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Black holes are the simplest objects in the Universe. They correspond to extreme deformations of
spacetime geometry and can exist even devoid of matter. In general relativity, (electro)vacuum black holes
are uniquely determined by their mass, charge, and angular momentum. This feature follows from a
uniqueness theorem, which can be evaded if one considers higher dimensions or matter fields coupled to
gravity. Here we find that Einsteinian cubic gravity, a well-motivated modification of Einstein gravity that
includes third-order curvature corrections in accordance with low-energy effective theory expectations,
admits black hole solutions with charge greater than mass, when minimally coupled to a Maxwell field.
Moreover, we find that, in this regime, there can be two asymptotically flat black holes with the same
charge and mass, posing the first example of vacuum black hole nonuniqueness in four dimensions that is
free from pathologies. Examination of these black hole’s thermodynamics reveals that when two branches
coexist only the larger black hole is thermodynamically stable, while the smaller branch has negative
specific heat. Einsteinian cubic gravity unveils two further surprising features. The charged black holes do
not possess an inner horizon, in contrast with the usual Reissner-Nordström spacetime, thus avoiding the
need to resort to strong cosmic censorship to uphold determinism. In addition to black holes, there exists a
one-parameter family of naked singularity spacetimes sharing the same mass and charge as the former, but
not continuously connected with them. These naked singularities exist in the under-extremal regime, being
present even in pure (uncharged) Einsteinian cubic gravity.

DOI: 10.1103/PhysRevD.102.024035

I. INTRODUCTION

A hallmark of the Einstein-Maxwell theory that com-
bines general relativity (GR) with electrodynamics is the
validity of the celebrated black hole uniqueness theorem
[1–3]. It applies to stationary, asymptotically flat, four-
dimensional (4D) electrovacuum spacetimes and asserts
that all such black hole (BH) spacetimes are determined
uniquely by their mass, angular momentum, and electric
charge. Of course, the theorem can be evaded either by
coupling gravity with different matter or by considering
higher dimensions. Concerning the first option, the
Bartnik-McKinnon self-gravitating soliton in Einstein-
Yang-Mills theory shows that it is sufficient to promote

the Maxwell field to a non-Abelian gauge field [4].
Considering higher dimensions, the discovery by
Emparan and Reall of black rings in 5D [5], when
taken in conjunction with the existence of topologically
spherical Myers-Perry black holes [6], vividly illustrated
the inappropriateness of a straightforward application of
the theorem.
A third possibility to evade the uniqueness theorem is

to modify the gravitational sector of the theory. This is
the main purpose of the present paper. We explicitly
demonstrate black hole nonuniqueness in the context
of Einsteinian cubic gravity (ECG)—a higher derivative
gravity theory that has attracted much attention—when
coupled to a Maxwell field.
The nonrenormalizability of GR and the desire to

accommodate the observationally inferred cosmological
history of the Universe within a single framework have
sparked a great effort in the past 50 years to devise viable
extensions of Einstein gravity. Adopting the perspective of
low-energy effective theory, the Einstein-Hilbert term in the
gravitational action is but the first term in an infinite series
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of diffeomorphism invariants, with the additional terms
being higher order in derivatives and thus becoming
increasingly important in the ultraviolet. Such higher
curvature corrections to GR simultaneously enhance the
theory’s renormalizability behavior [7] and have the poten-
tial to accommodate early periods of inflation and late-time
acceleration, while avoiding the introduction of dark matter
[8]. The recently formulated ECG [9] and some of its
subsequent extensions incorporate all of these appealing
features [9–13], although its viability as a bare cosmologi-
cal model has been put into question [14]. In 4D, ECG is
the most general diffeomorphism-invariant metric theory of
gravity up to cubic order in curvature, whose linearized
spectrum on maximally symmetric backgrounds coincides
with that of GR, and for which static spherically symmetric
vacuum solutions are governed by a single equation of
motion. Moreover, the theory admits a well-defined limit to
GR, thus providing a phenomenologically interesting
extension [15,16].
Asymptotically flat black hole solutions of 4D ECG

