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Abstract: The sustainable development of cloud service providers (CSPs) is a significant multiple
criteria decision making (MCDM) problem, involving the intrinsic relations among multiple
alternatives, (quantitative and qualitative) decision criteria and decision-experts for the selection
of trustworthy CSPs. Most existing MCDM methods for CSP selection incorporated only one
normalization technique in benefit and cost criteria, which would mislead the decision results
and limit the applications of these methods. In addition, these methods did not consider the
reliability of information given by decision-makers. Given these research gaps, this study introduces
a Z-number-based double normalization-based multiple aggregation (DNMA) method to tackle
quantitative and qualitative criteria in forms of benefit, cost, and target types for sustainable
CSP development. We extend the original DNMA method to the Z-number environment to
handle the uncertain and unreliability information of decision-makers. To make trade-offs between
normalized criteria values, we develop a Gini-coefficient based weighting method to replace the
mean-square-based weighting method used in the original DNMA method to enhance the applicability
and isotonicity of the DNMA method. A case study is conducted to demonstrate the effectiveness of
the proposed method. Furthermore, comparative analysis and sensitivity analysis are implemented
to test the stability and applicability of the proposed method.

Keywords: multiple criteria decision making; sustainable development; cloud service provider
selection; double normalization-based multiple aggregation (DNMA) method; Z number;
Gini coefficient

1. Introduction

Today’s organizations, regardless of their size and business scope, pay more and more attention
to the maintenance of competitiveness and the establishment of a sustainable environment [1]. World
Commission on Environment and Development of the United Nations Brundtland defined sustainability
development as “development that meets the needs of the present without compromising the ability of
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future generations to meet their own needs” [2]. Sustainability requires sustainable business practices.
For doing so, information systems play an important role in the organization transition towards
sustainability initiatives. The sustainable information systems have been considered as an opportunity
for organizations to improve productivity, reduce costs, and increase profitability [3]. The flexible,
elastic and agile nature of cloud computing provides an opportunity for governmental, academic and
business organizations to consider migrating their existing applications to cloud environments to make
their business processes agile with minimal cost and management effort [4]. Due to the increase in the
number of cloud service providers (CSPs) offering functionally similar cloud services with varying cost,
features and quality, it becomes extremely complex and burdensome to select a dependable, scalable,
sustainable and high cost-effective cloud service for consumers to fulfil and satisfy their requirements
and business strategies. There is a pressing need of comprehensive techniques to help them for the
sustainable CSP development [5,6].

Sustainable CSP development can be formulated as a multicriteria decision-making (MCDM)
problem [5]. It involves the intrinsic relations among multiple alternatives, (quantitative and qualitative)
decision criteria and experts for selecting the trustworthy CSPs. Moreover, the CSP evaluation data
often involves uncertain, unreliability, multi-scale and imprecise weights of quality of service (QoS)
parameters, such as the availability, response time, and price [7]. The existing MCDM methods for
CSP selection problems can be divided into three categories: the utility value-based methods such as
the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) [8], VlseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) [9,10], and Multiplicative Multi-Objective Optimization
by Ratio Analysis (MULTIMOORA) [11]; outranking methods such as the Preference Ranking
Organization METHod for Enrichment of Evaluations (PROMETHEE) [12] and ELimination and
Choice Expressing the Reality (ELECTRE) [13]; and preference ordering methods such as the Analytic
Hierarchical Process (AHP) [14] and the Best Worst Method (BWM) [9,15,16]. The utility value-based
methods are easy to understand with a ranking set as its output, and as a result are widely applied in
practice [17]. However, most of these methods have only one normalization technique in benefit and
cost criteria, which would mislead the decision matrix. In addition, considering that the valuation
information may be uncertain, many fuzzy MCDM methods have been proposed for CSP selection with
different information representation forms [10,11,18–24] like Triangular Fuzzy Numbers (TFNs) [10],
Intuitionistic Fuzzy Set (IFS) [23], Interval-Valued Intuitionistic Fuzzy Sets (IIVIFS) [18,21] and
Probabilistic Linguistic Term Sets (PLTSs) [24]. However, most of these researches did not consider the
reliability of the information given by decision makers.

A recently proposed MCDM method, the double normalization-based multiple aggregation
(DNMA) method, [25] takes advantages of two normalization techniques and three aggregation
functions to tackle quantitative and qualitative criteria in the forms of benefit, cost, and target
types. Thus, it can flexibly and reliably solve MCDM problems compared with the TOPSIS, VIKOR
and MULTIMOORA methods [26]. It has been integrated with PLTSs [25], rough numbers [27],
and hesitant fuzzy sets [28,29] to handle the uncertain information and solve the problems of green
enterprise ranking [25,27], early lung cancer screening [28], and shopping mall location selection [29].
Nevertheless, the original DNMA method cannot handle the unreliable information. Z-numbers [30]
describe the fuzziness and reliability of user preferences, and thus can handle the uncertain and
unreliable trust feedback data of CSPs through restriction and reliability functions under uncertainty.
Therefore, the combination of DNMA and Z-number can enhance the practicability of the DNMA
method in solving practical CSP selection problems. The Gini-coefficient-based weighting method
can reflect the difference between any two evaluation objects [31]. Compared with other weighting
methods based on the difference degrees of criteria such as the entropy-based weighting method [32],
the mean-square-based weighting method [25], and the TOPSIS-based weighting method [33], the
Gini-coefficient-based weighting method is not affected by the dimension of criteria unit and has the
merits of better applicability and isotonicity [31].
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Motivated by these analyses, this study presents a Z-number-based DNMA (Z-DNMA) method
for the identification of the sustainable CSPs. The Gini-coefficient-based weight-determining method
is integrated to reflect the trade-offs between QoS criteria. The main contributions of this study are
highlighted as follows:

1. We introduce the DNMA method for CSP selection. The proposed model can deal with quantitative
and qualitative criteria in forms of benefit, cost, and target types. It can flexibly and reliably solve
the sustainable cloud service provider development problem.

