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Abstract. This paper describes an approach for automatic capitaliza-
tion of text without case information, such as spoken transcripts of video
subtitles, produced by automatic speech recognition systems. Our app-
roach is based on pre-trained contextualized word embeddings, requires
only a small portion of data for training when compared with tradi-
tional approaches, and is able to achieve state-of-the-art results. The
paper reports experiments both on general written data from the Euro-
pean Parliament, and on video subtitles, revealing that the proposed
approach is suitable for performing capitalization, not only in each one
of the domains, but also in a cross-domain scenario. We have also cre-
ated a versatile multilingual model, and the conducted experiments show
that good results can be achieved both for monolingual and multilingual
data. Finally, we applied domain adaptation by finetuning models, ini-
tially trained on general written data, on video subtitles, revealing gains
over other approaches not only in performance but also in terms of com-
putational cost.

Keywords: Automatic capitalization · Automatic truecasing ·
BERT · Contextualized embeddings · Domain adaptation

1 Introduction

Automatic Speech Recognition (ASR) systems are now being massively used
to produce video subtitles, not only suitable for human readability, but also
for automatic indexing, cataloging, and searching. Nonetheless, a standard ASR
system usually produces text without punctuation and case information, which
makes this representation format hard to read [12], and poses problems to further
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automatic processing. The capitalization task, also known as truecasing [13,18],
consists of rewriting each word of an input text with its proper case information
given its context. Many languages distinguish between uppercase and lowercase
letters, and proper capitalization can be found in many information sources, such
as newspaper articles, books, and most of the web pages. Besides improving the
readability of texts, capitalization provides important semantic clues for further
text processing tasks. Different practical applications benefit from automatic
capitalization as a preprocessing step, and in what concerns speech recognition
output, automatic capitalization may provide relevant information for automatic
content extraction, and Machine Translation (MT).

Unbabel combines the speed and scale of automatic machine translation with
the authenticity that comes from humans, and is now dealing with an increasing
demand for producing video subtitles in multiple languages. The video processing
pipeline consists of a) processing each video with an ASR system adapted to the
source language, b) manual post-edition of the ASR output by human editors,
and c) perform the translation for other languages, first by using a customized
MT system, and then by using humans to improve the resulting translations.
Recovering the correct capitalization of the words coming from the speech tran-
scripts constitutes an important step in our pipeline due to its impact on the
post-edition time, performed by human editors, and on the MT task output.
Automatic Video subtitles may contain speech recognition errors and other spe-
cific phenomena, including disfluencies originated by the spontaneous nature of
the speech and other metadata events, that represent interesting practical chal-
lenges to the capitalization task.

This paper describes our approach for automatically recovering capitalization
from video subtitles, produced by speech recognition systems, using the BERT
model [8]. Experiments are performed using both general written data and video
subtitles, allowing for assessment of the impact of the specific inner structural
style of video subtitles in the capitalization task.

The paper is organized as follows: Sect. 2 presents the literature review.
Section 3 describes the corpora and pre-processing steps used for our experi-
ments. Section 4 presents our approach and the corresponding architecture, as
well as the evaluation metrics. Section 5 presents the results achieved, both on
a generic domain (monolingual and multilingual) and in the specific domain of
video subtitles. Finally, Sect. 6 presents the most relevant conclusions and pin-
points a number of future directions.

2 Related Work

Capitalization can be viewed as a lexical ambiguity resolution problem, where
each word has different graphical forms [10,30], by considering different capi-
talization forms as spelling variations. Capitalization can also be viewed as a
sequence tagging problem, where each lowercase word is associated with a tag
that describes its capitalization form [6,14,15,18].
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A common approach for capitalization relies on n-gram language models
estimated from a corpus with case information [10,15,18]. Common classifi-
cation approaches include Conditional Random Fields (CRFs) [27] and Max-
imum Entropy Markov Models (MEMM) [6]. A study comparing generative and
discriminative approaches can be found in [2]. The impact of using increasing
amounts of training data as well as a small amount of adaptation is studied in
[6]. Experiments on huge corpora sets, from 58 million to 55 billion tokens, using
different n-gram orders are performed in [10], concluding that using larger train-
ing data sets leads to increasing improvements in performance, but the same
tendency is not achieved by using higher n-gram order language models. Other
related work, in the context of MT systems, exploit case information both from
source and target sentences of the MT system [1,23,27].

