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1 Introduction

Supersymmetric gauge theories in five and six dimensions have undergone a surge of ex-

tensive and diverse investigations in recent years. They have played critical roles in the

understanding of the strong coupling dynamics of quantum field theory, of M-theory where

they can be engineered, and of various problems in geometry. Their compactifications gen-

erate many interesting theories in lower dimensions, which can be used to elucidate novel

features of lower-dimensional quantum field theories from a geometric perspective.

Five-dimensional gauge theories with N = 1 supersymmetry can be engineered from

compactifications of M-theory on Calabi-Yau threefolds [1–3], which are related to the

embedding of topological string theory into M-theory [4]. In six dimensions the worldvol-

ume theory of coincident M5-branes is a six-dimensional N = (2, 0) superconformal field

theory. Twisted compactification of this worldvolume theory on an n-punctured Riemann

surface Σh,n of genus h generically engineers an N = 2 superconformal field theory of class

S in four dimensions [5, 6], which upon further twisted compactification on a circle S1

in the Schur limit is conjecturally equivalent to two-dimensional q-deformed Yang-Mills

theory on Σh,n in the zero area limit [7]. Because of the lack of a Lagrangian descrip-

tion of this six-dimensional theory, its twisted partition function is most easily computed

by dimensionally reducing on a circle of radius β and computing the twisted partition

function of five-dimensional N = 2 supersymmetric Yang-Mills theory with gauge cou-

pling g2
YM = 2π β [8, 9]; the duality with two-dimensional q-deformed Yang-Mills theory in

this five-dimensional setting was checked by [10] using explicit supersymmetric localization

techniques. From the four-dimensional perspective, the class S theory is then equivalent to

a three-dimensional theory on a certain squashed deformation Mb of the three-dimensional

part of the compactification in six dimensions. In this paper we mostly focus on the round

three-sphere S3 and its squashed deformations S3
b .

These dualities have by now been extensively discussed. The purpose of the present

paper is to survey and reinvestigate these correspondences from a new and more detailed

perspective; we give extensive pointers to and comparisons with relevant previous works

on the subject as we go along. The main technique which we exploit in this paper is

cohomological localization, as pioneered by Källén for three-dimensional theories in [11],

and subsequently extended to five dimensions by Källén, Qiu and Zabzine in [12, 13]. This

enables a unified treatment of supersymmetric gauge theories in three and five dimensions

using solely topological techniques based on the Atiyah-Singer index theorem, which ex-

tends and simplifies previous treatments based on supersymmetric localization; this method

is ultimately one of the main messages of the present work. Compared to previous work

on the subject, we study full topologically twisted theories, instead of partially twisted

theories, with which we further extend general results in the literature on cohomological

localization. Our simplified treatment also unavoidably comes with some limitations, and

we shall extensively discuss which backgrounds do not fit into our localization framework.

In three dimensions we provide different simplified derivations of some known scat-

tered results, treated in a unified framework. For example, the index theory calculations of

localization on S3
b in [14] uses a procedure which is different from that of [11], and their Lie
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derivative appearing in the square of the supercharge is not along the Reeb vector field. We

will explain this point thoroughly in this paper. When the supersymmetry transformations

of [14, appendix B] are put into the cohomological form of [11], index theorem calculations

can be applied to obtain the same results in a more economical way. Generally, our proce-

dure of topological twisting rigorously justifies the localization calculations we employ at

the field theory level; in particular, it justifies the usage of the index formula and related

techniques from [12, 13].

In five dimensions the core of our work starts, where the reader versed in localization

techniques may begin. We adapt the formalism of [12, 13] to reobtain some known results

in a different way using a twisted gauge theory approach and also extend some general

results (see in particular our localization formulas (4.23) and (4.32)). In particular, we

rederive the results of [15, 16] through the Atiyah-Singer index theorem, first in the case of

S3 × Σh,0 (which for h = 0 is a relatively straightforward adaptation from the literature),

and then extending it to S3
b × Σh,0. We also describe the pushdown of these theories to

the horizontal four-dimensional part of the geometry, which was justified in [16] only for

h = 0, and is different from [13]. We study the resulting theory in detail and describe its

precise relation to q-deformed Yang-Mills theory on Σh,0; we improve on various results in

the literature (with some overlap with [16]), for example determining the two-dimensional

theory at non-zero area, and pay more attention to the underlying matrix model, which has

not been previously considered. For non-trivial squashing parameters b 6= 1, the resulting

two-dimensional gauge theory is new and we refer to it as a squashed q-deformation of

Yang-Mills theory on Σh,0. When b2 ∈ Q, we show that this theory is closely related

to the q-deformations of Yang-Mills theory considered in [17] in a completely different

setting, which in turn is related to three-dimensional Chern-Simons theory on general lens

spaces L(p, s).

The outline of the remainder of this paper is as follows. We have endeavoured through-

out to give a relatively self-contained presentation, while glossing over some well-known

technical aspects for which we refer to the pertinent literature; thus some of the earlier

parts of this paper are somewhat expository in nature. We begin in section 2 by giving

a more detailed introduction and background to the setting discussed briefly above, sum-

marising the geometric settings and classifications, techniques and notation that will be

used throughout this paper.

Section 3 is dedicated to the three-dimensional case, wherein we review the ideas

behind Källén’s cohomological localization technique, and explain how they are modified

on squashed manifolds. We discuss the construction of the cohomological gauge theory,

the computation of the one-loop determinants for the vector multiplet on the two possible

classes of Seifert three-manifolds admitting N = 2 supersymmetry, and the computation

of the hypermultiplet one-loop determinants. We describe several explicit applications of

our localization formulas.

Section 4 presents the five-dimensional analog of our considerations from section 3. We

describe the cohomological field theory and derive the one-loop determinants of the vector

multiplet in the two classes of Seifert five-manifolds admitting N = 1 supersymmetry. We

describe explicit applications of our localization formulas, and we briefly address the proof
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of Borel summability of the perturbative partition functions. We also explain in detail the

relationship with a four-dimensional theory.

Section 5 explains the relation between our five-dimensional cohomological field the-

ories and two-dimensional Yang-Mills theory. We derive the standard q-deformation of

Yang-Mills theory on Σh,0 through a localization calculation on S3×Σh,0, and subsequently

extend these considerations to the squashed deformations S3
b ×Σh,0 where we obtain a new

two-parameter deformation. We investigate the matrix model in detail and derive a new

correspondence with Chern-Simons gauge theory on lens spaces L(p, s). We conclude by

briefly addressing how to obtain more general deformations of two-dimensional Yang-Mills

theory through localization calculations in higher dimensions.

Three appendices at the end of the paper provide various technical details complement-

ing some of the analysis in the main text. Appendix A summarises our conventions and

notation for spinors, which are adapted to treat the three-dimensional and five-dimensional

cases, as well as the vector multiplets and matter hypermultiplets, in a unified way. Ap-

pendix B provides mathematical details of the different types of squashings of spheres that

preserve N = 2 supersymmetry in three dimensions. Appendix C provides some mathe-

matical details on Sasaki-Einstein manifolds, which preserve N = 1 supersymmetry in five

dimensions, and we briefly review the formalism of [18] to better explain why our results

appear to be so different from those of [18, 19].

2 Preliminaries on superconformal field theories and localization

In this preliminary section we collect the relevant background material that will be used

throughout this paper. We begin with a discussion of superconformal field theories in six

dimensions, which gives one of the primary motivations behind the present investigations.

We discuss how certain compactifications of these theories on a Riemann surface suggest a

duality between four-dimensional superconformal theories and the standard q-deformation

of two-dimensional Yang-Mills theory. The purpose of this paper is to investigate in detail

how this duality is modified in the case where the three-dimensional part of the compactifi-

cation is a squashed geometry, and we describe how cohomological localization techniques

for superconformal field theories on Seifert manifolds will be applied to investigate the

correspondence.

2.1 Squashed geometry and six-dimensional superconformal field theories

Consider the six-dimensional superconformal (2, 0) theory with gauge group G of ADE

type on a twisted compactification of the form

M6 = S1 × S3 × Σh , (2.1)

where S3 is the standard round three-sphere and Σh is a compact oriented Riemann surface

of genus h without boundaries. This setup dictates a remarkable duality: the correlators

of a certain two-dimensional topological quantum field theory on Σh compute the partition

function of a four-dimensional N = 2 field theory of class S on S1 × S3, which is the
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superconformal index [20]

I(u, q, t) = Tr (−1)F
(
t

u q

)r

uJ+ qJ− tR , (2.2)

where J± are the rotation generators in the two orthogonal planes constructed from the

Cartan generators of the Lorentz SU(2)L×SU(2)R isometry group of S3, the operator r is the

U(1)r generator, and R is the SU(2)R generator of R-symmetries. The superconformal index

of four-dimensional N = 2 superconformal field theories was originally introduced in [21,

22], and it is a highly non-trivial function of the three superconformal fugacities (u, q, t).

However, this duality is difficult to test because our current understanding of the six-

dimensional (2, 0) theory is rather incomplete. Instead, we dimensionally reduce over S1,

which yields five-dimensional supersymmetric Yang-Mills theory. The Yang-Mills coupling

in five dimensions has dimensions of length, g2
YM = 2π β, where β is the radius of S1.

The dimensional reduction over S1 of the supersymmetric partition function on S1× S3 is

achieved by assigning scaled chemical potentials to the fugacities according to

q = e 2π iβ ε1 , t = e 2π iβ ε2 and u = e 2π iβ , (2.3)

and taking the limit β → 0. Then the four-dimensional index becomes a three-dimensional

ellipsoidal partition function [23–25], i.e. the partition function on the squashed sphere S3
b

with squashing parameter

b =

√
ε1
ε2
. (2.4)

This deformation of the three-sphere of radius r =
√
ε1 ε2 can be parametrized by the

ellipsoid in C2 defined by

b2 |z1|2 + b−2 |z2|2 = r2 , (2.5)

which has isometry group U(1)×U(1). In this setting the deformation parameters (ε1, ε2)

can also be interpreted as equivariant parameters of the Ω-background [26], which are the

holonomies of the twisted M-theory compactification defined by an S1-bundle over M6×TN
realised as the quotient of R×M6 × TN by the Z-action

n · (τ, x, z1, z2) = (τ + 2π β n, x, qn z1, t
−n z2) , (2.6)

where n ∈ Z, τ ∈ R, x ∈ M6 and (z1, z2) ∈ C2 are local coordinates on the Taub-NUT

space TN.

Hence we consider supersymmetric Yang-Mills theory on the five-manifold

M5 = S3
b × Σh . (2.7)

This theory sits in the infrared of a renormalization group flow triggered by a relevant

deformation of a five-dimensional superconformal field theory in the ultraviolet [27]. For

the ellipsoid S3
b [28] described above, the five-dimensional theory has four supercharges and

can alternatively be taken to directly descend from the N = (1, 0) superconformal field

theory on S1 × S3
b × Σh, with only one chiral Killing spinor in six dimensions. On the
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other hand, from the present perspective it is more natural to use the squashed sphere S3
b

of [29] (see appendix B for details), for which the five-dimensional theory descends from

twisted compactification of the N = (2, 0) superconformal field theory on S1 × S3 × Σh

with round S3. The geometric meaning of the squashing parameter b is different in the two

cases: b > 0 for the ellipsoid, while b ∈ C with |b| = 1 for the squashed sphere. From the

point of view of the matrix ensemble we will find in section 5.4, the natural choice would

be b > 0. In section 5 we consider both cases. We will find that, regardless of what choice

we make for S3
b , the partition function is the same and is a holomorphic function of b in

the punctured complex plane C \ {0}, so we may start with either the squashed sphere or

the ellipsoid and then analytically continue the result.

2.2 Reductions to two and three dimensions

By a localization calculation over the squashed sphere S3
b , we will identify the partition

function of the two-dimensional gauge theory dual on Σh of the N = 2 theory of class

S. In this paper we are exclusively interested in the slice of the superconformal fugacity

space defined by the Schur limit u = 0, q = t of the superconformal index which is the

Schur index

I(q) = Tr (−1)F qJ−+R , (2.8)

where the trace is now restricted to states with U(1)r charge r = J+. In this case the index

was computed in [7, 30] from a topological quantum field theory on the Riemann surface

Σh, which can be identified with the zero area limit vol(Σh) = 0 of the usual q-deformed

two-dimensional Yang-Mills theory; the duality with this two-dimensional gauge theory is

confirmed in [10] by an explicit localization computation on S3 × Σh (i.e. for b = 1). The

q-deformed Yang-Mills theory is not topological when vol(Σh) 6= 0, but it still has a natural

class S theory interpretation as the supersymmetric partition function of the (2, 0) theory

on S1 × S3 × Σh where the area of the ultraviolet curve Σh is kept finite [31]. We shall

study this proposal explicitly via a localization calculation on the five-manifold S3
b × Σh.

The two-dimensional theory we find is a further deformation by the squashing parameter

b, that we call ‘squashed’ q-deformed Yang-Mills theory. For later use, let us now briefly

review the standard q-deformation of two-dimensional Yang-Mills theory.

Let g be the Lie algebra of a connected Lie group G. Let 4 be the root system of

g and 4+ the system of positive roots; similarly let Λ ∼= Zrank(G) be the weight lattice of

g with dominant weights Λ+. We fix an invariant bilinear form (−,−) on g, usually the

Killing form. Let

δ =
1

2

∑
α∈4+

α (2.9)

be the Weyl vector of g. The vector 2 δ is always a weight of g; if G is semi-simple, then δ

is also a weight and we can identify it with an integer vector δ ∈ Zrank(G).

The partition function for the q-deformation of Yang-Mills theory with gauge group G

on a closed oriented Riemann surface Σh of genus h ≥ 0 can be written as a generalization

– 5 –
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of the Migdal heat kernel expansion given by [32]

Zh,p(q) =
∑
λ∈Λ+

dimq(Rλ)2−2h q
p
2

(λ+2 δ,λ) , (2.10)

where p ∈ Z is a discrete parameter and the sum runs over all isomorphism classes of

irreducible unitary representations Rλ of G which are parametrized by dominant weights

λ ∈ Λ+. The deformation parameter

q = e−gstr (2.11)

is identified with the coupling constant gstr in topological string theory. The quantum

dimension of the representation Rλ labelled by λ ∈ Λ+ is

dimq(Rλ) =
∏
α∈4+

[
(λ+ δ, α)

]
q[

(δ, α)
]
q

, (2.12)

where

[x]q =
qx/2 − q−x/2

q − q−1
(2.13)

for x ∈ R is a q-number. This theory is closely related to Chern-Simons theory on a

principal U(1)-bundle of degree p over Σh [33].

For many computations it is useful to have an explicit expression for the partition

function (2.10) in terms of highest weight variables. For this, we define shifted weights
~k ∈ Zrank(G) by

~k = λ+ δ , (2.14)

and use the Weyl reflection symmetry of the summand of the partition function (2.10) to

remove the restriction to the fundamental chamber of the summation over ~k. Up to overall

normalization, the partition function (2.10) can thus be written as

Zh,p(q) =
∑

~k∈(Zrank(G))reg

∆(gstr
~k )2−2h e−

p gstr
2

(~k,~k ) , (2.15)

where the Weyl determinant is given by

∆(~x ) =
∏
α∈4+

2 sinh
(α, ~x )

2
(2.16)

for ~x = (x1, . . . , xrank(G)) ∈ Crank(G). The sum in (2.15) is restricted to those shifted

weights where ∆(gstr
~k ) is non-zero, i.e. (α,~k ) 6= 0 for α ∈ 4+.

When the gauge group is the unitary group G = U(N), this two-dimensional gauge

theory is conjecturally a non-perturbative completion of topological string theory on the

local Calabi-Yau threefold which is the total space of the rank 2 holomorphic vector bundle

OΣh(p+ 2h− 2)⊕OΣh(−p) −→ Σh , (2.17)

– 6 –
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with N D4-branes wrapping the exceptional divisor OΣh(−p) and D2-branes wrapping

the base Σh [32]. In turn, for h = 0 the two-dimensional theory defines an analytical

continuation of Chern-Simons gauge theory on the lens space L(p, 1) to the case where q

is not a root of unity [34]. In section 5 we shall find that five-dimensional cohomological

localization over S3
b × Σh gives a squashed deformation of this theory at p = 1, which

for genus h = 0 and rational values p/s of the squashing parameter b2 is an analytical

continuation of Chern-Simons theory on the more general lens spaces L(p, s) ∼= S3
b .

The correspondence with three-dimensional field theories has also been studied from

other perspectives. In [35], the dimensional reduction of six-dimensional theories on S1 ×
S3
b × Σh is considered by reducing to five dimensions as above, compactifying on Σh,

and then obtaining a three-dimensional theory on the squashed sphere; this enables a

comparison of the two possible compactification paths: first along S1 and then on Σh to

obtain a theory on S3
b , or first along Σh to obtain a four-dimensional theory of class S

and then relating it by standard reasoning to the three-dimensional partition function.

In [36–38] the five-dimensional theory on M3 × S2 is obtained from dimensional reduction

of the six-dimensional superconformal field theory on S1×M3×S2 for more general three-

manifolds M3. The resulting theory on M3 is related to complex Chern-Simons theory. In

these cases the theory is partially twisted along M3, and supersymmetric localization on

S2 is used to reduce to a twisted three-dimensional theory; this differs from the perspective

of [10, 15], where the partial twist is along Σh and localization over S3 reduces the theory

to two dimensions. In contrast, in this paper we will consider the fully twisted theory

on S3
b × Σh. Finally, in [39], with squashed sphere of [29], the six-dimensional theory on

S3
b ×M3 is reduced along the Hopf fibre of S3

b , then twisted along M3 and localized to

reduce along S2; the resulting three-dimensional theory is the same as in [36, 37].

2.3 Basics of cohomological localization

In this paper we use techniques based on localization theorems in equivariant cohomology,

applied to supersymmetric quantum field theory, see e.g. [40, 41] for introductions to the

subject; we will now briefly sketch the main ideas that will be used extensively in the

remainder of this paper. Supersymmetric localization is a technique which allows the

reduction of a supersymmetry preserving Euclidean path integral to an integral over the

smaller set of fixed points of a supercharge Q. To compute the partition function, one adds

a Q-exact term QV to the action S of the theory and computes the deformed partition

function Z(t) defined by functional integration of the Boltzmann weight e −S−tQV for

t ∈ R; then Z(0) is the original partition function we wish to compute. Supersymmetry

of the path integral then implies that Z(t) is formally independent of the parameter t,

so that letting t → ∞ and choosing the localizing term V to be positive semi-definite,

the functional integration reduces to a localization calculation around the fixed points

QV = 0 of the supercharge Q. In general the set of fixed points is a superspace, with odd

coordinates associated with supersymmetric fermionic modes that have vanishing action in

the localizing term in the bosonic background.

In this paper we consider Euclidean manifolds preserving rigid supersymmetry with

four and eight supercharges; we restrict them to non-trivial circle bundles M2n+1 → K2n,
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whose total spaces have odd dimension 2n + 1, in order to avoid dealing with fermionic

fixed points. We shall derive the fixed point loci based on cohomological forms of the

(BRST) supersymmetry transformations which are compatible with the U(1)-action on

the circle bundle [11, 42]; this procedure is called topological twisting and the resulting

theory is called a cohomological field theory (in the sense of equivariant cohomology).

