
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2020-11-25

 
Deposited version:
Submitted Version

 
Peer-review status of attached file:
Unreviewed

 
Citation for published item:
San-Payo, G., Ferreira, J., Santos, P. & Martins, A. (2020). Machine learning for quality control
system. Journal of Ambient Intelligence and Humanized Computing. 11 (11), 4491-4500

 
Further information on publisher's website:
10.1007/s12652-019-01640-4

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: San-Payo, G., Ferreira, J., Santos, P. &
Martins, A. (2020). Machine learning for quality control system. Journal of Ambient Intelligence and
Humanized Computing. 11 (11), 4491-4500, which has been published in final form at
https://dx.doi.org/10.1007/s12652-019-01640-4. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/s12652-019-01640-4


Noname manuscript No.
(will be inserted by the editor)

Machine Learning for Quality Control System

Gonçalo San-Payo · João Carlos Ferreira · Pedro Santos · Ana Lúcia

Martins

Received: date / Accepted: date

Abstract In this work we propose and develop a clas-

sification model to be used in a quality control sys-

tem for clothing manufacturing using machine learn-

ing algorithms. The system consists of using pictures

taken through mobile devices to detect defects on pro-

duction objects. In this work a defect can be a miss-

ing component or a wrong component in a production

object. Therefore, the function of system is to clas-

sify the components that compose a production object

through the use of a classification model. As a manu-

facturing business progresses, new objects are created,

thus, the classification model must be able to learn the

new classes without losing previous knowledge. How-

ever, most classification algorithms do not support an

increase of classes, these need to be trained from scratch

with all classes. In this work, we make use of an incre-
mental learning algorithm to tackle this problem. This

algorithm classifies features extracted from pictures of

the production objects using a convolutional neural net-

work (CNN), which have proven to be very successfully

in image classification problems. We apply the current

developed approach to a process in clothing manufac-

turing. Therefore, the production objects correspond to

clothing items.

Gonçalo San-Payo
INOV Inesc Inovação - Instituto de novas tecnologias, Portu-
gal E-mail: goncalo.san-payo@inov.pt

João Carlos Ferreira
Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR- IUL,
Portugal E-mail: jcafa@iscte-iul.pt

Pedro Santos
INOV Inesc Inovação - Instituto de novas tecnologias, Portu-
gal E-mail: pedro.santos@inov.pt

Ana Lúcia Martins
Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR- IUL,
Portugal E-mail: almartins@iscte-iul.pt

Keywords Quality control · Incremental learning ·
Image classification · Defect detection system

1 Introduction

Computer vision problems can be applied to quality

control tasks, more precisely in defect detection and

classification. There are many quality control systems of

manufacturing processes that can be improved with the

right use of machine learning algorithms, such as mobile

phone cover glass production [1], fabric production [2],

etc.

Many machine learning algorithms can be used for

image classification problems, but most of them have

a fixed number of classes and the algorithms cannot

learn new classes incrementally. This can be a prob-

lem for applications and processes where new data and

classes are created, because it would require training

the algorithm again from scratch with the old and new

data together. The present work addresses this issue as

it plays a major part in the proposed system.

Quality control is a key factor in all major man-

ufacturing businesses, as costumers and investors are

increasingly demanding for higher quality. It is vital for

a company to ensure that the number of defective prod-

ucts is kept to a minimum, otherwise it can have a big

impact on the company’s sales and business.

Most of the quality control processes are still made

by humans and although these processes have improved

over the years, human based processes can lead to a few

disadvantages. For example, a human usually works ap-

proximately 8 hours a day and in some of those hours

the levels of concentration are not always the same.

These levels of concentration may vary due to fatigue,

lack of motivation and other factors that can lead to



2 Gonçalo San-Payo et al.

unnoticed defects and, therefore, hurt the business. A

computer, however, can keep the same levels of ”con-

centration” throughout the day.

In the textile industry, where humans are responsi-

ble for the quality control processes, only 70% of the

defects are detected [3]. Therefore, there is still room

from improvement.

In this work, we propose and develop a collaborative

system capable of identifying defects on clothing prod-

ucts and improving the efficiency of the quality control

process of a clothing factory. This system must contain

an image classification model capable of learning new

classes incrementally and increase its knowledge.

