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Resumo 

Nesta dissertação é proposto um sistema para ajudar o consumidor a reciclar 

eficientemente. O sistema é composto por uma aplicação móvel que captura imagens de 

lixo e classifica a sua categoria usando um modelo de aprendizagem automática. 

Consegue também comunicar com um servidor para atualizar o modelo com versões 

melhoradas e enviar as imagens para o servidor para contribuir para a criação de modelos 

mais precisos. 

Foi demonstrado através de um protótipo totalmente funcional que o sistema proposto 

funciona. Algumas imagens de lixo foram categorizadas correctamente, mas o modelo de 

aprendizagem automática produzido durante este projeto não é preciso o suficiente, em 

qualquer categoria de lixo, para usar em cenários da vida real. 

As principais contribuições deste estudo são um compêndio de informação na área de 

visão de computador e aprendizagem automática para categorizar lixo, e um sistema 

protótipo funcional que utiliza elementos de contribuição colaborativa e aprendizagem 

automática para ajudar o consumidor a reciclar mais eficientemente. 

Palavras-Chave: Visão de Computador; Aprendizagem Automática; Reciclagem; 

Contribuição Colaborativa; Gestão de lixo.
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Abstract 

This dissertation proposes a system to help the consumer recycle efficiently. The 

system is composed by a mobile application that can capture images of waste and classify 

their category through the usage of a machine learning model. Furthermore, this 

application can communicate with a server to update the model with new improved 

versions and also upload the images to the server in order to contribute to the creation of 

more precise model versions. 

The system has been validated by a fully working prototype. Although the proof of 

concept has been achieved, with some types of waste items correctly categorized, the 

machine learning model produced is not precise enough to be used in real-life scenarios, 

that is, for any type of waste.  

The main contributions of this study are a compendium of information in the area of 

computer vision and machine learning to categorize waste, and a working prototype 

system that utilizes crowdsourcing and machine learning elements to help the consumer 

recycle more efficiently. 

Keywords: Computer Vision; Machine Learning; Recycling; Crowdsourcing; Waste 

Management.





Mobile Application to Identify Recyclable Materials 

vii 

Contents 

Acknowledgments ............................................................................................................ i 

Resumo ........................................................................................................................... iii 

Abstract ........................................................................................................................... v 

Contents ......................................................................................................................... vii 

List of Tables .................................................................................................................. ix 

List of Figures ................................................................................................................ xi 

Abbreviations ............................................................................................................... xiii 

Chapter 1 – Introduction ............................................................................................... 1 

1.1. Motivation .......................................................................................................... 2 

1.2. Research Questions ............................................................................................ 2 

1.3. Objectives .......................................................................................................... 3 

1.4. Research methodology ....................................................................................... 3 

1.5. Scientific Contribution ....................................................................................... 4 

1.6. Structure and organization of the dissertation ................................................... 4 

Chapter 2 – Literature Review ...................................................................................... 7 

2.1. Methodology ...................................................................................................... 7 

2.2. Related Work ..................................................................................................... 8 

2.2.1. Robotic Systems ......................................................................................... 8 

2.2.2. Smart Trash Systems ................................................................................ 10 

2.2.3. Mobile Applications ................................................................................. 11 

2.2.4. Case Studies .............................................................................................. 12 

2.3. Results from the Literature .............................................................................. 12 

Chapter 3 – MobileNet ................................................................................................. 21 

Chapter 4 – High-level Architecture ........................................................................... 25 

Chapter 5 – ML Model Processor ............................................................................... 31 

5.1. MobileNet v2 ................................................................................................... 32 

5.1.1. Methodology ............................................................................................. 33 

5.1.2. Results ...................................................................................................... 34 

5.1.3. Converting to mobile ................................................................................ 38 

5.1.4. Repository ................................................................................................. 38 

5.2. SSD MobileNet v2 ........................................................................................... 39 

5.2.1. Methodology ............................................................................................. 40 

5.2.2. Results ...................................................................................................... 42 

5.2.3. Converting to mobile ................................................................................ 48 

5.2.4. Repository ................................................................................................. 48 



Mobile Application to Identify Recyclable Materials 

 

viii 

Chapter 6 – REST API ................................................................................................. 49 

6.1. Architecture ..................................................................................................... 50 

6.2. Endpoint Definition ......................................................................................... 51 

6.3. Testing ............................................................................................................. 51 

6.4. Repository ........................................................................................................ 51 

Chapter 7 – Mobile Application .................................................................................. 53 

7.1. Architecture ..................................................................................................... 54 

7.2. Available Actions ............................................................................................ 54 

7.3. Testing ............................................................................................................. 61 

7.4. Repository ........................................................................................................ 62 

Chapter 8 – Conclusions and recommendations ....................................................... 63 

8.1. Main conclusions ............................................................................................. 63 

8.2. Contributions to the scientific and business community ................................. 64 

8.3. Limitation of the study ..................................................................................... 65 

8.4. Future work ...................................................................................................... 66 

Bibliography .................................................................................................................. 67 

Appendices .................................................................................................................... 71 

Appendix A ................................................................................................................ 73 

Model Endpoints ................................................................................................... 73 

/model/download/ ............................................................................................... 73 

/model/version/ ................................................................................................... 73 

/model/upload/ .................................................................................................... 74 

User Endpoints ...................................................................................................... 74 

/users/login/ ........................................................................................................ 74 

/users/register/ ..................................................................................................... 75 

/users/logout/ ...................................................................................................... 75 

Appendix B ................................................................................................................. 77 

  



Mobile Application to Identify Recyclable Materials 

ix 

List of Tables 

Table 2.1 – List of databases ............................................................................................ 8 
Table 2.2 – Search criteria ................................................................................................ 8 

Table 2.3 – Synthetized results from the literature ......................................................... 16 
 

Table 4.1 – Trashnet dataset details................................................................................ 27 
Table 4.2 – Real life images dataset distribution............................................................ 29 
 

Table 5.1 – Test dataset results confusion matrix with Mobilenet v2 ............................ 36 
Table 5.2 – Precision results for Test dataset by category with Mobilenet v2 ............... 36 
Table 5.3 – Real dataset results confusion matrix with Mobilenet v2 ........................... 37 
Table 5.4 – Precision results for Real dataset by category with Mobilenet v2 .............. 37 

Table 5.5 – Test dataset results confusion matrix with SSD Mobilenet v2.................... 46 
Table 5.6 – Precision results for Test dataset by category with SSD Mobilenet v2 ...... 46 

Table 5.7 – Real dataset results confusion matrix with SSD Mobilenet v2 ................... 47 
Table 5.8 – Precision results of Real dataset by category with SSD Mobilenet v2 ....... 47 





Mobile Application to Identify Recyclable Materials 

xi 

List of Figures 

Figure 2.1 – Search process .............................................................................................. 7 
Figure 2.2 – Algorithm Distribution ............................................................................... 13 

Figure 2.3 – CNN Architecture Distribution .................................................................. 14 
Figure 2.4 – Dataset Distribution ................................................................................... 14 
Figure 2.5 – Accuracy benchmarking results with Trashnet dataset .............................. 15 
 

Figure 3.1 – The structure of an example CNN [41] ...................................................... 21 

Figure 3.2 – MobileNet body architecture [44] .............................................................. 22 
Figure 3.3 – Factorization of standard convolution [44] ................................................ 23 
Figure 3.4 – Representation of MobileNet layer except the last layer [44].................... 23 
 

Figure 4.1 – High-level system architecture ................................................................... 25 
Figure 4.2 – Cardboard category image samples ........................................................... 28 
Figure 4.3 – Glass category image samples ................................................................... 28 

Figure 4.4 – Metal category image samples ................................................................... 28 
Figure 4.5 – Paper category image samples ................................................................... 28 
Figure 4.6 – Plastic category image samples .................................................................. 28 
Figure 4.7 – Trash category image samples ................................................................... 28 
Figure 4.8 – Image samples for real life purpose test ..................................................... 29 

 

Figure 5.1 – Example of fine-tuning [46] ....................................................................... 32 
Figure 5.2 – Model training accuracy ............................................................................. 35 
Figure 5.3 – Model training loss ..................................................................................... 35 

Figure 5.4 – Example of SSD MobileNet architecture [51] ........................................... 39 

Figure 5.5 – mAP results from Tensorboard .................................................................. 43 
Figure 5.6 – mAP IOU results from Tensorboard .......................................................... 44 
Figure 5.7 – Loss metrics from Tensorboard ................................................................. 45 

 

Figure 6.1 – REST API architecture [56] ....................................................................... 49 

Figure 6.2 – Django project structure ............................................................................. 50 
 

Figure 7.1 – Mobile application architecture.................................................................. 54 

Figure 7.2 – Mobile application experience flow ........................................................... 55 
Figure 7.3 – Entry screen ................................................................................................ 56 
Figure 7.4 – Select image screen .................................................................................... 56 
Figure 7.5 – Evaluation screen ....................................................................................... 57 

Figure 7.6 – Capture image screen ................................................................................. 58 
Figure 7.7 – Confirm image screen ................................................................................ 59 
Figure 7.8 – Login screen ............................................................................................... 60 

Figure 7.9 – Menu screen ............................................................................................... 61 
 

Figure B.1 – User register testing ................................................................................... 77 

Figure B.2 – User login testing ....................................................................................... 77 
Figure B.3 – Model version testing ................................................................................ 77 
Figure B.4 – Model download testing ............................................................................ 78 

Figure B.5 – Model upload testing ................................................................................. 78 



Mobile Application to Identify Recyclable Materials 

 

xii 

Figure B.6 – User logout testing ..................................................................................... 78 

 

  



Mobile Application to Identify Recyclable Materials 

xiii 

Abbreviations 

API – Application Programming Interface  

COCO – Common Objects in Context  

CNN – Convolutional Neural Network  

CPU – Central Process Unit  

CSV – Comma-Separated Value  

GINI – Garbage in Images  

GPU – Graphics Processing Unit  

HTTP – Hypertext Transfer Protocol  

HKNN – Hyperplane Nearest Neighbors  

IoT – Internet of Things 

IOU – Intersection Over Unit 

KNN – K-Nearest Neighbors 

mAP – Mean Average Precision  

ML – Machine Learning  

MVC – Model View Controller 

PASCAL – Pattern Analysis, Statistical modelling and Computational Learning  

RF – Random Forest  

R-CNN – Regions Convolutional Neural Network  

ReLU – Rectified Linear Union 

REST – Representational State Transfer  

SDK – Software Development Kit 

SIFT – Scale Invariant Feature Transform 

SSD – Single Shot Detector  

SVM – Support Vector Machine 

UI – User Interface  



Mobile Application to Identify Recyclable Materials 

 

xiv 

URL – Uniform Resource Locator 

VOC – Visual Object Class  

XML – Extensible Markup Language



Chapter 1 – Introduction 

1 

Chapter 1 – Introduction 

Waste is defined as “any substance or object which the holders discards or intends or is 

required to discard”1. Our societies generate waste at an increasing and alarming rate. 

Each European Union inhabitant in 20162 generated on average 5.0 tons of waste, only 

37.8 % of this waste was recycled with 45,7% being landfilled. This means that 3,11 tons 

of waste per inhabitant were landfilled, incinerated or deposited in the environment. 

These statistics show that recycling still has a great margin for improvement and that 

waste that does not get recycled may end up polluting the air, water and soil since landfills 

take up land space. Incineration is also an alternative way to treat waste, yet this solution 

may result in emissions of air pollutants. Increasing the efficiency of recycling is a 

mandatory step to reduce the pollution to the environment, reduce health impacts and to 

achieve better resource efficiency. 

Recycling is defined as any operation with the aim of recovering waste materials, 

reprocessing them into products, materials or substances that can be used again after being 

processed3. Not all waste can be recycled in the same way, it is important to categorize 

and separate it. An important level of waste segregation is achieved at the end point of 

the recycling lifecycle, where factories specialized in waste segregation use semi-

autonomous methods to separate the trash. However, waste segregation is achieved at 

multiple levels and, at the consumer level, it is achieved by using different containers. 

