ISCTE 2 1UL
REPOSITORIO

INSTITUTO UNIVERSITARIO DE LISBOA

Repositério ISCTE-IUL

Deposited in Repositdrio ISCTE-IUL:
2020-04-20

Deposited version:
Post-print

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Acebron, J. A. (2020). A probabilistic linear solver based on a multilevel Monte Carlo Method. Journal
of Scientific Computing. 82 (3)

Further information on publisher's website:
10.1007/s10915-020-01168-2

Publisher's copyright statement:

This is the peer reviewed version of the following article: Acebron, J. A. (2020). A probabilistic linear
solver based on a multilevel Monte Carlo Method. Journal of Scientific Computing. 82 (3), which has

been published in final form at https://dx.doi.org/10.1007/s10915-020-01168-2. This article may be
used for non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-

archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
¢ a link is made to the metadata record in the Repository
o the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Servicos de Informagdo e Documentagdo, Instituto Universitario de Lisboa (ISCTE-IUL)
Av. das Forgas Armadas, Edificio II, 1649-026 Lisboa Portugal
Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt


https://dx.doi.org/10.1007/s10915-020-01168-2

A probabilistic linear solver based on a multilevel
Monte Carlo method

Juan A. Acebrén'?,

! Dept. Information Science and Technology, ISCTE-University Institute of Lisbon, Portugal
2 INESC-ID,Instituto Superior Técnico, Universidade de Lisboa, Portugal
E-mail address:juan.acebron@iscte-iul.pt

February 23, 2020

Abstract

We describe a new Monte Carlo method based on a multilevel method
for computing the action of the resolvent matrix over a vector. The
method is based on the numerical evaluation of the Laplace transform
of the matrix exponential, which is computed efficiently using a multilevel
Monte Carlo method. Essentially, it requires generating suitable random
paths which evolve through the indices of the matrix according to the
probability law of a continuous-time Markov chain governed by the as-
sociated Laplacian matrix. The convergence of the proposed multilevel
method has been discussed, and several numerical examples were run to
test the performance of the algorithm. These examples concern the com-
putation of some metrics of interest in the analysis of complex networks,
and the numerical solution of a boundary-value problem for an elliptic
partial differential equation. In addition, the algorithm was conveniently
parallelized, and the scalability analyzed and compared with the results
of other existing Monte Carlo method for solving linear algebra systems.

Keywords— Multilevel, Monte Carlo method, network analysis, parallel algo-
rithms, high performance computing

1 Introduction

Among the many numerical methods proposed in the literature for solving linear al-
gebra problems, the probabilistic methods were often perceived within the linear al-
gebra community more as a curiosity than a serious alternative to the state-of-the-art
deterministic methods. Even though it is broadly accepted that they offer interest-
ing features from a computational point of view, such as being easily parallelizable,
fault-tolerant, and more suited to heterogeneous architectures (features of paramount
importance in view of the current high performance computers). However, the truth
is that they also exhibit some significant weakness, such as a very slow convergence
to the solution. This made the underlying algorithms highly demanding computation-
ally, especially when dealing with high accuracy solutions. In addition, they require a
continuous close monitoring by the user in order to control the numerical errors, being
therefore often necessary to repeat several times the simulations before accepting the
solution within the accuracy prescribed by the user. Rather the deterministic methods,
such as the iterative methods, are basically governed by an automatic procedure, being



often only necessary to impose initially a certain tolerance that should be reached by
the algorithm before stopping safely the execution. This tolerance should be enough
(with the exception of some pathological problems) to guarantee the convergence of
the solution to the prescribed accuracy. Some of the aforementioned issues affecting
the probabilistic methods have been progressively improved over the years, although it
may seem that the advance is often relatively modest, specially when compared with
the advance experimented by the counterpart deterministic methods.

Historically, the idea of using probabilistic methods based on Monte Carlo simula-
tions for solving linear algebra problems goes back to the pioneering work of von Neu-
mann and Ulam during the 1940’s [18]. Although initially the method was proposed
merely for computing the inverse of a matrix, it was later generalized for solving linear
algebra problems in a series of seminal papers, see [13, 14] e.g., and [12, 30] for further
references. Briefly the underlying idea consists in generating a discrete Markov chain
which evolves by random paths through the different indices of the matrix. Mathemat-
ically, the method can be seen in a way as a Monte Carlo sampling of the Neumann
series of the matrix. The convergence of the method was rigorously established in [27],
and improved further more recently (see for instance [15], and [8] just to cite a few
references). More specifically, in [16, 8] an important step forward has been done in
the applicability of the probabilistic methods for solving more realistic problems. The
method called Monte Carlo synthetic acceleration method is in fact a kind of hybrid
scheme which combines the Richardson iterative method along with a Monte Carlo
method. Essentially the role played by the Monte Carlo method consists in acceler-
ating the convergence of the underlying iterative method, and has been shown to be
competitive enough for a class a problems, comparing even with perhaps one of the
most widely used iterative method such as the GMRES method.

Another related area of application of the probabilistic methods where some sig-
nificant progress has recently made is in the field of matrix functions [24, 25]. In fact,
in the specific case of the action of a matrix exponential over a vector, it was pro-
posed in [3, 4] a probabilistic method based on a multilevel Monte Carlo method [21],
which as an important feature improves notably the typical slow convergence rate of
any Monte Carlo method. The multilevel method has become in fact a widely used
method for accelerating stochastic simulations in general (see the excellent review in
[20] e.g., and [5] for a specific application to Markov Chains), and in particular for the
matrix exponential has been shown in [4] that can be even competitive against the
classical deterministic methods based on Krylov subspace methods. Specifically, for
large scale problems and extremely large number of processors, the multilevel method
clearly outperforms the deterministic method for solving problems consisting in large
matrices, not only in terms of computational time, but also in terms of memory re-
quirements. Another remarkable feature of the multilevel method is precisely to be a
method that gives rise to automatic algorithms in the aforementioned sense. In fact,
typically the only interaction of the user with the algorithm consists merely to set
up initially the prescribed accuracy of the solution, and subsequently the algorithm is
capable of reaching autonomously the desired goal.