We shall also only consider localization on the Coulomb branch of the supersymmetric

gauge theory, where the path integral is reduced to a finite-dimensional integral over a

classical moduli space parameterized by scalars in vector multiplets, and holonomies and

fluxes of gauge fields around non-contractible cycles in M2n+1 (possibly together with other

continuous moduli).

The localization calculation amounts to computing a ratio of one-loop fluctuation de-

terminants which is schematically given by [43]

h(φ) =
det i Lφ|cokerD

det i Lφ|kerD
, (2.18)

where D denotes differential operators entering the localizing terms V , and Lφ = − iQ2

generates the geometric U(1)-action and gauge transformations parametrized by φ on the

fields of the theory; the adjoint scalar φ is Q-closed and does not have a fermionic partner.

Then the equivariant cohomology in the localization of the supersymmetric gauge theory

consists of gauge-invariant states on the base space K2n of the circle bundle, together with

an infinite tower of Kaluza-Klein modes on the S1 fibre. The effective contribution to this

ratio from the zero modes which remain after cancellation between fermionic and bosonic

states is computed using the Atiyah-Singer index theorem for transversally elliptic operators

and the Atiyah-Bott localization formula in equivariant cohomology for the U(1)-action on

M2n+1. The schematic form of the localized partition function is then given by

Z(M2n+1) =

∫
g

dσ

∫
M BPS
G (M2n+1)

dm e−Scl(m;σ) Zvec(M2n+1)Zhyp(M2n+1) , (2.19)

where g is the Lie algebra of the gauge group G, and M BPS
G (M2n+1) is the BPS locus inside

a moduli space of G-connections on M2n+1 parametrized by moduli m. The action Scl is

the classical bosonic action, while Zvec and Zhyp are respectively the one-loop fluctuation

determinants associated with the vector multiplet and the matter hypermultiplets of the

supersymmetric gauge theory.

2.4 Localization of N = 1 gauge theories on Seifert manifolds

In this paper we mainly focus on Seifert manifolds which admit a free U(1) action, so that

they admit a U(1) isometry. We shall comment where appropriate on the extension to

more general principal U(1)-bundles over orbifolds, where the U(1) action has fixed points.

Geometric setup. Let M2n+1
π−−→ K2n be a circle bundle of degree p over a compact

Kähler manifold (K2n, ω) of real dimension 2n with [ω] ∈ H2(K2n,Z). The almost contact

structure κ 6= 0 on M2n+1 can be chosen to be a connection one-form on this bundle which

is locally written as

κ = dθ + p π∗(a) , (2.20)
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where θ ∈ [0, 2π r) is a local coordinate of the S1 fibre and a is a local symplectic potential

for ω = da. Then

dκ = p π∗(ω) . (2.21)

In contrast to [12, 13], we will not assume κ to be a K-contact structure on M2n+1. Instead,

our interest will mainly focus on product manifolds M2n+1 = M2n−1×Σh, where M2n−1 is

a compact contact manifold, but in general not K-contact, and Σh is a compact Riemann

surface of genus h. Then ω = ωK2n−2 +ωΣh is the sum of the symplectic forms on the base

K2n−2 of the Seifert fibration of M2n−1 and Σh, and κ ∧ (dκ)∧(n−1) 6= 0 is proportional

to the volume form on M2n−1 induced by a metric compatible with the contact structure.

The canonical volume form on the total space M2n+1 is

dΩM2n+1 =
(−1)n

2n−1 (n− 1)!
κ ∧ (dκ)∧(n−1) ∧ ωΣh . (2.22)

The Reeb vector field ξ is defined by the duality contraction

ξ xκ = 1 (2.23)

and the invariance condition

Lξκ = ξ x dκ = 0 , (2.24)

where Lξ = d ξ x+ ξ x d is the Lie derivative along ξ. It is the generator of the U(1)-action

on M2n+1, and in the coordinates (2.20) it assumes the form

ξ =
∂

∂θ
. (2.25)

A natural choice of U(1)-invariant metric on M2n+1 is given by

ds2
M2n+1

= π∗
(
ds2

K2n

)
+ κ⊗ κ , (2.26)

where ds2
K2n

is the Kähler metric on K2n. Any k-form α on M2n+1 can be decomposed

using the projector κ ∧ ξ x into horizontal and vertical components as

α = αH + αV := (1− κ ∧ ξ x )α+ κ ∧ ξ xα , (2.27)

where ξ xα is the k−1-form component of α along the fibre direction.

The computation of the perturbative partition function of (twisted) N = 1 supersym-

metric Yang-Mills theory on M2n+1 is described in [12, 13], using equivariant localization

techniques with respect to the U(1) action on M2n+1 and the maximal torus of the gauge

group G. The relevant computations typically involve the determinant of the square of the

(twisted) supercharge (equivariant differential), which is the kinetic operator

Lφ = Lξ + Gφ (2.28)

acting on the tangent space to the space of fields, where Gφ denotes the action by an

element φ valued in the Cartan subalgebra of the Lie algebra g of G; for fields in the vector
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multiplet of the supersymmetric gauge theory, Gφ = adφ is the adjoint action. Here we

assume momentarily that the localization locus consists of constant field configurations

φ; the case of non-constant φ is discussed below. The operator Lφ acts with the same

eigenvalue on both even and odd degrees in the spaces Ω
(0,•)
H (M2n+1, g) of horizontal anti-

holomorphic g-valued forms. The cancellation between bosonic and fermionic fluctuation

determinants in the localized path integral is determined by the index of the Dolbeault

complex of K2n twisted by the line bundles L ⊗m for m ∈ Z, where L → K2n is the

complex line bundle associated to the circle bundle M2n+1
π−−→ K2n with first Chern

class c1(L ) = p [ω]. Denoting the corresponding twisted Dolbeault operators as ∂̄(m), the

Atiyah-Singer index theorem gives the index as

index ∂̄(m) =

∫
K2n

ch
(
L ⊗m) ∧ Td

(
T 1,0K2n

)
, (2.29)

where T 1,0K2n is the holomorphic tangent bundle of K2n, while ch and Td respectively

denote the Chern character and the Todd class.

Geometry from rigid supersymmetry. We want to define a supersymmetric field

theory on the backgrounds M2n+1 described above. In this paper we focus on theories with

four supercharges, which means N = 2 theories in three dimensions and N = 1 theories in

five dimensions; a thorough discussion on localization in five-dimensional superconformal

field theories can be found in [44]. We follow the approach of [45]: we add a supergravity

multiplet in flat spacetime, and then take the rigid limit of the supergravity theory. This is

done in two steps: in the first step we set to zero all fermion fields, and in the second step we

set to zero the supersymmetry variations of the fermion fields. The equation obtained by

imposing the vanishing of the gravitino variation is called the (generalized) Killing spinor

equation. The vector multiplet and hypermultiplets of the gauge theory are then coupled to

the background values of the supergravity multiplet, and the theory is effectively put on a

curved spacetime. For the description of supersymmetric backgrounds in three dimensions

we mainly follow [46, 47], and in five dimensions we follow [48, 49].

Let ε be a solution to the Killing spinor equation for M2n+1. We use it to define the

vector field v on M2n+1 as

vµ = ε† Γµε , (2.30)

where Γµ are the gamma-matrices in either three or five dimensions. The fact that ε

satisfies the Killing spinor equation guarantees that v is a nowhere vanishing Killing vector

field. In particular, its orbits foliate M2n+1.

As explained in [46, section 5] and in [47, section 4], in three dimensions there are two

possibilities:

(I) The orbits of v are closed. In this case M3 is a Seifert manifold and v coincides with

the Reeb vector field ξ of the U(1) fibration of M3. Particular examples belonging to

this class are the round sphere S3 and the lens spaces L(p, s).

(II) If the orbits of v do not close, supersymmetry requires M3 to have isometry group

U(1) × U(1). In this case M3 is a Seifert manifold but v does not necessarily point
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along the U(1)-fibre. A particular example belonging to this class is the ellipsoid

S3
b of [28].

We will henceforth refer to the manifolds belonging to the setting (I) as regular, and to

those of setting (II) as irregular.1 Irregular geometries may or may not admit a free U(1)

action of the Reeb vector field; see the recent review [50] for a thorough description of the

geometric approach to N = 2 supersymmetry on three-dimensional Seifert manifolds.

In the five-dimensional case, we will focus on product manifolds M3×Σh, where Σh is

a closed Riemann surface of genus h. Killing spinor solutions in these geometries are built

from solutions on M3, and thus an analogous discussion applies; see the discussion at the

end of [49] for further details about the difference in the approach we follow here and that

of [13, 51].

Examples: regular vs. irregular fibrations. We write down some explicit examples

of regular and irregular five-dimensional manifolds. The round sphere S5 and the product

S3×S2 are regular Sasaki-Einstein manifolds. The Sasaki-Einstein manifolds Y p,s studied

in [18, 19] are irregular (or quasi-regular). The product manifolds M3 × Σh where M3 is

either S3, L(p, 1) or the three-dimensional torus T 3 are regular, while if M3 = S3
b is the

ellipsoid of [28] it is irregular. Among the irregular manifolds, S3
b ×Σh (as well as replacing

S3
b with other squashed Seifert three-manifolds) admits a free U(1) action, while Y p,s do

not admit any free U(1) action and are described as U(1) fibrations over a warped product

S2oS2. See appendix B for a classification and discussion of the different types of squashed

three-spheres, and appendix C for a discussion about cohomological localization on Y p,s.

One-loop determinants. For regular fibrations, it was shown in [12, 13] that the one-

loop contribution of the N = 1 vector multiplet to the perturbative partition function on

M2n+1 is

Zvec(M2n+1) =
∏
α∈4

(
i (α, φ)

)d ∏
m 6=0

(
m

r
+ i (α, φ)

)index ∂̄(m)

, (2.31)

where as previously 4 is the root system of the Lie algebra g and ( · , · ) is an invariant

non-degenerate bilinear form on g; the power d of the first zero mode factor is given by

d = index ∂̄ − dimH0(M2n+1,R) , (2.32)

the difference between the index of the ordinary (untwisted) Dolbeault complex of K2n and

the dimension of the space of harmonic functions on M2n+1. The one-loop contribution

from an N = 1 hypermultiplet in a representation R of the gauge group G is given by

Zhyp(M2n+1) =
∏
ρ∈ΛR

∏
m∈Z

(
m

r
+ i (ρ, φ) +

∆

r

)−index ∂̄(m)

, (2.33)

1We will use the nomenclature “regular geometry” or “regular fibration”, meaning that the integral

curves of the Killing vector field have regular flow, and similarly for the “irregular fibration”. In this paper

we will not distinguish between irregular and quasi-regular cases.
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where ΛR is the lattice of weights of R and ∆ is a constant determined by the conformal

scalar field coupling to the curvature in the gauge theory action. In [13] these formulas are

applied to N = 1 gauge theory on the five-sphere M5 = S5, viewed as a circle bundle over

the projective plane K4 = P2, with ∆ = 3
2 .

The extension of these formulas to the case of non-constant scalar fields φ on K2n

can be deduced from the prescription explained in [52, appendix B], at least in the case

when the kinetic operator Lφ is elliptic. In these instances one can apply the index formula

“locally” by moving the logarithms of the arguments of the products into the integral and

integrating against the index density. For example, for the vector multiplet contribution

this prescription gives

Zvec(M2n+1) = exp

( ∫
K2n

∑
m∈Z

ch
(
L ⊗m) ∧ Td

(
T 1,0K2n

) ∑
α∈4

log

(
m

r
+ i (α, φ)

)

− dimH0(M2n+1,R)

∫
K2n

ω∧n

n!

∑
α∈4

log
(

i (α, φ)
))

. (2.34)

For the cohomological localization we shall employ in this paper, the further localization

to constant φ in two dimensions will be immediate (in contrast to the approach of [10]).

The expressions (2.31) and (2.33) are proven in [12, 13] in the case of five-dimensional

K-contact manifolds, with Killing vector field v pointing along the Seifert fibre. In following

sections we will review the main steps in the proof, both in three and five dimensions, and

derive the corresponding expressions for the cases in which the Killing vector field v does

not point in the direction of the U(1) fibre. For this, we will have to introduce vector

multiplets and hypermultiplets, and then topologically twist the field content. For the

three-dimensional case we will follow the conventions of [11], while in five dimensions we

follow [13, 53].

3 N = 2 cohomological gauge theories in three dimensions

In this section we study N = 2 supersymmetric gauge theories on three-dimensional man-

ifolds. We will first present the theory and its topological twist. Then we will reproduce

the formula for the one-loop determinants in the case of a Seifert fibration M3 → K2 cor-

responding to closed orbits of the Killing vector field v. We shall subsequently extend the

formulas to the ellipsoid and ellipsoidal lens spaces, corresponding to non-compact orbits

of the Killing vector field, by extending the application of the index theorem used in [14],

for the ellipsoid, to any squashed Seifert manifold. For the geometric setting we will fol-

low [46, 47], while for the topological twist and derivation of the one-loop determinants, as

well as for the normalization of the fields and supersymmetry variations, we will continue

to follow [11]. Our conventions are summarized in appendix A.

3.1 Supersymmetric Yang-Mills theory and its cohomological formulation

As usual, we start by placing the gauge theory on flat Euclidean space R3 and then couple

it to background supergravity, following [45, 46]. Let ε and ε̃ be two Killing spinors with
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opposite R-charge, and define the Killing vector field

vµ = ε̃ † γµε . (3.1)

Vector multiplet. The N = 2 vector multiplet in three dimensions consists of a gauge

connection A, a real scalar σ, a complex spinor λ (the gaugino), and an auxiliary real

scalar D. The spinor λ = (λI) and the real scalar D = (DI
J) carry SU(2)R indices.2 The

supersymmetry transformations are standard [11, 54]. We denote by Q the equivariant dif-

ferential (supersymmetry generator) which is the sum of the two independent supercharges
1
2

(
Q̃ε̃ + Q†ε

)
, and write

QAµ =
i

2

(
ε̃ †I γµλ

I − λ†I γµε
I
)
,

Qσ = −1

2

(
ε̃ †I λ

I + λ†I ε
I
)
,

QλI = −1

2
γµνεI Fµν −DI

J ε
J + i γµεI (Dµσ) ,

Qλ†I =
1

2
ε̃ †I γ

µν Fµν − ε̃ †J D
J
I − i γµε̃ †I (Dµσ) ,

QDI
J =

i

2

(
ε̃ †I γ

µ(Dµλ
J)− (Dµλ

†
I) γ

µεJ
)
− i

2

(
ε̃ †I
[
σ, λJ

]
−
[
σ, λ†I

]
εJ
)

+ ( I ↔ J ) , (3.2)

where F is the curvature of the gauge connection A, and Dµ is the covariant derivative

which involves the gauge connection A and also the spin connection when acting on the

dynamical spinor fields λ and λ†. When the theory is placed on a curved background M3,

one has to add curvature terms proportional to 1
r to the supersymmetry variations Qλ,

Qλ† and QD. These terms will also involve the spinor covariant derivative acting on the

Killing spinors from the supergravity background. This procedure is standard and we do

not review it here.

Following [11, appendix A], we use the Killing vector field v for the topological twist.

We set ε̃ = ε, and rewrite the spinor fields λ and λ† in the vector multiplet in terms of an

odd g-valued one-form Ψ and an odd g-valued zero-form χ defined as

Ψµ =
1

2

(
ε† γµλ− λ† γµε

)
and χ = ε† λ− λ† ε , (3.3)

which depend on the solution ε of the Killing spinor equation, and hence on the choice of

contact structure, but not explicitly on the metric. The field content of the vector multiplet

is now written in a cohomological form as

A ∈ Ω1(M3, g) , σ ∈ Ω0(M3, g) , Ψ ∈ Ω1(M3, g) and χ ∈ Ω0(M3, g) , (3.4)

with (A,χ) treated as coordinates and (σ,Ψ) as conjugate momenta on field space. We do

not include details about the gauge fixing here, and again refer to [11] for the technical de-

tails. It suffices to say that the bosonic ghost coordinates are a pair of harmonic zero-forms

2By analogy with the five-dimensional setting, we work with SU(2)R R-symmetry. For a generic N = 2

theory with only U(1)R R-symmetry, simply neglect the indices I, J .
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and the fermionic ghost coordinates are a pair of zero-forms. We use the localizing term

QV with V =

∫
M3

(
(Qλ)† λ+ λ† (Qλ†)†

)
dΩM3 (3.5)

in the path integral which brings the quantum field theory to the fixed point locus

F = 0 and σ = −D = constant . (3.6)

The kinetic operator. Once the fields are in cohomological form, the supersymmetry

transformation squares to

Q2 = i Lφ with Lφ = Lv + Gφ . (3.7)

Here Lφ is the sum of a Lie derivative along v and a gauge transformation Gφ with parameter

φ = iσ − v xA . (3.8)

At the end, we shall rotate σ 7→ iσ0 and integrate over real σ0 ∈ g. The localization locus

consists of flat connections, and therefore

φ = −
(
σ0 + vµA(0)

µ

)
∈ g , (3.9)

where A(0) is the point of the moduli space of flat G-connections on M3 around which

we are expanding. If M3 is simply connected, the only point of the moduli space is the

trivial connection. Otherwise, expanding around A(0) = 0 gives the perturbative part of

the partition function. In general, the full answer is given by integrating the partition

function over the moduli space of flat G-connections M 0
G(M3) supported on M3, which is

given by

M 0
G(M3) = Hom

(
π1(M3), G

)/
G , (3.10)

where the quotient is taken by the conjugation action of G on the holonomy of a connection

over representatives of elements in π1(M3). When M3 is a circle bundle of degree p over a

compact oriented Riemann surface Cg of genus g, there is an explicit presentation of the

fundamental group π1(M3) with generators ai, bi, ζ, i = 1, . . . , g and the relation

g∏
i=1

[ai, bi] = ζp , (3.11)

with all other pairwise combinations of generators commuting. An explicit parametrization

of the moduli space (3.10) in the case G = U(N) can be found in [55, section 6.2].

Hypermultiplets. The field content of an N = 2 hypermultiplet in three dimensions

consists of the complex scalars q = (qI) with SU(2)R indices and a complex spinor ψ. These

fields are obtained by combining chiral and anti-chiral complex scalars and Weyl spinors.

One also needs an auxiliary complex scalar. The supersymmetry transformations are

QqI = −i ε̃ †I ψ ,

Qψ =
1

2
γµεI (DµqI) +

i

2
σ qI ε

I , (3.12)
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plus curvature corrections to be added when the theory is put on M3. The transformations

of the conjugate fields q†, ψ† are the obvious ones, with exchange ε ↔ ε̃. The topological

twist of a hypermultiplet was first performed in [42, appendix B].