Recent work on capitalization has been reported by [21,25]. [25] proposes a
method for recovering capitalization for long-speech ASR transcriptions using
Transformer models and chunk merging, and [21] extends the previous model
to deal with both punctuation and capitalization. Other recent advances are
reported by [29] for Named Entity Recognition (NER), a problem that can be
tackled with similar approaches.

Pre-trained transformer models such as BERT [8] have outperformed previ-
ous state-of-the-art solutions in a wide variety of NLP tasks [7,8,19]. For most
of these models, the primary task is to reconstruct masked tokens by uncovering
the relation between those tokens and the tokens surrounding. This pre-train
objective proved to be highly effective for token-level tasks such as NER. Bear-
ing this in mind, in this paper, we will follow the approach proposed in [3–5] and
address the capitalization task as a sequence tagging problem similar to NER
and show that, as in that task, BERT can also achieve state-of-the-art results
for capitalization.

3 Corpora

Constructing an automatic translation solution focused on video content is a
complex project that can be subdivided into several tasks. In this work, we
are focusing on enriching the transcription that comes from the ASR system,
by training a model prepared to solve the truecasing problem. This process is
of paramount importance for satisfactory machine translation task output and
would ultimately alleviate the post-edition time performed by human editors.

3.1 Datasets

Experiments performed in the scope of this paper use internal data (hereinafter
referred as domain dataset) produced by the ASR system and subsequently
post-edited by humans in order to correct bad word transcripts, introduce capi-
talization and punctuation, and properly segment the transcripts to be used for
video subtitling.
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Table 1. Source sentence and target tags construction for a given sentence. Note that
apart from lowercasing all tokens from the target, punctuation was also stripped to
create the source sentence.

Target Automatic Truecasing of Video Subtitles using BERT: A
multilingual adaptable approach

Source Automatic truecasing of video subtitles using bert a
multilingual adaptable approach

Target tags T T L T T L U U L L L

In order to establish a comparison with a structured out-of-domain training
corpus, we use the Europarl V8 corpus. This corpus is composed of parallel
sentences which allows for coherent studies in terms of complexity across different
languages. As one of the main objectives is that of building a single model that
can be used for several languages, we also constructed a dataset composed by
sentences in four different languages (English, Spanish, French and Portuguese)
in such a way that there are no parallel sentences across different languages.

The dataset composed by English-only sentences will be hereinafter referred
as monolingual dataset whereas the one composed by sentences in different lan-
guages will be referred as multilingual dataset.

3.2 Pre-processing

Considering that we want to build a model prepared to receive the outputs from
the ASR system and automatically solve the truecasing problem, we removed
all punctuation but apostrophes and hyphens which are extensively used in the
languages considered for this study. This is an important step towards building a
reliable model, since the ASR outputs’ punctuation is not consistently trustwor-
thy. For fair comparisons with the generic dataset, punctuation was also removed
from its data. Moreover, metadata events such as sound representations (e.g:
“laughing”) are removed from the domain dataset.

The problem of truecasing is approached as a sequence tagging problem [6,
14,15,18]. Thus, the source sentences for both datasets are solely composed by
lowercased tokens, whereas the target sequences for both datasets are composed
by the ground truth tags. A tag “U” is attributed to an uppercase token, a tag
“T” is attributed to a title token (only the first letter is uppercase) and a tag “L”
to all the remaining tokens. An example of this procedure can be seen in Table 1.
We observed that for the monolingual and multilingual datasets, as the first
token tag corresponds to “T” in the vast majority of their sentences, the model
would capitalize the first token just for its position. As we do not want to rely on
positional information to solve the truecasing problem, if a sentence starts with
a title token, we do not consider that token during training/testing. Statistics
on the size of the train and test set for each dataset (domain, monolingual and
multilingual), absolute frequency of each tag and the ratio of not-lowercased tags
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Table 2. Size of the train and test set for each dataset.

Dataset Number of
sentences

“L” tags “U” tags “T” tags Not–“L”
ratio (%)

Domain Train 127658 904288 38917 94767 14.78

Test 10046 76200 3420 8179 15.22

Generic Train 1908970 42936838 861199 4953879 13.54

Test 99992 2246120 43236 267972 13.86

Multilingual Train 1917932 46420467 624757 4532864 11.11

Test 99985 2399968 29564 240390 11.25

for each dataset is displayed in Table 2. The not–“L” ratio is relevant since the
datasets are unbalanced as “L” tags are much more frequent.

4 Approach Description and Evaluation Metrics

As pre-trained text encoders have been consistently improving the state of the
art on many NLP tasks, and since we are approaching the problem as a sequence
tagging problem, we decided to use the BERT [8] model. The BERT base model
is a 12-layer encoder-only bidirectional model based on the Transformer [26]
architecture with 768 hidden units that was trained for masked word prediction
and on next sentence prediction on a large corpus of plain unlabelled text. We
refer to [8] for further details of the model.