were examined in [17,18]. The solutions are described by a
single metric function satisfying a nonlinear second-order
differential equation [see Eq. (5) below] that has to be
solved numerically, but all thermodynamic quantities can
be computed analytically since they follow from a local
analysis around the horizon. However, some startling
aspects went unnoticed, especially regarding nonunique-
ness of charged black holes, as well as the existence of
positive-energy horizonless solutions. We aim to fill this
gap here.
A uniqueness theorem in higher derivative gravity was

previously obtained in [19] but it applies only to a restricted
class of fðRÞ theories, for which the Lagrangian is a
polynomial in the Ricci scalar, leaving ECG (and any
metric theory whose Lagrangian contains contractions of
multiple Riemann tensors) outside its scope.
The nonuniqueness we uncover is not specific to ECG:

it is known to occur in quadratic gravity, even for neutral
static BHs [20–22]. In that case, a second branch of
BHs exists, in addition to the usual Schwarzschild solu-
tion, but they show unreasonable pathological behavior.
Furthermore, they are necessarily small in Planck units and
thus feature large curvatures near the horizon (indicating
even higher derivative corrections should be included). In
contrast, we will show that ECG-Maxwell theory with
coupling constant above a certain mass-dependent bound
contains two competing branches of BHs with the same
conserved charges (both of which are regular on and
outside the event horizon)—as long as the electric charge
is greater than the mass. In other words, BH nonuniqueness
occurs precisely in what would be called the over-extremal
regime in Einstein-Maxwell theory. Finally, by studying
horizonless (but singular) solutions, we find continuously
nonunique families of positive-energy naked singularities
sharing the same global conserved charges.

II. EINSTEINIAN CUBIC GRAVITY COUPLED TO
A MAXWELL FIELD

In 4D, ECG-Maxwell theory is determined by the action
S ¼ R

d4x
ffiffiffiffiffiffi−gp

L, where the Lagrangian is given by [23]

L ¼ 1

16πG
ðR − 2λG2PÞ − 1

4
FabFab: ð1Þ

Here, G is the Newton gravitational constant, R represents
the Ricci scalar, and the cubic-in-curvature correction to the
Einstein-Hilbert action is incorporated in

P ≡ 12Ra
c
b
dRc

e
d
fRe

a
f
b þ Rab

cdRcd
efRef

ab

− 12RabcdRacRbd þ 8Ra
bRb

cRc
a: ð2Þ

The coupling constant λ in Eq. (1) is chosen to be non-
negative; otherwise, the existence of asymptotically flat
Schwarzschild-like solutions is precluded [15] (a more
detailed analysis of the case with negative λ is discussed in
Appendix A). Einstein-Maxwell theory is recovered for
λ ¼ 0. The matter sector is composed only of an Abelian
gauge field Aa, whose field strength is Fab ¼ ∂aAb − ∂bAa.
From the action above, one derives the Einstein field
equations,

Eab ≡ EacdeRb
cde −

1

2
gabL − 2∇c∇dEacdb

¼ 8πG
�
FacFb

c −
1

4
gabFcdFcd

�
; ð3Þ

where Eabcd ≡ ∂L=∂Rabcd. These are complemented by
the standard Maxwell equations, ∇aFab ¼ 0, obtained by
varying (1) with respect to the gauge field.

III. CHARGED BLACK HOLES

Electrically charged spherically symmetric BHs of ECG
were studied in [18], though not thoroughly. When λ ¼ 0,
one naturally recovers the Reissner-Nordström (RN) sol-
ution, but at finite (positive) λ there can be strikingly
marked differences, namely, the absence of a Cauchy
horizon in the interior of the BH, the appearance of event
horizons in parameter ranges that would naively correspond
to over-extremal regimes, and the coexistence of two BHs
with the same conserved charges under such circumstances,
as we now show.
We take the line element to be of the form

ds2 ¼ gabdxadxb ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2: ð4Þ

Generic static, spherically symmetric spacetimes need
not obey gttgrr ¼ −1 necessarily, but Eq. (3) admits solu-
tions with this property [17,18], to which case we shall
restrict our considerations. As for the Maxwell field, we
take an electric ansatz, Aa ¼ A0ðrÞδta. Solving the Maxwell
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equation yields A0ðrÞ ¼ Q=
ffiffiffiffiffiffi
4π

p
r, where Q is the electric

charge of the solution. Plugging this in the modified
Einstein equations (3) results in a single equation to be
satisfied by the blackening factor fðrÞ,

