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Abstract Continuity is an axiom of Kalai (1977)’s and Roth (1979b)’s charac-

terizations of the proportional bargaining. In this paper we establish that, in the

class of strictly comprehensive sets, continuity is a corollary of the other axioms.

Consequently the proportional solution can be axiomatically defined in the class

of strictly comprehensive sets without the axiom of continuity. We also show it is

possible to tighten Kalai (1977)’s and Roth (1979b)’s axiomatization of the propor-

tional bargaining solution, assuming a weaker version of the axiom of continuity.

Keywords axiomatic bargaining, proportional solution, continuity axiom.

The proportional solution is a longstanding solution for the axiomatic bargain-

ing problem. It has been axiomatically characterized in two different classes of sets:

in the class of comprehensive sets by Kalai (1977), and in the class of convex sets

by Roth (1979b). Here we characterize it in a third bargaining class, the class of

strictly comprehensive sets. While the class of convex sets describes the case where

players can randomize over different bargaining agreements, the class of compre-

hensive sets adds to this the possibility of disposable utility. The class of strictly

comprehensive sets is a subclass of comprehensive sets, and it represents the case

where the marginal utility of the bargained item is strictly positive. Geometrically,

the boundary of a strictly comprehensive set is never parallel to the axis. This is a

natural class for bargaining to take place in, since it models the case where more

of the good is better for all players. In this sense, at the Pareto frontier it cannot
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2 Lúıs Carvalho

happen that some player diminishes his utility while all the others maintain theirs.

That is, if someone is worst off then someone else must be better off.

In this work we first show that when the bargaining class has only strictly

comprehensive sets, the axiom of continuity is a consequence of the other axioms

(see Proposition 1). This result reveals that the axiom of continuity is needed

only for a minor part of the comprehensive sets. Therefore, if we dismiss these

sets, we obtain the proportional solution without assuming continuity. That is,

the set of axioms that characterize the proportional solution to be the bargaining

solution in the class of strictly comprehensive sets can omit the continuity axiom

(see Theorem 1).

A second implication is that Kalai (1977)’s and Roth (1979b)’s results on pro-

portional bargaining in convex and in comprehensive sets, respectively, can be

slightly tightened. The continuity axioms in these characterization can be weak-

ened to require that the solution preserves limits for each convergent sequence of

problems in X whose limit is in X \D.

Proportional bargaining is still a solution if we axiomatically impose continuity

only on the sets that are comprehensive but not strictly comprehensive sets (see

Corollary 1).

We end the paper with example 1 which describes a non-continuous bargain-

ing solution for the class of comprehensive sets satisfying all the other axioms.

This example shows that we cannot extend our result; that is, continuity is not a

consequence of the other axioms in the class of comprehensive sets.

By a bargaining game we mean a pair (S,d), where S is a set of outcome

possibilities and d is a disagreement outcome. One outcome, a point in S or d, is

chosen as the bargaining solution of the game. The set S represents the admissible

utility payoffs of the players. We assume that S is convex and compact; that there

is an element s ∈ S with s > 0; and1 that d = 0. The set of players is N =

{1, 2, . . . , n}. A bargaining class is a family of subsets of Rn+ = {x ∈ Rn : x ≥ 0}.
We use three bargaining classes: B, the set of compact and convex sets in Rn+; D, the

set of compact, convex and comprehensive sets in Rn+ and D, the set of compact,

convex and strictly comprehensive sets in Rn. A convex set D is comprehensive,

where D ∈ D ⊂ B, if the following property is verified

x ∈ D, then x′ ∈ D for any 0 ≤ x′ ≤ x.

1 By x < y and x ≤ y it is meant, respectively, that xi < yi or xi ≤ yi for all i = 1, . . . , n.
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A comprehensive set D is strictly comprehensive, where D ∈ D ⊂ D, when

x,x′ ∈ D with x ≤ x′ and x 6= x′, there exists x̃ ∈ D such that x < x̃.

For a ∈ R+ and S, let aS = {as : s ∈ S}. We denote by δS the Pareto optimal

frontier of the set S in Rn+; that is, δS = {x ∈ S : @y ∈ S,y > x}. Our classes of

sets are metric spaces under the Hausdorff distance, for any A,B ∈ B, d(A,B) =

max
{

max
a∈A

min
b∈B

d(a, b),max
b∈B

min
a∈A

d(a, b)
}

. In R+
n we use the metric induced by the

uniform norm, d(a, b) = max
i∈N
|ai − bi|.A bargaining solution in the class X ∈ F =

{B,D,D} is a function f : X→ Rn+ such that for all S ∈ X satisfies f(S) ∈ S. This

function should respect several of the relations specified in the following axioms.

Axioms 2

1. Weakly Pareto Optimal. For all S ∈ X there is no s ∈ S such that s > f(S).

2. Homogeneity. For all S ∈ X and all a ∈ R+ \ {0}, f(aS) = af(S).

3. Strong Individual Rationality. For all S ∈ X, f(S) ≥ 0 and f
(
cch{S}

)
> 0.

4. Monotonicity. For all S, S′ ∈ X with S ⊆ S′, then f(S) ≤ f(S′).

6a. Independence of Irrelevant Alternatives. For all S, S′ ∈ X with S ⊆ S′ and

f(S′) ∈ S then f(S) = f(S′).

6b. Individual Monotonicity. For all S, S′ ∈ X with S ⊆ S′ and cch {S} ∩ {x ∈
Rn : xi = 0} = cch

{
S′
}
∩ {x ∈ Rn : xi = 0}, for a given i, then fi(S) ≤ fi(S′).

6c. Continuity If Sk ∈ X, for k ∈ N, converge to S ∈ X, then f(Sk)→ f(S).