2. We extend the original DNMA method to the Z-number environment and propose the Z-DNMA
method to tackle quantitative and qualitative criteria in forms of benefit, cost, and target
types for CSP selection. In this regard, the uncertain and unreliability decision information of
decision-makers (DMs) is considered in the process of CSP selection.

3. To enhance the applicability and isotonicity and the DNMA method, we make use of the
Gini-coefficient-based weighting method to replace the mean-square-based weighting method
used in the original DNMA method, and extend this approach to the Z-number environment for
the trade-offs between criteria after normalization.

The structure of this paper is as follows. In Section 2, some definitions and concepts are introduced.
In Section 3, the Z-DNMA method is presented. In Section 4, a numerical example is presented,
followed by the comparative analyses, sensitivity analysis in Section 5. Conclusions are given in the
last section.

2. Preliminaries

This section primarily reviews some notions of Z-numbers and the Gini coefficient
weighting method.

2.1. Generalized Triangle Fuzzy Numbers

Fuzzy set [34] was defined based on a membership function whose values are in the unit interval.
A fuzzy set A is defined on a universe X as A =

{〈
x,µA(x)

〉
|x ∈ X

}
, where µA(x) : X→ [0, 1] is the

membership function of set A, indicating the degree of belongingness of x ∈ X in A. A TFN Ã is defined
as a triple (L, M, R) with the membership function as [34]:

µÃ(x) =


0 f or x < L

x−L
M−L f or L ≤ x ≤M
U−x
U−M f or M ≤ x ≤ U

0 f or x > M

(1)

Let Ã1 = (L1, M1, U1) and Ã2 = (L2, M2, U2) be two TFNs, and λ > 0 be a constant
number. The operations of TFNs can be performed as [27]: Ã1 ⊕ Ã2 = (L1 + L2, M1 + M2, U1 + U2),

Ã1 	 Ã2 = (L1 −U2, M1 −M2, U1 − L2), λÃ1 = (λL1,λM1,λU1), max
i

Ãi =
(
max

i
Li, max

i
Mi, max

i
Ui

)
,

min
i

Ãi =
(
min

i
Li, min

i
Mi, min

i
Ui

)
. The distance between Ã1 and Ã2 was determined as [35]:

d
(
Ã1, Ã2

)
=

√
1/3

(
(L1 − L2)

2 + (M1 −M2)
2 + (U1 −U2)

2
)

(2)

The expectation value E
(
Ãi

)
of a TFN Ãi = (Li, Mi, Ui) can be calculated as [35]:

E
(
Ãi

)
=

Li + 2Mi + Ui
4

(3)
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2.2. Z-number

Zadeh [30] introduced the concept of Z-number as an ordered pair Z =
(
Ã, B̃

)
of fuzzy numbers

Ã and B̃, where the first component Ã is interpreted as a restriction on the values that a variable
can take, and the second component B̃ is a measure of reliability about the value of Ã. Typically, Ã
and B̃ are described in a natural language, for example—low, likely. Compared with the classical
fuzzy set, the Z-number takes into account the uncertainty in information generation process and
the reliability of information. At present, it has been combined with many MCDM methods such
as TOPSIS [36,37], VIKOR [38], Multi-Objective Optimization by Ratio Analysis (MOORA) [39],
COmbinative Distance-based Assessment (CODAS) [40], PROMETHEE [41], TODIM (an acronym
in Portuguese of interactive and multicriteria decision-making) [37], AHP [42], BWM [43] and Data
Envelopment Analysis (DEA) [44].

For a Z-number Z =
(
Ã, B̃

)
in which Ã =

{(
x,µÃ

)∣∣∣x ∈ [0, 1]
}

and B̃ =
{(

x,µB̃

)∣∣∣x ∈ [0, 1]
}

are two
TFNs, we can convert the Z-number to an ordinary fuzzy number [45]. Firstly, the second part
(reliability) can be converted into a crisp number by Equation (4):

α =

∫
xµBdx∫
µBdx

(4)

where “
∫

” denotes an algebraic integration. Then, we add the weight of the second part (reliability) to
the first part (restriction). The weighted Z-number is as follows:

Z̃
α
=

{(
x,µÃα

)∣∣∣∣µÃα(x) = αµÃ(x), x ∈ [0, 1]
}

(5)

We then convert the Z-number (weighted restriction) to the fuzzy number Z̃
′

:

Z̃
′

=

{(
x,µÃ′

)∣∣∣∣∣∣µÃ′(x) = µÃ

(
x
√
α

)
, x ∈ [0, 1]

}
(6)

If Ã = (L, M, U) is a TFN, then Z̃
′

is calculated as:

Z̃
′

=
(√
αL,
√
αM,

√
αU

)
(7)

2.3. The Gini-Coefficient-Based Weighting Method

Gini coefficient is a quantitative index to measure the difference in income distribution and has
been widely used in studying impacts of inequality [46,47]. Since the Gini coefficient can reflects
the data difference between different evaluation objects, Li et al. [31] proposed a method to calculate
the weights of objectives based on the Gini coefficient: Suppose that Gk denotes the Gini coefficient
of the k-th criterion (k = 1, 2, · · · , n), m denotes the total data of a specific criterion, yki denotes the
i-th alternative’ performance value under the k-th criterion, Ek denotes the expectation value of all
alternatives’ performance values under the k-th criterion. Then the Gini coefficient value Gk can be
calculated by Equations (8) and (9) [31].