4.1 Architecture

Given an input sequence x = [x0, x1, . . . , xn], the BERT encoder will produce
an embedding e

(�)
xj for each token xj and each layer �.

In [24], it is revealed that the BERT model captures, within the network, lin-
guistic information that is relevant for downstream tasks. Thus, it is beneficial to
combine information from several layers instead of solely using the output of the
last layer. To do so, we used the approach in [17,22] to encapsulate information
in the BERT layers into a single embedding for each token, exj

, whose size is
the same as the hidden size of the model. This embedding will be computed as
a weighted sum of all layer representations:

exj
= γ

12∑

�=0

e(�)
xj

· softmax (α)(�) (1)

where γ is a trainable scaling factor and α =
[
α(1), α(2), . . . , α(12)

]
are the

layer scalar trainable weights which are kept constant for every token. Note that
this computation can be interpreted as layer-wise attention mechanism.
So, intuitively, higher α(�) values are assigned to layers that hold more relevant
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Fig. 1. The architecture of our solution. The output of the BERT model is computed
using the Layer Attention block respective to (1). The scalar weights respective to each
layer are trained simultaneously with the rest of the model.

information to solve the task. In order to redistribute the importance through all
the model layers, we used layer dropout, devised in [17], in which each weight
α(�) is set to −∞ with probability 0.1. This will also prevent overfitting of the
model to the information captured in any single layer.

Finally, the embeddings are fed to a classification head composed by a feed-
forward neural network which will down-project the size-768 token embedding exj

to a size-3 logits vector. This vector will then be fed to a softmax layer to produce
a probability distribution over the possible tags and the position index of the max-
imum value of the vector will be considered as the predicted tag (Fig. 1).

4.2 Evaluation Metrics

All the evaluation presented in this paper uses the performance metrics: F1-
score and Slot Error Rate (SER) [20]. Only capitalized words (not lowercase)
are considered as slots and used by these metrics. Hence, the capitalization SER
is computed by dividing the number of capitalization errors (misses and false
alarms) by the number of capitalized words in the reference.



714 R. Rei et al.

Experiments reported here do not consider the first word of each sentence
whenever the corresponding case information may be due to its position in the
sentence. So, every titled word appearing at the beginning of a sentence will be
excluded both at the training and testing stages.

5 Results

In this section, we compare the results of experiments ran on the Europarl V8
corpus and on domain data for both monolingual and multilingual models. After
loading the pre-trained model and initializing both the layer-wise attention and
the feed-forward projection on top, we split the network parameters into two
groups; encoder parameters, composed by the layer-wise attention and the pre-
trained transformer architecture, and classification-head parameters, composed
by the final linear projection used to compute the logits for each tag. Follow-
ing the approach in [11,17] we apply discriminative learning rates for the two
different groups of parameters. For the classification-head parameters we used
a learning rate of 3 × 10−5 with a dropout probability of 0.1. We froze the
encoder parameters during the first epoch, and trained them on the subsequent
epochs using a 1 × 10−5 learning rate. The optimizer used in both groups was
Adam [16]. We use a batch size of 8 for the models trained on the generic and
domain datasets, and a batch size of 16 for the models trained on the multilingual
dataset. At test time, we select the model with the best validation SER.

In order to evaluate if the models trained on written text data are able to
transfer capabilities to in-domain data, we perform domain adaptation by fine-
tuning the monolingual models on in-domain data.

We implemented all the models using either the bert-base-uncased (for
the models trained on monolingual English data) or bert-base-multilingual
-uncased (for the models trained on multilingual data) text encoders from the
Huggingface library [28] as the pre-trained text models and we ran all experi-
ments making use of the Pytorch Lightning wrapper [9].

5.1 Experiments on Europarl Data

For both generic and multilingual datasets, we train models under four settings:
+1.9M (correspondent to the datasets in Table 2), 200K (200,000 training sen-
tences), 100K (100,000 training sentences) and 50K (50,000 training sentences).
We will be referring to the models trained on monolingual data as monoligual
models, and the models trained on multilingual data as multilingual models.
Moreover, we trained a Bidirectional Long Short-Term Memory (BiLSTM) with
a CRFs model on the entire monolingual dataset (+1.9M setting), which will
be referred to as baseline model since we used its evaluation results as the
baseline.

