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Abstract — The emerging communication networks tend to 
aggregate heterogeneous networking infrastructures as well as 
data flows with very distinct requisites. This implies that the 
complete satisfaction of Quality of Service (QoS) metrics is very 
difficult to achieve, using the legacy management solutions. 
Alternatively, the Software Defined Networking (SDN) 
paradigm offers a logical centralized management of the 
necessary network resources for data flows, namely the ones 
originated in sensor devices. Therefore, this work investigates a 
solution that meets the QoS requirements of traffic from remote 
Internet of Thing (IoT) devices. To achieve this goal, we have 
designed a SDN-based solution that manages a network 
topology formed by several domains. We assume each network 
domain is controlled by its own SDN controller. In addition, our 
solution assumes that the several SDN controllers need to be 
orchestrated among them to maximize the management 
efficiency of the available end-to-end network resources. This 
orchestration is done via an SDN transit domain ruled by the 
ONOS SDN-IP application. We have emulated network 
topologies with IoT devices to evaluate the proposed solution in 
terms of its functionality, robustness against network failures, 
and QoS support. Analyzing the obtained results, our solution 
can support a cross-controller SDN domain communication. It 
is also capable of reacting automatically to topology failures. In 
addition, it can prioritize the traffic within the network 
infrastructure, providing to the end users strong guarantees on 
the desired quality for the exchange of data associated to the 
applications they aim to use. 
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I. INTRODUCTION 
The exponential data traffic growth and the network 

heterogeneity are challenging the legacy networks. This 
occurs due to the high-level of complexity to interconnect 
several services and smart devices, both related to the 
emerging paradigm of IoT. They exchange real-time 
information through the networking infrastructure to be 
processed by intelligent applications. This implies not only 
various types of traffic, but also the ability to offer QoS 
guarantees across the network [1]. With the advent of SDN, it 
offers new ways to design more flexible networks.  

SDN stands out for its flexibility, programmability and 
centralized logical management, which separates the data 
layer from the control layer, allowing the passage of logical 
operations from the data plane devices to a centralized 
software controller, which operates over those devices [2]. 

Due to the size, heterogeneity, and complexity of current 
networks, approaches based on multiple domains are very 

scalable. This domain multiplicity consists in the network 
division in different administrative domains, each managing 
its network subset and optimizing both the domain 
performance and the fulfilment of QoS requisites. 

Previous research [3] tries to improve the IP domain 
routing management and provide end-to-end QoS paths [4]. 
Nevertheless, the available work is mostly based on a 
centralized controller approach that handles routing within a 
single administrative domain, offering very limited results. In 
this way, the SDN configuration of inter-domain scenarios is 
very pertinent. The orchestration among all the SDN 
controllers is also vital to ensure reliable end-to-end services, 
such as routing, and QoS deployment.  

The interaction between the different SDN domains 
depends on an inter domain routing protocol, and BGP is a 
very popular protocol for this.  ONOS [5] and ODL [6] are 
SDN controllers that support distributed scenarios. They are 
also most commonly used in wide area networks (WANs). 
Nevertheless, these two SDN controllers have slight 
performance differences as shown in [10], where ONOS 
seems to be a better choice for our current WAN scenario.  

The authors of [7] suggest a solution designated by Inter 
Cluster ONOS Network application (ICONA). This solution 
manages a large networking scenario under the same 
administrative domain (i.e., GEANT) with geographically 
distributed controllers. Another contribution [8] proposes a 
gradual implementation of SDN-based solutions over 
different administrative domains that interoperates with other 
non-SDN based domains. They study a peering application 
among distinct Autonomous Systems (ASs) called SDN-IP, 
which runs at the top of the ONOS SDN controller. 

Due to the low number of literature contributions 
supporting end-to-end QoS in IoT networks with scarce 
resources, the SDN-IP application is very important to achieve 
our goal for ensuring QoS support in distributed systems with 
multiple SDN controllers. Therefore, the research question 
that motivated our work is “How to Provide the necessary 
resources to meet QoS and robustness requirements for traffic 
from heterogeneous IoT devices in a distributed system with 
multiple SDN controllers?”.  

The main contributions of the this paper are the 
deployment of a SDN solution that manages resources from 
ASs to meet QoS and robustness requirements for routing 
heterogeneous traffic across those ASs. The routed traffic is 
from heterogeneous devices, including IoT ones, located at the 
network edge. 

