, 1], width multiplier, with the purpose of

thinning the network uniformly at each layer and reducing the computational cost, this

means that for a given layer and width multiplier α, the number of channels in the input

M becomes αM while the number N becomes αN.

Another parameter used is the resolution multiplier p ∈ (0, 1], this is used to also reduce

the computational cost of the neural network. When this parameter is applied to the input

image, the internal representation in each layer is reduced, this happens because the input

resolution is implicitly set by the resolution multiplier.

At the time of the development of this project, three versions of this architecture exist.

In theory each iteration of the algorithm increases its accuracy. In this project the v2 of

the algorithm will be used due to limitations that will be explained in Chapter 5.

Chapter 4 – High-level Architecture

25

Chapter 4 – High-level Architecture

As stated in Chapter 1, the objective of this dissertation is to create a system that can help

people to recycle via a mobile application installed in a smartphone. This application will

utilize some features described in the literature surveyed in Section 2.2.3. For example

the application itself is similar to the one in [24], but it will add extra features that will

distinguish it such as the capacity to upload the images to a server and that these images

can be utilized to potentially create better performing ML models, thus capable to adapt

or learn with the types of waste that is presented in the universe of images that are

captured with the application and that might be either slightly different or completely new

from the previous dataset. This type of crowdsourcing feature in a mobile application that

classifies waste seems to be unique in the literature and the potentially long-life learning

system makes it also new within the application for recycling realm.

 The application should be able to capture an image, analyze it and classify it according

to a recycling category in just a few seconds. The classification should be based in specific

recycling categories. The mobile application can also communicate with a REST API to

(1) update the ML model when there is a new version available, (2) send images in order

to help reinforce the ML model in the application. This reinforcement should not be

automated and requires manual classification of the images by an operator that is

specialized in the categorization of waste. The system is composed by three main modules

as described in Figure 4.1.

Figure 4.1 – High-level system architecture

The mobile application is the part of the project that the users will interact with. The main

features of the application are:

Chapter 4 – High-level Architecture

26

• Capture images and store them in the smartphone storage.

• Load images previously stored within the smartphone storage.

• Classify images by waste category and returns the result to the user.

• Communicate with the REST API to send the images that were captured with

the application.

• Communicate with the REST API to update the ML model that is installed in

the application, if there is a newer model.

The mobile application module will be further explained in Chapter 7.

The REST API is the module that is responsible with the communication with the

mobile application. It should be able to:

• Authenticate users that are pre-registered in the system.

• Receive images from the mobile application.

• Send new versions of the ML model to the mobile application when

requested.

Further information for this module will be explained in Chapter 6.

The ML model processor module is responsible for training new ML models. The

transition of images that were received in the REST API to this module is not automated

and requires human intervention. The required human steps for this module are to transfer

any new images received from the mobile application and merge them into the dataset

already available to him. Images should be categorized properly in this step. With this

enriched dataset it is responsible for processing newer versions of the ML model,

comparing it to previews versions and decide which version should be available for the

REST API. The newer versions of the ML model should be compared through specific

measures in order to validate the overall capacity of identifying waste materials. Only the

versions with better results should be available for the REST API to propagate to the

mobile application.

For a ML model to be accurate there is the need for training it with images of recyclable

and non-recyclable materials, the more images the better as it is expected that the model

will be able to generalize the results better. For this project two sources were used as the

main sources of images for the training. The first dataset was Trashnet4 which is

4 Website link: https://github.com/garythung/trashnet

https://github.com/garythung/trashnet

Chapter 4 – High-level Architecture

27

composed by 2527 images at 512x384 pixel resolution. The images are segregated in six

categories, cardboard, glass, metal, paper, plastic and trash. The distribution of images in

each category is presented in Table 4.1.

Table 4.1 – Trashnet dataset details

Category Number of

Images

Definition

Cardboard 403 Class containing only cardboard items. Cardboard differs from

paper because the former is a hard material and has multiple layers

of types of papers.

Glass 501 Class containing glass items some examples are bottles and jars.

Metal 410 Class containing metallic items such as cans for example.

Paper 594 Class containing only paper items. This differs from the carboard

class because it only has a single layer of paper.

Plastic 482 Class containing plastic materials. Plastic bottles and containers are

some examples of this class.

Trash 137 Class containing non-recycling waste.

It is important to denote that the Trashnet dataset was created in a laboratory

environment, where the background of the images is white even though there is some

illumination variance. Some examples of images present in each category can be seen in

Figures 4.2 to 4.7.

Chapter 4 – High-level Architecture

28

Figure 4.2 – Cardboard category image

samples

Figure 4.3 – Glass category image samples

Figure 4.4 – Metal category image samples

Figure 4.5 – Paper category image samples

Figure 4.6 – Plastic category image samples

Figure 4.7 – Trash category image samples

The second dataset was created during this project to test the results in a real-life

scenario. A total of 290 images were captured with the mobile application and their

distribution within the Trashnet original classes can be seen in Table 4.2.

Chapter 4 – High-level Architecture

29

Table 4.2 – Real life images dataset distribution

Category Number of Images

Cardboard 25

Glass 22

Metal 40

Paper 78

Plastic 108

Trash 17

 These images were taken in different backgrounds, angles and distance to try to

simulate how a user of the application would take a photo. Some examples of these

images can be seen in Figure 4.8.

Figure 4.8 – Image samples for real life purpose test

Chapter 5 – ML Model Processor

31

Chapter 5 – ML Model Processor

Even though the objective of this project is to create a prototype system that will evolve

over time with the images provided by the users of the mobile application, it is still

required to have an initial state where a ML model that has been trained can classify some

images. This chapter will focus on the description on how the ML model processor does

the training of the first model that will accompany the prototype system at launch. Two

types of architecture were trained and tested. These types correspond to the iterations of

the mobile application. The first iteration will be described in Section 5.1 and the

architecture used was MobileNet v2 without any object detection technology. This

iteration was to test if the proposed system would work. The second iteration will be

described in Section 5.2 and it was created to further help the possible users of the system.

An SSD MobileNet v2 architecture was used, which extends the first iteration with object

detection technology. The final objective is to use an object detection architecture because

the user might capture images in a real-life scenario where more than one object may

appear in the image.

Both implementations used transfer learning. This technique uses models that were

pre-trained in a dataset. These models are then trained with another dataset, resulting in

changes in the architecture of the model. The weights, or learned features, from the pre-

trained model are transferred to this new model, instead of training the model from scratch

[24]. A pre-trained model might not be 100% accurate in its current application but in

theory it shortens the training time and might yield a higher accuracy [37]. This will avoid

excess training time which will be useful due to the limited dataset size and available

computing power to train the models. Fine-tuning, an approach to transfer learning, was

also used. There are multiple ways of realizing fine-tuning. One of the approaches is to

optimize all the parameters of the pre-trained model on a training dataset. Alternatively,

only some layers can be fine-tuned, the last few ones, while the parameters from the initial

layers can be frozen. The theory behind the latter approach is that the initial layers of a

neural network learn low-level features that are common to many computer vision

challenges [46].

The dataset used in both implementations for training and first tests was the Trashnet

dataset. The second dataset of real-life images was used to test the models in a real-life

scenario.

Chapter 5 – ML Model Processor

32

Figure 5.1 – Example of fine-tuning [46]

The hardware used for the training of the two models was: Intel Core i5-6600 CPU @

3.30 GHz (4 CPUs) processor, Kingston 16 GB DDR4-2400 of Memory Ram, Samsung

850 EVO 250GB Solid State Drive disk and a NVIDIA GeForce GTX 970 graphic card.

5.1. MobileNet v2

In this implementation, a MobileNet v2 architecture was used. This type of architecture

does not support any object detection and only allows to classify the entirety of an image

without segmenting it.

This module was built in Python and Keras5, an open-source neural-network library

written in Python, capable of running on top of TensorFlow. This library allows to quickly

create code to train and test ML models. The version of Python used was 3.6. The deep

learning API Keras version was 2.2.4. Since there was a GPU with dedicated memory

available for this project, the Tensorflow-GPU library was used, this allows to accelerate

the training of ML models when compared to training in a CPU.

5 Website link: https://keras.io/

https://keras.io/

Chapter 5 – ML Model Processor

33

5.1.1. Methodology

A single python file “train.py”6 was created to implement the training of the model, this

implementation can be categorized in five major steps.

The first step is to load the images that are to be used in the training, these images are

resized into 224x224 pixels format which is the maximum size this model architecture

accepts in the Keras implementation when using transfer learning with Imagenet7

weights. Imagenet is an image database of more than 14.000.000 images and more than

80.000 classifications. Transfer learning was used to accelerate the training of the ML

model. The dataset is then split into a training set, with 80% of the images. For the

resulting 20% the same split is applied again, dividing it into 80% for a validation set and

20% for a test set.

