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In this paper, we determine the growth rate of the exponential radiation amplification
in the ion-channel laser, where a relativistic electron beam wiggles in a focusing
ion channel that can be created in a wakefield accelerator. For the first time the
radiation diffraction, which can limit the amplification, is taken into account. The
electron beam quality requirements to obtain this amplification are also presented.
It is shown that both the beam energy and wiggler parameter spreads should be
limited. Two-dimensional and three-dimensional particle-in-cell simulations of the
self-consistent ion-channel laser confirm our theoretical predictions.

Key words: intense particle beams

1. Introduction
The ion-channel laser (ICL), initially proposed by Whittum, Sessler & Dawson

(1990), relies on the injection of a relativistic electron beam in an ion channel
(IC) to create a coherent and highly amplified radiation source. Such an IC can be
produced in a plasma-based wakefield accelerator in the blowout or bubble regime
(Faure et al. 2004; Geddes et al. 2004; Mangles et al. 2004): while propagating in
a plasma, a laser pulse or a particle beam pushes the electrons off-axis and leaves
an IC in its wake. The fields generated in the IC provide a focusing force for the
relativistic electrons on-axis. The resulting wiggling motion of the electron along the
IC axis then leads to the emission of the so-called betatron radiation (Esarey et al.
2002; Rousse et al. 2004). For appropriate conditions, betatron radiation can interact
with the electron beam and bunch it at the radiation wavelength, allowing for the
exponential amplification of the emitted radiation, as in a conventional free-electron
laser (FEL). One of the most important advantages of the ICL are the strong fields
generated in the plasma, which can lead to amplification in the UV to X-ray range,
with very high brightness within much shorter distances than those obtained in the
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conventional FEL sources. Previous works analysed the ICL gain length and the
associated Pierce parameter assessments (Chen, Katsouleas & Dawson 1990; Whittum
et al. 1990; Whittum 1992; Liu, Tripathi & Kumar 2007; Ersfeld et al. 2014).

In order to take full advantage of this scheme, it is critical to correctly estimate
the gain length and to understand the requirements in terms of the beam quality
to obtain a high gain, since the focusing structure is easily determined solely by
the plasma density and the radius of the blowout/bubble region. In this paper, we
present a detailed analysis of the beam requirements when the Pierce parameter ρ is
much smaller than 1, as required for FEL-like amplification. In an ICL, the wiggler
parameter K depends on the electron properties, so it can be different for each
electron. Therefore, we show that both the beam energy spread and beam wiggler
parameter spread should be limited and satisfy:

1γ

γ
<

2
3
ρ and

1K
K

<
2+K2

2K2
ρ. (1.1a,b)

Multi-dimensional particle-in-cell (PIC) simulations of ICL are performed to confirm
that if those conditions are fulfilled then a good amplification is observed. As the
spread limitations are a function of the Pierce parameter, this parameter should be
carefully calculated. However, two important effects were neglected in most of the
previous works (Chen et al. 1990; Whittum et al. 1990; Whittum 1992; Liu et al.
2007): (i) the radiation diffraction and (ii) the Pierce parameter dependence on the
wiggler parameter K. These effects are included in our theoretical calculation of the
Pierce parameter and the associated gain length, and are confirmed by PIC simulations
in Lorentz boosted frames.

2. Theory
2.1. Radiation emission

As a first step, we analyse the motion of an electron in an IC whose boundary is
described by a radius, rb(ξ) which depends on the variable, ξ = z − ct, with z the
longitudinal coordinate (corresponding to the beam propagation direction), t the time
and c the speed of light in vacuum. In general the motion of a particle moving near
the speed of light in an IC can be described in terms to the so-called wake potential
ψ ≡ (e/mec2)(φ − cAz) where φ and Az are the scalar potential and axial component
of the vector potential generated by the IC, me and e are respectively the electron
mass and charge. The accelerating and focusing fields are obtained from (∂/∂ξ)ψ and
(∂/∂r)ψ where we assume azimuthal symmetry and where r is the radial position.
Inside the IC, (∂/∂r)ψ is given by (Lu et al. 2006) −k2

pr/2 where kp ≡ ωp/c and
ωp ≡ (nee2/ε0me)

1/2 is the plasma frequency, with ne the plasma density and ε0 the
permittivity of free space. Note that these expressions are valid when the IC is created
by long (negligible accelerating fields) or short pulse particle beams or lasers (large
accelerating fields) and if there are large surface currents in the IC (as there is in
the highly nonlinear channels). Therefore, in all these cases, the focusing force is
mec2k2

pr/2 as was used by Esarey et al. (2002).
With this focusing force, the Lorentz factor γ , the transverse radial position r

and the transverse radial momentum pr of an electron with an initial longitudinal
momentum p0 (all momentum quantities are normalized to mec), a maximum radius
of oscillation r0 and no azimuthal momentum, are given by γ = γ0 + r2

0k2
p sin2(θr)/4,

r = r0 cos(θr) and pr = K sin(θr) with γ0 = (1 + p2
0)

1/2, K = r0kp(γ0/2)1/2 and
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θr =−Kct/r0γ0+ θr0=−ωβ t+ θr0, where θr0 is the initial angle and ωβ =ωp/(2γ0)
1/2

is the betatron frequency. Here K � γ0 has been assumed. This assumption is
made throughout the paper. Hereafter, the second-order terms proportional to γ −2

0
are neglected. The electrons wiggling in the focusing potential generate a betatron
radiation with a fundamental wavelength λ1 = 2πc/ω1 with ω1 = 4γ 2

0 ωβ/(2+K2).
The interaction between the electron beam and the radiation can lead to the

amplification of the radiation. In order to get micro-bunching, the spread in the
radiation wavelength must be limited. In an ICL, the K parameter depends on
r0 and γ0 which can be different for each electron, so the radiation wavelength
spread can be induced by both the beam energy spread and the K spread. A good
approximation of the limiting spread can be found by assuming that 1λ1/λ1 < ρ
should be satisfied, much in the same way as for FELs (Huang & Kim 2007).
Knowing that λ1 = 2πc(2 + K2)(2γ0)

−3/2/ωp, we find that the energy spread and K
spread must then approximately satisfy the conditions given by (1.1).

2.2. ICL Pierce parameter and gain length
To further explore the optimal parameters for the ICL it is fundamental to determine
the Pierce parameter. To start with, we analyse the bunching mechanism, which
is a consequence of the energy exchange between the electrons and the radiation.
We first consider an electron propagating in the z direction and a co-propagating
electromagnetic (EM) wave. This wave is polarized in the x direction and characterized
by its vector potential normalized to mec/e:

Ax = A1 cos(k1z−ω1t+Ψ1), (2.1)

where A1 and Ψ1 are respectively the wave amplitude and phase. We assume that the
electron oscillates in the (x, z) plane. We then define φ, the electron phase in the EM
wave, and η, the relative electron energy as:

φ =−θr + k1z−ω1t (2.2)

η= γη − γ0

γ0
, (2.3)

with γη the electron Lorentz factor after its interaction with the wave and z the
longitudinal position of the electron averaged over one betatron oscillation. As shown
in appendix A, the interaction with the wave leads to the following equations of
motion for the electron in the (φ, η) phase space:

φ̇ = 4+K2

8γ 2
0
η (2.4)

η̇= A1K[JJ]
2γ 2

0
cos(φ +Ψ1), (2.5)

where [JJ] = J0(K2/(4+ 2K2))− J1(K2/(4+ 2K2)), with J0 and J1 the Bessel functions.
Equation (2.5) indicates that a beam of electrons is bunched by the EM wave at the
phase φ = −Ψ1 + π/2 + 2mπ, with m an integer, which leads to a bunching at the
position r= r0 sin(k1z−ω1t+Ψ1). Therefore, due to the correlation between the radial
and longitudinal position, the electron beam gets a continuous and oscillating shape
after the bunching, with a period equal to λ1. This is different from a conventional
FEL, in which a succession of separated bunches is obtained.
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Knowing the equations of motion, the amplification growth rate can be derived
from the Vlasov and paraxial equations, as has been described by Huang & Kim
(2007) for the conventional FEL case. As explained in appendix B, this method can
be adapted to the ICL case by taking into account equations (2.4) and (2.5). The
equivalent of the Pierce parameter ρ1D and the gain length of the radiation power L1D

GP
in the one-dimensional limit (radiation diffraction is neglected) for the ICL case is
then given by:

ρ1D =
[

I
IA

2(2+K2)2[JJ]2
(4+K2)2γ0

]1/3

(2.6)

L1D
GP =

2(2+K2)

(4+K2)
√

3ρ1D

c
ωβ
, (2.7)

with I the beam current and IA ∼ 17 kA the Alfvèn current.
We note that those results have been obtained assuming that K� ρ

1/2
1D and ρ1D� 1.