Monolingual Setting. Results are shown in Table 3. We observe that the
monolingual model performs better than the baseline model for all training set-
tings. This is evidence that our approach using pre-trained contextual embed-
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Table 3. Results for the monolingual models evaluated on the generic test set.

Model architecture Training setting SER F1-score

Baseline (BiLSTM + CRF) +1.9M 0.1480 0.9200

Monolingual +1.9M 0.0716 0.9753

200K 0.0775 0.9717

100K 0.0800 0.9701

50K 0.0850 0.9682

Table 4. Evaluation on the multilingual
test set.

Model Training

setting

SER F1-score

Multilingual +1.9M 0.1040 0.9579

200K 0.1206 0.9472

100K 0.1240 0.9447

50K 0.1312 0.9379

Table 5. Evaluation on the monolin-
gual test set.

Model Training

setting

SER F1-score

Monolingual +1.9M 0.0716 0.9753

Multilingual 0.0761 0.9690

Baseline 0.1480 0.9200

dings is not only able to achieve better results, but it also manages to do so
using only a small portion of the data when compared to the baseline model.

Multilingual Setting. Results are shown in Tables 4 and 5. As expected,
results for the monolingual model are better than the ones obtained by the
multilingual model. Nevertheless, the multilingual model trained on its +1.9M
setting outperforms all the models trained on monolingual data under all settings
but the +1.9M setting, although this could be happening because the multilin-
gual train dataset has more English individual sentences than the monolingual
200 K setting dataset. The results are evidence that a multilingual model which
holds information on several languages is able to achieve similar results to a
monolingual model and outperforms previous state-of-the-art solutions trained
and tested in an equivalent monolingual setting.

Comparison with the Baseline Model. Results show that both the mono-
lingual and multilingual models outperform the results obtained using the base-
line model even when training on a small portion of the available data. Thus,
further experiments will be solely evaluated on the models based on our archi-
tecture.

5.2 Experiments on Domain Data

All the experiments reported in this section make use of the domain datasets
described in Table 2. First, we trained a model using the pre-trained con-
textual embeddings from bert-base-uncased and another using those from
bert-base-multilingual-uncased on the domain training dataset. We will
be referring to these models as in-domain models. Then, we perform domain
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Table 6. Evaluation on the domain test set.

Model Training setting SER F1-score

Domain 0.2478 0.8489

Monolingual +1.9M 0.3128 0.7855

200K 0.3136 0.7827

100K 0.3071 0.7927

50K 0.3193 0.7853

Multilingual +1.9M 0.3285 0.7715

200K 0.3355 0.7825

100K 0.3372 0.7794

50K 0.3530 0.7716

adaptation by loading the obtained models from experiments on the Europarl
data and training them with in domain data.

In-domain Models. Results are shown in Table 6. Recalling the dataset statis-
tics from Table 2, the domain dataset is comparable, in terms of number of sen-
tences, with the monolingual dataset for the 50K training setting. Comparing the
in-domain model and generic model for this setting, when tested on data from
the same distribution that they trained on, we observe that there is a significant
offset between the evaluation metrics. This is evidence that there are structural
differences between the generic and the domain data. This notion is supported
by the evaluation results of the generic and multilingual models initially trained
on Europarl data on the domain test set and will be furtherly explored next.

Structural Differences Between Domain and Europarl Data. By
observing both datasets, we noticed some clear structural differences between
them. For one, since the original samples were segmented (the average number
of tokens per sample is 6.74 for the domain training data and 24.19 for the
generic training data), there is much less context preservation in the domain
data. Moreover, the segmentation for subtitles is, in some cases, made in such a
way that multiple sentences fit into a single subtitle, i.e, a single training sample
(see Table 7). Since, as we previously remarked, we did not want to use the ASR
outputs’ punctuation, the truecasing task is hardened as it is difficult for the
model to capture when a subtitle ends and a new one start for there can be a
non-singular number of ground-truth capitalized tags assigned to words that are
not typically capitalized. Note that recovering the initial sentences from the sub-
titles, i.e, the pre-segmentation transcripts, would be a difficult and cumbersome
task. Moreover, different chunks of the ASR outputs’ have been post-edited by
different annotators which creates some variance in the way the segmentation
and capitalization are done for some words (e.g: the word “Portuguese” is written
as “portuguese” and attributed the tag “L” two times out of the eleven times it
appears in the training data set). Last, when compared with the Europarl data,
the in-domain data is significantly more disfluent. This is mainly due to the
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spontaneous nature of the source speech, since the ASR outputs are respective
to content from video-sharing platforms that is considerably more unstructured
(e.g: “Oh my God. Two more. You did it man!”).