The second step involves applying standardization and normalization to the images in

order to prepare the data to be consumed by the classifier in the next step. The method of

standardization means that the features of the data are being transformed in such manner

that they have a mean of zero and a standard deviation of one. This type of data

transformation is useful when the data has differing scales. Data normalization is the

rescaling of the original data so that all values are normalized within a range of 0 and 1.

In the third step, the type of architecture is defined. In this case the MobileNet v2

architecture is defined using a preconfigured architecture available in Keras, this speeds

up the coding time by avoiding the creation of a full architecture from zero. The classifier

is defined as well using a softmax layer, which is the default classifier for this architecture.

An optimization algorithm is used as well, the Adam optimizer which is used to update

network weights iteratively based in training data [47]. This optimizer was used because

it reported higher accuracy in the literature [29]. Since the classification in this project is

multiclass, the type of loss to be computed is the categorical cross entropy. This computes

the cross entropy loss between the labels and predictions. [48].

The fourth step is to prepare a data augmentation generator. This is an important

technique because by artificially increasing the number of training examples it can help

preventing overfitting in neural networks and improve performance in imbalanced

datasets [49]. Image altering augmentations were used randomly, such as rotating,

6 Github link: https://github.com/antoniosequeira/trainer_mobilenet_v2/blob/main/train.py
7 Website link: http://www.image-net.org/

https://github.com/antoniosequeira/trainer_mobilenet_v2/blob/main/train.py
http://www.image-net.org/

Chapter 5 – ML Model Processor

34

applying zoom, shifting in terms of width and height, shearing transformation and

flipping horizontally. What the generator does is for each epoch it provides slightly

altered images based on the original images, so that each epoch model will be trained on

the same number of images than the previous epoch but these images are slightly

different.

In the fifth and final step, the model is trained. An option of saving the best checkpoint

based on the validation loss metric is used, this means that when a minimum loss when

predicting the validation set is found, a checkpoint is created. The best checkpoint is the

model to be used in predicting the test dataset.

For the training, a batch size of 12 was used due to memory limitations as increasing

the size led to memory errors. The maximum number of epochs was 500 but as explained

in the previous paragraph, due to the usage of the best checkpoint it might mean that the

best model (with the minimum validation loss) was created before the 500th epoch. For

each epoch it is important that the training uses all the available training data, to achieve

this the number of steps for each epoch is calculated according the formula steps:

steps = number of images / batch size (1)

5.1.2. Results

The training of the model was achieved in 5 hours with the available hardware and

software version. The results of the training set and validation set can be seen in Figure

5.1 and 5.2 where the accuracy and loss metrics are measured. The accuracy metric

calculates how often predictions equal labels, while the loss metric is the result of a

function that computes the cross-entropy loss between the labels and the predictions. The

former metric is best when it is higher while the latter is best when is lower. The results

in this part are using the accuracy metric because due to a limitation on the version of

Tensorflow that was being used, only this metric was available.

Chapter 5 – ML Model Processor

35

Figure 5.2 – Model training accuracy

Figure 5.3 – Model training loss

Due to the usage of the best checkpoint as specified in Section 5.1.1, the model was

saved in the epoch 318 where the validation loss achieved the lowest number of 0,7072.

The corresponding validation accuracy for this epoch was 84,98%. This loss and accuracy

are averages for all classes. Both Figure 5.2 and Figure 5.3 show that the validation results

are varying frequently, and it doesn’t stabilize. These results indicate that the model might

have problems solving the classifications correctly.

Testing the trained model in the test set we have the following predictions against the

ground truth in Table 5.1. For a deeper analysis, a confusion matrix was created. This

Chapter 5 – ML Model Processor

36

type of table layout allows for the visualization of the performance of the model. It is

comprised of two dimensions, the “Ground Truth” which is the original classification of

an object in an image, and the “Predicted” which is the prediction generated by the model.

Each dataset class is under both dimensions.

Table 5.1 – Test dataset results confusion matrix with Mobilenet v2

 Predicted

 cardboard glass metal paper plastic trash

Ground

Truth

cardboard 84 0 0 0 0 0

glass 1 96 2 2 1 0

metal 0 1 83 2 1 0

paper 2 0 1 115 0 0

plastic 1 0 4 1 85 0

trash 0 0 1 2 0 21

The precision metric was used for a better perception of the results. Even though this

implementation doesn’t have any object detection, this metric seems to be the most used

metric in object detection problems as it will be seen in Section 5.2. Due to this fact the

same metric will be used in this implementation. This metric is calculated as:

Precision = Number of correctly predicted images / All images of that class (2)

The precision result for each class can be analyzed in Table 5.2. Cardboard was the

class with the highest precision score. Trash was the class with the worst result, even

though the precision value was very high.

Table 5.2 – Precision results for Test dataset by category with Mobilenet v2

Category Precision

cardboard 100,00%

glass 94,12%

metal 95,40%

paper 97,46%

plastic 93,41%

trash 87,50%

Average 94,65%

The results on the test set show that the precision value for each class is very high,

with one the classes achieving a perfect score. This test was done in images from the same

dataset. Even though the images used to test the model were not used to train the model,

they were from a similar source. This might create situations of overfitting, where the

Chapter 5 – ML Model Processor

37

model is good at predicting a certain dataset but is not good at generalizing. To test if the

model is good at generalizing a new test will be done with images of waste captured with

a smartphone during the development of this project and that was described in Chapter 4.

The results of the test in the real dataset (Table 5.3) reveal that the model was not

capable of predicting most of the images correctly. With half of the classes having zero

correct predictions.

Table 5.3 – Real dataset results confusion matrix with Mobilenet v2

 Predicted

 cardboard glass metal paper plastic trash

Ground

Truth

cardboard 22 0 0 1 2 0

glass 7 0 0 8 7 0

metal 22 0 0 12 5 1

paper 40 0 0 30 8 0

plastic 45 0 0 37 25 1

trash 9 0 0 5 3 0

The precision metric was used to evaluate the results of the predictions. The result of

this metric for each class can be analyzed in Table 5.4.

Table 5.4 – Precision results for Real dataset by category with Mobilenet v2

Category Precision

cardboard 88,00%

glass 0,00%

metal 0,00%

paper 38,46%

plastic 23,15%

trash 0,00%

Average 24,94%

The precision metric results are all lower in the real dataset when compared to the test

dataset. Only the cardboard class had a closer result while the rest of the classes had very

bad results. This might mean that the model is overfitting and cannot generalize properly.

As reported by [29] the small amount of data and the white background of images in the

Trashnet dataset might be causing the poor results in the Real dataset because the source

of the data for both datasets is different. One possible explanation for the fact that the

model is classifying a big portion of the items as cardboard might be due to the

environment where the images were captured. A wooden board is in the background of a

Chapter 5 – ML Model Processor

38

majority of the images from the Real dataset, and the color and texture in low light is

similar to the color and texture of the cardboard. Another explanation for such results is

human error in the classification of the Real dataset images due to misinterpretation of

the original Trashnet dataset classes.

5.1.3. Converting to mobile

The final version of the mobile application only uses the model produced in Section 5.2.

The code for a version of the mobile application that uses the type of model produced in

Section 5.1.1 is linked in the Section 5.1.4. The result ML model was used as in the first

iteration of the mobile application in the same way as it was previously explained in

Chapter 4 and demonstrated in Figure 4.1, which represents the high-level system

architecture for the final version of the system. This model would be downloaded in the

mobile application at the installation and each new updated ML model created will be

available for download using the REST API. However, the output of the Keras framework

is not compatible with the framework Tensorflow Lite8 which is the framework to run

ML models in a smartphone. A conversion of the output model is required in order for

the model to be run in a mobile environment. An extra step is required to convert the

trained model into a format that can run in a smartphone application that uses Tensorflow

Lite.

The process to convert a Keras ML model is to use the Tensorflow lite converter

function to convert the chosen ML model into tflite format. For this step, the python file

“liteconverter.py”9 is used.

5.1.4. Repository

All the code produced in this module was versioned within GitHub the repository is public

and under MIT license in the following link:

https://github.com/antoniosequeira/trainer_mobilenet_v2.

https://github.com/antoniosequeira/mobile_application_old.