The aim of this paper is precisely to apply such a multilevel method for the prob-
lem of computing the action of a resolvent matrix over a vector. This is done in
practice exploiting the well-known connection existing between the resolvent matrix
with the matrix exponential through the Laplace transform. The multilevel method
derived in [4] for the case of the matrix exponential is conveniently adapted for this
specific problem, as well as the convergence of the resulting method and computa-
tional cost of the underlying algorithm conveniently analyzed. Moreover, to test the
performance of this new algorithm several numerical examples were run. Those con-
cern the computation of the so-called Katz centrality, which describes some important
features in complex networks, and the numerical solution of a linear system coming
from the discretization of a boundary-value problems for an elliptic partial differential



equation. Finally, another noteworthy contribution of the paper was to parallelize the
resulting algorithm, and compare the scalability of the algorithm, when running both
algorithms in a multicore architecture, with other available Monte Carlo methods. A
key result from this comparison is the autonomous operation of our approach, that,
unlike other available Monte Carlo methods [8], the proposed method does not require
parameter tuning for optimal scaling.

The paper is organized as follows. The probabilistic representation of the vector
solution is presented in Section 2 along with the description of the multilevel method
for the resolvent of a matrix. Section 3 describes the implementation of the multilevel
algorithm. The analysis of the numerical errors and convergence of the method is
presented in Section 4, while Section 5 is devoted to the analysis of the computational
cost of the algorithm. In addition, in Section 6 the algorithm is tested running a
few numerical examples, and the parallel performance of the method is compared
with the performance of a classical Monte Carlo method. Finally, this work is closed
summarizing the high points of the paper and discussing potential directions for future
research.

2 Mathematical description of the probabilistic
method

In order to apply a multilevel method to any Monte Carlo method, it is first required to
have a probabilistic representation of the solution. To this purpose, next we describe
the probabilistic method adopted for representing the action of the resolvent of a
matrix over a vector. Let A = {as;}i;j—; a given sparse n-by-n matrix, and v and x
an n-dimensional vectors. Using the Laplace transform, it holds that

x:(sll—A)_IU:(/Ooodte_StetA> v, (1)

provided ||A[l, < s. The integral above can be discretized using a suitable Newton-
Cotes numerical quadrature, and after approximating the improper integral by a finite
one we obtain

i—1
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T~ (Z wie St el A> v = [Z wi H (efsm eAtA)} v, (2)
im1 i—1

j=1

where t; = (i — 1)At, i =1,...,N, At = T/N the corresponding discretization step,
and w; the suitable weights corresponding to the chosen quadrature rules. Both, the
integral discretization as well as the truncation of the improper integral by replacing
the infinite limit by a finite one, T', introduces two source of errors which they will be
analyzed in Section 4.

Concerning the action of the exponential matrix e over the vector v, this can
be computed probabilistically resorting to the representation introduced in [3], and
it was conveniently generalized here to deal with more general classes of matrices.
Essentially the main idea consists in decomposing the matrix A as D —U. D is a
diagonal matrix with entries di; = 0 Vi # j, dis = di = asi + Lis, i = 1,...,n, and the
matrix U with entries u;; is given by

Lii, ifi=j
uij = o . ®3)
(=1)?% L;;, otherwise

At A

where 0 = {0y;} is a binary matrix with entries taking the value 1 when a;; < 0,
and 0 otherwise. Here L = (L;;) denotes a generalized Laplacian matrix, defined in
the broad sense as a matrix with nonpositive off-diagonal entries L;; = —|as;/|, and



zero row sums, that is L;; = —Z#i L;;. Note that this does not constitute any
restriction in the class of matrices amenable to be represented probabilistically. Quite
the contrary one can see that any arbitrary matrix can be straightforward decomposed
in such a way. Such decomposition allows in practice to approximate the action of
the matrix exponential over the vector using a suitable splitting method. In [3] it was
used the Strang method in view of being of sufficiently high order, and even more
important for not introducing any additional computational cost when compared with
the lower order Lie splitting method.

As it happens for the probabilistic representation described in [6], for this new
representation it can be used as well for both, computing a single entry of the vec-
tor solution, or the full vector solution. In the following for simplicity we described
merely the probabilistic representation for computing a single entry of the vector so-
lution, being the derivation of the other straightforward (see [4],e.g.). Therefore, the
probabilistic representation for computing a single entry of the action of the resolvent
matrix over the vector reads as follows

N k
7 = E[)_ o (H m)], (4)
k=1 j=1
where n; = ¢; emdiﬂ', j=1...,N—1,ny = on eAtd’iN/QviN, wp =e wr, and
d; = d; — s. Concerning ¢z, this corresponds to a two-point random variable taking
values —1 and 1 with a probability related to the matrix o. Q = —L is the infinitesimal
generator of a continuous-time Markov chain on the set S = {1,2,--- ,n}, being the
matrix transition probability P = (p;;) the solution of the Kolmogorov’s backward
equations,

Atd; /2

P'(t)=QP(t), P0O)=1 (t>0). (5)

For each starting point ¢, the variables iy, Kk = 1,..., N, correspond to a sequence
of N discrete random variables with outcomes on S, and probabilities ps, , i, (%),
k =2,...,N, and p;;, (t) for k = 1, defined by P(At) for each k. Note that Z
corresponds in fact to an approximation of the true solution x, being the true solution
recovered in the limit N — oco and T — oo. This representation can be interpreted
intuitively as follows: Lets generate a random path which starts at the chosen entry 4
of the vector Z. This evolves according to a continuous-time Markov chain governed
by the generator (), moving therefore randomly from ¢ to any possible state on S. We
evaluate the N functions 7, using the random values obtained along the process, and
accumulated the number obtained after multiplying all previous functions 7, weighted
by the corresponding quadrature weight wy. Finally the solution is obtained through
a suitable expected value.

