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Abstract: It is presented and proved a version of Livschitz Theorem for hyperbolic flows pragmatically
oriented to the cohomological context. Previously, it is introduced the concept of cocycle and a natural
notion of symmetry for cocycles. It is discussed the fundamental relationship between the existence
of solutions of cohomological equations and the behavior of the cocycles along periodic orbits. The
generalization of this theorem to a class of suspension flows is also discussed and proved. This
generalization allows giving a different proof of the Livschitz Theorem for flows based on the
construction of Markov systems for hyperbolic flows.
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1. Introduction

This paper presents a continuous time approach to Livschitz Theorem oriented to the study of
cohomology in dynamical systems. From what is known, it no reference to this theorem pragmatically
oriented to the cohomological context exists in the literature, and the only published proof of Livschitz
Theorem for flows is thanks to Livschitz himself in References [1,2].

We begin by introducing fundamental notions for the study of cohomology in dynamical systems
(Section 2.1). In particular, we introduce the concepts of cocycle, coboundary and cohomology
between cocycles. We present cohomological equations in the case of continuous time and discuss the
fundamental relationship between the existence of solutions of these equations and the behavior of
the cocycles along periodic orbits (Section 2.2). We will go on by presenting a detailed proof of the
Livschitz Theorem in a version for hyperbolic flows (Section 3), and then discuss the generalization of
this Theorem to suspension flows (Section 4). This generalization allows an alternative proof of the
Livschitz Theorem for hyperbolic flows based on Bowen and Ratner’s construction of Markov systems
for (hyperbolic) flows [3,4]. As far as is known, these last two approaches are new (Section 5).

In the dynamical systems theory several problems of considerable importance can be reduced to
solving an equation of the form

ϕ = Φ ◦ f −Φ, (1)

where f : X → X is a dynamical system and ϕ : X → R is a function, both known, and Φ : X → R is
unknown. The Equation (1) is called a cohomological equation. The study of cohomological equations
is related in particular to the study of conjugations to an irrational rotation of circle, the existence of
absolutely continuous measures for expanding transformations of circle and the topological stability
of hyperbolic automorphisms of torus. Such equations also arise naturally in celestial mechanics and
statistical mechanics. Some results established by Livschitz in the 1970s ([1,2]) address precisely the
possibility of obtaining solutions of cohomological equations in the context of hyperbolic dynamics.
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Given a hyperbolic dynamical system, the Livschitz Theorem provides a necessary and sufficient
condition, based only on the information given by periodic orbits, for the existence of Hölder solutions.
It is one of the main tools for obtaining global cohomological information from periodic information.

2. From Cohomological to Periodic Information

2.1. Cocycles and Cohomology Defined on a General Group

Let G be a group with identity e. Let T : G× X → X be a dynamical system with phase space
X and time in G. Given g ∈ G we define the transformation T(g) : X → X by T(g)x = T(g, x).
We designate by cocycle over T each function α : G× X → R such that

α(g2g1, x) = α(g2, T(g1)x) + α(g1, x), (2)

whenever x ∈ X and g1, g2 ∈ G. The cocycles over T constitute a linear space. Defining for each g ∈ G
the transformation T̃(g) : X×R→ X×R by

T̃(g)(x, y) = (T(g)x, y + α(g, x)),

the property (2) is equivalent to T̃(g2g1) = T̃(g2) ◦ T̃(g1).
Each function Φ : X → R induces a cocycle through the expression

α(g, x) = Φ(T(g)x)−Φ(x). (3)

In fact, the function α defined this way satisfies (2) since

Φ(T(g2g1)x)−Φ(x) = Φ(T(g2)(T(g1)x))−Φ(x) = [Φ(T(g2)T(g1)x)−Φ(T(g1)x)]

+[Φ(T(g1)x)−Φ(x)],

The cocycles defined by (3) are designated by coboundary.
A natural equivalence relationship between cocycles is the cohomology. Two cocycles α and β

over T are cohomologous if they differ by a coboundary, that is, if there is a function Φ : X → R
such that

α(g, x)− β(g, x) = Φ(T(g)x)−Φ(x).

We note that a cocycle α is a coboundary if and only if α is cohomologous to the trivial cocycle
β(g, x) = 0; in this case it is said that α is cohomologically trivial and that any function Φ satisfying (3)
is a trivialization of α. Also, for a cocycle α to be a coboundary it is necessary that α(g, x) = 0 for all
g ∈ G e x ∈ X such that T(g)x = x. Equation (3) is said to be a cohomological equation.

