

Department of Information Science and Technology

Maturity Model for DevOps

Daniel Simões Teixeira

Dissertation submitted as partial fulfillment of the requirements for the degree of

Master in Information Systems Management

Supervisor:

Doctor Rúben Filipe de Sousa Pereira, Assistant Professor

ISCTE-IUL

Co-Supervisor:

Doctor Telmo António Henriques, Invited Assistant Professor

ISCTE-IUL

October 2019

Maturity Model for DevOps

i

Acknowledges

I would like to express my sincere gratitude to my Professors Rúben Pereira and

Telmo Henriques for all the support that they gave me and for everything I learned along

this journey. Finally, a big thank to my parents and my wife, for provided me this whole

academic path, without them, this wouldn’t be possible.

Maturity Model for DevOps

ii

Maturity Model for DevOps

iii

Resumo

Hoje em dia, as empresas precisam de responder às necessidades dos clientes a uma

velocidade sem precedentes. Impulsionadas por esta necessidade de velocidade, muitas

empresas apressam-se para o movimento DevOps. O DevOps, a combinação de

Desenvolvimento e Operações, é uma nova maneira de pensar no domínio da engenharia

de software que recentemente recebeu muita atenção. Desde que o DevOps foi

introduzido como um novo termo e um novo conceito, ainda não foi alcançado um

entendimento comum do que significa. Portanto, as definições do DevOps geralmente são

apenas uma parte relevante para o conceito. Ao observar o DevOps, o fenómeno aborda

questões culturais e técnicas para obter uma produção mais rápida de software, tem um

âmbito amplo e pode ser visto como um movimento, mas ainda é jovem e ainda não está

formalmente definido. Além disso, não foram identificados modelos de adoção ou

modelos de maturidade refinados que mostrem o que considerar para adotar o DevOps e

como fazê-lo crescer. Como consequência, esta pesquisa tentou preencher essas lacunas

e, consequentemente, apresentou uma Revisão sistemática da literatura para identificar os

fatores determinantes que contribuem para a implementação de DevOps, incluindo os

principais recursos e áreas com os quais ele evolui. Isto resultou numa lista de práticas

por área e por capacidade, que foi utilizado como base nas entrevistas realizadas com

peritos em DevOps que, com a sua experiência, ajudaram a atribuir níveis de maturidade

a cada prática. Esta combinação de fatores foi usada para construir um modelo de

maturidade de DevOps mostrando as áreas e as capacidades a serem levados em

consideração na sua adoção e maturação.

Palavras-Chave: DevOps, Maturity Model, CMMI, Capacidades, Areas.

Maturity Model for DevOps

iv

Maturity Model for DevOps

v

Abstract

Businesses today need to respond to customer needs at unprecedented speed. Driven

by this need for speed, many companies are rushing to the DevOps movement. DevOps,

the combination of Development and Operations, is a new way of thinking in the software

engineering domain that recently received much attention. Since DevOps has recently

been introduced as a new term and novel concept, no common understanding of what it

means has yet been achieved. Therefore, the definitions of DevOps often are only a part

relevant to the concept. When further observing DevOps, it could be seen as a movement,

but is still young and not yet formally defined. Also, no adoption models or fine-grained

maturity models showing what to consider to adopt DevOps and how to mature it were

identified. As a consequence, this research attempted to fill these gaps and consequently

brought forward a Systematic Literature Review to identify the determining factors

contributing to the implementation of DevOps, including the main capabilities and areas

with which it evolves. This resulted in a list of practices per area and capability that was

used in the interviews with DevOps practitioners that, with their experience, contributed

to define the maturity of those DevOps practices. This combination of factors was used

to construct a DevOps maturity model showing the areas and capabilities to be taken into

account in the adoption and maturation of DevOps.

Keywords: DevOps, Maturity Model, CMMI.

