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Abstract: A study on the design, simulation and characterization of a reconfigurable terahertz (THz) 

filter, composed of two frequency-selective surfaces (FSSs) with applications on sensor devices in 

general and highly sensitive stress sensors, is presented in this paper. Using the developed 

theoretical model, we found out that by careful tuning the wire parameters, it is possible to control 

the filter sensitivity and also the energy transmission and reflection that passes through the 

structure. Numerical modelling of both the mechanical and electromagnetic components (using the 

elasticity equation and Maxwell’s equations, respectively) has been undertaken for two types of the 

device assemblies based on different thermoplastic polymers transparent to the THz radiation, 

namely: high-density polyethylene (HDPE) and polytetrafluoroethylene (PTFE), operating in a THz 

window from 395 to 455 GHz. The numerical results allowed us to characterize the relation between 

the reflectance/transmittance and the amount of force required to obtain a specific frequency shift 

along that window. It was found that the device assembled with HDPE presents a more linear 

response and it is able to pass from a full transparency to almost full opacity using only its linear 

operating zone. Due to its characteristics, this THz filter might be an interesting solution not only 

for THz sensors based on reconfigurable filters but also for optical modulators for the THz domain. 

Keywords: filters; metamaterials; frequency-selective surfaces (FSSs); stress sensors; terahertz (THz) 

 

1. Introduction 

Terahertz (THz) is a rapidly emerging field in science with many potential applications but 

where there is an urgent need for new ways of producing sources, detectors and other devices such 

as filters, sensors and modulators. Artificial materials, such as metamaterials, play an important role 

in THz because they make it possible to design and manufacture very compact, sensitive and 

extremely selective structures surpassing the existing materials in nature [1,2]. Over the last few 

years, the scientific community has focused on several research areas, such as all-dielectric 

metamaterials, reconfigurable metamaterials, flexible metamaterials, metadevices, graphene 

metamaterials, tunable metamaterials and metasurfaces [1,3]. According to [2], for sensing 

applications, it is necessary that metamaterials are capable of fulfilling a set of requirements such as 

the ability to provide spoof surface plasmons with localized electric field enhancement and have high 

quality factor values (Q-factor), while preserving a high sensitivity, even when subjected to minor 

changes due to external factors. Some classes of metamaterials have gained a significant prominence 

for this type of applications, namely metasurfaces, absorbers, metallic mesh devices and 
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metamaterial-based thin films, due to their potentialities in terms of shape design, geometry, 

orientation, maximization of the excited electric/magnetic field, tuneability, sensitivity and also the 

possibility of being manufactured using lithography and nanoprinting technologies [1,3]. Successful 

applications have been reported in the literature with an emphasis on biosensing, microfluid devices, 

THz detectors and plasmonic toroidal metamodulators [2–5]. Architectonically speaking, most of 

these devices are based on split ring resonators (SRRs) and frequency-selective surfaces (FSSs), whose 

geometric and quality parameters can be adjusted to efficiently control resonant modes, quality 

factor, sensitivity, selectivity, responsivity and also to minimize losses. However, new trends in this 

field report a paradigm change in which the inclusion of nanomaterials in metamaterial sensors and 

the use of graphene plasmon and graphene metamaterial devices and topological insulators induced 

THz surface are expected in the near future [1]. 

THz filters are a key component in optimizing the performance of THz sensing devices, since 

they can eliminate undesirable background radiation and enhance the signal-to-noise ratio as well as 

spectral resolution in practical applications such as THz spectroscopy and imaging [6,7]. Several 

designs of broadband and narrowband THz bandpass filters based on metamaterials have been 

studied over the last decade [8–12]. Narrowband THz filters are especially important since they are 

the centerpiece of a wide range of ultrasensitive THz sensors due to their capability for selecting the 

radiation only in a narrow spectrum around a target frequency [10]. There is a wide range field where 

those sensors are essential, such as health, industry, science, telecommunications and security 

[6,7,10]. Several approaches related to the design of THz filters as well as to their tunability, have 

been reported since then. Some examples that stand out include the architectures based on photonic 

crystals, thin-film stacks, Bragg reflectors, FSSs, waveguides and resonant cavities [13–17]. The 

performance of most of these filters can be controlled following the same methodologies used in 

metamaterials, being also possible to control them mechanically (by adjusting the thickness or the 

distance of the components of the unit cells) or through the action of temperature as described in 

[6,15]. Metrics such as dynamic range, Q-factor, full width at average maximum (FWHM), dephasing 

time of the induced spectral line shapes ( dt ), figure of merit ( FoM ) and insertion loss (IL) are 

widely used to evaluate THz filters [5,6,13,14,17]. 