2 State of Art

Quality control using machine learning techniques has

been a hot research topic for a few years. Many tech-

niques were used in this research topic, such as: Fourier

analysis [2], Gabor filters [4], neural networks [5]. Ad-

ditional work regarding the topic of quality control and

defect detection can be found in [6].

Our objective is to develop a quality control system

that detects defects in clothes. This system classifies

the components of a clothing item and checks if they

are correct, therefore our problem can be considered as

an image classification problem. In more recent years,

deep learning techniques have achieved state-of-the-art

results in image classification problems with the devel-

opment of a handful of neural network architectures

[7–11].

Most of the CNNs take a long time to train even on

last generation GPUs. However, there is a way to use

the knowledge of a CNN gained when trained in a large

dataset, like the ImageNet, and adapt it to a similar

classification problem. This is called transfer learning,

which consists of using a CNN with the parameters,

weights and biases obtained when trained in a large

dataset, use the first layers for feature extraction and

replace the last layers (fully-connected layers) use for

classification with new layers adapted to the desire clas-

sification task. This way there is only need to train the

new layers, which will save time and resources [12].

Incremental learning is the ability of an algorithm

to gain knowledge with new unseen data. Many com-

mon classification algorithms have been adapted to this

kinda of learning, such as: decision trees [13], random

forests [14] and neural networks [15].

3 Methodology

The purpose of the QCSCM (Quality Control for Ser-

vice Clothing Management) is to detect defects on cloth-

ing items. This is achieved by using a classification

model supporting incremental learning. This classi-

fication model can, however, be easily adapted to other

contexts. The requirements of the system are as follows:

– A system capable of detecting defects on cloth-

ing items using pictures. The system outputs a

binary classification, defect or no defect, based on

the classification of the clothing items components.

– A mobile application to take pictures of the

clothing items to be used by the quality control

officers to perform their quality control tasks. The

system is fed by the quality control officer using the

mobile application.

– Increase the speed of the quality control pro-

cesses and the percentage of detected defects. For

the system to be useful, it should improve the per-

formance of the quality control processes.

– The ability of the system to learn from new

data as new components of clothing items are cre-

ated. The system must learn new classes maintain-

ing its previous knowledge. The quality control of-

ficer creates the new data using the mobile applica-

tion and feed the system in a collaborative way.

A clothing item is made up by a set of components,

such as buttons, pockets, stamps, etc. Therefore, a de-

fect can be a wrong component or a missing component.

Considering the requirements and the types of de-

fect, the QCSCM architecture was defined in Figure

1. Using a client-server model approach, the QC-

SCM consists of a mobile application and a server,

we called Defect Detection Server (DD Server). The

mobile application is used to take pictures (in portable

network graphics format) of the clothing items and the

DD Server is responsible for detecting the defects mak-

ing use of the classification model and finally, register

the defects. Also, to improve the QCSCM performance

a user feedback approach was also defined.

The responsibility of the quality control in the fac-

tory lies with a group of factory workers called quality

control officers. The function of the quality control

officers is to detect defects on the clothing items, reg-

ister them and decide whether to send the clothing item

back to the manufacturing process, remove the clothing

item from production, or continue to the next produc-

tion step. A clothing item is sent back to the manu-

facturing process if a repairable defect is detected and

is removed from production if an unrepairable defect is

detected.



Machine Learning for Quality Control System 3

Fig. 1: QCSCM general architecture

To execute their function the quality control officers

use the mobile application to take pictures of the cloth-

ing items (in png format) and create bounding boxes

around the components that compose a clothing item.

This information is sent to the DD Server that crops

the content of the bounding boxes to create the images

of the components. These images of the components are

classified by the classification model and the results are

compared with the product data sheet to see if there

is a defect or not. Finally, the classifications of com-

ponents are sent back to the mobile application being

used by the quality control officer.

A product data sheet is information associated to

each model produced by the clothing factory. The prod-

uct data sheets are defined by the clothing factory every

time a new clothing item model is created. The infor-

mation present in the product data sheet information

consists of a list of specifications and components that

compose a clothing item

The responsibility of creating images of the compo-

nents to train the classification model also relies on the

quality control officers. The quality control officer can

also create more images by confirming or correcting the

classifications it received from the DD Server, this is the

user feedback feature. In figure 2 we defined a use case

diagram that explains the actions the quality control

officer performs using the mobile application.