Using ρ1D∼ 1 may also lead to amplification, but the analytics have to be redone for
this case. In addition, to avoid the damping of the bunching due to plasma oscillation
in the beam, the gain length should be smaller than the longitudinal plasma oscillation
wavelength characterized by its wavenumber (Rosenzweig et al. 1997):

kpb = 1
c

√
e2nb

γ 3
0 meε0

(2.8)

with nb = 4ε0meIω2
βγ

2
0 /(IAK2e2) the beam density. The condition L1D

GP . 1/kpb then
leads to:

L1D
GPkpb ≈ 2

K

(
I
IA

)1/6

γ
−1/6
0 . 1, (2.9)

if ρ1D ≈ (I/(2IAγ0))
1/3 is assumed (limit obtained with K = 0). Note that with K > 0

or even K � 1, then L1D
GPkpb is different from the approximation (2/K)(I/IA)

1/6γ
−1/6
0

by only 30 % at maximum. The condition given by (2.9) can be difficult to fulfil for
high current and low K cases.

2.3. Radiation diffraction effects
If the electrons have similar γ0 and K values, then the beam transverse size is limited
to 2r0 = 2K(2/γ0)

1/2/kp. In an ICL, the radiation is emitted with a waist close to r0,
so the associated Rayleigh length is Zr ∼ r2

0k1/2� L1D
GP, since:

Zr

L1D
GP
= (4+K2)K2

√
3

(2+K2)2
ρ1D, (2.10)

with ρ1D � 1. As a result, the radiation diffraction can reduce or even stop the
amplification and it should not be neglected. This is a major difference to conventional
FEL, where this limitation is not present.

As explained in appendix C, taking into account the diffraction can lead to the
following solution for the Pierce parameter and the power gain length:

ρ = ρ1D|Γ |1/3 (2.11)

LGP = L1D
GP

√
3

2Im(Γ 1/3e2iπ/3)
, (2.12)
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where Γ depends on a parameter µ, with Γ and µ given by:

Γ =
∫ +∞

0
−iµeiµz̃B(z̃, 0) dz̃ (2.13)

µ= Γ
1/3e2iπ/3

√
3L1D

GP

, (2.14)

with B(z, r) the amplitude of a Gaussian beam characterized by its waist W0, its
wavelength λ1 and B(0, 0)= 1, the focal plane being in z= 0. ρ and LGP correspond to
the two- or three-dimensional (3-D) solution, depending on whether B is the solution
of respectively the 2-D or 3-D paraxial wave equation. In two dimensions, B is thus
given by:

B(z, x)= 1(
1+ z2

Z2
r

)1/4 e−x2/W2(z)eik1x2/(2R(z))−(i/2) arctan(z/Zr) (2.15)

and in three dimensions, by:

B(z, x, y)= 1(
1+ z2

Z2
r

)1/2 e−(x+y)2/W2(z)eik1(x+y)2/(2R(z))−i arctan(z/Zr) (2.16)

with:

W(z)=W0

√
1+ z2

Z2
r

(2.17)

R(z)= z
(

1+ Z2
r

z2

)
. (2.18)

As explained in appendix C, a good approximation for the waist is W0 = 3r0/4 in
two dimensions and W0= 3r0/(4

√
2) in three dimensions. The solution of the coupled

equations (2.13)–(2.14) can be found iteratively: we start from Γ = 1 (1D limit), then
(2.14) and (2.13) can be solved iteratively until a converged solution is obtained.

Alternatively, as shown in appendix D, an analytical solution can be found if Zr�
L1D

GP is assumed. This approximated solution Γ is given in two or three dimensions
by:

Γ 2D
ap = (πζ )3/5e−i(3π/10) (2.19)

Γ 3D
ap =−

eiπ/6ζLambertW
(

8ie−2γe

ζ 3

)
2


3/2

, (2.20)

where ζ = (Zrei(π/6))/(L1D
GP

√
3), γe ≈ 0.577 is the Euler–Mascheroni constant and

LambertW is the Lambert-W function (also called the product logarithm).
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3. Simulation
3.1. Theory validation

In order to validate the theoretical conditions given in (1.1), we have performed
2-D simulations with the PIC code Osiris 2.0 (Fonseca et al. 2002). PIC codes are
well suited to correctly and self-consistently model the radiation emission, diffraction,
particle bunching and radiation amplification, as the full set of Maxwell’s equations
is solved. As the typical IC size is much larger than the radiation wavelength λ1,
the IC formation is not self-consistently calculated in our simulation, allowing for
a considerable reduction of the simulation size. We initialize our simulations with a
preformed field profile that matches the IC focusing fields. A simulation technique
that uses a Lorentz boosted frame (Vay 2007; Martins et al. 2010) is used in order to
considerably speed up the calculations, by performing simulations in the beam frame
instead of the laboratory frame. In this new frame, ωβ = ω1, so the required number
of time steps is reduced by a factor of 4γ 2

0 /(2 + K2). For instance, a speed up of
three orders of magnitude is obtained with γ0 = 50 and K = 1. Moreover, running
the ICL simulations in the beam frame prevents the numerical noise due to the
numerical Cerenkov radiation (Godfrey 1974). The numerical noise can often perturb
the bunching and artificially reduce or even stop the amplification. Perfectly matched
layer (PML) absorbing boundary conditions (Vay 2000) are used on the transverse
side of the box, and periodic boundaries are used in the longitudinal direction. In
the boosted frame, the box length was chosen between 2λr (for the shortest 3-D
simulations) and 40λr (for most of the 2-D simulations). The box transverse size was
typically equal to 40r0. The longitudinal and transverse cell sizes used are typically
dz= dr = λr/50. In the following 2-D simulations, the total current I is meaningless
due to the lack of the third dimension and only current density j can be properly
used as an input for the simulation. However, for the sake of comparison with the
real 3-D case, we will still introduce in two dimensions the beam current I defined as
in three dimensions by I =πr2

0j. The self-consistent field amplitude in the simulation
box is initially equal to 0, so the initial self-forces are neglected. This assumption is
consistent with the fact that, in a FEL, the beam self-fields can be neglected as long
as ρ � 1 (Huang & Kim 2007). The condition LGPkpb . 1 is also often fulfilled in
the simulations discussed in the following.

All the physical values used as inputs for the simulation (initial particle momentums
and positions, beam density, external focusing field) are first converted from their
laboratory-frame values to the corresponding values in the boosted frame. Thanks to
the periodic boundaries in the longitudinal direction, the radiated field amplitude is
usually homogeneous in the longitudinal direction. Assuming that the field propagates
at c, the average radiated power in the boosted frame can then be deduced from the
total radiated field energy integrated in the simulation box and divided by L/c, with
L the simulation box length. This power value is then converted to its corresponding
value in the laboratory frame, still assuming that the radiated field propagates at c.