8 Website link: https://www.tensorflow.org/lite
9 Github link:

https://github.com/antoniosequeira/trainer_mobilenet_v2/blob/main/liteconverter.py

https://github.com/antoniosequeira/trainer_mobilenet_v2
https://github.com/antoniosequeira/mobile_application_old
https://www.tensorflow.org/lite
https://github.com/antoniosequeira/trainer_mobilenet_v2/blob/main/liteconverter.py

Chapter 5 – ML Model Processor

39

5.2. SSD MobileNet v2

For this implementation, an SSD MobileNet v2 architecture was used. This architecture

incorporates an object detection algorithm called single shot detector (SSD) which allows

to detect multiple objects in an image and classify them distinctly. The SSD architecture

is a convolution network that learns to predict bounding box locations and their

classification in one pass. The early network layers use a standard architecture, in this

case we are using MobileNet v2 architecture. These early layers are followed by several

convolution layers that decrease in size progressively and allow predictions of detections

at multiple scales [50].

Figure 5.4 – Example of SSD MobileNet architecture [51]

This type of architecture usually assumes the name of the early network layers standard

architecture and the SSD, so in this case the full name of architecture is SSD MobileNet

v2.

The dataset that was used for this architecture was Trashnet but now an annoted

version was used due to the object detection technique. For this type of architecture, the

techniques of transfer learning and fine-tuning were used to try to reduce the amount of

time required to train the model. The pre-model used for transfer learning was the

ssd_mobilenet_v2_coco, obtained from the Tensorflow 1 Detection Model Zoo 10. As

stated before, due to GPU incompatibilities, version of 1 of Tensorflow is being used in

this project, otherwise the Tensorflow 2 Detection Model Zoo11 could have been used.

This model is an object-detection model pre-trained on the Common Objects in Context

(COCO) dataset. This specific model was used to perform transfer learning because in

the original dataset contains much of the objects we are trying to classify in our

10 Website link:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detect

ion_zoo.md
11 Website link: https://cocodataset.org/#home

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://cocodataset.org/#home

Chapter 5 – ML Model Processor

40

implementation. Additionally, fine-tuning was applied to all the parameters of the pre-

trained model as no layer was chosen to freeze parameters.

Even though it would be interesting to compare results between implementations, it

was not possible because the implementation and configuration differ. Keras provides a

high-level API written on top of the Tensorflow backend, this means that the former

provides less options than the latter. One of those limitations is the lack of out-of-the-box

object detection for the MobileNet v2 architecture. In theory, it is possible to develop

such a project but due to time constraints it was not possible to do so within this project.

For example, the Keras implementation with transfer learning only allowed for a max size

of image for training to be 224x224 pixels, while the Tensorflow object detection API12

did not have any limitations for the size of the images when using transfer learning. A

limitation that is out of the scope of the framework differences is that, since the latter used

a pre-trained model in object detection for transfer learning, which is not available in the

same format for the former, comparison between both trainings results is not possible

since each one used a different source for the transfer learning technique.

The present MobileNet implementation can be viewed as an evolution from the one

presented in Section 5.1, as the former is simpler and with sole focus on the classification

of images, while this one not only classifies images, but also adds object detection into

the picture, which is an entirely different challenge.

To avoid programming all code from scratch, the TensorFlow object detection API

was used. This API is an open source framework allows the creation of ML models

capable of locating and identifying multiple objects in a single image [52]. Even though,

by the time of the development of this project, a version 2 of this API is generally

available, due to limitations with the available GPU, this project still used version 1 of

the API. The programming language used was Python.

5.2.1. Methodology

This methodology is very different from the previous one, because it revolves around the

Tensorflow object detection API. Multiple Python files were used in this implementation,

along with additional software.

12 Website link: https://github.com/tensorflow/models

https://github.com/tensorflow/models

Chapter 5 – ML Model Processor

41

The first step is to annotate the images of the dataset with the location of the objects

and respective categories. This was achieved with the LabelImg graphical image

annotation tool [53]. The annotation of an image requires the selection of an area in the

image, called a bounding box, and manually label that bounding box. This is a time-

consuming activity because, for datasets that have not been previously annotated, or

where the annotations are not fit for the problem being solved, this is a completely manual

task. The information is saved in Extensible Markup Language (XML) files in Pattern

Analysis, Statistical modelling and Computational Learning (PASCAL) Visual Object

Class (VOC) format [54].

The second step is to partition the dataset into training, validation and test datasets.

For this action, the “dataset_partition.py”13 file was used for each class. The first round

of partitions creates the training set using 80% of the images. The second round of

partitions uses the remaining 20% and splits it into the validation set (80%) and the test

set (20%).

The third step requires the transformation of the XML files of the first step into

Comma-Separated Value (CSV) files since the next step only accepts CSV formats. The

conversion from XML to CSV is done by the xml_to_csv.py file. A CSV file is required

for each dataset, in this case three files will be required.

The fourth step creates a tfrecord14 file based on the CSV files of the previous step.

This tfrecord file is the format required by the object detection API to train the model.

This format stores a sequence of binary records. The conversion is done in the

“generate_tfrecord.py”15 file. A tfrecord file is required for each dataset, in this case three

files will be required.

The fifth step is the configuration of the pipeline file. This file is the main configuration

for the API to run the training of the model. Information such as the location of the

training and validation set, batch size, number of steps, data augmentation to be applied

are configured here. This file was downloaded from the same source as the pre-trained

model used for transfer learning and fine-tuning.

13 Github link:

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2/blob/main/dataset_partition.py
14 Definition link: https://www.tensorflow.org/tutorials/load_data/tfrecord
15 Github link:

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2/blob/main/generate_tfrecord.py

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2/blob/main/dataset_partition.py
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2/blob/main/generate_tfrecord.py

Chapter 5 – ML Model Processor

42

The sixth and final step is the training of the model. The script that runs the training is

the “model_main.py”16. The results of the training and validation can be monitored using

Tensorboard17 which provides the visualization and tooling needed for ML

experimentation. Tensorboard is installed by default when Tensorflow is installed in the

computer.

For training, due to memory limitations, a batch size of 12 was used. In fact, when

trying to use a higher batch size, the object detection API reported out of memory errors.

In this type of training the previous concept of epoch is equal to the number of steps in

this training. The number of steps used was 100000, even though the default number

configured in the pre-model pipeline was 200000, after a few tests it was noted in the

results (Section 5.2.2) that with less than half this number the results do not significantly

change afterwards.

In terms of data augmentation, the object detection API differs from the previous

framework offering a few different options. For this implementation only two data

augmentation types were used, the ones that were set as default with the pipeline

configuration file of the pre-trained model. The types are random_horizontal_flip, which

randomly flips inputs horizontally, and ssd_random_crop that randomly removes part of

the images’ outer areas.

5.2.2. Results

During training of the model, the results were monitored in Tensorboard. This tool allows

for the visualization of the different detection evaluation metrics used by COCO. The

first available metric is mean average precision (mAP) [54]. This metric represents the

average precision averaged over all classes. It is important to note that this

implementation has a limitation: the API does not have an option by default to save the

best checkpoint or step in the training. After several tries, it revealed to be hard to program

a way to do this due to the lack of time and experience in the framework, so it was decided

to skip it. This means that the trained model will correspond to the final step of the training

and this will be the one to be analyzed.

16 Github link:

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2/blob/main/model_main.py
17 Website link: https://www.tensorflow.org/tensorboard

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2/blob/main/model_main.py
https://www.tensorflow.org/tensorboard

Chapter 5 – ML Model Processor

43

Figure 5.5 – mAP results from Tensorboard

The mAP results are divided into three different graphics. Each graphic represents the

average precision for different sized objects. In Figure 5.5, from left to right and top to

bottom, the first graphic presents the mAP for large objects, that is, bigger than 96x96

pixels. The second graph presents the mAP for medium objects, or smaller than 96x96

and bigger than 32x32 pixels. The third and last graph presents the mAP for small objects,

smaller than 32x32 pixels.

The best mAP corresponds to the one where the large objects are recognized, with a

0.6618 score at step 100000. The medium and small objects evaluated very poorly, one

possible reason for this is due to the type of images present in the Trashnet dataset. This

dataset is mainly comprised of close ups of objects, which means that most of the

bounding boxes annotated in the dataset will have a size bigger than 96x96 pixels and

therefore the model will not be able to be trained with almost any object smaller than that.

To be more specific there are 2069 large objects, 130 medium objects and 1 small object

in the dataset. The number of objects does not equal to the number of images because

some images have more than one object.

One other metric available in Tensorboard is the mAP Intersection over Union (IOU).

This metric represents the intersection of the predicted and ground truth bounding boxes.

Chapter 5 – ML Model Processor

44

The formula for this metric is according to IOU, where A is the predicted bounding box

and B is the ground truth bounding box annotated previously in the dataset.