2GM −
GQ2

r
¼ −ðf − 1Þr−G2λ

�
4f03 þ 12

f02

r

− 24fðf − 1Þf
0

r2
− 12ff00

�
f0 −

2ðf − 1Þ
r

��
:

ð5Þ

The parameter M appears as an integration constant and
corresponds to the mass of the spacetime. This equation is
not amenable to exact analytic treatment, so one either
resorts to approximations [15] or to numerical integration.
Here we highlight the most relevant aspects of this
procedure. More details can be found in [15,18,24].
An analysis of the large-r asymptotic behavior of (5)

reveals that, besides the perturbative corrections (in λ) to
the RN solution fRNðrÞ ¼ 1–2GM=rþGQ2=r2, there are
also nonperturbative corrections [15,18]. While the former
are rational functions of r which depend on the charge Q,
the latter are either growing or decaying exponentials in
r5=2=

ffiffiffi
λ

p
(actually modified Bessel functions), which take

the same form as in the neutral case. Requiring the absence
of the growing mode leaves a three-parameter family of
possible asymptotically flat geometries (see Appendix B
for more details). On the other hand, roots of fðrÞ identify
possible event horizons of the spacetime, which will be
denoted by rh and happen to be singular points of (5). By
Taylor expanding around such a point (assuming f is
regular there) fðrÞ ¼ P∞

n¼1 anðr − rhÞn, and solving (5)
order by order in powers of ðr − rhÞ, the coefficients an can
be determined. The two lowest-order equations form an
algebraic system that is used to fix rh and the surface
gravity kg ≡ f0ðrhÞ=2 ¼ a1=2 in terms of λ and Q [25],

r̂h − 1þ Q̂2

4r̂h
− 16λ̂k̂2g

�
2k̂g þ

3

r̂h

�
¼ 0; ð6aÞ

1 −
Q̂2

4r̂2h
− 2k̂gr̂h − 48λ̂

k̂2g
r̂2h

¼ 0: ð6bÞ

Here we have scaled out the mass M by using dimension-
less quantities, defined according to

r̂h ≡ rh
2GM

; k̂g ≡ 2GMkg;

Q̂≡ Qffiffiffiffi
G

p
M

; λ̂≡ G2λ

ð2GMÞ4 : ð7Þ

For jQ̂j < 1, system (6) has a unique real solution with
kg > 0, which is to be identified with the black hole’s

event horizon. Here we restrict our attention to positive
cubic couplings for the reasons already mentioned. See
Appendix A for an analysis of the algebraic conditions (6)
when λ < 0.
Interestingly for

λ̂ > λ̂b ≡ 1=768; ð8Þ
there exists a finite interval, 1 ≤ jQ̂j < Q̂max, where there
are two real solutions with kg > 0, suggesting that charged
BHs in ECG need not comply with the extremality bound
Q ≤

ffiffiffiffi
G

p
M of Einstein-Maxwell theory. For jQ̂j > Q̂max,

solutions with kg > 0 cease to exist. All this is illustrated in
Fig. 1. Clearly, Q̂max is a function of λ, which can be easily
determined by finding the root of dQ=drh.
We emphasize that the value λ̂b in Eq. (8) is exact: it

follows from a perturbative study around the extremal
point, which is in excellent agreement with the numerics.
Namely, by perturbing Eq. (6) around the extremal point
ðr̂h; Q̂; k̂gÞ ¼ ð1