Maturity Model for DevOps

vi

Maturity Model for DevOps

vii

Index

Acknowledges ... i

Resumo ... iii

Abstract ... v

Index .. vii

Table Index... ix

Figure Index ... xi

Abbreviations ... xiii

Chapter 1 – Introduction .. 1

1.1. Motivation and Objectives .. 2

1.2. Research Objectives .. 4

1.3. Structure ... 4

Chapter 2 – Theoretical Background ... 5

2.1. DevOps ... 5

2.2. Maturity Model ... 7

2.3. CMMI... 8

Chapter 3 – Related Work .. 11

Chapter 4 – Research Methodology ... 17

4.1. Design Science Research .. 17

4.2. Systematic Literature Review.. 18

4.3. Semi-structured Individual Interviews and Email Interviews 19

Chapter 5 – Design and Development .. 21

5.1. Step 1 (Capabilities) .. 21

5.1.1. Review protocol .. 22

5.1.2. Conducting the Review ... 23

5.1.2.1 Selection of Studies ... 23

5.1.2.2 Data Extraction Analysis ... 24

5.1.3. Reporting the Review .. 25

5.2. Step 2 (Areas) ... 29

5.2.1. Review protocol .. 30

5.2.2. Conducting the Review ... 31

5.2.2.1 Selection of studies .. 31

5.2.2.2 Data Extraction Analysis ... 32

5.2.3. Reporting the Review .. 33

5.3. Step 3 (DevOps practices) ... 36

5.4. Step 4 (Maturity Levels) ... 40

Maturity Model for DevOps

viii

5.4.1. First Iteration ... 40

5.4.2. Second Iteration .. 42

5.4.3. Maturity Model ... 43

Chapter 6 – Demonstration .. 49

6.1 First demonstration ... 49

6.2 Second demonstration ... 50

Chapter 7 – Evaluation and Communication .. 51

Chapter 8 – Conclusions ... 55

8.1 Limitations ... 56

8.2 Future Work ... 56

References ... 59

Maturity Model for DevOps

ix

Table Index

Table 1 - SDP, and DevOps MMs ... 12
Table 2 - MMs characteristics ... 14

Table 3 - Vectors used in the MMs from related work ... 15
Table 4 - Inclusion and Exclusion Criteria for DevOps' Capabilities............................ 22

Table 5 - DevOps capabilities SLR ... 26
Table 6 - Inclusion and Exclusion Criteria for DevOps Areas 30

Table 7 - DevOps Areas SLR .. 37
Table 8 - CD Practices .. 38

Table 9 - CI Practices .. 38
Table 10 - Continuous Monitoring Practices ... 38

Table 11 - Continuous Testing Practices ... 39
Table 12 - Infrastructure as a Code Practices ... 39

Table 13 - Feedback Loops Practices .. 40
Table 14 - Information from the Interviewees ... 41

Table 15 - Distribution of the number of practices per level from First Iteration 42
Table 16 - Distribution of the number of practices per level from Second Iteration 42

Table 17 - CD MM ... 45
Table 18 - CI MM ... 46

Table 19 - Continuous Monitoring MM... 46
Table 20 - Continuous Testing MM... 47

Table 21 - Infrastructure as Code MM... 47
Table 22 - Feedback Loops MM ... 48

Table 23 - Evaluations of the MM applicability ... 54

Maturity Model for DevOps

x

Maturity Model for DevOps

xi

Figure Index

Figure 1 - Applied DSR guidelines .. 18
Figure 2 - Workflow of the Design and Development's phase 21

Figure 3 - SLR Methodology for DevOps’ capabilities .. 22
Figure 4 - Review Protocol for DevOps' Capabilities .. 23

Figure 5 - Search strings, databases used and results from search conducted for DevOps

capabilities .. 24

Figure 6 - DevOps Capabilities Articles Distribution per year 24
Figure 7 - SLR Methodology for DevOps Areas.. 30

Figure 8 - Review Protocol for DevOps Areas... 31
Figure 9 - Search strings, databases used and results from search conducted for DevOps

areas ... 32
Figure 10 - DevOps Areas Articles Distribution per year ... 33

Figure 11 - First demonstration maturity ... 49
Figure 12 - Second demonstration maturity ... 50

Figure 13 - Strategic DSRM evaluation framework. Adapted from (Pries-Heje et al.,

2008) .. 52

Figure 14 - DSR Evaluation Method Selection Framework. Adapted from (J. Venable,

Pries-Heje, & Baskerville, 2012) ... 53

file:///C:/Users/daniel.s.teixeira/Desktop/Tese%20e%20artigos%20realizados/DanielTeixeira_Template_Dissertacao_DCTI_2018.docx%23_Toc25926760
file:///C:/Users/daniel.s.teixeira/Desktop/Tese%20e%20artigos%20realizados/DanielTeixeira_Template_Dissertacao_DCTI_2018.docx%23_Toc25926760
file:///C:/Users/daniel.s.teixeira/Desktop/Tese%20e%20artigos%20realizados/DanielTeixeira_Template_Dissertacao_DCTI_2018.docx%23_Toc25926764
file:///C:/Users/daniel.s.teixeira/Desktop/Tese%20e%20artigos%20realizados/DanielTeixeira_Template_Dissertacao_DCTI_2018.docx%23_Toc25926764