2.1 A multilevel method for computing the resolvent ma-
trix

As it was described in the literature (see the excellent survey in [20], and references
therein), essentially the idea behind the so-called geometric multilevel Monte Carlo
method (MLMC for short) consists in approximating the finest solution Pr obtained
to the level of discretization L using a sequence of coarser approximations obtained
at previous levels [, from lp to L — 1. This in practice entails accelerating the Monte
Carlo simulations, since for a fixed given accuracy, the method generates more samples
for the coarsest level with low computational cost, and less samples for the higher
levels with higher computational cost. This method can be conveniently adapted to
this specific problem, assuming in particular that the different levels of discretization
correspond to the value of At;, being now At; = T/N;, with N; = 2! Moreover,
concerning the minimum level of discretization lg, as it was already pointed out in [4],



it should be chosen specifically different from zero. This is because the computational
cost turns out to be almost independent of the level when simulating the coarsest level.
The multilevel method can be expressed in mathematical form through the following
telescoping series,

" =E[PL ] =E[P,]+ > E[P - P4, (6)
I=lg+1

where P, = Zszl Wk (Hf:1 77]-), and n; = ¢; MY G =1, N—1,ny = ¢pn 2t din/? Viy
Since this series should be truncated for computational purpose, this entails a trun-
cation error which is proportional to E[Pr, — Pr_1]. For a numerical purpose, when

a finite independent sample of sizes M;,l = lo, ..., L is used, Eq. (6) can be approxi-
mated by the following estimator, which is the empirical mean,

1 My L 1 M,
R D DR AEETD DI v DN i) (7)
0 =1 I=lo+1 " m=1
Since an empirical mean is used, one has to generate M; independent samples {z‘ﬁ’"), igm), e ig\}")}
of the set of variables {i1,42,...,in}, and to evaluate the previously defined quantity
P, in Eq. (6), denoted hereafter as Pl(m), The specific values taken by the set of
random variables {i{™ i{™ ... ig\}n) } are determined by the transition probabilities
P of the continuous-time Markov chain in Eq. (5). The detailed procedure followed
so far to generate the random variables are described in Sec. 3.

It becomes crucial here to remark that the samples used for computing the ap-
proximation at level [ should be reused for computing the level | — 1. This is because
the underlying correlation appearing between the two consecutive levels belonging to
the same sample, works by reducing the overall variance. In fact, as it was pointed out
in [21, 23] the multilevel Monte Carlo method can be seen as a recursive application
of the control variate technique [22], frequently used in applied statistics for variance
reduction. For the specific problem of Monte Carlo path simulation in Finance, the
correlation appears when the samples used correspond to same discretized Brownian
path generated using different time stepsizes, and for more general applications and
examples, see [20] e.g.. In our particular problem, the procedure followed to reuse the
paths are described in Sec. 3. As a consequence, the multilevel method is capable of
reducing the computational cost by choosing conveniently an optimal sample size M,
and this is done by keeping fixed the overall variance within a prescribed accuracy 2.
The detailed procedure, consisting mostly in a minimization process, to find the opti-
mal sample size is explained in detail in [20]. Here the main results are summarized
only for the sake of completeness. The optimal sample size M; for an accuracy ¢ turns

out to be .
1 /W
Mz=;21/aZVzCl, (8)

1=lo
where C;, m; and V; are the computational cost, mean and the variance for each level
[, respectively. The overall computational cost and variance is calculated as follows

L Loy
f
Cr = E M,Cy, Vr = E M 9)
l=lp

l=lp

3 The multilevel algorithm

Before explaining the detailed algorithm followed to implement in practice the mul-
tilevel method described above, lets describe first the algorithm used to generate the



random paths, and second the procedure followed to reuse the paths generated for a
higher level of discretization [ to a lower one [—1. Essentially the algorithm to generate
the paths was introduced first in [4] for the specific problem of computing the action
of a matrix exponential over a vector, and here it is summarized for the purpose of
illustration. The random paths are generated in practice as it is done for a typical
continuous-time Markov chain. More specifically, if p;;(¢) represents the transition
probability matrix governing the transition between the state ¢ and j, we can use the
Kolmogorov’s backward equation in Eq. (5) in integral form,

t
pis(t) =0y Fiit 4 Z/ ds L e ki (t — s), (10)
j#i 0
where ki; = |Li;|/Lii, to simulate a random path. In practice the random paths are
given by the transitions among the different states on S = {1,2,--- ,n}, being those
states the values taken by the set of random variables {i1,1i2,...,in}. Therefore, an
algorithm to generate a path may work as follows: Generate a first random time Sy
obeying the exponential density function
p(So) = Li; e Li#%0; Then, depending on whether Sy < t or not, two different alter-
natives are taken; If Sp > ¢, the algorithm is stopped, and no jump from the state
i to a different state is taken; If, on the contrary, So < t, then the state i jumps to
a different state j, which is chosen randomly according to the probability function
kij, and a new second random number exponentially distributed S1 governed now by
the density function p(S1) = L;; e~ %351 is generated; If S1 < (t — So) the algorithm
proceeds repeating the same elementary rules, otherwise eventually it is stopped.

Algorithm 1 Multilevel Monte Carlo (MLMC) algorithm.

INPUT: L =1y,M = My,i, N,e
while error > ¢ do
Call MLMCL(i, At;, N, My) for fast estimating m; and V; for I = lg, ..., L
Compute the optimal number of samples M; for [ = ly,..., L
Call MLMCL(i, At;, N,M; — M) for further improvement for | =
loy..., L
if error < ¢ then EXIT
else
Increase number of levels, L = L + 1
end if
end while

To illustrate graphically how the paths generated from a higher level are reused
for the lower one, in Fig. 1 a sketch diagram for the case of | = 2 is shown. Here
they are plotted the four different scenarios that may occur when generating random
paths starting at the same point i. Then, from Eq. (4), the possible outcomes of the
two random variables may induce two transitions to any of the rows of a given matrix
during the two time steps of size At>. Rather only the last one should be used for
determining the paths corresponding to the previous level [ = 1. More specifically, the
set of the four figures describe the following scenarios: a) Transitions occur at the first
and at the second time step; b) Transition only at the first time step; ¢) Transition
only at the second time step, and d) no transition at all. Note that the last scenario
contributes with zero to the term E[P> — P1] in (6).

The pseudocode implementing the described multilevel method is shown in Algo-
rithm 1, which consists in practice in the general setting for any implementation of the
method particularized for this specific problem choosing a procedure to compute the
mean m; and the second moment mg; for any of the levels [. Note that both quantities
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Figure 1: Sketch diagram showing the four possible sampled paths obtained for
level | = 2, and for a matrix of size N = 10. The solid line corresponds to a
random path obtained for a level number [, and the dotted line with [ — 1.

are needed to compute the variance V;, which is given by V; = mao;/M; — le. This
procedure is described in Algorithm 2.