The Killing spinors are used to introduce a new spinor field

q′ = qI ε
I , (3.13)

so that the physical fields are all reformulated in terms of spinors. These fields are singlets

under the action of SU(2)R; this is instrumental to have the kinetic operator in the desired

form. One finds

Q2 = i Lφ with Lφ = Lspin
v + Gφ , (3.14)

as in the vector multiplet. We used the notation Lspin
v to stress that the Lie derivative is

twisted by the spin covariant derivative when acting on spinors on curved manifolds.

To mimic the procedure of [11], a further step is needed: we rearrange the fields again in

a cohomological form, combining spinors into differential forms. For this, we need to define

a spinc structure on M3, and use it to decompose the spinors ψ± and q′ into elements of

Ω0
H(M3, g)⊕ Ω

(0,1)
H (M3, g) (3.15)

where we decomposed ψ according to the chirality operator as

ψ = ψ+ + ψ− with γ5ψ± = ±ψ± and γ5 = vµ γµ . (3.16)

The SU(2)R R-symmetry is not considered in [42], and they do not pass through the

intermediate step of contracting the SU(2)R indices to form singlets; instead, they directly

define anti-holomorphic forms. In the present case, the cohomological field theory contains

hypermultiplets only when the manifold M3 admits a spinc structure.

3.2 One-loop determinant of the vector multiplet in a regular background

Gaussian integration of the vector multiplet around the fixed point φ gives the ratio of

fluctuation determinants

h(φ) =

√
det i Lφ|f
det i Lφ|b

=

√
(det i Lφ|Ω0(M3,g))

3

det i Lφ|Ω1(M3,g) (det i Lφ|H0(M3,g))
2
, (3.17)

where the subscripts on the left-hand side refer to the operator acting on fermionic or

bosonic fields. Here H0(M3, g) is the space of g-valued harmonic zero-forms, and Lφ is

given in (3.7). The numerator of h(φ) includes the contributions from the fermionic field χ

and the two fermionic ghost fields, while the denominator includes the contributions from

the bosonic field A and the two bosonic ghost fields.

We use the Seifert structure of M3 to decompose one-forms into horizontal and vertical

parts as

Ω1(M3, g) = Ω1
V (M3, g)⊕ Ω1

H(M3, g) ∼= Ω0(M3, g)⊕ Ω1
H(M3, g) . (3.18)

We may also identify

Ω2
H(M3, g) ∼= Ω0(M3, g) (3.19)
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in three dimensions. The circle bundle structure

U(1) // M3

��
K2

(3.20)

allows us to further decompose the spaces of zero-forms and horizontal one-forms as

Ω0(M3, g) = Ω0(K2, g)⊕
⊕
m 6=0

Ω0
(
K2,L

⊗m ⊗ g
)
,

Ω1
H(M3, g) = Ω1(K2, g)⊕

⊕
m 6=0

Ω1
(
K2,L

⊗m ⊗ g
)
, (3.21)

where we recall that L is the line bundle associated to the U(1) fibration of M3. Using

the short-hand notation

D•m(φ) = det i Lφ|Ω•(K2,L⊗m⊗g) , (3.22)

we obtain

h(φ) =
1∣∣ det i Lφ|H0(M3,g)

∣∣
√
D0

0(φ)D2
0(φ)

D1
0(φ)

∏
m 6=0

√
D0
m(φ)D2

m(φ)

D1
m(φ)

. (3.23)

The crucial observation at this point is that when the Killing vector field v points along

the fibre direction, the decomposition (3.21) corresponds to a decomposition in eigenmodes

of the Lie derivative operator Lv. The degeneracy of the action of the gauge transformations

Gφ is resolved in the standard way [11, 54], by decomposing the Lie algebra g into its root

system as

g =
⊕
α∈4

gα . (3.24)

We finally obtain

Zvec(M3) =
∏
α∈4

(
i (α, φ)

) 1
2
χ(K2)−dimH0(M3,R)

∏
m 6=0

(
m

r
+ i (α, φ)

)index ∂̄(m)

(3.25)

where we used the fact that the number of remaining modes, after cancellation, is given by

the index of the twisted Dolbeault complex

Ω0(K2,L
⊗m)

∂̄(m)

−−−−→ Ω1(K2,L
⊗m)

∂̄(m)

−−−−→ Ω2(K2,L
⊗m) , (3.26)

after identification of the complexified de Rham differential with the anti-holomorphic

Dolbeault differential. This result agrees with [56]. The first multiplicative term in (3.25)

is trivial for Seifert homology spheres. The proof of this cohomological localization formula

used the properties that M3 is a Seifert manifold and that v is parallel to the Reeb vector

field ξ, and hence that M3 is a K-contact manifold.
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3.3 One-loop determinant of the vector multiplet in an irregular background

We now consider the case in which the orbits of the Killing vector field v are not closed.

The background geometry is required to have U(1) × U(1) isometry group in order to

preserve supersymmetry [46, 47]. In this instance M3 is still a Seifert manifold but now

v does not point along the fibre. In the spirit of section 3.2, we calculate the ratio of

fluctuation determinants through the index theorem. A similar calculation was performed

in [14], but there the supersymmetry transformation squares to the sum of a Lie derivative

along v, a gauge transformation and a third transformation which is a sum of R-symmetry

and flavour symmetry transformations (determining a new R-symmetry); this is not of the

form described in [11, 12], and so our index theory calculations cannot be applied directly

in this framework.

We can express v as a linear combination

v = a1 ξ + a2 ξ̃ (3.27)

of the Reeb vector field ξ and a vector field ξ̃ which generates a residual U(1) isometry. They

are mutually orthogonal and are linear combinations of the generators of the torus isometry.

Most of the calculation follows that of the round case from section 3.2, particularly the

decomposition (3.21) of Ω•(M3, g) according to the Seifert fibration. However, we now have

to face the problem that the eigenmodes of Lξ are no longer eigenmodes of Lv.
In [14] it was shown how one can exploit the fact that if the U(1) action generated

by the Reeb vector field ξ is free, then the problem can be reduced to the quotient space

M3/U(1) ∼= K2. Let us elaborate a bit more on this point. The crucial observation is that

the restriction of the operator i Lφ is no longer elliptic, but it is transversally elliptic with

respect to the isometry generated by ξ̃ . Following [57], given a first order transversally

elliptic differential operator and a subgroup which acts freely, the index can be computed

on the quotient space and the Atiyah-Bott localization formula localizes the contributions

to the fixed points of the action of the subgroup generated by ξ̃ ; this works even when

K2 possesses orbifold points. We then decompose into eigenmodes corresponding to ξ̃ ,

and the remaining modes after cancellation come from the fixed points of the U(1) action

generated by ξ̃ . Therefore for irregular Seifert manifolds we obtain

Zvec(M3) =
∏
α∈4

(
i (α, φ)

) 1
2
χ(K2)−dimH0(M3,R)

∏
f

∏
m 6=0

(
m

εf
+ i (α, φ)

) 1
2

index ∂̄(m)

(3.28)

where the second product runs over the fixed points of the U(1) action generated by ξ̃ on

K2, and εf is the radius of the circle fibre over the fixed point labelled by f .3 This formula

gives the correct answer for ellipsoids [28, 47], and generalizes the result of [14] to any Seifert

manifold which is not K-contact. Notice that an ellipsoid Seifert manifold is necessarily

fibered topologically over a sphere S2 with at most two punctures [50, section 3.5].

3.4 One-loop determinant of a hypermultiplet

For the Gaussian integration of a hypermultiplet around a fixed point φ, we do not give all

the details here since the computation is essentially the same as for the vector multiplet.

3The square roots of each fixed point contribution come from the square root of the original ratio of

fluctuation determinants. In the regular case, the contributions are equal.
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One finds √
det i Lφ|f
det i Lφ|b

=

√√√√ det i Lφ|Ω(0,1)
H (M3,g)

(det i Lφ|Ω0
H(M3,g))

2
, (3.29)

where we used the topological twist described in section 3.1. Recall that this formula only

holds if we are allowed to recombine the SU(2)R singlet spinors q′ into anti-holomorphic

differential forms. This fails for the ellipsoid S3
b of [28], for instance, because a spinc

structure is not guaranteed to exist when the dual one-form to the Killing vector v is not

a gauge connection for the U(1) fibration.

For round Seifert manifolds, the eigenvalues of Lspin
v are

− im

r
− i ∆

r
, (3.30)

where m ∈ Z and ∆ is the R-charge the hypermultiplet, which we assume equal to the

conformal dimension, although more general assignments are possible in theories with only

four supercharges. The number of remaining modes after cancellations in (3.29) is given

by the index of the twisted Dolbeault differential, and we obtain

Zhyp(M3) =
∏
ρ∈ΛR

∏
m∈Z

(
m+ ∆

r
+ i (ρ, φ)

)−index ∂̄(m)

(3.31)

where a shift m→ m+∆ should be included when considering twisted boundary conditions

along the fibre, but the contribution of this shift cancels in the computations. This result

agrees with [56].

3.5 Applications of the cohomological localization formulas

We shall now provide some simple examples illustrating how the localization formulas

obtained in this section work to give the correct known results in three dimensions.

Localization on S3. As a first check, let us examine how to reproduce the three-

dimensional localization calculations of [54, section 3] in this framework. We consider

the three-sphere M3 = S3 of radius r, viewed as a circle bundle of degree one over the

projective line K2 = P1 via the Hopf fibration, with Euler characteristic χ(P1) = 2 and

H0(S3,R) = R. The total Chern class of the holomorphic tangent bundle of P1 is

c(T 1,0P1) = (1 + ω)∧2 = 1 + 2ω = 1 + c1(T 1,0P1) , (3.32)

and so the corresponding Todd class is given by

Td(T 1,0P1) = 1 +
1

2
c1(T 1,0P1) = 1 + ω , (3.33)

while the Chern characters of the line bundles L ⊗m → P1 are given by

ch(L ⊗m) = 1 + c1(L ⊗m) = 1 +mc1(L ) = 1 +mω . (3.34)
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The index of the corresponding twisted Dolbeault complex is thus given by

index ∂̄(m) =

∫
P1

(1 +mω) ∧ (1 + ω) =

∫
P1

(m+ 1)ω = m+ 1 . (3.35)

The one-loop vector multiplet contribution is then computed to be

Zvec(S
3) =

∏
α∈4

∏
m 6=0

(
m

r
+ i (α, φ)

)m+1

=
∏
α∈4

∞∏
m=1

(
m
r − i (α, σ0)

)m+1(
− m

r − i (α, σ0)
)m−1

=
∏
α∈4+

∞∏
m=1

(
m2

r2 + (α, σ0)2
)m+1(

m2

r2 + (α, σ0)2
)m−1

=
∏
α∈4+

∞∏
m=1

m4

r4

(
1 +

r2 (α, σ0)2

m2

)2

=
∏
α∈4+

(
2 sinhπ r (α, σ0)

π r (α, σ0)

)2

, (3.36)

where as previously 4+ is the system of positive roots of the Lie algebra g, and we used

the fact that the roots come in positive-negative pairs. In the second line we used the fact

that the only flat connection on S3 is trivial and substituted φ = −σ0, and in the last line

we evaluated the infinite product using zeta-function regularization:
∞∏
m=1

(
1 +

x2

m2

)
=

sinh(π x)

π x
and

∞∏
m=1

m2

r2
= 2π r . (3.37)

The same calculation for a one-loop hypermultiplet determinant gives

Zhyp(S3) =
∏
ρ∈ΛR

∏
m∈Z

(
m+ ∆

r
+ i (ρ, φ)

)−1−m

=
∏
ρ∈ΛR

∞∏
m=0

(−m−1+∆
r − i (ρ, σ0)

)m
∞∏
m=1

(
m−1+∆

r + i (ρ, σ0)
)m

=
∏
ρ∈ΛR

∞∏
m=1

( m+1−∆
r + i (ρ, σ0)

m−1+∆
r − i (ρ, σ0)

)m
=
∏
ρ∈ΛR

s1

(
i (1−∆)− r (ρ, σ0)

)
, (3.38)

where in the last line we inserted the definition of the double-sine function which is the

meromorphic function defined by the zeta-function regularized infinite products [58]

sb(x) =

∞∏
m,n=0

mb+ n b−1 + 1
2 (b+ b−1)− ix

mb+ n b−1 + 1
2 (b+ b−1) + ix

(3.39)

evaluated at b = 1. These results all agree with the computations of [54, section 3.2] (see

also [14, section 3.2]).
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Localization on ellipsoid S3
b and L(p, 1)b. We now consider the ellipsoid S3

b of [28],

with squashing parameter b > 0 and metric

ds2
S3
b

= r2
(
f(ϑ)2 dϑ⊗ dϑ+ b2 cos2 ϑ dϕ1 ⊗ dϕ1 + b−2 sin2 ϑ dϕ2 ⊗ dϕ2

)
(3.40)

induced from the standard metric on C2 restricted to the locus

b2 |z1|2 + b−2 |z2|2 = r2 , (3.41)

where f(ϑ) =
√
b2 cos2 ϑ+ b−2 sin2 ϑ and (ϑ, ϕ1, ϕ2) are Hopf coordinates on the usual

round sphere S3 = S3
b=1 of radius r. This defines an irregular fibration with isometry

group U(1)×U(1): the Killing vector field v takes the form

v =
b+ b−1

2 r
ξ +

b− b−1

2 r
ξ̃ , (3.42)

where ξ = ∂
∂θ is the Reeb vector field of the Seifert fibration S3

b → P1, with θ = 1
2 (ϕ1 +ϕ2),

and ξ̃ = ∂

∂θ̃
is the generator of the residual U(1) isometry, with θ̃ = 1

2 (ϕ1 − ϕ2). The fixed

points of ξ̃ correspond to the north and south poles of the base S2 ∼= P1, with respective

coordinates ϑ = 0, at which the fibre has radius ε1 = r b, and ϑ = π
2 , at which the fibre has

radius ε2 = r b−1. The index of the twisted Dolbeault complex is a topological invariant,

and hence is the same as for round S3.

Altogether, the localization formula gives

Zvec(S
3
b ) =

∏
α∈4

∏
m 6=0

((
mb−1

r
− i (α, σ0)

) 1
2
(
mb

r
− i (α, σ0)

) 1
2
)m+1

=
∏
α∈4

∞∏
m=1

(
mb−1

r − i (α, σ0)
)m+1

2
(
mb
r − i (α, σ0)

)m+1
2(

mb−1

r + i (α, σ0)
)m−1

2
(
mb
r + i (α, σ0)

)m−1
2

=
∏
α∈4+

∞∏
m=1

(
m2 b−2

r2
+ (α, σ0)2

)(
m2 b2

r2
+ (α, σ0)2

)

=
∏
α∈4+

sinh
(
π b r (α, σ0)

)
sinh

(
π b−1 r (α, σ0)

)
π2 r2 (α, σ0)2

, (3.43)

which agrees with [28, eq. (5.33)] and [14, eq. (4.24)]. This result is independent of the

particular form of the smooth squashing function f(ϑ) and depends only on its values at

the fixed points ϑ = 0, π2 ; it can therefore be extended to a larger class of backgrounds with

the same topology [59].

This result straightforwardly extends to the ellipsoid lens spaces L(p, 1)b, with the

induced metric on the quotient S3
b /Zp and associated line bundle L → P1 of degree p, so

that now c1(L ) = pω; see the review [60] for a description of localization on L(p, 1)b. The

modifications are the same as for the round case, and amount to a shift σ0 7→ σ0 + vµA
(0)
µ ,

where A(0) is an isolated point of the moduli space of flat G-connections on L(p, 1). Such

flat connections are classified by conjugacy classes of embeddings of the fundamental group
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π1(L(p, 1)b) = Zp in the gauge group G, and are in one-to-one correspondence with arrays

~m ∈ (Zp)rank(G) modulo Weyl symmetry. For the vector multiplet, the localization formula

then gives

Zvec

(
L(p, 1)b

)
=
∏
α∈4+

sinh
(
π b r
p (α, σ0 + i ~m)

)
sinh

(
π b−1 r
p (α, σ0 + i ~m)

)
π2 r2

p2 (α, σ0 + i ~m)2
. (3.44)

With similar modifications, one can extend these calculations to any ellipsoid Seifert

manifold.

There is no spinc structure on S3
b that can be used to apply our index theory formalism

to the hypermultiplet contributions. Nevertheless, the one-loop fluctuation determinant

can still be calculated in this case. For example, one could split the twisted Lie derivative as

Lspin
v =

2 b

r
Lspin

∂
∂ϕ1

+
2 b−1

r
Lspin

∂
∂ϕ2

(3.45)

and decompose the fields into eigenmodes of the Lie derivatives in the two orthogonal

toroidal directions ∂
∂ϕ1

and ∂
∂ϕ2

, whose corresponding eigenvalues are then of the form
m+∆
ε1

+ n+∆
ε2

where m,n ∈ Z. Then the one-loop contribution of a hypermultiplet in a

representation R of the gauge group G is given by [14, section 4]

Zhyp(S3
b ) =

∏
ρ∈ΛR

∞∏
m,n=0

mb+ n b−1 +
(
b+ b−1

) (
1− ∆

2

)
+ i r (ρ, σ0)

mb+ n b−1 +
(
b+ b−1

)
∆
2 − i r (ρ, σ0)

=
∏
ρ∈ΛR

sb

(
i

2
(b+ b−1) (1−∆)− r (ρ, σ0)

)
. (3.46)

Note that here the squashing parameter b serves as a zeta-function regulator in the infinite

product formula for the double-sine function (3.39) in the hypermultiplet contribution. For

the N = 1 adjoint hypermultiplet with ∆ = 1, the product over ΛR = 4 can be split into

contributions from positive-negative pairs of roots and the one-loop contribution is trivial:

Zhyp(S3
b ) = 1.

3.6 Extension to S1 × Cg

One may easily adapt the previous prescriptions to other three-dimensional geometries,

which are related to but so far not included in our discussion. As a very basic example,

we can consider the three-manifold M3 = S1×Cg, where the circle S1 has radius ε and Cg
is a closed Riemann surface of genus g ≥ 0 of area vol(Cg) = 4π r2. These manifolds are

of course examples of regular fibrations, but admit a different localization locus than those

considered thus far.

The fixed point locus in this case consists of D = 0 and covariantly constant σ, while

the curvature of the gauge connection vanishes along S1 and is further constrained by

v x ∗F = −2σ , (3.47)

where ∗ is the Hodge duality operator constructed from the metric of M3. Then after

gauge fixing, the set of localization equations is solved by connections A whose component
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Aθ along the fibre is a non-vanishing constant a0, which we take to lie in a chosen Cartan

subalgebra of g. Expressing the restriction of the curvature to Cg in terms of the symplectic

form of Cg as FCg = fH ωCg , we must impose [a0, fH ] = 0 to satisfy the condition that

F has vanishing components along S1. This implies σ = −1
2 fH is constant, and can be

conjugated into the same Cartan subalgebra of g as a0. This gives a flux ~m ∈ Λ for

the restriction FCg to the base Cg, where Λ is a co-root lattice of g in the same Cartan

subalgebra to which a0 belongs. Finally the localization locus is parameterized by ~m and

a0 as

A = a0 dθ + ~mACg and σ = − ~m
r
, (3.48)

where ACg is a monopole gauge field on Cg of unit first Chern class, dACg = 2π ωCg . On

the other hand, the circle bundle over K2 = Cg is trivial, hence the associated line bundle

L has a trivial first Chern class contribution to the index and the topological dependence

of the localization formula is solely through the Euler characteristic χ(Cg) = 2− 2g.