2
; 1; 0Þ, using the surface gravity as the

small perturbation parameter, one obtains the relation
between r̂h and Q̂ in parametrized form. For instance,
up to cubic corrections in k̂g, one finds

r̂h ¼
1

2
þ 1

4
k̂g þ

1þ 384λ̂

4
k̂2g þOðk̂3gÞ; ð9aÞ

Q̂ ¼ 1þ 768λ̂ − 1

8
k̂2g þOðk̂3gÞ: ð9bÞ

Of course, one can extend the perturbative analysis to
arbitrarily high orders in k̂g. Including terms up to tenth
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FIG. 1. Horizon radius rh as a function ofQ (both in units of the
mass M) for various λ. The lowest red curve corresponds to GR
(λ ¼ 0), in which case the black dot at the end of the curve
indicates the extremal solution, for which rh ¼ GM ¼ ffiffiffiffi

G
p

Q.
Observe that for positive λ (actually for λ̂ > λ̂b, more precisely)
there are choices of Q >

ffiffiffiffi
G

p
M with two possible solutions for

rh. The green diamonds indicate the horizon radius of two
coexisting BHs with the same M and Q, whose profiles are
shown in Fig. 3.
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order is enough to obtain excellent approximations to the
numerical results near the extremal point, as illustrated
in Fig. 2. This shows that charged BHs in ECG can make
an excursion to the over-extremal regime, but only when
condition (8) is satisfied. This bound λ̂ > λ̂b is mass
dependent, so assuming quantum gravity sets in at the
Planck scale it translates into a “uniqueness” bound,
λ ≤ G2M4

Pl=48.
To confirm that both local solutions for rh are actually

associated with asymptotically flat spacetimes, we must
integrate (5) out to large radii and match the corresponding
asymptotic behavior. This is done numerically by deter-
mining the coefficients an up to some order and then using
the truncated series (which has finite radius of conver-
gence) to obtain initial conditions for the integration,
starting slightly away from the singular point of the
equation fðrhÞ ¼ 0. In practice, truncating at n ¼ 10 is
good enough, and an initial integration point r̂i displaced
by 1% relative to r̂h falls well within the radius of
convergence. The expansion has a single free parameter,
a2, in terms of which all other coefficients are fixed. See
Appendix C for details about the near-horizon expansion.
The generic expressions obtained for the expansion

coefficients are only valid for nonextremal horizons,
kg ≠ 0. Indeed, it turns out that the series expansion for
the extremal case, kg ¼ 0, does not have any free param-
eter: a2 is also fixed in that particular case. Focusing on the
nonextremal cases, it is always possible to fine-tune a2 at
the horizon to obtain an asymptotically flat solution that
approaches the RN profile asymptotically, even for the
cases in which there are two possible values for rh, as
shown in Fig. 3, corresponding to a larger and a smaller
BH. The same behavior of fðrÞ is reproduced for other
values of λ and appears to be generic. This entails discrete
(twofold) nonuniqueness of BHs in ECG-Maxwell theory.
Note the absence of an inner (or Cauchy) horizon in both

black hole spacetimes, so the causal structure of the interior
of these BHs is strikingly different from that of the
(subextremal) RN solutions, and instead is qualitatively
similar to that of the Schwarzschild solution, thus avoiding
any issues with the strong cosmic censorship [26]. This
behavior appears to be generic for charged BHs in ECG,
implying that they do not suffer from any form of mass
inflation problem [27]. In the extremal case, there is no free
parameter to adjust and generically a regular asymptotically
flat solution cannot be obtained.