4 Numerical errors

In this Section the different source of errors of the Monte Carlo method for computing
Eq. (4) are discussed. Note that the error £ made in computing the vector solution at
a single point ¢ can be decomposed as follows

1 M N
E:zi—MZZQk

m=1k=1

k
<Hn§-m)> v =¢1+¢e2+e3+Eu, (11)
=1




Algorithm 2 Procedure to compute a single entry i of the vector solution Z;.

procedure MLMCL(i, At;, N, M)
forl=1,M do
m=1lm=1j=i
forn=1,...,N do
1o = npeditti/?
if nmod?2 # 0 then
m = medidh
end if
generate(T)
while 7 < At; do
k=
generate(S), generate())
T=17+S5
n2 = (=1)7*ny
m = (=1)7"m
end while
N2 = naeditt/2
if nmod2 = 0 then
m = medidt
end if
integ) = integ; + wpm
integs = integs + wyp N2
end for
my = my + [vj(integs — integr)]/M
mar = mayy + [vj(integy — integ)]? /M
end for
Vi =m2l/M —m}
return (my, V)
end procedure




where n,(cm) corresponds to the mth sample of the random variable 7, defined in (4),

and
T
&1 = @ — (/ dte” st etA) v, (12)
0
T N
£y = (/ dte st etA> v— <Zwke”k etk A) v, (13)
0

k=1

N N
O <Zwk€_8t’“ otk A> v — (Zw’“ [eAtD/Qe—At UeAtD/2]k—1) v, (14)
k=1 k=1
N - - 1 N k
_ AtD/2 —AtU _AtD/21k—1 ~ (m)
- - <§wk [e ‘ ‘ ] > U_MZZWIC <]U1nj ) U(15)

m=1k=1

w

Here the matrix D = D — s1. Lets analyze then these four different errors separately.
The first error &1 is due to the truncation of the improper integral in Eq. (1) by a
finite one, where the unbounded domain of integration has been replaced by a finite
one, replacing conveniently the infinite limit by a finite one, 7". Such an error can be
further evaluated and is given by

€1 = (/ dte™*" eAt) . (16)
T

Note that the integral can be computed analytically, and yields

-1 —BT
B e

£1 = v, (17)

where B = s1 — A. Moreover, it turns out that

lelly < 1B, 7|, (18)

and since we assume [|Al|, < s, it holds that
H51||2 < H371 H2 e Amin(B)T (19)

Here Amin(B) denotes the smallest eigenvalue of B, which corresponds in practice to
$ — Amaz(A), being, Amaz(A) the largest eigenvalue of A. Hence

1 —[s=Amax (A)]T
< maz ) 2
H51H2 = 5_ Amaac(A))e ( O)

The formula above can be used to find the minimum value, T, such as the error is
less than the prescribed accuracy ¢, and is given by

1

T>T.= —————
- Amaz(A) — s

In[(s — Amaz(A))e]. (21)
To use in practice such formula the largest eigenvalue of the matrix A should be known.
In general, especially for large matrices, this could be a formidable task in itself, being
required in general to use suitable available approximations. For the specific case
of complex networks, there are indeed some useful approximations (see [9] e.g), and
they have used in Fig. 17 to verify this estimation. In fact, in Fig. 17 it is plotted
the result corresponding to the absolute error made when truncating the improper
integral as function of the finite limit 7. In this example the solution corresponds to
the Katz centrality of a given node for two different complex networks of the same size.
The theoretical solution, which is needed to compute the error, was obtained using
Matlab, being Eq. (17) computed using a high accuracy numerical method. For this
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Figure 2: Absolute numerical error in log-scale made when truncating the im-
proper integral in Eq. (1) using a finite limit, 7. The solution corresponds
to the Katz centrality of two complex networks: (a) a small-world network,
and (b) a scale-free network, both of size of 1,000 nodes. The dashed (Approx
1) and dot-dashed (Approx 2) lines correspond to the solution obtained using
the approximation of the largest eigenvalue as dyqep, and maz(degvg, vVdmaz)s
respectively. The value of the variable s was chosen to be dyq./0.85.

specific example we have used two different approximations for the largest eigenvalue
of the adjacency matrix A. One assumes the largest eigenvalue equals to the maximum
degree of the network, dmas (Approxl), while the other one (much more accurate),
assumes the value to be maz(davg, Vdmaz) (Approx2), where do.g denotes the average
degree of the network, dqvg = %Z?:l d;. Note how the latter approximation fits in
fact much better with the theoretical error curve plotted in Fig. 2.

Concerning the second error €2, this appears when the definite integral is approxi-
mated numerically using a suitable quadrature. Hence, the order of the error is merely
the order of the error of the chosen quadrature rules, and therefore to minimize this
error it would be advisable to use higher order methods However, as it will be shown
later, it turns out that the order of the third error &3 is proved to be of order O(At?).
Then, it becomes useless at this point to implement any higher order method for this
approximation, since the order of the error €3 becomes dominant. Consequently, for
the algorithm proposed it was used a simple trapezoidal quadrature, which is well

10



known to be of order O(A#?). Therefore, the quadrature weights used are given by
w; =At,i=2,...,N—1,and w1 = wny = At/2.