A solution is proportional in X ∈ F if there exists p ∈ Rn+ \ {0} such that for

any S ∈ X, f(S) = tpSp, where

tpS = max{t ∈ R+ : tp ∈ S}.

Kalai (1977) and Roth (1979b) both considered a bargaining solution that

respected a subset of these axioms. Those theorems will be stated to simplify

the comparison with the results in this paper. Kalai (1977) proved the following

theorem3 for the class D:

Theorem (K). A solution in D satisfies axioms (2), (3), (6a), (6b) and (6c) if and

only if it is proportional.

Roth (1979b) generalized this result to the larger class of convex sets B and

provided the following theorem.

2 When referring to the axioms it should be clear from the context to which bargaining class
X each axiom applies. We leave out axiom number 5 to make this list comparable with the list
of axioms in Roth (1979b).

3 Theorem K is an improved version of the original theorem, attributed to Roth (1979b).
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Theorem (R). A solution in B that satisfies axioms (2), (3), (6a), (6b) in B, and

(6c) in D must be proportional.

Next, we will prove an alternative characterization of the proportional bargain-

ing solution, this time in the class D. The central result is that the continuity of

the solution in D is a consequence of axioms (2), (3), (6a) and (6b).

Proposition 1 If a solution in D satisfies axioms (2), (3), (6a) and (6b), then it

satisfies (6c) in D.

The proofs are in the appendix. For the above proposition we now introduce

the main ideas and give a sketch of the argument for the case of N = {1, 2, 3}. We

leave for the appendix the general case, that is, for any number of players n ∈ N,

because it lacks the simplicity and geometric appeal of the other cases.

We argue by contradiction, assuming there is a sequence of sets Sk converging

to S, with the sequence of solutions f(Sk) = sk not converging to f(S) = s. We

start by noting that, it can be assumed, without loss of generality, that f(S) ∈ Sk
for all k ∈ N, (see Lemma 3). We then find two sets, A and B, with B ⊆ A, satisfying

the conditions of axiom (6b). Thus fi(B) ≤ fi(A), for any i ∈ N . However, those

sets are such that f(A), f(B) ∈ δS and f(A) 6= f(B). Therefore, since S is strictly

comprehensive, there must exist a j ∈ N such that fj(A) < fj(B). Hence, we

obtain a contradiction.

To create these sets ideally we would use only sk and s. However, this is not

possible. For example, the set cch{sk, s} is not strictly comprehensive. Thus, we

need to use some other points to generate A and B. To create these points we must

introduce some new concepts. For a subset M ⊆ N = {1, 2, 3} we define πM (x),

the projection in M of x = (x1, x2, x3). The projection πM (x) is the vector whose

coordinates in M are equal to those of x and those not in M are zero. For example,

with M = {1, 3}, πM (x) = (x1, 0, x3). Notice that

cch{sk, s} = cch
{
{πM (sk), πM (s)}{M∈2N\{∅}}

}
.

As already mentioned, this set does not belong to D. Therefore, to create a set

that does belong to D we use points that are close to the projections πM (sk) and

πM (s). For each subset M ⊆ N we have two points, xM and yM . Let xM =

πM (s) + (n −#M)επM (1, 1, 1). For instance, x{2} = (0, s2 + 2ε, 0) and x{1,3} =

(s1 + ε, 0, s3 + ε). The vector yM is created in the same way but with πM (s)

replaced by ρkπM (sk); that is, yM = ρkπM (sk) + (n − #M)επM (1, 1, 1), where

ρk = max {ρ ∈ R+ : ρsk ∈ S}.
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The sets A and B are as follows:

A = cch
{
{xM ,yM}{M∈2N\{∅}}

}
B = cch

{
{xM ,yM}{M∈2N\{∅,N}}, ρks, ρksk

}
.

The set of generating points is almost the same, the difference being that s is used

as a generator of A and ρks as a generator of B. Thus, the sets A and B are very

similar. In particular, A ∩ {x ∈ R3
+ : xi = 0} = B ∩ {x ∈ R3

+ : xi = 0}, for any

i ∈ {1, 2, 3} (cf. axiom 6b).

Since ρk < 1, we have that ρks ∈ A and B ⊂ A. With a judicious choice of

ε we can ensure that all generators of A are in S and all generators of B are in

ρkSk. Therefore, using axiom (6a), we conclude that f(A) = s and f(B) = ρksk.

Both these choices belong to δS, the boundary of S, and since S is a strictly

comprehensive set, for some j ∈ N , we have fj(A) < fj(B). On the other hand we

can apply axiom (6b), since

A ∩ {x ∈ Rn : xj = 0} = B ∩ {x ∈ Rn : xj = 0} for all j ∈ N.

This is a consequence of the generating vectors of A and B, which have at least one

coordinate equal to zero, being the same. From A,B ∈ D, B ⊆ A and the previous

equality, axiom (6b) implies that f(B) ≤ f(A). And we reach a contradiction with

fj(B) > fj(A) for some j ∈ N . As referred, the full proof is in the appendix.

Proposition 1 enables us to find a slightly tighter version of Theorems K and

R. Indeed, instead of assuming that the solution is continuous in D, we only

need to assume that the solution is continuous in the sets in D \ D. Then, using

this hypothesis and the previous proposition, we can conclude that the solution

is continuous in D. Hence, the solution is proportional. We first need to define

continuity in D \ D, since this involves a subtle point. In particular we are using

that the solution f is continuous in D \ D when the domain of the solution is D.

That is, although the limiting set S must be in D \ D, the elements Sk of the

convergent sequence might be in D.

Axiom 6c’. For any sequence Sk ∈ D converging to S ∈ D \D, f(Sk)→ f(S).

We can now present the new versions of Theorems K and R.

Corollary 1 A solution in D satisfies (2), (3), (6a), (6b) and (6c′) if and only if it

is proportional. A solution in B satisfies (2), (3), (6a), (6b) and (6c′) if and only if it

is proportional.