2.2. Cocycles in Continuous Time and Relation to Periodic Orbits

Suppose now that G = R. Let us see that in this case the cocycles arise naturally from temporal
changes of flows.

Let Φ =
{

ϕt}
t∈R be a flow in X. It is possible to obtain new flows Ψ =

{
ψt}

t∈R keeping the
orbits of Φ and its orientations but crossing them with a different ‘speed’. In a strict way, we say that a
flow Ψ is a time change from the flow Φ if

ψtx = ϕα(t,x)x (4)

for each t ∈ R and x ∈ X, for some function α : R× X → R with α (0, x) = 0 and α (t, x) ≥ 0 when
t ≥ 0. The group structure to the flow Ψ shows that

ψs+tx = (ψs ◦ ψt)x = ϕα(s,ψtx)(ϕα(t,x)x) = ϕα(s,ψtx)+α(t,x)x.
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We then conclude that
α(s + t, x) = α(s, ψtx) + α(t, x)

meaning α is a cocycle over the flow Ψ. So, any time change Ψ of a Φ flow Φ is the same way as in (4)
where α is a cocycle over flow Ψ.

We see that if Φ and Ψ are Cr flows for some r ≥ 1 (in variables t and x) and x is not a fixed
point, then the Implicit Function Theorem [5] assures that α is a Cr function in both variables in a
neighborhood of (0, x).

Considering now Φ and Ψ flows of class Cr for some r ≥ 1. In this case, an alternative description
of time change can be done through vector fields associated with the flows, defined by

G(x) =
d(ϕtx)

dt
|t=0 e H(x) =

d(ψtx)
dt
|t=0.

The flows Φ and Ψ result, respectively, from the solution of differential equations x′ = G(x) and
x′ = H(x). Consider now Ψ as a time change from Φ. Given that the orbits

{
ϕtx
}

t∈R e
{

ψtx
}

t∈R
are coincident for each fixed x ∈ X, we have G(x) = 0 if and only if H(x) = 0 (recalling that the
zeros from a vector field are the fixed points from the corresponding flow). We remark that in general
G(x) and H(x) can be distinct. However if x is not a fixed point, non-null vectors tangent to curves{

ϕtx
}

t∈R e
{

ψtx
}

t∈R in x are collinear and have the same sense, that is,

H(x) = a(x)G(x)

for some constant a(x) > 0. Following (4) we see that the cocycle α determines univoquely the function
a : X → R+

0 defined by

a(x) =
∂α

∂t
(t, x) |t=0 . (5)

We realize that a(x) = 0 whenever x is a fixed point. If Φ does not have fixed points then a is a
Cr−1 function.

Let’s consider then a continuous non-negative function a : X → R+
0 . The function a defines a

cocycle (over Ψ) with values in R by

α (t, x) =
∫ t

0
a (ψux) du. (6)

In fact, given that

∫ s

0
a(ψu(ψtx)) du +

∫ t

0
a(ψux) du =

∫ s+t

t
a(ψux) du +

∫ t

0
a(ψux) du =

∫ s+t

0
a(ψux) du.

we have α(s, ψtx) + α (t, x) = α(s + t, x). Hence we identify a biunivocal correspondence between
continuous functions a : X → R+

0 and time changes Ψ from Φ defined by a function α as in (6).
We have a particularly simple case of time change when it produces a flow differentially equivalent

to the original flow through an equivalency that preserves orbits. We say that two flows Φ =
{

ϕt}
t∈R

and Ψ =
{

ψt}
t∈R from class Cr in X are Cm-differentially equivalents if there is a diffeomorphism

h : X → X of class Cm such that
ψt = h ◦ ϕt ◦ h−1 (7)

for all t ∈ R. The orbit preservation requires that

hx = ϕβ(x)x
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for all x ∈ X, where β : X → R is a differentiable function with derivative directed to the flow Φ,

dβ
(

ϕtx
)

dt
|t=0 = lim

t→0

β(ϕtx)− β (x)
t

.

This derivative is positive when x is not a fixed point of the flow Φ, that is G(x) 6= 0. Using (7)
we obtain

(ψt ◦ h)(x) = (h ◦ ϕt)(x) = ϕβ(ϕtx)+tx. (8)

On the other hand, following (4), we have

(ψt ◦ h)(x) = ϕα(t,hx)(hx) = ϕα(t,hx)+β(x)x. (9)

From (8) and (9) we can conclude that

α (t, hx) = β(ϕtx) + t− β (x) . (10)

In particular when the orbit of x is periodic with period ρ from (8) and (9) it follows that

α (t, hx) = β(ϕtx) + t− β (x) + kxρ

for some kx ∈ Z, but taking t = 0 we obtain kx = 0. We can then state that if a time change arises from
a differential equivalency that preserves orbits, in which case it is referred as a trivial time change,
there is a differentiable function β : X → R that induces a cocycle α through identity (10).