In figure 1, the simulation results for a beam characterized by γ0 = 50, K = 1 and
a current I = 0.8 kA injected in the IC field are presented. The beam parameters
are chosen such that the computational costs of the simulations are reduced but the
main physical features are captured. In the simulations, γ and K are initialized within
a Gaussian distribution and the electrons are initialized with a random angle θr0. If
1γ =1K=0, the Pierce parameter and power gain length determined in the 1-D limit
or in two dimensions are given by respectively ρ1D = 0.082, L1D

GP = 8.4 c/ωβ , ρ2D =
0.048 and L2D

GP = 13.4 c/ωβ . The corresponding approximated Pierce parameter and
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FIGURE 1. Evolution of the radiation growth as a function of the energy spread (a) and
K spread (b). Two-dimensional simulations with γ0 = 50, K = 1 and I = 0.8 kA. (a) The
green, light blue, dark blue, red and purple curves correspond to respectively 1E/E= 0,
1E/E = 0.01, 1E/E = 0.02, 1E/E = 0.04 and 1E/E = 0.08. (b) The green, light
blue, dark blue, red and purple curves correspond to respectively 1K/K = 0, 1K/K =
0.02, 1K/K = 0.04, 1K/K = 0.08 and 1K/K = 0.12. The dotted black and dotted red
lines correspond to respectively the theoretical growth rate in the 1-D limit and in two
dimensions. The γ and K spreads correspond to root-mean-square values.

power gain length given by (2.19) are ρ2D
ap =0.05 and L2D

GP,ap=12.7 c/ωβ . The 1-D and
2-D theoretical growth rates are also represented in figure 1. We can observe a very
good agreement between the 2-D theoretical growth rate and the simulation results.
Note that L2D

GPkpb= 0.82 in this case so the longitudinal plasma oscillation in the beam
can be neglected, which is confirmed by the good agreement between the theory and
the simulation. In the simulation, the initial noise produced by the macro-particles
is amplified up to the saturation level. This is reached when the particles are fully
bunched. However, with a high γ or K spread, the growth rate is reduced or even
stopped. We observe that the change between a maximal and reduced growth rate
matches the theoretical limits given by 1K/K= 0.072 and 1γ/γ = 0.032 with ρ2D=
0.048.

3.2. Towards more realistic beams
The condition 1K/K � 1 can be parameterized by different complex configurations
of the electron distribution in the transverse phase space. For example, in the 2-D
case, the electrons can be distributed over a ring in the transverse phase space. This
ring is parameterized by r = r0 cos(θr) and pr = K sin(θr). We propose more realistic
distributions, with a spot shape instead of a ring shape. In a first configuration, K∼ 1
and 1K/K . 3ρ/2 � 1 are used, so (1.1) is satisfied, but the electrons are only
distributed over a ring fraction, with an initial angle θr0 that satisfies |θr0| < θr,max.
If θr,max� π, the initial beam transverse size is much smaller than r0 and the beam
corresponds to an off-axis injected beam oscillating in the IC. In that case, the beam
shape in the transverse phase space is close to a spot with an initial transverse size
and transverse momentum spread approximately equal to respectively r01K/K and
Kθr,max. In a second configuration, we choose K ∼ ρ1/2 � 1 and 1K/K ∼ 1, which
still satisfies the K spread condition in (1.1). In that case, as 1K/K∼ 1, the maximum
radial momentum prm of a given electron roughly satisfies K −1K . prm . K +1K
so |prm| . 2K. We also have |r0m| . 2r0 with r0m the maximum radial position of a
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FIGURE 2. (a) In blue: radiated power for an off-axis beam, initialized with |θr0|<π/16,
K = 1, 1K/K = 0.01 and 1γ/γ = 0.005. In green: radiated power in the reference case,
with |θr0|< π and 1K/K =1γ/γ = 0. (b) In blue: radiated power for an on-axis beam,
which is initialized with |θr0| < π, K = 0.1, 1K/K = 0.3 and 1γ/γ = 0.002. In green:
radiated power in the reference case, with 1K/K=1γ/γ =0. The dotted black and dotted
red lines correspond to respectively the theoretical growth rate in the 1-D limit and in two
dimensions.

given electron. Therefore, the spread around the ring is such that the beam distribution
in the transverse phase space becomes a spot. As r0∝K, using K� 1 corresponds to
a narrow on-axis injected beam.

The two configurations are highlighted by 2-D simulations. In the first case, an off-
axis beam with γ0= 50, K= 1 and I= 0.27 kA (L2D

GPkpb= 0.73) is injected with |θr0|<
π/16. The corresponding Pierce parameter is ρ2D= 0.031 (ρ2D

ap = 0.032) and the beam
is initialized with 1K/K = 0.01 and 1γ/γ = 0.005. In the second case, an on-axis
beam with γ0 = 50, K = 0.1 and I = 42 A (L2D

GPkpb = 11.6) is injected with |θr0|< π.
The corresponding Pierce parameter is ρ2D = 6.4 × 10−3 (ρ2D

ap = 6.4 × 10−3) and the
beam is initialized with 1K/K = 0.3 and 1γ/γ = 0.002. Reference simulations have
been performed for both cases, using |θr0|<π and 1K/K=1γ/γ = 0. The evolution
of the amplified radiation power for these different simulations is presented in figure 2.
In both cases, we observe that the use of more realistic beams, with a finite spot in
the transverse phase space and an energy spread, can still lead to exponential radiation
amplification, even if the growth rate and final power are lower than in the reference
simulations, for the idealized scenarios. The discrepancy between the 2-D theoretical
growth rate and the idealized simulation result in the on-axis case can be explained
by two reasons: (i) the use of K = 1.25ρ1/2 whereas our theoretical model is valid in
the limit K� ρ1/2, and (ii) the fact that L2D

GPkpb= 11.6> 1 so the longitudinal plasma
oscillation can significantly damp the bunching and reduce the growth rate. Despite
these facts, it is interesting to see that an exponential growth of the radiation is still
obtained in the simulation.

3.3. Three-dimensional case
We have also performed 3-D simulations to confirm the 3-D theoretical results. The
electrons are initialized with a radial momentum but no azimuthal momentum, so the
electrons still oscillate in a plane and do not gain helical trajectories. The uniform
distribution of the electrons along the azimuthal angle leads to the initialization of a
cylindrical beam. The results are shown in figure 3. In the simulation with γ0 = 50,
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FIGURE 3. (a) Radiation growth with γ0 = 50, K = 1, I = 8 A, 1K/K =1γ/γ = 0 in a
3-D simulation (blue) and given by the 1-D theory (dotted black) and 3-D theory (dotted
red). (b) Radiation growth with γ0= 50, K= 1, I= 0.8 kA, 1K/K= 0, 1γ/γ = 0.2 % in a
3-D simulation (blue) and given by the 1-D theory (dotted black) and 3-D theory (dotted
red). (c) Shape of the electron beam at saturation in the 3-D simulation with I = 0.8 kA:
a helical bunching is observed (iso-surface of the electron density).

K=1 and I=8 A, the corresponding Pierce parameter and power gain length obtained
in the 1-D limit or in three dimensions are given by respectively ρ1D = 0.018, L1D

GP =
39 c/ωβ , ρ3D = 2.7 × 10−3 and L3D

GP = 226 c/ωβ (L3D
GPkpb = 1.38). The approximated

values using (2.20) are ρ3D
ap = 2.8 × 10−3 and L3D

GP,ap = 217 c/ωβ . A good agreement
between simulation and theory is found (figure 3a). Since the initial noise in the
simulation is too low to start the amplification mechanism in the 3-D simulations, we
have injected a circularly polarized seed in the IC. The seed wavelength is λ1, like
the expected amplified radiation. As the seed diffracts, most of its energy gets out
from the simulation box from the side. This explains the power dip at the beginning
of the simulation at t ∼ 500 ω−1

β . The amplification is initiated and the saturation
level is reached at the end of the simulation. A similar case has been run with I =
0.8 kA and 1γ/γ = 0.2 % (figure 3b), leading to ρ1D= 0.082, L1D

GP= 8.4 c/ωβ , ρ3D=
0.0225, L3D

GP = 26.9 c/ωβ and L3D
GPkpb = 1.65 (ρ3D

ap = 0.0235 and L3D
GP,ap = 25.5 c/ωβ).