The analysis of the remaining errors, 3 and €4, coincides exactly with the analysis
done in [3], but for the sake of completeness it is summarized here. The third error €3 is
due merely to the splitting procedure, as a result of decomposing the matrix A as D—U,
and the error turns out to be of order O(At) or O(At?) [1], depending on whether the
Lie or the Strang splitting is used. As mentioned already in Sec. 2, since the matrix
D is diagonal matrix, it can be computed almost without any computational cost,
being therefore much more convenient to adopt the Strang splitting to this purpose.
The fourth error, €4 , is the pure Monte Carlo statistical error, and known to be of
order O(M~'/?). In fact, it is well known that the arithmetic mean appearing in (11)
provides the best unbiased estimator for the expected value in (4). In practice, one
should simulate on the computer the random variables, based on generating random
numbers. By doing so, the error made in replacing the expected value with the mean
over a finite size sample is statistical in nature. More precisely, €4 turns out to be, for
a large M value, approximately a random Gaussian variable with standard deviation

proportional to M~1/2 , i.e.,
ov

ViVt
where o denotes the square root of the variance, and v is a standard normal (i.e.,
N(0,1)) random variable. All this clearly shows that the proposed Monte Carlo
method could in principle have a poor numerical performance, and also that the error
is merely statistical, so it can only be bounded by some quantity with a certain degree
of confidence. However, there already exists many available statistical techniques, such
as variance reduction, and quasi-random numbers [28], that can be used, in practice, to
improve greatly the order of the global error, and consequently the overall performance
of the algorithm.

g2 (22)

5 Computational complexity of the multilevel
algorithm

To properly estimate the computational complexity of the multilevel algorithm, it is
required to establish first the convergence rate of both, the mean m; = |E[P, — P]| and
variance V; = V[P, — P;_1], as a function of the corresponding level [. In [4] this was
done for the particular problem of computing the action of a matrix exponential over
a vector. Note that the method proposed here required to compute the action of a
matrix exponential over a vector, and therefore the results found there can be applied
here straightforwardly. More specifically in [4] it was proved that the mean |E[P, — P]|
turns out to be of order O(At7). This is because the splitting method used for the
computing the matrix exponential was the Strang splitting. Besides computing the
matrix exponential, recall that it is required as well to approximate numerically the
definite integral in Eq. (1). As was mentioned above this is done through a suitable
trapezoidal numerical quadrature. However, this procedure does not modify the order
of convergence, and this can be seen readily through the following Lemma.

Lemma 1 Let consider I = Zf;l w; fi the discretization of a given definite integral
obtained by means of a trapezoidal numerical quadrature, where w; are the correspond-
ing quadrature weights, and f; the values of a given function evaluated at equally spaced
points within the integration domain. Assume that the values f;,i =1,... N are known
with an error of order O(At®). Then it holds that the error of T is of order O(At?).

Proof. If every term of the sum is of order O(At?), the sum of all of them turns out
to be of order of O(N2At?), and since N = T/At the order is reduced in a factor of

11
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Figure 3: (a) Mean and (b) variance of P, — P;_y in logs scale versus the level
number [ obtained numerically. The adjacency matrix corresponds to a small-
world network of different size n. The brown line denotes to an ancillary function
of slope —2.

two. However, after multiplying by the trapezoidal weights, which are proportional to
At, the order of the error becomes finally O(At?). O

Concerning the convergence rate of the variance V[P, — P,_1], the same result
already proved for the mean holds. Since the convergence rate of the variance for
computing the action of the matrix exponential over a vector was proved to be O(At?)
in [4], the convergence rate for this specific problem turns out to be similarly of order
O(AL}).

In Fig. 3, the mean E[P, — P,_41]| (a) and V[P, — P,_1] (b) are shown as a function
of the level [. The matrices correspond to the adjacency matrices of a small-world
network of two different size. Note that the obtained numerical convergence rate fully
agrees with the theoretical estimation.

To determine theoretically the computational complexity of the multilevel algo-
rithm, it is needed also an estimation of the computational time of the Monte Carlo
method. We have seen that the numerical method requires to compute in practice
the action of the matrix exponential over a vector, and note that this should be done
a few times, namely as many as the number of discretized points of the numerical
quadrature. Therefore, one might wrongly conclude that the overall computational
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Figure 4: Computational time in logs scale versus the level [ for adjacency
matrices corresponding to two different complex networks of size n = 10°. The
brown line corresponds to an ancillary function of slope 1.

time depends on such a number. However, it turns out that the matrix exponential
required for any time step is computed using the matrix exponential obtained for all
the previous time steps, as it can been seen from Eq. (2). In practice this means that
is enough to compute once the matrix exponential (and only for the finite limit T¢),
provided that all the values of the matrix exponential obtained for intermediate times
are conveniently saved. Therefore, the computational time of the algorithm is merely
due to the computational time required to compute the action of a matrix exponential
over a vector evaluated exclusively at T.. This time was already estimated in [3]. In
Fig. 4 the results corresponding to the CPU time spent by the Monte Carlo algorithm
when computing the Katz centrality of two different networks characterized by differ-
ent values of davg are plotted. Note that for A¢; sufficiently large (or equivalently [
sufficiently small) the computational time tends to a constant value, while for smaller
values the computational time scales as 1/At¢;. Using the theoretical estimation in
[3], it can be estimated that the minimum value of the level lp to obtain a better
performance of the MLMC algorithm is given by

lo > lc = log2(Tedavg)- (23)

Known the convergence rates of the mean, variance, and computational time, the
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Figure 5: Computational time as function of the prescribed accuracy e, both in
logyg scale. The brown solid line corresponds to an ancillary function of slope
—5/2, while the dotted line to a function of a slope —2. The results correspond
to the Katz centrality for a single node of a small-world network of size n = 109

theorem in [20] can be applied, and as a result it can be established that the compu-
tational complexity of the proposed MLMC algorithm for computing the resolvent of
a matrix should be of order O(¢~2). This contrasts favorably with the complexity of
the Monte Carlo method, which can be concluded to be of order O(¢~°/?). In fact,
the action of the matrix exponential over a vector using the Monte Carlo method was
estimated in [3] as being of order O(¢7°/?). Recall that the algorithm for computing
the resolvent matrix requires computing such a matrix exponential, and to avoid calcu-
lating such matrix exponential several times for each time steps, we can use the same
procedure explained already for the MLMC method. Consequently we can conclude
than the computational time of the Monte Carlo method for this problem remains
of order (9(575/2). In Fig. 5 the results corresponding to the computational time
spent to compute the Katz centrality of a single node of a small-world network of
size n = 10% is plotted as a function of the chosen prescribed accuracy e for both,
the MLMC method and the Monte Carlo method. Note the perfect agreement with
the theoretical estimates, and the performance notably superior to the Monte Carlo
method for lower accuracy values.
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6 Numerical examples and computational-related
issues

6.1 Numerical examples

In this section the results corresponding to several numerical examples are shown. The
chosen examples consist in both, the numerical computation of the aforementioned
metric Katz centrality in some synthetic complex networks and the numerical solution
of some elliptic boundary-value problems with Dirichlet boundary conditions. More
specifically, these are the Poisson equation discretized by means of the finite difference
method, and a reaction-diffusion equation in an arbitrary domain discretized by the
finite element method. In all of them the solution is computed exclusively at a single
node. Concerning the synthetic networks, these consist of small-world and scale-free
networks that can be generated easily for an arbitrary size using the functions smallw,
and pref, respectively, freely available through the toolbox CONTEST [11] for Matlab.