From (10) it follows that

lim
t→0

α (t, hx)− t
t

= lim
t→0

β
(

ϕtx
)
− β (x)

t
.

So

lim
t→0

α (t, hx)− α(0, hx)
t

− 1 =
dβ
(

ϕtx
)

dt
|t=0 ,

which allows us to conclude, using (5), that it is achieved the cohomological equation

a(hx)− 1 =
dβ
(

ϕtx
)

dt
|t=0 . (11)

To show that cohomological Equation (11) has a solution is equivalent to show that the cocycle
induced by the function a ◦ h− 1 is a coboundary related to flow Φ. In fact, if the Equation (11) is
satisfied by β then

∫ t

0
[a (h(ϕux))− 1] du =

∫ t

0

(
dβ (ϕs(ϕux))

ds
|s=0

)
du =

∫ t

0

(
dβ (ϕs(ϕux))

du

)
du |s=0

= β(ϕtx)− β(x)
(12)

and a ◦ h− 1 is a coboundary. On the other hand, if α is a cocycle that satisfies (10) (that is equivalent
to (12)) then

a(hx)− 1 =
∂

∂t
α (t, hx) |t=0 − 1 =

dβ
(

ϕtx
)

dt
|t=0

and the Equation (11) is satisfied.
Let us presume now that the cohomological Equation (11) has a solution and let’s consider the

cocycle α defined by (6). If x belongs to a periodic orbit of flow Φ with period ρ, from (10) we get

α(ρ, hx) = ρ. (13)



Symmetry 2020, 12, 338 5 of 13

Using (6) and (7) this identity is equivalent to∫ ρ

0
[a(h(ϕux))− 1] du = 0. (14)

So, there is a solution of cohomological Equation (11), if it is satisfied the identity (13) (equivalent
to (14)) for all point x in a periodic orbit of Φ with period ρ. This necessary condition is also sufficient,
since when these identities are satisfied we can choose a point x in each orbit of Φ, and arbitrarily a
β(x) ∈ R, and define then β : X → R by

β(ϕtx) = β(x) +
∫ t

0
[a(h(ϕux))− 1] du.

The function β satisfies the cohomological Equation (11).

3. Formulating and Demonstrating Livschitz Theorem to Hyperbolic Flows

Let Φ =
{

ϕt}
t∈R be a C1 flow in a Riemannian manifold M and Λ ⊂ M is Φ-invariant set (i.e.,

ϕtΛ = Λ for all t ∈ R). A Φ-invariant compact set Λ ⊂ M is hyperbolic to Φ if for each x ∈ Λ there is
a continuous decomposition of tangent space

Tx M = E0(x)⊕ Es(x)⊕ Eu(x)

and constants C > 0 and τ ∈ (0, 1) such that for each x ∈ Λ the following properties are valid:

Property 1. d
dt
(

ϕtx
)
|t=0 gererates E0(x).

Property 2. dx ϕtEs(x) = Es(ϕtx) and dx ϕtEu(x) = Eu(ϕtx) for each t ∈ R.

Property 3.
∥∥dx ϕtv

∥∥ ≤ Cτt ‖v‖ for each v ∈ Es(x) and t > 0.

Property 4.
∥∥dx ϕ−tv

∥∥ ≤ Cτt ‖v‖ for each v ∈ Eu(x) and t > 0.

The Property 1 implies that the flow does not have fixed points in Λ. If there is an open
neighborhood V of Λ such that

Λ =
⋂
t∈R

ϕtV

then we say Λ is locally maximal to Φ.
We describe a version from Anosov closing lemma to hyperbolic flows that ensure that there are

always periodic orbits in the neighborhood of orbits that turn close enough of themselves. This result
gives also an estimate to the distance between the corresponding points in the initial orbit and the
periodic orbit (regarding this, see for instance References [6,7]).