Table 7. In the example below, extracted from the domain data, we observe that the
segmentation caused the capitalized tag respective to “The” to appear in the middle
of the subtitle. Since we are not using any punctuation information, this significantly
hardens the task of capitalization for this word. It is also noticeable that the length of
each subtitle is small, hampering the use of context to solve the task.

ASR output “After that it’s all good, you get on the plane, and you’re
away. The airport is key to the start of a good beginning to
the holiday.”

Segmented subtitles After that it’s all good, you get on the plane, and you’re
away. The airport is key to the start of a good beginning to
the holiday

Target tags T L L L L L L L L L L L

L L L L L T L L L

L L L L L L L L L L

In-domain Adaptation. Given our interest in evaluating the ability to trans-
fer capabilities from the models trained on generic data, we fine-tuned the mono-
lingual models on in-domain data. These models will be referred to as adapted
models. All four models trained on Europarl data, one for each training setting,
are adapted to the domain data. Results shown in Table 8 reveal that all adapted
models but the one initially trained in the total setting on Europarl data outper-
form the domain model. Moreover, the results shown in Fig. 2 indicate that by
reducing the original training dataset size, we obtain models that are not only

Table 8. Evaluation results on the domain test set.

Model Training setting SER F1-Score

In-domain 0.2478 0.8489

Monolingual +1.9M 0.3128 0.7855

200K 0.3136 0.7827

100K 0.3071 0.7927

50K 0.3193 0.7853

Adapted +1.9M 0.2482 0.8467

200K 0.2445 0.8599

100K 0.2469 0.8503

50K 0.2404 0.8540
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Fig. 2. In dashed, we represent the average duration of an epoch for the initial training
of the monolingual model and, in full lines, we represent the SER for the monolingual
and adapted models as a function of the original training dataset size. Domain adap-
tation is the most successful for the model that initially trained faster.

faster to train but also more adaptable to in-domain data, since they are not
as prone to overfitting to the training data inner structural style as models that
are trained on bigger training datasets.

5.3 Layer-Wise Attention Mechanism

All our models contain a layer-wise dot-product attention mechanism to compute
the encoder output as a combination of the output of several encoder layers. This
attention mechanism is devised in such a way that layer scalar weights are trained
jointly with the encoder layers. By observing Fig. 3, it is clear that some layers
contain more significant information than others for solving the truecasing task.
Moreover, the effect of fine-tuning the monolingual model on domain data is
also felt on the trained weights, in such a way that, generally, its original weight
distribution approaches the in-domain model weight distribution.

Center of Gravity. To better interpret the weight distributions in Fig. 3,
we computed the center of gravity metric as in [24] for each of the models.
Intuitively, higher values indicate that the relevant information for the truecasing
task is captured in higher layers. Results are shown in Table 9, and, as expected,
they are similar across all the trained models. Moreover, comparing with the
results obtained for this metric in [24], we observe that the truecasing task
center of gravity is very similar to that of the NER task (6.86). This result
further supports the previously mentioned notion of similarity between the task
at hand and the NER task.
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Fig. 3. Normalized weights distribution for the in-domain model, the monolingual and
multilingual models trained with the +1.9M setting, and the adapted model initially
trained with that same setting. Weight distributions are similar across different models.
Moreover, by observing the adapted model weight distribution, we notice that, as
expected, the adaptation process brings the weight distribution of the monolingual
closer to that of the in-domain model.

Table 9. Center of gravity for the monolingual, adapted model and multilingual trained
with the 50K setting.

Model Training setting Center of gravity

Monolingual +1.9M 7.48

Multilingual 7.40

Adapted 6.93

In-domain 7.05

6 Conclusions and Future Work

We made use of pre-trained contextualized word embeddings to train monolin-
gual and multilingual models to solve the truecasing task on transcripts of video
subtitles produced by ASR systems. Our architecture, which makes use of a layer
attention mechanism to combine information in several encoder layers, yielded
consistent and very satisfactory results on the task at hand, outperforming pre-
vious state-of-the-art solutions while requiring less data. By performing domain
adaptation, we furtherly improved these results, underscoring the notion that
models initially trained on less data can adapt better and faster to in-domain
data. In the future, we expect improvements on the task by addressing capital-
ization and punctuation simultaneously in a multitask setting and by making
use of additional context by recovering the initial transcripts from the segmented
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subtitles. Further gains on this task would constitute a major step towards an
improved video processing pipeline for Unbabel.
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