Our next result proves that the solution is proportional in the bargaining class

of strictly comprehensive sets D. In comparison with K and R there is no need for
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the axiom of continuity, since it follows from the other axioms. By shrinking the

class of bargaining sets from D to D, one of the axioms becomes unnecessary.

Theorem 1 A solution in D satisfies (2), (3), (6a), and (6b) if and only if it is

proportional.

We now show that Theorem 1 cannot be generalized for the larger class of

comprehensive sets D. We provide an example of a non-continuous solution in D
which respects all the axioms assumed in Theorem 1. In this example the solution

is proportional to a given q ∈ R2 in the majority of the sets, and it is proportional

to p ∈ R2 in the remaining sets. This family of sets, call it B, where the solution

is proportional to p, is characterized by part of the set’s boundary being parallel

to the ordinates. In particular, the solution is pS1 whenever pS1 ∈ S. Since the

family of sets D \ B, where the solution is proportional to q, is not closed, the

solution is non-continuous.

Example 1

g(S) =

pS
1 if pS1 ∈ S

qtqS if pS1 /∈ S

where p = (1, p2), q = (1, q2) ∈ R2, 0 < q2 < p2 < 1 and S1 = max{x : (x, y) ∈ S}.
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1 Appendix

To prove Proposition 1 we need two auxiliary lemmas. The first shows that two

sets with different bargaining choices cannot simultaneously contain the other’s
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set choice. The second lemma shows that when a sequence of convex and compre-

hensive sets converges to S, then the boundary of that sequence converges to the

boundary of S.

Lemma 1 Let f satisfy (6a). Let S, S′ ∈ X ∈ F and f(S) 6= f(S′). If f(S) ∈ S′, then

f(S′) /∈ S.

Proof Since f(S) ∈ S′, f(S) ∈ S ∩ S′. By axiom (6a), f(S ∩ S′) = f(S). Then

f(S ∩ S′) 6= f(S′) and, since S ∩ S′ ⊆ S′, axiom (6a) implies that f(S′) 6∈ S ∩ S′.
Therefore, f(S′) 6∈ S.

Lemma 2 If Sk → S, with Sk, S ∈ D, then δSk → δS.

Proof Throughout this proof we use the well-know result that the proportional

solution is continuous for any p ∈ Rn+ \ {0}; that is tpSk → tpS , whenever Sk → S

and Sk, S ∈ D. We first assume that d(δSk, δS) does not converge to zero. In this

case, there is an ε > 0 such that at least one of the next two conditions holds:

There exists an yk ∈ δS,with d(δSk,yk) > ε, for an infinite number of k’s. (1)

There exists an xk ∈ δSk,with d(xk, δS) > ε, for an infinite number of k’s. (2)

In the argument, to avoid double and triple subscripts, we use the original notation

of a sequence when taking a subsequence. If (1) holds, then, there exists an yk ∈ δS,

such that, for any xk ∈ δSk, d(yk,xk) > ε. Let y ∈ δS be the limit of a convergent

subsequence of yk. Let K ∈ N be such that d(yk,y) < ε/2, for k ≥ K. Then

d(xk,y) > d(xk,yk)−d(yk,y) > ε/2, for any k ≥ K and xk ∈ δSk. With xk = tySky,

we conclude that d(tySky,y) > ε/2, for any k ≥ K. Thus, lim tySky 6= y and so

lim tySk 6= 1 = tyS . Therefore, we get a contradiction with the continuity of the

proportional solution.

If (2) holds, then, for each k, there exists an xk ∈ δSk such that, for any

y ∈ δS, d(xk,y) > ε. Assume that x is the limit of a convergent subsequence of

xk. This subsequence exists once we can enclose the converging sequence of sets

Sk in a larger compact set. Take K ∈ N such that d(xk,x) < ε/2, for k ≥ K. Then,

d(x,y) > d(xk,y) − d(x,xk) > ε/2. If xk − txSkx → 0 we obtain a contradiction,

since

ε/2 < d(x, txSx) ≤ d(txSx, t
x
Skx) + d(txSkx,xk) + d(xk,x)→ 0.

Here we used the facts that ε/2 < d(x,y) with y = txSx ∈ S and that the propor-

tional solution is continuous. In particular, d(txSkx, t
xk
S )→ 0.

To prove that xk − txSkx→ 0 we first consider the case where x > 0. Let

αk = max{α ∈ R+ : αx ≤ xk}, and βk = min{β ∈ R+ : βx ≥ xk}.
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Since xk → x, αk → 1 and βk → 1. The set Sk is a comprehensive set and xk ∈ δSk,

thus αk ≤ txSk ≤ βk and txSk → 1 and we have txSkx− xk → 0.

I then consider the case where x ≥ 0 but not x > 0. Let x̃k be such that

x̃k,i = xk,i when xi > 0 and x̃k,i = 0 when xi = 0. It is easy to see that x̃k → x.

Again, using

α̃k = max{α ∈ R+ : αx ≤ x̃k} and βk = min{β ∈ R+ : βx ≥ x̃k},

we can conclude that txSkx−x̃k → 0 and, since x̃k−xk → 0, that txSkx−xk → 0.

We will prove in Proposition 1 that in D axioms (2), (3), (6a) and (6b) imply

axiom (6c). The proof is done by contradiction and we start by assuming the

existence of a sequence of sets, Sk ∈ D convergent to S ∈ D whose solution f(Sk) =

sk does not converge to the solution of S. The next lemma shows that when such

sequence {Sk}k exists we can assume in addition that f(S) ∈ Sk for all k.