The remaining part of the current paper is following 
described. Section II presents the literature review in the 
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related research areas. Section III discusses the design of the 
proposed solution. Section IV is about the deployment of the 
proposed contribution. Section V discusses the performed 
tests and their results. Finally, Section VI presents some 
general conclusions about the current contribution and some 
promising future work. 

II. LITERATURE REVIEW 
This section briefly revises the literature in the next topics: 

SDN architecture, inter-domain communication, and IoT. 

A. SDN Architecture  
The SDN is a new emerging network paradigm to simplify 

networking management, where the data and control layers 
are separated. In addition, SDN enables the programming of 
the network operation [2]. This programming can be made 
with distinct levels of hardware abstraction. In this way, the 
SDN controller can program the network devices at the data 
plane but the former needs to know in advance some specifics 
from the latter ones, such as the number and characteristics of 
ports at each device. In a distinct way, a networking 
application at the top-most layer of the SDN architecture, as 
shown in Fig. 1, can program the network topology without 
knowing any detail about the network data plane. 

    
Figure 1. SDN architecture. 

Fig. 1 shows an SDN architecture with three layers. The 
bottom layer is the data layer, which consists of compatible 
SDN devices, like routers and switches. The intermediate 
layer is the control layer. It is formed by the controllers that 
have the global vision of the network. The control layer 
communicates with the devices at the data layer through a 
Southbound protocol (e.g., OpenFlow). The application layer 
is the top-most layer. It communicates with controllers via 
Northbound APIs (e.g., Restful); this layer has several running 
applications that deploy many relevant management services. 

Separating these layers, there are two vertical 
communication channels to connect each pair with 
Northbound/Southbound APIs, as well as East/Westbound 
APIs to provide horizontal communication between 
controllers, aiming the federation between domains. 

B. Inter-Domain Communication 
Initially, SDN was based on a single controller’s approach 

to manage an entire network. Despite its simplicity in terms of 
both development and operation, it faces some limitations 
when deployed in large networks, regarding reliability and 
scalability. An SDN design with a single controller can 
become unreliable due to the issue of a single point of failure. 
Moreover, a single SDN controller can become overwhelmed 
when working with multiple simultaneous requests from the 
data plane [9]. Alternatively, a multiple controllers approach, 
provides solutions to mitigate the problems just discussed, 
such as the single point of failure, and low scalability [2][9]. 
The authors of [9] discusses some challenges imposed to 
SDN-based solutions with multiple controllers for managing 
large networks, such as, complexity, scalability, consistency, 
reliability and load balancing. 

There are several distributed architectures formed by 
multiple SDN controllers namely horizontal or hierarchical 
[2]. They also discuss several methods to establish 
communications among SDN controllers. In [1], a 
comparative study of the most currently used SDN controllers 
is presented. From these, we highlight ODL and ONOS. Both 
support a fully distributed architecture and an SDN 
implementation across diverse networking domains [2]. 
Although these two options are similar, there are some 
differences [10], which justifies ONOS as a more suitable 
controller than ODL to explore the full potential of SDN in 
carrier-grade scenarios, as the one of our paper. 

A multi-domain SDN architecture refers to a set of 
different administrative SDN domains or ASs that exchange 
information regarding network status, configuration, or other 
relevant network services, such as packet routing to a 
destination. In addition, Border Gateway Protocol (BGP) [11] 
is the most commonly used protocol to provide the end-to-end 
IP routing services over administrative domains. Then, each 
SDN controller needs to process an external learned BGP 
route to a destination prefix and translate it to local routing 
rules, which are only valid within the network domain the 
controller is responsible for. It is expected that summing up 
the individual routing contributions from the diverse SDN 
controllers results in a final aggregated outcome that fulfils the 
end-to-end BGP route. 

C. IoT Overview 
An Internet of Things (IoT) domain is a network of 

physical devices and sensors with embedded technology that 
interacts with the local environment. The IoT network not 
only collects data but it also exchanges the data to some 
servers located at remote clouds or even to some fog servers 
located at the network periphery. There are many IoT 
scenarios, such as health, home automation, smart 
transportation, environmental monitoring, or smart grids. 

Recent work [12] has highlighted the relevance of SDN-
based systems for controlling network domains formed by IoT 
devices and surveyed previous related contributions. 
However, SDN solutions for wireless networks and, more 
specifically, in wireless sensor (and actuators) networks do 
not abound [13]. Delivering end-to-end service orchestration 
chains, across multiple SDN domains, for an IoT 
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infrastructure deployment, including data collection at the 
cloud, edge processing, and publishing services with quality 
differentiation is still at its infancy [14]. 

The present paper provides some novel contributions 
regarding the line of research discussed in the current section. 