Gk =
m∑

i=1

m∑
j=1

∣∣∣yki − ykj
∣∣∣/2m2Ek (8)

Gk =
m∑

i=1

m∑
j=1

∣∣∣yki − ykj
∣∣∣/(

m2
−m

)
(9)



Sustainability 2020, 12, 3410 5 of 17

In particular, when the mean value of all alternatives’ performance values under a specific criterion
that is not equal to 0, the Gini coefficient of the criterion is calculated by Equation (8); otherwise, the
Gini coefficient of the criterion is calculated by Equation (9).

Then, we can obtain the objective weight of the k-th criterion by Equation (10).

wG
k = Gk

/ n∑
k=1

Gk (10)

3. A Z-Number-Based DNMA Method

In this section, we propose a Z-number-based DNMA method with a Gini-coefficient-based
weight determination method. We extend the original DNMA method to the Z-number environment.
Meanwhile, we adopt the Gini-coefficient based weighting method to replace the mean-square-based
weighting method used in the original DNMA method, and extend this approach to the Z-number
environment for the trade-offs between criteria after normalization. The procedure of the proposed
method is summarized in Figure 1.
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Figure 1. The procedure of the Z-number based double normalization-based multiple aggregation
(Z-DNMA) method. “TBL: Target-based linear; TBV: Target-based vector; GCW: Gini coefficient-based
weighting; OWA: Weighted average operator; OWM: Weighted maximum operator; OWG: Weighted
geometric operator”.

Step 1. (Problem formalization) Let A = {a1, a2, · · · , am} (m ≥ 2) be a set of alternatives,
C = {c1, c2, · · · , cn} (n ≥ 2) be a set of criteria, D =

{
d1, d2, · · · , dq

}
(q ≥ 2) be a set of DMs.

W = {w1, w2, · · · , wn}
T is the weight vector of criteria, where w j ∈ [0, 1] and

∑n
j=1 w j = 1;

λ =
(
λ1,λ2, · · · ,λq

)T
is the weight vector of DMs, where λk ≥ 0 and

∑q
k=1 λk = 1. Since the

numerical values for quantitative criteria is easy to collect, we mainly focus on the evaluation
of alternatives over qualitative criteria. For qualitative criteria C1 =

{
c1, c2, · · · , cg

}
, we suppose their

values of alternatives are evaluated by the k−th DM and expressed as linguistic expressions s(k)i j ,

for i = 1, 2, · · · , m, j = 1, 2, · · · , g, k = 1, 2, · · · , q. For quantitative criteria C2 =
{
cg+1, cg+2, · · · , cn

}
,

we suppose the values of alternatives are expressed as numerical numbers xi j , for i = 1, 2, · · · , m,
j = g + 1, g + 2, · · · , n.

Step 2. (Constructing comprehensive decision matrix)
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Step 2.1. Translate each DM’s linguistic evaluation s(k)i j to Z-number, and then the decision matrix
of the k−th DM can be expressed as:

X(k) =
[
z(k)i j

]
m×g

=
[(

A(k)
i j , B(k)

i j

)]
m×g

, for k = 1, 2, · · · , q,

where z(k)i j denotes the Z-fuzzy performance evaluation value of the i−th alternative on the j−th
criterion from k−th DM.

Step 2.2. According to the weights of DMs, λ =
(
λ1,λ2, · · · ,λq

)T
, aggregate DMs’ linguistic

evaluations into collective ones based on the weighted arithmetic aggregation operator as:

X =
[
zi j

]
m×g

=
[(

Ai j, Bi j
)]

m×g
=


 q∑

k=1

λkAk
i j,

q∑
k=1

λkBk
i j,




m×g

(11)

Step 2.3. Convert Z-fuzzy performance values to TFNs z′i j by Equations (4) and (7), where

z̃′i j =
(
z′i jL, z′i jM, z′i jU

)
, for i = 1, 2, · · · , m, j = 1, 2, · · · , g.

Step 2.4. Establish the comprehensive decision matrix X′, which is composed by the calculated
TFNs and numerical numbers, shown as:

X′ =



z′11 · · · z′1g x1g+1 · · · x1n
...

. . .
...

...
. . .

...
z′i1 · · · z′ig x1g+1 · · · xin
...

. . .
...

...
. . .

...
z′m1 · · · z′mg xmg+1 · · · xmn


(12)

Step 3. (Normalization) Distinguish the criteria into benefit, cost, and target forms. Based on the
decision matrix X′, we calculate the target-based linear normalization values by Equation (13) based
on the distance measure given as Equation (2) and the target-based vector normalization values by
Equation (14) based on the expectation function given as Equation (3).

x̃1N
ij = 1−

di j

max
i

di j
, where di j =

 d
(
z′i j, z̃′j

)
, for j = 1, 2, · · · , g∣∣∣xi j − r j
∣∣∣, for j = g + 1, g + 2, · · · , n

(13)

x̃2N
ij =



1−

∣∣∣∣∣E(
z′i j

)
−E

(̃
z′j

)∣∣∣∣∣√
m∑

i=1

(
E
(
z′i j

))2
+

(
E
(̃
z′j

))2
i f j = 1, 2, · · · , g

1−
∣∣∣xi j−r j

∣∣∣√
m∑

i=1
(xi j)

2
+(r j)