Lemma 3 Let the solution f in D satisfy axioms (2), (3), (6a) and (6b). Let {Sk}k ⊆
D be a convergent sequence to S and f(Sk)→ s′. Then, there is a sequence {S′k}k∈N ⊆
D, such that S′k converges to S, f(S′k)→ s′ and f(S) ∈ S′k.

Proof The solution, according to Roth (1979b)[proposition 2]4, is weakly Pareto

optimal, so s = f(S) ∈ δS and tsS = 1. Since βs ∈ Sk for all 0 ≤ β ≤ tsSk , we have

that s ∈ αSk for all α ≥ 1
tsSk

= αk. Since the proportional solution is continuous,

αk → 1.

We now know that: 1) s ∈ αkSk; 2) αkSk → S, because αk → 1 and Sk → S;

and 3) f(αkSk) = αkf(Sk) = αksk → s′. We proved the statement of the lemma

with S′k = αkSk.

Proposition 1. If a solution in D satisfies axioms (2), (3), (6a) and (6b), then it

satisfies (6c) in D.

Proof We will argue by contradiction. If f is not continuous in D, there exists

a sequence of converging sets Sk → S, with Sk, S ∈ D, such that the sequence

f(Sk) = sk does not converge to f(S) = s. We initially assume that sk → s′ 6= s,

i.e. we assume that the sequence sk is convergent. According to Lemma 3 it can

be assumed, without loss of generality, that s ∈ Sk for all k ∈ N.

We find that there exist sets A and B such that: 1) A,B ∈ D; 2) B ⊂ A; 3)

f(A), f(B) ∈ δS; 4) f(A) 6= f(B); and 5) A∩{x ∈ Rn : xi = 0} = B∩{x ∈ Rn : xi =

0} for all i ∈ N . With these sets we get a contradiction: according to axiom (6b),

4 This proposition was proved for the class D, but the exact same proof is valid for the class
D.
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f(A) ≥ f(B). Since f(A) 6= f(B), f(A), f(B) ∈ δS and S is strictly comprehensive,

there exists a vector z ∈ S such that z > f(B). Therefore, f(B) /∈ δS, which

contradicts 3).

The proof of these claims requires new concepts, which we now introduce.

For any vector a ∈ Rn+ let πM (a) be the projection of a over the coordinates

M ⊆ N . The vector y = πM (a) is such that yi = ai for i ∈ M and yi = 0 for

i ∈M = N −M . Let e ∈ Rn be the vector with all entries equal to 1. Thus πM (e)

is such that πM (e)i = 1 for i ∈M and πM (e)i = 0 for i ∈M .

We also need to define an order relation for each set of coordinates M ⊆ N .

Let x <M y if xi < yi for all i ∈ M . Likewise, we define x ≤M y and x =M y

accordingly.

Since S is a comprehensive set and there is an s̃ > 0 such that s̃ ∈ S,

the set {ρ ∈ R+ : ρsk ∈ S} is non-empty. S ⊆ Rn is also compact; thus, tsk

S =

max {ρ ∈ R+ : ρsk ∈ S} is well defined. To simplify notation we will, from now on,

use ρk = tsk

S . Since s ∈ Sk, Lemma 1 implies that sk /∈ S. Thus, ρk < 1. The

bargaining solution sk is weakly Pareto optimal in Sk; that is, sk ∈ δSk, and, us-

ing Lemma 2, we conclude that the limit of sk belongs to the boundary of S, i.e.,

sk → s′ ∈ δS. Taking, if necessary, subsequences from ρk we see that ρksk ∈ δS
and that sk → s′ ∈ δS, and since S is strictly comprehensive we conclude that

ρk → 1.

Axiom (3) implies that f(S) = s > 0. Then, for any ∅ 6= M ⊂ N , πM (s) ≤ s
and πM (s) 6= s. Since S is strictly comprehensive, there exists a zM ∈ S with

πM (s) < zM . Since ρkSk → S there exists, for large k, a value wM ∈ ρkSk close

to zM and then πM (s) < wM . The same is true for ρksk > 0, that is, there exists

a point z̃M ∈ S and w̃M ∈ ρkSk, for each M ⊂ N , such that ρkπM (sk) < z̃M and

ρkπM (sk) < w̃M . So, there is an ε > 0, that satisfies the following conditions, for

all M ∈ 2N \ {∅, N}:

(∗)
πM (s) + (nε)πM (e) < zM ρkπM (sk) + (nε)πM (e) < z̃M

πM (s) + (nε)πM (e) < wM ρkπM (sk) + (nε)πM (e) < w̃M .

For each M ∈ 2N \ {∅}, let

xM = πM (s) +
(
m(M)ε

)
πM (e) yM = ρkπM (sk) +

(
m(M)ε

)
πM (e).

where m(M) = n−#M . Define

A = cch
{
{xM ,yM}{M∈2N\{∅}}

}
B = cch

{
{xM ,yM}{M∈2N\{∅,N}}, ρks, ρksk

}
.
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Note that the only difference between the elements that generate A and those that

generate B is that xN = s is replaced by ρks (yN = ρksk because m(N) = 0).

Claim A,B ∈ D.

To prove that A is strictly comprehensive we need to show that for any z̃,z ∈ A
with z̃ ≤ z and z̃ 6= z, there exists z′ ∈ A such that z̃ < z′. In other words, when

the set Mz = {i ∈ N : z̃i < zi} 6= N we will find a vector z′ ∈ A such that

Mz′ = {i ∈ N : z̃i < z′i} = N .

We then start with a vector z such that Mz 6= N , and find a new vector z′

such that Mz′ = N . Let z =
∑
M∈2N\{∅}(αMxM + βMyM ) (all parameters are

non-negative). The new vector z′ is similar to z but with one parameter reduced

and some other with a corresponding increase. These parameters’ changes will be

done in such a way that the coordinates in Mz are still in Mz′ and some more are

added, i.e., Mz ⊂Mz′ .