The presence of the small energy spread and the fact that L3D
GPkpb is farther away

from 1 may explain the difference between the theoretical prediction and the simulated
growth in this case. Nevertheless, as expected, the bunch shape is helical at saturation
(figure 3c). This result is consistent with a circularly polarized seed.
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4. Discussion
Our results show that an amplification of several orders of magnitude of the

radiated power can be achieved, even if the Rayleigh length of the generated radiation
is shorter than the gain length in the typical ICL configurations. The diffraction is
responsible for the growth rate reduction. The gain length is 1.6 times larger than
the 1-D limit in the 2-D case presented in figure 1, and respectively 5.8 and 3.2
times in the 3-D cases with I = 8 A and I = 0.8 kA. We have also confirmed in our
ab initio simulations that the amplified radiation wavelength and the oscillating shape
period of the bunching are λ1, matching the theory. Odd harmonics have also been
observed. Yet, as expected with K = 1, their amplitudes are much smaller than the
fundamental harmonic amplitude. This demonstrates that PIC simulations in the beam
frame might be an efficient tool to study the self-consistent dynamics of harmonics
and its feedback to the growth rate in scenarios where K > 1 in an ICL or in FELs.

Numerical applications of our analytical results show that the most stringent
conditions will be (i) to inject an electron beam with a very low emittance at a
precise radius in the IC and (ii) to generate a stable IC over a long enough distance
while the beam longitudinal acceleration remains negligible. For instance, if we
consider a laser or particle beam driving a wakefield in a plasma with a density
ne= 5× 1017 cm−3, the injection of a 25 MeV, 0.8 kA beam with K= 1 can generate
a source with a wavelength λ1 = 146 nm. The associated gain length is L3D

GP = 2 mm,
so the radiated power can be multiplied by 1000 after 13.7 mm if an ideal electron
beam is considered. To get this amplification, the electron beam should have a
relative energy spread lower than 1.5 % and be injected at r0 = 1.5 µm off-axis with
a normalized transverse emittance εN < 0.02 mm mrad. The production of shorter
wavelengths can be achieved by increasing the electron energy. For instance, a
250 MeV beam (the other parameters are kept constant) would produce photons with
λ1= 4.6 nm. However the higher energy induces a longer gain length (1.8 cm in this
case) and a more stringent limit for the energy spread (0.5 %). Increasing the beam
current can help to reduce these constraints. Using a 250 MeV beam, 10 kA beam
with K = 1 leads to λ1 = 4.6 nm and L3D

GP = 5.6 mm, so the radiated power can be
multiplied by 1000 after 3.8 cm. The effect of the longitudinal plasma oscillation
should stay limited in this case as L3D

GPkpb = 1.66. The relative energy spread limit is
then 1.7 % and the beam should be injected at r0= 0.48 µm with εN < 0.01 mm mrad.
As all the lengths scale with 1/ωp (e.g. see (2.12)), the radial position of the beam
injection (r0) and the transverse emittance limit can become larger with a lower
density (∝ n−1/2

e ), but the radiated wavelength and the gain length also increase with
the same factor. Using ne = 1.25 × 1017 cm−3 still with the same 250 MeV and
10 kA beam is less restrictive as the beam need to be injected at r0 = 0.96 µm with
εN < 0.02 mm mrad. However, λ1 is elongated to 9.2 nm and L3D

GP = 11.3 mm. The
other parameters (energy spread limit, L3D

GPkpb) stay unchanged.
Even if the emittance value is still far from the best values obtained in a wakefield

accelerator, optimization or mix of new injection schemes in a laser wakefield
accelerator, such as optical (Faure et al. 2006; Davoine et al. 2009), ionization
(McGuffey et al. 2010; Pak et al. 2010) or magnetic (Vieira et al. 2011) injection,
might help to improve emittance and control the off-axis injection. It is also important
to note that the accelerating field, present in a typical IC can affect the amplification
process, as the electron energy will change in time. This effect can be reduced, for
instance, by injecting the electron beam close to the centre (longitudinally) of the
bubble in a wakefield, where the accelerating field is zero. To keep a stable IC
structure and a negligible accelerating field over several millimetres or centimetres,
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which can be challenging, a particle beam driver instead of a laser driver can be used
as its propagation in a plasma is usually more stable. Even if these issues should be
handled before demonstrating the possibility of generating an ICL, the constraints on
the IC generation and on the beam injection techniques are outside of the scope of
this work, as this paper focuses on the constraints on the beam parameters and on
the derivation of the correct ICL growth rate.

5. Summary
In this paper, we have determined analytically the amplification growth rate of an

ICL while taking into account the diffraction effect. The required conditions on the
electron beam quality in order to observe ion channel lasing have also been presented.
It is shown that it is not necessary to use a guiding structure for the radiation as was
considered in previous work on ICLs: the radiation defocusing reduces the growth
rate but does not stop the amplification. Two- and three-dimensional PIC simulations,
which are the first fully relativistic electromagnetic 3-D simulations of ICL, have
confirmed our analytical findings, illustrating the possibility of achieving high-gain
radiation amplification in ICL. Despite the still needed efforts to experimentally reach
a sufficient beam quality and generate the required stable IC, these results pave
the way for the generation of high brilliance coherent radiation in compact plasma
structures.
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Appendix A. Electron motion equations in the (φ, η) phase-space
In this appendix, we show that the interaction between an electron following a

betatron motion and an EM defined by (2.1) leads to the motion equations in the
(φ, η) phase space given by (2.4) and (2.5).

In an ICL, K is a function of γ . Therefore, we first need to determine how K
evolves, as well as γ0, p0 or r0, when the EM wave exchanges energy with the
electron. This result is first presented and the description of the bunching process,
leading to (2.4) and (2.5), is addressed in the second part of this appendix.

A.1. Influence of an EM wave on the betatron oscillation parameters
As mentioned, K can evolve and is now a function of time. We defined K0 and the
time-dependent longitudinal momentum pz and maximum radius rm such that K0 =
K(t= 0), pz(t= 0)= p0 and rm(t= 0)= r0. We still consider that γ0 = (1+ p2

0)
1/2. In

the following, we use the notation:

Ẋ = dX
d(ω1t)

. (A 1)

In the presence of an EM wave defined by (2.1), the energy and momentum change
of an electron following betatron motion in the (x, z) plane is given by:

γ̇ = βrα − βr
K(2+K2)

4γ 2
cos(θr) (A 2)
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ṗr = (1− βz)α − K(2+K2)

4γ 2
cos(θr) (A 3)

ṗz = βrα, (A 4)

where α = A1 sin(k1z − ω1t + Ψ1) and βr and βz are the normalized transverse and
longitudinal electron velocities. In the above equation, we have used the following
identity to define the ion-channel focusing field, which is normalized to mecω1/e:

Ex = rkp

2
ωp

ω1
= K(2+K2)

4γ 2
cos(θr). (A 5)

By using r= rm cos(θr), pr =K sin(θr) and K = rmkp(γ /2)1/2, we can show that:

K =
√

p2
r +

γ

2
r2k2

p (A 6)

rmkp =
√

2
γ

p2
r + r2k2

p. (A 7)

Therefore:

K̇ = 4prṗr + γ̇ r2k2
p + 2γ rṙk2

p

4K
(A 8)

ṙmkp =
−γ̇ p2

r + 2γ prṗr + γ 2rṙk2
p

rmkpγ 2
. (A 9)

As K̇ = 0 and ṙm = 0 when α = 0, we can simplify the equation and get:

K̇ = 1+K2

2γ 2
α sin(θr) (A 10)

ṙmkp = α sin(θr)

γ 2
√

2γ
. (A 11)

We now consider the average of the derivatives over one betatron period, and we
assume that the change of γ , K and rm is small during one betatron period (γ̇ �ωβγ ).
The averaged derivatives are then given by:

γ̇ = βrα (A 12)

K̇ = 1+K2

2Kγ
γ̇ (A 13)

ṙmkp = 1
Kγ
√

2γ
γ̇ . (A 14)

We introduce the parameter ν defined as:

ν = γ̇ . (A 15)
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Then, we obtain:

K̇
K
= 1+K2

2K2 ν (A 16)

ṙm

rm
= 1

2K2 ν. (A 17)

We also assume that all parameter evolutions are small during the whole interaction
(e.g. γ (t)− γ0� γ0 for all t). This leads to:

γ = γ0

(
1+ 1

γ0

∫ t

0

˙γ (τ) dτ
)
= γ0

(
1+

∫ t

0
ν dτ

)
(A 18)