The utilization of THz technologies for stress sensing applications is very recent, but some 

approaches have already been reported in the literature [18–21]. The sensors of those systems must 

be accessible, light and discrete, so as not to impose cost and weight on the structure as well as not to 

interfere with the structural resistance [19]. Most of these requirements can be easily accomplished 

through the use of FSSs in the design of micro-electro-mechanical system (MEMS) sensors, since they 

can offer higher sensitivity and resolution and also possess a greater potential to deliver the strong 

enhancement and localization of fields, being especially suitable for the development of wireless 

strain sensors that can operate in the microwave and terahertz ranges [18,21]. The development of 

THz stress sensors based on metal mesh filters and FSSs is described in [21]. The resonances of this 

type of sensor are obtained thanks to the periodicity of the unit cells in the direction of propagation 

and, according to the authors, can be used in several applications, including structural health 

monitoring (SHM). Their integration into the structures allow us to detect cracks and other kinds of 

damage, since, in this type of critical situation, it is known that the reflectance/transmittance values 

of the sensors decrease abruptly.  

This paper aims to present a detailed study about the characterization, design and simulation of 

a reconfigurable THz filter with high sensitivity and selectivity for sensor devices such as stress 

sensors. Our filter has a simpler design when compared to the approaches referred above, since it is 

composed by only two FSSs based on metamaterial wire resonators. Despite being a novel approach, 

the proposed device can provide a higher dynamic range, an enhanced frequency selectivity and 

requires less force to cause a frequency shift. The remainder of the paper is organized as follows: 

Section 2 describes the filter theory and respective design. The mechanical model and respective 

simulation method is introduced in Section 3, while Section 4 presents the numerical results obtained 

from the electromagnetic and mechanical point of view. Finally, the conclusions are outlined in 

Section 5. 
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2. Filter Theory and Design Decisions 

In this section, the required tools are introduced in order to design a highly selective structure 

(HSS) that is the centerpiece of the sensor. This HSS works as a reconfigurable selective THz window 

in which only radiation of certain desired frequencies is allowed to pass. In literature, as described in 

[21], this kind of behavior is obtained using a technique related to the periodicity of the unit cells of 

the structure in the direction of propagation. Here, a much simpler approach, where the resonances 

are obtained from the propagation in a THz HSS composed by two arrays of gold wires, is used. The 

goal is therefore to study the interaction between the waves and the wires to be able to understand 

the principle of operation of the HSS. More specifically we intend to devise a method to optimize the 

relation between the radius of the wires and the distance between wires and adjust the sensitivity 

and selectivity of the device. Moreover, for simplicity, we shall assume that the structure is composed 

by two arrays of wires because using a single array would not be sufficient to achieve the desired 

degree of selectivity. Based on the variation of the distance between wires and the mechanical stress 

experienced by the structure, it will be possible to predict how the transmittance is decreasing to the 

operating frequency, since, when the transmittance is very low when compared to the initial one, it 

is known that the structure has a problem. 

2.1. Working Principle 

In this paper, we propose a new design for a reconfigurable THz filter that can be used to 

implement an electro-mechanical sensor. As can be seen in Figure 1, the device is composed of two 

FSSs (arrays of wires) within a dielectric host material. Note that the selective character of the wire 

arrays gives rise to a bell-shaped frequency response. The working principle is presented in Figure 1, 

in which it can be seen that by applying compression along the x  axis, the distance between wires 

d  will decrease and, therefore, the frequency response of the sensor will change, as does its 

transmittance. The sensor is settled to operate at the target frequency and, as it experiences 

compression, it becomes possible to adjust the sensor response from full transparency to complete 

opacity, including all degrees of transparency in between. The red curve corresponds to maximum 

compression and the green curve to half compression. 

 

Figure 1. Overview of the working principle of the proposed reconfigurable filter. 

By allowing a lateral compression instead of a uniaxial compression, the device becomes more 

functional and easier to implement. It is also more selective since its working principle is based on 

the resonance of two arrays in the propagation directions. This selectivity can be accomplished 

through the careful design of the /d a  ratio of the wire arrays ( a  is the radius of the wires), which 

also enhances the Q -factor of the filter. 
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This double grid structure can be represented by a simplified two-port network model, as can 

be seen Figure 2 [22]. The arrays of wires are described as admittances Y  in the equivalent circuit 

and the dielectric slab is represented by three sections of transmission line with equal length / 3l  

(note that the total length of the structure is l ). 

 

Figure 2. Equivalent microwave network circuit of the terahertz (THz) filter. 