3.1 Defect Detection Server

The first main component of the QCSCM is the DD

Server responsible for feeding the classification model

with images of the clothing items components. The DD

Server must perform the following tasks:

1. Pre-process the images of the components it receives

from the mobile application used by the quality con-

trol officers. This task of preprocessing the images

consists of cropping the bounding boxes of the pic-

tures taken by the quality control officers creating

Fig. 2: Use case diagram of the quality control officer

actions using the mobile application

images of the components. These images of the com-

ponents are then resized and, in case of training, new

images are created using data augmentation tech-

niques. The pre-processing task is necessary so that

the classification model can perform its tasks.

2. Predict the classes of the components. In this sec-

ond task, the classification model present in the DD

server predicts the classes of the components it re-

ceived from the quality control officers.

3. Compare the results with the product data sheet

and save the results. After the classifications are

made the DD server performs the third task of com-

paring the results with the product data sheet. If the

identified components match with the ones present

on the product data sheet it means no defect was

detected and nothing needs to be registered. If they

do not match, it means a defect has been detected

and the DD Server performs the defect registration.

4. Store pictures of the components and train the clas-

sification model with new data. This fourth and fi-

nal task is only performed if a quality control offi-

cer selects the option of using the pictures to train

the classification model. The DD Server after crop-

ping the bounding boxes of the pictures taken by

the quality control officers, saves the content of the

bounding boxes (images of the components) along

with the corresponding labels in a database. If enough

images of the components are stored in the database,

the training of the classification model is performed.

3.1.1 Image Database

When a quality control officer sends pictures of cloth-

ing items with bounding boxes around the components

and selects the option, in the mobile application, of us-

ing the pictures to train the classification model, the im-

ages of the components of the clothing items need to be



4 Gonçalo San-Payo et al.

stored. In this section we describe the image database

represented in Figure 1 as a module of the DD Server.

After the pictures of the clothing items and pro-

cessed and the images of the components are created,

the DD Server saves the images according to their classes.

Each class has an associated directory where all images

corresponding to that class are stored. The names of

the directories serve as labels for the images when the

classification model is trained.

This image database allows the creation of the dataset

that is used to train the classification model. Every

time the classification model needs to be trained, the

DD Server loads the images and labels from the image

database and feeds them to the classification model.

The image database also contains a list of the classes

and the number of new images available from each class.

This list is used to check if there are enough images

to train the classification model and it is also sent to

the quality control officers when they want to label the

components of the clothing items using the mobile ap-

plication.

3.1.2 Defect Registration

The defect registration is represented in Figure 1 as a

module of the DD Server. It is performed after the clas-

sification model classifies the components that are sent

to the DD Server and after the results of the classi-

fication are compared with the product data sheet to

check if there are defects. In case of a positive defect

detection, the type of the defect, missing component

or wrong component, also needs to be registered. For

example, let’s assume we have a clothing item that is

supposed to have three black buttons and one silver zip-

per, but the classification model returns two black but-

tons and one silver zipper. In this case the DD Server

would register the defect as missing component along

with the components that are missing, in this case a

black button.

Another example using the same clothing item, the

classification model returns three black buttons and a

golden zipper. In this case the DD Server would register

the defect as wrong component and register the mis-

placed component, in this case a golden zipper instead

of a silver zipper.

Apart from the image database and the defect reg-

istration the other main module of the DD Server is the

classification model. However, due to its important we

decided to describe the classification model in a sepa-

rated section.

3.2 Mobile Application

The reason of using a mobile application to take pic-

tures instead of a fixed camera is because this way al-

lows the quality control officers to walk around the fac-

tory and take pictures of the clothing items in different

production steps.

During the creation of new data to train the clas-

sification model, after drawing bounding boxes around

the relevant components in the picture, the quality con-

trol officers must label each component with the corre-

sponding classes. The classes can be chosen from a list

of existing classes or, if the object consists of class not

present in the classification model, the quality control

officers can create a new class that will be added to the

list of existing classes.

During the defect detection process, after receiving

the pictures taken by the quality control officers, the

DD server sends back the results of the classification

model – classified components – so that the quality

control officers can give feedback on the classifications

made. This interaction between the DD Server and the

mobile application – user feedback – allows the quality

control officer to correct wrong classifications made by

the classification model of the DD Server and con- firm

the correct ones.

After the corrections are made, the quality control

officer sends the information again to the DD Server

and new images are created to train the classification

model.