III. PROPOSAL DESIGN 
As previously mentioned, the main goal of the current 

paper is to investigate a solution that meets the QoS 
requirements of data traffic originated at IoT devices in a 
heterogeneous network with multiple domains ruled by SDN 
controllers. We next discuss the design of our proposal. 

Fig. 2 shows the design of a network topology formed by 
multiple administrative domains. 

 
Figure 2. System design. 

Each administrative domain is controlled by an SDN 
controller located at the intermediate level of the proposed 
architecture. In this way, SDN domain A works as a transit 
AS, which interconnects different externals SDN domains (B 
and C) that interface with the domain A, through BGP routers. 

The data plane is formed by switches, BGP routers, and 
end host devices. At the application plane, there are BGP 
speakers that behave like BGP route reflectors, learning from 
the BGP routers IP destination prefixes and passing them to 
the SDN-IP application. Then, this application interacts with 
the SDN controller. From the previous interaction, the BGP 
learned paths are mapped to compatible data flow rules, which 
are transferred via Southbound protocol to the switches. 

At the top layer are running applications that define how 
the network operates. In the transit domain A, the SDN-IP 
application allows, as already explained, the routing of 
packets among BGP ASs. The previous routing implies the 
forwarding of packets among the diverse switches belonging 
to the SDN Domain A. In addition, some auxiliary 
applications in the SDN controller of Domain A are also 
required (e.g., Configs and ProxyARP). 

One of the most important QoS concept is that the traffic 
should not be treated equally, e.g., we need to prioritize the 
usage of communication link resources. Therefore, in our 
proposal we also prioritize the traffic in a network that is a 
mixture of IoT and legacy flows. The traffic prioritization is 
based on creating distinct virtual output queues offered at the 
data plane switches. In addition, some flow rules are installed 
in the data plane switches. These flow rules allow traffic to be 
served by different queues according to the traffic priority. In 

our work, we assume that the traffic priority is unrelated with 
the priority field normally used in OpenFlow flow rules. An 
interesting future prospect could be to use the OpenFlow 
priority field for controlling the traffic quality. 

IV. PROPOSAL DEPLOYMENT 
This section discusses the testbed topology and the 

deployment of our proposal to manage that topology. It aims 
to satisfy QoS requirements in the presence of heterogeneous 
flows, some originated from remote IoT devices. The network 
infrastructure is formed by several administrative domains.  

A. Multi-Domain Topology  
Table I lists all software and tools used to deploy and 

validate our proposal. 
TABLE I. SOFTWARE USED IN THE DEPLOYMENT 

Category Software / Technology 
Northbound Application SDN-IP 

SDN Controller ONOS 1.15.0 
Software Switch OpenvSwitch 2.9.2 

Southbound Communication OpenFlow 
Interdomain Protocol BGP 

Network Emulator Mininet 
BGP Software Quagga 

Traffic Analyser Wireshark, Tcpdump 
Virtual Hypervisor Oracle Virtual Box 

VM Operating System Ubuntu 16.04 
Traffic Generator and Measurement Iperf 

Video transmitter Application VLC 

Firstly, the general idea is to deploy a scenario that 
provides end-to-end communication among diverse SDN 
domains. A virtual network topology was built to meet these 
conditions and is presented in Fig. 3. The proposed system 
consists of three administrative SDN domains, each managed 
by its own ONOS SDN controller. In the top-most layer of the 
current architecture the SDN-IP application is running that 
enables the communication between SDN domains using 
BGP. At the data path layer there are terminal hosts and 
software switches (i.e., OpenvSwitch) interacting to the 
associated SDN controller via Southbound (i.e., OpenFlow). 

Therefore, we have configured the entire network 
topology using the Mininet emulator. The topology has three 
SDN domains, each managed by its controller. The central 
domain (A) works as a transit AS, responsible for 
interconnecting the remaining external networks. Each 
external network, in this case B, C is considered a different 
AS, which interfaces with the central domain (A) through 
routers, running Quagga, a well-known software emulator for 
routing packets. In the central domain (A), there is an SDN 
controller with an SDN-IP application running on its top that 
learns BGP routes to destination prefixes previously 
announced by the BGP routers of the network topology. 

After the learning phase, the SDN controller of domain A 
translates each learned BGP route to SDN intents. Then, the 
same SDN controller converts each intent in to several flow 
rules, which are then transferred from the SDN controller to 
the data plane switches, using the OpenFlow protocol. These 
switches are the ones previously selected by the SDN 
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controller to support an AS transit ingress/egress routing 
intent associated to a previously announced BGP IPv4 prefix. 