In this model, pZ  is the impedance of the port, Z  is the characteristic impedance of the 

dielectric slab material and β is the propagation constant. In the next section, we will show how to 

determine the expression for admittance Y . 

2.2. Circuit Theory 

In all wave propagation problems, where there are transitions between media, we can always 

identify incident waves at the interface, which give rise to reflected and transmitted waves. As it is 

well known from electromagnetic theory, the reflectance and transmittance of a dielectric slab have 

a comb like frequency response [22]. However, in this situation, the arrays of wires will introduce a 

filter-like response in the frequency domain. We must study this problem in order to understand the 

interactions between electromagnetic waves and the array of wires, as can be seen in Figure 3. By 

studying the problem, we will be able to find out what will be the structure’s response in the 

frequency domain and how can we tune the filter. 

 

Figure 3. Reflection and transmission from an array of wires. 
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2.2.1. Equivalent Circuit Admittance for the Wire Arrays 

For propagation in the z  direction and for time harmonic fields of the form 
j te 

, the 

Helmholtz equation is:  

2 2
2

2 2
0z z

z

E E
k E

x y

 
  

 
, 

(1)

where k c  is the magnitude of the wave vector and zE   is the z  component of the electric 

field, parallel to the wires. Solutions of (1) can be written in the form ( , ) ( ) ( )zE x y X x Y y , where  

     1 2cos siny yY y c k y c k y  . (2)

The second term on the right-hand side vanishes because  ( )Y y Y y  . This condition 

results from the symmetry along the y axis. Moreover, since the structure is periodic in the y  

direction with lattice constant d, the possible solutions for yk , in the Fourier plane are restricted to 

2yk n d , where n  is the number of the propagation mode. The condition in this case is 

 ( )Y y d Y y  . Thus, we can write: 

1

2
( ) cos
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d
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For the x  component of the wavevector, we have x xk j , where 
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This follows from 
2 2 2

x yk k k   if we take into account that / 2d  , which corresponds 

to the case where it is not possible to resolve details in the structure according to Abbe limit. The 

solutions for ( )X x  are of the form x xe   and x xe , which describe evanescent waves that only 

exist in the vicinity of the wires. The electric field for 0x   is then given by: 
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1

2
cosx xjkx jkx j t

z ni r
n

n y
E E e E e A e e

d
 





  
  

  
   , (5)

where 0iE  and 0rE  are the complex amplitudes of the incident and reflected waves, respectively, 

and the coefficients nA  account for the evanescent fields. For 0x   the electric field is obtained by 

combining the transmitted wave with the evanescent field: 

0
1
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Close to the wires we have x  , where 
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and 
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 
2
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1
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At the wires ( 0x  ), the tangential component of the electric field must be continuous. We 

have: 
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2 2
cos cosoi r n t n

n n

n y n y
E E A E B

d d

  

 

   
      

   
  , (9)

Which, according to Fourier’s theory implies that: 

0 0 0t i rE E E  , n nB A . (10)

For cylindrical wires, it is convenient to introduce the following function: 
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which has the geometric property of being approximately constant on the surface of the thin wires. 

By Taylor expansion we find: 
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where the   sign holds for 0x   and the  sign for 0x  . Based on this expansion, we can 

assume 1n nA B A n   and write the electric field zE  in terms of u as 
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To determine 1A  in terms of 0tE , we impose the continuity of zE

x




 at 0x  . With the aid 

of the Equations (10) and (13), we find: 

1 0 r

jkd
A E


 . (14)

Up to this point, we have neglected the boundary conditions on the surface of the wires, where 

the tangential component of the electric field zE  must vanish. Considering wires with radius a, it 

results from (14) and using (13) with 0x   and y a  that: 
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(15)

where we have also used (11) to determine  0,u a . From network theory [22], we known that the 

ABCD  parameters of a two port circuit consisting of an admittance Y G jB   are 1A D  , 

0B   and D Y , such that: 
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Here, 0Z  is the characteristic impedance of the dielectric slab material. Hence, (16) is 

compatible with (15) and we can easily determine the admittance. 