2
i f j = g + 1, g + 2, · · · , n

(14)

where z̃′i j is the target value on qualitative criteria c j ( j = 1, 2, · · · , g), and r j is the target value on
quantitative criteria ( j = g + 1, g + 2, · · · , n). Especially, if the jth criterion is a qualitative criterion, then,

z̃′j =


(
max

i
z′i jL, max

i
z′i jM, max

i
z′i jU

)
, for the benefit criterion(

min
i

z′i jL, min
i

z′i jM, min
i

z′i jU

)
, for the cos t criterion

(15)
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If the jth criteria is a quantitative criterion, then,

r j =


max

i
xi j, for the benefit criterion

min
i

xi j, for the cos t criterion
(16)

Afterwards, the target-based liner and vector normalization values are adjusted by Equation (17)
to make the maximum entry as 1 under each criterion.

x̂1N
ij = x̃1N

ij /max
i

x̃1N
ij

x̂2N
ij = x̃2N

ij /max
i

x̃2N
ij

(17)

Step 4. (Trade-offs between criteria) In the original DNMA method, Liao & Wu [14] adjusted the
criteria weights based on the mean-squared-based weighting method. In this study, we make use of
the Gini-coefficient-based weighting method to replace it and extend this approach to the Z-number
environment. Firstly, we defuzzify the TFNs of qualitative criteria in the comprehensive decision
matrix X′ to expectation values E

(
z′i j

)
by Equation (3) and obtain the weight adjustment coefficients of

the criteria by Equations (8)–(10). Then, the criteria weights are adjusted by

w̃ j =
√

wG
j ·w j

/∑n

j=1

√
wG

j ·w j , for j = 1, 2, · · · , n (18)

Step 5. (Aggregation) Compute the subordinate utility values of each alternative, uh(ai), h = 1, 2, 3;
i = 1, 2, · · · , m, based on the complete compensatory model (CCM), un-compensatory model (UCM),
and incomplete compensatory model (ICM) by Equations (19)–(21), respectively. Then, determine the
subordinate ranks rh(ai), h = 1, 2, 3; i = 1, 2, · · · , m. Go to the next step.

u1(ai) =
n∑

j=1

w̃ jx̂1N
ij (19)

u2(ai) = max
j=1

w̃ j
(
1− x̂1N

ij

)
(20)

u3(ai) =
∏

j

(
x̂2N

ij

)w j (21)

It is noted that Equations (19) and (20) are based on the adjusted weight w̃ j of criterion c j, while
Equation (21) is based on the original weight w j of c j.

Step 6. (Integration and Ranking) Calculate the normalized subordinate utility values uN
y (ai),

y = 1, 2, 3; i = 1, 2, · · · , m, by Equation (22).

uN
Y (ai) =

uY(ai)√∑m
i=1(uY(ai))

2
, Y = 1, 2, 3 (22)

Determine the weights of the CCM, UCM and ICM. Then, we can integrate the normalized
subordinate utility values and subordinate ranks by Equation (23), and obtain the collective utility
value of each alternative DNi, i = 1, 2, · · · , m:
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DNi = w′1

√
ϕ
(
uN

1 (ai)/max
i

uN
1 (ai)

)2
+ (1−ϕ)

(
m−r1(ai)+1

m

)2

−w′2

√
ϕ
(
uN

2 (ai)/max
i

uN
2 (ai)

)2
+ (1−ϕ)

(
r2(ai)

m

)2

+w′3

√
ϕ
(
uN

3 (ai)/max
i

uN
3 (ai)

)2
+ (1−ϕ)

(
m−r3(ai)+1

m

)2

(23)

where r1(ai) and r3(ai) are the ranks of alternative ai and determined in descending order of u1(ai) and
u3(ai), respectively, r2(ai) is the rank of alternative ai and determined by the ascending order of u2(ai),
ϕ(ϕ ∈ [0, 1]) is the relative importance of the subordinate ranks and subordinate utility values. w′1,
w′2, w′3 denote the weights of CCM, UCM and ICM, satisfying w′i ∈ [0, 1] and

∑3
i=1 w′i = 1.

Lastly, we can determine the final ranking according to the descending order of DNi and end
the algorithm.

4. Case Study on CSP Ranking with the Z-DNMA Method

In this section, the Z-DNMA method is illustrated with a numerical example related to the CSP
selection problem.

Assume that a company plans to consume a cloud service request and thus needs to select the
most suitable cloud services. After multiple rounds of anonymous discussions and summarizing, the
five evaluation criteria are selected from the QoS attributes and based on the Delphi method which
involved X IT experts in the field of cloud computing. The determined criteria are as follows:

Cost c1 (qualitative, target): The cost involved in using a cloud service, including computer costs,
storage costs, transfer costs, and application costs.

Reliability c2 (qualitative, max): The reliability in a cloud refers to how a cloud service operates
without failure under a set of operating conditions for a specific period of time.

Availability c3 (qualitative, max): Whether a cloud service exists and is available instantly.
Response Time (minutes) c4 (quantitative, min): It represents the time elapsed to send a request

by the client and receiving an answer provided by the cloud service.
Throughput (hits/sec) c5 (quantitative, max): It represents the total number of invocations for a

given time period. The unit of measure is invocations per second for a given cloud service.
Assume that there are four CSPs A = {a1, a2, a3, a4} left after a preliminary screen. Three DMs

dq(q = 1, 2, 3) are invited to assess the performances of CSPs with respect to each qualitative criterion,
and the three DMs have the same importance, i.e., λ1 = λ2 = λ3 = 1/3. The qualitative attributes are
assessed based on questionnaire using the scales given in Tables 1 and 2. The qualitative evaluation
results are shown in Table 3. For quantitative attributes c4 and c5 (i.e., response time and throughput),
the performances of the alternatives are obtained from the service level agreements of the CSPs, shown
as (118, 75, 71, 103) and (25, 17, 11, 16), respectively.