𝐼𝑂𝑈 =
|𝐴∩𝐵|

|𝐴∪𝐵|
 (3)

From left to right, in Figure 5.6, the first graph presents the mAP IOU when at least

50% of the predicted bounding box intersects with the ground truth bounding box. For

this metric we have a mAP IOU of 0.7785. The second graph presents the mAP IOU when

at least 75% of the predicted bounding box intersects with the ground truth bounding box

and the result is 0.742, a slightly lower value than the previous metric, which is expected

since the latter is more precise than the former. It is not expected for the former metric to

have a higher mAP IOU than the latter because the former metric is less precise than the

latter.

Figure 5.6 – mAP IOU results from Tensorboard

Two other important metrics are the classification loss and localization loss, as seen in

Figure 5.7. Loss compares the output of the predicted with the ground truth. The main

objective is for a model to minimize loss as much as possible. In this implementation two

types of losses are considered, equal to the two challenges being solved. The first type of

loss is classification. This type of loss measures how well the model is able to correctly

categorize an object. The pipeline configuration file had the function weighted sigmoid

configured by default. The result for the classification loss was 2.241. The second type

of loss is localization. This type measures how well the model is able to locate objects.

For this type of loss, the default configured function (weighted smooth L1) was

maintained as well. The result for the localization loss was 0.1716. The difference of

values in both losses indicates that the model is better at localizing objects than it is at

classifying them.

Chapter 5 – ML Model Processor

45

Figure 5.7 – Loss metrics from Tensorboard

Testing the trained model in the test set we have the following predictions against the

ground truth in Table 5.5. To analyze the results further, a confusion matrix was created.

An extra class was added by the Python code that generated the confusion matrix. The

class “nothing” in the “Ground Truth” dimension represents areas of the images that were

not annotated in the ground truth but were predicted as one the classes of the dataset. In

the dimension “Predicted” this class means that an object, that was labeled as one of the

other classes in the ground truth, was not classified by the model. An IOU threshold of

50% was used for the detection of objects in these results, which means that the ground

truth bounding box had to have at least 50% of its area under the predicted bounding box,

else the classification was considered as “nothing”. A confidence threshold of 50% was

used for the classification of the objects, which means that the model had to have at least

50% of confidence that an object belonged to a specific class, else the classification was

considered as “nothing”.

It is important to note that the code used to generate the confusion matrix was reused

from an open source code available on GitHub [55].

Chapter 5 – ML Model Processor

46

Table 5.5 – Test dataset results confusion matrix with SSD Mobilenet v2

 Predicted

 cardboard glass metal paper plastic trash nothing

Ground

Truth

cardboard 56 4 0 4 0 0 0

glass 0 68 6 0 5 0 0

metal 1 11 54 0 5 0 8

paper 7 6 7 71 2 0 0

plastic 1 13 6 3 66 0 24

trash 1 0 0 2 0 5 1

nothing 4 20 22 11 24 1 0

The precision results for each class can be analyzed in Table 6.6. Cardboard and glass

were the classes with the highest precision score. Trash and plastic were the classes with

the worst results.

Table 5.6 – Precision results for Test dataset by category with SSD Mobilenet v2

Category Precision

cardboard 87,50%

glass 86,08%

metal 68,35%

paper 76,34%

plastic 58,41%

trash 55,55%

Average 72,04%

So far, all the tests were done in images from the same dataset. Even though the images

used to test the model were not used to train the model, they were from a similar source.

This might create situations of overfitting, where the model is good at predicting a certain

dataset but is not good at generalizing. Once again, to test if the model is good at

generalizing, a new validation will be performed employing the images of waste captured

with a smartphone during the development of this project. This dataset is described in

Chapter 4.

The results of the test in the real dataset (Table 5.7 and 5.8) reveal that the model has

not been able to classify properly the objects in most of the images, with a very poor result

in almost all classes. Only the cardboard class had a precision result that was close with

the test dataset results, with a difference of 7,5%. The rest of the classes had worst results.

Chapter 5 – ML Model Processor

47

Table 5.7 – Real dataset results confusion matrix with SSD Mobilenet v2

 Predicted

 cardboard glass metal paper plastic trash nothing

Ground

Truth

cardboard 20 0 1 3 0 0 1

glass 10 2 2 3 0 0 5

metal 21 1 12 1 0 0 5

paper 53 2 8 6 1 0 8

plastic 54 7 17 9 9 0 12

trash 11 0 2 0 0 0 4

nothing 8 0 6 1 1 0 0

Table 5.8 – Precision results of Real dataset by category with SSD Mobilenet v2

Category Precision

cardboard 80,00%

glass 9,09%

metal 30,00%

paper 7,69%

plastic 8,33%

trash 0%

Average 22,52%

The explanation for the poor results might be related with the results of training where

it could be seen that the model was only able to detect large objects with precision. This

might happen because the Trashnet dataset is mostly comprised of image closeups of

objects and therefore the model only learns how to create large bounding boxes which

occupy most of the image. Due to this the area of intersection between the ground truth

bounding box and the predicted bounding box fails because it exceeds the threshold of

50%. On top of this problem the previous problems reported in Section 5.1.2 also apply

here. For example, due to the fact that the model is predicting large bounding boxes that

occupy a large part of the image, it means that the background of the image will affect

the classification of the object just like it was affecting the MobileNet v2 model of Section

5.1. This explains the slighter worst results in this model.

The training of the model took 8 hours with the hardware and software available for

the project. Some tests were done with different parameters in the training to see what

affected the most the time of training. It was concluded that batch size and image size

highly affected the time elapsed for the training of a model.

Chapter 5 – ML Model Processor

48

5.2.3. Converting to mobile

The result ML model will be used in the mobile application as previously explained in

Chapter 4 and demonstrated in Figure 4.1 which represents the high-level system

architecture. This model will be present in the mobile application at first and each new

ML model that is created will be available for download in the REST API. But the output

of the Tensorflow Object Detection API is not compatible with the framework

Tensorflow Lite, the framework to run ML models in a smartphone. A conversion of the

output model is required in order for the model to be run in a mobile environment. Two

steps are required to convert the output model of the API.

The first step creates a quantized model based on the model created by the API. This

post-training quantization is a conversion technique to reduce the model size and improve

the CPU and hardware accelerator latency with the smallest degradation possible in the

model accuracy. For this step, the python file export_tflite_ssd_graph.py is used.

The second and final step is the conversion of the quantized model into the tflite

format. This format is the Tensorflow Lite required format to run ML models in a

smartphone. For this operation, the command line “tflite_convert” command is used. This

command is available when Tensorflow is installed in a computer.

After this step, a tflite file with the ML model is ready to be transferred to a smartphone

application that uses Tensorflow Lite to execute it.

5.2.4. Repository

All the code produced in this module was versioned within GitHub, the repository is

public and under MIT license in the following link:

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2.

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2

Chapter 6 – REST API

49

Chapter 6 – REST API

This chapter serves as the documentation for the REST API used in the project,

information such as the technology and architecture being used will be found here.

A REST API is a method of communication between electronic devices using the

world wide web, its architecture is modeled through the way data is presented, accessed

or modified. Its principles allow the service to be simple and lightweight, having high

performance [56]. This type of service typically allows for the main hypertext transfer

protocol (HTTP) methods, the create, retrieve, update and delete actions. In Figure 6.1 an

example of the REST API architecture can be seen.

Figure 6.1 – REST API architecture [56]

In this project the REST API will serve as the handler of actions requested through the

Internet by the mobile application.

For this module, it was decided to use the Django18 framework because it is open

source, meaning that a low cost solution could be built, it is based on Python which is

widely used, so online assistance is available to help solve most of the problems, and it

includes a lot of reusable components to quickly create web-based applications like this

REST API. The version of Django used was the 3.0.4. The Python environment where

the module was built was based on the version 3.6.7 of Python. Besides that, an extension

of Django named Django Rest Framework19 was used to create the REST methods, the

version of the extension is the 3.11.0.

18 Website link: https://www.djangoproject.com/
19 Website link: https://www.django-rest-framework.org/

https://www.djangoproject.com/
https://www.django-rest-framework.org/

Chapter 6 – REST API

50

All the code of the module was versioned in GitHub in order to safeguard it and share

it easily. The module was developed in Visual Studio Code20.

6.1. Architecture

The typical Django architecture follows the model view controller (MVC) pattern where

the model corresponds to the component that acts as the mediator between the web

application interface and the database. The view contains the logic for the user interface

(UI). The controller, which is the main control component, has the task of selecting the

view component that corresponds to the UI interaction.