Yet, for this to be efficient, the consumer needs to know in which container he/she should 

put the waste. Moreover, the consumer needs to be motivated to do so mainly because 

this task can be more elaborated than what could be expected. For instance, if you have a 

paper bag that has a plastic window, where should you throw out this waste: the paper 

container, the plastic container? 

Computers have proven to surpass humans at certain tasks, especially in repetitive 

tasks. Based on this premise, machine learning (ML) has been successfully used in the 

implementation of waste segregation systems for identification of waste categories based 

on image recognition as explained in Chapter 2. On the other hand, smartphones, at each 

 
1 Definition from Article 3 in website: https://eur-lex.europa.eu/legal-

content/EN/ALL/?uri=CELEX:32008L0098 
2 From website: https://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_statistics 
3 Definition from website: https://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Glossary:Recycling_of_waste 

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32008L0098
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32008L0098
https://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Recycling_of_waste
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Recycling_of_waste
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generation, are increasing their processing power and camera’s resolution. Joining 

together ML and smartphones seems like a natural match for present and future 

applications that can analyze images and classify them, thus helping the consumer to 

separate waste for recycling. 

It is known that ML requires large amounts of data to produce reliable models. 

Depending on the type of problem solving to be achieved by using ML, these models 

might require a flow of new data to keep updating them in order to successfully solve an 

evolving problem of classification. Applying crowdsourcing concepts in such system can 

help secure this flow of data. Crowdsourcing can be defined as outsourcing work to a 

group of agents, where traditionally this work would be assigned to a designated agent 

[1]. 

 

1.1. Motivation 

As stated, there still exists a great margin for improving recycling rates at the consumer’s 

level. As such, the creation of systems that help the users understand how to recycle is 

important. Since nowadays almost everyone has a smartphone, an application that helps 

users with the task in hand seems to be an idea. Yet, due to the large amounts of data 

required for training precise ML models and to maintain them updated, it is important to 

secure a flow of data. Using crowdsourcing techniques can help such requirements with 

a continuous flow of new data. For this a centralized server is required to receive the 

images captured by the application. These images will be used to train improved ML 

models that can be downloaded by the application. 

 

1.2. Research Questions 

The purpose of this research is to create an ML model for usage in an application for 

smartphones, to analyze waste images and classify them into its specific recycling 

category. Nevertheless, several questions remain.  

RQ1: Considering the requisites of an ML model, which types of ML algorithms are 

best suited for the classification of waste images within a smartphone application? 
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RQ2: Is it possible to create an accurate (that is, achieving over 90% precision) but yet 

light weight model (enabling a quick classification: under three seconds) able to run in 

smartphones? 

RQ3: Is the most cited public available dataset of waste images diverse enough to 

produce a ML model that can classify waste into its specific recycling category in a real-

life scenario? 

 

1.3. Objectives 

This work’s main objective is to create a mobile application that can help people to 

recycle. The system can work by image acquisition (capturing an image) and classifying 

it into a respective recycling category. The application will be able to send the captured 

images to a Representational State Transfer (REST) Application Programming Interface 

(API) and reinforce the model present in the application by updating it with the most 

recent ML model available through the API. For this, the main research questions will be 

investigated. 

Furthermore, this work intends to synthetize the related work in the area of computer 

vision that uses ML to categorize waste in order to create a compendium for present and 

further investigation. 

 

1.4. Research methodology 

The research methodology used in order to achieve the purposed objectives for this work 

was the Design Science Research model, focused on the design and development. The 

following are this dissertation’s proposed developments: 

1) Creation of a multi-classifier ML model capable of identifying waste in images and 

classify it into its specific recycling category. 

2) Creation of a prototype REST API that will communicate with the mobile 

application to receive feedback from it (in the form of images captured in the application) 

and also update the ML model of the application.  
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3) Creation of a prototype Android application, capable of taking a picture and process 

it into the ML model to get a classification. It should be able to also communicate with a 

REST API. 

4) Field test the prototype system with real life scenarios. 

 

1.5. Scientific Contribution 

This dissertation presents the following contributions: 

• Compendium of information in the area of computer vision and ML to 

categorize waste. 

• Working prototype system to help people to recycle. 

The research on the literature, that was conducted during the development of this 

dissertation, has been synthetized in a scientific paper  submitted to the journal 

Environmental Technology  ID TETR-TENT-2020-1177. At the moment of the 

conclusion of this dissertation it is still under review having been sent to the reviewers 

and undergoing the normal revision process. 

 

1.6. Structure and organization of the dissertation 

The present study is organized in nine chapters. These chapters will reflect the different 

phases until its conclusion. 

The first chapter introduces the theme of the study along with its motivation, research 

questions and objectives. This chapter also describes the research methodology utilized 

in the study. 

The second chapter focuses on the literature related with the work that is being studied. 

It is subdivided in the methodology applied to the literature review, the categorization of 

the related work in the field and a synthetization of this work. It also presents some results 

based on the information that can be taken from the literature. 

The third chapter reflects the ML architecture to be used in this dissertation. It 

describes the architecture and introduces concepts that will help understand the work done 

in upcoming chapters. 
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The fourth chapter reflects the architecture of the system. It defines a high-level 

overview of the system. Each module of the system is briefly described in this section 

while also specifying the technology used. This chapter also describes the dataset that 

will be used in the training of the ML model for the application. It contextualizes the 

origin, categorization, and format of the data. 

The fifth chapter specifies how the ML model, to be used in the application, is trained. 

It describes all the steps taken, tests and results. 

The sixth chapter presents the REST API information. This chapter will describe the 

technology used to build the API, the architecture that was used to model the code, the 

documentation of the code and how to use the API and a section that describes the tests 

that were done to make sure the API was functioning as expected. 

The seventh chapter describes how the mobile application was built, explaining the 

technology that was used, the architecture of the code and how it was tested to make sure 

it was functional as required. 

The eighth and last chapter presents the conclusions from this study as well as some 

recommendations, limitations and proposed future works.
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Chapter 2 – Literature Review 

This chapter will describe the literature review methodology and will provide a summary 

of all the related work found during the review. 

 

2.1. Methodology 

The present literature research was carried between September 2019 and October 2020, 

focusing on the theme of Computer Vision applications in the field of recycling systems. 

Mainly, the intent was to search for scientific papers that described developments or 

theories falling into the categorization of recycling waste with the help of ML. 

The search method used in this study is described by Figure 2.1. The first step was to 

carry out a systematic search in the available scholar databases (Table 2.1). For this, a list 

of search criteria was used (Table 2.2). In step two, the results from step one were 

validated with filters that consisted in the following criteria: the language must be 

English, the work must be a scientific text, the content is relevant to the paper’s topic, the 

work is not duplicated. 

  

Figure 2.1 – Search process 

  



Chapter 2 – Literature Review 

8 

Table 2.1 – List of databases      Table 2.2 – Search criteria 

Databases  Search Strings 

IEEE Xplore Digital Library  Machine learning waste classification 

Google Scholar  Computer vision waste classification 

B-On  Computer vision recycling materials 

Research Gate  Waste segregation 

ACM Digital Library  Recyclable goods 

Springer Link  Image recognition recycling 

  Garbage classification 

 

 

This search yielded 57 papers and the filtering processing ended with 39 scientific 

papers concerning the related work in the area of computer vision applied to the 

classification of recyclable waste. This related work will be described in Section 2.2 and 

the synthesis of the results as well as some conclusions will be described in Section 2.3.  

 

2.2. Related Work 

The literature has many examples of how image classification through ML may help to 

achieve automation in recycling systems. Some just use image classification others use it 

as part of a more complex system. This section will describe the examples found in the 

literature in order to clarify a generalized view of the possibilities in this area. 

 

2.2.1. Robotic Systems 

Some researchers propose robotic systems which enable the automation of garbage 

handling. The robotic systems can also be sub categorized in similarity of 

implementation. 
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Conveyor Belt Systems 

In this type of implementations, the system revolves around a conveyor belt where the 

waste is processed, such as “a robotic grasping system for automatically sorting garbage 

based on machine vision” [2], where the system is composed of three main parts: a 

camera, a conveyor belt and a manipulator for object grasping. The camera images are 

used to located and classify the objects with Regions Convolutional Neural Network (R-

CNN) that identifies a subset of regions in the image that might contain an object and 

then tries to classify the objects in the images. Another study  presents a method to classify 

waste in a conveyor belt, through the usage of a high-speed camera and the extraction of 

texture features combined with a probabilistic neural network to classify the waste [3]. 

Some researchers suggest another way for classification of plastic bottles in a conveyor 

belt system can be achieved through the usage of image classification by a Support Vector 

Machine (SVM) algorithm [4]. An implementation  shows a conveyor belt system that is 

able to classify different grades of paper only through image processing techniques using 

the K-Nearest Neighbors (KNN) algorithm [5]. The authors of [6] suggest another design 

for a system that can identify solid waste in a conveyor belt and grab the waste with a 

robotic arm using a Hyperplane Nearest Neighbors (HKNN) algorithm. 

 

Mobile Systems 

Here, the system is mobile and can move freely in an environment in order to reach 

static waste as proposed in the development [7] of a robot equipped with a thermal 

imaging camera, proximity sensor and a robotic arm. The robot employs a bag-of-features 

and a multi-class SVM in order to identify and classify recyclable materials. One other 

study proposes a design for a semi-autonomous robot that would segregate recyclable and 

non-recyclable waste using a content based image retrieval method that contains a bag-

of-features [8]. Another work proposes to quantify littering in urban environments with a 

camera mounted on top of a vehicle and facing the ground. The images captured are then 

used to feed a deep Convolutional Neural Network (CNN) so it could classify the waste 

along with its position and timestamp [9]. Another work suggests a robot that can 

categorize items for recycling through the automatic localization of the items using depth 

image analysis, grab them with a mechanical arm and place them in the corresponding 

recycling bin. This last part is achieved with a CNN algorithm for recognition and 

categorization [10]. The authors of [11] demonstrate a robotic system that is able to collect 
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and segregate waste, through the usage of a CNN model for image classification. In [12] 

an idea for a construction waste recycling robot is present, with the aim of identifying and 

classifying nails and screws within a construction waste scene with the usage of a R-CNN 

algorithm. [13] propose a micro-unmanned aerial vehicle capable of detecting litter in 

real-time through the usage of a CNN with object detection algorithm and benchmarks 

three different detection algorithms in the study. 

 

Miscellaneous Systems 

This category concerns systems that are abstract in its implementation, presenting a 

system that can recognize and classify waste, but not specifying how to do it.  [14] 

mentions a computer that is able to classify what is biodegradable and non-biodegradable 

through image analysis, object detection and classification with CNN. A different 

approach proposes the identification of different type of plastics to conclude whether the 

plastic can be recycled or not [15]. To achieve this, both visual and physical properties 

are used in the classification process.  The authors of [16] suggest a “a multilayer hybrid 

deep-learning system” that can automatically identify waste through the usage of a CNN 

algorithm. 

 

2.2.2. Smart Trash Systems 

Some studies propose systems that can receive trash, analyze and classify it based on 

features of the item. These systems can be sub categorized in different types.  

 

Reverse Vending Machines 

This type of systems allows the end user to submit some waste, such as drinking cans 

or water bottles and receive back for example, a voucher or money. [17] presents an 

Internet of Things (IoT) implementation along with a CNN algorithm to be able to 

recognize plastic waste, three different architectures of CNN were tested. In [18] a design 

for a Bottle Recycling Machine to collect used bottles and classify them through the usage 

of a CNN algorithm can be found. The authors of [19] suggest an IoT implementation 

along with a CNN algorithm in order to create a more efficient Reverse Vending Machine. 
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This study tested four different architectures of CNN, as well as two different 

programming languages that were benchmarked in the implementation of the system. 