3.3 Classification Model

The proposed classification model is bundled inside the

DD Server and is divided in a feature extraction model

and a classifier with incremental learning abilities. Al-

though in this work we used the classification model to

classify components of clothing items, it can be adapted

to other quality control environments.

The feature extraction model consists of a pre-trained

InceptionResNET (a type of CNN model) that extracts

important features from the content of the images. Af-

ter the extraction, the features are classified by the clas-

sifier. We used a modified version of the Mondrian for-

est algorithm that supports incremental learning [14].

We chose this architecture for the classification model,

because by using the principles of transfer learning, we

can combine the benefits of using a CNN to extract

relevant information from an image with the ability of

Mondrian forest to learn incrementally.

The idea of using a feature extraction model in the

classification model was to make sure that the classi-

fier only needs to process and classify relevant infor-



Machine Learning for Quality Control System 5

Table 1: Comparison of CNNs features classified with Mondrian forest

Number of Classes Inception Resnet InceptionResnet MobileNet VGG16

5 0,85 0,86 0,91 0,79 0,77
6 0,80 0,81 0,87 0,71 0,69
7 0,77 0,79 0,85 0,68 0,67
8 0,75 0,77 0,84 0,67 0,64
9 0,74 0,76 0,83 0,65 0,62
10 0,72 0,76 0,83 0,63 0,60

mation and to reshape the input of the classification

model from a three-dimensional array (an image) to a

one-dimensional array that can be fed to the classifier.

We chose to use a CNN as the feature extraction model

because of the recent state-of-the-art results of this type

of neural networks when it comes to image classification

problems.

The function of the classifier is to classify the fea-

tures extracted from the feature extraction model. As

any other classification algorithm, the classifier present

in the classification model needs to be trained with data

relative to the classes it wants to classify. How- ever,

our classifier must be able to learn incrementally new

classes and gain knowledge from unseen data.

A Mondrian forest is a type of random forest that

can learn incrementally [14]. The input of the Mondrian

forest is a one-dimensional array, therefore, it is able to

train with the feature arrays extracted using the feature

extraction model. In the next chapter we detail how we

developed the classification model and how our classifier

(Mondrian forest) behaves when classifying the feature

arrays extracted using different CNN architectures.

4 Experience

To choose which CNN to use in the final version of the

classification model, we performed some experiments on

some of the architectures provided by the Keras library.

The chosen architectures were: VGG161, MobileNet-

V12, Inception-V33, ResNet504 and InceptionResnet-

V25.

In order to set some baseline results and due to the

lack of real images of components of clothing items, we

1 CNN model architecture created by VGG (Visual Geom-
etry Group, University of Oxford) for the ILSVRC-2014 con-
test
2 MobileNetV1 from Google is a CNN model particularly

useful for mobile and embedded vision applications
3 CNN model that is the first runner up for image classifi-

cation in ILSVRC-15
4 CNN model that won the first place in the ILSVRC-15

classification competition with top-5 error rate of 3.57%
5 state of the art CNN model architecture combining

ResNet and Inception features

used the Cifar-106 dataset [16] to perform some experi-

ments and check if the classification model can perform

well in an image classification problem. The Cifar-10

dataset consists of 60000 images in 10 classes, with 6000

per class. Of these images, 50000 are used for training

and 10000 are used for test. Each image consists in a

32x32 color image. The 10 classes are the following: air-

plane, automobile, bird, cat, deer, dog, frog, horse, ship,

truck.

We created a python script using several libraries

such as: Google TensorFlow, Keras, Numpy and OpenCV,

to train the classifier on features extracted from the

Cifar-10 dataset using each of the selected CNN archi-

tectures in an incremental fashion, first we trained it

with 5 classes and the we added classes progressively

until the classifier was trained for all 10 classes of the

dataset and measured the accuracy. The number of

Mondrian trees of Mondrian forest was set to 100. We

used this number of trees because it is a common value

used in decision forests [14].

As the Table 1 and Figure 3 show, for all CNN ar-

chitectures, the accuracy decreases when new classes

are added. The InceptionResnet shows the best results,

followed by the Resnet and the Inception. Furthermore,

the classifier trains faster on the InceptionResnet fea-

tures than on the Resnet or Inception features, this is

because the InceptionResnet returns a feature array of

size 1536, which is smaller than the 2048 size array of

both the Resnet and Inception. Although the training

of the classifier with the features of the VGG16 and Mo-

bileNet was significantly faster than the training with

the InceptionResNet features, the accuracies were much

worst. Taking these results into account we chose to

use the InceptionResnet CNN as our feature extraction

model in the following experiments.