Table 1. Transformation rules of linguistic variables of restriction.

Scale
Membership Function

c1 c2 c3

Very High (VH) Very Low (VL) (0,0,1)
High (H) Low (L) (0,1,3)

Medium High (MH) Medium Low (ML) (1,3,5)
Medium (M) Medium (M) (3,5,7)

Medium Low (ML) Medium High (MH) (5,7,9)
Low (L) High (H) (7,9,10)

Very Low (VL) Very High (VH) (9,10,10)
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Table 2. Transformation rules of linguistic variables of reliabilities.

Scale Membership Function

Strongly Unlikely (SU) (0,0,0.1)
Unlikely (U) (0,0.1,0.3)

Somewhat Unlikely (SWU) (0.1,0.3,0.5)
Neutral (N) (0.3,0.5,0.7)

Somewhat Likely (SWL) (0.5,0.7,0.9)
Likely (L) (0.7,0.9,1)

Strongly Likely (SL) (0.9,1,1)

Table 3. The evaluation information given by decision-makers (DMs).

DMs CSPs c1 c2 c3

DM1

a1 (ML, L) (MH, L) (ML, N)
a2 (MH, SL) (MH, L) (H, SWU)
a3 (H, N) (H, L) (H, N)
a4 (VL, SWL) (MH, SWL) (ML, L)

DM2

a1 (M, L) (H, SL) (ML, N)
a2 (MH, L) (H, L) (H, N)
a3 (MH, N) (MH, L) (H, SWL)
a4 (VL, SWL) (MH, SWL) (ML, L)

DM3

a1 (ML, L) (H, SL) (M, SWU)
a2 (MH, L) (MH, L) (H, SWL)
a3 (H, N) (H, L) (H, SWL)
a4 (VL, N) (M, L) (ML, L)

Below we use the Z-DNMA method presented in Section 3 to solve this problem. Since Step 1 is
given above, we start the calculation process from Step 2.

Step 2. Convert each DM’s linguistic evaluations to Z-numbers based on Tables 1 and 2.
The converted results are shown in Table 4. Then, aggregate DMs’ linguistic evaluations into

collective ones by Equation (11) The aggregated decision matrix is shown in Table 5. Furthermore,
we convert Z-fuzzy performance values to TFNs by Equations (4) and (7). The comprehensive
decision matrix X′, which is combined with the performance values of quantitative criteria, is obtained
as follows:

X′ =


(4.034, 5.896, 7.758) (6.118, 8.051, 9.339) (1.097, 2.414, 3.73) 118 25
(0.949, 2.846, 4.743) (5.275, 7.137, 8.689) (4.95, 6.364, 7.071) 75 17
(0.236, 1.179, 2.593) (5.896, 7.758, 8.999) (5.571, 7.162, 7.958) 71 11
(7.162, 7.958, 7.958) (3.767, 5.505, 7.244) (0.931, 2.793, 4.655) 103 16

 (24)

Table 4. The decision matrix described by Z-numbers.

DMs CSPs
c1 c2 c3

Restriction Reliability Restriction Reliability Restriction Reliability

DM1

a1 (5,7,9) (0.7,0.9,1) (5,7,9) (0.7,0.9,1) (1,3,5) (0.3,0.5,0.7)
a2 (1,3,5) (0.9,1,1) (5,7,9) (0.7,0.9,1) (7,9,10) (0.1,0.3,0.5)
a3 (0,1,3) (0.3,0.5,0.7) (7,9,10) (0.7,0.9,1) (7,9,10) (0.3,0.5,0.7)
a4 (9,10,10) (0.5,0.7,0.9) (5,7,9) (0.5,0.7,0.9) (1,3,5) (0.7,0.9,1)

DM2

a1 (3,5,7) (0.7,0.9,1) (7,9,10) (0.9,1,1) (1,3,5) (0.3,0.5,0.7)
a2 (1,3,5) (0.7,0.9,1) (7,9,10) (0.7,0.9,1) (7,9,10) (0.3,0.5,0.7)
a3 (1,3,5) (0.3,0.5,0.7) (5,7,9) (0.7,0.9,1) (7,9,10) (0.5,0.7,0.9)
a4 (9,10,10) (0.5,0.7,0.9) (5,7,9) (0.5,0.7,0.9) (1,3,5) (0.7,0.9,1)

DM3

a1 (5,7,9) (0.7,0.9,1) (7,9,10) (0.9,1,1) (3,5,7) (0.1,0.3,0.5)
a2 (1,3,5) (0.7,0.9,1) (5,7,9) (0.7,0.9,1) (7,9,10) (0.5,0.7,0.9)
a3 (0,1,3) (0.3,0.5,0.7) (7,9,10) (0.7,0.9,1) (7,9,10) (0.5,0.7,0.9)
a4 (9,10,10) (0.3,0.5,0.7) (3,5,7) (0.7,0.9,1) (1,3,5) (0.7,0.9,1)
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Table 5. The aggregated decision matrix.