A. Thermodynamics of charged ECG black holes

Similarly to what happens in quadratic gravity [20], the
first law of BH thermodynamics is satisfied by the two
coexisting solutions [17,18]. We now check that the larger
(smaller) black hole branch has positive (negative) specific
heat. Therefore, in the regime of parameters where there is
nonuniqueness only, the larger black holes are thermody-
namically stable. By using Wald’s formula [28,29], it is
possible to evaluate the entropy of these black hole
solutions [18]. The expressions for the temperature T ¼
kg=2π and the mass M ¼ r0=ð2GÞ can instead be obtained
from system (6). These are given by

T ¼ r2h − q̃
2πðl3 þ r3hÞ

; ð10Þ

S ¼ πr2h
G

�
1 −

48G2λðr2h − q̃Þð2l3 − q̃rh þ 3r3hÞ
r3hðl3 þ r3hÞ2

�
; ð11Þ

r0 ¼ rh þ
q̃
rh

−
16G2λðr2h − q̃Þ2ð5r3h − 2q̃rh þ 3l3Þ

rhðl3 þ r3hÞ3
; ð12Þ
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FIG. 2. Zoom-in around the extremal point (see Fig. 1). The
solid blue lines show the numerical results, while the dotted red
curves follow from the perturbative analysis. Different shades
correspond to distinct choices of the cubic coupling. There exist
over-extremal black holes only when λ̂ > 768−1 ≃ 0.0013.
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FIG. 3. The profile of the blackening factor fðrÞ for two distinct
BH solutions (dark blue and light blue solid lines) with the same
conserved charges M and Q. Nonuniqueness is demonstrated for
the choices of λ̂ ¼ 1 and Q̂ ¼ 1.2 shown in Fig. 1 with green
diamonds. The dashed red line is the corresponding RN over-
extremal solution, valid for λ ¼ 0.
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where q̃≡GQ2 and l≡ ½48G2λðr2h − q̃Þ þ r6h�1=6. Useful
information regarding the coexisting BHs can be extracted
from the behavior of the specific heat at constant charge
C ¼ Tð∂S=∂TÞQ shown in Fig. 4. It can be seen that forffiffiffiffi
G

p
M < Q the two competing BH branches have specific

heats with opposite signs. Working in the canonical
ensemble by keeping the charge fixed, it is of interest to
evaluate the free energy F ¼ M − TS. It turns out that the
thermodynamically stable larger BHs are also the ones with
lowest free energy [30].

IV. NAKED SINGULARITIES

In addition to the BHs discussed above, the theory
admits horizonless solutions with positive mass but which
are nevertheless singular, so they represent naked singu-
larities. As for BHs, they are determined by a single metric
function fðrÞ, the only distinction being that for naked
singularities this blackening factor has no roots. To
demonstrate their existence, we focus on the neutral case
(i.e., vacuum ECG) but similar results are obtained for the
charged case. Uncharged BH solutions can be obtained
numerically following the same strategy. Consider now
integrating, not from the horizon, but from the origin.
Equation (5) also has a singular point at r ¼ 0. Assuming f
is analytic there, it admits an expansion in Taylor series
fðrÞ ¼ P∞

n¼0 cnr
n, and the coefficients of this expansion

cn can be determined by solving (5) order by order in
powers of r. The result is that two of them, namely, c0 ≡
fð0Þ and c2 ≡ 1

2
f00ð0Þ, are free parameters, in terms of

which all others can be expressed. In particular, f0ð0Þ ¼ 0,
so that near the origin

fðrÞ ¼ c0 þ c2r2 þ
GM

36G2λð1 − c0Þc0
r3 −

1 − 48G2λc22
192G2λc0

r4

þ GMc2
180G2λc20ð1 − c0Þ

r5 þOðr6Þ: ð13Þ

Therefore, there is one additional free parameter compared
to the expansion around a horizon: the mass M and the
value of f at the origin, c0 < 1 (the parameter c2 has to be
fine-tuned to get asymptotically flat solutions). The exist-
ence of such horizonless solutions (shown in Fig. 5) does
not seem to impose an upper bound on λ̂, but the range of c0
values that yield asymptotically flat solutions shrinks as λ̂
decreases, and we were not able to find global solutions for
G2λ≲ 0.62ðGMÞ4 [33]. As the Kretschmann scalar near
the origin behaves as ∼4ðc0 − 1Þ2r−4, the strong curvature
region can be made arbitrarily small by fine-tuning c0 close
to 1. However, it cannot be made fully regular (as was done
in [34] for quadratic gravity sourced with incompressible
matter) without sending M to zero and retrieving flat
spacetime.