Lemma 1 (Anosov Closing Lemma). Let M be a Riemannian manifold, Φ =
{

ϕt}
t∈R a C1 flow and

Λ ⊂ M a compact hyperbolic set locally maximal to Φ. Then for all large enough α ∈ (0, 1) there is an open
neighborhood V of Λ and constants C, δ > 0 such that if x ∈ Λ verifies d(ϕsx, x) < δ then there is a periodic
orbit

{
ϕty : 0 ≤ t ≤ T

}
with y ∈ Λ and |T − s| ≤ Cδ such that

d(ϕtx, ϕty) ≤ Cαmin{t,s−t}d (ϕsx, x)

for 0 ≤ t ≤ s.

This result contains crucial information to the demonstration of Livschitz Theorem for flows that
we will now describe.
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Theorem 1 (Livschitz Theorem for flows). Let M be a Riemannian manifold and Φ =
{

ϕt}
t∈R a C1 flow

in M. Supposing that:

Hypothesis 1. Λ ⊂ M is a locally maximal compact hyperbolic set such that Φ |Λ is topologically transitive.

Hypothesis 2. g : Λ→ R is a Hölder function such that for each point x = ϕTx we have
∫ T

0 g(ϕtx) dt = 0.

Then there is a Hölder function G : Λ→ R, with at least the same Hölder exponent that g and unique in
less than an additive constant, such that

g(x) = lim
t→0

G(ϕtx)− G(x)
t

. (15)

Proof. Given that, for each t ∈ R, the function ϕt |Λ is topologically transitive, there is a point x0 ∈ Λ
whose orbit is dense in Λ. Considering then a real function G defined in the dense orbit of x0 by

G(ϕtx0) =
∫ t

0
g(ϕux0)du + G(x0),

in which G (x0) ∈ R is an arbitrary fixed value. Let’s see that the function G here defined is Hölder
with the same exponent as in g in the orbit of x0. Given δ > 0, being t1 < t2 such that

d
(

ϕt1(x0), ϕt2(x0)
)
= δ.

By Lemma 1 there is a point y ∈ Λ with T-periodic orbit such that |T − (t2 − t1)| < Cδ and

d
(

ϕt1+tx0, ϕty
)
≤ Cαmin{t,t2−t1−t}d(ϕt2 x0, ϕt1 x0) (16)

for 0 ≤ t ≤ t2 − t1. Naming the difference G(ϕt2 x0)− G(ϕt1 x0) by A, we then have

|A| =
∣∣∣∣∫ t2

0
g(ϕtx0)dt−

∫ t1

0
g(ϕtx0)dt

∣∣∣∣ =

∣∣∣∣∫ t2−t1

0
g(ϕt+t1 x0)dt

∣∣∣∣ .

So

|A| ≤
∣∣∣∣∫ t2−t1

0
g(ϕt+t1 x0)dt−

∫ t2−t1

0
g(ϕty)dt

∣∣∣∣ +

∣∣∣∣∫ t2−t1

0
g(ϕty)dt

∣∣∣∣ .

With Hypothesis 2 on periodic points we have

|A| ≤
∣∣∣∣∫ t2−t1

0
[g(ϕt+t1 x0)− g(ϕty)]dt

∣∣∣∣ + |T − (t2 − t1)|max |g|

≤
∫ t2−t1

0

∣∣g(ϕt+t1 x0)− g(ϕty)
∣∣ dt + Cδ max |g| .

Since g is continuous Hölder with exponent θ ∈ (0, 1] there is K > 0 such that

|g(x1)− g(x2)| ≤ Kd(x1, x2)
θ .

We then have

|A| ≤
∫ t2−t1

0
Kd(ϕt+t1 x0, ϕty)θdt + Cδ max |g| .
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For the inequality (16) we get

|A| ≤
∫ t2−t1

0
K(Cαmin{t,t2−t1−t}d(ϕt2 x0, ϕt1 x0))

θdt + Cδ max |g|

≤ 2KCθd(ϕt2 x0, ϕt1 x0)
θ
∫ t2−t1

0
αθtdt + Cδ max |g|

= 2KCθ 1
θ ln α

(αθ(t2−t1) − 1)d(ϕt2 x0, ϕt1 x0)
θ + Cδ max |g|

< 2KCθ αθ(t2−t1) − 1
θ ln α

d(ϕt2 x0, ϕt1 x0)
θ + Cδθ max |g| .

So we have the inequality

|A| <
(

2KCθ αθ(t2−t1) − 1
θ ln α

+ C max |g|
)

d(ϕt2 x0, ϕt1 x0)
θ .

Since G is Hölder in the orbit of x0 and this orbit is dense in Λ, the function G can be uniquely extended
to a Hölder function in Λ (with exponent θ) which we denote by G.