Suppose that αK > 0 or βK > 0 for some K ⊆ Mz. We assume that αK > 0

(the case where βK > 0 follows analogously). In this case we can diminish slightly

αK to α′K in a way that the induced reduction in the coordinates in K is smaller

than the initial difference between z and z̃ at all those coordinates, i.e.

0 <K (αK − α′K)xK <K z − z̃. (3)

The decrease in αK is compensated by an equal increase in αK ,

α′
K
− αK = α′K − αK ,

and all other parameters are kept equal. Let the new vector be given by z′ =∑
M∈2N\{∅}(α

′
MxM + β′MyM ). We then have that

z′ =
∑

M∈2N\{∅}

(αMxM + βMyM ) + (α′K − αK)xK + (α′
K
− αK)xK

=z − (αK − α′K)xK + (αK − α′K)xK .

We claim that Mz′ = N . To prove that K ⊆Mz′ we use (3),

πK(z′) = πK(z)− (αK − α′K)xK

>K πK(z)− πK
(
z − z̃

)
= πk

(
z̃
)
.

Now we prove the inclusion K ⊆Mz′ . From z̃ ≤ z we have that z̃ ≤K z. Note that

πK(z′) = πK(z) + (αK −α′K)xK . From (3) we know that αK −α′K > 0. Moreover,

from the definition of xK we have that xK >K 0. Therefore, z >K z̃.
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Suppose now that αK = 0 and βK = 0 for all K ⊆Mz. Then there is a K ⊂ N
with α2

K + β2
K > 0 such that K ∩ Mz 6= ∅ and K ∩ Mz 6= ∅. We assume that

αK > 0 (the case where βK > 0 follows analogously). We proceed in two steps;

first we find a vector z′ such that Mz′ is strictly bigger than Mz; second, we find

z′′ with Mz′′ = N . To obtain z′ from z we start by diminishing αK to α′K in a

way that the induced reduction in the coordinates in K ∩Mz is smaller then the

initial difference in those coordinates, i.e.,

0 <K (αK − α′K)xK <K∩Mz
z − z̃. (4)

The decrease in αK is compensated by an equal increase in αK∩Mz
. That is,

α′
K∩Mz

− αK∩Mz
= αK − α′K .

All other parameters are kept equal. The vector z′ is given by

z′ =
∑

M∈2N\{∅}

(α′MxM + β′MyM )

=
∑

M∈2N\{∅}

(αMxM + βMyM ) + (α′K − αK)xK + (α′
K∩Mz

− αK∩Mz
)xK∩Mz

=z + (αK − α′K)(xK∩Mz
− xK)

We now prove that Mz′ is strictly bigger than Mz, in particular we prove that

Mz′ = Mz ∪K. Using (4) we conclude that

πMz∩K(z′) = πMz∩K(z)− (αK − α′K)πMz∩K(xK)

>Mz∩K πMz∩K(z)− πMz∩K
(
z − z̃

)
= πMz∩K

(
z̃
)
.

Thus K ∩ Mz ⊆ Mz′ . It is evident that K ∩ Mz ⊆ Mz′ , since πMz∩K(z′) =

πMz∩K(z) >Mz∩K z̃.

To prove that K∩Mz ⊂Mz′ , we start by noting that m(K∩Mz) ≥ m(K), and,

by definition, we have that xK <K∩Mz
xK∩Mz

. Therefore, the reduction in the

coordinates of (K∩Mz) created by the reduction in αK is more than compensated

by the increase in the same coordinates due to the change in αK∩Mz
. To be more

precise, we have that

πK∩Mz
(z′) = πK∩Mz

(z) + (αK − α′K)πK∩Mz
(xK∩Mz

− xK),



12 Lúıs Carvalho

it then follows, using (αk − α′k)(xK∩Mz
− xK) >K∩Mz

0, that

πK∩Mz
(z′) >K∩Mz

πK∩Mz
(z) ≥K∩Mz

z̃.

Thus, K ∩Mz ⊆Mz′ .

We have then created a vector z′ in such a way that Mz′ is strictly bigger

than Mz, Mz ⊂ Mz′ = Mz ∪ (K ∩Mz) = Mz ∪K. The vector z′ is such that the

parameter α′
K∩Mz

> 0, and we also know that K ∩Mz ⊆ Mz′ . Thus we can use

the reasoning of the previous case to create a new vector z′′ with Mz′′ = N .

Claim B ⊂ A.

The set of generators of A and B are the same, except that s is a generator of

A and not of B, and ρks of B and not of A. We know that ρk < 1. Hence, ρks < s

and, since A is strictly comprehensive, ρks ∈ A. Therefore B ⊂ A.

Claim f(A), f(B) ∈ δS.

We will first prove that A ⊂ S and B ⊆ ρkSk We know that m(M) = n−#M ≤
n, for any M ⊆ N . Using (∗), when M 6= N we have that

xM = πM (s) +
(
m(M)ε

)
πM (e) ≤ πM (s) + nεπM (e) < zM .

S is a comprehensive set and zM ∈ S thus xM ∈ S. An analogous argument

proves that yM ∈ S. In the case that M = N , we have that xN = s ∈ S. Since

all the elements that generate A are in S, then A ⊂ S. Since f(S) = s ∈ A ⊆ S

axiom (6a) implies that f(A) = s. The solution f(·) is weakly Pareto optimal

(Roth (1979b)[proposition 2]), and so s ∈ δS. A similar reasoning proves that

B ⊆ ρkSk. Axiom (6a) implies that f(B) = ρksk. From the definition of ρk =

max {ρ ∈ R+ : ρsk ∈ S} we conclude that f(B) = ρksk ∈ δS. In claim 3 we proved

that f(A) = s and that f(B) = ρksk. By hypothesis ρksk → s′ 6= s. Thus, with k

sufficiently large, f(B) = ρksk 6= s = f(A).