For this project, the MVC pattern was used as well but with a slight variation since

there is no UI, given that it is a REST API. For example, the controller instead of receiving

UI interactions, it will receive REST requests.

The structure of the Django project is presented in Figure 6.2, where we can see that

the project contains two apps inside of it. An app in Django is a module that has one

purpose and can be reused in multiple projects, in this case we have two modules, the

model app that is responsible for any logic related with the ML model, the users app is

responsible for the authentication logic of the project.

Figure 6.2 – Django project structure

The authentication chosen for this project was token based, so the users will have to

register and login their users to be able to get a token that will be necessary to access any

other endpoint. No UI for user registration has been created in the project because it was

out of the scope. Manually registrations were done via the native Django administrator

module.

20 Website link: https://code.visualstudio.com/

https://code.visualstudio.com/

Chapter 6 – REST API

51

6.2. Endpoint Definition

The way the mobile application will interact with the REST API is through the API

endpoints. Each of these endpoints are uniform resource locators (URL) within the REST

API and are accessible through HTTP request methods which enable communication

between clients and server. The methods that are used within this project are the

following:

• GET – Used to request data from a specified resource.

• POST – Utilized to send data to a server.

The detailed information for the endpoints that were created can be found in Appendix

A.

6.3. Testing

It is important when developing a feature, to be able to test and prove that it works.

Multiple tests were done to ensure that all features worked as intended. The detailed

information of the tests for this module are available in Appendix B.

6.4. Repository

All the code produced in this module was versioned within GitHub. The repository is

public and under MIT license in the following link:

https://github.com/antoniosequeira/rest_api.

https://github.com/antoniosequeira/rest_api

Chapter 7 – Mobile Application

53

Chapter 7 – Mobile Application

In this chapter all the information, related with the mobile application, will be described.

Originally it was planned to use React-Native21 as the technology to build the application.

An initial version of the application was built in this technology with just the feature of

capturing images, but it had to be scrapped and the technology changed due to limitations

and incompatibilities with the framework Tensorflow Lite which is required to run the

ML model in a mobile device. The adopted technology to build the mobile application

was the mobile framework Flutter22, a JavaScript framework that allows the writing of

natively rendering mobile applications for both Android and iOS. The main reasons to

choose this technology are because of its versatility in terms of allowing the developer to

build a web application for both Android and iOS with the same code, and it is one of the

most popular frameworks for mobile applications development while being open source.

The application was developed for Android and it was only tested (as shown in Section

7.3) in the version 10 and 11 of this operating system (OS), yet the technology that was

used, in theory allows to rapidly create an iOS application as well, with the same code,

yet this was not part of the scope of the project and therefore was not tested or

implemented.

As stated, the main technology used to build the mobile application was Flutter,

because this portable UI toolkit allows the developer to use nonnative programming

language to create cross-platform applications. This framework was developed by Google

and it utilizes as its programming language the Dart language. This project used version

1.18.0-11.1.pre. As a pre-requisite for Flutter, Android Studio23 is required in order to get

an Android Software Development Kit (SDK) to be able to develop Android applications.

The version of Android Studio used in the project was version 4.0 and the Android SDK

version was the 29.0.3. It is important to mention that tflite24 a Flutter plugin for accessing

TensorFlow Lite API was utilized and the version was 1.0.6.

For Flutter development, Visual Studio Code was used.

21 Website link: https://reactnative.dev/
22 Website link: https://flutter.dev/
23 Website link: https://developer.android.com/studio
24 Website link: https://pub.dev/packages/tflite

https://reactnative.dev/
https://flutter.dev/
https://developer.android.com/studio
https://pub.dev/packages/tflite

Chapter 7 – Mobile Application

54

7.1. Architecture

The code for the mobile application was organized in logical modules as shown in Figure

7.1.

Figure 7.1 – Mobile application architecture

The lib folder contains all the public code, and it is created by default when generating

a new Flutter project. The api_requests folder contains all the logic that the app requires

to interact with the REST API described in Chapter 6. The helpers folder contains

required logic to interact with the tflite plugin. The screens folder contains the logic for

secondary screens in the application. At last the “main.dart”25 class is the entry point of

the application and contains the necessary code for the main actions and navigation for

secondary screens.

7.2. Available Actions

The mobile application allows the user to perform multiple actions. For a better

understanding of the flow the user experience in the application, Figure 7.2 was created.

25 Github link: https://github.com/antoniosequeira/mobile_application/blob/main/lib/main.dart

https://github.com/antoniosequeira/mobile_application/blob/main/lib/main.dart

Chapter 7 – Mobile Application

55

Figure 7.2 – Mobile application experience flow

The user experience is comprised of three main sequences. The first sequence begins

when a user enters the entry screen (Figure 7.3) and clicks on the lower left button of the

application.

Chapter 7 – Mobile Application

56

Figure 7.3 – Entry screen

This action will direct the application to the select image screen (Figure 7.4). This

screen may vary in aspect in each smartphone due to the utilization of native

functionalities of the mobile operating system.

Figure 7.4 – Select image screen

Chapter 7 – Mobile Application

57

If the user chooses an image the application will redirect to the evaluation screen

(Figure 7.5) with the result of the analysis of the selected image. The analysis is an output

of the image with a bounding box around the object, the name of the class for that object

and the probability of the classification. Else it will be redirected to the entry screen

(Figure 7.3).

Figure 7.5 – Evaluation screen

The second sequence begins when a user clicks on the middle lower button of the entry

screen (Figure 7.3). This will result into the redirection to the capture image screen

(Figure 7.6). This screen may vary in aspect in each smartphone due to the utilization of

native functionalities of the mobile operation system.

Chapter 7 – Mobile Application

58

Figure 7.6 – Capture image screen

In this screen the user can capture a picture of an object. After that it will be redirected

to the Confirm image screen (Figure 7.7). In this screen the user can overview the image

that has just captured and it can accept or reject the image. If it accepts the image it will

be redirected to the evaluation screen (Figure 7.5) just like the previous sequence. If it

rejects the image it will be redirected to the capture image screen (Figure 7.6) to be able

to capture another image.

Chapter 7 – Mobile Application

59

Figure 7.7 – Confirm image screen

The third and final sequence happens when a user clicks on the lower left button of the

entry screen (Figure 7.3). The user will be redirected to the login screen (Figure 7.8). In

this screen a user that is previously registered with the platform will be able to login with

a username and password.

Chapter 7 – Mobile Application

60

Figure 7.8 – Login screen

After a successful login, the user will be redirected to the menu screen (Figure 7.9). In

this screen the user has two options.

The first option is called download model. This allows for the user to download a new

version of the ML model that classifies images. The download will only happen if the

present model in the application has a different version of the most recent one present in

the server.

The second and final option is called upload photos. This option allows the user to

upload images, that were captured by the application, into the server. These images will

be taken into consideration for the training of new versions of the ML model. Only the

images are uploaded, without any annotation.

Chapter 7 – Mobile Application

61

Figure 7.9 – Menu screen

7.3. Testing

The mobile application was tested in two different devices the first one was through a

virtual device created in Android Virtual Device Manager module from Android Studio,

this virtual device works as an emulator of a mobile device, the device that was emulated

was a Pixel 3 with Android 10. The second device where it was tested was a Oneplus 8

smartphone, running Android 11. Each available action was tested to make sure it was

working properly. Due to the nature of the tests (actions in a smartphone application) it

was not possible to register these results in this document. Due to this limitation, only the

actions will be described in the section.

The actions used in the tests followed the three user experience paths described in

Figure 7.2. Two types of tests were done, the first one involved testing the three sequence

paths within the application with a reset of the application within each sequence to clean

any saved state in the application. This made sure that no sequence was dependent of any

other and that each feature was functional by itself. The second test repeated the testing

of the three sequence paths within the application but without a reset of the application

within each sequence. This was done to ensure that no error state was introduced by any

path sequence. In both types of tests, the order of the path sequences was alternated to

Chapter 7 – Mobile Application

62

make sure that every type of flow of sequences did not introduce any error state in the

application.

7.4. Repository

All the code produced in this module was versioned within GitHub. The repository is

public and under MIT license in the following link:

https://github.com/antoniosequeira/mobile_application.

https://github.com/antoniosequeira/mobile_application

Chapter 8 – Conclusions and recommendations

63

Chapter 8 – Conclusions and recommendations

8.1. Main conclusions

This project’s main objective was the creation of a mobile application that can help people

to recycle. The secondary objectives were the creation of an updated compendium

containing related work in the area of computer vision that uses ML to categorize waste,

and the contribution to current datasets in the area.