V. DISCUSSION

We have demonstrated that static charged BHs in 4D
ECG differ notoriously from their counterparts in GR in
several aspects: nonuniqueness of regular solutions, non-
compliance with the extremality bound, and the absence of
an inner horizon. Given that the Reissner-Norsdtröm
solution displays many properties analogous to rotating
neutral BHs, it is tempting to speculate that similar features
might be present even for vacuum ECG BHs. Little is
known about rotating solutions in ECG. The only results
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FIG. 4. Specific heat as a function ofM and for different values
of λ̄≡ λ=Q4, at fixed charge. ForM < Q there are two coexisting
branches. The larger BHs (which have larger rh=M) display
positive specific heat, while smaller BHs have negative specific
heat. In the inset, the corresponding temperatures as a function of
M (at fixed charge) are shown.
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FIG. 5. The profile of the blackening factor fðrÞ for uncharged
BHs (solid dark blue line) and naked singularities (solid light blue
lines) in ECG. All solutions have the same M, but they are
distinguished by different values at the origin. The dashed red line
represents the Schwarzschild solution of GR, which is a valid
solution only for λ ¼ 0.
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obtained so far are perturbative in the coupling [35] or refer
to the near-horizon geometries of extremal BHs [36], where
similar discrete degeneracy of near-horizon solutions was
found. Interestingly, the existence of “small” over-extremal
solutions has been related to the weak gravity conjecture
[37], providing a decay channel for extremal charged BHs.
The horizonless solutions, despite being singular space-

times, present a more drastic continuous type of non-
uniqueness. Moreover, since the potential r−2fðrÞ does not
feature extrema for these solutions, such naked singularities
do not have a photon sphere, so gravitational lensing
signatures are markedly different from those of BHs
[15,16]. An interesting question is whether a naked
singularity can be formed under a dynamical process
starting from some regular initial state, thus addressing
the weak cosmic censorship conjecture [38,39] in ECG.
We have focused on cubic gravity. It remains to be seen if

our findings extend to higher derivative gravities, beyond
cubic order [24]. The effect of adding a cosmological
constant or the natural inclusion of cubic terms also in the
Maxwell field strength require separate studies.
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APPENDIX A: NEGATIVE COUPLING
CONSTANT

The algebraic system (6),

r̂h − 1þ Q̂2

4r̂h
− 16λ̂k̂2g

�
2k̂g þ

3

r̂h

�
¼ 0; ðA1Þ

1 −
Q̂2

4r̂2h
− 2k̂gr̂h − 48λ̂

k̂2g
r̂2h

¼ 0; ðA2Þ

admits solutions for the horizon radius (with positive
temperature) also when λ < 0. In fact, there can be up to
three distinct solutions for rh, as shown in Fig. 6. However,
these local horizons cannot incorporate an asymptotically
flat spacetime, one that is regular on and outside the
horizon. The reason is simple: according to Eq. (B1) below,
at large r, the blackening factor would become oscillatory
instead of approaching the RN behavior. This argument
strictly applies only in the small (negative) coupling regime
and is in agreement with numerical explorations. It does not
seem to be possible to fine-tune the horizon free parameter
in such a way that the integration proceeds to arbitrarily
large radius when λ < 0: inevitably a singular point is met,
where f diverges irrespective of the magnitude of the
coupling constant.

APPENDIX B: ASYMPTOTIC EXPANSION

Assuming that in the large-r limit the spacetime is well
approximated by the RN solution plus small corrections,
one can determine the asymptotic behavior of fðrÞ, as was
done in [15,18]. This analysis yields a three-parameter
family of solutions of the following form:

fðrÞ ≃ 1 −
r0
r
þ GQ2

r2
− 4G2λ

�
27

r20
r6

− 23
r30
r7

þ 2GQ2

r6

�
2GQ2

r2

�
19

GQ2

r2
þ 24

�
−
6r0
r

�
14

GQ2

r2
þ 9

�
þ 57

r20
r2

��

þO
�
λ2;

r30
r11

�
þ Br1=4 exp

�
−

r5=2

15G
ffiffiffiffiffiffiffi
λr0

p
�
; ðB1Þ

where r0 ≡ 2GM, and the free parameters are the mass M, the charge Q, and the coefficient B. The general solution (for
small λ) would have an additional term, Ar1=4 expð r5=2