CSPs c1 c2 c3

a1
((4.333, 6.333, 8.333),

(0.7, 0.9, 1))
((6.333, 8.333, 9.667),

(0.833, 0.967, 1))
((1.667, 3.667, 5.667),
(0.233, 0.433, 0.633))

a2
((1, 3, 5),

(0.767, 0.933, 1))
((5.667, 7.667, 9.333),

(0.7, 0.9, 1))
((7, 9, 10),

(0.3, 0.5, 0.7))

a3
((0.333, 1.667, 3.667),

(0.3, 0.5, 0.7))
((6.333, 8.333, 9.667),

(0.7, 0.9, 1))
((7, 9, 10),

(0.433, 0.633, 0.833))

a4
((9, 10, 10),

(0.433, 0.633, 0.833))
((4.333, 6.333, 8.333),
(0.567, 0.767, 0.933))

((1, 3, 5),
(0.7, 0.9, 1))

Step 3. Suppose that the target value of c1 is “Medium”, i.e., (3, 5, 7). In addition, the target
values of c2, c3, c4, c5 can be computed by Equations (15) and (16). We can obtain the target value of
each criterion as: z̃′1 = (3, 5, 7), z̃′2 = (6.118, 8.051, 9.339), z̃′3 = (5.571, 7.162, 7.958), r4 = 71, r5 = 25. Then,
the target-based linear normalization values can be computed by Equations (13) and (2), while the
target-based vector normalization values can be computed by Equations (14) and (3). The results are
shown in Tables 6 and 7, respectively.

Table 6. The target-based linear normalized values.

CSPs c1 c2 c3 c4 c5

a1 0.758 1.000 0.000 0.000 1.000
a2 0.422 0.654 0.827 0.915 0.429
a3 0.000 0.877 1.000 1.000 0.000
a4 0.195 0.000 0.077 0.319 0.357

Table 7. The target-based vector normalized values.

CSPs c1 c2 c3 c4 c5

a1 0.921 1.000 0.627 0.766 1.000
a2 0.811 0.949 0.936 0.980 0.817
a3 0.675 0.982 1.000 1.000 0.680
a4 0.758 0.853 0.658 0.840 0.794

From Tables 6 and 7, we can find that only the maximum target-based linear normalization
value and the maximum target-based vector normalization value under criterion c1 are smaller than 1.
Therefore, we only adjust the normalized values under this criterion c1 by Equation (17).

Step 4. Defuzzify the TFN values of qualitative criteria, which are listed in the comprehensive
decision matrix X′ to crisp values by Equation (3). The crisp performance matrix is shown as follows:

5.896 7.89 2.414 118 25
2.846 7.06 6.187 75 17
1.296 7.603 6.963 71 11
7.759 5.505 2.793 103 16

 (25)

Then, we can calculate the Gini coefficient of each criterion by Equation (8): G1 = 0.315, G2 = 0.069,
G3 = 0.232, G4 = 0.115, G5 = 0.156. In addition, we obtain the weight adjustment coefficients of the
criteria by Equation (10): wG

1 = 0.355, wG
2 = 0.077, wG

3 = 0.262,wG
4 = 0.130, wG

5 = 0.176. Suppose that
the DMs assign the subjective weights of criteria as: w1 = 0.094, w2 = 0.445, w3 = 0.379, w4 = 0.045,
w5 = 0.037. By Equation (18), we obtain the adjusted weights of the criteria as w̃1 = 0.217, w̃2 = 0.220,
w̃3 = 0.375, w̃4 = 0.091, w̃5 = 0.096. Step 5. We calculate utility values of CCM, UCM, and ICM by
Equations (19), (20) and (21), respectively. The results are shown in Table 8.
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Table 8. The utility values of alternatives derived by the Z-DNMA method.

CSPs
CCM UCM ICM

u1(ai) r1(ai) u2(ai) r2(ai) u3(ai) r3(ai)

a1 0.534 3 0.375 4 0.828 3
a2 0.700 1 0.096 1 0.934 2
a3 0.659 2 0.217 2 0.950 1
a4 0.148 4 0.346 3 0.768 4

Step 6. Normalize the utility values by Equation (22). Then, suppose ϕ = 0.5, w′1 = 0.3, w′2 = 0.3,
w′3 = 0.4. The subordinate normalized utility values and the subordinate ranks are integrated by
Equation (23). We can obtain the final utility values as DN1 = 0.178, DN2 = 0.574, DN3 = 0.493,
DN4 = 0.057. Therefore, the final ranking of alternatives is a2 � a3 � a1 � a4.

From the above example, we can find that the proposed method has the following merits: (1) It can
flexibly handle uncertain and unreliable trust-feedback data of the CSPs. It is not only a comprehensive
reflection of DMs’ judgments but also conforms to the expression habits of DMs; (2) It can deal with the
decision-making problems which include quantitative and qualitative criteria in forms of benefit, cost,
and target types. It can solve the sustainable cloud service provider development problem flexibly
and reliably.

5. Discussion

In this section, we compare the results of the proposed method with the results obtained by the
original DNMA method and other existing methods including the Z-TOPSIS method and Z-VIKOR
method. Then, we perform sensitive analysis to validate the robustness of the proposed method.

5.1. Comparative Analysiss

5.1.1. Solving the Case by the Original DNMA Method

In the original DNMA method, Liao & Wu [25] adjust the criteria weights by the
mean-squared-based weighting method. In this subsection, we recalculate the results by the original
DNMA method.

By the mean-squared-based weighting method, the weight adjustment coefficients are {0.297,
0.106, 0.263, 0.151, 0.183}. Then, we can obtain the adjusted weights as {0.193, 0.252, 0.365, 0.095, 0.095}
by Equation (18). Using Equations (19)–(23), we can get DN1 = 0.179, DN2 = 0.576, DN3 = 0.506,
DN4 = 0.055. Therefore, the final ranking is a2 � a3 � a1 � a4. We can find that the result calculated by
the original DNMA method is consistent with that deduced by our proposed method.