 

Smart Bins 

This type of implementation refers to systems that introduce technology to the concept 

of trash bins in order to sort the trash in an intelligent way. The authors of [20] present a 

smart trash bin system to receive waste, classify it and place it automatically in the 

correspondent container by using a KNN algorithm. Another work presents an intelligent 

waste separator, dubbed “Trashcan”, with the purpose of replacing the recycle bins. This 

system can identify incoming waste and place it into different containers by using a KNN 

algorithm [21].  [22] proposes the design for a robotic trash bin that can locate, identify 

and classify trash into organic waste, non-organic and non-waste by using an SVM 

algorithm. Another study suggests an IoT smart waste segregation bin that with the help 

of sensors can identify and categorize waste that is deposited inside it by using a KNN 

algorithm [23]. 

 

2.2.3. Mobile Applications 

A type of implementation suggested in the literature is applications for mobile devices 

that can harness their image and processing power. This is the type of implementation 

that is closer to what is purposed in this work, more details on how the work differs from 

these implementations will be specified in Chapter 3. [24] proposes an Android 

application equipped with a ML model, based on the MobileNet architecture, that allows 

for a photo to be taken with the camera and classify waste present in the photo into glass, 

paper, cardboard, plastic, metal or other trash. Another study proposes a smartphone app 

named “SpotGarbage” that is able to detect, geo-tag and classify garbage in an image, 

taken with the camera, by using a CNN algorithm [25]. The authors of [26] also propose 

a mobile application that allows citizens to report uncollected garbage. They convey that 

this application “has been successfully deployed and has seen more than a million 

complaints registered across many Indian cities”. This system uses a CNN algorithm to 

classify the images. In [27] the authors present a CNN architecture “CompostNet” with 

the purpose of classifying compostable, recyclable and landfill materials. A mobile 
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application for IOS was created as a proof of concept to show the capabilities of the 

architecture. 

 

2.2.4. Case Studies 

In the literature survey several studies focused only in benchmarking of ML algorithms. 

However, the datasets generally used are specific to one study only. Such is the case with 

[28] that analyses the performance of two different algorithms in two different datasets 

from public and private environments. [29] tested several architectures of a CNN 

algorithm in order to understand the most efficient approach for the datasets. Another 

paper discusses the viability of optical identification of recyclable waste in construction 

and demolition sites and compares the SVM and Random Forest (RF) algorithms [30]. In 

[31] the authors benchmark multiple CNN algorithm architectures and propose an 

optimized deep convolutional neural network architecture to classify recyclable objects. 

One other study   suggests the usage of an SVM algorithm for an intelligent sorting system 

for trash [32]. The authors of [33] propose the classification of garbage via image analysis 

through the usage of Scale invariant Feature Transform (SIFT) to extract the 

characteristics of the image garbage label. [34] suggest a method that is able to sort two 

types of materials, polycoat containers and Polyethylene Terephthalate bottles by using 

the SVM algorithm to classify the objects. One research  describes a way of sorting 

polycoat containers from plastic bottles through the usage of image intensity data and a 

SVM algorithm [35]. In [36] the authors explore the SVM and CNN algorithms with the 

purpose of efficiently classifying garbage into six different recycling categories. Another 

work analyses multiple CNN algorithm architectures mixed with SoftMax and SVM 

classifiers to categorize garbage into different recycling types [37]. The author of [38] 

evaluates five different ML algorithms applied to the classification of trash for 

comparison. In a study the authors experiment with Transfer Learning and learning rates 

in a R-CNN algorithm with the objective of detecting waste objects in images [39]. 

 

2.3. Results from the Literature 

Analyzing all the papers that reference ML algorithms usage for image classification 

applied to waste, we can synthetize this information and conclude that the CNN algorithm 

has a higher predominance with 51 entries followed by SVM with 11 as it can be seen in 
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Figure 2.2 which presents the distribution of the algorithm usage within the universe of 

papers that were reviewed. The number of entries is superior to the number of papers 

because some papers review multiple algorithms. 

 

Figure 2.2 – Algorithm Distribution 

Drilling down the analysis into the most used algorithm (CNN), we have a universe of 

different architectures as it can be seen in Figure 2.3, where the AlexNet architecture is 

the most predominant with eight entries followed by the MobileNet with five entries. 

AlexNet was introduced in 2012 and was a winner of the Imagenet Challenge [37]. 

MobileNet was introduced in 2017 as a class of efficient models for mobile and embedded 

vision applications [40]. For the analysis of the CNN architectures the entries where the 

architecture was not specified were excluded since they had no value for this specific 

analysis which was meant to identify the predominant architectures. 

 



Chapter 2 – Literature Review 

14 

 

Figure 2.3 – CNN Architecture Distribution 

 

Figure 2.4 – Dataset Distribution 

It is not possible to objectively benchmark the majority of results present in the 

literature. While the predominant metric used to evaluate the results is Accuracy, 

surpassing by far any other measure. Only five studies used the same dataset (Trashnet) 

for testing their algorithms. The majority (Figure 2.4) uses datasets that either were left 

unspecified or were self-created for the study and with different image sizes. In the small 

universe of studies that used the Trashnet dataset and the same metric to evaluate results, 

therefore allowing for an objective benchmarking, the results (Figure 2.5) indicate that 

CNN algorithms yield the best results, with all the tested architectures surpassing the 

other algorithms. Within the CNN architectures universe, GoogleNet presents the best 

results with 97,86% accuracy, followed by VGG-16 with 97,46% and AlexNet with 

97,23%. These accuracy results are specific to the classification of garbage in recycling 

categories.  
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Figure 2.5 – Accuracy benchmarking results with Trashnet dataset 

Table 2.3 presents a synthesis of the reviewed papers relevant information, that is 

related with ML algorithms used for image classification applied to waste. The 

“Algorithms and Results” column presents the ML algorithms used along with extra 

information, when available, such as the specific architecture, object detection 

algorithms, metrics used and results. The “Dataset” column defines the dataset that was 

used in the studies (when specified) along with its size and the images’ resolution.  
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Table 2.3 – Synthetized results from the literature 

Paper Algorithms and Results Dataset 

[9] 

CNN (OverFeat-GoogLeNet architecture)  

- 63.2% Precision in cigarette butts’ class 

- 77,35% Precision in leaves class 

Self-created dataset with 25 

different types of waste and 18.676 

images at 640x480 pixels 

[2] 

RPN + CNN (VGG-16 architecture) 

- 3% False negative rate 

- 9% False positive rate 

Self-created dataset with 1999 

images at 600x1200 pixels 

[14] 
CNN (does not specify the architecture) 

- No results presented 
Nonexistent dataset 

[7] 
SVM 

- 94.3% Accuracy 

Self-created dataset with 500 images 

at 320x240 pixels 

[28] 
CNN (capsule-Net architecture) 

- 96% Accuracy 

Self-created dataset with 19046 

images at 256x256 pixels 

[29] 

CNN (multiple architectures) 

- DenseNet121 – 95% Accuracy 

- DenseNet169 – 95% Accuracy 

- Inception-V4 -94% Accuracy 

- MobileNet – 84% Accuracy 

Trashnet dataset with 2527 images 

at 512x384 pixels 

[24] 

CNN (MobileNet architecture with transfer 

learning from model trained on ImageNet 

Large dataset) 

- 87.2% Accuracy 

Trashnet dataset with 2527 images 

at 512x384 pixels 

[41] 

CNN (AlexNet architecture) 

- 83% Accuracy 

SVM (with bag of features) 

- 94.8% Accuracy 

Self-created dataset with 2000 

images at 256x256 pixels 

[17] 

CNN (multiple architectures) 

- LeNet – 93% Accuracy 

- AlexNet – 93% Accuracy 

- SqueezeNet – 87% Accuracy 

Not specified 

[8] 
CBIR 

- No results presented. 
Not specified 
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[18] 
CNN (architecture not specified) 

- 96% Accuracy 

Self-created dataset with 500 images 

with unspecified resolution 

[3] 
PNN 

- 98% Accuracy 
Not specified 

[20] 
KNN 

- 98.33% Accuracy 

Self-created dataset with 60 images 

with unspecified resolution 

[16] 
CNN (AlexNet architecture) 

- 98.2% Accuracy 

Self-created dataset with 5000 

images at 640x480 pixels 

[21] 
KNN 

- 98% Accuracy 

Self-created dataset with 60 images 

with unspecified resolution 

[30] 

SVM 

- 98.7% Accuracy 

Random Forest 

- 97.8% Accuracy 

Self-created dataset with 1000 

images with unspecified resolution 

[31] 

CNN (multiple architectures) 

- ResNet50 – 75% Accuracy 

- MobileNet – 76% Accuracy 

- InceptionResNetV2 – 90% Accuracy 

- DenseNet121 – 95% Accuracy 

- DenseNet169 – 82% Accuracy 

- DenseNet201 – 85% Accuracy 

- Xception – 85% Accuracy 

- RecycleNet – 81% Accuracy 

Trashnet dataset with 2527 images 

at 512x384 pixels 

[32] 
SVM 

- 97.3% Accuracy 
Not specified 

[10] 
CNN (AlexNet architecture) 

- 77% Accuracy 
Not specified 

[33] 
SIFT 

- 89.9% Accuracy 

Self-created dataset with 192 images 

at 500x375 pixels 

[34] 
SVM 

- 92.85% Accuracy 
Not specified 

[35] 
SVM 

- 96% Accuracy 
Not specified 

[22] 
SVM 

- 82.7% Accuracy 

Self-created dataset with 1000 

images with unspecified resolution 
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[25] 
CNN (GarbNet architecture) 

- 87.69% Accuracy 

Garbage in Images (GINI) dataset 

with 2561 images with unspecified 

resolution 

[4] 
SVM 

- 94.7% Accuracy 

Self-created dataset with 1446 

images at 672x512 pixels 

[15] 

SVM 

- 75.6% Accuracy 

KNN 

- 95.1% Accuracy 

Decision Tree 

- 92.6% Accuracy 

Logistic Regression 

- 73.1% Accuracy 

Not specified 

(Yang & Thung, 

2016) 

SVM 

- 63% Accuracy 

CNN (AlexNet architecture) 

- 22% Accuracy 

Self-created dataset with 2400 

images at 384x384 pixels 

[12] 
R-CNN 

- 89.1% Precision 
Not specified 

[11] 
CNN (LeNet-5 architecture) 

- No Results Presented 
Not specified 

[37] 

CNN (Multiple architectures + SoftMax & 

SVM classifiers) 

- MobileNet – 76% Accuracy 

- Inception ResNetV2 – 90% Accuracy 

- DenseNet121 – 85% Accuracy 

- DenseNet169 – 82% Accuracy 

- DenseNet201 – 85% Accuracy 

- Xception – 85% Accuracy 

- AlexNet – 97.23% Accuracy 

- GoogLeNet – 97.86% Accuracy 

- ResNet – 94.22% Accuracy 

- VGG-16 – 97.46% Accuracy 

- SqueezeNet – 90.17% Accuracy 

- RecycleNet – 81% Accuracy 

Trashnet dataset with 2527 images 

at 512x384 pixels 

[26] 
CNN (AlexNet architecture) 

- 85% Accuracy 

Self-created dataset with 21000 

images at 128x128 pixels 
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[38] 

CNN  

- 89.81% Accuracy 

SVM  

- 56.67% Accuracy 

XGB  

- 70,1% Accuracy 

RF  

- 62,61% Accuracy 

KNN  

- 52,5% Accuracy 

Trashnet dataset with 2527 images 

at 512x384 pixels 

[5] 
KNN 

- 93% Accuracy 
Not specified 

[6] 
HKNN 

- No Results Presented 
Not specified 

[23] 
KNN 

- 99% Accuracy 
Not specified 

[19] 

CNN (multiple architectures) 

- LeNet – 93% Accuracy 

- AlexNet – 93% Accuracy 

- SqueezeNet – 87% Accuracy 

- MobileNet – 88% Accuracy 

Not specified 

[13] 

CNN (multiple architectures + detectors) 

- VGG-16 with SSD detector – 56% 

Precision 

- R-FCN – 53% Precision 

- YOLO - 40% Precision 

Trashnet dataset with 2527 images 

at 512x384 pixels 

[27] 
CNN (CompostNet architecture) 

- 77.3% Accuracy 

Trashnet dataset with 2527 images 

at 512x384 pixels 

[39] 
R-CNN 

- 81,6% Precision 

Trashnet dataset with 2527 images 

at 512x384 pixels 

 

Some conclusions can be taken from the 39 papers that were validated as relevant for 

the topic and were thoroughly analyzed in this review. 