Including such modifications, the cohomological localization formula yields the one-

loop contribution from the vector multiplet as4

Zvec(S
1 × Cg) =

∏
α∈4

∏
n∈Z

(
n

ε
− i (α, ~m)

r
− (α, a0)

)1−g

=
∏
α∈4

(
2 sinh

(
ε (α, a0)

2
+

i ε (α, ~m)

2 r

))1−g

=
∏
α∈4+

e (1−g) ε
r

(α,~m)
(

1− e−i ε (α,a0) e−
ε
r

(α,~m)
)1−g

×
(

1− e i ε (α,a0) e−
ε
r

(α,~m)
)1−g

=
∏
α∈4

q−
1
2

(1−g) |(α,~m)|
(

1− e−i ε (α,a0) q|(α,~m)|
)1−g

(3.49)

where in the last line we defined q = e−
ε
r . This reproduces the result of [61, section 2.2],

see also [60, section 5.2].

4 N = 1 cohomological gauge theories in five dimensions

In this section we derive one-loop fluctuation determinants in various five-dimensional

geometries using the Atiyah-Singer index theorem. We first present the supersymmetric

gauge theory and its topologically twisted version, and then derive expressions for the one-

loop determinants in the regular and irregular cases separately. We subsequently apply

the general formalism to some explicit examples, mainly focusing on five-manifolds of the

form M5 = M3×Σh, with M3 one of the three-dimensional geometries studied in section 3

4We keep the n = 0 contribution, and use the overall harmonic dimension factor coming from the ghosts

to cancel the Jacobian in the measure for integration over a0 in the localized path integral after gauge

rotation into a Cartan subalgebra of g.
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and Σh a closed Riemann surface of genus h. In this section we adopt the conventions

and normalization of [13]. This differs from the rest of the literature on the topic, and in

particular the expressions here will only involve anti-holomorphic Dolbeault differentials.5

Topologically twisted gauge theories on the five-sphere were studied in [12, 13], which

ignited the stream of activity in this area. The next examples considered were the Sasaki-

Einstein manifolds Y p,s in [18, 19, 62]. Sasaki-Einstein manifolds are backgrounds which

admit N = 2 supersymmetry; see appendix C for a brief review. In [48], further five-

dimensional geometries preserving N = 1 and N = 2 supersymmetry were obtained,

following the idea of [45, 46] and adapting it to five dimensions. In particular, one can

put an N = 2 supersymmetric gauge theory on S3 × Σh and T 3 × Σh, where T 3 is a

three-dimensional torus. On the other hand, the manifolds L(p, 1)×Σh only admit N = 1

supersymmetry. Further geometries admitting Killing spinor solutions, and hence admit-

ting supersymmetric field theories, were obtained in [49] starting from a holographic setting

and taking the rigid limit of supergravity. Sasaki-Einstein manifolds, products M3 × Σh

with M3 a Seifert three-manifold, and more general U(1) fibrations over products Cg ×Σh

with Cg and Σh Riemann surfaces, possibly with orbifold points, are all examples of man-

ifolds studied in [49].

4.1 Supersymmetric Yang-Mills theory and its cohomological formulation

Consider five-dimensional N = 1 supersymmetric Yang-Mills theory. We define the theory

on flat Euclidean spacetime R5 and then, by coupling it to background supergravity fields,

the theory is put on curved manifolds M5. For manifolds admitting two Killing spinors,

the N = 2 vector multiplet is described in the N = 1 superspace formalism by an N = 1

vector multiplet and an N = 1 adjoint hypermultiplet. The required modifications to

the supersymmetry transformations are described in detail in [51]. Let ε be the five-

dimensional Killing spinor on M5 (see appendix A for our notation), and define the vector

field v through6

vµ = ε† Γµε . (4.1)

It is a nowhere vanishing Killing vector on M5.

Vector multiplet. The five-dimensional N = 1 vector multiplet consists of a gauge

connection A, a scalar σ, a symplectic Majorana spinor λ and an auxiliary real scalar D,

where λ = (λI) is a SU(2)R doublet andD = (DI
J) is a SU(2)R triplet. The supersymmetry

5The normalization in [13] uses the opposite sign for the contact structure, compared to other literature.

After the topological twist, some fields will come with additional minus signs, and in particular a two-form in

five dimensions, which is usually taken to be self-dual, becomes anti-self-dual here; with our convention, self-

dual 2-forms descend to anti-instantons in four dimensions, and vice versa. In practice, the cohomological

complex in five dimensions that we will work with only involves the anti-holomorphic Dolbeault differential,

while in previous works (see [53] for a review) the contributions from both holomorphic and anti-holomorphic

forms are included. The final results will of course be the same in either convention, but the intermediate

steps will slightly differ. The only motivation for our choice is to achieve a unified treatment in three and

five dimensions. Furthermore, the topological twist of the hypermultiplets involves only anti-holomorphic

forms, so this choice also puts the vector multiplet and the hypermultiplets on the same footing.
6This differs by a sign from other definitions in the literature, see Footnote 5.
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transformations in flat space are

QεAµ = i ε†I Γµλ
I ,

Qεσ = ε†I λ
I ,

Qελ
I = −1

2
ΓµνεI Fµν −DI

J ε
J + i ΓµεI (Dµσ) ,

QεDI
J = i ε†I Γµ(Dµλ

J)− i
[
σ, ε†I λ

J
]

+ ( I ↔ J ) , (4.2)

where F is the curvature of the gauge connection A and Dµ is the covariant derivative, which

includes the gauge connection A and also the spin connection when acting on dynamical

spinors λ. Curvature corrections proportional to 1
r must be added to these flat space

transformations when the field theory is put on M5.

At this point we perform the topological twist. We introduce the one-form Ψ and the

horizontal anti-self-dual two-form χ according to7

Ψµ = ε†I Γµλ
I and χµν = ε†I Γµνλ

I − ηµ ε†I Γνλ
I + ην ε

†
I Γµλ

I , (4.3)

where η is the one-form dual to the Killing vector v. We regard M5 as a U(1) fibration

over a compact Kähler manifold K4, and when v coincides with the Reeb vector field ξ of

the Seifert fibration, then η coincides with the K-contact structure κ of M5. For squashed

geometries, however, η 6= κ.

Contact structure and localization locus. The localizing term we add to the action

is the standard one:

QεV with V =

∫
M5

(Qελ)† λ dΩM5 , (4.4)

which in the path integral brings the quantum field theory to the fixed point locus

v x ∗F = F , Dσ = 0 and D = −σ ⊗
(

1
0

0
−1

)
, (4.5)

where ∗ is the Hodge duality operator constructed from the metric of M5.

It is important at this point to stress a major distinction in our setting from that

of [12] and subsequent work. When we work with a product of a three-dimensional contact

manifold and a Riemann surface, M5 = M3 ×Σh, there is a crucial difference: the contact

structure κ lives on M3, and κ ∧ dκ is a volume form on M3, as is clear from (2.20),

but it need not be a contact structure on M3 × Σh. This is important for a choice of

compatible metric. For the supersymmetry transformations to be those of a cohomological

field theory, one requires the Lie derivative Lv to commute with the Hodge duality operator.

Equivalently, we need v to generate an isometry. The Hodge duality operator on Ω•(M3×
Σh) takes the form ∗M3×Σh = (−1)• ∗M3 ∧∗Σh . This is an important simplification in

studying the localization locus on product manifolds.

7We are using the same Greek letter χ for a two-form here and for a zero-form in section 3. There should

not be any confusion.
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The kinetic operator. The supersymmetry transformation squares to Q2
ε = i Lφ, with

Lφ = Lv + Gφ (4.6)

the sum of the Lie derivative along v and a gauge transformation with parameter φ =

iσ−v xA. Since at the end the integration contour for σ must be rotated to the imaginary

axis, σ 7→ iσ0, we are eventually led to

φ = −
(
σ0 + vµA(0)

µ

)
∈ g , (4.7)

with A(0) a connection whose curvature is a solution to the first fixed point equation

in (4.5). Setting A(0) = 0 retains the perturbative partition function, while contributions

from non-trivial solutions are related to instantons on the horizontal submanifold.

Hypermultiplets. The field content of a five-dimensional N = 1 hypermultiplet consists

of a complex scalar q = (qI), which forms an SU(2)R doublet, and a complex spinor ψ.

These fields are obtained by combining chiral and anti-chiral complex scalars and Dirac

spinors. The supersymmetry transformations are

QεqI = −2 i ε†I ψ ,

Qεψ = ΓµεI (DµqI)− σ qI εI . (4.8)

When coupled to background supergravity fields, additional terms proportional to 1
r are to

be included.

The topological twist in [13] is then achieved in two steps. First, contract all the

SU(2)R indices, and therefore define the SU(2)R singlet spinor q′ from the scalar qI as

q′ = qI ε
I . (4.9)

The square of the supersymmetry transformation, which equals the kinetic operator in the

action, is

Q2
ε = i Lφ with Lφ = Lspin

v + Gφ , (4.10)

where we indicated explicitly that the Lie derivative is twisted by the spin connection

on M5.

The second step consists in defining a spinc structure on M5. For this, in [13] (see

also [53, section 3]) the following assumption is made. Let η be the dual one-form to

the Killing vector field v. Then, according to [49], the most general metric on the Seifert

fibration M5 → K4 admitting supersymmetry is of the form

ds2
M5

= η ⊗ η + ds2
K4
, (4.11)

with transverse Hermitian metric on the Kähler surface K4. If η is proportional to the

contact structure defined by the Seifert fibration, then one can define a canonical spinc

structure on M5. This condition is equivalent to requiring the orbits of v to be all closed.

Manifolds supporting N = 2 supersymmetry belong to this class [48], and the index theo-

rem can be applied in that case.
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The spinc structure identifies, through the action of a representation of the Clifford

algebra, spinors with elements of

Ω
(0,•)
H (M5, g) , (4.12)

so the hypermultiplet is put in cohomological form. See [13, 53] for further details.

After the standard localizing term is added to the action, one has to compute the

localization locus. If one considers the trivial solution A(0) = 0 in the vector multiplet,

then the localization locus consists in setting all hypermultiplet fields to zero. It was proven

in [18] that this holds for any solution A(0) in the localization locus of the vector multiplet,

as long as ds2
M5

is a Sasaki-Einstein metric.

Supersymmetric Yang-Mills action at the localization locus. Evaluating the full

gauge theory action at the fixed point locus on M5 = M3 × Σh gives

Scl(F, σ0) =
1

2 g2
YM

∫
M5

((
F ∧, ∗F

)
+

1

r
(σ0, F )∧κ∧dκ+

1

r2
(σ0, σ0)κ∧dκ∧ωΣh

)
, (4.13)

where gYM is the Yang-Mills coupling constant. Here κ is the contact structure on the

Seifert three-manifold M3, ωΣh is the symplectic structure on the Riemann surface Σh and
1
2 κ ∧ κ ∧ ωΣh is the volume form (2.22) on M3 × Σh.

4.2 One-loop determinant of the vector multiplet in a regular background

After the topological twist performed in section 4.1, all fields of the vector multiplet are in

a cohomological form

A ∈ Ω1(M5, g) , σ ∈ Ω0(M5, g) , Ψ ∈ Ω1(M5, g) and χ ∈ Ω2
H,−(M5, g) , (4.14)

where by Ω2
H,±(M5, g) we denote the spaces of self-dual and anti-self-dual horizontal two-

forms with values in the Lie algebra g. Here we assume that M5 is a regular background,

so that contraction by v separates the horizontal and vertical parts of forms. The gauge

connection A is our even coordinate and χ is the odd coordinate on the space of fields. We

also have to introduce ghosts, and we refer to [12, 13] for the procedure. For our purposes,

it suffices to say that these give two even harmonic scalars and two odd scalars.

Gaussian integration of the vector multiplet around the fixed point gives the ratio of

fluctuation determinants

h(φ) =

√
det i Lφ|f
det i Lφ|b

=

√√√√det i Lφ|Ω2
H,−(M5,g) (det i Lφ|Ω0(M5,g))

2

det i Lφ|Ω1(M5,g) (det i Lφ|H0(M5,g))
2
, (4.15)

where |f (respectively |b) refers to the operator acting on fermionic (respectively bosonic)

fields. Here H0(M5, g) is the space of g-valued harmonic zero-forms on M5, and the dif-

ferential operator Lφ is given in (4.6). The numerator of h(φ) involves the contributions

from the fermionic coordinate χ and the two fermionic ghost coordinates, while the de-

nominator involves the contributions from the bosonic coordinate A and the two bosonic

ghost coordinates.
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We split

Ω2
H(M5, g) = Ω2

H,+(M5, g)⊕ Ω2
H,−(M5, g) ,

Ω2
H,+(M5, g) = Ω

(2,0)
H (M5, g)⊕ Ω

(0,2)
H (M5, g)⊕ Ω

(1,1)
sympl(M5, g) , (4.16)

where Ω
(1,1)
sympl(M5, g) are the g-valued horizontal two-forms proportional to the symplectic

structure on the base Kähler manifold K4. Then

Ω
(1,1)
H (M5, g) = Ω

(1,1)
sympl(M5, g)⊕ Ω2

H,−(M5, g) ∼= Ω0(M5, g)⊕ Ω2
H,−(M5, g) . (4.17)

Here we consider the regular case, in which v is parallel to the Reeb vector field ξ. With

our choices, v = −ξ = − ∂
∂θ , where θ ∈ [0, 2π r) is the coordinate along the circle fibre. We

can decompose horizontal forms according to the fibration structure of M5 → K4 as

Ω
(•,•)
H (M5, g) = Ω(•,•)(K4, g)⊕

⊕
m 6=0

Ω(•,•)(K4,L
⊗m ⊗ g) . (4.18)

The crucial step now is to recognise that, according to this splitting, the Lie derivative

along the Killing vector field v acts on a form αm ∈ Ω(•,•)(K4,L ⊗m ⊗ g) as

Lvαm = −Lξαm = − im

r
αm . (4.19)

The fact that the orbits of v coincide with the orbits of the Reeb vector field ξ is essential

here. The action of i Lφ on each Kaluza-Klein mode labelled by m ∈ Z also includes the

gauge transformation Gφ, whose eigenmodes are found decomposing the Lie algebra g into

its root system

g =
⊕
α∈4

gα . (4.20)

We are therefore ready to evaluate

h(φ) =
1∣∣ det i Lφ|H0(M5,g)

∣∣
√√√√det i Lφ|Ω2

H,−(M5,g) det i Lφ|Ω0(M5,g)

det i Lφ|Ω1
H(M5,g)

=
1∣∣ det i Lφ|H0(M5,g)

∣∣
√√√√ D(1,1)

0 (φ)

D(1,0)
0 (φ)D(0,1)

0 (φ)

∏
m 6=0

√√√√ D(1,1)
m (φ)

D(1,0)
m (φ)D(0,1)

m (φ)
, (4.21)

where in the second line we denoted

D(•,•)
m (φ) = det i Lφ|Ω(•,•)(K4,L⊗m⊗g) . (4.22)

Standard manipulations at this point [13] (see also [12, appendix C]) finally lead to the

cohomological localization formula

Zvec(M5) =
∏
α∈4

(
i (α, φ)

) 1
12

(c2(K4)+c1(K4)2)−dimH0(M5,R)
∏
m 6=0

(
m

r
+ i (α, φ)

)index ∂̄(m)

(4.23)

For a U(1) bundle M5 → Cg × Σh over the product of two Riemann surfaces of genera g

and h, the power of the first multiplicative factor is (1 − g) (1− h)− 1.

– 27 –



J
H
E
P
0
6
(
2
0
2
0
)
0
3
6

4.3 One-loop determinant of the vector multiplet in an irregular background

We now consider the alternative case of an irregular fibration, whereby v does not point

along the U(1) fibre of M5. Let η be the dual one-form to the Killing vector field v. It is

an almost contact structure on M5; if it is a contact structure, then we are in the situation

of section 4.2 above. For the present discussion, we assume that Mg,h
5 → Cg × Σh is a

U(1) fibration over a direct product of two Riemann surfaces, both compact and closed.

Rotations along the circle fibre are assumed to act freely8 on Mg,h
5 . This means that,

although the gauge theory could be put on Mg,h
5 preserving N = 1 supersymmetry when

Mg,h
5 /U(1) admits orbifold points [49], the procedure we describe below does not apply to

that case. Since we are in the irregular setting, we need an additional U(1) isometry on

Cg × Σh. In practice, this restricts our considerations to C0 = S2 or C1 = T 2.

Most of the procedure is exactly the same as in section 4.2, particularly the decompo-

sition of differential forms in terms of the Reeb vector field ξ. Nonetheless, we have to face

two problems. First, as for the irregular three-dimensional case, we have to bear in mind

that forms αm ∈ Ω(•,•)(Cg × Σh,L
⊗m ⊗ g) are no longer eigenmodes of Lv. The other

important issue is that now the conditions following from the definition of the two-form χ,

v xχ = 0 and v x ∗χ = −χ , (4.24)

cannot be interpreted as saying that χ is a horizontal anti-self-dual two-form. If we express

v as a linear combination

v = a1 ξ + a2 ξ̃ , (4.25)

where ξ is the Reeb vector field and ξ̃ is a vector field orthogonal to ξ generating a U(1)

action, we find that the vertical part of χ may not vanish, but it lies in the subspace

orthogonal to ξ̃ . However, more is true: we can decompose χ in terms of a two-form χT
and a one-form χP . Explicitly

χ =

(
κ− a1

a2
κ̃

)
∧ χP + χT , (4.26)

where κ is the contact structure and κ̃ is the one-form dual to ξ̃ , and with further anti-

self-duality relations imposed on χP and χT . In the end, we are left with the same number

of degrees of freedom as for a horizontal anti-self-dual two-form. From the more geomet-

ric perspective of transverse holomorphic foliations, the most natural point of view is to

consider now the index of a new Dolbeault-like operator ∂̃ (m), whose cohomological com-

plex is a deformation of the cohomological complex of the regular case according to the

deformation of the transverse holomorphic foliation of Mg,h
5 as described in [59, section

5] (see also [59, section 7] and [50, section 5] for a discussion about the particular case

of ellipsoids).

At this point, we can again follow the approach of [14] and extend it to five dimensions.

The action of the Reeb vector field is free, and we can reduce the computations to the

8The Sasaki-Einstein manifolds Y p,s do not belong to this class, see appendix C and section 2.4.
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quotient space Cg × Σh. In this way we arrive at the cohomological localization formula

Zvec

(
Mg,h

5

)
=
∏
α∈4

(
i (α, φ)

)g h−g−h ∏
f

∏
m 6=0

(
m

εf
+ i (α, φ)

) 1
2

index ∂̄(m)

(4.27)

with an extra product over the fixed points of the additional U(1) action on Cg ×Σh. The

length parameter εf is the radius of the circle fibre over the fixed point labelled by f .