1
02

2
ln 2 1 cos

Z
Y j

d a

d








   

    
   

. 
(17)

2.2.2. Transmission Matrix of the Filter  

Let 1T  and 2T  be the transmission matrices of a section of the slab of size / 3l  and of a two-

port network consisting of an admittance Y , respectively. Then, the ABCD  parameters for the 

equivalent circuit in Figure 2 can be written in the form:  

1 1 2
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3 3
1 2 1 2 1
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3 3
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, (18)

where 1z , 2z  and 3z  are the following normalized impedances: 

1
1 2z z EF  , 

1
3z F  (19)

with coefficients E  and F  defined as: 

           2 2 3 2 2 3 34 cos 3 cos 3 sin 4 sin 1,E Z Y l Z Y l j ZY l j ZY l           (20)

and 

           3 2 2 2 2 34 cos 2 cos 3 sin 4 sinF ZY l ZY l j Z Y l j Z Y l         . (21)

Knowing the ABCD  parameters of the network, one can determine the scattering matrix using 

the formulas for the conversion between two-port network parameters [22]: 

2 1
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3
12 2 1
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

   
. (23)

where 0/z Z Z  is the normalized impedance of the slab with respect to free-space. By symmetry 

and reciprocity, we have 11 22S S  and 12 21S S . 
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2.3. Parameters’ Choice 

The theory described above was used to determine a starting point for the device parameters 

assuming a frequency window in the THz range between 395 and 455 GHz. From the theoretical 

model, it is possible to verify that the bandwidth decreases as Y increases. Moreover, as we approach 

the limit / 1 / 6a d  , the Y will grows to  . However, this value cannot be reached due to the 

resistance of the wires and because in that limit the formula is only an approximation (formula is 

only valid for d   and a d ). After performing several electromagnetic simulations to fit 

tune the initials parameters, a set that fulfill our requirements was found: 

 Length ( l ) = 1.42 mm; 

 Radius of the wires ( a ) = 0.2 μm; 

 Distance between wires (d) ∈ [15; 20] μm. 

The distance between wires is expressed as a range, since the previous study proved that it is 

possible to control the behavior of the filter in the desired frequency range by varying this parameter 

and to compress the device without deforming or cracking the structure [21]. As mentioned above, 

the device must have some robustness and a good degree of sensitivity, which means that one should 

consider materials that will be relatively easy to compress and transparent to THz radiation. 

According to [18], silicon and plastics such as high-density polyethylene (HDPE) and 

polytetrafluoroethylene (PTFE) are key terahertz materials since they fulfil the requirements 

mentioned above for the frequency band over 0.1 to 5 THz [23]. Naturally, the plastic materials will 

be a more suitable solution since silicon requires a substantially higher rate of compression. However, 

it is also important to consider some specific characteristics from the materials, taking into account 

the working principle, the design and the assembly of the filter. 

HDPE possesses a linear structure with few branches lending to its optimal strength/density 

ratio. This thermoplastic presents some interesting features, such as: the sensitivity to stress cracking 

and the possibility to customize their physical properties through the molding process that is used in 

its manufacturing [24,25]. On the other hand, PTFE, which is a material widely used in industrial 

applications, also presents some interesting features, such as: weatherability and the capability of 

maintaining high strength, toughness and self-lubrication at low temperatures down to 5 K, as well 

as good flexibility at temperatures above 194 K [26]. 

Considering their properties and the fact that both have low losses and low dispersion in the 

frequency region of the THz, as mentioned above, these materials in fact constitute good candidates 

to be used in the assembly of the proposed device.  

3. Mechanical Simulations 

In this section, the main purpose is to understand how to mechanically model the filter in order 

to find out how much force and current it will take to make the device compress up to 25% according 

to the materials used for its assembling, since beyond that ratio the device presents saturation in the 

frequency response. The finite element method was used for the simulation of the filter according to 

the geometry that was presented previously. This solving technique is an efficient method that can 

provide approximated solutions to partial differential equations and it is widely used to solve 

problems in several areas, such as: electromagnetics, structural analysis, among others [27].  

3.1. Device’s Modelling 

Since the device response analysis lies on two components, namely electromagnetic and 

mechanic, it will be necessary to model the filter from both perspectives. The first one can be easily 

simulated based on the circuit theory presented in the previous section. However, the latter requires 

a realistic model according to the geometry specifications considered in the device design. To satisfy 

this requirement, the Gmsh and Elmer software were used to model the filter [28,29]. Through the 

Gmsh, it was possible to design the filter and generate its corresponding mesh. After importing the 

filter’s mesh into the Elmer solver, materials and boundary conditions associated with the elasticity 
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equation must be defined. Knowing the range to be tested for the wire spacing and the lateral section 

area of the device, it is possible to determine the level of compression needed to obtain the required 

wire spacing. This is possible to achieve, knowing that the materials have certain physical properties, 

some of which are especially important for calculating the displacement derived from the 

compression applied to the device, among them: density, Young’s modulus and Poisson’s ratio [30]. 