To compare the performance of the algorithm with others available in the literature,
we implemented a different available Monte Carlo method. This method was first
proposed in [6], and in the following to distinguish from our Monte Carlo method it
will be termed the classical Monte Carlo method. Basically this method depends on
two free parameters to be fixed by the user according to the accuracy desired for the
solution. These are first, the so-called history length, which basically is related with
the number of random jumps allows to occur within the matrix before stopping the
algorithm, and second, the number of random walks picked up from a finite sample.
Both discretized parameters are involved in different source of errors. Essentially they
are the equivalent of the bias error, and statistical error appearing as source of errors
for the MLMC method, but they are treated by the algorithm in a totally different
way. In fact, while the classical Monte Carlo algorithm considers both separately,
the MLMC algorithm works with both parameters in a unified way within the goal
to reach the prescribed accuracy for the solution. The algorithm proposed in [6] is
indeed adaptative, being capable of finding automatically the optimal solution within
a prescribed accuracy. However, note that this is done considering only the statistical
error, but seems to fail to find the optimal history length satisfying such an accuracy.
Concerning the statistical error this is done basically by increasing progressively the
number of random walks simulated until a certain condition (related basically with the
variance) is satisfied. On the other hand, the history length, which controls the bias
error, this should be fixed independently according to another stopping criterion of the
algorithm. This truncation criterion to stop running the random walks was proposed
in [16], and consists in imposing a certain relative weight, which acts basically as
a cutoff threshold stopping automatically the random walk whenever the underlying
random variable overcomes such a threshold. However, it becomes not trivial to relate
the value of this threshold with the statistical error, and with the prescribed accuracy
of the solution desired by the user. In practice what happens is that the user may
have to run several times the algorithm, changing accordingly such a threshold, until
the desired solution within the prescribed accuracy is finally reached. Rather the
multilevel algorithm by construction is a truly automatic algorithm, meaning that the
only intervention of the user consists in setting initially the accuracy desired for the
solution, leaving the algorithm to find alone both the optimal sample size and history
length. Moreover, this offers a further computational advantage for the parallelization
point of view, as it will be discussed below.

All Monte Carlo codes were implemented in Fortran 90 and the simulations run
in a multi-core architecture consisting on a computer equipped with an AMD Ryzen
1800X Octa-core at 3.6 GHz with 32 GB of RAM.

Due to the random nature of any of the Monte Carlo algorithms, it is worth ob-
serving that the measured computational time can vary from simulation to simulation.
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To mitigate such a variability of the computational times, the CPU times shown in the
tables below correspond to an average CPU time obtained repeating the simulations
with 10 different initial random seeds of the pseudorandom generator.
Example A: Complex networks

As it was mentioned above, in the case of complex networks the evaluation of
the resolvent matrix over a vector is related with the so-called Katz centrality of the
network. In fact, the Katz centrality of a node 7 of a network is defined mathematically
[7, 26] as

Ki(a) = [(1 - ad) 1], (24)

where A is the adjacency matrix of the network, 1 a vector of ones, an o, with 0 < a <
1/Amaz(A), is a attenuation factor suitable chosen. Intuitively, the Katz centrality is
a metric of the network that measures the relative degree of influence of a node within
the network, weighting conveniently the importance of the connection between the
node i and distant neighbors by an attenuation factor a.

In Tables 1, and 2 the CPU time spent to compute the Katz centrality of a small-
world network and scale-free network using the Monte Carlo method, the MLMC
method, and the classical Monte Carlo method in [6] is shown. This has been done for
different network sizes, being the accuracy kept fixed to € = 3x 10> for all simulations.
Note that the CPU time is almost independent of the network size for any of the Monte
Carlo methods. This is due to the fact that the Monte Carlo method essentially is
based on local computations, rather than the classical deterministic methods which
typically require as part of the algorithm multiplying a matrix by vector or even worse
a matrix by a matrix. This gives rise in practice to an implicit dependence on the size
of the problem as it can be seen in [3].

Concerning the results, it is worth observing the notably performance of both,
the MLMC method and the classical Monte Carlo, compared with the Monte Carlo
method, and a similar performance between the MLMC method and the classical
method.

Table 1: CPU time spent for computing the Katz centrality of a small-world net-
work using the Monte Carlo method (M ('), the multilevel Monte Carlo method
(MLMC), and the classical Monte Carlo method (MC.). The accuracy ¢ of
the solution was kept fixed to 3 x 1075,

Network size CPU Time MC (s) CPU Time MLMC (s) CPU Time MC. (s)

107 8, 534 2,054 1,848
106 8,575 2,063 1,869
107 8,601 2,141 1,980
108 8, 620 2,250 2,034

Table 2: CPU time spent for computing the Katz centrality of a scale-free net-
work using the Monte Carlo method (M C), the multilevel Monte Carlo method
(MLMC), and the classical Monte Carlo method (MC.). The accuracy ¢ of
the solution was kept fixed to 3 x 107°.

Network size CPU Time MC (s) CPU Time MLMC (s) CPU Time MC. (s)

10° s, 410 2,323 1,819
106 8, 489 2,441 1,951
107 8, 537 2,583 2,134
108 8, 663 2,635 2,356

Example B: Partial differential equations
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e Fzample 1. This example concerns the numerical solution of a Dirichlet boundary
value problem consisting in the 2D Poisson equation

2 2
Gt oE = L me=[L (25)
and solved on a square domain € with zero Dirichlet boundary condition, u(z,y)|,q =
0. The domain is conveniently discretized using a computational grid with discretiza-
tion parameters Az = Ay = Az = 2/n,, and the operator by a finite difference
scheme using the standard 5—point stencil [29]. Therefore, the discretized problem to
be solved is Au = f, being A the well-known block tridiagonal matrix corresponding
to the discrete Laplace operator with zero Dirichlet boundary conditions, and f the
source term evaluated at the grid nodes.