One-loop determinant of the vector multiplet on M3 ×Σh

We will now specialise the present discussion to product manifolds Mg,h
5 = M3×Σh, where

the classification reduces to the discussion of [46] about the orbits of the three-dimensional

Killing vector field on M3. We shall explicitly compute the Atiyah-Singer index in this

case. The Kähler surface K4 = Cg × Σh is endowed with the product Kähler structure

ω = ωCg + ωΣh and the U(1)-bundle projection π is the product of the Seifert fibration

M3 → Cg and the identity map on Σh. The integer cohomology of K4 has generators

[ωCg ] ∈ H2(Cg,Z) and [ωΣh ] ∈ H2(Σh,Z) in this case, and the first Chern class of the line

bundle L → K4 associated to the circle fibration is given by c1(L ) = deg(L )ωCg . One has

c(T 1,0Σh) = 1 + χ(Σh)ωΣh = 1 + c1(T 1,0Σh) with χ(Σh) = 2− 2h the Euler characteristic

of the Riemann surface Σh, and similarly for Cg. The total Chern class is thus

c(T 1,0K4) = c(T 1,0Cg) ∧ c(T 1,0Σh)

=
(
1 + χ(Cg)ωCg

)
∧
(
1 + χ(Σh)ωΣh

)
= 1 + 2

(
(1− g)ωCg + (1− h)ωΣh

)
+ 4 (1− g) (1− h)ωCg ∧ ωΣh

= 1 + c1(T 1,0K4) + c2(T 1,0K4) , (4.28)

and the corresponding Todd class is

Td(T 1,0K4) = 1 +
1

2
c1(T 1,0K4) +

1

12

(
c1(T 1,0K4) ∧ c1(T 1,0K4) + c2(T 1,0K4)

)
= 1 + (1− g)ωCg + (1− h)ωΣh + (1− g) (1− h)ωCg ∧ ωΣh . (4.29)

Using c1(L ⊗m) = m deg(L )ωCg , the corresponding Chern character is found to be

ch(L ⊗m) = 1 + c1(L ⊗m) +
1

2
c1(L ⊗m) ∧ c1(L ⊗m) = 1 +m deg(L )ωCg . (4.30)

The index of the Dolbeault complex in this case is thus given by

index ∂̄(m) =

∫
K4

(
1 +m deg(L )ωCg

)
∧
(
1 + (1− g)ωCg + (1− h)ωΣh

+ (1− g) (1− h)ωCg ∧ ωΣh

)
=

∫
K4

(
(1− g) (1− h) +m (1− h) deg(L )

)
ωCg ∧ ωΣh

= (1− h)

∫
Cg

(
m deg(L ) + 1− g

)
ωCg

= (1− h)
[
m deg(L ) + 1− g

]
. (4.31)
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The term in square brackets is the index of the twisted Dolbeault complex associated to

the circle bundle M3 → Cg, and we finally get the localization formula

Zvec(M3 × Σh) = Zvec(M3)1−h
∏
α∈4+

(α, iσ)−2h (4.32)

Again, the multiplicative factor in the general localization formula, which includes also

contributions from the ghosts, is essential for cancelling the denominator. This formula

can be extended to the case in which Cg has orbifold points, as reviewed in [50, section 3.5].

Notice that the localization formula for the one-loop determinants on M3 × Σh lifts

the perturbative three-dimensional partition function to the perturbative five-dimensional

partition function. However, while the full (non-perturbative) partition function on M3

receives contributions from flat connections on M3, the full partition function on M3 ×Σh

includes connections A(0) that descend to instantons on Cg × Σh. The moduli spaces over

which we integrate are different. In fact, the pullback to M5 of flat connections on M3 are

not generally solutions to the fixed point equation (4.5). This is a major difference from the

partially twisted theory, in which the BPS configurations decompose into flat connections

on M3 and unconstrained connections on Σh.

4.4 One-loop determinant of a hypermultiplet

For the contribution of a hypermultiplet, we will only consider a regular background here,

due to the issues encountered with the vector multiplet discussed in section 4.3. Further-

more, we consider only the one-loop determinant in the perturbative partition function,

that is we set A(0) = 0, hence φ = −σ0. We want to calculate the ratio of fluctuation

determinants √
det i L−σ0 |f
det i L−σ0 |b

=

√√√√ det i L−σ0 |Ω(0,1)
H (M5,g)

det i L−σ0 |Ω0
H(M5,g) det i L−σ0 |Ω(0,2)

H (M5,g)

. (4.33)

Applying the same strategy as with the vector multiplet, that is, decomposing the hori-

zontal forms according to the tensor powers of the line bundle L associated to the U(1)

fibration, one arrives at the cohomological localization formula

Zpert
hyp (M5) =

∏
ρ∈ΛR

∏
m∈Z

(
m+ ∆

r
− i (ρ, σ0)

)−index ∂̄(m)

(4.34)

We briefly comment on the cohomological formulation of the hypermultiplet in a

squashed or ellipsoid background. The topological twist depends, in general, on the geo-

metric data. However, as discussed in [51] and also in [53, section 3.3], we can turn on the

squashing and continuously deform the contact structure, so that the Reeb vector field as-

sociated to the new contact structure stays parallel to the Killing vector field v. Then, the

cohomological localization applies to the vector multiplet, although using a notion of ‘hor-

izontal’ which differs from that on the round manifold we started with. For the topological

twist of the hypermultiplet, however, a choice of spinc structure is needed, and hence addi-

tional assumptions on the geometry of the base of the U(1) fibration are required, usually
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that it is Kähler-Einstein. The pragmatic solution of [51] was to take the cohomological

form of the hypermultiplet as a definition in a squashed Sasaki-Einstein geometry. This is

not, however, a continuous deformation of the hypermultiplet in the round geometry, and

we do not follow this strategy here.

4.5 Perturbative partition functions

We now come to the first applications of our cohomological localization formulas in five

dimensions. Pan proved in [48] that the product manifolds M3×Σh admitN = 2 supersym-

metry if M3 = S3 or M3 = T 3, the sphere or the torus. The second choice is not included

in the discussion so far, and we will consider it later in section 4.8. We will work out the

full perturbative N = 2 partition functions on S3 × Σh. We shall then write down the

perturbative N = 1 partition functions on more general product five-manifolds M3 × Σh.

N = 2 perturbative partition functions on S3 ×Σh

Regard the three-sphere S3 as the Hopf fibration of degree one over C0 = S2. We use the

localization formula (4.32) with A(0) = 0 together with (4.34) which gives

Zpert
vec (S3 × Σh) = Zvec(S

3)1−h and Zpert
hyp (S3 × Σh) = Zhyp(S3)1−h . (4.35)

The full perturbative partition function is given by taking the product of the one-loop

vector multiplet determinant with products of the one-loop hypermultiplet determinants

over all N = 2 hypermultiplets a of conformal dimensions ∆a in representations Ra of the

gauge group G. We then multiply by the Boltzmann weight of the classical action (4.13)

evaluated at the trivial solution A(0) = 0, and integrate over the remaining scalar moduli

σ0 ∈ g using the localization formulas of section 3.5. We can conjugate σ0 into a Cartan

subalgebra t ⊂ g and use the Weyl integral formula to perform the resulting integral with

the measure

dµ(σ0) = dσ0

∏
α∈4+

(α, σ0)2 , (4.36)

where dσ0 is the Lebesgue measure on t = Rrank(G). The applicability of the Weyl inte-

gral formula is restricted to elements σ0 ∈ t for which the determinant in (4.36) is non-

vanishing; these are called regular elements, and they form an open dense subset treg ⊂ t.

After cancelling the Jacobian in the integration measure with the denominator of the vec-

tor multiplet one-loop determinant, we obtain the perturbative partition function in the

background of [48]:

Zpert
N=2(S3 × Σh) =

∫
treg

dσ̃ e
− 4π2 vol(Σh)

r g2
YM

(σ̃,σ̃) ∏
α∈4+

sinh
(
π (α, σ̃)

)2−2h

×
∏
a

∏
ρa∈ΛRa

s1

(
i (1−∆a)− (ρa, σ̃)

)1−h
, (4.37)

where we defined the variable σ̃ = r σ0 in the Cartan subalgebra treg ⊂ g. The N = 1

partition function on S3 × Σh without matter and including instanton contributions will

be analysed in section 5.1.
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N = 1 perturbative partition functions on M3 ×Σh

We shall now consider the N = 1 perturbative partition functions on more general U(1)

fibrations over Cg × Σh, where Cg is a Riemann surface of genus g, focusing on the case

M5 = M3 × Σh where only M3 → Cg is fibered over Cg. Proceeding as above using the

index formula (4.31), we arrive at

Zpert
N=1(M3 × Σh) =

∫
treg

dσ̃ e
−π vol(Cg) vol(Σh)

r3 g2
YM

(σ̃,σ̃) ∏
α∈∆+

sinh
(
π (α, σ̃)

)2 (1−h) (1−g)
(4.38)

×
∏
a

∏
ρa∈ΛRa

s1

(
i (1−∆a)− (ρa, σ̃)

)(1−h) deg(L )
.

The products L(p, 1)×Σh are particular examples [48] with C0 = S2, for which deg(L ) = p.

The formalism should also apply when M3 is a more general Seifert homology sphere which

admits a contact structure, and in particular for the lens spaces M3 = L(p, s). It would

also be interesting to extend the formalism to the case in which Σh has punctures.

4.6 Contact instantons and their pushdown to four dimensions

We shall now work out solutions to the fixed point equation (4.5) on M5 = M3 × Σh, and

then study their pushdown to four dimensions.

Regular fibrations. We first focus on regular Seifert manifolds. We want to solve the

equation

v x ∗F = F (4.39)

on M3 × Σh, where v = −ξ is the Killing vector field with ξ the Reeb vector field of the

Seifert fibration M3 → Cg. On K-contact five-manifolds, the solutions to this equation are

refered to as contact instantons [12], and their moduli spaces are studied in [63]. We can

rewrite (4.39) as

∗ F = κ ∧ F (4.40)

or equivalently

v xF = 0 and FH,− = 0 , (4.41)

where FH,± denote the self-dual and anti-self-dual horizontal parts of the curvature two-

form F . Let us decompose the gauge connection as

A = Aθ κ+AH , (4.42)

where κ is (minus) the contact structure on M3 dual to v, so that

F =
(
Aθ dκ+ dAθ ∧ κ+ dAH

)
− i
(
AH ∧AH + [Aθ, AH ] ∧ κ

)
. (4.43)

We partly follow the treatment of [13, section 3.2]. The first equation v xF = 0 reads

DHAθ = dAθ + i [AH , Aθ] = 0 , (4.44)
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so Aθ is covariantly constant along Cg × Σh. At this point, it is useful to prove that both

the g-valued function Aθ and one-form AH are invariant under translations along the fibre,

generated by v. For this, we choose the gauge9

LvA = 0 . (4.45)

Then

LvAθ = v x dAθ = − i v x [AH , Aθ] = 0 and LvAH = v x dAH + d(v xAH) = 0 ,

(4.46)

where v x dAH = 0 follows from the gauge fixing condition (4.45).

From (4.44) it follows that the curvature F has only a horizontal part given by

F = FH = Aθ dκ+ dAH − iAH ∧AH . (4.47)

At this point we use the second equation FH,− = 0. The surviving self-dual part belongs

to the vector space

FH,+ ∈ Ω
(1,1)
sympl(Cg × Σh, g)⊕ Ω(2,0)(Cg × Σh, g)⊕ Ω(0,2)(Cg × Σh, g) . (4.48)

This implies that dAH is proportional to the Kähler two-form ωCg + ωΣh on the base, and

recalling the relation (2.21) between dκ and the Kähler form on Cg × Σh, altogether we

arrive at a curvature which is of the form

F = fH
(
ωCg + ωΣh

)
+ F (2,0) + F (0,2) , (4.49)

where

F (2,0) = −i
[
(AH)y, (AH)z

]
dy∧dz and F (0,2) = −i

[
(AH)ȳ, (AH)z̄

]
dȳ∧dz̄ , (4.50)

and we have chosen local complex coordinates (y, ȳ) ∈ Cg and (z, z̄) ∈ Σh. The function

fH ∈ Ω0(Cg × Σh, g) is a purely four-dimensional quantity.

To summarise, we arrive at a solution A = Aθ κ + AH on M3 × Σh, where AH is a

connection on Cg × Σh, and Aθ is a g-valued function which is constant along the fibre

and covariantly constant on Cg × Σh with respect to AH . The curvature F of A lives on

Cg × Σh and is self-dual (from the five-dimensional point of view). The Yang-Mills action

evaluated at these connections gives

SYM(F ) =
1

2 g2
YM

∫
M5

(
F ∧, ∗F

)
=

1

2 g2
YM

∫
M5

κ ∧
(
FH,+ ∧, FH,+

)
= − π r

g2
YM

∫
Cg×Σh

(
FH,+ ∧, FH,+

)
=

8π3 r (~m,~n)

g2
YM

, (4.51)

9We avoid formal considerations involved in the gauge fixing procedure. The details are exactly as

in [12, 13].
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where we integrated over the circular fibre, of radius r, and used the fact that FH,+ is

independent of the fibre direction. The integer vectors ~m,~n ∈ Zrank(G) are the gauge

fluxes through Cg and Σh, respectively, which can be identified with weights of the Lie

algebra g. Then (~m,~n) ∈ Z is proportional to the second Chern character10 ch2(P ) ∈
H4(Cg × Σh,Q) = H2(Cg,Q) ⊗ H2(Σh,Q) of the principal G-bundle P → Cg × Σh on

which AH is a connection. This reduction along the Seifert fibre of M3 may be thought of

as a lift of the technique of [56, 64].

Five-dimensional gauge theories also have a topological global U(1)inst symmetry [27],

with conserved current

Jinst = ∗
(
F ∧, F

)
. (4.52)

The U(1)inst charge of the current Jinst is the instanton number computed from F . The

derivation given above makes it clear that this topological symmetry is related to the U(1)

invariance under rotation of the Seifert fibre.

Pushdown. Let us now describe the pushdown of these solutions. The localization of the

supersymmetric gauge theory onto connections constant along the fibre, whose curvature

descends to four dimensions, is reminiscent of the framework of [65], where the topologically

twisted theory on S2×S2 was studied. In particular, the vertical component Aθ of the gauge

field A is covariantly constant on the four-dimensional base manifold Cg×Σh, thus Aθ is a

scalar field on Cg×Σh constrained in exactly the same way as the scalar σ. Following [66],

we can redefine our vector multiplet and hypermultiplets in terms of four-dimensional

supersymmetry multiplets. The real scalar σ is combined with the vertical component Aθ
to give a complex scalar φ = iσ − v xA, together with a purely four-dimensional gauge

connection AH . This reduction brings the N = 1 five-dimensional vector multiplet down

to the N = 2 four-dimensional vector multiplet. Similar manipulations can be done for the

hypermultiplets. The five-dimensional Majorana spinor ε breaks down into one left and

one right chiral four-dimensional Killing spinor.

In [65, sections 3 and 4], it is explained how to topologically twist the N = 2 gauge

theory on any four-dimensional manifold admitting a U(1) isometry. We can then simply

borrow their results: the fixed point equations in four dimensions are

[F, φ] = [F, φ†] = [φ, φ†] = 0 , w xDHφ
† = 0 and w xF − i dφ = 0 , (4.53)

where w is the vector field used for the twist. The vanishing Lie brackets imply that we can

conjugate all fields AH , σ and v xA into the same Cartan subalgebra of g simultaneously.

This means that covariantly constant scalars σ can be taken to be constant. As pointed

out in [65, section 4.3], to obtain the full partition function one should include not only

the sum over gauge fluxes ~m and ~n through the two surfaces Cg and Σh (which we have

equivalently obtained from direct computations in five dimensions), but also the Nekrasov

partition functions which sum over point-like instantons corresponding to the fixed points

of the action of the maximal torus of the symmetry group given by the direct product of

the gauge group with the isometry group.

10We use Künneth’s theorem here.
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To explicitly compute the instanton contributions, we could take C0 = Σ0 = S2,

where our result coincides with that of [16, section 2]; they proceed in the other direction,

starting from the theory on S2×S2 with Ω-background and then lifting it to S3
b ×S2. The

other geometry where instanton contributions are tractable is a reduction onto S2 × T 2.

In this case, the N = 2 four-dimensional theory was analyzed in [67, 68] (see also [69]),

which in turn computes the elliptic genus of an N = (2, 2) gauge theory on the torus

T 2 [70].11 While contributions from four-dimensional point-like instantons on Cg ×Σh are

hard to compute in more general geometries, we may hope to recover the full answer from

a resurgent analysis, as explained in [71] for S4. Borel summability of the perturbation

series for N = 2 theories on S4 and N = 1 theories on S5 (both possibly squashed) has

been studied in [72]. We show in section 4.7 below how to adapt this argument to some

examples in the present setting.

Irregular fibrations. The irregular case is more subtle. In this case, we may attempt to

proceed as in the regular case, but now with the Killing vector v no longer pointing along

the fibre direction. In other words, the equation

v x ∗F = F (4.54)

cannot be interpreted in terms of horizontal and anti-self-dual components. Instead, we

can decompose the gauge field as

A = Aη η +AT , (4.55)

where η is the one-form dual to v, Aη is the component of the gauge connection along

the direction of the isometry generated by v, and AT is the transverse gauge connection.

That is, we replace the notion of horizontal with that of transverse, which is natural in

the present context [49]. Then the condition v xF = 0, necessary to fulfill (4.54), can be

solved in an analogous way as for the regular case, leading to

DTAη = dAη + i [AT , Aη] = 0 and LvAη = 0 = LvAT . (4.56)

From the analysis of the regular case above, it is clear that we can again pushdown

the theory to four dimensions. However, this time we do not reduce to the base Cg × Σh

of the Seifert fibration, but instead to the submanifold transverse to η (equivalently, the

submanifold orthogonal to v). This is what one expects by the construction of [49].

4.7 Borel summability

Consider the perturbative contribution to the partition function of N = 1 gauge theory

on S3 × Σh with gauge group G = U(N) and massless hypermultiplets, with Nf in the

fundamental representation and Nf̄ in the anti-fundamental representation. The pertur-

bative partition function is formally the same as the N = 2 perturbative partition function

11The case of interest to us is described in [67, section 5.1], but without gauging the flavour symmetry.

In the two-dimensional theory, this corresponds to turning off the moduli associated to background fields,

and in particular the two-dimensional R-symmetry is not gauged.
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computed in section 4.5, but now allowing a more general assignment of charges ∆f and

∆f̄ for the hypermultiplets. Changing integration variables to hyperspherical coordinates

σ̃j =
√
τ xj with

N∑
j=1

x2
j = 1 and 0 ≤ τ <∞ (4.57)

as in [73], we can rewrite the partition function (4.37) in the form

Zpert
N=2(S3 × Σh) =

∫ ∞
0

dτ e
− τ
γ YN (τ) , (4.58)

where γ−1 = 4π2

r g2
YM

vol(Σh) and

YN (τ) =
τ (N2−2)/2

2

∫
RN

dxδ

(
N∑
j=1

x2
j − 1

) ∏
1≤j<k≤N

(xj − xk)2

×

( ∏
1≤j<k≤N

sinh
(
π
√
τ (xj − xk)

)2
τ (xj − xk)2

)1−h

(4.59)

×

(
N∏
j=1

s1

(
i (1−∆f )−

√
τ xj

)Nf s1

(
i (1−∆f̄ ) +

√
τ xj

)Nf̄)1−h

.