The relation between the displacement and the force applied to an elastic material is characterized by 

the well-known equation: 

F l
E

A l


  , (24)

where /F A  is the force applied per unit area (stress), E  is the Young’s modulus and /l l  is 

the extension per unit length (strain). The stress is expressed in Newtons per square meter (Nm-2) or 

in Pascals (Pa) and the Young’s modulus is usually expressed in GPa. Last but not least, the strain 

has no units, because it is just a ratio between the extension and the original length of the object. In 

Table 1, the values of the properties that mechanically characterize each material that comprise the 

device are presented [31]. 

Table 1. Simulation parameters of the materials of the proposed filter. 

Material Density (Kg/m3) Young’s Modulus (GPa) Poisson’s Ratio 

Gold 19300 78 0.44 

HDPE 641 0.8 0.46 

PTFE 2100 0.3 0.46 

3.2. Generation of the Required Force to Compress the Device 

Mechanical stress can be monitored based on the variation of the distance between the wires 

caused by the impact of external factors on the structure. The required force to compress the device 

can be generated by passing an electric current through a coil placed on a plunger, as can be seen in 

Figure 4. 

 

Figure 4. Scheme of the magnetic circuit to be modeled on a finite element method magnetics (FEMM) 

solver. 



Photonics 2020, 7, 48 10 of 21 

The amount of electric current to generate such force can be obtained from numerical 

simulations, because iron is a ferromagnetic material and, therefore, the relation between magnetic 

induction B and the magnetic field H is not linear. Since the FEMM solver is based on the principle 

of symmetry, we only draw part of the device (as shown in the Figure 4) [32]. The core of the plunger 

is made of iron and it is surrounded by a coil (1000 turns of copper wire), which will induce the 

movement of the core. The base (wood 1) and the surface (wood 2) that contacts with the device 

would ideally consist of wood, which in turn has air-like magnetic properties. 

This circuit was simulated, according to the dimensions of the lateral section of the device and 

considering the data in Table 2. 

Table 2. Simulation parameters of the magnetic circuit in FEMM. 

Lc Wc Lp Wp σ g Nturns Lwood 1 Wwood 1 Lwood 2 Wwood 2 

0.27 

mm 

0.1 

mm 

0.05 

mm 

0.37 

mm 

10.44 

MS/m 

0.005 

mm 
1000 

0.03 

mm 

0.079 

mm 

0.03 

mm 
0.71 mm 

In this table, Lc is the coil length, Wc is the coil width, Lp is the plunger length, Wp is the plunger 

width, σ is the electrical conductivity of the iron, g is the length of the gap between the coil and the 

plunger, Nturns is the number of turns of the coil, Lwood1 is the length of the base of the plunger, Wwood1 

is the width of the base of the plunger, Lwood2 is the length of the surface of the plunger and Wwood2 is 

the width of the surface of the plunger, respectively. 

4. Results 

In this section, the results from the simulations based on the design of the filter for each 

assembling hypothesis will be presented. Two analyses of the behavior from the electromagnetic and 

mechanical point of view will be carried out. By analyzing the data, we will also discuss how it will 

be possible to apply the desired compression level to the devices and thus control the distance 

between wires. 

4.1. Return Loss and Insertion Loss in the Frequency Domain as a Function of Distance between Wires 

After the conception and presentation of the theoretical study of the working principle of the 

filter, it is necessary to corroborate the accuracy of the conceived theoretical model through 

simulations, as well as to analyse some relevant issues such as: the dynamic range, the periodicity of 

the shifts of resonance frequency and the evolution of the bandwidth of the device under 

compression. 

Knowing that HDPE and PTFE have different relative permittivity constants, it will be necessary 

to analyse the filter for both assembling cases. Note that HDPE has a relative dielectric constant εr = 

2.4 and PTFE posseses εr = 2.1 [26]. The losses were not considered due to the characteristics of these 

materials, as highlighted in Section 2.  

The resonance frequency ( tf ) will be shifted to higher frequencies as the filter is compressed. 

The reduction in the distance between wires occurs with a step size of 0.5 μm. 

4.1.1. HDPE 

Figures 5 and 6 shows return losses (RL) and insertion losses (IL) in the frequency domain as a 

function of applied compression for the HDPE host medium. These quantities were calculated based 

on the results obtained for the scattering parameters from the simulations. Since the structure is 

invariant to port swapping in the propagation direction, we might consider the following formulas 

 10 1120 logRL S   and  10 1220 logIL S  , respectively [22]. The device resonance, without 

compression, is at 408 GHz, but, when we imposed a full compression (25%), the resonance changes 

to 411 GHz. In every curve, each reduction of 0.5 μm in the distance between wires causes an increase 

of 278 MHz in the resonance frequency, which is followed by an average bandwidth reduction at 3 
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dB of 111 MHz. Considering this data, it is possible to state that, between these two extreme cases, 

there was a shift of 3 GHz in resonant frequency and a reduction in the bandwidth at 3 dB of 1.1 GHz 

(a decrease of more than 50% when compared with the initial value without compression). Some 

saturation and distortion in the filter response are expected for this reason.  