K =K0

(
1+ 1+K2

0

2K2
0

∫ t

0
ν dτ

)
(A 19)

rm = r0

(
1+ 1

2K2
0

∫ t

0
ν dτ

)
. (A 20)

We introduce η= ∫ t
0 ν dτ . According to our last assumption we have η� 1 and K0�

η1/2. By neglecting the terms proportional to η2, we then obtain:

η= γη − γ0

γ0
(A 21)

Kη =K0

(
1+ 1+K2

0

2K2
0
η

)
(A 22)

rη = r0

(
1+ 1

2K2
0
η

)
, (A 23)

where we rename γ , K and rm by respectively γη, Kη and rη for convenience.
Hereafter, all the items with η as a subscript are functions of γη, Kη or rη, and if

η is not mentioned, it means that the value is taken at η = 0. For example, ωβη =
ωp/(2γη)1/2, and from this equation we find:

ωβη =ωβ
(

1− η
2

)
. (A 24)

We also deduce from ωβ/ω1 = (2+K2
0)/(4γ

2
0 ) that:

ω1η =ω1

(
1+ 4+K2

0

4+ 2K2
0
η

)
. (A 25)

A.2. Electron motion in the presence of an EM wave
We can now rewrite (A 12) as:

γ̇ = γ̇η = A1Kη

γη
sin(θr) sin(k1z−ω1t+Ψ1). (A 26)
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Here, only the dominant term is relevant and the terms proportional to η can be
neglected. This is also true for the terms in the phase k1z − ω1t + Ψ1. Thus, we
determine k1z while neglecting the terms proportional to η:

k1z = k1

∫ t

0
cβz dt+ z0k1

∼ ω1

∫ t

0

(
1− 2+K2

0

4γ 2
0
+ K2

0

4γ 2
0

cos(2θr)

)
dt+ z0k1

∼ ω1t+ θr − θr0 − K2
0

4+ 2K2
0
(sin(2θr)− sin(2θr0))+ z0k1

∼ k1z− K2
0

4+ 2K2
0

sin(2θr), (A 27)

where z0 and θr0 are the initial position and phase. We define a new phase φ as

φ =−θr + k1z−ω1t. (A 28)

By using (A 27), we can note that φ is a constant of time when we neglect the terms
proportional to η, so φ = φ. We then find that:

γ̇η = A1K0

γ0
sin(θr) sin

(
φ +Ψ1 + θr − K2

0

4+ 2K2
0

sin(2θr)

)
γ̇η = A1K0

2γ0
cos(φ +Ψ1)

[
cos
(
− K2

0

4+ 2K2
0

sin(2θr)

)

− cos
(

2θr − K2
0

4+ 2K2
0

sin(2θr)

)]

+ A1K0

2γ0
sin(φ +Ψ1)

[
sin
(
− K2

0

4+ 2K2
0

sin(2θr)

)

+ sin
(

2θr − K2
0

4+ 2K2
0

sin(2θr)

)]
.



(A 29)

By using the following identity

sin
(

2θr − K2
0

4+ 2K2
0

sin(2θr)

)
= sin

(
K2

0

4+ 2K2
0

sin(2θr)

)
= 0 (A 30)

cos
(

K2
0

4+ 2K2
0

sin(2θr)

)
= J0

(
K2

0

4+ 2K2
0

)
(A 31)

cos
(

2θr − K2
0

4+ 2K2
0

sin(2θr)

)
= J1

(
K2

0

4+ 2K2
0

)
, (A 32)

where J0 and J1 are the Bessel functions, we can then write:

γ̇η = A1K0[JJ]
2γ0

cos(φ +Ψ1) (A 33)

where [JJ] = J0(K2
0/(4+ 2K2

0))− J1(K2
0/(4+ 2K2

0)).
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To get the derivative of φ with time, we need to rewrite (A 28) without neglecting
the terms proportional to η. Provided that:

d(k1z)
d(ω1t)

= βz = 1− ωβη
ω1η

(A 34)

ωβη

ω1η
=−θ̇r − 4+K2

0

8γ 2
0
η, (A 35)

we eventually obtain the equation of motion in the (φ, η) phase space:

φ̇ = 4+K2
0

8γ 2
0
η (A 36)

η̇= A1K0[JJ]
2γ 2

0
cos(φ +Ψ1). (A 37)

Appendix B. Coupling between the Maxwell and motion equations
In this appendix, we follow the method used in Huang & Kim (2007) to calculate

the one-dimensional and ideal growth rate for FEL. Here, this method has been
adapted to the ICL context.

To start with, we consider the presence of an EM wave polarized along the x
direction, propagating along the z direction and characterized by its normalized vector
potential Ax = A0(x, y, ξ , τ ), where ξ = k1z−ω1t and τ =ω1t. We introduce the wave
amplitude Aν(x, y, τ ) in the frequency domain through:

A0(x, y, ξ , τ )= 1
2

∫ +∞
0

Aν(x, y, τ )eiνξ dν + c.c. (B 1)

where c.c. is the complex conjugate. The Maxwell equations for Aν give:(
∂2

∂τ 2
− 2

∂2

∂ξ∂τ
−∇2

⊥

)
(Aνeiνξ )= 4πeω1

IA
jνeiνξ (B 2)

jν = 1
π

∫ +∞
−∞

jx(x, y, ξ , τ )e−iνξ dξ, (B 3)

where ∇2
⊥ is the transverse Laplacian normalized to k2

1. jx is the transverse current
density along the x direction, and it is normalized to eω1k2

1. IA = ec/re is the Alfvèn
current, with re = e2/(4πε0mec2) the classical electron radius. By using the slowly
varying envelope approximation (|∂2Aν/∂τ 2| � 2ν|∂Aν/∂τ |), we get:(

2iν
∂

∂τ
+∇2

⊥

)
Aν =−4πeω1

IA
jν . (B 4)

B.1. Calculation of the transverse current
The normalized transverse current density jxn of the particle n, which follows betatron
motion in the (x, z) plane is given by:

jxn(x, ξ , τ ) = −Kn

γn
sin(θrn)δ(k1x− k1xn)δ(ξ − ξn)

= − Kn

2iγn
(eiθrn − e−iθrn)δ(k1x− k1xn)δ(ξ − ξn), (B 5)
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where Kn, γn and θrn are the parameters of the electron at the time τ , δ is the Dirac
function and xn and ξn are respectively the transverse position of the electron and its
position over the ξ direction at the time τ . xn and ξn are given by:

xn = rm,n cos(θrn) (B 6)

ξn = φn + θrn − K2
n

4+ 2K2
n

sin(2θrn), (B 7)

where rm,n is the maximum radius of oscillation of the electron n at time τ .
Equation (B 7) is obtained by using (A 28). jνn is then given by:

jνn(x, τ )=− Kn

2iπγn
e−i(1νθrn+νφn)δ[k1x− k1rm,n cos(θrn)]eiν(K2

n/(4+2K2
n )) sin(2θrn)(1− e−2iθrn).

(B 8)

Where 1ν = ν − 1. We define the function G(x, ν,K, γ , θr) as:

G(x, ν,K, γ , θr)= δ[k1x− k1rm cos(θr)]eiν(K2/(4+2K2)) sin(2θr)(1− e−2iθr) (B 9)

where rm is a function of γ and K, since we have the following identity:

k1rm = 4γK
2+K2

. (B 10)

The current created by the electron n is then given by:

jνn(x, τ )=− Kn

2iπγn
e−i(1νθrn+νφn)G(x, ν,Kn, γn, θrn). (B 11)

The electron distribution at the time τ in the phase space can be parameterized by
the 4 parameters φ, η, K and θr. Therefore, the distribution function F is given by:

F(φ, η,K, θr, τ )= 2πeω1

I

n=N∑
n=1

δ(φ − φn)δ(η− ηn)δ(K −Kn)δ(θr − θrn), (B 12)

where I is the longitudinal beam current (absolute value so I> 0), N is the number of
electrons and 2πeω1/I is a normalizing factor. The total current jν(x, τ ) is then given
by:

jν(x, τ )=−
∫

IK
2iπγ eω1

e−i(1νθr+νφ)G(x, ν,K, γ , θr)F(φ, η,K, θr, τ ) dφ dη dK
dθr

2π

(B 13)

where, according to the definition of η, we have γ = γ0(1+ η).
The normalizing factor of F has been chosen so that if we consider a beam

distribution with the parameters φ, η, K and θr which are not correlated, then F can
be written as:

F=D1(φ, τ )D2(η, τ )D3(K, τ )D4(θr, τ ), (B 14)
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where ∫
D1 dφ = Lk1 (B 15)∫
D2 dη= 1 (B 16)∫
D3 dK = 1 (B 17)∫

D4 dθr = 2π, (B 18)

with L=Nec/I the beam length.