This form is suitable to study the Borel summability of the partition function Zpert
N=1(S3 ×

Σh), and of the N = 2 theory as a particular case. In fact, this expression is exactly as

in [73], except for the powers 1 − h. For genus h = 0 Borel summability follows from [73]

and for h = 1 it is straightforward. The proof of Borel summability at h > 1 is almost

exactly as in [73] except for minor changes in the proof of the uniform convergence. As

in [73], the argument can be extended to include Nadj adjoint hypermultiplets.

For the particularly simple case Σ0 = S2, we can extend this analysis of Borel summa-

bility beyond the perturbative sector. It suffices to notice that non-perturbative contri-

butions to the N = 1 partition function on S3 × S2 come from four-dimensional (anti-

)instantons on S2 × S2. The N = 2 instanton partition function was obtained in [65], and

it coincides with the instanton partition function on S4 [65, 72]. Therefore for U(N) gauge

theory with Nf hypermultiplets in the fundamental representation and Nf̄ hypermultiplets

in the anti-fundamental representation, the Borel summability of each instanton sector is

proven by combining the methods of [73] and [72].

4.8 Extension to S1 × Cg × Σh

As our final consideration of the general features of cohomological localization in five dimen-

sions, we discuss how the prescriptions of this section should be adapted when the gauge

theory is put on the five-manifold M5 = S1×Cg×Σh; this is the five-dimensional lift of the

discussion in section 3.6. The direct product S1 × Cg × Σh is a special case, which is not

included in our previous discussion for two reasons. Firstly, although it clearly corresponds

to a regular fibration, this geometry does not follow directly from a rigid supergravity
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background; instead, we have to first put the theory on R× Cg × Σh using a supergravity

background and then compactify. The second difference from the other U(1) fibrations dis-

cussed in this section is the localization locus. Supersymmetric localization on S1×S4 was

studied in [74–76]. The Qε-exact action of [75, eq. (4.12)] in our notation is proportional to∫
M5

(
1

2

(
F ∧, ∗F

)
−
(
Dσ ∧, ∗Dσ

)
+ κ∧

(
− (σ, σ)ωCg ∧ωΣh +

1

2
(σ, F )∧ωCg −

1

4

(
F ∧, F )

))
(4.60)

where we dropped the contributions from fields which must be set to zero at the localization

locus. Bearing in mind that we will have to rotate σ 7→ iσ0 and integrate over σ0 ∈ g, the

saddle points of this action require σ to be covariantly constant and F to vanish in the

direction of S1. This implies that the gauge connection has a constant component a0 along

S1, and we can gauge rotate a0 into a Cartan subalgebra of g. Moreover, the curvature

FCg×Σh = fCg ωCg + fΣh ωΣh (4.61)

is a saddle point if fCg = 2σ = fΣh , subject to the additional condition [a0, fCg ] = 0. This

vanishing Lie bracket guarantees that σ is constant and can be conjugated into the same

Cartan subalgebra as a0. Therefore the full localization locus inside the Coulomb branch

is parametrized by a0 and ~m ∈ Λ, an element of the co-root lattice in the same Cartan

subalgebra as a0, through

A = a0 κ+ ~m (ACg +AΣh) and σ =
~m

r
, (4.62)

where ACg and AΣh are monopole connections on Cg and Σh, respectively, satisfying∫
Cg

dACg =
1

2
vol(Cg) and

∫
Σh

dAΣh =
1

2
vol(Σh) . (4.63)

The pushdown to four dimensions in the present geometry is the usual Kaluza-Klein di-

mensional reduction, in contrast to the reduction of section 4.6.

The triviality of the U(1) fibration in the present case implies that the index of the

twisted Dolbeault complex is given by

index ∂̄(m) = (1− g) (1− h) . (4.64)

With the same notation q = e−
ε
r from section 3.6, we immediately find

Zvec(S
1 × Cg × Σh) = Zvec(S

1 × Cg)1−h (4.65)

=
∏
α∈4

q−
1
2

(1−g) (1−h) |(α,~m)|
(

1− e−i ε (α,a0) q|(α,~m)|
)(1−g) (1−h)

.

This lifts the result of section 3.6 to the five-dimensional manifold M5 = S1 × Cg × Σh.12

12As in section 3.6, we omit a factor
∏
α∈4 (α, a0)−1, which cancels the Jacobian arising from the inte-

gration over a0 after gauge rotation into the chosen Cartan subalgebra.
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N = 2 perturbative partition functions on T 3 ×Σh

View the three-torus T 3 as the trivial circle bundle over C1 = T 2. It follows from (4.64)

that in this case the index of the Dolbeault complex is zero, and so from the localization

formula (4.32) with A(0) = 0 together with (4.34) we obtain

Zpert
vec (T 3 × Σh) =

∏
α∈4+

(α, σ0)−2 and Zpert
hyp (T 3 × Σh) = 1 . (4.66)

For the supersymmetric Yang-Mills theory on T 3 × Σh, the only non-trivial contributions

to the one-loop determinants come from the ghosts in the vector multiplet, which produce

a factor that exactly cancels the Jacobian arising from conjugation of σ0 into the Cartan

subalgebra t, as mentioned before. Hence the perturbative partition function is given by a

Gaussian integral

Zpert
N=2(T 3 × Σh) =

∫
treg

dσ̃ e
− 4π3 vol(Σh)

r g2
YM

(σ̃,σ̃)
. (4.67)

For a quiver gauge theory with unitary gauge group G = U(N1) × U(N2) × · · · × U(Nn),

this reads

Zpert
N=2(T 3 × Σh) =

(
r g2

YM

4π3 vol(Σh)

) 1
2

(N1+···+Nn)

. (4.68)

Note that the perturbative partition function on T 3 × Σh does not distinguish between a

non-abelian theory with gauge group G = U(N) and an abelian quiver theory with gauge

group G = U(1)N .

5 q-deformed Yang-Mills theories from cohomological localization

This final section is devoted to the study of five-dimensional supersymmetric Yang-Mills

theory on S3
b ×Σh, where S3

b is either the squashed sphere of [29] or the ellipsoid of [28] (see

appendix B for details); recall from section 2.1 that these are the five-dimensional theories

that naturally descend from six-dimensional superconformal field theories on squashed

geometries. We show how q-deformations of Yang-Mills theory on a Riemann surface Σh

arise from our localization procedure. Our formula for the partition function of the standard

q-deformed Yang-Mills theory in section 5.1 improves the result of [10, 15], wherein the

Gaussian term was not retained; as we discuss, this Boltzmann factor is important for

applications to holography. Both treatments of [10] and [15] focus on the zero area limit

where vol(Σh) → 0, which hides the fact that the resulting q-deformed Yang-Mills theory

has p = 1. We elucidate the geometric significance of this new q-deformation through an

analysis of the resulting matrix model on the sphere Σ0 = S2, by adapting the procedure

of [34] to the present case.

5.1 Localization on S3 × Σh

Consider the N = 1 partition function without matter on S3×Σh, beyond the perturbative

calculation of section 4.5. More precisely, we include the full set of solutions obtained
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in section 4.6, but discard the four-dimensional point-like instantons.13 The resulting

partition function is given by

ZN=1(S3 × Σh) =
∑
A(0)

∫
treg

dσ0 e−Scl(F,σ0)
∏
α∈4+

sinh
(
π r (α, φ)

)2−2h
, (5.1)

with Scl the action evaluated at the localization locus:

Scl(F, σ0) = SYM(F )+
1

2 g2
YM

∫
S3×Σh

(
1

r2
(σ0, σ0)κ∧dκ∧ωΣh+

1

r
(σ0, F ) ∧κ∧dκ

)
. (5.2)

The first summand in the action, SYM(F ), is the five-dimensional Yang-Mills action eval-

uated in section 4.6:

SYM(F ) =
1

2 g2
YM

∫
S3×Σh

κ ∧
(
FH,+ ∧, FH,+

)
= − π r

g2
YM

∫
S2×Σh

(
F |S2×Σh

∧, F |S2×Σh

)
=

8π3 r

g2
YM

(~m,~n) ,

(5.3)

where in the second equality we used the defining equations, and in the last equality

(~m,~n) ∈ Z is proportional to the second Chern character ch2 associated to the pertinent

principal G-bundle over S2 × Σh.

The sum in the partition function runs over the G-connections A(0) whose curvature

F satisfies the fixed point equation

v x ∗F = F . (5.4)

These solutions were studied in section 4.6. It is straightforward to check that connections

whose curvature lives on Σh, that is F = F |Σh , do not satisfy this equation. In other

words, connections that are flat when projected onto S3, and which thus belong to the

localization locus of a purely three-dimensional theory, do not belong to the localization

locus of the fully twisted five-dimensional theory. The flat connection on S3 does belong

to the localization locus of the five-dimensional theory which is partially twisted along Σh

(with arbitrary A|Σh), but not to the localization locus of the fully twisted theory; the

partition function of the field theory topologically twisted along Σh is important from the

perspective of the six-dimensional theory and its reduction to four-dimensional theories of

class S [10, 15, 16]. The same argument can be made for connections which are flat along

Σh, which then only belong to the localization locus of the five-dimensional theory which

is partially twisted along S3 (with arbitrary A|S3) [36, 37, 39].

13This sector of the partition function was named “perturbative” in [16]. However, in the present paper

the term perturbative refers to the expansion around the trivial connection, while the subsector of the full

partition function we are considering now includes a much wider class of solutions. A proper definition

hinted at in [16, section 2.4] might be “partition function neglecting codimension four field configurations”.

These are non-perturbative with respect to an expansion in the geometric area parameter vol(Σh).
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We can write

ZN=1(S3 × Σh) =
∑

~m,~n∈Zrank(G)

∫
treg

dφ e−Scl(~m,~n;φ)
∏
α∈4+

sinh
(
π r (α, φ)

)2−2h
. (5.5)

We shifted the integration variable to φ = −σ0 − v xA(0). This is the natural variable to

use when descending to a four-dimensional description, as the sum in (5.5) is taken over

the gauge fluxes ~m and ~n through S2 and Σh, respectively; the first and second Chern

characters associated to the principal G-bundle over S2 × Σh are obtained by using the

pairing ( · , · ). The action evaluated at the fixed points consists of three terms:

Scl(~m,~n;φ) = SYM(~m,~n)+
1

2 g2
YM

∫
S3×Σh

(
1

r2
(φ, φ)κ∧dκ∧ωΣh−

1

r
(φ, F |S2×Σh)∧κ∧dκ

)
,

(5.6)

where the first summand is written in (5.3). Passing to the scaled variable φ̃ = r φ, we get

Scl(~m,~n; φ̃) =SYM(~m,~n) (5.7)

+
1

g2
YM

(
8π2 vol(Σh)

r
(φ̃, φ̃) +

2π i

r2

∫
S3×Σh

i

4π
(φ̃, F |S2×Σh) ∧ κ ∧ dκ

)
.

Zero flux sector. We will now restrict ourselves to those connections for which

SYM(~m,~n) = 0. Contributions with non-vanishing second Chern character are exponen-

tially suppressed. We turn off the gauge fluxes through S2, ~m = ~0, and follow standard

techniques from two-dimensional Yang-Mills theory, see in particular [52]. Using

1

2

∫
S3×Σh

i

2π
(φ̃, F |S2×Σh) ∧ κ ∧ dκ = 4π2 r3 (φ̃, ~n) , (5.8)

and summing over ~n ∈ Zrank(G), the third summand in the action (5.7) produces the

delta-function constraint
4π2 r

g2
YM

φ̃ = ~k (5.9)

for some integer vector ~k ∈ Zrank(G) which can be identified with a regular weight of g.

Plugging this into the remaining Gaussian part of the action gives

g2
YM

4π r

vol(Σh)

π r2
(~k,~k ) . (5.10)

In the one-loop determinant, we obtain

sinh
(
π r (α, φ)

)
= sinh

(
π (α, φ̃)

)
= sinh

(
g2

YM

4π r
(α,~k )

)
= −

[
(α,~k )

]
q

(5.11)

where

q = e−gstr with gstr :=
g2

YM

2π r
. (5.12)

The final form of the partition function is then

Z ~m=~0
N=1(S3 × Σh) =

∑
~k∈(Zrank(G))reg

∏
α∈4+

[
(α,~k )

]2−2h

q
q

1
2

(~k,~k )
vol(Σh)

π r2 . (5.13)
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From (5.12) we identify the six-dimensional radius β =
g2
YM
2π , and it is instructive to rewrite

q
1
2

(~k,~k )
vol(Σh)

π r2 = exp

(
− (~k,~k )

2π β vol(Σh)

volκ(S3)

)
, (5.14)

where volκ(S3) is the volume of S3 taken with respect to the contact structure κ, in our

normalization.

The expression (5.13) is the partition function of the standard q-deformed two-

dimensional Yang-Mills theory on Σh (cf. section 2.2), at p = 1 and with Gaussian weight

corrected by the ratio of volumes between the fibre Riemann surface Σh and the total

space sphere S3. This ratio of volumes matches exactly with [31]. For unitary gauge group

G = U(N), this is reminiscent of the large N free energy of gauge theories with a holo-

graphic dual. In particular, for Σh = Σ0 = S2, the N3 behaviour of the free energy at large

N in the present theory follows immediately from the large N limit of q-deformed Yang-

Mills theory, which in turn is given by the free energy of Chern-Simons theory on S3 as we

are in the case p = 1. This indeed gives the right answer for a gauge theory on a Sasaki-

Einstein five-manifold which has a holographic dual [77]. See [78] for a discussion and a

similar example where the N3 behaviour of the free energy in five dimensions is extracted

from Chern-Simons gauge theory in three dimensions. See also [79] for the localization

of five-dimensional maximally supersymmetric Yang-Mills theory to a three-dimensional

subsector, and the relation with Chern-Simons theory.

We notice that the string coupling gstr depends only on the ratio
g2
YM
r . This is consistent

with dimensional reduction from the (2, 0) theory on S1×S3×Σh discussed in section 2.1.

In the six-dimensional setting, g2
YM plays the role of the circumference of the circle S1 on

which we have reduced. On the other hand, the small area limit vol(Σh) → 0 gives the

superconformal index of the four-dimensional gauge theory on S1 × S3, consistently with

the conjecture of [30]. From (5.14) it is evident that the small vol(Σh) limit is the same as

the large volκ(S3) limit which decompactifies the three-sphere S3 to R3.

Reinstating gauge fluxes. We have so far restricted ourselves to the sector where

SYM(~m,~n) = 0. In general we have to consider additional solutions which are given by

connections whose curvature lives on S2 × Σh with non-trivial second Chern character

ch2 6= 0, and

SYM(~m,~n) =
8π3 r

g2
YM

(~m,~n) = 2π i

(
− i

4π2 r

g2
YM

(~m,~n)

)
, (5.15)

where as above ~n is the gauge flux through Σh and ~m is the gauge flux through S2. The

full partition function includes this term in the action, along with a sum over ~m ∈ Zrank(G).

The bracketed term has exactly the same coefficient as a BF-type term in the action. This

means that the procedure we used for the ~m = ~0 sector should be modified by a shift

φ̃ 7→ φ̃− i ~m after the sum over all ~n ∈ Zrank(G). We finally arrive at

ZN=1(S3 × Σh) =
∑

~m∈Zrank(G)

∑
~k∈(Zrank(G))reg

∏
α∈4+

([
(α,~k − i ~m)

]
q

[
(α,~k + i ~m)

]
q

)1−h

× q
1
2

(~k−i ~m,~k− i ~m)
vol(Σh)

π r2 . (5.16)

The q-deformed measure has in fact precisely the right form to support non-trivial fluxes ~m.
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5.2 Localization on squashed S3
b × Σh

There exist two types of squashings of S3 that can be lifted to five dimensions with N = 2

supersymmetry. The first type is the familiar case of [28]. From the point of view of

cohomological localization, the squashing simply corresponds to a rescaling of the fibre

radius, and the results for the one-loop determinants on S3
b × Σh are exactly the same as

for the round sphere S3, but with fibre radius ε 6= r, where r is the radius of the base S2.

See appendix B for further details.

The other squashed sphere, which is a regular fibration, is that of [29]. We did not

give a formal derivation of the one-loop determinants in the cohomological gauge theory

for this background. However, we know that the Killing vector field v has closed orbits and

is parallel to the Reeb vector field ξ. We can therefore lift the results from S3
b to S3

b ×Σh,

and the one-loop determinants are given by

Zvec(S
3
b × Σh) =

( ∏
α∈4+

sinh
(
π ε1 (α, σ0)

)
sinh

(
π ε2 (α, σ0)

)
π2 ε1 ε2 (α, σ0)2

)1−h

,

Zhyp(S3
b × Σh) =

( ∏
ρ∈ΛR

sb

(
i

2
(b+ b−1) (1−∆)− r (ρ, σ0)

))1−h

, (5.17)

which agrees with [16, section 2]. We adopted the notation

ε1 = r b and ε2 = r b−1 with b =
1− iu√
1 + u2

(5.18)

from appendix B.

The computation of the full N = 1 partition function without matter on S3
b × Σh

proceeds exactly as in section 5.1, with only a modification in the one-loop determinant.

This results in a bi-orthogonalization of the q-deformed measure, and the partition function

in the sector of vanishing second Chern character ch2 = 0 is given by

Z ~m=~0
N=1(S3

b×Σh) =
∑

~k∈(Zrank(G))reg

∏
α∈4+

([
b (α,~k )

]
q

[
b−1 (α,~k )

]
q

)1−h
q

1
2

(~k,~k )
vol(Σh)

π r2 . (5.19)

The extension to the full partition function including non-trivial gauge fluxes ~m

through the base S2 is exactly as described in section 5.1, as we are presently working

in the regular case. After inclusion of gauge fluxes ~m 6= ~0, our result appears to be only

in partial agreement with [16, 35], where the field theory is first defined on S3
b × R2, then

dimensionally reduced, and finally put on the Riemann surface Σh with a twist. That

procedure allows for additional background fluxes for the flavour symmetry, which do not

appear in our framework nor in [10].

5.3 Localization on ellipsoid S3
b × Σh

We now consider the geometry S3
b × Σh for the ellipsoid S3

b of [28]. Most of the steps are

the same as in the round S3 case of section 5.1. The action at the localization locus is
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again given by

Scl(F, σ0) = SYM(F )+
1

2 g2
YM

∫
S3×Σh

(
1

r2
(σ0, σ0)κ∧dκ∧ωΣh+

1

r
(σ0, F )∧κ∧dκ

)
, (5.20)

with

SYM(F ) =
1

2 g2
YM

∫
S3×Σh

(
F ∧, ∗F

)
. (5.21)

The zero flux sector of the partition function is

Z ~m=~0
N=1(S3

b × Σh) =
∑

~n∈Zrank(G)

∫
treg

dσ0 e−Scl(~0,~n;σ0) (5.22)

×
∏
α∈4+

(
sinh

(
π r b (α, σ0)

)
sinh

(
π r b−1 (α, σ0)

))1−h
.