 One of the most important conclusions to highlight is the fact that some studies present 

self-built datasets, with different image sizes and categories, while others use datasets 
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available in the community (Trashnet and GINI), making it extremely difficult to compare 

approaches. With regards to the ML algorithms used, it can be concluded that Neural 

Networks and SVM are the types of algorithms most used in this field of study. A 

recurring factor, the inconsistency between results, even considering the same algorithm, 

is highlighted by multiple studies, with the authors concluding that further work using 

more available data and real-life scenarios is needed to support their findings.  

Next, regarding the used datasets, the studies can be divided into four categories: Self-

created dataset (15 papers), dataset Not specified (15 papers), GINI (1 paper) and 

Trashnet (8 papers). For the latter, some kind of benchmark can begin to be achieved 

since the same dataset was used for all the eight approaches. In this last scenario, the CNN 

algorithm with a GoogLeNet architecture was the one presenting the best results. 

It was concluded from the literature review that the most appropriate ML algorithm to 

be used in this project is the MobileNet. Even though it isn’t the most accurate as 

highlighted by the results from the literature in Figure 2.5, it was designed to effectively 

maximize accuracy while dealing with the restricted resources of a mobile device.  

During the development of this work a journal paper with the synthetization of the 

literature analysis was submitted to a journal, this will be useful for further researchers 

that are interested in the field as it works as a compendium of the information available 

until the point in time when it was written. As future work it is important to keep updating 

this study with all new scientific work that gets released, and to merge all the available 

datasets into one that can be used by multiple researchers to further their studies in the 

field and enable proper benchmarking between studies. It would also be helpful for further 

researchers to benchmark the speed of classification of the algorithms. 
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Chapter 3 – MobileNet 

The MobileNet architecture has been introduced as a sub class of CNN and are specialized 

in efficient models for mobile and embedded vision applications. As seen in Chapter 2, 

within this area, MobileNet seems to be the most adequate for image recognition and 

classification. As such, this will be the modelling choice for this dissertation and this 

chapter is dedicated to defining the ML modelling technique that will be used in this 

project. 

CNN is a widely used class of ML models for image classification, having been 

recognized in the 2012 ImageNet competition which made it one of the most promising 

ML techniques [42]. This type of class makes strong and generally correct assumptions 

about the nature of images while having fewer connections and parameters which makes 

them easier to train compared to standard feedforward neural networks [43]. One of the 

downsides of this type of architecture is the high demand for processing when dealing 

with high resolution images. Graphical Processing Units (GPU) help accelerate the 

training of CNN models, with many vendors like NVIDIA creating hardware and 

software specially for that  [42]. A CNN is constituted by several types of convolution 

layers. A CNN has less parameters than a classic neural network due to the fact that the 

latter use fully connected layers exclusively while the former have each neuron connected 

to only a few neurons. 

A convolution is a linear transformation that has the purpose of extracting useful 

features from an input [44]. A convolutional layer combines the extracted features into 

feature maps as shown in Figure 3.1. 

 

Figure 3.1 – The structure of an example CNN [42]  

The convolution layer can be defined by the following parameters: 

• Kernel: This parameter defines the field size (number of pixels, e.g. 3x3) in a 

convolution. 
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• Stride: This parameter refers to the step size of the Kernel when processing an 

image. The number means the number of pixels it will stride in each step. 

• Padding: This parameter defines the way it will handle the borders of a sample. 

• Channels: This can refer to Input and Output, as the layer takes a number of 

input channels to calculate a determined number of output channels. 

The MobileNet architecture is “based on a streamlined architecture that uses depthwise 

separable convolutions to build light weight deep neural networks” [40] and it can be seen 

in Figure 3.2. 

 

Figure 3.2 – MobileNet body architecture [40]  

A depthwise separable convolution factorizes a standard convolution into a depthwise 

convolution, which applies a single filter to each input channel, and a pointwise 

convolution, which combines the outputs of the depthwise convolution. An example of 

the factorization can be seen in Figure 3.3 where (a) corresponds to a standard convolution 

and (b) corresponds to a depthwise convolution and (c) corresponds to a pointwise 

convolution. This factorization reduces the computation needed and the model size [40]. 
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Figure 3.3 – Factorization of standard convolution [40]  

Almost all convolutional layers in the architecture are followed by a batch 

normalization and a rectified linear unit (ReLU) as it can be seen in Figure 3.4. 

 

Figure 3.4 – Representation of MobileNet layer except the last layer [40]  

Batch normalization standardizes the inputs to a layer for each mini batch. This 

stabilizes the learning process and reduces the number of training epochs required to train 

deep networks. An epoch is a training iteration. In each epoch a different model is built 

with a different set of weights. A neural network will build N different models for N 

epochs. Each model created for a corresponding epoch should be validated in 

generalization performance. A higher epoch number does not necessarily mean a better 

generalization performance [45]. 

The ReLU is “the standard way to model a neuron’s output f as a function of its input 

x” [43]. It is a unit that uses an activation function that outputs the input directly if it is 
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positive, else it will output zero. The function used in the unit can be considered both 

linear, for value greater than zero, and nonlinear as negative values always output as zero. 

The last layer in this architecture is not followed by batch normalization and ReLU 

like the previous ones and it is a fully connected layer. The purpose of this layer is to 

flatten the feature maps into a two-dimension matrix, or vector. This layer performs 

classification taking into account the features extracted by the previous layers [42]. This 

fully connected layer feeds into a softmax layer which is the final layer of the network. 

It’s main purpose is classification and it achieves that through the computation of the 

possibility distribution over different labels [42]. 

The architecture also uses a parameter α ∈ (0, 1], width multiplier, with the purpose of 

thinning the network uniformly at each layer and reducing the computational cost, this 

means that for a given layer and width multiplier α, the number of channels in the input 

M becomes αM while the number N becomes αN. 

Another parameter used is the resolution multiplier p ∈ (0, 1], this is used to also reduce 

the computational cost of the neural network. When this parameter is applied to the input 

image, the internal representation in each layer is reduced, this happens because the input 

resolution is implicitly set by the resolution multiplier. 

At the time of the development of this project, three versions of this architecture exist. 

In theory each iteration of the algorithm increases its accuracy. In this project the v2 of 

the algorithm will be used due to limitations that will be explained in Chapter 5. 
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Chapter 4 – High-level Architecture 

As stated in Chapter 1, the objective of this dissertation is to create a system that can help 

people to recycle via a mobile application installed in a smartphone. This application will 

utilize some features described in the literature surveyed in Section 2.2.3. For example 

the application itself is similar to the one in [24], but it will add extra features that will 

distinguish it such as the capacity to upload the images to a server and that these images 

can be utilized to potentially create better performing ML models, thus capable to adapt 

or learn with the types of waste that is presented in the universe of images that are 

captured with the application and that might be either slightly different or completely new 

from the previous dataset. This type of crowdsourcing feature in a mobile application that 

classifies waste seems to be unique in the literature and the potentially long-life learning 

system makes it also new within the application for recycling realm. 

 The application should be able to capture an image, analyze it and classify it according 

to a recycling category in just a few seconds. The classification should be based in specific 

recycling categories. The mobile application can also communicate with a REST API to 

(1) update the ML model when there is a new version available, (2) send images in order 

to help reinforce the ML model in the application. This reinforcement should not be 

automated and requires manual classification of the images by an operator that is 

specialized in the categorization of waste. The system is composed by three main modules 

as described in Figure 4.1. 

 

Figure 4.1 – High-level system architecture 

 

The mobile application is the part of the project that the users will interact with. The main 

features of the application are: 
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• Capture images and store them in the smartphone storage. 

• Load images previously stored within the smartphone storage. 

• Classify images by waste category and returns the result to the user. 

• Communicate with the REST API to send the images that were captured with 

the application. 

• Communicate with the REST API to update the ML model that is installed in 

the application, if there is a newer model. 

The mobile application module will be further explained in Chapter 7. 

The REST API is the module that is responsible with the communication with the 

mobile application. It should be able to: 

• Authenticate users that are pre-registered in the system. 

• Receive images from the mobile application. 

• Send new versions of the ML model to the mobile application when 

requested. 

Further information for this module will be explained in Chapter 6. 

The ML model processor module is responsible for training new ML models. The 

transition of images that were received in the REST API to this module is not automated 

and requires human intervention. The required human steps for this module are to transfer 

any new images received from the mobile application and merge them into the dataset 

already available to him. Images should be categorized properly in this step. With this 

enriched dataset it is responsible for processing newer versions of the ML model, 

comparing it to previews versions and decide which version should be available for the 

REST API. The newer versions of the ML model should be compared through specific 

measures in order to validate the overall capacity of identifying waste materials. Only the 

versions with better results should be available for the REST API to propagate to the 

mobile application. 

For a ML model to be accurate there is the need for training it with images of recyclable 

and non-recyclable materials, the more images the better as it is expected that the model 

will be able to generalize the results better. For this project two sources were used as the 

main sources of images for the training. The first dataset was Trashnet4 which is 

 
4 Website link: https://github.com/garythung/trashnet 

https://github.com/garythung/trashnet
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composed by 2527 images at 512x384 pixel resolution. The images are segregated in six 

categories, cardboard, glass, metal, paper, plastic and trash. The distribution of images in 

each category is presented in Table 4.1.  

Table 4.1 – Trashnet dataset details 

Category Number of 

Images 

Definition 

Cardboard 403 Class containing only cardboard items. Cardboard differs from 

paper because the former is a hard material and has multiple layers 

of types of papers. 

Glass 501 Class containing glass items some examples are bottles and jars. 

Metal 410 Class containing metallic items such as cans for example. 

Paper 594 Class containing only paper items. This differs from the carboard 

class because it only has a single layer of paper. 

Plastic 482 Class containing plastic materials. Plastic bottles and containers are 

some examples of this class.  

Trash 137 Class containing non-recycling waste. 

It is important to denote that the Trashnet dataset was created in a laboratory 

environment, where the background of the images is white even though there is some 

illumination variance. Some examples of images present in each category can be seen in 

Figures 4.2 to 4.7. 
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Figure 4.2 – Cardboard category image 

samples 

 

Figure 4.3 – Glass category image samples 

 

Figure 4.4 – Metal category image samples 

 

Figure 4.5 – Paper category image samples 

 

Figure 4.6 – Plastic category image samples 

 

Figure 4.7 – Trash category image samples 

The second dataset was created during this project to test the results in a real-life 

scenario. A total of 290 images were captured with the mobile application and their 

distribution within the Trashnet original classes can be seen in Table 4.2. 
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Table 4.2 – Real life images dataset distribution 

Category Number of Images 

Cardboard 25 

Glass 22 

Metal 40 

Paper 78 

Plastic 108 

Trash 17 

 These images were taken in different backgrounds, angles and distance to try to 

simulate how a user of the application would take a photo. Some examples of these 

images can be seen in Figure 4.8. 

 

Figure 4.8 – Image samples for real life purpose test





Chapter 5 – ML Model Processor 

31 

Chapter 5 – ML Model Processor 

Even though the objective of this project is to create a prototype system that will evolve 

over time with the images provided by the users of the mobile application, it is still 

required to have an initial state where a ML model that has been trained can classify some 

images. This chapter will focus on the description on how the ML model processor does 

the training of the first model that will accompany the prototype system at launch. Two 

types of architecture were trained and tested. These types correspond to the iterations of 

the mobile application. The first iteration will be described in Section 5.1 and the 

architecture used was MobileNet v2 without any object detection technology. This 

iteration was to test if the proposed system would work. The second iteration will be 

described in Section 5.2 and it was created to further help the possible users of the system. 

An SSD MobileNet v2 architecture was used, which extends the first iteration with object 

detection technology. The final objective is to use an object detection architecture because 

the user might capture images in a real-life scenario where more than one object may 

appear in the image.  