In the original implementation of the Mondrian for-

est when initialising the model, a series of data related

parameters must be defined, such as, the number of

classes of the data, the training and test data and its

corresponding labels. In the implementation developed

in the present work, these parameters are also defined,

6 The CIFAR-10 dataset (Canadian Institute For Advanced
Research) is a collection of images that are commonly used
to train machine learning and computer vision algorithms.



6 Gonçalo San-Payo et al.

Table 2: Confusion matrix - Class legend: 1. zipper-white; 2. zipper-silver; 3. zipper-black; 4. button-grey; 5. button-

black; 6. button-bronze; 7. button-white; 8. button-yellow; 9. button-blue, 10. button-red; 11. belt buckle-gold; 12.

belt buckle-silver; 13. belt buckle-black; 14. pocket-yellow; 15. pocket-red; 16. stamp1; 17. stamp2; 18. stamp3

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 19 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 14 0 0 5 1 1 0 0 0 0 0 0 0 0 0
5 0 0 0 0 20 0 0 0 1 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0
8 0 0 1 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 1 21 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

Fig. 3: Comparison of CNNs features classified with

Mondrian forest (applied to Test dataset) - Graph

but after each training session, the number of classes

used in that session is saved in the model so that the

model can accommodate the new classes. To see how

the classifier performed after the modifications we made

to the original implementation of the Mondrian forest,

we experimented training the classifier incrementally

with new classes and training the classifier with new

classes from scratch. After the experiments we com-

pared the accuracies of both training methods in Table

3.

As we can see in Figure 4, the difference between

the two training methods is not big, with just a small

drop, of around 1% to 2%, in accuracy when trained

incrementally compared to training with all classes from

scratch. These results show that the classifier can be

Table 3: Comparison of classification model accuracies

trained from scratch and trained incrementally

Number of Classes Total Training Incremental Training

5 0,91 0,91
6 0,88 0,87
7 0,86 0,85
8 0,86 0,84
9 0,86 0,83
10 0,85 0,83

trained incrementally in a satisfactory way, which is

important for the QCSCM.

Fig. 4: Total training vs Incremental training - Graph



Machine Learning for Quality Control System 7

In this section we evaluate our proposed classifica-

tion model used in the QCSCM, ensuring that it fulfills

the propose of the present work.

In following evaluation and experiments we put our-

selves in the position of the quality control officers and

used the developed system, more precisely the mobile

application to take pictures of clothing items and create

bounding boxes of the components. The pictures were

sent to the DD Server that stored the images of the com-

ponents along with the labels in the image database cre-

ating a custom dataset. This dataset consists of around

2100 images divided in 18 classes.

The classification model must be an efficient tool in

order to be a valid option for the QCSCM and for the

quality control officers in their quality control processes.

To measure how efficient the classification model is, we

calculated some classification metrics using the custom

dataset.

Previously, we used accuracy as the metric to eval-

uate the incremental learning abilities of the classifica-

tion model. The results were promising, but the use of

this metric can be misleading sometimes. In this sec-

tion, we evaluate the performance of the classification

model using more metrics. The classification model was

trained with all 18 classes of the dataset we created.

Using the training set of the dataset and all 18

classes we created a python script to train the classifi-

cation model and then evaluated the model using the

test set. In Table 2 we can see a confusion matrix de-

scribing the performance of the classification model on

the test set.

With the help of the confusion matrix it is possible

to calculate the precision, the recall and the F1-score.

These metrics allow a better interpretation of the clas-

sification model performance. To calculate these met-

rics, we use the scikit-learn library and the information

shown in the confusion matrix. The results of these cal-

culations are present in Table 4. As shown in this table,

the metrics are high across all classes except for class

number four, which has a lower recall, and class number

seven, which has a lower precision.

In the case of class number four, which is button-

grey, the high precision and low recall implies that the

classification model does not classifies many things as

button-grey, missing a lot of them. However, when it

classifies an object as button-grey it is very precise.