The uniqueness is a consequence of the fact that choosing G(x0) determines G in an unique way.
The identity (15) follows from the exposed on Subsection 2.2.

4. Livschitz Theorem for Suspension Flows

We now consider suspension flows and obtain a version of Livschitz Theorem for these flows.
As shown at the end of Section 5, this result also allows recovering Theorem 1.

Let f : X → X be a bi-Lipschitz homeomorphism from the compact metric space (X, dX) and
τ : X → (0, ∞) a Lipschitz function. Consider the space

Y = {(x, s) ∈ X×R : 0 ≤ s ≤ τ(x)} (17)

with the points (x, τ(x)) and ( f (x) , 0) identified for each x ∈ X. The suspension flow over f with
height function τ is the flow Ψ =

{
ψt}

t∈R in Y com ψt : Y → Y defined by

ψt (x, s) = (x, s + t) . (18)

We can insert in a natural way a topology in Y that turns it into a compact topological space.
This topology is induced by the Bowen–Walters distance defined in Reference [8]. In what follows we
describe this distance that is necessary to be able to consider Hölder functions. Without generality loss
we assume that the diameter of X, diam X, is at most equal to 1. If this is not the case we can divide by
diam X because X is compact.

First of all, we assume that τ(x) = 1 for all x ∈ X and we insert the Bowen-Walters distance d1

in the corresponding space Y. For that it is firstly considered the horizontal and vertical segments
and then their length is defined. Given x, y ∈ X and t ∈ [0, 1] the length of the horizontal segment
[(x, t) , (y, t)] is given by

ρh((x, t) , (y, t)) = (1− t)dX(x, y) + tdX( f (x), f (y)). (19)

On the other hand, given (x, t) , (y, s) ∈ Y in the same orbit, we define the length of the vertical segment
[(x, t) , (y, s)] by

ρv((x, t) , (y, s)) = inf {|r| : ψr(x, t) = (y, s) and r ∈ R} . (20)

Finally, given two points (x, t) , (y, s) ∈ Y, the distance d1 ((x, t) , (y, s)) is given by the infimum of
the lengths of paths between (x, t) and (y, s) constituted by a finite number of horizontal and vertical
segments. In a stricter way, for each n ∈ N we consider all the finite chains z0 = (x, t), z1, . . . , zn−1, zn =
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(y, s) of points in Y such that, for each i, or zi and zi+1 are in the same segment X × {t} for some
t ∈ [0, 1] (case in which [zi, zi+1] is a horizontal segment), or zi and zi+1 are in the same orbit flow (case
in which [zi, zi+1] is a vertical segment). If [zi, zi+1] is simultaneously a horizontal and vertical segment
its length is calculated considering it as a horizontal segment. The length of the chain from z0 to zn

is finally defined as the sum of the segments’ length [zi, zi+1] for i = 0, 1, . . . , n− 1 as defined in (19)
and (20).

Assuming now the case of an arbitrary function τ : X → (0, ∞) we will introduce the
Bowen–Walters distance dY in the space Y. Given the points (x, t) , (y, s) ∈ Y we consider

dY ((x, t) , (y, s)) = d1

((
x,

t
τ(x)

)
,
(

y,
s

τ(s)

))
where d1 is the Bowen–Walters distance defined above. Given (x, t) , (y, s) ∈ Y we also define

dπ ((x, t) , (y, s)) = min


dX(x, y) + |t− s| ,
dX( f (x), y) + τ(x)− t + s,
dX(x, f (y)) + τ(y)− s + t

 , (21)

which is not necessarily a distance in Y. As exposed in Reference [9], there is a constant C > 1 such
that for each x, y ∈ Y the following relationship between dπ and dY

C−1dπ (x, y) ≤ dY(x, y) ≤ Cdπ(x, y). (22)

is valid.
Let us now consider the extension of τ to a function τ : Y → R by the expression

τ(y) = min{t > 0 : ψty ∈ X× {0}},

and the extension of f to a function f : Y → X× {0} given by

f (y) = ψτ(y)y.

Since there is no danger of a misunderstanding we continue using symbols τ and f for the extensions.
In order to apply the following result of Barreira and Saussol [9], given a continuous function g : Y → R
we define a new function Ig : Y → R by

Ig(y) =
∫ τ(y)

0
g(ψsy) ds.