Three research questions were answered during the development of the project.

RQ1: Considering the requisites of an ML model, which types of ML algorithms are

best suited for the classification of waste images within a smartphone application?

This question was answered by researching the available literature and analyzing the

results of previous studies. The MobileNet architecture had the best results due to its

lightweight characteristics. Even though it was reported that the architecture had a lower

accuracy generally when compared to others. Within the MobileNet architecture there are

three iterations, from v1 to v3. Each iteration has improvements in the reported accuracy

when compared to previous iterations. It was important that the reported results were

related with the task of classification waste. Due to this the v3 architecture was excluded

because there were no scientific papers reporting results in this architecture. Another point

was considered, the availability of the architecture in existing ML frameworks that

allowed quick development of the project. Only the v1 and v2 architectures were available

at the moment of the creation of this project. Taking all this information into account, the

MobileNet v2 architecture was the choice for the answer to this question yet the

performance of this architecture in real images was shown that it is much lower to what

is registered in the literature.

RQ2: Is it possible to create an accurate (that is, achieving over 90% precision) but yet

light weight model (enabling a quick classification: under three seconds) able to run in

smartphones?

This answer is not completely clear, due to the different types of tests that were done

which returned mixed results. The MobileNet v2 model without object detection had an

average precision of 94,65% on the test dataset, yet the test on the real dataset returned

an average precision of 24,94%. The classification for this model when tested in the two

environments was executed under three seconds. These results indicate that the ML model

Chapter 8 – Conclusions and recommendations

64

isn’t good enough for real life scenarios, but it is good enough to run in a smartphone

within the purposed classification time. The SSD MobileNet v2 model that contains

object detection failed the precision test with an average precision of 72,04% in the test

dataset and go an even worse result in the real dataset, with an average precision of

22,52%. This ML model was able to classify images under three seconds as well in the

mobile application, when tested in the two available environments.

RQ3: Is the most cited public available dataset of waste images diverse enough to

produce a ML model that can classify waste into its specific recycling category in a real-

life scenario?

The answer to this question is that the data is not diverse enough. The most cited public

available dataset of waste images is Trashnet. In a MobileNet v2 architecture without

object detection the test results in the test dataset returned an average precision of 94,65%

which is very high, yet when these tests were done in the real dataset the ML model only

had an average precision result of 24,94%. In an SSD MobileNet v2 architecture with

object detection the test results in the test dataset returned an average precision of 72,04%,

while these tests when done in the real dataset revealed an average precision of 22,52%.

These results corroborate the lack of diversity in Trashnet dataset to produce a ML that

can classify waste in a real-life scenario.

In terms of development this project demonstrated that a system that connects a mobile

application to a server in order to transfer information for the production of new ML

models is possible. All modules of the system were successfully produced. The mobile

application that can use a ML model to classify waste images, upload images to the API

and download from the API new versions of the ML model. The API that can authenticate

users, receive images and upload ML models. The ML server module that can train new

ML models.

8.2. Contributions to the scientific and business community

The project contributed to the scientific and business community with a compendium of

information in the area of computer vision and ML to categorize waste. This information

can serve as a point of departure for present and future investigation in this area of

expertise.

Chapter 8 – Conclusions and recommendations

65

A working prototype system was created, showing that, both in theory and empirically,

a system that uses crowdsourcing and ML elements can be further explored as a possible

system for developing mobile applications in the area of waste management and

classification.

8.3. Limitations of the study

This project had multiple limitations that affected its outcome. Starting on the ML

architecture options. Due to the amount of work required for this project a ML

architecture had to be selected based on previous studies and it wasn’t timely possible to

compare multiple architectures to compare results. Due to the limitations present in the

available ML frameworks that facilitate the development of code to train models, the most

recent version of the chosen architecture wasn’t used, because it wasn’t available at the

time when this project was developed.

The amount of data used in the training of the ML models has also stand as a serious

limitation. Only two datasets from previous scientific studies were available. None of

these two datasets were annotated with bounding boxes that allowed for the training of a

ML model with object detection. Due to the limitated time of this project, only the most

cited dataset (Trashnet) was annoted with bounding boxes and therefore used as data for

training.

Even though the study produced a working system prototype, the precision of the

classification of the mobile application is very limited in real life as concluded. The

system was not tested by third party subjects and therefore was limited to testing within

the development environment.

The diversity of technologies required for the scope of the project brought the

limitation of the best development practices in each module due to lack of knowledge in

these technologies. This might have caused unnecessary delays and performance

degradation in each module.

Chapter 8 – Conclusions and recommendations

66

8.4. Future work

Multiple possible iterations of this project have been left for the future due to lack of time.

Future work could focus on the limitations that were highlighted in Section 8.3 but not

only necessarily.

It would be important for example to make a further study on ML architectures for

mobile applications, due to the increasing smartphone computing power there is the

probability that more process demanding architectures might be able to be used

successfully in smartphones.

Another idea is to gather or produce more data that can be used to train the ML models.

This can be achieved through direct gathering by the further researchers or through

crowdsourcing techniques where a prototype system like the one that was developed in

this project can be released to more users in order to gather data through its crowdsourcing

capabilities. This would be important to build more precise ML models for the

application.

A better user experience for the user should be developed for the mobile application.

For example, more information could be returned to the user when it uses the application

to classify an image. Information on how the material is recycled and the possible usages

for that material. Techniques of gamification might also be an option to further engage

the users to explore the application.

In theory the technology used to build the mobile application allows for the creation

of code that can be compiled for both Android and OIS operating systems. Since this

project scope was limited to Android, it would be interesting to also test or if needed adapt

the system to fully support both mobile operating systems.

67

Bibliography

[1] S.-A. Barnes, A. Green, and M. de Hoyos, “Crowdsourcing and work: individual factors

and circumstances influencing employability: Crowdsourcing and work,” New

Technology, Work and Employment, vol. 30, no. 1, pp. 16–31, Mar. 2015, doi:

10.1111/ntwe.12043.

[2] C. Zhihong, Z. Hebin, W. Yanbo, L. Binyan, and L. Yu, “A vision-based robotic

grasping system using deep learning for garbage sorting,” in 2017 36th Chinese Control

Conference (CCC), Jul. 2017, pp. 11223–11226, doi: 10.23919/ChiCC.2017.8029147.

[3] Wang Kun and Kong Songtao, “Identification method of waste based on gray level co-

occurrence matrix and neural network,” in 2011 International Conference on Materials

for Renewable Energy Environment, May 2011, vol. 1, pp. 929–931, doi:

10.1109/ICMREE.2011.5930954.

[4] Z. Wang, B. Peng, Y. Huang, and G. Sun, “Classification for plastic bottles recycling

based on image recognition,” Waste Management, vol. 88, pp. 170–181, Apr. 2019, doi:

10.1016/j.wasman.2019.03.032.

[5] Mohammad Osiur Rahman, Aini Hussain, Edgar Scavino, Hassan Basri, and M.A.

Hannan, “Intelligent computer vision system for segregating recyclable waste papers,”

2011. .

[6] A. Salmador, J. Pérez Cid, and I. Rodríguez Novelle, “Intelligent Garbage Classifier,”

Jan. 2008, Accessed: Oct. 24, 2019. [Online]. Available:

http://dialnet.unirioja.es/servlet/oaiart?codigo=4035318.

[7] S. Gundupalli Paulraj, S. Hait, and A. Thakur, “Automated Municipal Solid Waste

Sorting for Recycling Using a Mobile Manipulator,” p. V05AT07A045, Aug. 2016, doi:

10.1115/DETC2016-59842.

[8] B. M. Chinnathurai, R. Sivakumar, S. Sadagopan, and J. M. Conrad, “Design and

implementation of a semi-autonomous waste segregation robot,” in SoutheastCon 2016,

Mar. 2016, pp. 1–6, doi: 10.1109/SECON.2016.7506679.

[9] M. S. Rad et al., “A Computer Vision System to Localize and Classify Wastes on the

Streets,” in Computer Vision Systems, 2017, pp. 195–204.

[10] Y. Liao, R. Lu, S. Wu, P. Cheng, and G. Xu, “The robot for recycling based on machine

learning,” in 2018 International Automatic Control Conference (CACS), Nov. 2018, pp.

1–6, doi: 10.1109/CACS.2018.8606758.

[11] S. Nandhini, S. S. Mrinal, N. Balachandran, K. Suryanarayana, and D. S. H. Ram,

“Electronically assisted automatic waste segregation,” in 2019 3rd International

Conference on Trends in Electronics and Informatics (ICOEI), Apr. 2019, pp. 846–850,

doi: 10.1109/ICOEI.2019.8862666.