 

Figure 5. Return loss in the frequency domain as a function of applied compression for high-density 

polyethylene (HDPE) host medium. 

In Figures 5 and 6, there is a vertical line identifying the target frequency (408 GHz) and, by 

analyzing both of them, it can be seen that the device presents an excellent dynamic range along this 

curve. This means that, as compression is applied to the device, it will go from full transparency (

11S =0) to full opacity( 11S =1). Therefore, it is possible to conclude that the bandwidth decreases 

and the selectivity increases as the compression is applied to the filter.  

 

Figure 6. Insertion loss in the frequency domain as a function of applied compression for HDPE host 

medium. 
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The FWHM decreases from 1.2 GHz (without compression) to 0.55 GHz (maximum 

compression) [5]. The quality factor can be calculated as the ratio between the resonance frequency 

and the FWHM. We found that the Q factor ranges between 340Q   for the case without 

compression and 747Q   when maximum compression is applied. Considering the same criteria 

that was used to analyze the previous metrics, we found that the dephasing time ( )dt  of induced 

line shapes decreases from 1.5797 to 0.724 μs [5]. Moreover, the figure of merit can be defined as the 

number of passbands inside the range of tuning, which can be computed as:  

0 0
up low

up low
f f

FoM
 

 




 
, (25)

where 
12

0 2.5824 10up    is the uppermost resonant frequency, 
12

0 2.5635 10low    is the 

lowermost resonant frequency, 
93.4558 10up

f    is the uppermost passband width and 

97.5398 10low
f    is the lowermost passband width, respectively [6]. We estimated a 

3.6927FoM  . The insertion losses (IL) are practically zero as the resonance frequency is shifted 

by the compression on the device. The high value of the return losses (RL) means that the reflected 

energy is very small when compared to the incident wave energy. These results show that the higher 

the compression level applied, the greater the selectivity of the device.  

4.1.2. PTFE 

The results from the electromagnetic simulations for the filter assembled with PTFE are shown 

in Figures 7 and 8. By observing both figures, it is possible to conclude that the behavior is slightly 

the same when compared to the case of HDPE. However, the resonances now occur at higher 

frequencies, since the parameters that characterize the material are different. Note that, without 

compression, the device presents a resonance at 437.5 GHz, which will change to 440.7 GHz when 

full compression is applied. In every curve, each reduction of 0.5 μm in the distance between wires 

causes an increase of 320 MHz in the resonance frequency, which is followed by an average 

bandwidth reduction at 3 dB of 122 MHz.  
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Figure 7. Return loss in the frequency domain as a function of applied compression for 

polytetrafluoroethylene (PTFE) host medium. 

Considering these data, it is possible to state that the application of maximum compression 

caused a total shift of 3.2 GHz in the resonance frequency and a reduction in the bandwidth at 3 dB 

of 1.1 GHz (a decrease of 50% when compared with the initial value without compression). In Figures 

7 and 8, there is a vertical line identifying the target frequency (437.5 GHz) and, by analyzing both of 

them, it can be seen that the filter presents a slightly better dynamic range when compared to the case 

of the device assembled with HDPE. The FWHM decreased from 1.3 GHz (absence of compression) 

to 0.65 GHz (maximum compression), and, similar to what was observed previously, the progression 

of the resonance frequency as the filter is compressed is also approximately linear. The quality factor 

increased from 337Q   (absence of compression) to 678Q   (maximum compression) as the 

distance between wires is reduced. Considering the same criteria that was used to analyze the 

previous metrics, we found that the dephasing time decreases from dt =1.7114 μs to dt  = 0.8557 μs. 

Moreover, this filter presents an 3.4811FoM  , which was calculated by using Equation (25) and 

considering that 
12

0 2.76 1090up   , 
12

0 2.7489 10low   , 
94.0 4 08 11up

f    and 

9 8. 6 101 81low
f   , respectively. Globally, these results are similar to what was obtained for the 

HDPE. 

 

Figure 8. Insertion loss in the frequency domain as a function of applied compression for PTFE host 

medium. 