5.1.2. Solving the Case by the Z-TOPSIS Method

Next, we apply the Z-TOPSIS to solve this case. The TOPSIS method selects the optimal alternative
that has the shortest distance to the positive ideal solution A+ and the furthest distance from the negative
ideal solution A−. The classical TOPSIS normalized the decision matrix by vector normalization.
Yaakob and Gegov [36] extended the classical TOPSIS method into the Z-numbers environment and
implemented it in the stock selection problem, but that method could not support the MCDM with
target criteria. We extend the TOPSIS method into the Z-fuzzy environment by combining it with the
target-based vector normalization method (i.e., Equation (14)).

First, we use the target-based vector normalization method given as Equation (14) to normalize
the decision matrix X′ and obtain x̃2N

ij (i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5) as shown in Table 7. Then, we use
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Equation (17) to adjust x̃2N
ij to x̂2N

ij . Furthermore, the Euclidean distance between positive solution (s+i )
and negative ideal solution (s−i ) can be calculated by

s+i =

√∑n

j=1
w̃ j

(
x̂2N

ij −

(
x̂2N

ij

)+)2

, s−i =

√∑n

j=1
w̃ j

(
x̂2N

ij −

(
x̂2N

ij

)−)2

(26)

where
(
x̂2N

ij

)+
= max

i

(
x̂2N

ij

)
,
(
x̂2N

ij

)−
= min

i

(
x̂2N

ij

)
and w̃ j is the adjusted criterion weight.

Calculate the relative closeness of each alternative to the ideal solution by Equation (27) and rank
the alternatives according to descending order of RCi.

RCi = s−i /
(
s−i + s+i

)
(27)

The calculation results are shown in Table 9. According to the calculation results, the final
ranking of the alternatives is a2 � a3 � a1 � a4, which is consistent with the result derived by the
Z-DNMA method.

Table 9. The calculation results with the Z-TOPSIS method.

CSPs s+
i s−i RCi Rank

a1 0.239 0.174 0.421 3
a2 0.092 0.220 0.705 1
a3 0.160 0.247 0.607 2
a4 0.249 0.062 0.200 4

5.1.3. Solving the Case by the Z-VIKOR Method

The major advantage of the VIKOR method is that it can trade off the maximum group utility
of the “majority” and the minimum individual regret of the “opponent”. It normalizes the decision
matrix by linear normalization. Here, we extend the VIKOR method into the Z-fuzzy environment by
combining it with the target-based linear normalization method (i.e., Equation (13)).

First, we use the target-based linear normalization method given as Equation (13) to normalize
the decision matrix X′, and obtain x̃1N

ij (i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5) shown in Table 6. Then, we use

Equation (17) to adjust x̃1N
ij to x̂1N

ij . Additionally, we use Si =
∑n

j=1 w̃ j · x̂1N
ij and Ri = max

j

(
w̃ j ·

(
1− x̂1N

ij

))
to calculate the “group utility” value Si of each alternative and the “individual regret” value Ri of the
“opponent” of each alternative, respectively.

We then calculate the compromise value Qi of each alternative by

Qi = ρ(Si − S−)/
(
S+
− Si

)
+ (1− ρ)

(
R+
−Ri

)
/
(
R+
−R−

)
(28)

where S+ = max
i

Si, S− = min
i

Si, R+ = min
i

Ri, R− = max
i

Ri. In addition, ρ is the weight of the strategy

of “the majority of criteria” (or “the maximum group utility”). Here, we set different values for
ρ (ρ = 0.25, 0.5, 0.75).

Finally, we rank the alternatives and sort the values Si, Ri, and Qi in descending order. The results
are listed in Table 10. From Table 10, we can find that the results obtained by the Z-VIKOR method are
also consistent with the results derived by the Z-DNMA method.
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Table 10. The ranking of alternatives by R, S and Q values.

CSPs Si Ri
ρ = 0.25 ρ = 0.5 ρ = 0.75

Qi Rank Qi Rank Qi Rank

a1 0.534 0.375 0.175 3 0.350 3 0.524 3
a2 0.700 0.096 1.000 1 1.000 1 1.000 1
a3 0.659 0.217 0.656 2 0.746 2 0.836 2
a4 0.148 0.346 0.078 4 0.052 4 0.026 4

5.2. Sensitivity Analysis

To test the robustness of the ranking result, four sensitivity tests are carried out in this subsection.
First, we adopt a weight replacement strategy for sensitivity test. Figure 2 contains the ten

different tests to exchange the subjective weights of criteria and demonstrates the corresponding ranks
of alternatives. For example, c2-c5 denote that the subjective weights of criteria c2 and criteria c5 have
been interchanged. From Figure 2, it is clear that a2 has the highest rank in seven out of ten weighted
calculation experiments, and a4 has the lowest rank in all experiments. This suggests that the optimal
and worst CSPs have not altered in most cases, which illustrates the stability of the ranking results.
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Second, according to Equation (23) (in Step 6) of the Z-DNMA method, the collective utility
value DNi of each alternative largely depends on the proportion of ϕ for the relative importance of
the subordinate ranks and subordinate utility values. The parameter ϕ is the adjustment parameter
that varies in [0, 1] and is set as 0.5 in this study. To validate the impact of ϕ on the CSP ranking, a
sensitivity test is performed on the identical application in Section 4. with ϕ = (0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1). The ranking results of each alternative are obtained in Table 11.

Table 11. The orders of alternatives with different ϕ.