Theorem 2. If Ψ =
{

ψt}
t∈R is a suspension flow in Y over the homeomorphism f : X → X, and g : Y → R,

h : Y → R and q : Y → R are continuous functions, then the following properties are equivalent:

Property 5. g is Ψ-cohomological to h in Y with

g(y)− h(y) = lim
t→0

q(ψty)− q(y)
t

for each y ∈ Y.

Property 6. Ig is f -cohomological to Ih in Y with

Ig(y)− Ih(y) = q( f (y))− q(y) for each y ∈ Y.

Property 7. Ig

∣∣∣X×{0} is f -cohomological to Ih

∣∣∣X×{0} in X× {0} with

Ig(y)− Ih(y) = q( f (y))− q(y) for each y ∈ X× {0} .
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This result shows that each cohomological class in the basic space X induces a cohomological
class in all Y, and that all classes of cohomology in Y are obtained this way. It allows us to establish a
version from Livschitz Theorem for suspension flows over diffeomorphisms with a locally maximal
compact hyperbolic set.

Theorem 3 (Livschitz Theorem for suspension flows). Let f : M→ M be a diffeomorphism with a locally
maximal compact hyperbolic set Λ f ⊂ M such that f

∣∣∣Λ f is topologically transitive and τ : M→ (0, ∞) is a

Lipschitz function. Let Ψ =
{

ψt}
t∈R be a suspension flow in Y over f with length function τ and for the set

Λ =
{
(x, s) ∈ Λ f ×R : 0 ≤ s ≤ τ(x)

}
assuming that g : Λ → R is a Hölder function such that for each point y = ψTy we have

∫ T
0 g(ψty)dt = 0.

Then there is a Hölder function G : Λ→ R, with at least the same Hölder exponent as g, and unique up to an
additive constant, such that

g(y) = lim
t→0

G(ψty)− G(y)
t

. (23)

Proof. Using Theorem 2, to establish (23) for each y ∈ Λ, it is sufficient to note that the function
Ig : Λ→ R verifies

Ig(y) = G( f (y))− G(y)

for each y ∈ Λ, for some function G : Λ→ R.
Since by hypothesis f

∣∣∣Λ f is topologically transitive, we conclude that Ψ |Λ is topologically
transitive.

Bearing in mind to use the Livschitz Theorem in discreet time we will see that being g a Hölder
function in Λ with exponent θ ∈ (0, 1] the same is verified with Ig. Given x, y ∈ Λ with τ(x) ≥ τ(y),
designating the difference Ig(x)− Ig(y) by I, we have

|I| =

∣∣∣∣∫ τ(x)

0
g(ψsx)ds−

∫ τ(y)

0
g(ψsy)ds

∣∣∣∣ =

∣∣∣∣∫ τ(y)

0
g(ψsx)ds +

∫ τ(x)

τ(y)
g(ψsx)ds−

∫ τ(y)

0
g(ψsy)ds

∣∣∣∣
=

∣∣∣∣∫ τ(x)

τ(y)
g(ψsx)ds +

∫ τ(y)

0
(g(ψsx)− g(ψsy))ds

∣∣∣∣ .

So

|I| ≤
∫ τ(x)

τ(y)
|g(ψsx)| ds +

∫ τ(y)

0
|g(ψsx)− g(ψsy)| ds

≤
∫ τ(x)

τ(y)
sup |g| ds +

∫ sup τ

0
sup

s∈(0,τ(y))
|g(ψsx)− g(ψsy)| ds

= sup |g| |τ(x)− τ(y)|+ sup τ sup
s∈(0,τ(y))

|g(ψsx)− g(ψsy)|

≤ sup |g| LdY (x, y) + K sup τ sup
s∈(0,τ(y))

dY ((x, s) , (y, s))θ ,

for some constants K, L > 0. It follows then from (21) and from (22) that

|I| ≤ sup |g| LdY (x, y) + K sup τCθ sup
s∈(0,τ(y))

dπ ((x, s), (y, s))θ ≤
[
sup |g| L + KCθ sup τ

]
dY (x, y)θ .

This shows Hölder continuity of function Ig with the same Hölder exponent as in g.
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Given m ∈ N we define now the function τm : Λ→ R by

τm(y) =
m−1

∑
j=0

τ( f jy).

Using the group structure from the flow Ψ, we have f iy = ψτi(y)y. Besides that, for y ∈ Λ and m ∈ N
we have

∫ τm(y)

0
g(ψsy)ds =

m−1

∑
i=0

∫ τi+1(y)

τi(y)
g(ψsy)ds =

m−1

∑
i=0

∫ τ( f iy)

0
g(ψs+τi(y)y)

=
m−1

∑
i=0

∫ τ( f iy)

0
g(ψs( f iy))ds =

m−1

∑
i=0

Ig( f iy).