B.2. One-dimensional approximation

We now consider that the EM wave is a plane wave, so the term ∇2
⊥ and the transverse

position can be neglected. Equation (B 4) then becomes:

∂Aν(τ )
∂τ

=−2πeω1

iνIA
jν(τ ) (B 19)

where jν(τ ) is the current averaged over the beam transverse size and is given by:

jν(τ )=− 1
Sk2

1

∫
IK

2iπγ eω1
e−i(1νθr+νφ)G2(ν,K, γ , θr)F(φ, η,K, θr, τ ) dφ dη dK

dθr

2π

(B 20)

G2(ν,K, γ , θr)= eiν(K2/(4+2K2)) sin(2θr)(1− e−2iθr), (B 21)

with S = πr2
0 the beam transverse size. Since only the radiations with a wavelength

close to λ1 are generated and amplified, we assume that 1ν� 1, so the term 1νθrn+
νφn evolves slowly and can be considered as constant over one betatron period. We
also get G2 = [JJ]. The average over one betatron period of the current is then:

jν(τ )=− IK0[JJ]
2iπ2γ0r2

0k2
1eω1

∫
e−i(1νθr+νφ)F(φ, η,K, θr, τ ) dφ dη dK

dθr

2π
, (B 22)

where we have also considered a small energy and K spread, so K ∼ K0 and γ ∼ γ0.
We finally get:

∂(νAν)
∂τ

=−2K0[JJ]
γ0r2

0k2
1

I
IA

ei1ν(ωβ/ω1)τ

∫
e−iνφ

2π
F(φ, η,K, θr, τ ) dφ dη dK

dθr

2π
, (B 23)

where we have also assumed that exp[−i1νθr] ∼ exp[i1ν(ωβ/ω1)τ ]. Indeed, as we
have the three identities θ̇r = −ωβη/ω1, ωβη ∼ ωβ and 1ν � 1, then the difference
between 1νθr and −1ν(τωβ/ω1 + θr0) is small, even if τ � 1. Moreover, according
to equations (B 6), (B 7), it is possible to choose θr0 so that θr0 ∈ [0, 2π], so 1νθr0� 1.

The Vlasov equation is defined by Ḟ= 0. We thus get:

∂F
∂τ
+ φ̇ ∂F

∂φ
+ η̇ ∂F

∂η
+ K̇

∂F
∂K
+ θ̇r

∂F
∂θr
= 0. (B 24)
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Moreover, with an EM wave described by (B 1), (A 37) becomes:

η̇= K0[JJ]
4γ 2

0

∫ +∞
0

νAνei(1νθr+νφ) dν + c.c., (B 25)

where the dependence of [JJ] as a function of ν has been neglected.
We introduce the following scaled variables to simplify our equation:

η̂= η
ρ

(B 26)

τ̂ = 4+K2
0

8γ 2
0
ρτ (B 27)

1ν̂ = 8γ 2
0

ρ(4+K2
0)

ωβ

ω1
1ν (B 28)

aν = K0[JJ]ω1

4γ 2
0 ωβρ

e−i1ν(ωβ/ω1)τνAν (B 29)

f = ρF. (B 30)

We thus obtain:

∂(νAν)
∂τ

= (4+K2
0)ωβρ

2

2K0[JJ]ω1
ei1ν̂τ̂

[
∂

∂τ̂
+ i1ν̂

]
aν . (B 31)

So: [
∂

∂τ̂
+ i1ν̂

]
aν =− I

IA

4K2
0 [JJ]2ω1

(4+K2
0)γ0r2

0k2
1ωβρ

2

∫
e−iνφ

2π
f dφ dη̂ dK

dθr

2π
. (B 32)

By defining ρ (the equivalent of the Pierce parameter in FEL theory) as:

ρ = 1
γ0

[
I
IA

2K2
0(2+K2

0)
2[JJ]2

(4+K2
0)

2r2
0k2
β

]1/3

=
[

I
IA

2(2+K2
0)

2[JJ]2
(4+K2

0)
2γ0

]1/3

(B 33)

we find: [
∂

∂τ̂
+ i1ν̂

]
aν =−

∫
1ν

1ν̂

e−iνφ

2π
f dφ dη̂ dK

dθr

2π
. (B 34)

Moreover, the Vlasov equation becomes:

∂f
∂τ̂
+ η̂ ∂f

∂φ
+
(∫

aνeiνφ d1ν̂ + c.c.
)
∂f
∂η̂
+K ′

∂f
∂K
+ θ ′r

∂f
∂θr
= 0, (B 35)

where X′ = dX/dτ̂ .
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B.3. Calculation of the growth rate
To calculate the growth rate, we need to solve the coupled equations (B 34) and (B 35).

Equation (B 35) can be linearized in the small signal regime before saturation when
the scaled radiation field is small, i.e.:∫

aνeiνφ d1ν̂ + c.c.= η̂′� 1. (B 36)

Let us split f in two parts:

f = f0 + f1, (B 37)

where f0 is the distribution function averaged over φ and f1 contains the noise
fluctuation and the modulation induced by the bunching. The average over φ of
(B 35) leads to:

∂f0

∂τ̂
+
〈(∫

aνeiνφ d1ν̂ + c.c.
)
∂f1

∂η̂

〉
φ

+K ′
∂f0

∂K
+ θ ′r

∂f0

∂θr
= 0. (B 38)

The small signal regime also implies that f1� f0. We can then assume that the second
term on the left-hand side of (B 38) can be neglected, which leads to:

∂f0

∂τ̂
+K ′

∂f0

∂K
+ θ ′r

∂f0

∂θr
= 0. (B 39)

The corresponding equation for f1 is therefore:

∂f1

∂τ̂
+ η̂ ∂f1

∂φ
+
(∫

aνeiνφ d1ν̂ + c.c.
)
∂f0

∂η̂
+K ′

∂f1

∂K
+ θ ′r

∂f1

∂θr
= 0. (B 40)

To solve this equation, we consider the trajectory of an electron, which is
parameterized by φ(0), η̂(0), K(0) and θ (0)r . According to the Vlasov equation (B 35),
we have:

d
dτ̂

f (φ(0), η̂(0),K(0), θ (0)r , s)= 0, (B 41)

where φ(0), η̂(0), K(0) and θ (0)r are here given at the time s. Thanks to equation (B 40),
we can write:

d
dτ̂

f1(φ
(0), η̂(0),K(0), θ (0)r , s)=−

(∫
aν(s)eiνφ(0) d1ν̂ + c.c.

)
∂f0

∂η̂
(η̂(0),K(0), θ (0)r , s).

(B 42)

So:

f1(φ, η̂,K, θr, τ̂ )= f1(φ
(0), η̂(0),K(0), θ (0)r , 0)

−
∫ τ̂

0

(∫
aν(s)eiνφ(0) d1ν̂ + c.c.