Changing variable σ̃ = r σ0 and repeating the same steps used in section 5.2, we arrive at

Z ~m=~0
N=1(S3

b × Σh) =
∑

~k∈(Zrank(G))reg

e−
gstr

2
(~k,~k )

vol(Σh)

π r2 (5.23)

×
∏
α∈4+

(
sinh

(
b
gstr (α,~k )

2

)
sinh

(
b−1 gstr (α,~k )

2

))1−h
,

where as before we defined the string coupling gstr =
g2
YM

2π r = β
r . The final expression can

be rewritten in terms of q = e−gstr as

Z ~m=~0
N=1(S3

b×Σh) =
∑

~k∈(Zrank(G))reg

q
1
2

(~k,~k )
vol(Σh)

π r2

∏
α∈4+

([
b (α,~k )

]
q

[
b−1 (α,~k )

]
q

)1−h
. (5.24)

From (5.22) we see that the perturbative partition function on S3
b ×S2, retaining only

the contribution from the trivial flat connection A(0) = 0, coincides with the perturbative

partition function of Chern-Simons gauge theory on the lens space L(p, 1), continued to

arbitrary values p = b2 ∈ R:

Zpert
N=1(S3

b × S2) =

∫
treg

dσ e
− 1

2 gstr
(σ,σ)

vol(Σh)

π r2
∏
α∈4+

sinh

(
b

(α, σ)

2

)
sinh

(
b−1 (α, σ)

2

)
,

(5.25)

where we rescaled σ = gstr σ0. This becomes more evident if we use instead an asymmetric

length scaling to define the variable σ̃ = ε1 σ0 = r b σ0. For general genus h we then arrive

at the discrete matrix model

Z ~m=~0
N=1(S3

b × Σh) =
1

brank(G)

∑
~k∈(Zrank(G))reg

q
1
2

(~k,~k )
vol(Σh)

π r2

∏
α∈4+

([
(α,~k )

]
q

[
b−2 (α,~k )

]
q

)1−h
.

(5.26)

Further details and analysis of this matrix model for genus h = 0 and gauge group G =

U(N), along the lines of [34], are provided in section 5.4 below.
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Reinstating the additional contributions of contact instantons, with non-vanishing

fluxes through the base S2 of the U(1) fibration of S3
b , is a much more subtle issue. This

is because the U(1)-action now involves the Killing vector field v which differs from the

Reeb vector field ξ on S3
b , so that contractions with v do not separate the horizontal and

vertical parts of the differential forms involved.

5.4 The matrix model

We focus now on the partition function Z ~m=~0
N=1(S3

b × S2) for gauge group G = U(N). The

partition function is formally the same for either the squashed sphere or the ellipsoid S3
b .

Only the geometric meaning of the squashing parameter b is different in the two cases, in

particular b is a complex number of unit modulus |b| = 1 for the squashed sphere and b > 0

is real for the ellipsoid. However, as the partition function can be analytically continued

in both cases, there is no difference in practice.

Our goal is then to study the discrete random matrix ensemble with partition function

ZN (b) =
1

bN N !

∑
~̀∈ZN

e−
gstr

2

∑N
j=1 `

2
j

×
∏

1≤j<k≤N
4 sinh

(
gstr

2
(`j − `k)

)
sinh

(
gstr

2 b2
(`j − `k)

)
, (5.27)

which can be identified with the discrete version of the bi-orthogonal Stieltjes-Wigert en-

semble studied in [80]. If p := b2 ∈ Z, the continuous version of the bi-orthogonal Stieltjes-

Wigert ensemble provides the partition function of Chern-Simons theory on the lens space

L(p, 1). In the limit b → 1 we recover the partition function of q-deformed Yang-Mills

theory constructed from the monopole bundle over S2 with p = 1, whose continuous coun-

terpart is Chern-Simon theory on S3 (with analytically continued level). In the present

setting, b2 may be any positive real number, not necessarily integer, and indeed the analysis

of the bi-orthogonal Stieltjes-Wigert ensemble in [80] does not rely on p being integer. We

shall now clarify the geometric significance of the dependence on the squashing parameter

b of this q-deformed Yang-Mills theory.

Semi-classical expansion. Following [34], we will begin by performing a modular in-

version of the series (5.27) to obtain the dual description of the q-deformed Yang-Mills

matrix model in terms of instanton degrees of freedom. For this, we consider the function

Fb(x1, . . . , xN ) = e−
gstr

4

∑N
j=1 x

2
j

∏
1≤j<k≤N

2 sinh

(
gstr

2 b2
(xj − xk)

)
(5.28)

of continuous variables (x1, . . . , xN ) ∈ RN . Its Fourier transform is given by

F̂b(y1, . . . , yN ) :=

∫
RN

dx e
∑N
j=1 (2π ixj yj− gstr4

x2
j )

∏
1≤j<k≤N

(
e

(xj−xk) gstr

2 b2 − e−
(xj−xk) gstr

2 b2

)

= e
− 4π2

gstr

∑N
j=1

(
yj+

i (N−1) gstr
4π b2

)2
+
N (N−1)2 gstr

2 b4 (5.29)

×
∫
RN

du e−
gstr

4

∑N
j=1 u

2
j

∏
1≤j<k≤N

(
e
gstr uj

b2
+

4π i yj

b2 − e
gstr uk
b2

+
4π i yk
b2

)
,
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where we completed squares and changed integration variables to uj = xj − 4π i
gstr

yj +
N−1
b2

. We now change integration variables again, in the usual way for matrix models with

hyperbolic interactions, by defining

zj = e
gstr uj

b2
+

2 gstr
b4 (5.30)

to get

F̂b(y1, . . . , yN ) =

(
b2

gstr

)N
e−

gstr
2 b4

N (N2+1) e
− 4π2

gstr

∑N
j=1

(
yj+

i (N−1) gstr
4π b2

)2

(5.31)

×
∫

(0,∞)N
dz e

− b4

4 gstr

∑N
j=1 (log zj)

2 ∏
1≤j<k≤N

(
zj e

4π i yj

b2 − zk e
4π i yk
b2

)
.

The integral expression we have arrived at is exactly the same as in [34, eq. (3.14)]

under the identification of the string coupling constant g̃str there as g̃str = gstr

b2
, which as

we have seen is the coupling that reproduces the standard q-deformed Yang-Mills theory.

We can therefore evaluate the integral using Stieltjes-Wigert polynomials to get

F̂b(y1, . . . , yN ) =

(
4π

gstr

)N
2

e
gstr
6 b4

N (N−1) (N−2) e
− 4π2

gstr

∑N
j=1

(
yj+

i (N−1) gstr
4π b2

)2

×
∏

1≤j<k≤N

(
e

4π i yj

b2 − e
4π i yk
b2

)
. (5.32)

At this point, we apply the convolution theorem for Fourier transformations to get

Zb(y1, . . . , yN ) :=

∫
RN

dx e 2π i
∑N
j=1 xj yj Fb(x1, . . . , xN )F1(x1, . . . , xN )

=

∫
RN

dt F̂b

(
y1 − t1

2
, . . . ,

yN − tN
2

)
F̂1

(
y1 + t1

2
, . . . ,

yN + tN
2

)
. (5.33)

After some calculation, we arrive finally at

Zb(y1, . . . , yN ) = e
− 2π2

gstr

∑N
j=1 y

2
j Wb(y1, . . . , yN ) , (5.34)

with weight given by

Wb(y1, . . . , yN ) =

(
4π

gstr

)N
e
gstr
12

N (N2−1) (1+b−4)

∫
RN

dt e
− 2π2

gstr

∑N
j=1 t

2
j (5.35)

×
∏

1≤j<k≤N
2
(

cosπ
(
yjk (1 + b−2) + tjk (1− b−2)

)
− cosπ

(
yjk (1− b−2) + tjk (1 + b−2)

))
,

where we adopted the shorthand notation yjk := yj − yk and tjk := tj − tk. This correctly

reproduces the weight of [34, eq. (3.20)] in the limit b = 1.

The final step in developing the semi-classical expansion of the partition function (5.27)

is Poisson resummation, and we finally arrive at

ZN (b) =
1

bN N !

∑
~̀∈ZN

Zb(~̀ ) =
1

bN N !

∑
~̀∈ZN

e
− 2π2

gstr
(~̀,~̀ ) Wb(~̀ ) . (5.36)
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This expression admits the standard interpretation as a sum over instanton solutions of

the two-dimensional gauge theory: since the q-deformation arises here through one-loop

determinants in the initial five-dimensional field theory, at the classical level this theory

is just ordinary Yang-Mills theory on the sphere S2. The exponential prefactors in the

series (5.36) are then the classical contributions to the gauge theory path integral from

the Yang-Mills action evaluated on instantons of topological charge `j ∈ Z corresponding

to a Dirac monopole of the j-th factor of the maximal torus U(1)N ⊂ U(N), while the

integrals (5.35) are the fluctuation determinants around each instanton.

Rational limit and Chern-Simons theory on L(p, s). Up to now the derivation

of (5.36) worked for every positive real value of the squashing parameter b. Let us now

specialise the squashing parameter to the rational values

b2 =
p

s
∈ Q , (5.37)

where p and s are coprime positive integers with 1 ≤ s ≤ p. From the five-dimensional

perspective that we started with, the ellipsoid Seifert manifold S3
b then has the topology

of a lens space L(p, s), viewed as a circle bundle over S2 with two marked points [50];

the exceptional fibres over the marked points respectively makes them Zp and Zs orbifold

points. The first Chern class of the line V-bundle L (p, s) over the P1 orbifold associated

to L(p, s) is

c1

(
L (p, s)

)
=
s

p
ωP1 , (5.38)

which cancels the local curvatures at the marked points of P1 to ensure that the total

degree of the Seifert fibration is zero. This is also homeomorphic to the ‘fake’ lens space

which is the quotient S3/Zp by the free Zp-action(
z1, z2

)
7−→

(
e 2π i s/p z1, e 2π i/p z2

)
, (5.39)

where S3 is regarded as the unit sphere in C2. From the two-dimensional perspective, we

will now show that the instanton expansion (5.36) retains topological information reflecting

its five-dimensional origin, by rewriting it in terms of flat connection contributions to U(N)

Chern-Simons gauge theory on the lens spaces L(p, s).

Since

π1

(
L(p, s)

)
= Zp , (5.40)

gauge inequivalent flat U(N) connections are labelled by N -tuples ~m ∈ (Zp)N , which are

torsion magnetic charges coming from the pullback of a Yang-Mills instanton on the sphere

S2 to a flat connection on L(p, s) [17]. Let us then rewrite the series variables ~̀ ∈ ZN

in (5.36) as
~̀= ~m+ p~l , (5.41)

with ~l ∈ ZN . We can rewrite the interactions among eigenvalues from (5.35) as

4 sin
π s

p

(
mjk − tjk + p (lj − lk)

)
sinπ

(
mjk + tjk + p (lj − lk)

)
, (5.42)
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and thus it depends only on the values of ~̀ ∈ ZN modulo p, that is, on ~m ∈ (Zp)N .14 They

are also invariant under the Weyl symmetry group SN of the gauge group U(N), so that

we can reduce the sum over all N -tuples ~m ∈ (Zp)N to the ordered ones with

mN ≥ mN−1 ≥ · · · ≥ m1 . (5.43)

Thus the partition function (5.36) depends only on how many times the integers k ∈
{0, 1, . . . , p − 1} appear in the string (m1, . . . ,mN ). We denote these multiplicities as

N = (N0, N1, . . . , Np−1), which by construction are p-component partitions of the rank N :

Nk ≥ 0 and

p−1∑
k=0

Nk = N . (5.44)

Under this reordering the Weyl symmetry breaks according to

SN −→ SN0 × SN1 × · · · × SNp−1 . (5.45)

The partition function (5.36) is then rewritten as

ZN (p, s) =

(
s

p

)N/2 ∑
N `N

1
p−1∏
k=0

Nk!

Wp,s

(
0N0 , 1N1 , . . . , (p− 1)Np−1

)
(5.46)

×
∑
~l∈ZN

p−1∏
k=0

exp

(
− 2π2

gstr

Nk∑
j=N0+N1···+Nk−1+1

(k + p lj)
2

)
,

where here kNk := (k, . . . , k) is the Nk-vector whose entries are all equal to k. As in [34,

section 3.3], we identify in the second line a product of elliptic theta-functions

ϑ3(τ |z) =
∑
l∈Z

e π i τ l2+2π i l z (5.47)

which enables us to write

ZN (p, s) =
∑

N `N
e
− 2π2

gstr

∑p−1
k=0 Nk k

2

Wp,s

(
0N0 , 1N1 , . . . , (p− 1)Np−1

)
×

p−1∏
k=0

ϑ3

(2π i p2

gstr

∣∣2π i p k
gstr

)Nk
Nk!

. (5.48)

We can write the fluctuation weight Wp,s

(
0N0 , 1N1 , . . . , (p − 1)Np−1

)
explicitly in its in-

tegral form (5.35) and reorganize the integration variables tj into subsets tJj with J ∈
{0, 1, . . . , p− 1} and j ∈ {1, . . . , NJ}. We then shift integration variables as uJj := tJj − j

14Strictly speaking, this is only true if the integers p and s have the same even/odd parity, which we

tacitly assume.
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to get

Wp,s

(
0N0 , 1N1 , . . . , (p− 1)Np−1

)
=

(
4π

gstr

)N
e
gstr
12

N (N2−1)
(

1+ s2

p2

)
(5.49)

×
p−1∏
J=0

∫
RNJ

duJ e
− 2π2

gstr

∑NJ
j=1 (uJj +j)2 ∏

1≤j<k≤NJ

4 sin
π s

p

(
uJj − uJk

)
sinπ

(
uJj − uJk

)
×

∏
0≤J<K≤p−1

NJ∏
j=1

NK∏
k=1

4 sin
π s

p

(
uJj − uKk + J −K

)
sinπ

(
uJj − uKk + J −K

)
.

The products here which are independent of (p, s) combine to give a standard Weyl deter-

minant, while the (p, s)-dependent products carry the information about the surgery data

of the Seifert homology sphere X(s/p).

In fact, if we drop the product of theta-functions from the sum (5.48) and rescale the

string coupling as before to g̃str = s gstr/p, we can recognise the analytically continued

partition function of U(N) Chern-Simons gauge theory at level k ∈ Z on the lens space

L(p, s): the exponential prefactor is recognized as the classical contribution to the path

integral from the Chern-Simons action evaluated on the flat U(N) connection labelled by

N [17, 81], with the analytic continuation

g̃str =
s gstr

p
=

2π i

k +N
. (5.50)

Moreover, after a straightforward change of integration variables (and subsequent analytic

continuation), the integral expression (5.49) is easily seen to agree with the multi-eigenvalue

integral formula from [82, Theorem 7] for the contribution to the one-loop fluctuation

determinant from the flat connection N . Thus the full partition function (5.48) can be

written as

ZN (p, s) =
∑

N `N
ZCS
p,s(N)

p−1∏
k=0

ϑ3

(2π i p2

gstr

∣∣2π i p k
gstr

)Nk
Nk!

, (5.51)

where

ZCS
p,s(N) := exp

(
2π2 s

g̃str p

p−1∑
k=0

Nk k
2

)
Wp,s

(
0N0 , 1N1 , . . . , (p− 1)Np−1

)
(5.52)

is the contribution to the Chern-Simons partition function from the point of the moduli

space of flat connections on the lens space L(p, s) labelled by

~m =
(
0N0 , 1N1 , . . . , (p− 1)Np−1

)
. (5.53)

The connection between Chern-Simons theory on lens spaces L(p, s) with s > 1 and

q-deformed Yang-Mills theory was also obtained in [17], but in a much different and more

complicated fashion. There the two-dimensional gauge theory is defined on the collection

of exceptional divisors of the four-dimensional Hirzebruch-Jung space X4(p, s), which is
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the minimal resolution of the Ap,s singularity defined by the same orbifold action (5.39)

on C2. The corresponding partition function depends explicitly on the intersection moduli

ei of the exceptional divisors, which in the three-dimensional case translate into framing

integers that enter the surgery construction of the Seifert space L(p, s); after stripping away

the Chern-Simons fluctuation determinants, the resulting partition function computes the

contribution of fractional instantons to the partition function of topologically twisted N = 4

Yang-Mills theory on X4(p, s) [17]. This is not the case here. Like the topological Chern-

Simons theory, our two-dimensional gauge theory partition function (5.48) is independent

of the framing integers ei and depends only on the pair of integers (p, s) which uniquely

determine L(p, s) up to homeomorphism. In particular, stripping away the Chern-Simons

fluctuation determinants Wp,s

(
0N0 , 1N1 , . . . , (p − 1)Np−1

)
would leave a (p, s)-independent

partition function proportional to ϑ3

(
2π i
gstr

∣∣0)N [17], which is the contribution of fractional

instantons to the partition function of N = 4 gauge theory on X4(1, 1) ∼= OP1(−1). This

suggests that our squashing of the two-dimensional q-deformed gauge theory on S2 is,

like the standard theory at p = 1, also related to the Calabi-Yau geometry of the resolved

conifold OP1(−1)⊕OP1(−1); the topological string interpretation of this theory is certainly

worthy of further investigation.

Large N limit. For any finite value of the rank N , the partition function ZN (b) is

a continuous function of the squashing parameter b > 0. In this sense our squashed

q-deformations of two-dimensional Yang-Mills theory are continuations of the lens space

theories analysed above: since the set of rational b2 is dense in the space of all squashing pa-

rameters b > 0, any partition function can be expressed as a limit of the two-dimensional

gauge theories whose geometric meanings were explained above. It would be interest-

ing to understand more precisely what the underlying geometry means for generic real

values b > 0.

However, we do expect the partition function (5.27) to experience a phase transition

in the large N regime, triggered by the discreteness of the matrix model, at least for large

enough values of the squashing parameter b. The standard q-deformed Yang-Mills theory

on S2 undergoes a phase transition for p > 2 [34], and we can extrapolate this to our more

general setting. The eigenvalue distribution ρ(λ) of a discrete random matrix ensemble is

subject to the constraint

ρ(λ) ≤ 1 , (5.54)

which in the present case is always fulfilled at large N when b ≤
√

2. It would be interesting

to see how the phase transition appears at b >
√

2 in terms of the bi-orthogonal Stieltjes-

Wigert polynomials of [80, section 4.1]. It was argued in [80], and later proved in [83],

that around the trivial flat connection the discrete and continuous versions of the Stieltjes-

Wigert ensemble are essentially the same, thus the zero-instanton sector of our squashing

of q-deformed Yang-Mills theory can be obtained exactly via bi-orthogonal polynomials.