As for the case of class number seven, button-white,

the high recall but lower precision implies that the clas-

sification model correctly classifies a significant propor-

tion or even all the white buttons as button-white. How-

ever, it also incorrectly classifies other classes as button-

white.

Table 4: Precision, recall and F1-score

Class Precision Recall F1-Score

1 0.90 0.90 0.90
2 0.90 0.86 0.88
3 0.96 1.00 0.98
4 0.93 0.67 0.78
5 1.00 0.95 0.98
6 1.00 1.00 1.00
7 0.81 1.00 0.90
8 0.95 0.95 0.95
9 0.92 1.00 0.96
10 1.00 1.00 1.00
11 1.00 1.00 1.00
12 0.95 1.00 0.98
13 1.00 0.95 0.98
14 1.00 1.00 1.00
15 1.00 1.00 1.00
16 1.00 1.00 1.00
17 1.00 1.00 1.00
18 1.00 1.00 1.00

These results show that the classification model found

it more difficult to distinguish the classes with similar

characteristics. Since the number images per class is

quite balance, we can average the results of each class

and get the overall precision, recall and F1-score. The

overall metrics, converted to percentages, along with

the accuracy of the classification model is presented in

Table 5.

Table 5: Evaluation metrics

Accuracy Precision Recall F1-Score

96.09% 96.29% 96.04% 95.96%

4.1 QCSCM Simulation

To further evaluate the classification model and to test

the QCSCM, we experimented the QCSCM by taking

some pictures of clothing items. Some of these pictures

are presented here, where we can see how the QCSCM

performed on them.

To take these pictures, we installed the developed

mobile application in three mobile devices and created

a simulated environment over a period of one week.

The three installed mobile applications allowed us to

put ourselves in the role of quality control officers.

By installing the mobile applications in multiple de-

vices in the simulated environment we created, we were

capable creating more images to be used by the QC-

SCM in a collaborative way. All of the installed mo-

bile applications were capable of connecting to the DD



8 Gonçalo San-Payo et al.

Server allowing a faster creation of images and subse-

quently a better training of the classification model.

In Figure 5 it is possible to see some examples of

correct classifications. On the left, a picture of a shirt

sleeve with a bounding box around a component cor-

rectly labeled as button-white. On the middle, a pic-

ture of part of a belt with its buckle surrounded with a

bounding box correctly classified as silver belt buckle.

On the right, a picture of a polo shirt with two bound-

ing boxes correctly classified as white buttons.

As the Figure 5 also shows, the QCSCM can use

the classification model to classify more than one com-

ponent at a time. The picture on the right has two

bounding boxes correctly classified.

In the real quality control environment, the quality

control officers when receiving results such as the ones

present in the figures above, could confirm the results

and create new images for training with them. As for

the DD Server, it would register a defect in case of one

being detected.

As seen in previously the classification model is not

100% accurate, sometimes it makes wrong classifica-

tions of clothing items components. Figure 6 shows some

of these cases. On the left, we can see a silver zipper

mistakenly classified as a white zipper. On the right, it

is possible to see four bronze buttons, three of them cor-

rectly classified but one incorrectly classified as a black

button.

Some important information can be retrieved from

these examples of incorrect classifications. In these ex-

amples the classification incorrectly classified the com-

ponents, however the main characteristic of the com-

ponents was correctly classified. In the case of the sil-

ver zipper, the component was correctly classified as a

zipper, but the color was incorrect. The same for the

buttons example, all of them were classified as buttons,

but in one of them the color was incorrect. This sug-

gests that some class hierarchy and multi-label classifi-

cation could improve the performance of the classifica-

tion model, since the are many components that shared

some characteristics.

As said before, when the quality control officer re-

ceives incorrect results, he should make use of the user

feedback feature of the QCSCM and correct wrong pre-

dictions made by the classification model. This will help

the classification model improve its accuracy.

5 Conclusion

The goal of the present work was to develop a system,

that makes use of an image classification model capa-

ble of learning new classes incrementally and increase

its knowledge, to help the quality control officers of a

clothing factory in their quality control processes.

Using a mobile application combined with a server

for central processing, the proposed QCSCM system is

deployed containing a classification model created using

a set of machine learning algorithms. This system can

classify objects that are part of clothing items, check-

ing if the identified objects corresponds to the refer-

ence used on a certain clothing item and also, it allows

the use of machine learning algorithms applications by

multiple factory workers through the use of a mobile

application. At the moment, the system is applied to

the clothing manufacturing but others cases and other

type of productions lines can also be used.