[12] Z. Wang, H. Li, and X. Zhang, “Construction waste recycling robot for nails and screws:

Computer vision technology and neural network approach,” Automation in Construction,

vol. 97, pp. 220–228, Jan. 2019, doi: 10.1016/j.autcon.2018.11.009.

[13] A. Chung, S. Kim, E. Kwok, M. Ryan, E. Tan, and R. Gamadia, “Cloud Computed

Machine Learning Based Real-Time Litter Detection using Micro-UAV Surveillance,”

2018, p. 10.

[14] S. Sudha, M. Vidhyalakshmi, K. Pavithra, K. Sangeetha, and V. Swaathi, “An automatic

classification method for environment: Friendly waste segregation using deep learning,”

in 2016 IEEE Technological Innovations in ICT for Agriculture and Rural Development

(TIAR), Jul. 2016, pp. 65–70, doi: 10.1109/TIAR.2016.7801215.

[15] L. R. Kambam and A. R, “Classification of plastic bottles based on visual and physical

features for waste management,” in 2019 IEEE International Conference on Electrical,

Bibliography

68

Computer and Communication Technologies (ICECCT), Feb. 2019, pp. 1–6, doi:

10.1109/ICECCT.2019.8869191.

[16] Y. Chu, C. Huang, X. Xie, B. Tan, S. Kamal, and X. Xiong, “Multilayer Hybrid Deep-

Learning Method for Waste Classification and Recycling,” Computational Intelligence

and Neuroscience, vol. 2018, pp. 1–9, Nov. 2018, doi: 10.1155/2018/5060857.

[17] A. N. Kokoulin, A. I. Tur, and A. A. Yuzhakov, “Convolutional neural networks

application in plastic waste recognition and sorting,” in 2018 IEEE Conference of

Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Jan.

2018, pp. 1094–1098, doi: 10.1109/EIConRus.2018.8317281.

[18] P. Dhulekar, S. T. Gandhe, and U. P. Mahajan, “Development of Bottle Recycling

Machine Using Machine Learning Algorithm,” in 2018 International Conference On

Advances in Communication and Computing Technology (ICACCT), Feb. 2018, pp.

515–519, doi: 10.1109/ICACCT.2018.8529483.

[19] A. N. Kokoulin and D. A. Kiryanov, “The Optical Subsystem for the Empty Containers

Recognition and Sorting in a Reverse Vending Machine,” in 2019 4th International

Conference on Smart and Sustainable Technologies (SpliTech), Jun. 2019, pp. 1–6, doi:

10.23919/SpliTech.2019.8782990.

[20] A. Torres-García, O. Rodea-Aragón, O. Longoria-Gandara, F. Sánchez-García, and L.

Enrique González-Jiménez, “Intelligent Waste Separator,” Computacion y Sistemas, vol.

19, pp. 487–500, Sep. 2015, doi: 10.13053/CyS-19-3-2254.

[21] L. Omar, R. Oscar, T. Andres, and S. Francisco, “Multimedia inorganic waste

separator,” in 2013 IEEE International Conference on Multimedia and Expo Workshops

(ICMEW), Jul. 2013, pp. 1–4, doi: 10.1109/ICMEW.2013.6618314.

[22] I. Salimi, B. S. B. Dewantara, and I. K. Wibowo, “Visual-based trash detection and

classification system for smart trash bin robot,” in 2018 International Electronics

Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), Oct. 2018,

pp. 378–383, doi: 10.1109/KCIC.2018.8628499.

[23] Shamin N, P. M. Fathimal, R. R, and K. Prakash, “Smart Garbage Segregation

Management System Using Internet of Things(IoT) Machine Learning(ML),” in 2019

1st International Conference on Innovations in Information and Communication

Technology (ICIICT), Apr. 2019, pp. 1–6, doi: 10.1109/ICIICT1.2019.8741443.

[24] S. L. Rabano, M. K. Cabatuan, E. Sybingco, E. P. Dadios, and E. J. Calilung, “Common

Garbage Classification Using MobileNet,” in 2018 IEEE 10th International Conference

on Humanoid, Nanotechnology, Information Technology,Communication and Control,

Environment and Management (HNICEM), Nov. 2018, pp. 1–4, doi:

10.1109/HNICEM.2018.8666300.

[25] G. Mittal, K. B. Yagnik, M. Garg, and N. C. Krishnan, “SpotGarbage: smartphone app

to detect garbage using deep learning,” in Proceedings of the 2016 ACM International

Joint Conference on Pervasive and Ubiquitous Computing - UbiComp ’16, Heidelberg,

Germany, 2016, pp. 940–945, doi: 10.1145/2971648.2971731.

[26] S. Singh et al., “Identifying uncollected garbage in urban areas using crowdsourcing and

machine learning,” in 2017 IEEE Region 10 Symposium (TENSYMP), Jul. 2017, pp. 1–5,

doi: 10.1109/TENCONSpring.2017.8070078.

[27] S. Frost, B. Tor, R. Agrawal, and A. G. Forbes, “CompostNet: An Image Classifier for

Meal Waste,” in 2019 IEEE Global Humanitarian Technology Conference (GHTC),

Seattle, WA, USA, Oct. 2019, pp. 1–4, doi: 10.1109/GHTC46095.2019.9033130.

[28] Sreelakshmi K, Akarsh S, Vinayakumar R, and P. Soman K., “Capsule Neural Networks

and Visualization for Segregation of Plastic and Non-Plastic Wastes,” in 2019 5th

International Conference on Advanced Computing Communication Systems (ICACCS),

Mar. 2019, pp. 631–636, doi: 10.1109/ICACCS.2019.8728405.

69

[29] R. A. Aral, Ş. R. Keskin, M. Kaya, and M. Hacıömeroğlu, “Classification of TrashNet

Dataset Based on Deep Learning Models,” in 2018 IEEE International Conference on

Big Data (Big Data), Dec. 2018, pp. 2058–2062, doi: 10.1109/BigData.2018.8622212.

[30] K. Anding, E. Linß, H. Träger, M. Rückwardt, and A. Göpfert, “Optical identification of

construction and demolition waste by using image processing and machine learning

methods,” Proceedings of the 14th Joint International IMEKO TC1 + TC7 + TC 13

Symposium: “Intelligent quality measurements - theory, education and training” ; in

conjunction with the 56th IWK, Ilmenau University of Technology and the 11th

SpectroNet Collaboration Forum ; 31. August - 2. September 2011, JenTower Jena,

Germany, vol. 56, 2011, Dec. 2011, Accessed: Jun. 23, 2020. [Online]. Available:

https://www.db-thueringen.de/receive/dbt_mods_00019542.

[31] C. Bircanoğlu, M. Atay, F. Beşer, Ö. Genç, and M. A. Kızrak, “RecycleNet: Intelligent

Waste Sorting Using Deep Neural Networks,” in 2018 Innovations in Intelligent Systems

and Applications (INISTA), Jul. 2018, pp. 1–7, doi: 10.1109/INISTA.2018.8466276.

[32] Shahrani Shahbudin, Aini Hussain, Dzuraidah Abdul Wahab, Mohd Marzuki Mustafa,

and Suzaimah Ramli, “Support Vector Machines for automated classification of plastic

bottles,” in 2010 6th International Colloquium on Signal Processing its Applications,

May 2010, pp. 1–5, doi: 10.1109/CSPA.2010.5545265.

[33] W. Setiawan, A. Wahyudin, and G. R. Widianto, “The use of scale invariant feature

transform (SIFT) algorithms to identification garbage images based on product label,” in

2017 3rd International Conference on Science in Information Technology (ICSITech),

Oct. 2017, pp. 336–341, doi: 10.1109/ICSITech.2017.8257135.

[34] B. W. House, D. W. Capson, and D. C. Schuurman, “Towards real-time sorting of

recyclable goods using support vector machines,” in Proceedings of the 2011 IEEE

International Symposium on Sustainable Systems and Technology, May 2011, pp. 1–6,

doi: 10.1109/ISSST.2011.5936845.

[35] M. Nawrocky, D. C. Schuurman, and J. Fortuna, “Visual sorting of recyclable goods

using a support vector machine,” in CCECE 2010, May 2010, pp. 1–4, doi:

10.1109/CCECE.2010.5575231.

[36] M. Yang and G. Thung, “Classification of Trash for Recyclability Status,” p. 6, 2016.

[37] U. Ozkaya and L. Seyfi, “Fine-Tuning Models Comparisons on Garbage Classification

for Recyclability,” arXiv:1908.04393 [cs], Aug. 2019, Accessed: Oct. 27, 2019.