For the case b = 1 this gives the full partition function of q-deformed Yang-Mills theory,

since the only flat connection on L(1, 1) ∼= S3 is trivial.
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Introduce the ’t Hooft coupling

t := gstrN (5.55)

and take the double scaling limit N → ∞, gstr → 0 with t fixed. In this limit, the parti-

tion function (5.27) is proportional to the Chern-Simons matrix model on L(p, 1) around

the trivial connection, continued to p = b2 ∈ R. Equivalently, from the instanton expan-

sion (5.36) we infer that, as long as the fluctuations Wb(~̀ ) give sub-leading contributions,

all instanton contributions are suppressed except for the trivial one. Taking the large N

limit of [80, eq. (2.26)], in the large N regime we obtain

Z(∞)
N (b) = 2N (N+1)

(
2π

gstr

)N
2

exp

(
− N2 t

12 b4
(
3 b8 + 6 b4 − 13

)
− N2 b8

t2
F

(0)
CS

(
t

b4

))
,

(5.56)

where

F
(0)
CS (t) =

t3

12
− π2 t

6
− Li3

(
e−t

)
+ ζ(3) (5.57)

is the planar free energy of Chern-Simons theory on S3 with (analytically continued) ’t

Hooft coupling t. For b ≤
√

2 this solution is exact, and indeed the free energy of the

supersymmetric gauge theory on S3
b ×S2 exhibits the N3 behaviour in the strong coupling

region for t → ∞, as in the case of the five-sphere S5 [77]. However, for higher values of

b, this solution ceases to be valid for large t and we expect the strong coupling region to

have a different solution.

5.5 Localization from seven dimensions

With the premise of obtaining more general two-dimensional theories, we conclude by

briefly commenting on how the derivation of q-deformed Yang-Mills theories would change

if instead one started from a seven-dimensional cohomological gauge theory; as we argue,

the story works in essentially the same way as in the five-dimensional case, though the

physical significance of such a two-dimensional theory is not clear in this instance. For

this, we consider our cohomological localization procedure for a seven-dimensional manifold

M7 = M5×Σh. In order to have the right amount of supercharges in seven dimensions, we

ought to start with a five-dimensional Seifert manifold admitting N = 2 supersymmetry,

and henceforth we take the five-sphere M5 = S5 for definiteness.

The seven-manifold M5 × Σh cannot come from a supergravity background, and we

must pull back the Killing spinors on M5 to seven dimensions. We define the theory on

S5 × R2 and build the components of a seven-dimensional Killing spinor from the tensor

product of a five-dimensional Killing spinor with a constant spinor along R2. Schematically,

ε(7) = ε(5) ⊗ ζ(2)
± . (5.58)
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Then we topologically twist the theory, and finally we put the cohomological field theory

on S5×Σh.15 The cohomological gauge theory in seven dimensions was constructed in [84]

for the seven-sphere S7, and extended in [85, 86] to other geometries. We do not review

it here and refer to [84, 85] for the details. Our construction in seven dimensions differs

from that of [84] in exactly the same manner as our construction in five dimensions differs

from that of [12, 13]. In particular, we pick a preferred vector field v which generates the

rotations along the U(1) fibre of M5.

Again, the details of the supersymmetry transformations and localization locus do not

depend on the specific details of the geometry given (although the solutions do depend on

it) and we simply reproduce step by step the procedure of [84, section 5] and [85, section 4].

Fortunately, most of the steps in the construction of a cohomological field theory in [84] rely

only on the Seifert structure and not on the K-contact structure, and can be adapted to our

framework with minor changes. The localization locus has a complicated expression, and

we only focus here on the perturbative part, hence expanding around the trivial connection.

For the vector multiplet, we have to study the same ratio of fluctuation determinants as

in [85, eqs. (4.18)–(4.19)], which has the form

h(φ) =
det i Lφ|Ω(0,0)

H (M7,g)
det i Lφ|Ω(0,2)

H (M7,g)

det i Lφ|Ω(0,1)
H (M7,g)

det i Lφ|Ω(0,3)
H (M7,g)

, (5.59)

where the differential operator Lφ is, as usual, the sum of a Lie derivative Lv along v and

a gauge transformation Gφ. This ratio of determinants can be computed using the same

strategy as in five dimensions. In fact, the product geometry S5 × Σh is simpler than, for

example S7, since we know how to decompose the vector space of differential forms into

eigenmodes of the Lie derivative Lv. For M7 = S5 ×Σh, this is exactly the decomposition

of [12] on S5, which is classified by powers of the line bundle L on the projective plane P2

associated to the Seifert fibration S5 → P2. At the end of the day, the number of remaining

modes is counted by the index of the twisted Dolbeault complex

Ω(0,0)(P2 × Σh)m,α
∂̄(m)

−−−→ Ω(0,1)(P2 × Σh)m,α
∂̄(m)

−−−→ Ω(0,2)(P2 × Σh)m,α (5.60)

∂̄(m)

−−−→ Ω(0,3)(P2 × Σh)m,α ,

where we adopted the shorthand notation

Ω(•,•)(P2 × Σh)m,α := Ω(•,•)(P2 × Σh,L
⊗m ⊗ gα) . (5.61)

We then arrive at

Zpert
vec (S5 × Σh) =

∏
α∈4

∏
m 6=0

(
m

r
− i (α, φ)

)index ∂̄(m)

. (5.62)

15Had we partially twisted the theory along Σh, we would have obtained a localization locus which is the

same as for the purely five-dimensional theory. The main difference between the seven-dimensional and the

five-dimensional setting with partial twist would be the following. For the case S3 × Σh the localization

locus consisted only of the trivial connection on S3, thus effectively reducing to a two-dimensional theory.

For S5 × Σh, on the contrary, we would obtain a sum of copies of two-dimensional theories, each one in

a different background. Such backgrounds for the two-dimensional theory are contact instantons on S5,

which descend to anti-self-dual instantons on P2. We do not pursue the partial twist description here.
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The index is computed as follows. The total Chern class of the holomorphic tangent

bundle of the base K6 = P2 × Σh of the seven-dimensional Seifert fibration is

c(T 1,0K6) = c(T 1,0P2) ∧ c(T 1,0Σh)

=
(
1 + ωP2

)∧3 ∧
(
1 + χ(Σh)ωΣh

)
= 1 +

(
3ωP2 + χ(Σh)ωΣh

)
+ 3

(
ωP2 ∧ ωP2 + χ(Σh)ωP2 ∧ ωΣh

)
+ 3ωP2 ∧ ωP2 ∧ ωΣh

= 1 + c1(T 1,0K6) + c2(T 1,0K6) + c3(T 1,0K6) , (5.63)

which gives the corresponding Todd class

Td(T 1,0K6) = 1 +
1

2
c1(T 1,0K6) +

1

12

(
c1(T 1,0K6) ∧ c1(T 1,0K6) + c2(T 1,0K6)

)
+

1

24
c1(T 1,0K6) ∧ c2(T 1,0K6)

= 1 +
3

2
ωP2 + (1− h)ωΣh + ωP2 ∧ ωP2 +

3

2
(1− h)ωP2 ∧ ωΣh

+ (1− h)ωP2 ∧ ωP2 ∧ ωΣh . (5.64)

Since c1(L ) = ωP2 , the Chern character of the line bundle L ⊗m is

ch(L ⊗m) = 1 + c1(L ⊗m) +
1

2
c1(L ⊗m) ∧ c1(L ⊗m)

+
1

6
c1(L ⊗m) ∧ c1(L ⊗m) ∧ c1(L ⊗m)

= 1 +mωP2 +
1

2
m2 ωP2 ∧ ωP2 . (5.65)

A simple computation as in the five-dimensional setting then gives

index ∂̄(m)
∣∣
P2×Σh

= (1− h)

(
1 +

3

2
m+

1

2
m2

)
= (1− h) index ∂̄(m)

∣∣
P2 . (5.66)

We conclude that the computation of the one-loop determinant of the vector multiplet on

S5 is lifted to S5×Σh in exactly the same way as the computation on S3 is lifted to S3×Σh.

The resulting contribution to the partition function yields polylogarithmic corrections to

the standard q-deformed measure [12], and in this case (5.62) evaluates to

Zpert
vec (S5 × Σh) =

∏
α∈4+

(
sinh

(
π r (α, φ)

)2(
π r (α, φ)

)2 e f(π r (α,φ))/π2

)1−h
, (5.67)

where the function f is defined by

f(x) = −x
3

3
− x2 log

(
1− e 2x

)
− xLi2

(
e 2x

)
+

1

2
Li3
(

e 2x
)
− ζ(3)

2
. (5.68)

– 52 –



J
H
E
P
0
6
(
2
0
2
0
)
0
3
6

Acknowledgments

We thank Luca Griguolo, Sara Pasquetti and Domenico Seminara for helpful discussions.

The work of L.S. was supported by the Doctoral Scholarship SFRH/BD/129405/2017 from

the Fundação para a Ciência e a Tecnologia (FCT). The work of L.S. and M.T. was sup-

ported by the FCT Project PTDC/MAT-PUR/30234/2017. The work of R.J.S. was sup-

ported by the Consolidated Grant ST/P000363/1 from the U.K. Science and Technology

Facilities Council (STFC).

A Spinor conventions

For field theories in three dimensions we follow the normalization and conventions of [11].

We work in the N = 2 formalism, with SU(2)R R-symmetry, and for theories with N = 4

supersymmetry only SU(2)R ⊂ SU(2)C × SU(2)H is manifest. In five dimensions, we

follow [13]. We work in the N = 1 formalism, with SU(2)R R-symmetry, using the letters

I, J, . . . for the indices. In theories admitting N = 2 supersymmetry, only SU(2)R ⊂
SU(2)R ×U(1)r ⊂ SO(5)R is manifest, where SU(2)R ×U(1)r is the maximal R-symmetry

group preserved by the product manifolds considered in the main text and SO(5)R the

R-symmetry in five-dimensional flat space. In both three and five dimensions, SU(2)R
indices are raised and lowered with the Levi-Civita symbol εIJ or εIJ , with the convention

ε12 = −1 = −ε12.

We do not write Lorentz spin indices explicitly in the spinors, and understand

that they are contracted using the charge conjugation matrix C, a real antisymmetric

matrix satisfying

C Γµ = (Γµ)>C . (A.1)

With this choice, spinor components are taken to be Grassmann-even, and anticommutation

is a consequence of C> = −C. This is also in agreement with the conventions in [48, 49],

where Killing spinors from rigid supergravity are taken to be Grassmann-even symplectic

Majorana spinors. Our notation for Killing spinors is then as follows: εI satisfies(
εIJ Cε

J
)∗

= εI , (A.2)

with C the charge conjugation matrix. This implies

ε†I =
(
εIJ ε

J
)>

. (A.3)

We impose the following reality conditions on the fields in the five-dimensional theo-

ries. The scalars (q†)I in a hypermultiplet are related to qI by complex conjugation and

transposition. As we are working in Euclidean space, there is no reality condition on the

spinor fields, and we have to choose a half-dimensional integration cycle in the configuration

space of fields. The gauginos λI are symplectic Majorana spinors,(
εIJ Cλ

J
)∗

= λI , (A.4)
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and we take as a definition of the fields λ†I the equation

λ†I =
(
εIJ λ

J
)>

. (A.5)

The reasoning for the spinor ψ in a hypermultiplet is analogous. See also [53, section 2.1]

for discussion about the treatment of the reality condition for spinors. The sole difference

between our conventions and those of [13, 53] is a factor
√
−1 in the definition of the scalar

σ in the vector multiplet, as in those references the rotated field (which we denote σ0) is

taken from the very beginning.

In three dimensions, the gauginos λI are not subject to additional constraints, and we

impose λ†I to be related to λI as in Minkowski signature, following [11, 54], and similarly

for ψ† and ψ.

B Squashed three-spheres

Three types of squashed sphere S3
b that preserve at least N = 2 supersymmetry (four

supercharges) exist in the literature: the squashed sphere called the “familiar case” in [28],

the squashed sphere of [29], and the ellipsoid of [28] which was originally called the “less

familiar case” of squashed sphere. We have ordered them according to their increasing

deviation from the standard round sphere S3. In the following we briefly describe and

discuss them within the cohomological field theory formalism, see also [15, section 7] for

related discussion.

The simplest case of squashed sphere is the “familiar case” of [28], for which the one-

loop determinants are the same as in the round case up to rescaling of variables. This

squashed sphere is obtained by simply changing the radius of the Hopf fibre with respect

to the radius of the base S2, so the background has isometry group SU(2) × U(1). The

Killing spinor is covariantly constant, as on the round S3. The Killing vector field v has

compact orbits and coincides with the generator of rotations along the Hopf fibre, hence it

is parallel to the Reeb vector field ξ. The computation of the one-loop determinants on this

geometry is very simple in our setting: it is clear from construction (see (3.25)–(3.28)) that

only the radius of the circle fibre enters the one-loop determinant, and the result of [28]

follows immediately from Källén’s formula. More generally, the one-loop determinants on

the squashed lens spaces S3
b /Zp, with p ∈ Z>0 and S3

b the “familiar” squashed sphere

of [28], are given by the same formula as for the round lens space, with the proper scaling

of the size of the fibre.

Another squashing that preserves N = 2 supersymmetry is the non-trivial squashed

sphere of [29]. This is obtained by twisted dimensional reduction from S3 × R with round

S3. One employs a Scherk-Schwarz compactification to put the theory on S3 × S1 by

identifying

exp

(
2π β

∂

∂t
+ π βR

)
X ∼ X (B.1)

for any field X, where β is the radius of S1, t is the coordinate along R and R is the

generator of an R-symmetry transformation. This R-symmetry, which differs from the
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R-symmetry at the superconformal fixed point, twists the compactification by including

a finite rotation on S3 in the periodic identification of fields along S1, and hence also

twists the dimensional reduction when sending β → 0. With this procedure, one is able to

preserve an SU(2)×U(1) isometry group and to obtain a metric on S3 as for the “familiar

case” of [28], hence it does not modify the metric on the base S2 of the Hopf fibration.

However, the Killing spinor now becomes a non-constant field. In [46, section 5.2] it was

shown that the supergravity background of [29] admits N = 4 supersymmetry. The Killing

vector field v has closed orbits, and therefore Källén’s localization directly applies. In this

squashed sphere, the Killing spinor depends on a parameter u related to the radius of the

circle fibre through
r2

ε2
= 1 + u2 , (B.2)

where r is the radius of the round base S2 and ε is the radius of the U(1) fibre. This

relation arises from the twisted dimensional reduction. Since the Killing vector field is

non-constant, although it points along the squashed Hopf fibre one has to consider the

complex dependence on 1 ± iu: at the two fixed points the fibre has radius, respectively,

given by

ε1 = r b and ε2 = r b−1 with b =

√
1− iu

1 + iu
. (B.3)

This justifies the applicability of the localization formula (3.28), and explains why the

one-loop determinants with this non-trivial squashing are formally the same as for the

ellipsoid of [28].

Finally we consider the ellipsoid of [28], which is the squashed sphere considered mostly

in the main text. It has only U(1) × U(1) isometry group as the squashing also deforms

the metric on the base S2 of the fibration. It is defined as the locus in C2 satisfying

b2 |z1|2 + b−2 |z2|2 = r2 , (B.4)

with b =
√
ε1/ε2 and r =

√
ε1 ε2. The supergravity background only preserves four super-

charges. As explained in [46, section 5.1] and highlighted in the main text, the orbits of the

Killing vector field v are not closed, and v does not point along the fibre direction. It splits

into two vector fields, generating two U(1) isometries with closed orbits. The localized

partition function on this geometry is discussed in section 3.5.

Notice the different geometric meaning of the squashing parameter b in the squashed

sphere [29] and in the ellipsoid [28]. For the ellipsoid b > 0 is real, while for the squashed

sphere b ∈ C with |b| = 1. In both cases the partition functions can be analytically

continued to arbitrary complex values b ∈ C \ {0}, and the expressions are given by (3.43)

and (3.46). Thus, in practice, we can compute the one-loop determinants on the regular

background S3
b of [29] and then continue the result to b > 0, or vice versa. The limit

b→ 0+ in the squashed sphere and ellipsoid also has different geometric meaning. For the

squashed sphere, b→ 0+ means u→ −i, and corresponds to blowing up the twisted Hopf

fibre. In the ellipsoid, b→ 0+ reduces the geometric locus (B.4) to |z2| = 0, hence the S3
b

geometry degenerates to C. In both cases the geometry becomes non-compact, and we do

not expect the cohomological localization to work in this limit.
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C Sasaki-Einstein five-manifolds

There exists a family of Sasaki-Einstein metrics on five-manifolds M5 which topologically

are U(1)-fibrations over the product S2×S2 [87]. The simplest case is the familiar conifold

T 1,1, which is homeomorphic to S3 × S2 and so its associated line bundle L1,1 has Chern

class c1(L1,1) = ω1 given by the generator [ω1] ∈ H2(S2,Z) of the first base factor. More

generally, there is an infinite family of irregular backgrounds labeled by a pair of integers

(p, s), and denoted Y p,s [88]. The first Chern class associated to the circle bundle Y p,s →
S2 × S2 is

c1(Lp,s) = pω1 + s ω2 (C.1)

where [ω1] and [ω2] generate the second cohomology H2(S2,Z) of the respective factors of

the base. When p and s are coprime, Y p,s is again topologically S3 × S2.

Field theories with N = 1 supersymmetry on these manifolds have been studied in [18,

19] via application of the index theorem. Except for the simplest case S3× S2, the Killing

vector field v does not have closed orbits. Moreover, the Reeb vector field ξ does not act

freely on the base space of the fibration, which is a warped product S2oS2. These manifolds

have a toric action, and in fact admit a free U(1) action, which however is generated by a

different vector field from the Reeb vector field. Therefore the formalism of this paper does

not apply. In [18], the way around this problem was to use the same idea that we did, but

in the opposite direction. The manifolds Y p,s can be obtained as a quotient S3×S3/U(1),

with U(1) acting freely on the six-dimensional manifold S3 × S3. One can compute the

one-loop determinants using the index of the twisted Dolbeault complex in six dimensions,

and then use the fact that there is a free U(1) action to push it down to Y p,s. In the case

of the conifold T 1,1, the vacuum moduli spaces of instantons have been described in this

way by [89].

In fact, the most natural way to look at these geometries is as follows. Consider C4 as

the direct product C2×C2, with a sphere S3 ⊂ C2 embedded in each factor in the standard

way. There is a U(1)×4 action on C4, where each U(1)i acts on the corresponding factor

of C in C4, with associated equivariant parameter ε−1
i , i = 1, . . . , 4. There is a further

U(1)T action on C4 with charges which are functions of two integer parameters p and s;

explicitly, U(1)T acts with charges (p+ s, p− s,−p,−s). Then the action of U(1)T is free

on S3 × S3 ⊂ C4, and taking the quotient S3 × S3/U(1)T gives Y p,s with a residual toric

action by U(1)×3, but none of the remaining U(1) actions is free. The one-loop determinants

then appear as products over four integers mi, i = 1, . . . , 4, each one corresponding to an

eigenvalue mi
εi

where ε−1
i is the equivariant parameter for rotation in the i-th plane C in C4.

These four integers are constrained by one linear relation, corresponding to the quotient

by the freely acting U(1)T , which reads

(p+ s)m1 + (p− s)m2 − pm3 − sm4 = 0 . (C.2)
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