4.2. Reduction in the Distance between Wires as a Function of Required Current 

After performing the analysis of the electromagnetic component, we will focus on the analysis 

of the mechanical component. In the following subsections, we intend to understand how much force 

it will take to make the device compress up to 25% according to the materials used for its assembly 

and, knowing that there is a possibility of controlling the compression magnetically, what will be the 

current required to reach each level of compression. Through preliminary mechanical simulations, 

we found out that 70 wires per array are sufficient to obtain the desired behavior of the device. We 

also decided to study how the number of wires influences its response. 



Photonics 2020, 7, 48 14 of 21 

4.2.1. HDPE 

Considering the theory associated with mechanical simulations, it is possible to predict the 

amount of force required to cause the desired distance between wires to be reduced in each case. By 

combining the theory used in the Elmer solver with the theory of magnetic circuits based on which 

the FEMM software solves the problems, we are able to discover the current required to cause the 

compression that allows the distance between wires to decrease. 

By analysing Figures 9 and 10, it is observed that, as expected, the higher the force to be applied 

to the device, the higher the current to be supplied to the magnetic circuit. To fully compress the 

device with 70 wires, we should supply 0.56 A to the magnetic circuit. 

 

Figure 9. Reduction in the distance between wires as a function of applied force and current for 10, 

30, 50 and 70 wires and a filter assembled with HDPE. 
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Figure 10. Reduction in the distance between wires as a function of applied current for 10, 30, 50 and 

70 wires and a device assembled with HDPE. 

4.2.2. PTFE 

Similar to the previous case, we obtained from the Elmer solver the range of forces to be applied 

to the filter in order to achieve each compression state. The results are presented in Figure 11. After 

that, we obtained from the FEMM solver the range of currents to be supplied to the magnetic circuit 

in order to compress the device according to the previous data, as can be seen in Figure 12. 

 

Figure 11. Reduction in the distance between wires as a function of applied force and current for 10, 

30, 50 and 70 wires and a filter assembled with PTFE. 

 

Figure 12. Reduction in the distance between wires as a function of applied current for 10, 30, 50 and 

70 wires and a device assembled with PTFE. 
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The curves for the applied force and the required current have the same slope for each scenario, 

in which the number of wires is increased. However, in this case of PTFE, both the force and the 

current values are much lower. We should note that, as the range of forces to be applied for each 

typology is different, the range of currents to be supplied will also be different. In order to achieve a 

full compression of the device with 70 wires, we should supply the magnetic circuit with 0.125 A, 

which is substantially lower than the one required for HDPE. 

4.3. Reflectance and Transmittance as a Function of Applied Force 

Finally, after performing electromagnetic and mechanical simulations, we can now use the 

information we obtained from both components to illustrate the reflectance/trasmittance as a function 

of the force applied to the filter for each host material that can be used to build the device. The 

following graphs show us the relationship between these quantities. It should be noted that the 

resonance frequency was fixed taking into account the case without compression (
HDPEtf  = 408 GHz 

and 
PTFEtf  = 437.5 GHZ, respectively).  

4.3.1. HDPE 

Through a careful analysis of Figures 13 and 14, we observe that, by increasing the number of 

wires per array, the more linear the response of the filter will be. Independently of the curve under 

analysis, the device response presents some saturation for high values of applied force. If we focus 

on the designs with 50 or more wires, we observe saturation for values greater than 8 mN. In spite of 

this fact, the device can reflect almost all of the incident wave (more than 90%) and, therefore, we can 

assume that the device presents an approximately linear response in the dynamic range under study. 

 

Figure 13. Reflectance as a function of applied force for 10, 30, 50 and 70 wires and a filter assembled 

with HDPE. 
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Figure 14. Transmittance as a function of applied force for 10, 30, 50 and 70 wires and a filter 

assembled with HDPE. 

Let us consider the case, in which we have a filter with 70 wires per array and an applied force 

of around 8 mN (beyond this value we enter in a saturation zone). Through Figure 9, we can see that 

the distance between wires for 8 mN of applied force is d = 17.5 μm. In turn, by analyzing Figures 5 

and 6, we observe that the resonance frequency of the filter is around 409.4 GHz. Table 3 shows the 

filter quality and performance parameters for the scenario under study: 

Table 3. Filter quality and performance parameters considering a distance between wires d = 17.5 μm. 

FWHM (GHz) Q td (µs) 

0.9 455 1.1848 

Although these metrics do not change with the increase in the number of wires, it will be 

important to quantify the sensitivity of the filter ( 111 S
s

F





), as we vary this parameter [21]. Table 

4 illustrates the sensitivity variation, considering a distance between wires d = 17.5 μm and a 

reflectance 11S  = 0.8901, as the number of wires per array increases: 

Table 4. Calculation of the sensitivity of the filter considering a distance between wires d = 17.5 μm. 