Both implementations used transfer learning. This technique uses models that were 

pre-trained in a dataset. These models are then trained with another dataset, resulting in 

changes in the architecture of the model. The weights, or learned features, from the pre-

trained model are transferred to this new model, instead of training the model from scratch 

[24]. A pre-trained model might not be 100% accurate in its current application but in 

theory it shortens the training time and might yield a higher accuracy [37]. This will avoid 

excess training time which will be useful due to the limited dataset size and available 

computing power to train the models. Fine-tuning, an approach to transfer learning, was 

also used. There are multiple ways of realizing fine-tuning. One of the approaches is to 

optimize all the parameters of the pre-trained model on a training dataset. Alternatively, 

only some layers can be fine-tuned, the last few ones, while the parameters from the initial 

layers can be frozen. The theory behind the latter approach is that the initial layers of a 

neural network learn low-level features that are common to many computer vision 

challenges [46]. 

The dataset used in both implementations for training and first tests was the Trashnet 

dataset. The second dataset of real-life images was used to test the models in a real-life 

scenario. 



Chapter 5 – ML Model Processor 

32 

 

Figure 5.1 – Example of fine-tuning [46]  

The hardware used for the training of the two models was: Intel Core i5-6600 CPU @ 

3.30 GHz (4 CPUs) processor, Kingston 16 GB DDR4-2400 of Memory Ram, Samsung 

850 EVO 250GB Solid State Drive disk and a NVIDIA GeForce GTX 970 graphic card. 

 

5.1. MobileNet v2 

In this implementation, a MobileNet v2 architecture was used. This type of architecture 

does not support any object detection and only allows to classify the entirety of an image 

without segmenting it. 

This module was built in Python and Keras5, an open-source neural-network library 

written in Python, capable of running on top of TensorFlow. This library allows to quickly 

create code to train and test ML models. The version of Python used was 3.6. The deep 

learning API Keras version was 2.2.4. Since there was a GPU with dedicated memory 

available for this project, the Tensorflow-GPU library was used, this allows to accelerate 

the training of ML models when compared to training in a CPU. 

 

 
5 Website link: https://keras.io/ 

https://keras.io/
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5.1.1. Methodology 

A single python file “train.py”6 was created to implement the training of the model, this 

implementation can be categorized in five major steps. 

The first step is to load the images that are to be used in the training, these images are 

resized into 224x224 pixels format which is the maximum size this model architecture 

accepts in the Keras implementation when using transfer learning with Imagenet7 

weights. Imagenet is an image database of more than 14.000.000 images and more than 

80.000 classifications. Transfer learning was used to accelerate the training of the ML 

model. The dataset is then split into a training set, with 80% of the images. For the 

resulting 20% the same split is applied again, dividing it into 80% for a validation set and 

20% for a test set. 

The second step involves applying standardization and normalization to the images in 

order to prepare the data to be consumed by the classifier in the next step. The method of 

standardization means that the features of the data are being transformed in such manner 

that they have a mean of zero and a standard deviation of one. This type of data 

transformation is useful when the data has differing scales. Data normalization is the 

rescaling of the original data so that all values are normalized within a range of 0 and 1. 

In the third step, the type of architecture is defined. In this case the MobileNet v2 

architecture is defined using a preconfigured architecture available in Keras, this speeds 

up the coding time by avoiding the creation of a full architecture from zero. The classifier 

is defined as well using a softmax layer, which is the default classifier for this architecture. 

An optimization algorithm is used as well, the Adam optimizer which is used to update 

network weights iteratively based in training data [47]. This optimizer was used because 

it reported higher accuracy in the literature [29]. Since the classification in this project is 

multiclass, the type of loss to be computed is the categorical cross entropy. This computes 

the cross entropy loss between the labels and predictions. [48]. 

The fourth step is to prepare a data augmentation generator. This is an important 

technique because by artificially increasing the number of training examples it can help 

preventing overfitting in neural networks and improve performance in imbalanced 

datasets [49]. Image altering augmentations were used randomly, such as rotating, 

 
6 Github link: https://github.com/antoniosequeira/trainer_mobilenet_v2/blob/main/train.py 
7 Website link: http://www.image-net.org/ 

https://github.com/antoniosequeira/trainer_mobilenet_v2/blob/main/train.py
http://www.image-net.org/
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applying zoom, shifting in terms of width and height, shearing transformation and 

flipping horizontally. What the generator does is for each epoch it provides slightly 

altered images based on the original images, so that each epoch model will be trained on 

the same number of images than the previous epoch but these images are slightly 

different.   

In the fifth and final step, the model is trained. An option of saving the best checkpoint 

based on the validation loss metric is used, this means that when a minimum loss when 

predicting the validation set is found, a checkpoint is created. The best checkpoint is the 

model to be used in predicting the test dataset. 

For the training, a batch size of 12 was used due to memory limitations as increasing 

the size led to memory errors. The maximum number of epochs was 500 but as explained 

in the previous paragraph, due to the usage of the best checkpoint it might mean that the 

best model (with the minimum validation loss) was created before the 500th epoch. For 

each epoch it is important that the training uses all the available training data, to achieve 

this the number of steps for each epoch is calculated according the formula steps: 

steps = number of images / batch size                                  (1) 

 

5.1.2. Results 

The training of the model was achieved in 5 hours with the available hardware and 

software version. The results of the training set and validation set can be seen in Figure 

5.1 and 5.2 where the accuracy and loss metrics are measured. The accuracy metric 

calculates how often predictions equal labels, while the loss metric is the result of a 

function that computes the cross-entropy loss between the labels and the predictions. The 

former metric is best when it is higher while the latter is best when is lower. The results 

in this part are using the accuracy metric because due to a limitation on the version of 

Tensorflow that was being used, only this metric was available.  
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Figure 5.2 – Model training accuracy 

 

Figure 5.3 – Model training loss 

Due to the usage of the best checkpoint as specified in Section 5.1.1, the model was 

saved in the epoch 318 where the validation loss achieved the lowest number of 0,7072. 

The corresponding validation accuracy for this epoch was 84,98%. This loss and accuracy 

are averages for all classes. Both Figure 5.2 and Figure 5.3 show that the validation results 

are varying frequently, and it doesn’t stabilize. These results indicate that the model might 

have problems solving the classifications correctly. 

Testing the trained model in the test set we have the following predictions against the 

ground truth in Table 5.1. For a deeper analysis, a confusion matrix was created. This 
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type of table layout allows for the visualization of the performance of the model. It is 

comprised of two dimensions, the “Ground Truth” which is the original classification of 

an object in an image, and the “Predicted” which is the prediction generated by the model. 

Each dataset class is under both dimensions. 

Table 5.1 – Test dataset results confusion matrix with Mobilenet v2 

  Predicted 

    cardboard glass metal paper plastic trash 

Ground 

Truth 

cardboard 84 0 0 0 0 0 

glass 1 96 2 2 1 0 

metal 0 1 83 2 1 0 

paper 2 0 1 115 0 0 

plastic 1 0 4 1 85 0 

trash 0 0 1 2 0 21 

The precision metric was used for a better perception of the results.  Even though this 

implementation doesn’t have any object detection, this metric seems to be the most used 

metric in object detection problems as it will be seen in Section 5.2. Due to this fact the 

same metric will be used in this implementation. This metric is calculated as:  

Precision = Number of correctly predicted images / All images of that class     (2) 

The precision result for each class can be analyzed in Table 5.2. Cardboard was the 

class with the highest precision score. Trash was the class with the worst result, even 

though the precision value was very high. 

Table 5.2 – Precision results for Test dataset by category with Mobilenet v2 

Category Precision 

cardboard 100,00% 

glass 94,12% 

metal 95,40% 

paper 97,46% 

plastic 93,41% 

trash 87,50% 

Average 94,65% 

The results on the test set show that the precision value for each class is very high, 

with one the classes achieving a perfect score. This test was done in images from the same 

dataset. Even though the images used to test the model were not used to train the model, 

they were from a similar source. This might create situations of overfitting, where the 
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model is good at predicting a certain dataset but is not good at generalizing. To test if the 

model is good at generalizing a new test will be done with images of waste captured with 

a smartphone during the development of this project and that was described in Chapter 4. 

The results of the test in the real dataset (Table 5.3) reveal that the model was not 

capable of predicting most of the images correctly. With half of the classes having zero 

correct predictions. 

Table 5.3 – Real dataset results confusion matrix with Mobilenet v2 

  Predicted 

    cardboard glass metal paper plastic trash 

Ground 

Truth 

cardboard 22 0 0 1 2 0 

glass 7 0 0 8 7 0 

metal 22 0 0 12 5 1 

paper 40 0 0 30 8 0 

plastic 45 0 0 37 25 1 

trash 9 0 0 5 3 0 

 

The precision metric was used to evaluate the results of the predictions. The result of 

this metric for each class can be analyzed in Table 5.4. 

Table 5.4 – Precision results for Real dataset by category with Mobilenet v2 

Category Precision 

cardboard 88,00% 

glass 0,00% 

metal 0,00% 

paper 38,46% 

plastic 23,15% 

trash 0,00% 

Average 24,94% 

The precision metric results are all lower in the real dataset when compared to the test 

dataset. Only the cardboard class had a closer result while the rest of the classes had very 

bad results. This might mean that the model is overfitting and cannot generalize properly. 

As reported by [29] the small amount of data and the white background of images in the 

Trashnet dataset might be causing the poor results in the Real dataset because the source 

of the data for both datasets is different. One possible explanation for the fact that the 

model is classifying a big portion of the items as cardboard might be due to the 

environment where the images were captured. A wooden board is in the background of a 
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majority of the images from the Real dataset, and the color and texture in low light is 

similar to the color and texture of the cardboard. Another explanation for such results is 

human error in the classification of the Real dataset images due to misinterpretation of 

the original Trashnet dataset classes. 

 

5.1.3. Converting to mobile 

The final version of the mobile application only uses the model produced in Section 5.2. 

The code for a version of the mobile application that uses the type of model produced in 

Section 5.1.1 is linked in the Section 5.1.4. The result ML model was used as in the first 

iteration of the mobile application in the same way as it was previously explained in 

Chapter 4 and demonstrated in Figure 4.1, which represents the high-level system 

architecture for the final version of the system. This model would be downloaded in the 

mobile application at the installation and each new updated ML model created will be 

available for download using the REST API. However, the output of the Keras framework 

is not compatible with the framework Tensorflow Lite8 which is the framework to run 

ML models in a smartphone. A conversion of the output model is required in order for 

the model to be run in a mobile environment. An extra step is required to convert the 

trained model into a format that can run in a smartphone application that uses Tensorflow 

Lite. 

The process to convert a Keras ML model is to use the Tensorflow lite converter 

function to convert the chosen ML model into tflite format. For this step, the python file 

“liteconverter.py”9 is used. 

 

5.1.4. Repository 

All the code produced in this module was versioned within GitHub the repository is public 

and under MIT license in the following link: 

https://github.com/antoniosequeira/trainer_mobilenet_v2. 

https://github.com/antoniosequeira/mobile_application_old. 

 

 
8 Website link: https://www.tensorflow.org/lite 
9 Github link: 

https://github.com/antoniosequeira/trainer_mobilenet_v2/blob/main/liteconverter.py 

https://github.com/antoniosequeira/trainer_mobilenet_v2
https://github.com/antoniosequeira/mobile_application_old
https://www.tensorflow.org/lite
https://github.com/antoniosequeira/trainer_mobilenet_v2/blob/main/liteconverter.py
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5.2. SSD MobileNet v2 

For this implementation, an SSD MobileNet v2 architecture was used. This architecture 

incorporates an object detection algorithm called single shot detector (SSD) which allows 

to detect multiple objects in an image and classify them distinctly. The SSD architecture 

is a convolution network that learns to predict bounding box locations and their 

classification in one pass. The early network layers use a standard architecture, in this 

case we are using MobileNet v2 architecture. These early layers are followed by several 

convolution layers that decrease in size progressively and allow predictions of detections 

at multiple scales [50].  