 
Figure 3. Multi-domain topology. 

B. QoS Deployment  
This scenario considers a security system monitorization, 

installed on the public road. This consists of vigilance cameras 
equipped with motion sensors transmitting RTP video flow by 
VLC and generic user computers generating UDP traffic. 
Motion sensor cameras were simulated using network 
devices.  The testbed topology for this is shown in Fig. 4. 

 
Figure 4. QoS testbed topology. 

We deployed in one SDN domain to test quality of service 
(QoS_topology.py), but the same logic can be extended to 
larger scenarios implementing multiple domains. We limited 
all network links to 10 Mbit/s, using the Traffic Control (TC). 

Initially all the traffic is going through the same path and 
if the motion sensor detects movement, the vigilance cameras 
should have a higher priority than the other non-video traffic. 
This implies the video traffic is transferred to a new queue and 
consequently can transmit the video with the highest quality 
without the competition of another non-video traffic. The 
queues are configured in OVS switch s1 using ovs-vsctl within 
the Mininet script that builds up the topology used in the 
current scenario. 

As a conclusion of this sub-section, we assume that the 
traffic exchanged through the testing network should not be 

treated equally, e.g., we need to prioritize the usage of 
communication link resources. Therefore, in our proposal we 
will effectively prioritize the traffic in a network that is used 
by a mixture of IoT and legacy traffic. The traffic 
prioritization is based on creating distinct virtual output 
queues offered at the network switches. In addition, we have 
used a script that via Northbound API (e.g., HTTP POST 
request) forces the installation of adequate flow rules on the 
data plane switches. These flow rules allow traffic to be routed 
to different queues according to each traffic priority. 

V. PROPOSAL EVALUATION 
This section evaluates the solution in terms of its main 

functionality, the automatic reaction to a network failure, and 
the differentiated support of QoS for concurrent flows.   

A. System Validation  
The ONOS GUI on Fig. 5 shows the SDN ONOS 

controlled topology and summary information at the top. 

 
Figure 5. Topology at ONOS web GUI. 

There are three SDN controllers, each one represented by a 
colour to evidence the network devices controlled by that 
controller. The first SDN controller (172.17.0.5) controls the 
transit domain, which contains three central switches. The 
second SDN controller (172.17.0.6), represented by the light 
blue colour, manages the left domain, which contains a single 
switch, interconnecting two terminal hosts (for example, h1 
with IP address 192.168.1.1/24). The same happen with the 
SDN domain (172.17.0.7) represented by red colour on the 
right, which contains a switch with two hosts (h3 and h4). 
Hence, we have a physically distributed system with multiple 
controllers, each managing its own domain autonomously, but 
the central domain is managed by the ONOS SDN-IP 
Application. We have validated our system using ICMP traffic 
originated at host h1 (192.168.1.1) with destination at host h3 
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(192.168.2.1). Analyzing Fig. 6, the first ICMP attempt has a 
larger Round Trip Time than remaining ones because the SDN 
controller after deciding about the message routing path of the 
first attempt (reactive mode), it installs in the switches the path 
rules for next ping attempts (proactive mode). 

 
Fig 6. Successful connectivity test using ping from h1 to h3. 

B. Link Failure Test  
System failure detection is a very important aspect for 

ensuring fault tolerance in large scale distributed systems. In 
our case, if the SDN controller detects a link failure, it should 
quickly and effectively divert traffic to an alternate path to 
ensure the continuation of the communication service until the 
primary link is again operational. The goal is to reduce the 
time required to detect a failure and mitigate its negative 
impact on the traffic network routing. 

Fig. 7 shows selected messages from several traffic 
captures made by Tcpdump. At the beginning of the test, the 
topology was operating without any failure and the used 
routing path between h1 and h3 was through switches s1 and 
s2 of the transit Domain A (s1-eth3, s2-eth2). One can also 
note that the initial ICMP Request TTL is 64 (h1-eth0) and 
then it is decremented down to 61 (h2-eth0), meaning that 
message has traversed three routers (i.e., r1, BGP speaker, r2) 
on its way to the destination node. Through the shortcut “A” 
in the ONOS GUI, which is shown in the first row of Fig. 7, 
one can see the traffic path being used and its speed. 