Number of Wires ∆� (mN) Sensitivity (N) 

10 4.09 26.87 

30 5.68 19.35 

50 6.68 16.45 

70 8 13.74 

The data from Table 4 shows that the sensitivity and linearity of the response of the device vary 

in opposite ways. Therefore, to have a sensitive device with an approximately linear response, it is 

necessary to establish a trade-off between these requirements. 
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4.3.2. PTFE 

The results for the PTFE host are shown in Figures 15 and 16. As can be seen, the curves obtained 

for this device model are not as linear as we observed in the previous case. When compared to the 

device built with HDPE, this filter is more sensitive, since it can cover the entire dynamic range with 

much less applied force (only 21.4% of the required force to fully compress the device built with 

HDPE). In spite of the linearity issues, we have a linear operating region that allows us to work with 

reflectances between 0.25 and 0.85, depending on the requirements of the application. For values of 

applied force greater than 1.20 mN, some saturation of the device response (independently of the 

curve under analysis) is observed.  

 

Figure 15. Reflectance as a function of applied force for 10, 30, 50 and 70 wires and a filter assembled 

with PTFE. 

 

Figure 16. Transmittance as a function of applied force for 10, 30, 50 and 70 wires and a filter 

assembled with PTFE. 
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Focusing on the scenario, in which we have a filter containing 70 wires per array and a limitation 

of the applied force of about 1.2 mN, we can see from Figure 11 that the distance between wires for 

1.2 mN of applied force is d = 18.5 μm. In turn, by analyzing Figures 7 and 8, we observe that the 

resonance frequency of the filter is around 438.4 GHz. Table 5 shows the filter quality and 

performance parameters for the scenario under study: 

Table 5. Filter quality and performance parameters considering a distance between wires d = 18.5 μm. 

FWHM (GHz) Q td (µs) 

1.1 399 1.4481 

In Table 6, the relationship between filter sensitivity and the increase in the number of wires is 

shown, considering the approach used in the previous case: 

Table 6. Calculation of the sensitivity of the filter considering a distance between wires d = 18.5 μm a 

reflectance 11S  = 0.6553. 

Number of Wires ∆� (mN) Sensitivity (N) 

10 0.657 524.66 

30 0.821 419.85 

50 0.965 357.2 

70 1.2 287.25 

The filter assembled with PTFE requires less force to be compressed and is very sensitive. 

However, the data from Table 6 suggest that the relationship between sensitivity and linearity of the 

response of the device is the same as was observed for the case where the filter was assembled with 

HDPE. Given the trade-off between these requirements, we should consider the filter assembled with 

HDPE, since it has the same good dynamics as the filter assembled with PTFE but has a much more 

linear response than the latter. 

5. Conclusions 

This work aimed to study a reconfigurable THz filter design, using frequency selective 

structures based on metamaterial resonators, so that it can be used in the development of sensor 

devices. The proposed filter is composed by two arrays of wires to provide greater cancellation of 

harmonics, higher dynamic range and enhanced frequency selectivity. The resonant effects result 

from carefully tuning the wire radius and the distance between wires, which can be altered so that 

only evanescent modes exist in the vicinity of the structure, allowing us to control the energy 

transmission and reflection. Due to its simplicity, this filter design is especially suited for the 

implementation of reconfigurable THz filters and optical modulators, since it transits from situations 

in which it presents a full transparency ( 11S  = 0) for a full opacity ( 11S  = 1). 

Two assembling hypotheses with different thermoplastic polymers materials were analyzed. 

The choice of these materials was essentially due to the fact that they are relatively easy to compress 

and exhibit low losses and low dispersion for the frequency band over 0.1 to 5 THz. Numerical 

simulation using the finite element method allowed us to study the variation of the electromagnetic 

and mechanical response of the device as compression was applied. 

Our results corroborated our theoretical model by proving that it is possible to design a filter 

with a very good dynamic range and a high sensitivity by following the proposed methodology. The 

model designed with HDPE presented a quite linear response when compared to the one designed 

with PTFE, which is more sensitive. This might be explained by the different electromagnetic and 

mechanical properties of these materials. 

For the model composed by HDPE, the required force to be applied to cause a reduction in the 

distance between wires is four times greater, when compared to the one that is required by the model 
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with PTFE. By analyzing the data from the simulations, it was also determined that the relation 

between wire spacing and the required current to compress the device is the same, when compared 

to the amount of force that should be applied to verify a shift on the resonance frequency. 
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