 

Figure 5.4 – Example of SSD MobileNet architecture [51] 

This type of architecture usually assumes the name of the early network layers standard 

architecture and the SSD, so in this case the full name of architecture is SSD MobileNet 

v2. 

The dataset that was used for this architecture was Trashnet but now an annoted 

version was used due to the object detection technique. For this type of architecture, the 

techniques of transfer learning and fine-tuning were used to try to reduce the amount of 

time required to train the model. The pre-model used for transfer learning was the 

ssd_mobilenet_v2_coco, obtained from the Tensorflow 1 Detection Model Zoo 10. As 

stated before, due to GPU incompatibilities, version of 1 of Tensorflow is being used in 

this project, otherwise the Tensorflow 2 Detection Model Zoo11 could have been used. 

This model is an object-detection model pre-trained on the Common Objects in Context 

(COCO) dataset. This specific model was used to perform transfer learning because in 

the original dataset contains much of the objects we are trying to classify in our 

 
10 Website link: 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detect

ion_zoo.md 
11 Website link: https://cocodataset.org/#home 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://cocodataset.org/#home
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implementation. Additionally, fine-tuning was applied to all the parameters of the pre-

trained model as no layer was chosen to freeze parameters. 

Even though it would be interesting to compare results between implementations, it 

was not possible because the implementation and configuration differ. Keras provides a 

high-level API written on top of the Tensorflow backend, this means that the former 

provides less options than the latter. One of those limitations is the lack of out-of-the-box 

object detection for the MobileNet v2 architecture. In theory, it is possible to develop 

such a project but due to time constraints it was not possible to do so within this project. 

For example, the Keras implementation with transfer learning only allowed for a max size 

of image for training to be 224x224 pixels, while the Tensorflow object detection API12 

did not have any limitations for the size of the images when using transfer learning. A 

limitation that is out of the scope of the framework differences is that, since the latter used 

a pre-trained model in object detection for transfer learning, which is not available in the 

same format for the former, comparison between both trainings results is not possible 

since each one used a different source for the transfer learning technique. 

The present MobileNet implementation can be viewed as an evolution from the one 

presented in Section 5.1, as the former is simpler and with sole focus on the classification 

of images, while this one not only classifies images, but also adds object detection into 

the picture, which is an entirely different challenge. 

To avoid programming all code from scratch, the TensorFlow object detection API 

was used. This API is an open source framework allows the creation of ML models 

capable of locating and identifying multiple objects in a single image [52]. Even though, 

by the time of the development of this project, a version 2 of this API is generally 

available, due to limitations with the available GPU, this project still used version 1 of 

the API. The programming language used was Python.  

 

5.2.1. Methodology 

This methodology is very different from the previous one, because it revolves around the 

Tensorflow object detection API. Multiple Python files were used in this implementation, 

along with additional software. 

 
12 Website link: https://github.com/tensorflow/models 

https://github.com/tensorflow/models
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The first step is to annotate the images of the dataset with the location of the objects 

and respective categories. This was achieved with the LabelImg graphical image 

annotation tool [53]. The annotation of an image requires the selection of an area in the 

image, called a bounding box, and manually label that bounding box. This is a time-

consuming activity because, for datasets that have not been previously annotated, or 

where the annotations are not fit for the problem being solved, this is a completely manual 

task. The information is saved in Extensible Markup Language (XML) files in Pattern 

Analysis, Statistical modelling and Computational Learning (PASCAL) Visual Object 

Class (VOC) format [54]. 

The second step is to partition the dataset into training, validation and test datasets. 

For this action, the “dataset_partition.py”13 file was used for each class. The first round 

of partitions creates the training set using 80% of the images. The second round of 

partitions uses the remaining 20% and splits it into the validation set (80%) and the test 

set (20%). 

The third step requires the transformation of the XML files of the first step into 

Comma-Separated Value (CSV) files since the next step only accepts CSV formats. The 

conversion from XML to CSV is done by the xml_to_csv.py file. A CSV file is required 

for each dataset, in this case three files will be required. 

The fourth step creates a tfrecord14 file based on the CSV files of the previous step. 

This tfrecord file is the format required by the object detection API to train the model. 

This format stores a sequence of binary records. The conversion is done in the 

“generate_tfrecord.py”15 file. A tfrecord file is required for each dataset, in this case three 

files will be required. 

The fifth step is the configuration of the pipeline file. This file is the main configuration 

for the API to run the training of the model. Information such as the location of the 

training and validation set, batch size, number of steps, data augmentation to be applied 

are configured here. This file was downloaded from the same source as the pre-trained 

model used for transfer learning and fine-tuning. 

 
13 Github link: 

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2/blob/main/dataset_partition.py 
14 Definition link: https://www.tensorflow.org/tutorials/load_data/tfrecord 
15 Github link: 

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2/blob/main/generate_tfrecord.py 

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2/blob/main/dataset_partition.py
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2/blob/main/generate_tfrecord.py
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The sixth and final step is the training of the model. The script that runs the training is 

the “model_main.py”16. The results of the training and validation can be monitored using 

Tensorboard17 which provides the visualization and tooling needed for ML 

experimentation. Tensorboard is installed by default when Tensorflow is installed in the 

computer. 

For training, due to memory limitations, a batch size of 12 was used. In fact, when 

trying to use a higher batch size, the object detection API reported out of memory errors. 

In this type of training the previous concept of epoch is equal to the number of steps in 

this training. The number of steps used was 100000, even though the default number 

configured in the pre-model pipeline was 200000, after a few tests it was noted in the 

results (Section 5.2.2) that with less than half this number the results do not significantly 

change afterwards. 

In terms of data augmentation, the object detection API differs from the previous 

framework offering a few different options. For this implementation only two data 

augmentation types were used, the ones that were set as default with the pipeline 

configuration file of the pre-trained model. The types are random_horizontal_flip, which 

randomly flips inputs horizontally, and ssd_random_crop that randomly removes part of 

the images’ outer areas.  

 

5.2.2. Results 

During training of the model, the results were monitored in Tensorboard. This tool allows 

for the visualization of the different detection evaluation metrics used by COCO.  The 

first available metric is mean average precision (mAP) [54]. This metric represents the 

average precision averaged over all classes.  It is important to note that this 

implementation has a limitation: the API does not have an option by default to save the 

best checkpoint or step in the training. After several tries, it revealed to be hard to program 

a way to do this due to the lack of time and experience in the framework, so it was decided 

to skip it. This means that the trained model will correspond to the final step of the training 

and this will be the one to be analyzed. 

 
16 Github link: 

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2/blob/main/model_main.py 
17 Website link: https://www.tensorflow.org/tensorboard 

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2/blob/main/model_main.py
https://www.tensorflow.org/tensorboard
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Figure 5.5 – mAP results from Tensorboard 

The mAP results are divided into three different graphics. Each graphic represents the 

average precision for different sized objects. In Figure 5.5, from left to right and top to 

bottom, the first graphic presents the mAP for large objects, that is, bigger than 96x96 

pixels. The second graph presents the mAP for medium objects, or smaller than 96x96 

and bigger than 32x32 pixels. The third and last graph presents the mAP for small objects, 

smaller than 32x32 pixels. 

The best mAP corresponds to the one where the large objects are recognized, with a 

0.6618 score at step 100000. The medium and small objects evaluated very poorly, one 

possible reason for this is due to the type of images present in the Trashnet dataset. This 

dataset is mainly comprised of close ups of objects, which means that most of the 

bounding boxes annotated in the dataset will have a size bigger than 96x96 pixels and 

therefore the model will not be able to be trained with almost any object smaller than that. 

To be more specific there are 2069 large objects, 130 medium objects and 1 small object 

in the dataset. The number of objects does not equal to the number of images because 

some images have more than one object. 

One other metric available in Tensorboard is the mAP Intersection over Union (IOU). 

This metric represents the intersection of the predicted and ground truth bounding boxes. 
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The formula for this metric is according to IOU, where A is the predicted bounding box 

and B is the ground truth bounding box annotated previously in the dataset. 

𝐼𝑂𝑈 =  
|𝐴∩𝐵|

|𝐴∪𝐵|
     (3) 

From left to right, in Figure 5.6, the first graph presents the mAP IOU when at least 

50% of the predicted bounding box intersects with the ground truth bounding box. For 

this metric we have a mAP IOU of 0.7785. The second graph presents the mAP IOU when 

at least 75% of the predicted bounding box intersects with the ground truth bounding box 

and the result is 0.742, a slightly lower value than the previous metric, which is expected 

since the latter is more precise than the former. It is not expected for the former metric to 

have a higher mAP IOU than the latter because the former metric is less precise than the 

latter. 

 

Figure 5.6 – mAP IOU results from Tensorboard 

Two other important metrics are the classification loss and localization loss, as seen in 

Figure 5.7. Loss compares the output of the predicted with the ground truth. The main 

objective is for a model to minimize loss as much as possible. In this implementation two 

types of losses are considered, equal to the two challenges being solved. The first type of 

loss is classification. This type of loss measures how well the model is able to correctly 

categorize an object. The pipeline configuration file had the function weighted sigmoid 

configured by default. The result for the classification loss was 2.241.  The second type 

of loss is localization. This type measures how well the model is able to locate objects. 

For this type of loss, the default configured function (weighted smooth L1) was 

maintained as well. The result for the localization loss was 0.1716. The difference of 

values in both losses indicates that the model is better at localizing objects than it is at 

classifying them. 
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Figure 5.7 – Loss metrics from Tensorboard 

Testing the trained model in the test set we have the following predictions against the 

ground truth in Table 5.5. To analyze the results further, a confusion matrix was created. 

An extra class was added by the Python code that generated the confusion matrix. The 

class “nothing” in the “Ground Truth” dimension represents areas of the images that were 

not annotated in the ground truth but were predicted as one the classes of the dataset. In 

the dimension “Predicted” this class means that an object, that was labeled as one of the 

other classes in the ground truth, was not classified by the model. An IOU threshold of 

50% was used for the detection of objects in these results, which means that the ground 

truth bounding box had to have at least 50% of its area under the predicted bounding box, 

else the classification was considered as “nothing”. A confidence threshold of 50% was 

used for the classification of the objects, which means that the model had to have at least 

50% of confidence that an object belonged to a specific class, else the classification was 

considered as “nothing”. 

It is important to note that the code used to generate the confusion matrix was reused 

from an open source code available on GitHub [55]. 
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Table 5.5 – Test dataset results confusion matrix with SSD Mobilenet v2 

    Predicted 

    cardboard glass metal paper plastic trash nothing 

Ground 

Truth 

cardboard 56 4 0 4 0 0 0 

glass 0 68 6 0 5 0 0 

metal 1 11 54 0 5 0 8 

paper 7 6 7 71 2 0 0 

plastic 1 13 6 3 66 0 24 

trash 1 0 0 2 0 5 1 

nothing 4 20 22 11 24 1 0 

The precision results for each class can be analyzed in Table 6.6. Cardboard and glass 

were the classes with the highest precision score. Trash and plastic were the classes with 

the worst results. 

Table 5.6 – Precision results for Test dataset by category with SSD Mobilenet v2 

Category Precision 

cardboard 87,50% 

glass 86,08% 

metal 68,35% 

paper 76,34% 

plastic 58,41% 

trash 55,55% 

Average 72,04% 

So far, all the tests were done in images from the same dataset. Even though the images 

used to test the model were not used to train the model, they were from a similar source. 

This might create situations of overfitting, where the model is good at predicting a certain 

dataset but is not good at generalizing. Once again, to test if the model is good at 

generalizing, a new validation will be performed employing the images of waste captured 

with a smartphone during the development of this project. This dataset is described in 

Chapter 4. 