The Monte Carlo method can be applied readily to solve such a linear problem,
but first to guarantee the convergence of the method, it is necessary to use a suitable
preconditioner as it was pointed out in [6], and second to rewrite the solution of the
problem as follows

u=(1-H)"'P'f. (26)

Here P denotes the preconditioner, and H = 1 — P~' A. Specifically for this problem
has been used a left Jacobi preconditioner. Comparing Eq. (1) with Eq. (26), note
that Eq. (26) corresponds indeed to the action of the resolvent of the matrix H (setting
s = 1) over the vector P~'f, and therefore both, the Monte Carlo method and the
MLMC method can be applied indeed for solving this problem.

Table 3 shows the computational time spent by the three Monte Carlo algorithms
for different grid sizes. As in the previous example, the same conclusions can be
drawn. In fact, both, the MLMC method and the classical Monte Carlo method,
exhibit a similar performance, being notably superior than the performance of the
Monte Carlo method, and furthermore this holds for any size of the problem.

Finally, it is worth observing in Table 3 that the computational time spent by
all three methods scales almost linearly with the matrix size. In fact, when the grid
size is scaled by a factor of 4, or equivalently the matrix size by a factor of 16, the
computational time increases approximately by a factor equal to 16, since n = n2.
This can be explained as follows: The largest eigenvalue of the discrete 2D Laplace
operator with zero Dirichlet boundary condition is known to be

Amaz(A) = 4 — 8sin® ( ), (27)

T
2N, + 2
therefore Aoz (H) = 1 — 2sin? (3n-+3z)- From the definition of T, in Eq. (21), asymp-
totically for large n., it holds that 7. ~ nZ1In(n.), and therefore from Eq.(23) it
follows that l. ~ log, (ni Inng). Note that the computational time of the MLMC
method depends on the value of the minimum level I., being Tarrve > Tepu(le).
Using the theoretical estimation in [3] asymptotically for sufficiently small At;, it is
known that Tepu (1) ~ 2! then it holds that Tepu(le) ~nln(n).

Table 3: CPU time spent for computing the solution of the 2D Poisson equation
at a single point using the Monte Carlo method (M), the multilevel Monte
Carlo method (M LMC'), and the classical Monte Carlo method (MC.). The
accuracy ¢ of the solution was kept fixed to 1072, and the chosen point i = n/2.

ng Matrix size CPU Time MC (s) CPU Time MLMC (s) CPU Time MC. (s)
256 65, 536 35 21 16

1,024 1,048,576 596 322 277

4,096 16,777,216 10, 065 5,207 4,811
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e Fxample 2. This second example consists in the numerical solution of the un-
derlying linear algebra problem corresponding to the discretization of a 2D reaction-
diffusion equation given by

—V(Bx)Vu)+u=1, xe€Q, ux),q=0, (28)
where Q@ C R*, V = (2, %), and SB(x,y) corresponds to the diffusion coefficient
characterized by a 2 x 2 positive-definite matrix S = {8;; }f’jzl. In particular, for this
example this matrix has been chosen to be diagonal with entries S11 = 1+ y2/a2 (a2 -
z2/a?), and B = 1 + 2*/a*(a® — y?/a?). The domain consists in an arbitrary
geometry, which is plotted in Fig. 6, and the Dirichlet boundary data was chosen to
be 0 at both, the inner and outer circle with radius 0.25a and «, respectively. The
size of the domain can be conveniently increased by simply rescaling both circles using
a single scale parameter a. To generate the computational mesh, and obtaining the
corresponding FEM stiffness matrix and right-hand side vector, the scientific software
COMSOL [10] was used, setting specifically linear elements as the discretization basis.
Different values of the corresponding maximum element size hpq, used when meshing
the geometry was chosen to test the algorithms for different matrix sizes.

Similarly to the previous example, to ensure the convergence of the Monte Carlo
method it is required to use suitable preconditioners. Also in this example it has
been used a left Jacobi preconditioner as it was described in Eq. (26). However, note
that for this more involved problem, the maximum eigenvalue of the matrix is not
theoretically known, being therefore necessary to resort to suitable approximations in
order to apply Eq. (21) and thus obtaining the minimum value, T.. For this purpose
it has been used the Gershgorin circle theorem to find a reasonable bound for the
maximum eigenvalue of the matrix.

The computational time spent for computing the solution at a single point inside
the domain is shown in Table 4, and the same conclusions hold as in the previous
example.

Table 4: CPU time spent for computing the solution of a 2D reaction-diffusion
equation at a single point using the Monte Carlo method (M ('), the multilevel
Monte Carlo method (M LMC), and the classical Monte Carlo method (MC.).
The accuracy ¢ of the solution was kept fixed to 1073, the scale parameter a to
10, and the chosen point x = (0, 0).

hmax Matrix size _CPU Time MC (s) CPU Time MLMC (s) CPU Time MC. (s)

0.1 48,314 7.8 4.5 2.7
0.03 513,455 52 33 29
0.02 1,1143, 744 202 110 91

6.2 Computational-related issues

Parallel performance. To analyze the scalability of the Monte Carlo methods, the
algorithms were conveniently parallelized using OpenMP. This allows to exploit fully
the multi-core architecture of the available server. In Table 5 the computational time
required to compute the Katz centrality of a small-world network of size n = 107 is
shown as function of the number of cores. Note that both the Monte Carlo method,
and MLMC method exhibit a remarkable scalability being almost close to the ideal
one. This is not surprising, since as it was theoretically anticipated before, any Monte
Carlo method requires to compute independent simulations which can be trivially split
in so many independent tasks as the available cores of the server, being therefore the
intercommunication overhead of the parallelized algorithm almost negligible.
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Figure 6: Computational mesh describing the domain used for solving the 2D
reaction-diffusion equation.