(24)

Let be y ∈ Y such that f my = y. We then have ψτm(y)y = y, that is to say, y belongs to a periodic orbit
from the flow Ψ with period τm(y). By the hypothesis on periodic points we have

∫ τm(y)
0 g(ψsy)ds = 0

equivalent, by (24) to ∑m−1
i=0 Ig( f iy) = 0.

We can then conclude by the Livschitz Theorem for diffeomorphisms [1,2] that there is a Hölder
function G : Λ → R, with at least the same Hölder exponent as g and unique up to an additive
constant, such that Ig(y) = G( f (y))− G(y) for each y ∈ Λ. From Theorem 2, the intended result
follows.

5. Markov Systems

We will now briefly show how the Livschitz Theorem for suspension flows applied in the last
section can somehow be considered a generalization of the Livschitz Theorem for hyperbolic flows.
Reducing one to the other is based on inserting Markov systems that constitute an appropriate version
of Markov partitions in the case of flows.

Let Φ =
{

ϕt}
t∈R be a C1 flow and Λ ⊂ M a compact hyperbolic set locally maximal for Φ such

that Φ |Λ is topologically transitive. Let Ws
ε (x) and Wu

ε (x) be the stable and unstable local manifolds
of size ε in point x ∈ Λ. For each ε > 0 sufficiently small, there is δ > 0 such that if x, y ∈ Λ are at a
distance d(x, y) inferior to δ then there is a unique instant of time t = t(x, y) ∈ [−ε, ε] for which the set
[x, y] = Ws

ε (ϕtx) ∩Wu
ε (y) consists of a single point and [x, y] ∈ Λ.

Consider now an open disc D ⊂ M with dimension dim M− 1 transversal to flow Φ. For each
x ∈ D there is a diffeomorphism from D × (−ε, ε) over an open neighbourhood U(x) of x. The A
projection function πD : U(x)→ D defined by πD(ϕty) = y is differentiable. A closed set R ⊂ Λ ∩ D
is said to be a rectangle if R = int R (where the interior is calculated relative to the topology of Λ ∩ D)
and πD[x, y] ∈ R every time that x, y ∈ R.

Let R1, . . . , Rp ⊂ Λ be a rectangle collection (each one inside in some open disc Di transversal
to the flow) with Ri ∩ Rj = ∂Ri ∩ ∂Rj to/for i 6= j (i.e., the rectangles only eventually intersect at the
borders) such that there is ε > 0 with:

1. Λ =
⋃

t∈[0,ε] ϕt
(⋃p

i=1 Ri

)
;

2. for each i 6= j we have ϕtRi ∩ Rj = ∅ for all t ∈ [0, ε] or ϕtRj ∩ Ri = ∅ for all t ∈ [0, ε].

We define a function τ : Λ→ [0, ∞) by the expression

τ(x) = min

{
t > 0 : ϕtx ∈

p⋃
i=1

Ri

}
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Let T : Λ → ⋃p
i=1 Ri be also a transference function given by Tx = ϕτ(x)x (i.e., T marks the value of

the orbit of x in the first rectangle Ri reached by the orbit). We realize that the restriction of T to the
union

⋃p
i=1 Ri is invertible. We say that rectangles R1, . . . , Rp form a Markov system for Φ in Λ if

T(int (Ws
ε (x) ∩ Ri)) ⊂ int (Ws

ε (Tx) ∩ Rj)

and
T−1(int (Wu

ε (Tx) ∩ Rj)) ⊂ int (Wu
ε (x) ∩ Ri),

whenever x ∈ int TRi ∩ int Rj. Any compact hyperbolic set locally maximal relating a C1 flow
possesses Markov systems of an arbitrarily small diameter (see References [3,4]). Besides that, the
function τ is Hölder in each continuity domain and 0 < infx∈Λ τ ≤ supx∈Λ τ < ∞.

Given a continuous function g : Λ → R and a Markov system for the flow Φ =
{

ϕt}
t∈R we

define a new function Ig : Λ→ R by

Ig(x) =
∫ τ(x)

0
g(ϕsx) ds. (25)

Ig(x) in Equation (25) appears in the following version from Theorem 2 in the context of
Markov Systems.