This work also addresses transfer learning, but with

a little twist. Instead of replacing the last layers of a

CNN with new layers adapted to the new classes, it

uses an independent and autonomous machine learning

algorithm to classify the features extracted from the

CNN to learn new classes incrementally.

In the current architecture of the classification model,

each different component of a clothing item corresponds

to a different class. The same is applied to other pro-

duced objects. If the number of classes increases expo-

nentially this can lead to some drops in accuracy. Also,

some classes of objects can be more difficult to classify

than others. Taking this into account, the focus will be

to create a class hierarchy and multi-label classification

to create a newer version of the system. For example,

the current classification model classifies a black button

and a blue button as two different classes. In the future

we will develop a classification model that first classifies

the more generic class, such as button, zipper, pockets,

etc., and then classifies its characteristics, for example,

color, size, etc. in order to reach the final classification

for the object.

References

1. D. Li, L.-Q. Liang, and W.-J. Zhang, efect inspection and
extraction of the mobile phone cover glass based on the
principal components analysis, The International Journal
of Advanced Manufacturing Technology, vol. 73, pp. 9-12,
(2014)

2. C.-h. Chan and G. K. Pang, Fabric defect detection by
fourier analysis, IEEE transactions on Industry Applica-
tions, vol. 36, no. 5, pp. 1267–1276 (2000).

3. A. Kumar, Neural network based detection of local textile
defects, Pattern Recognition, vol. 36, no. 7, pp. 1645–1659
(2003

4. A. Kumar and G. K. Pang, Defect detection in textured
materials using gabor filters, IEEE Transactions on indus-
try applications, vol. 38, no. 2, pp. 425–440 (2002)

5. H. Celik, L. Dulger, and M. Topalbekiroglu, Development
of a machine vision system: real-time fabric defect detection
and classification with neural networks, The Journal of The
Textile Institute, vol. 105, no. 6, pp. 575–585 (2014)



Machine Learning for Quality Control System 9

(a) Button-White (b) Belt Buckle-Silver (c) Button-White

Fig. 5: Examples of correct classifications

(a) Button-White (b) Belt Buckle-Silver

Fig. 6: Examples of incorrect classifications

6. A. Kumar, Computer-vision-based fabric defect detection:
A survey, IEEE transactions on industrial electronics, vol.
55, no. 1, pp. 348–363, (2008)

7. A. Krizhevsky, I. Sutskever, and G. E. Hinton, Ima-
genet classification with deep convolutional neural net-
works, Advances in neural information processing systems
pp. 1097–1105 (2012)

8. AK. Simonyan and A. Zisserman, Very deep convolutional
networks for large-scale image recognition, arXiv preprint
arXiv:1409.1556 (2014)

9. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
Going deeper with convolutions, Proceedings of the IEEE
conference on computer vision and pattern recognition , pp.
1–9 (2015)

10. K. He, X. Zhang, S. Ren, and J. Sun, Deep residual
learning for image recognition, Proceedings of the IEEE
conference on computer vision and pattern recognition, pp.
770–778 (2016)

11. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W.
Wang, T. Weyand, M. Andreetto, and H. Adam, Mo-
bilenets: Efficient convolutional neural networks for mo-
bile vision applications, arXiv preprint arXiv:1704.04861
(2017).

12. L. Y. Pratt, J. Mostow, C. A. Kamm, and A. A. Kamm,
Direct transfer of learned information among neural net-
works., AAAI, vol. 91, pp. 584–589 (1991)

13. P. E. Utgoff, “Incremental induction of decision trees,
Machine learning, vol. 4, no. 2, pp. 161–186 (1989)

14. B. Lakshminarayanan, D. M. Roy, and Y. W. The, Mon-
drian forests: Efficient online random forests, Advances
in neural information processing systems, pp. 3140–3148
(2014)

15. R. Polikar, L. Upda, S. S. Upda, and V. Honavar,
Learn++: An incremental learning algorithm for supervised
neural networks, IEEE transactions on systems, man, and
cybernetics, part C (applications and reviews), vol. 31, no.
4, pp. 497–508 (2001)

16. A. Krizhevsky, and G. Hinton, Learning multiple layers
of features from tiny images, University of Toronto (2009)