Claim A ∩ {x ∈ Rn : xi = 0} = cch
{
{xM ,yM}{M∈2N−i}

}
= B ∩ {x ∈ Rn : xi = 0}

for all i ∈ N , with 2N−i = {M ⊂ N : i /∈M and M 6= ∅}.

The inclusion A ∩ {x ∈ Rn : xi = 0} ⊇ cch
{
{xM ,yM}{M∈2N−i}

}
= A−i is

obvious, once we know that A ⊇ {xM ,yM}{M∈2N−i}
and, by definition, the vectors

in {xM ,yM}{M∈2N−i}
have the ith coordinate equal to zero, that is xM ,i = 0 =

yM ,i, for any M ∈ 2N−i.

To prove the reverse inclusion, we will observe that for any z ∈ A there is

a z′ ∈ A−i such that z ≤N−i z′. Then, in particular, for any z ∈ A ∩ {x ∈
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Rn : xi = 0} there is a z′ ∈ A−i such that z ≤N−i z′. The ith coordinate of

any vector z ∈ A ∩ {x ∈ Rn : xi = 0} and of any z′ ∈ A−i is equal to zero.

Thus z ≤ z′. Since A−i is comprehensive, z ∈ A−i. We will initially assume that

z =
∑
M∈2N\{∅}(αMxM + βMyM ) where

∑
αM + βM = 1 and αM , βM ≥ 0. Let

z′ =
∑
M∈2N\{∅}(α

′
MxM + β′MyM ), with

α′M = αM + αM∪i, β′M = βM + βM∪i if M ∈ 2N−i,

α′M = 0, β′M = 0 if M 6∈ 2N−i.

For any M ∈ 2N−i, we have that xM >N−i xM∪i. Then

(αM + αM∪i)xM ≥N−i αMxM + αM∪ixM∪i,

(βM + βM∪i)xM ≥N−i βMxM + βM∪ixM∪i.

From these inequalities we conclude that z′ = πN−i(z
′) ≥N−i πN−i(z). And we

found a vector z′ ∈ A−i such that z′ ≤N−i z.

When z does not belong to the boundary of A, there is a vector z̃ in the

boundary such that z ≤ z̃. To find a vector in the referred conditions apply

the previous reasoning to the vector z̃. We then have z ≤ z̃ ≤N−i z′. To prove

that cch
{
{xM ,yM}{M∈2N−i}

}
= B ∩ {x ∈ Rn : xi = 0} we follow an analogous

argument, noting that ρks < s <N−i yN−i and that ρksk <N−i yN−i, for any

i ∈ N . We have hence proved that there exist sets A and B satisfying conditions

1)-5). Therefore, it can not exist a convergent sequence f(Sk) which does not

converge to f(S), when Sk → S. However, it might happen that f(Sk) is not

convergent. In this case, since Sk → S, for large K there is a compact set S ⊆ Rn

such that Sk ⊂ S, for all k > K. A sequence in a compact set is not convergent

if there are (at least) two subsequences converging to different values. But, as we

saw, any converging subsequence ski
must converge to s. Since it is impossible to

have two subsequences converging to a different value, the sequence f(Sk) must

be convergent and f continuous.

Corollary 1. A solution in D satisfies (2), (3), (6a), (6b) and (6c′) if and only if it

is proportional. A solution in B satisfies (2), (3), (6a), (6b) and (6c′) if and only if it

is proportional.

Proof If f is continuous in D both results follow from Theorems K and R. We then

prove that for any S ∈ D and any sequence Sk ∈ D, where k ∈ N, convergent to S,

we have that f(Sk)→ f(S).

Assume that S ∈ D \ D. If the sequence Sk ∈ D, k ∈ N, is such that Sk → S,

axiom (6c′) implies that f(Sk)→ f(S).
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Assume now that S ∈ D. We need to analyze two (non-mutually exclusive)

cases: when there are infinite Sk ∈ D and when there are infinite Sk ∈ D \ D. In

the first case, let Skp be the subsequence formed by the elements of {Sk} that are

in D. Clearly such subsequence is convergent, Skp → S, and, by Proposition 1, we

have that f(Skp)→ f(S).

It remains to be proved that f(Skp) → f(S), when S ∈ D and Skp is a subse-

quence formed by the elements of {Sk} that are in D \ D. When the limit exists,

let s′ = lim f(Sk) = sk. We conclude that s′ > 0. An argument similar to that

used in Lemma (3) is valid, and we can assume, without loss of generality that

s ∈ Sk, for any k ∈ N. Let Ak = cch{sk, s}. Axiom (6a) implies that f(Ak) = sk,

since sk, s ∈ Sk. The sequence {Ak}k is convergent, Ak → A = cch{s′, s}. Clearly

A ∈ D \ D, and by axiom (6c′), f(A) = lim f(Ak) = s′. On the other hand, axiom

(2) implies that f(A) > 0. Hence, s′ > 0.

We now prove that there is a large K ∈ N such that

πN\i(sk) =
(
sk,1, . . . , sk,i−1, 0, sk,i−1, . . . , sk,n

)
∈ S, for any i ∈ N and k ≥ K.

(5)

We know, by Lemma 2, that s′ ∈ δS. Since S is (strictly) comprehensive, πN\i(s
′) ∈

S. The vector s′ > 0, thus πN\i(s
′) 6= s′. The set S is strictly comprehensive, thus

there exists γ ∈ S such that γ > πN\i(s
′). Continuity of the projection πN\i(·)

implies that there is a Ki ∈ N such that for k ≥ Ki, γ > πN\i(sk). Therefore,

πN\i(sk) ∈ S. This argument holds for any i ∈ N ; hence, we can find K ∈ N such

that (5) holds.