Theorem 4. Let Φ =
{

ϕt}
t∈R be a C1 flow and Λ ⊂ M a compact hyperbolic set locally maximal for Φ such

that Φ |Λ is topologically transitive. Let g : Λ→ R, h : Λ→ R and q : Λ→ R be continuous functions and
τ the transference function from any Markov system for Φ in Λ. Then the following properties are equivalent:

Property 8. g is Φ-cohomological to h in Λ With

g(x)− h(x) = lim
t→0

q(ϕtx)− q(x)
t

for each x ∈ Λ.

Property 9. Ig is T-cohomological to Ih in Λ with

Ig(x)− Ih(x) = q(Tx)− q(x)

for each x ∈ Λ.

This result allows, through an approach analogous to that considered in the proof of Theorem 3
for suspension flows, to obtain an alternative proof of Livschitz Theorem for hyperbolic flows Φ ={

ϕt}
t∈R (Theorem 1). Being R1, . . . , Rp a Markov system for Φ in Λ to prove that

g(x) = lim
t→0

G(ϕtx)− G(x)
t

it suffices, given Theorem 4, to prove that the function Ig : Λ → R defined by (25) satisfies Ig(x) =
G(Tx)− G(x) for each x ∈ Λ.

First, let us observe that being g a Hölder function with exponent θ ∈ (0, 1] the same happens
with Ig. Indeed,

∣∣Ig(x)− Ig(y)
∣∣ =

∣∣∣∣∫ τ(x)

0
g(ϕsx)ds−

∫ τ(y)

0
g(ϕsy)ds

∣∣∣∣
=

∣∣∣∣∫ τ(y)

0
g(ϕsx)ds +

∫ τ(x)

τ(y)
g(ϕsx)ds−

∫ τ(y)

0
g(ϕsy)ds

∣∣∣∣
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for x, y ∈ Λ placed in the same continuity domain of τ with τ(y) < τ(x). So

∣∣Ig(x)− Ig(y)
∣∣ =

∣∣∣∣∫ τ(x)

τ(y)
g(ϕsx)ds +

∫ τ(y)

0
(g(ϕsx)− g(ϕsy))ds

∣∣∣∣
≤

∫ τ(x)

τ(y)
|g(ϕsx)| ds +

∫ τ(y)

0
|g(ϕsx)− g(ϕsy)| ds

≤ C |τ(x)− τ(y)|+ C sup
s∈(0,sup τ)

d(ϕsx, ϕsy)θ

for a certain constant C = max {sup |g| , k sup τ} > 0 where k > 0 is such that |g(x)− g(y)| ≤ kd(x, y)θ .
We have then, for K > 0 such that |τ(x)− τ(y)| ≤ Kd(x, y)θ ,∣∣Ig(x)− Ig(y)

∣∣ ≤ CKd(x, y)θ + C sup
s∈(0,sup τ),z∈M

‖dz ϕs‖θ d(x, y)θ

= C

(
K + sup

s∈(0,sup τ),z∈M
‖dz ϕs‖θ

)
d(x, y)θ

as intended.
On the other hand, defining for m ∈ N the function τm : Λ → [0, ∞) by

τm(x) =
m−1

∑
j=0

τ(T jx),

we can easily verify that ∫ τm(x)

0
g(ϕsx)ds =

m−1

∑
i=0

Ig(Tix),

an equality analogous to (24). We can then use a similar approach to the one used in demonstrating
Theorem 3 to establish a Livschitz Theorem for hyperbolic flows.

6. Conclusions

Although this article does not focus on Anosov Closing lemma, it is worth emphasizing that this
result is crucial in the statement of the Livschitz Theorem and consequently in ensuring the existence
of sufficiently regular solutions of cohomological equations. For flows with hyperbolic sets, this lemma
establishes how the distance between corresponding points of an initial orbit and the constructed
periodic orbits is controlled. It formalizes how the combination of local hyperbolicity, coming from the
linearized dynamical systems analysis, with nontrivial recurrence tends to produces an abundance
of periodic orbits. The important class of hyperbolic dynamical systems contains several examples
of invertible smooth dynamical systems with complicated orbit structure, namely hyperbolic toral
automorphisms, their C1-perturbations, as well as expanding maps of the circle. The use of Anosov
Closing Lemma in continuous time allowed us to present a proof of Livschitz’s theorem for hyperbolic
flows and to generalize this theorem to suspension flows, which are of significant importance from an
application point of view in dynamic systems. Finally, it also happened to be possible to prove the
Livschitz Theorem for hyperbolic flows based on Markov systems.
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of Lisbon.
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