The results of the test in the real dataset (Table 5.7 and 5.8) reveal that the model has 

not been able to classify properly the objects in most of the images, with a very poor result 

in almost all classes. Only the cardboard class had a precision result that was close with 

the test dataset results, with a difference of 7,5%. The rest of the classes had worst results. 
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Table 5.7 – Real dataset results confusion matrix with SSD Mobilenet v2 

    Predicted 

    cardboard glass metal paper plastic trash nothing 

Ground 

Truth 

cardboard 20 0 1 3 0 0 1 

glass 10 2 2 3 0 0 5 

metal 21 1 12 1 0 0 5 

paper 53 2 8 6 1 0 8 

plastic 54 7 17 9 9 0 12 

trash 11 0 2 0 0 0 4 

nothing 8 0 6 1 1 0 0 

 

Table 5.8 – Precision results of Real dataset by category with SSD Mobilenet v2 

Category Precision 

cardboard 80,00% 

glass 9,09% 

metal 30,00% 

paper 7,69% 

plastic 8,33% 

trash 0% 

Average 22,52% 

The explanation for the poor results might be related with the results of training where 

it could be seen that the model was only able to detect large objects with precision. This 

might happen because the Trashnet dataset is mostly comprised of image closeups of 

objects and therefore the model only learns how to create large bounding boxes which 

occupy most of the image. Due to this the area of intersection between the ground truth 

bounding box and the predicted bounding box fails because it exceeds the threshold of 

50%. On top of this problem the previous problems reported in Section 5.1.2 also apply 

here. For example, due to the fact that the model is predicting large bounding boxes that 

occupy a large part of the image, it means that the background of the image will affect 

the classification of the object just like it was affecting the MobileNet v2 model of Section 

5.1. This explains the slighter worst results in this model. 

The training of the model took 8 hours with the hardware and software available for 

the project. Some tests were done with different parameters in the training to see what 

affected the most the time of training. It was concluded that batch size and image size 

highly affected the time elapsed for the training of a model. 
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5.2.3. Converting to mobile 

The result ML model will be used in the mobile application as previously explained in 

Chapter 4 and demonstrated in Figure 4.1 which represents the high-level system 

architecture. This model will be present in the mobile application at first and each new 

ML model that is created will be available for download in the REST API. But the output 

of the Tensorflow Object Detection API is not compatible with the framework 

Tensorflow Lite, the framework to run ML models in a smartphone. A conversion of the 

output model is required in order for the model to be run in a mobile environment. Two 

steps are required to convert the output model of the API. 

The first step creates a quantized model based on the model created by the API. This 

post-training quantization is a conversion technique to reduce the model size and improve 

the CPU and hardware accelerator latency with the smallest degradation possible in the 

model accuracy. For this step, the python file export_tflite_ssd_graph.py is used. 

The second and final step is the conversion of the quantized model into the tflite 

format. This format is the Tensorflow Lite required format to run ML models in a 

smartphone. For this operation, the command line “tflite_convert” command is used. This 

command is available when Tensorflow is installed in a computer. 

After this step, a tflite file with the ML model is ready to be transferred to a smartphone 

application that uses Tensorflow Lite to execute it. 

 

5.2.4. Repository 

All the code produced in this module was versioned within GitHub, the repository is 

public and under MIT license in the following link: 

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2. 

 

  

https://github.com/antoniosequeira/trainer_ssd_mobilenet_v2
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Chapter 6 – REST API 

This chapter serves as the documentation for the REST API used in the project, 

information such as the technology and architecture being used will be found here. 

A REST API is a method of communication between electronic devices using the 

world wide web, its architecture is modeled through the way data is presented, accessed 

or modified. Its principles allow the service to be simple and lightweight, having high 

performance [56]. This type of service typically allows for the main hypertext transfer 

protocol (HTTP) methods, the create, retrieve, update and delete actions. In Figure 6.1 an 

example of the REST API architecture can be seen. 

 

Figure 6.1 – REST API architecture [56]  

In this project the REST API will serve as the handler of actions requested through the 

Internet by the mobile application. 

For this module, it was decided to use the Django18 framework because it is open 

source, meaning that a low cost solution could be built, it is based on Python which is 

widely used, so online assistance is available to help solve most of the problems, and it 

includes a lot of reusable components to quickly create web-based applications like this 

REST API. The version of Django used was the 3.0.4. The Python environment where 

the module was built was based on the version 3.6.7 of Python. Besides that, an extension 

of Django named Django Rest Framework19 was used to create the REST methods, the 

version of the extension is the 3.11.0. 

 
18 Website link: https://www.djangoproject.com/ 
19 Website link: https://www.django-rest-framework.org/ 

https://www.djangoproject.com/
https://www.django-rest-framework.org/
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All the code of the module was versioned in GitHub in order to safeguard it and share 

it easily. The module was developed in Visual Studio Code20. 

 

6.1. Architecture 

The typical Django architecture follows the model view controller (MVC) pattern where 

the model corresponds to the component that acts as the mediator between the web 

application interface and the database. The view contains the logic for the user interface 

(UI). The controller, which is the main control component, has the task of selecting the 

view component that corresponds to the UI interaction. 

For this project, the MVC pattern was used as well but with a slight variation since 

there is no UI, given that it is a REST API. For example, the controller instead of receiving 

UI interactions, it will receive REST requests. 

The structure of the Django project is presented in Figure 6.2, where we can see that 

the project contains two apps inside of it. An app in Django is a module that has one 

purpose and can be reused in multiple projects, in this case we have two modules, the 

model app that is responsible for any logic related with the ML model, the users app is 

responsible for the authentication logic of the project. 

 

Figure 6.2 – Django project structure 

The authentication chosen for this project was token based, so the users will have to 

register and login their users to be able to get a token that will be necessary to access any 

other endpoint. No UI for user registration has been created in the project because it was 

out of the scope. Manually registrations were done via the native Django administrator 

module. 

 
20 Website link: https://code.visualstudio.com/ 

https://code.visualstudio.com/
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6.2. Endpoint Definition 

The way the mobile application will interact with the REST API is through the API 

endpoints. Each of these endpoints are uniform resource locators (URL) within the REST 

API and are accessible through HTTP request methods which enable communication 

between clients and server. The methods that are used within this project are the 

following: 

• GET – Used to request data from a specified resource. 

• POST – Utilized to send data to a server.  

The detailed information for the endpoints that were created can be found in Appendix 

A. 

 

6.3. Testing 

It is important when developing a feature, to be able to test and prove that it works. 

Multiple tests were done to ensure that all features worked as intended. The detailed 

information of the tests for this module are available in Appendix B. 

 

6.4. Repository 

All the code produced in this module was versioned within GitHub. The repository is 

public and under MIT license in the following link:  

https://github.com/antoniosequeira/rest_api.

https://github.com/antoniosequeira/rest_api
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Chapter 7 – Mobile Application 

In this chapter all the information, related with the mobile application, will be described. 

Originally it was planned to use React-Native21 as the technology to build the application. 

An initial version of the application was built in this technology with just the feature of 

capturing images, but it had to be scrapped and the technology changed due to limitations 

and incompatibilities with the framework Tensorflow Lite which is required to run the 

ML model in a mobile device. The adopted technology to build the mobile application 

was the mobile framework Flutter22, a JavaScript framework that allows the writing of 

natively rendering mobile applications for both Android and iOS. The main reasons to 

choose this technology are because of its versatility in terms of allowing the developer to 

build a web application for both Android and iOS with the same code, and it is one of the 

most popular frameworks for mobile applications development while being open source. 

The application was developed for Android and it was only tested (as shown in Section 

7.3) in the version 10 and 11 of this operating system (OS), yet the technology that was 

used, in theory allows to rapidly create an iOS application as well, with the same code, 

yet this was not part of the scope of the project and therefore was not tested or 

implemented. 

As stated, the main technology used to build the mobile application was Flutter, 

because this portable UI toolkit allows the developer to use nonnative programming 

language to create cross-platform applications. This framework was developed by Google 

and it utilizes as its programming language the Dart language. This project used version 

1.18.0-11.1.pre. As a pre-requisite for Flutter, Android Studio23 is required in order to get 

an Android Software Development Kit (SDK) to be able to develop Android applications. 

The version of Android Studio used in the project was version 4.0 and the Android SDK 

version was the 29.0.3. It is important to mention that tflite24 a Flutter plugin for accessing 

TensorFlow Lite API was utilized and the version was 1.0.6. 

For Flutter development, Visual Studio Code was used. 

 

 
21 Website link: https://reactnative.dev/ 
22 Website link: https://flutter.dev/ 
23 Website link: https://developer.android.com/studio 
24 Website link: https://pub.dev/packages/tflite 

https://reactnative.dev/
https://flutter.dev/
https://developer.android.com/studio
https://pub.dev/packages/tflite
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7.1. Architecture 

The code for the mobile application was organized in logical modules as shown in Figure 

7.1.  

 

Figure 7.1 – Mobile application architecture 

The lib folder contains all the public code, and it is created by default when generating 

a new Flutter project. The api_requests folder contains all the logic that the app requires 

to interact with the REST API described in Chapter 6. The helpers folder contains 

required logic to interact with the tflite plugin. The screens folder contains the logic for 

secondary screens in the application. At last the “main.dart”25 class is the entry point of 

the application and contains the necessary code for the main actions and navigation for 

secondary screens. 

 

7.2. Available Actions 

The mobile application allows the user to perform multiple actions. For a better 

understanding of the flow the user experience in the application, Figure 7.2 was created. 

 
25 Github link: https://github.com/antoniosequeira/mobile_application/blob/main/lib/main.dart 

https://github.com/antoniosequeira/mobile_application/blob/main/lib/main.dart
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Figure 7.2 – Mobile application experience flow 

The user experience is comprised of three main sequences. The first sequence begins 

when a user enters the entry screen (Figure 7.3) and clicks on the lower left button of the 

application.  
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Figure 7.3 – Entry screen 

This action will direct the application to the select image screen (Figure 7.4). This 

screen may vary in aspect in each smartphone due to the utilization of native 

functionalities of the mobile operating system. 

  

Figure 7.4 – Select image screen 
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If the user chooses an image the application will redirect to the evaluation screen 

(Figure 7.5) with the result of the analysis of the selected image. The analysis is an output 

of the image with a bounding box around the object, the name of the class for that object 

and the probability of the classification. Else it will be redirected to the entry screen 

(Figure 7.3). 

 

Figure 7.5 – Evaluation screen 

The second sequence begins when a user clicks on the middle lower button of the entry 

screen (Figure 7.3). This will result into the redirection to the capture image screen 

(Figure 7.6). This screen may vary in aspect in each smartphone due to the utilization of 

native functionalities of the mobile operation system. 
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Figure 7.6 – Capture image screen 

In this screen the user can capture a picture of an object. After that it will be redirected 

to the Confirm image screen (Figure 7.7). In this screen the user can overview the image 

that has just captured and it can accept or reject the image. If it accepts the image it will 

be redirected to the evaluation screen (Figure 7.5) just like the previous sequence. If it 

rejects the image it will be redirected to the capture image screen (Figure 7.6) to be able 

to capture another image. 
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Figure 7.7 – Confirm image screen 

The third and final sequence happens when a user clicks on the lower left button of the 

entry screen (Figure 7.3). The user will be redirected to the login screen (Figure 7.8). In 

this screen a user that is previously registered with the platform will be able to login with 

a username and password. 
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Figure 7.8 – Login screen 

After a successful login, the user will be redirected to the menu screen (Figure 7.9). In 

this screen the user has two options.  

The first option is called download model. This allows for the user to download a new 

version of the ML model that classifies images. The download will only happen if the 

present model in the application has a different version of the most recent one present in 

the server. 

The second and final option is called upload photos. This option allows the user to 

upload images, that were captured by the application, into the server. These images will 

be taken into consideration for the training of new versions of the ML model. Only the 

images are uploaded, without any annotation. 
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Figure 7.9 – Menu screen 

 

7.3. Testing 

The mobile application was tested in two different devices the first one was through a 

virtual device created in Android Virtual Device Manager module from Android Studio, 

this virtual device works as an emulator of a mobile device, the device that was emulated 

was a Pixel 3 with Android 10. The second device where it was tested was a Oneplus 8 

smartphone, running Android 11. Each available action was tested to make sure it was 

working properly. Due to the nature of the tests (actions in a smartphone application) it 

was not possible to register these results in this document. Due to this limitation, only the 

actions will be described in the section. 