[Online]. Available: http://arxiv.org/abs/1908.04393.

[38] M. Satvilkar, “Image Based Trash Classification using Machine Learning Algorithms for

Recyclability Status,” masters, Dublin, National College of Ireland, 2018.

[39] H. N. Kulkarni and N. Kannamangalam, “Waste Object Detection and Classification,”

2019.

[40] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile

Vision Applications,” arXiv:1704.04861 [cs], Apr. 2017, Accessed: Oct. 21, 2019.

[Online]. Available: http://arxiv.org/abs/1704.04861.

[41] G. E. Sakr, M. Mokbel, A. Darwich, M. N. Khneisser, and A. Hadi, “Comparing deep

learning and support vector machines for autonomous waste sorting,” in 2016 IEEE

International Multidisciplinary Conference on Engineering Technology (IMCET), Nov.

2016, pp. 207–212, doi: 10.1109/IMCET.2016.7777453.

[42] C. Li, Y. Yang, M. Feng, S. Chakradhar, and H. Zhou, “Optimizing Memory Efficiency

for Deep Convolutional Neural Networks on GPUs,” in SC16: International Conference

for High Performance Computing, Networking, Storage and Analysis, Salt Lake City,

UT, USA, Nov. 2016, pp. 633–644, doi: 10.1109/SC.2016.53.

Bibliography

70

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May 2017,

doi: 10.1145/3065386.

[44] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,”

arXiv:1603.07285 [cs, stat], Jan. 2018, Accessed: Dec. 09, 2019. [Online]. Available:

http://arxiv.org/abs/1603.07285.

[45] J. G. Carney and P. Cunningham, “The Epoch Interpretation of Learning,” p. 5.

[46] Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris, “SpotTune: Transfer

Learning Through Adaptive Fine-Tuning,” p. 10.

[47] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

arXiv:1412.6980 [cs], Jan. 2017, Accessed: Oct. 03, 2020. [Online]. Available:

http://arxiv.org/abs/1412.6980.

[48] K. Team, “Keras documentation: Probabilistic losses.”

https://keras.io/api/losses/probabilistic_losses/#categoricalcrossentropy-class (accessed

Oct. 03, 2020).

[49] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, “Understanding data

augmentation for classification: when to warp?,” arXiv:1609.08764 [cs], Nov. 2016,

Accessed: Oct. 03, 2020. [Online]. Available: http://arxiv.org/abs/1609.08764.

[50] W. Liu et al., “SSD: Single Shot MultiBox Detector,” arXiv:1512.02325 [cs], vol. 9905,

pp. 21–37, 2016, doi: 10.1007/978-3-319-46448-0_2.

[51] S. Arabi, A. Haghighat, and A. Sharma, “A deep learning based solution for construction

equipment detection: from development to deployment,” p. 18.

[52] J. Huang et al., “Speed/accuracy trade-offs for modern convolutional object detectors,”

arXiv:1611.10012 [cs], Apr. 2017, Accessed: Oct. 03, 2020. [Online]. Available:

http://arxiv.org/abs/1611.10012.

[53] darrenl, tzutalin/labelImg. 2020.

[54] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The Pascal

Visual Object Classes (VOC) Challenge,” Int J Comput Vis, vol. 88, no. 2, pp. 303–338,

Jun. 2010, doi: 10.1007/s11263-009-0275-4.

[55] S. Valdarrama, svpino/tf_object_detection_cm. 2020.

[56] E. Thu and T. Aung, “Developing mobile application framework by using RESTFuL

web service with JSON parser,” Aug. 2015, vol. 388, doi: 10.1007/978-3-319-23207-

2_18.

71

Appendices

73

Appendix A

This appendix serves as a detailed documentation for the endpoints that were mentioned in

Section 6.2. These endpoints are organized in the following categories:

Model Endpoints

These endpoints are related with the logic associated with the ML model.

/model/download/

This endpoint is for users that require to download the latest version of the ML model. The

HTTP method to be used with this endpoint is the GET method.

Sample endpoint:

https://recycler-api.herokuapp.com/model/download/

Sample Request body:

curl -X GET -H "Authorization: <token>" https://recycler-

api.herokuapp.com/model/download/

The response contains a ML model. Which is to be used within the mobile application

environment.

 /model/version/

This endpoint is for users that require to check the number of the latest version of the ML model

available. The HTTP method to be used with this endpoint is the GET method.

Sample endpoint:

https://recycler-api.herokuapp.com/model/version/

Sample Request body:

curl -X GET -H "Authorization: <token>" https://recycler-

api.herokuapp.com/model/version/

The response contains a json format like the following example:

{ “version”: “1.0”}

Appendices

74

/model/upload/

This endpoint is for users that require to upload images to the server. The HTTP method to be

used with this endpoint is the POST method.

Sample endpoint:

https://recycler-api.herokuapp.com/model/upload/

Sample Request body:

curl -X POST -H "Authorization: <token>" -F "file=@/<filepath>.<filetype>"

https://recycler-api.herokuapp.com/model/upload/

The response contains a json format like the following example:

{“id”: 1, “file”: “/media/image.jpg”}

User Endpoints

These endpoints are related with the logic associated with the management of user accounts

and their login/logout.

/users/login/

This endpoint is for users that require to login with their user to retrieve the Token that is

necessary to access the Model endpoints. The HTTP method to be used with this endpoint is

the POST method.

Sample endpoint:

https://recycler-api.herokuapp.com/users/login/

Sample Request body:

curl -X POST -d "username=<username>&password=<password>" https://recycler-

api.herokuapp.com/users/login/

The response contains a json format like the following example:

{“token”: “a64824a0dca3cf8f1c4fc0ccd4eccb635a001346”}

75

/users/register/

This endpoint is for users that require to login, but they still haven’t created a user, so they will

need to register one user first before being to login. A token will be automatically generated for

the user being created. The HTTP method to be used with this endpoint is the POST method.

Sample endpoint:

https://recycler-api.herokuapp.com/users/register/

Sample Request body:

curl -X POST -d "username=<username>&password=<password>" https://recycler-

api.herokuapp.com/users/register/

The response contains a json format like the following example:

{“user”: “test”, “first_name”: “”, “last_name”: “”, “token”:

“a64824a0dca3cf8f1c4fc0ccd4eccb635a001346”}

 /users/logout/

This endpoint is for users that require to logout their users. The HTTP method to be used with

this endpoint is the GET method.

Sample endpoint:

https://recycler-api.herokuapp.com/users/logout/

Sample Request body:

curl -X GET -H "Authorization: <Token>" https://recycler-

api.herokuapp.com/users/logout/

There is no response in this endpoint.

77

Appendix B

It is important when developing a feature, to be able to test and prove that it works, as such the

method that was chosen to test the endpoints was through the command line using the open

source/free software Curl26 because it allows to transfer data by using commands in the

command line. Curl is available for multiple Operating Systems such as Windows and Linux.

This batch of tests the REST API was executed in the localhost.

In Figure B.1 it can be seen the successful testing for the “users/register” endpoint, in line 1

the request for the creation of a user is done with the name “testuser”, the password

“testpassword” and the URL where the endpoint is located. In line 2 the response from the API

with the username and token. The “first_name” and “last_name” variables are redundant.

Figure B.1 – User register testing

In Figure B.2, the endpoint “users/login” is successfully tested, with the login of the user

that was created in the previous test and corresponding password, a token is returned which

should be used for any model related endpoints.

Figure B.2 – User login testing

In Figure B.3, the endpoint “model/version” is tested by passing in line 1 the token that we

received previously in the user login and the URL of the endpoint. The test is successful and in

line 2 we get a json with the version number of the current model present in the server.

Figure B.3 – Model version testing

In Figure B.4, the endpoint “model/download” is tested by requesting (in line 1) to

download ML model and save in the file “test.model”, the authentication token is given and

26 Website link: https://curl.haxx.se/

https://curl.haxx.se/

Appendices

78

the URL for the endpoint is specified. The following lines are the result of downloading the

specified file, the test was done with success.

Figure B.4 – Model download testing

In Figure B.5, the endpoint “model/upload” is tested. In line 1 a request is created by

specifying the authentication token, the file to be uploaded and the URL of the endpoint. In

line 2 the response specifies that the new file has been uploaded with success and it was given

the id 3 and it is located in the specified path, in this case in the path “/media/trash.jpg”.

Figure B.5 – Model upload testing

In Figure B.6, the endpoint “users/logout” is tested successfully by passing the authorization

token and the endpoint URL as it can be seen in line 1, this method will not give a response.

Figure B.6 – User logout testing