)
∂f0

∂η̂
(η̂(0),K(0), θ (0)r , s) ds, (B 43)
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where φ, η̂, K and θr are the values of φ(0), η̂(0), K(0) and θ (0)r at time τ̂ . Moreover,
we have:

φ(0)(s)= φ +
∫ s

τ̂

η̂(0)(š) dš. (B 44)

So we find that:∫
1ν

1ν̂

e−iνφ

2π
f1(φ, η̂,K, θr, τ̂ ) dφ =

∫
1ν

1ν̂

e−iνφ

2π
f1(φ

(0), η̂(0),K(0), θ (0)r , 0) dφ

−
∫ τ̂

0
aν(s) exp

[
iν
∫ s

τ̂

η̂(0)(š) dš
]
∂f0

∂η̂
(η̂(0),K(0), θ (0)r , s) ds. (B 45)

In the small signal regime, provided that η̂′� 1, we can assume that η̂(0)(s)∼ η̂. From
(A 22), we can deduce that K ′= (1+K2

0)ρη̂
′/(2K2

0) so K ′� 1 and K(0)∼K. Based on
(B 39) and on the definition of θ (0)r , we can deduce that f0(θ

(0)
r , s) is a constant if we

assume that K ′ = 0. Therefore, f0(θ
(0)
r , s)= f0(θr, τ̂ ), which leads to:∫ τ̂

0
aν(s) exp

[
iν
∫ s

τ̂

η̂(0)(š) dš
]
∂f0

∂η̂
(η̂(0),K(0), θ (0)r , s) ds

= ∂f0

∂η̂
(η̂,K, θr, τ̂ )

∫ τ̂

0
aν(s)eiνη̂(s−τ̂ ) ds. (B 46)

As f0 does not depend on φ, we have the following result if we assume that the
electron beam is very long in comparison to the fundamental radiation wavelength λ1:∫

e−iνφf0 dφ�
∫

e−iνφf1 dφ. (B 47)

Then, (B 34) becomes:[
∂

∂τ̂
+ i1ν̂

]
aν =−

∫
1ν

1ν̂

e−iνφ

2π
f1 dφ dη̂ dK

dθr

2π
. (B 48)

By using (B 45), (B 46) and (B 48), we obtain:[
∂

∂τ̂
+ i1ν̂

]
aν −

∫
∂f0

∂η̂

∫ τ̂

0
aν(s)eiη̂(s−τ̂ ) ds dη̂ dK

dθr

2π

=−
∫
1ν

1ν̂

e−iνφ

2π
f1(φ

(0), η̂,K, θ (0)r , 0) dφ dη̂ dK
dθr

2π
. (B 49)

This equation shows that each frequency component of the radiation field is
independently amplified. The right-hand side of (B 49) corresponds to the initial
fluctuation and is the source term that creates the initial radiation in the absence of
seed.

To determine the growth rate, we only consider the homogeneous part of (B 49). We
seek a solution in which aν is proportional to exp(−iµ̂τ̂ ), where µ̂ is the complex
growth rate. Then, we have aν(s)= aν(τ̂ ) exp[−iµ̂(s− τ̂ )]. This leads to:

− iµ̂+ i1ν̂ −
∫
∂f0

∂η̂

∫ τ̂

0
ei(η̂−µ̂)(s−τ̂ ) ds dη̂ dK

dθr

2π
= 0. (B 50)
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We first calculate the integral over the time s. Then, we assume that η, K and θr are
not correlated at the time τ . Thanks to (B 14)–(B 18), the integration over K and θr
leads to:

− iµ̂+ i1ν̂ + i
∫
∂f0(η̂)

∂η̂

1
η̂− µ̂ dη̂= 0. (B 51)

Here we have also assumed that |exp[iµ̂τ̂ ]| � 1, as exp[−iµ̂τ̂ ] is supposed to grow
exponentially with time. After integrating by part over η̂, we obtain:

− iµ̂+ i1ν̂ + i
∫

f0(η̂)

(η̂− µ̂)2 dη̂= 0. (B 52)

In the limit where there is no energy spread ( f0(η̂)= δ(η̂)), this equation becomes:

µ̂2(µ̂−1ν̂)= 1. (B 53)

At the optimal frequency (1ν̂ = 0), we obtain:

µ̂3 = 1. (B 54)

The solution with the largest imaginary part is associated with the largest growth rate.
Thus, we only consider the following solution:

µ̂=−1
2
+ i

√
3

2
. (B 55)

Thanks to equation (B 27), we finally find that the field amplitude is proportional to:

|aν=1(τ )| ∝ exp

[√
3(4+K2

0)ρ

16γ 2
0

τ

]
. (B 56)

In the following, the parameter ρ given in the 1-D approximation by (B 33) will be
referred as ρ1D. The 1-D gain time for the field amplitude is then:

τ 1D
G =

16γ 2
0

(4+K2
0)
√

3ρ1D
ω−1

1 =
2(2+K2

0)

π(4+K2
0)
√

3ρ1D
τβ . (B 57)

The associated power or intensity gain length is then:

L1D
GP =

(2+K2
0)

π(4+K2
0)
√

3ρ1D
λβ . (B 58)

Appendix C. Transverse effect: influence of the Rayleigh length
In appendix B, we have assumed that the transverse variation of Aν can be

neglected, as we have used ∇2
⊥ = 0 to simplify (B 4). However, if we consider that

the electron beam creates a radiation beam with a waist close to the electron beam
radius r0, then the associated Rayleigh length is Zr ∼ r2

0k1/2. This length is much
shorter than the gain length, since:

Zr

L1D
GP
= (4+K2

0)K
2
0

√
3

(2+K2
0)

2
ρ1D, (C 1)

so Zr/(L1D
GP)� 1 as ρ� 1. Therefore, the intensity of the emitted radiation is strongly

reduced after one gain length, which reduces the growth rate.
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FIGURE 4. Plot of Ĝ with K = 1 and of its fit= exp[−x2/(3r0/4)2].

To take into account this phenomenon, we assume that the current jν generates a
Gaussian beam with a waist W0 =w0r0, where w0 is a free parameter. It implies that
the source jν also gets a Gaussian transverse distribution. We therefore assume that
jν(τ , x)= jν(τ , 0) exp(−x2/W2

0 ) in two dimensions. W0 (and thus w0) should be chosen
so that the function jν(τ ,0) exp(−x2/W2

0 )+ c.c. provides the best fit of the real jν + c.c.
given by (B 13). Assuming ν ≈ 1, the transverse distribution of the average current
〈jν + c.c.〉 generated by one particle over a betatron period only comes from the radial
dependence of the function G(x, ν = 1,K, γ , θr). The use of (B 9) then leads to:

〈jν + c.c.〉 ∝ π

ωβ

∫ π/ωβ

0
G(x(t), ν = 1,K, γ , θr(t)) dt+ c.c. (C 2)

∝ ei(K2/(4+2K2)) sin(2 arccos(x/r0))(1− e−2i arccos(x/r0))+ c.c. (C 3)

= 2 cos

 K2

2+K2

x
r0

√
1−

(
x
r0

)2


− 2 cos

 K2

2+K2
x

√
1−

(
x
r0

)2

− 2 arccos
(

x
r0m

) (C 4)

≡ Ĝ(x/r0,K), (C 5)

where Ĝ(x/r0,K) corresponds to the transverse distribution of the current. As can be
seen in figure 4, Ĝ can be well approximated by a Gaussian with root-mean-square
value σ = 3/4. In this whole study, we have then use w0= 3/4 and thus W0= 3r0/4 in
two dimensions. For the 3-D case, that fact that the electrons oscillate along different
transverse direction reduces this transverse size and we have always use w0=3/(4

√
2).

These are not analytically determined values. Nevertheless, these approximations allow
us to obtain a good agreement with the simulation results.