To
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H1-eth0 
 

S2-eth2 
 

S3-eth1  

H3-eth0 
 

Figure 7. ICMP request from H1 to H3, S1-eth3 UP 

Then, we turned off the link between s1 and s2, forcing 
that link to fail. This implied an event communication failure 
associated to a specific ONOS intent. This intent is like a 
routing path through the transit domain that incorporates the 
failed link. Consequently, after the failure occurrence, the 

ONOS analyzes the topology of the transit domain to find out 
an alternative path, which it should also interconnect the same 
ingress/egress points of the transit domain that were being 
used before that failure. In the current experiment, as indicated 
in Fig. 8, the alternative path through the transit Domain A 
was as follows s1-eth4, s3-eth1, s3-eth2, and s2-eth3. 

We have validated the SDN-IP/BGP integration proposal, 
using a scenario where a failure in  a specific routing path was 
mitigated by the functional robustness of ONOS intents. For 
future work, we aim to measure the time required to detect a 
link failure and to successfully detour traffic from that failure. 
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S3-eth1 
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Figure 8. ICMP request from H1 to H2, S1-eth3 DOWN 

C. Qos Test Validation  
Here, the QoS deployment topology is validated. When 

the topology is started, three devices will be enabled, two of 
them are VLC terminals and another is an RTP video server. 
Each VLC terminal receives a video from a simulated remote 
vigilance camera. In the device with the video server, the 
streaming of the video was started, which is consumed by two 
distinct VLC clients, simulating videos from two remote 
webcams. As mentioned, one of the videos is on the switch 
priority queue and the other is on the non-priority queue, 
sharing the available network resources with other flows. 

Fig. 9 shows the rate trend of three flows used in the 
current test. It shows the system reaction after the video on the 
non-priority queue suffers the interference from UDP traffic, 
which tends to starve all the available network resources. 
Interference may be accessed using quality monitors [15] 
placed at strategic network point. 

The trend of Fig. 9 is basically divided into three time 
intervals. The first one (between  8s and 24s) is when there is 
no interference in the video transmission of camera 2, because 
we still have no interference from UDP traffic over the RTP 
video traffic that uses the switch non-priority queue. We can 
see that when the video transmission starts, the blue line 
(camera 1) is transmitting the video at the same rate (1 Mbps) 
of the red line (camera 2). In addition, the camera 1 is in the 
high priority queue and camera 2 is in the low priority queue. 

The second interval begins around 24s, when UDP traffic 
is injected for the purpose to cause interference with the 
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camera 2 video transmission. Therefore, we can see that UDP 
(black line) traffic uses practically all the link bandwidth (i.e., 
around 8 Mbps) and the camera 2 rate significantly decreases 
(temporarily below 80 Kbps), degrading the quality of the 
received video from that camera (see Fig. 10, right side). This 
occurs because the UDP traffic is competing with camera 2 
traffic at the same output queue. At this moment, we do not 
yet observe any corrective action from the SDN system to 
protect the quality of camera 2 video. 

 
Figure 9. Rate trend of the three flows in our QoS test. 

In the last time interval of current test, starting around 26s, 
the QoS mechanism is applied to improve transmission 
quality for camera 2. In this way, a flow rule is dynamically 
set to change the video to the switch high priority queue. In 
this way, we can see that the video transmission of camera 2 
return to its normal rate and consequently enhance the 
perceived quality at the receiver. We can conclude that at that 
moment the UDP traffic is no longer interfering with the 
transmission quality from camera 2. 

 
Figure 10. Remote vigilance videos with UDP traffic competition. 

VI. CONCLUSIONS AND FUTURE WORK 
The current work main goal was to understand how to 

deploy and manage a network infrastructure formed by several 
administrative domains, with multiple SDN controllers, 
satisfying QoS and robustness requirements of heterogeneous 
flows, some originated from IoT devices.  

Our experimental results have shown that the proposed 
SDN-based solution can ensure communication between 
physically distributed SDN domains via the BGP protocol 
through a transit SDN system with the SDN-IP application 
running on the ONOS controller. We also demonstrate that our 
contribution is sensitive to link failures by redirecting traffic 

directly to another available path and ensuring the normal 
network operation. 

Referring to quality of service, we have also validated 
within a network domain ruled by an SDN controller that 
traffic prioritization can be deployed. For that, some 
OpenFlow rules were installed in the data plane switches, 
which have output queues differentiated by the level of quality 
of service they aim to serve. In this way, we have shown that 
video from remote surveillance cameras, despite the presence 
of UDP traffic that normally starves all the available 
resources, can be transmitted with an optimum quality, thus 
meeting pertinent safety concerns in public environments. 
Further work is envisioned for testing the QoS scenario with 
IoT IPv6-compatible devices across ASs. 
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