The actions used in the tests followed the three user experience paths described in 

Figure 7.2. Two types of tests were done, the first one involved testing the three sequence 

paths within the application with a reset of the application within each sequence to clean 

any saved state in the application. This made sure that no sequence was dependent of any 

other and that each feature was functional by itself. The second test repeated the testing 

of the three sequence paths within the application but without a reset of the application 

within each sequence. This was done to ensure that no error state was introduced by any 

path sequence. In both types of tests, the order of the path sequences was alternated to 
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make sure that every type of flow of sequences did not introduce any error state in the 

application. 

 

7.4. Repository 

All the code produced in this module was versioned within GitHub. The repository is 

public and under MIT license in the following link: 

https://github.com/antoniosequeira/mobile_application. 

 

  

https://github.com/antoniosequeira/mobile_application
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Chapter 8 – Conclusions and recommendations  

8.1. Main conclusions 

This project’s main objective was the creation of a mobile application that can help people 

to recycle. The secondary objectives were the creation of an updated compendium 

containing related work in the area of computer vision that uses ML to categorize waste, 

and the contribution to current datasets in the area. 

Three research questions were answered during the development of the project. 

RQ1: Considering the requisites of an ML model, which types of ML algorithms are 

best suited for the classification of waste images within a smartphone application? 

This question was answered by researching the available literature and analyzing the 

results of previous studies. The MobileNet architecture had the best results due to its 

lightweight characteristics. Even though it was reported that the architecture had a lower 

accuracy generally when compared to others. Within the MobileNet architecture there are 

three iterations, from v1 to v3. Each iteration has improvements in the reported accuracy 

when compared to previous iterations. It was important that the reported results were 

related with the task of classification waste. Due to this the v3 architecture was excluded 

because there were no scientific papers reporting results in this architecture. Another point 

was considered, the availability of the architecture in existing ML frameworks that 

allowed quick development of the project. Only the v1 and v2 architectures were available 

at the moment of the creation of this project. Taking all this information into account, the 

MobileNet v2 architecture was the choice for the answer to this question yet the 

performance of this architecture in real images was shown that it is much lower to what 

is registered in the literature. 

RQ2: Is it possible to create an accurate (that is, achieving over 90% precision) but yet 

light weight model (enabling a quick classification: under three seconds) able to run in 

smartphones? 

This answer is not completely clear, due to the different types of tests that were done 

which returned mixed results. The MobileNet v2 model without object detection had an 

average precision of 94,65% on the test dataset, yet the test on the real dataset returned 

an average precision of 24,94%. The classification for this model when tested in the two 

environments was executed under three seconds. These results indicate that the ML model 
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isn’t good enough for real life scenarios, but it is good enough to run in a smartphone 

within the purposed classification time. The SSD MobileNet v2 model that contains 

object detection failed the precision test with an average precision of 72,04% in the test 

dataset and go an even worse result in the real dataset, with an average precision of 

22,52%. This ML model was able to classify images under three seconds as well in the 

mobile application, when tested in the two available environments. 

RQ3: Is the most cited public available dataset of waste images diverse enough to 

produce a ML model that can classify waste into its specific recycling category in a real-

life scenario? 

The answer to this question is that the data is not diverse enough. The most cited public 

available dataset of waste images is Trashnet. In a MobileNet v2 architecture without 

object detection the test results in the test dataset returned an average precision of 94,65% 

which is very high, yet when these tests were done in the real dataset the ML model only 

had an average precision result of 24,94%. In an SSD MobileNet v2 architecture with 

object detection the test results in the test dataset returned an average precision of 72,04%, 

while these tests when done in the real dataset revealed an average precision of 22,52%. 

These results corroborate the lack of diversity in Trashnet dataset to produce a ML that 

can classify waste in a real-life scenario. 

In terms of development this project demonstrated that a system that connects a mobile 

application to a server in order to transfer information for the production of new ML 

models is possible. All modules of the system were successfully produced. The mobile 

application that can use a ML model to classify waste images, upload images to the API 

and download from the API new versions of the ML model. The API that can authenticate 

users, receive images and upload ML models. The ML server module that can train new 

ML models. 

 

8.2. Contributions to the scientific and business community 

The project contributed to the scientific and business community with a compendium of 

information in the area of computer vision and ML to categorize waste. This information 

can serve as a point of departure for present and future investigation in this area of 

expertise. 
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A working prototype system was created, showing that, both in theory and empirically, 

a system that uses crowdsourcing and ML elements can be further explored as a possible 

system for developing mobile applications in the area of waste management and 

classification. 

 

8.3. Limitations of the study 

This project had multiple limitations that affected its outcome. Starting on the ML 

architecture options. Due to the amount of work required for this project a ML 

architecture had to be selected based on previous studies and it wasn’t timely possible to 

compare multiple architectures to compare results. Due to the limitations present in the 

available ML frameworks that facilitate the development of code to train models, the most 

recent version of the chosen architecture wasn’t used, because it wasn’t available at the 

time when this project was developed. 

The amount of data used in the training of the ML models has also stand as a serious 

limitation. Only two datasets from previous scientific studies were available. None of 

these two datasets were annotated with bounding boxes that allowed for the training of a 

ML model with object detection. Due to the limitated time of this project, only the most 

cited dataset (Trashnet) was annoted with bounding boxes and therefore used as data for 

training. 

Even though the study produced a working system prototype, the precision of the 

classification of the mobile application is very limited in real life as  concluded. The 

system was not tested by third party subjects and therefore was limited to testing within 

the development environment. 

The diversity of technologies required for the scope of the project brought the 

limitation of the best development practices in each module due to lack of knowledge in 

these technologies. This might have caused unnecessary delays and performance 

degradation in each module. 
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8.4. Future work 

Multiple possible iterations of this project have been left for the future due to lack of time. 

Future work could focus on the limitations that were highlighted in Section 8.3 but not 

only necessarily. 

It would be important for example to make a further study on ML architectures for 

mobile applications, due to the increasing smartphone computing power there is the 

probability that more process demanding architectures might be able to be used 

successfully in smartphones. 

Another idea is to gather or produce more data that can be used to train the ML models. 

This can be achieved through direct gathering by the further researchers or through 

crowdsourcing techniques where a prototype system like the one that was developed in 

this project can be released to more users in order to gather data through its crowdsourcing 

capabilities. This would be important to build more precise ML models for the 

application. 

A better user experience for the user should be developed for the mobile application. 

For example, more information could be returned to the user when it uses the application 

to classify an image. Information on how the material is recycled and the possible usages 

for that material. Techniques of gamification might also be an option to further engage 

the users to explore the application. 

In theory the technology used to build the mobile application allows for the creation 

of code that can be compiled for both Android and OIS operating systems. Since this 

project scope was limited to Android, it would be interesting to also test or if needed adapt 

the system to fully support both mobile operating systems. 
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Appendix A 

This appendix serves as a detailed documentation for the endpoints that were mentioned in 

Section 6.2. These endpoints are organized in the following categories: 

Model Endpoints 

These endpoints are related with the logic associated with the ML model. 

 

/model/download/ 

This endpoint is for users that require to download the latest version of the ML model. The 

HTTP method to be used with this endpoint is the GET method.  

Sample endpoint: 

https://recycler-api.herokuapp.com/model/download/ 

Sample Request body: 

curl -X GET -H "Authorization: <token>" https://recycler-

api.herokuapp.com/model/download/ 

The response contains a ML model. Which is to be used within the mobile application 

environment. 

 

 /model/version/ 

This endpoint is for users that require to check the number of the latest version of the ML model 

available. The HTTP method to be used with this endpoint is the GET method.  

Sample endpoint: 

https://recycler-api.herokuapp.com/model/version/  

Sample Request body: 

curl -X GET -H "Authorization: <token>" https://recycler-

api.herokuapp.com/model/version/ 

The response contains a json format like the following example: 

{ “version”: “1.0”} 
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/model/upload/ 

This endpoint is for users that require to upload images to the server. The HTTP method to be 

used with this endpoint is the POST method.  

Sample endpoint: 

https://recycler-api.herokuapp.com/model/upload/  

Sample Request body: 

curl -X POST -H "Authorization: <token>" -F "file=@/<filepath>.<filetype>" 

https://recycler-api.herokuapp.com/model/upload/ 

The response contains a json format like the following example: 

{“id”: 1, “file”: “/media/image.jpg”} 

 

User Endpoints 

These endpoints are related with the logic associated with the management of user accounts 

and their login/logout. 

 

/users/login/ 

This endpoint is for users that require to login with their user to retrieve the Token that is 

necessary to access the Model endpoints. The HTTP method to be used with this endpoint is 

the POST method.  

Sample endpoint: 

https://recycler-api.herokuapp.com/users/login/ 

Sample Request body: 

curl -X POST -d "username=<username>&password=<password>" https://recycler-

api.herokuapp.com/users/login/ 

The response contains a json format like the following example: 

{“token”: “a64824a0dca3cf8f1c4fc0ccd4eccb635a001346”} 
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/users/register/ 

This endpoint is for users that require to login, but they still haven’t created a user, so they will 

need to register one user first before being to login. A token will be automatically generated for 

the user being created. The HTTP method to be used with this endpoint is the POST method.  

Sample endpoint: 

https://recycler-api.herokuapp.com/users/register/ 

Sample Request body: 

curl -X POST -d "username=<username>&password=<password>" https://recycler-

api.herokuapp.com/users/register/ 

The response contains a json format like the following example: 

{“user”: “test”, “first_name”: “”, “last_name”: “”, “token”: 

“a64824a0dca3cf8f1c4fc0ccd4eccb635a001346”} 

 

 /users/logout/ 

This endpoint is for users that require to logout their users. The HTTP method to be used with 

this endpoint is the GET method.  

Sample endpoint: 

https://recycler-api.herokuapp.com/users/logout/ 

Sample Request body: 

curl -X GET -H "Authorization: <Token>" https://recycler-

api.herokuapp.com/users/logout/ 

There is no response in this endpoint. 
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Appendix B 

It is important when developing a feature, to be able to test and prove that it works, as such  the 

method that was chosen to test the endpoints was through the command line using the open 

source/free software Curl26 because it allows to transfer data by using commands in the 

command line. Curl is available for multiple Operating Systems such as Windows and Linux. 

This batch of tests the REST API was executed in the localhost. 

In Figure B.1 it can be seen the successful testing for the “users/register” endpoint, in line 1 

the request for the creation of a user is done with the name “testuser”, the password 

“testpassword” and the URL where the endpoint is located. In line 2 the response from the API 

with the username and token. The “first_name” and “last_name” variables are redundant.  

 

Figure B.1 – User register testing 

In Figure B.2, the endpoint “users/login” is successfully tested, with the login of the user 

that was created in the previous test and corresponding password, a token is returned which 

should be used for any model related endpoints. 

 

Figure B.2 – User login testing 

In Figure B.3, the endpoint “model/version” is tested by passing in line 1 the token that we 

received previously in the user login and the URL of the endpoint. The test is successful and in 

line 2 we get a json with the version number of the current model present in the server. 

 

Figure B.3 – Model version testing 

In Figure B.4, the endpoint “model/download” is tested by requesting (in line 1) to 

download ML model and save in the file “test.model”, the authentication token is given and 

 
26 Website link: https://curl.haxx.se/ 

https://curl.haxx.se/
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the URL for the endpoint is specified. The following lines are the result of downloading the 

specified file, the test was done with success. 

 

Figure B.4 – Model download testing 

In Figure B.5, the endpoint “model/upload” is tested. In line 1 a request is created by 

specifying the authentication token, the file to be uploaded and the URL of the endpoint. In 

line 2 the response specifies that the new file has been uploaded with success and it was given 

the id 3 and it is located in the specified path, in this case in the path “/media/trash.jpg”. 

 

Figure B.5 – Model upload testing 

In Figure B.6, the endpoint “users/logout” is tested successfully by passing the authorization 

token and the endpoint URL as it can be seen in line 1, this method will not give a response. 

 

Figure B.6 – User logout testing 

 

 