In the following, for the sake of simplicity, we consider only the 2-D case, so ∇2
⊥=

∂2/∂(k1x)2. (B 4) then becomes:(
2iν

∂

∂τ
+ ∂2

∂(k1x)2

)
Aν(τ , x)=−4πeω1

IA
jν(τ , 0) exp(−x2/W2

0 ). (C 6)
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We then use a method based on Green’s functions to solve this equation, with Gν(τ , x)
the solution of the equation with jν(τ , 0)= δ(τ ):(

2iν
∂

∂τ
+ ∂2

∂(k1x)2

)
Gν(τ , x)=−4πeω1

IA
δ(τ ) exp(−x2/W2

0 ). (C 7)

We introduce the function B which describes a Gaussian beam with a waist W0:

B(τ , x)= 1(
1+ τ 2

Z2
r k2

1

)1/4 e−x2/W2(τ )eiνk1x2/(2R(τ ))−(i/2) arctan(τ/(Zrk1)) (C 8)

with

Zr = νW2
0 k1

2
(C 9)

W(τ )=W0

√
1+ τ 2

Z2
r k2

1
(C 10)

R(τ )= τ
(

1+ Z2
r k2

1

τ 2

)
. (C 11)

B is a solution of the 2-D paraxial wave equation, so:(
2iν

∂

∂τ
+ ∂2

∂(k1x)2

)
B= 0. (C 12)

The function Gν(τ , x) is then given by:

Gν(τ , x)=−2πeω1

iνIA
H(τ )B(τ , x), (C 13)

where H is the Heaviside function. Aν(τ , x) is then given by:

Aν(τ , x) = (Gν ∗ jν(x= 0))(τ , x)=
∫ +∞
−∞

Gν(τ − τ̌ , x)jν(τ̌ , 0) dτ̌ (C 14)

=
∫ τ

0
Gν(τ − τ̌ , x)jν(τ̌ , 0) dτ̌ . (C 15)

The limits of the integral can be changed from (−∞, +∞) to (0, τ ) because we
consider that nothing happens when τ < 0 (i.e. jν = Aν,τ̌ = 0 if τ < 0), and thanks
to the presence of the function H, we have Gν(τ − τ̌ , x)= 0 if τ̌ > τ .

As in appendix B, we seek a solution where the current and field are proportional
to exp(−iµτ), with µ the complex growth rate. The current thus satisfies jν(τ , 0)=
jν(0, 0) exp(−iµτ). By defining

Jν0 =−2πeω1

iνIA
jν(0, 0) (C 16)

we obtain

Aν(τ , x) = Jν0

∫ τ

0
e−iµτ̌B(τ − τ̌ , x) dτ̌ (C 17)

= Jν0e−iµτ
∫ τ

0
eiµτ̌B(τ̌ , x) dτ̌ . (C 18)
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We can also deduce from (C 6) that:(
2iν

∂

∂τ
+ ∂2

∂(xk1)2

)
Aν(τ , x)= 2iνJν0e−iµτB(0, x). (C 19)

To go further, we now assume that the term
∫ τ

0 eiµτ̌B(τ̌ , x) that appears in (C 18)
becomes constant after some time (after few gain times). Indeed, as we have supposed
that Aν is exponentially growing, then eiµτ̌ is exponentially decreasing and the integral
stays constant if τ � 1/Im(µ). This assumption has been verified numerically: the
integral reaches a nearly constant value after few gain times. We can then write:

Aν(τ , x)= Jν0e−iµτ
∫ +∞

0
eiµτ̌B(τ̌ , x) dτ̌ . (C 20)

So:

∂Aν(τ , x)
∂τ

= Jν0e−iµτ
∫ +∞

0
−iµeiµτ̌B(τ̌ , x) dτ̌ . (C 21)

If we define the function Γ (x), which is constant with time, as follows:

Γ (x)=
∫ +∞

0
−iµeiµτ̌ B(τ̌ , x)

B(0, x)
dτ̌ , (C 22)

then we obtain from (C 19):(
2iν

∂

∂τ
+ ∂2

∂(xk1)2

)
Aν(τ , x)= 2iν

Γ (x)
∂Aν(τ , x)
∂τ

. (C 23)

Therefore, to calculate the on-axis field amplification we can follow the same method
as in appendix B, but the left-hand side of (B 19) has to be replaced by the term
(1/Γ )∂Aν/∂τ , where Γ = Γ (0). By defining the new Pierce parameter ρ as:

ρ = ρ1D|Γ |1/3, (C 24)

then (B 34) becomes:[
∂

∂τ̂
+ i1ν̂

]
aν =−ei arg(Γ )

∫
1ν

1ν̂

e−iνφ

2π
f dφ dη̂ dK

dθr

2π
. (C 25)

We then obtain the equivalent of (B 53):

µ̂2(µ̂−1ν̂)= ei arg(Γ ) (C 26)

where µ̂ is linked to µ by:

µ̂= 8γ 2
0

(4+K2
0)ρ

µ (C 27)

so that the growth that is given by e−iµτ is also given by e−iµ̂τ̂ . Eventually, if 1ν̂= 0,
the solution is:

µ̂= ei[2π/3+(1/3) arg(Γ )], (C 28)
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which leads to the following solution for µ:

µ= Γ
1/3e2iπ/3

√
3L1D

GPk1
(C 29)

due to the fact that 8γ 2
0 /(4+K2

0) =
√

3L1D
GPk1ρ1D. The gain time associated with the

field growth rate is then given by:

τG =
√

3L1D
GPk1

Im(Γ 1/3e2iπ/3)
. (C 30)

To be more consistent, we can rewrite (C 22) as:

Γ =
∫ +∞

0
−iµeiµτ̌B(τ̌ , 0) dτ̌ . (C 31)

The final solution can be found by an iterative method. We first start from the 1-
D result Γ = 1. With this value, we can then solve (C 29) and (C 31). Finally, by
solving iteratively those two equations, the result found after few loops converges to
the solution of those two coupled equations.

Note: this solution is also valid in three dimensions. However, the B function that
should be used in three dimensions is the following:

B(τ , x, y)= 1(
1+ τ 2

Z2
r k2

1

)1/2 e−(x+y)2/W2(τ )eiνk1(x+y)2/(2R(τ ))−i arctan(τ/(Zrk1)). (C 32)

Indeed, the 3-D B function should be a solution of the 3-D paraxial wave equation:(
2iν

∂

∂τ
+ ∂2

∂(k1x)2
+ ∂2

∂(k1y)2

)
B= 0. (C 33)

Appendix D. Analytical solution for the 2-D and 3-D gain length and Pierce
parameter

In two and three dimensions, the Pierce parameter and gain length are respectively
given by (2.11) and (2.12). This implies that we first calculate the value of Γ by
solving the coupled equations (2.13) and (2.14), which is equivalent to solving the
following equation:

Γ = ζΓ 1/3
∫ +∞

0
e−ζΓ

1/3ZB̂(Z) dZ (D 1)

with ζ = (Zrei(π/6))/(L1D
GP

√
3) and B̂(Z) = e−(i/2) arctan(Z)/(1 + Z2)1/4 in two dimensions

and B̂(Z) = e−i arctan(Z)/
√

1+ Z2 in three dimensions. We could not find a solution
to this equation. However, as Zr � L1D

GP in an ICL, we can assume that the Gouy
phase shift – represented by the term e−i arctan(Z) in three dimensions – has only a
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small influence and can be chosen as equal to its asymptotic value (e−iπ/4 in two
dimensions and e−iπ/2 in three dimensions). We then look for the solutions of the
following approximated equations:

Γ = ζΓ 1/3e−i(π/4)
∫ +∞

0

e−ζΓ 1/3Z

(1+ Z2)1/4
dZ in 2-D (D 2)

Γ =−iζΓ 1/3
∫ +∞

0

e−ζΓ 1/3Z

√
1+ Z2

dZ in 3-D. (D 3)

As we have the following asymptotic results:

ζΓ 1/3
∫ +∞

0

e−ζΓ 1/3Z

(1+ Z2)1/4
dZ→

√
πζΓ 1/3 (D 4)

when ζ→0 (Zr�L1D
GP), then we can deduce that, in two dimensions, the approximated

value of Γ is:

Γ 2D
ap = (πζ )3/5e−i(3π/10) (D 5)

which leads to:

ρ2D
ap = ρ1D(π|ζ |)1/5 (D 6)

L2D
GP,ap = L1D

GP

√
3

2(π|ζ |)1/5 sin
(

3π

5

) . (D 7)

In three dimensions, we can show that

− iζΓ 1/3
∫ +∞

0

e−ζΓ 1/3Z

√
1+ Z2

dZ→ iζΓ 1/3

[
ln
(
ζΓ 1/3

2

)
+ γe

]
, (D 8)

when ζ→ 0, with γe ≈ 0.577 the Euler–Mascheroni constant. The solution of

Γ = iζΓ 1/3

[
ln
(
ζΓ 1/3

2

)
+ γe

]
(D 9)

is

Γ 3D
ap =−

eiπ/6ζLambertW
(

8ie−2γe

ζ 3

)
2


3/2

, (D 10)

with LambertW the Lambert-W function (also called the product logarithm).
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