For the classical Monte Carlo method, as was explained above it is based on a
adaptive algorithm, which requires to fix a given parameter before running in parallel
. It consists namely on the number of random paths Ny chosen to be increased for
each iteration of the algorithm, and it turns out that this parameter is fundamental
to improve the scalability of the algorithm. In fact, this parameter affects indeed the
total iterations of the algorithm, and moreover has a strong impact in the intercom-
munication overhead of the algorithm, and consequently in the scalability and parallel
performance. In fact, as it can be seen in Table 5, for a fixed number of cores increasing
Ny has always a positive impact on the scalability improving accordingly the speed-up
of the algorithm. This is because in practice it reduces the total iterations needed to
achieve convergence. However note that this may increase unnecessarily the overall
CPU time, since it could happen that the total number of random paths simulated
exceeds unnecessarily the random paths needed to attain the prescribed accuracy.

This would never happen with the MLMC method, because the algorithm exploits
the mathematical relation in Eq. (8). Therefore the MLMC algorithm is capable
of computing precisely the number of random paths needed to attain the prescribed
accuracy, provided the variance and computational cost for each level is known. Since
in practice these values have to be computed numerically as well, further iterations
may be needed to improve the accuracy of such values. However, it is important to
remark that typically only a few number of iterations are required after all. This
indeed explains the remarkable scalability of the algorithm observed in Table 5.
Simultaneous computing of both, Katz centrality and total subgraph com-
municability, of a complex network Another important feature of the MLMC
method compared with the classical Monte Carlo is the fact that without any addi-
tional computational cost it allows to compute other useful metrics, such as the total
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Table 5: Elapsed time spent for computing the Katz centrality of a small-world
network as a function of the number of cores. The size of the matrix is n = 107,
and the accuracy ¢ was kept fixed to 3 x 107°. The simulations were run on a
octa-core server.

Time MCp (s)

Cores Time MC (s) Time MLMC (s)
Ng = 100 Ng = 1000 Ng = 10000
1 8, 601 2,141 1,819 1,617 1,543
2 4,361 1,066 1,362 980 960
4 2,185 527 986 544 497
8 1,076 267 1,276 583 395

subgraph communicability of a node [7], and this could be done simultaneously. This
metric is defined as
Ci(A) = (¢"1),, (29)

and measures the importance of the node i, weighting now the walks of length k by a
penalty factor of value 8% /k!. Concerning f, it is typically interpreted as an effective
”temperature” of the network (see [17], e.g.). Note from Eq. (2) that both, the Monte
Carlo method and the MLMC method, compute automatically ancillary quantities
such as

g =(eT I, j=1,...,N, (30)

as part of the algorithm. These quantities are trivially related with the total subgraph
communicability of a given node for a discrete set of effective temperatures as follows

Ci(A) = &2, (31)
where 8; = jAt. Although in practice they are not saved individually, because they
are not indeed needed to compute the Katz centrality, being rather only effectively
computed the sum of all of them, however a simple modification in the algorithm
would allow in practice saving such quantities. Furthermore this might be done with-
out almost any additional computational cost of the algorithm. In case of the MLMC
method, a crucial point here is to ensure that the numerical error made when com-
puting these ancillary quantities does not exceed the prescribed accuracy. In fact,
this cannot be guaranteed by the method, because the proposed MLMC method was
developed to compute exclusively the resolvent matrix within a prescribed accuracy,
and not any of their ancillary quantities. Nevertheless, in all the examples analyzed
so far the error made never exceeded the prescribed accuracy of the algorithm as it is
shown in Fig. 7 for the particular case of a small-world network. The numerical error
was computed here using the solution obtained using a Krylov-based method [19] of
higher accuracy as it was the theoretical solution.

7 Conclusion

The goal of this paper was to propose a new probabilistic method based on the mul-
tilevel Monte Carlo method for computing the action of the resolvent matrix over a
vector. More specifically, the idea was to compute such an action resorting to the
numerical evaluation of the Laplace transform of the matrix exponential, because it
is known that the action of a matrix exponential over a vector can be computed ef-
ficiently using a multilevel Monte Carlo method. In fact a method was introduced
recently in the literature for such a purpose, and essentially it requires generating
suitable random paths which evolve through the indices of the matrix according to the
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Figure 7: Total subgraph communicability of a single node (n/2) for different
values of the effective temperature t. The network is a small-world network of
size n = 107. The solid line corresponds to the solution obtained using a Krylov-
based method, while the dotted-line to the solution obtained simultaneously
when computing the Katz centrality using a modified MLMC algorithm capable
of saving the ancillary quantities. In the inset it is shown the relative error of
the computed solution.

probability law of a continuous-time Markov chain governed by the associated gener-
alized Laplacian matrix. The convergence of the proposed multilevel method has been
conveniently analyzed in this paper, and several numerical examples were run to test
the performance of the algorithm.

Since there is in the literature other well-established Monte Carlo method for solv-
ing linear algebra systems, we compared in this paper the results obtained using both
methods. It is needless to say that being both methods based on the Monte Carlo
method they share similar advantages from a computational point of view, such as the
comparative ease of implementation in parallel, fault-tolerant, and in general they are
well suited for heterogeneous architectures. However, we show here that the multilevel
stands out especially in a feature that is apparently lacking in the classical method,
which is the autonomous operation of the multilevel algorithm, in contrast with the
classical Monte Carlo algorithm. In fact, for the multilevel method is enough, in gen-
eral, to prescribe the desired accuracy of the solution, and the algorithm proceeds
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automatically in order to meet the requirements established for the solution. Rather
the classical method requires typically a continued surveillance of the underlying er-
rors by the user, being often necessary to repeat simulations in order to satisfy the
requirements demanded for the solution in terms of accuracy.

This feature of the multilevel method is of paramount importance, and it was
namely one of the main goals of this paper. In fact, it was not intended to show here
that the multilevel method is more efficient than the classical Monte Carlo method,
which is clearly not the case in view of the results obtained, but rather to draw the
attention to this inherent feature of the multilevel method. Other than facilitating the
interaction of the user with the algorithm, it has a positive impact in the scalability of
the algorithm when parallelized conveniently, as is also shown in this paper. To this
purpose both methods have been parallelized and some examples run in a multicore
architecture. The results show in general a clearly better scalability of the multilevel
method compared with the classical Monte Carlo.

Finally, a further advantage of the proposed method is discussed, and lies in the
potential capability of the method to compute simultaneously two different metrics
of a complex networks for about the same computational cost. These are the Katz
centrality, and the total subgraph communicability of a network. This is discussed
to close the paper, being left as a possible future work the analysis of the associated
erTors.
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