For k ≥ K, let

A = cch{sk, s} and B = cch{πN\1(sk), . . . , πN\n(sk), s}.

Since sk ≥ πN\i(sk), for any i ∈ N , we have B ⊂ A. We now prove, using axiom

(6b), that f(B) ≤ f(A). For that we need to verify that for any i ∈ N ,

A ∩ {x ∈ Rn : xi = 0} = B ∩ {x ∈ Rn : xi = 0}.

We prove this equality by proving the double inclusion. One inclusion is obvious

from B ⊂ A. For the other inclusion, notice that

A ∩ {x ∈ Rn+ : xi = 0} =
{
z ∈ Rn+ : z ≤ πN\i(y) for some y ∈ ch{sk, s}

}
,

since A is comprehensive. Let y = αs+ (1− α)sk, with α ∈ [0, 1], then

πN\i(y) = απN\i(s) + (1− α)πN\i(sk) ≤ αs+ (1− α)πN\i(sk) ∈ B.
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Since B is comprehensive, for any z ≤ πN\i(y) we have that z ∈ B. Thus. A∩{x ∈
Rn : xi = 0} ⊆ B ∩ {x ∈ Rn : xi = 0}. We can apply axiom (6b) for any i ∈ N ,

therefore f(B) ≤ f(A). Since f(A) = sk and f(B) = s, by taking limits we get

that s′ ≤ s. Since S is strictly comprehensive, s′, s ∈ δS and s′ ≤ s, then s′ = s.

With an argument identical to the one at the end of Proposition 1 we conclude

that the sequence sk must be convergent. Then, we have f(Sk)→ f(S) whenever

Sk, S ∈ D and Sk → S. That is, f is continuous in D.

Theorem 1. The bargaining solution in D that satisfies (2), (3), (6a) and (6b) is

proportional.

Proof We follow closely theorem 12 in Roth (1979a), the only adjustment being the

set X used by Roth (1979a) once it does not belong to the bargaining class D that

we are now working with5. Proposition 1 implies that f is continuous in D; that

is, f satisfies axiom (6c) in D. Define the sets ∆1 =
{
x ∈ Rn+ :

∑
j xj ≤ n

}
and

for positive and close to zero α, ∆α = ∩ni=1

{
x ∈ Rn+ : αxi +

∑
j 6=i xj ≤ n

}
.

Set p = f (∆1). Axiom (3) implies that p > 0, thus p ∈ int(∆α). Clearly if

A,B ∈ D, then A ∩ B ∈ D; thus S1 = S ∩ tpS∆1 and Sα = S ∩ tpS∆α both belong

to D. We claim that f(S1) = f(Sα). For this result we need to use axiom (6b),

so first we observe that Sα ∩ {x ∈ Rn+ : xi = 0} = S1 ∩ {x ∈ Rn+ : xi = 0}.
That the first set contains the second is an obvious consequence of α < 1 and

Sα ⊇ S1. If y ∈ Sα ∩ {x ∈ Rn+ : xi = 0}, then yi = 0 and y ∈ Sα = S ∩ tpS∆α;

thus ỹ = y/tpS ∈ ∆α. Which implies that αỹk +
∑
j 6=k ỹj ≤ n for any k ∈ N .

Then, using that ỹi = 0 and taking k = i in the previous inequality, we obtain

αỹi +
∑
j 6=i ỹj =

∑
j ỹj ≤ n. Hence, ỹ = y/tpS ∈ ∆1, and we may conclude that

y ∈ S1 ∩ {x ∈ Rn+ : xi = 0}. So Sα ∩ {x ∈ Rn+ : xi = 0} ⊆ S1 ∩ {x ∈ Rn+ : xi = 0}.
Axiom (2) implies that f(tpS∆1) = tpSp, axiom (6a) that f(S1) = tpSp and axiom

(6b) that f(Sα) ≥ f(S1). But Sα ⊆ S and f(S1) is strictly Pareto optimal in S,

thus f(Sα) = f(S1) = tpSp. Define the sets Ta ∈ D for a ∈ [0, 1] satisfying:

(1) Tβ ⊆ Tγ , if β ≤ γ (2) Tβk → Tβ if βk → β (3) T0 = Sα and T1 = S

We claim that

B = {b ∈ [0, 1] : f(Tb) ∈ t
p
S∆α} = {b ∈ [0, 1] : f(Tb) = f(Sα)}.

If b is such that f(Tb) ∈ t
p
S∆α, since Tb ⊆ S, then f(Tb) ∈ S ∩ t

p
S∆α = Sα. In this

case, axiom (6a) implies that f(Tb) = f(Sα), thus {b ∈ [0, 1] : f(Tb) ∈ t
p
S∆α} ⊆ {b ∈

5 Apart from this minor change all else is kept equal, all partial results are still true, the
intermediate arguments keep their validity and we only provide this proof for the sake of
completeness.
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[0, 1] : f(Tb) = f(Sα)}. On the other hand if f(Tb) = f(Sα) = tpSp, since p ∈ ∆α,

then tpSp ∈ t
p
S∆α. The equality is proved.

We now prove that B = [0, 1]. Observe that when β ∈ B and 0 ≤ β′ ≤ β, then

β′ ∈ B. Since Sα ⊆ Tβ′ ⊆ Tβ and f(Tβ) = f(Sα) ∈ Tβ′ , axiom (6a) implies that

f(Tβ′) = f(Tβ) = f(Sα); thus, β′ ∈ B. Then the set B is either B = {0} or an

interval. Since B is non-empty, b̄ = sup{b : b ∈ B} is well defined. We claim that

b̄ = 1.

Assume that b̄ < 1. In this case b̄ ∈ B, otherwise there exists a sequence of

elements bk ∈ B = [0, b̄), such that bk → b̄ and f(Tbk) ∈ tpS∆α but f(Tb̄) 6∈ t
p
S∆α.