15G
ffiffiffiffiffi
λr0

p Þ, but demanding asymptotic flatness imposes A ¼ 0. On the

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Q / ( G M)

r h
/(

2G
M

)

RN

0.002

0.003

0.0035

0.004

0.005

0.01= –

= –

= –

= –

= –

= –

FIG. 6. Horizon radius rh—solutions of (6) with positive
temperature—as a function of the electric chargeQ for a selection
of nonpositive values of the coupling λ. The upper red curve
corresponds to general relativity (λ ¼ 0). In a certain window of
negative values of λ, there can be up to three possible local
solutions for the horizon radius. However, neither of them
extends to global asymptotically flat spacetimes that are regular
on and outside the horizon.
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other hand, the coefficient of the decaying exponential, B, has to be fine-tuned so that the asymptotic solution matches
smoothly with the near-horizon solution, to which we turn next.

APPENDIX C: HORIZON EXPANSION COEFFICIENTS

In the nonextremal case, kg ≠ 0, all coefficients in the Taylor expansion of the metric function around the horizon,

fðrÞ ¼
X∞
n¼1

anðr − rhÞn; ðC1Þ

with n ≥ 3 can be expressed in terms of rh; kg; Q, and a2. For instance, the first two such coefficients are given by

a3 ¼
48G2λ½−a22kgr3h þ ð3þ 4kgrhÞða2kgrh − k2gÞ� þ a2r4h þ 2kgr3h − GQ2

144G2λkgr2hð1þ kgrhÞ
; ðC2Þ

a4 ¼
1

55296G4λ2k2gr3hð1þ kgrhÞ2
�
−r5h

�
GQ2

r2h
− a2r2h − 2kgrh

�

− 48G2λkgr2h

�
GQ2

r2h

�
−
a2rh
kg

− 7a2r2h þ 9kgrh þ 4

�
þ kgrh

��
a2rh
kg

�
2

þ a2rh
kg

ð8a2r2h − 11Þ− 5a2r2h − 20kgrh − 11

��

þ 2304G4λ2k3g

�
5kgrhð8a2r2h − 5Þ þ a2rh

kg
ða2r2hð6a2r2h − 17Þ þ 6Þ þ ð7a2r2hð5− 4a2r2hÞ− 6Þ− 24k2gr2h

��
: ðC3Þ

Recall the horizon radius and the surface gravity are determined by conditions (6). Therefore, once the massM, the charge
Q, and the coupling λ are fixed, there is a single free parameter controlling the solutions near the horizon, namely a2.
Considering both the near-horizon and the asymptotic regions, the total number of free parameters (two) is just the right

amount to allow at most a discrete set of smooth solutions to the second-order differential equation (5). Clearly, the extremal
case (kg ¼ 0) has to be treated separately. Under this condition, the solution of (6) is simply rh ¼ GM andQ ¼ � ffiffiffiffi

G
p

M and
the first nontrivial coefficients of the series (C1) read

a2 ¼
1

ðGMÞ2 ; ðC4Þ

a3 ¼ −
2

ðGMÞ3
ðGMÞ4 þ 16G2λ

ðGMÞ4 − 48G2λ
; ðC5Þ

a4 ¼
3ðGMÞ12 þ 128G2λðGMÞ8 − 2304G4λ2ðGMÞ4 þ 73728G6λ3

ðGMÞ4½ðGMÞ4 − 144G2λ�½ðGMÞ4 − 48G2λ�2 : ðC6Þ

Hence, an extremal horizon has no free parameter to adjust once the mass and the coupling are fixed. A regular,
asymptotically flat solution is not expected to exist in this case.
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