CSPs ϕ = 0 ϕ = 0.1 ϕ = 0.2 ϕ = 0.3 ϕ = 0.4 ϕ = 0.5 ϕ = 0.6 ϕ = 0.7 ϕ = 0.8 ϕ = 0.9 ϕ = 1

a1 3 3 3 3 3 3 3 3 3 3 3
a2 1 1 1 1 1 1 1 1 1 1 1
a3 2 2 2 2 2 2 2 2 2 2 2
a4 4 4 4 4 4 4 4 4 4 4 4

From Table 11, we can see that for the change of ϕ, there is no change in the final ranking obtained
by the proposed method throughout the analysis. Therefore, it can be concluded that the final ranking
results are reliable and robust based on this sensitivity analysis.
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Third, according to Equation (23) (in Step 6) of the Z-DNMA method, the parameter w′1, w′2, w′3
denote the weights of CCM, UCM and ICM, satisfying w′i ∈ [0, 1] and

∑3
i=1 w′i = 1. The values of w′1,

w′2, and w′3 can be assigned different values depends on DMs’ risk preferences. In this case study, we set
DMs’ risk preferences vector as W′ = (0.3, 0.3, 0.4) for demonstration. To validate the impact of W′

on the CSP ranking, a sensitivity test is performed with W′1 = (1, 0, 0), W′2 = (0.4, 0.3, 0.3), W′3 = (0, 1, 0),
W′4 = (0.3, 0.4, 0.3), W′5 = (1/3, 1/3, 1/3), W′6 = (0, 0, 1). The ranking results of each alternative are
obtained in Table 12.

Table 12. The orders of alternatives with different DMs’ risk preferences vector.

CSPs W
′

1 W
′

2 W
′

3 W
′

4 W
′

5 W
′

6 W
′

a1 3 3 4 3 3 3 3
a2 1 1 1 1 1 2 1
a3 2 2 2 2 2 1 2
a4 4 4 3 4 4 4 4

From Table 12, it can be clearly seen that under the change of the weights of DMs’ risk preferences,
the rank order of the alternatives is without obvious change and the final ranking is reliable and robust.

Last, we add an alternative a5 to test the stability of the results. The linguistic evaluation values of
each qualitative criteria of a5 are shown in Table 13. The performance values of quantitative criteria are
90 min, and 10 hits/sec, respectively.

Table 13. The evaluation matrix DMs for a5.

DMs c1 c2 c3

DM1 (MH, L) (MH, SWL) (M, N)
DM2 (MH, L) (MH, L) (MH, N)
DM3 (M, SWL) (MH, L) (M, SWL)

According to the calculation steps of Z-DNMA, we can obtain DN1 = 0.183, DN2 = 0.589,
DN3 = 0.512, DN4 = 0.042, DN5 = 0.284. Therefore, the final ranking is a2 � a3 � a5 � a1 � a4.
The results show that when a new alternative is added, the original ranking remains stable.

According to the above four sensitivity analysis, it can be concluded that a4 is the trustworthy
CSP since it has the minimal fluctuations in all the sensitivity test and the proposed method in this
paper is robust and stable.

6. Conclusions

In this study, we introduced the original DNMA method to tackle quantitative and qualitative
decision criteria in the forms of benefit, cost, and target types for the CSP development problem.
We extended the DNMA method to Z-number environment and proposed the Z-DNMA method. In this
regard, the uncertain and unreliability decision-making information of decision-makers was considered.
We made use of the Gini coefficient-based weighting method to replace the mean-square-based
weighting method used in the original DNMA method, and extended this approach to the Z-number
environment for the trade-offs between criteria after normalization to enhance the applicability and
isotonicity of the DNMA method. Based on the established decision-making method, a case study
was conducted. Sensitivity analysis and comparative analysis were provided to test the stability and
applicability of the proposed method.

Due to the cloud services as well as CSPs increasing rapidly with different functionalities and
dynamic user requirements, the sustainable CSP development becomes an MCDM problem and
remains a challenging research area in the field of cloud computing. The presented Z-DNMA method
with the Gini-coefficient-based weight determination approach is utterly useful for customers to trickle
quantitative and qualitative criteria in forms of benefit, cost, and target types for the sustainable CSP
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development, while considering the uncertain and unreliability decision-making information of DMs.
First, based on linguistic Z-numbers, the proposed model can flexibly handle uncertain and unreliability
trust feedback data of the CSPs. It is not only a comprehensive reflection of DMs’ judgments, but also
conforms to expression habits of DMs. Second, by the DNMA method, the proposed model can deal
with such scenarios, which include quantitative and qualitative criteria in forms of benefit, cost, and
target types. It can flexibly, reliably, and simply to solve MEMCDM for the sustainable cloud service
provider development problem. Furthermore, by integrating the Gini-coefficient-based weighting
method to replace the mean-square-based weighting method used in the original DNMA method
and extending this approach to the Z-number environment for the trade-offs between criteria after
normalization, the applicability and isotonicity of the DNMA method have been enhanced. Therefore,
this study provided practical and theoretical guidance for sustainable CSP development to solve
uncertainty and unreliable, multi-scale QoS assessment data to helps both researchers and practitioners
for analyzing more fruitful approaches for CSP selection.

A limitation is that this paper uses a numerical example to show the effectiveness of the proposed
method. In the future, we will employ the proposed method to dispose of the CSP selection problem
under realistic data and cases. In addition, another limitation is that we assume that all criteria are
independent in this study. We plan to develop a novel aggregation operator to aggregate the interactive
criteria for better adapting to real decision-making problems.
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