Since tpS∆α is compact, when it exists, lim f(Tbk) ∈ tpS∆α; thus f(Tbk) 6→ f(Tb̄) and

the continuity of f is contradicted. However, b̄ < 1 and b̄ ∈ B is also impossible.

Since, if possible, there exists a sequence of elements bk /∈ B, bk ∈ (b̄, 1], such that

bk → b̄. Moreover f(Tb̄) = f(Sα) = tpSp ∈ int(tpS∆α), but f(Tbk) /∈ tpS∆α, which

again contradicts the continuity of f . In conclusion, b̄ = 1, and f(Tb) = f(Sα) for

any b ∈ [0, 1), continuity of f in D implies that f(S) = limb→1 f(Tb) = tpSp, so

B = [0, 1]. The solution f is proportional.

Example 1 (a non-continuous solution for D).

g(S) =

pS
1 if pS1 ∈ S

qtqS if pS1 /∈ S

With p = (1, p2), q = (1, q2) ∈ R2, 0 < q2 < p2 < 2 and S1 = max{x : (x, y) ∈ S}.

Proof For p and q with 0 < q2 < p2 < 2 the solution is clearly not continuous.

Let ∆α = ∩2
i=1

{
x ∈ R2

+ : αxi + x−i ≤ 2
}

. As ∆1
0 = 2 and 2p ∈ ∆0, then

g(∆0) = 2p. For any 0 < α < 1, ∆1
α = 2 and clearly ∆1

αp /∈ ∆α. Thus, the solution

is g(∆α) = qtq∆α . Therefore, when α → 0, g(∆α) → qtq∆0
= 2q, different from

2p = g(∆0). Since ∆α → ∆0, when α→ 0, g is not continuous in D.

We show that the axioms (2), (3), (6a) and (6b) are fulfilled by the solution

g. The proof for axiom (2) is straightforward. If S1p ∈ S, then cS1p ∈ cS and

g(cS) = cg(S). The same is true when S1p /∈ S, g(cS) = cqtqS = cg(S) and we

proved that g satisfies axiom (2). Now we prove that g satisfies axiom (3). By

hypothesis for any S ∈ D there exists an s ∈ S with s > 0. Then S1 > 0 and

tqS > 0, and we have that g(S) > 0. Axiom (3) is satisfied.

To prove g observes (6a), we assume that S ⊆ T and that g(T ) ∈ S. We

need to consider two cases. The first is when g(T ) = pT 1. In this case, since

g(T ) = (T 1, p2T
1) ∈ S we have that S1 ≥ T 1. From S ⊆ T we have that T 1 ≥ S1.

In conclusion, pS1 = pT 1 = g(T ) ∈ S and the solutions are equal in both sets
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g(S) = g(T ). The second case is when g(T ) = qtqT . If S1p /∈ S we have that

g(S) = tqSq. And clearly g(S) must be equal to g(T ) = tqT q. In the case where

S1p ∈ S, we find a contradiction, and that means that S1p /∈ S. The solution of

T is g(T ) = tqT q, when T 1p /∈ T . We are assuming that S1p ∈ S ⊆ T ; then tpS ≥ S
1

T 1 > S1. Since tqT q = (tqT , q2t
q
T ) ∈ S, it holds that

S1 ≥ tqT ≥ t
q
S ≥ t

p
S ≥ S

1,

(the third inequality results from p ≥ q and S being a comprehensive set). We

conclude that tqT = S1. The vectors S1p = (S1, S1p2) ∈ S and (T 1, 0) belong to

the convex set T . Then the convex combination aα = αS1p+ (1 − α)(T 1, 0) also

belongs to T , for any 0 ≤ α ≤ 1. We know that T 1 > S1 and S1p2 > S1q2, then,

for values of α close to 1, aα > (S1, q2S
1) = S1q. A contradiction with tqT = S1 is

found.

The proof of Individual Monotonicity (6b) is divided in 4 cases, one for each

player and for each condition of the solution g. Let S, T ∈ D be such that S ⊆ T :

– Let S ∩{x ∈ R2 : x2 = 0} = T ∩{x ∈ R2 : x2 = 0}. For the case where T 1p ∈ T .

Since g(T ) = T 1p, we have that

g2(T ) = p2T
1 > q2T

1 ≥ q2tqT ≥ q2t
q
S .

Then g satisfies the axiom, since g2(T ) ≥ max{p2S
1, q2t

q
S} ≥ g2(S). For the case

where T 1p /∈ T . The set S is comprehensive and (S1, 0) ∈ S, then S ∩ {x ∈ R2 :

x2 = 0} = [0, S1]×{0}. Likewise, for the set T , T ∩{x ∈ R2 : x2 = 0} = [0, T 1]×
{0}. Both these sets are equal, therefore, S1 = T 1. Since T 1p /∈ T , we have that

T 1p = S1p /∈ S and the solution at the set S is given by g(S) = tqSq. The second

player is not worst off at T than at S; that is, g2(S) = q2t
q
S ≤ q2t

q
T = g2(T ).

– Let S ∩ {x ∈ R2 : x1 = 0} = T ∩ {x ∈ R2 : x1 = 0}. For the case where

T 1p ∈ T . The solution of the first player satisfies g1(T ) = T 1 ≥ S1 ≥ tqS . Thus

g respects axiom 6b, since g1(T ) ≥ max{S1, tqS} ≥ g1(S). For the case where

T 1p /∈ T . Clearly tqT ≥ t
q
S so we only need to check the case where g(S) = S1p.

In this case S1p ∈ S ⊆ T , T is comprehensive and q ≤ p so S1q ∈ T , and

g1(T ) = tqT ≥ S
1 = g1(S).