Maturity Model for DevOps

xii

Maturity Model for DevOps

xiii

Abbreviations

CD
–

Continuous Deployment

CI
–

Continuous Integration

CMMI – Capability Maturity Model Integration

DSR – Design Science Research

DSRM – Design Science Research Methodology

ITIL – Information Technology Infrastructure Library

MM – Maturity Model

SD – Software Development

Maturity Model for DevOps

xiv

Chapter 1 – Introduction

1

Chapter 1 – Introduction

The constantly change of business needs and the requirement for faster time to market

with today’s software has created a paradigm shift towards a 3rd generation Software

Development (SD) philosophy adopting DevOps principles and practices. The lack of

collaboration between IT Operations and SD as well as mismatch in configuration

between development, testing and production environment has made deploying software

releases slow and painful for many organizations. Different incentives between teams

makes it difficult to work towards a common goal of bringing added value to customers.

A SD methodology in software engineering is a framework that is used to structure,

plan, and control the process of developing an information system. Traditional and

modern (agile) SD methodologies usually focuses exclusively on the SD teams. In either

case, once the software is developed, it is typically handed over to the IT operations team,

which takes responsibility for its deployment, ongoing maintenance and support (Jones,

Noppen, & Lettice, 2016). The Agile movement has brought together programmers,

testers, and business representatives. Conversely, operations teams are isolated groups

that ensure stability and enhance performance by applying practices such as the

Information Technology Infrastructure Library (ITIL) (Hüttermann, 2012).

For Debois (2011), since both development and operations serve the same customer,

the needs of both must be discussed simultaneously. Treated separately, they are like

separate trains on separate tracks: no matter how fast they go, they can never meet. Due

to this fact, the team commonly works in silos, which leads to a lack of information

exchange. Lwakatare, Kuvaja, and Oivo (2015a) say that it is impossible to effectively

transmit information between two different teams in continuous release mode, while de

França, Jeronimo, and Travassos (2016) report that Development and Operations are left

to themselves and will often struggle to talk to each other, much less collaborate, and will

remain mired in manual processes. As a result, employees do not work well together,

software not work reliably, and customers think about moving to competitors (de França

et al., 2016).

Separations on a technical and organizational level as well as the use of different tools

have experienced an increase among Dev and Ops teams (M. M. A. Silva, Faustino,

Pereira, & Silva, 2018). This bottleneck between Dev and Ops can affect and/or

compromise products and services’ quality. So, there is a clear disconnect as the two

teams speak two different languages (McCarthy, Herger, Khan, & Belgodere, 2015).

Chapter 1 – Introduction

2

In the midst of such evidence, DevOps emerged. It applies agile and lean principles

throughout the entire software supply chain (Sharma & Coyne, 2015). These principles

of lean development are: eliminate waste, build quality in, create knowledge, defer

commitment, deliver fast, respect people and optimize the whole (Razzak, 2016). This

allows a business to maximize the speed of delivery of a product or service, from the

initial idea to production release and all the way up to customer feedback to improvements

based on that feedback (Sharma & Coyne, 2015).

Mohamed (2015) argues that this level of integration between development and

operations is revolutionary as releases can be driven by the business need, rather than the

operational constraints. Virmani (2015) adds that this approach helps to deliver value

faster and continuously, reducing problems caused by misunderstandings between team

members, and help to accelerate problem resolution. In another perspective, DevOps can

be understood as rendering operations more agile (Hüttermann, 2012).

According to de França et al., 2016 there is a lack of common understanding of what

DevOps means for both academia and the practitioners’ communities. This knowledge

gap demonstrates that there is still a need for research about the DevOps phenomenon, its

complexity and lack of support and orientation on the sequence of steps to

adopt/implement/achieve DevOps. Based on what has been described, there is a clear

opportunity to develop a Maturity Model (MM) on the subject, with the goal of deepening

our understanding of what DevOps is.

1.1. Motivation and Objectives

In recent years, the advancements on DevOps area have facilitated a lot of new growth

opportunity for software companies (Nidagundi & Novickis, 2017) as it improves the way

how a business delivers value to its customers, suppliers, and partners, it is an essential

business process, not just an IT capability (Sharma & Coyne, 2015). This is one of the

main reasons why the DevOps’ adoption is growing and is a new tendency in business

and IT alignment (Bucena & Kirikova, 2017). To Chen (2018), businesses today need to

respond to customer needs at unprecedented speed. Driven by this need for speed, many

companies are rushing to the DevOps movement and implementing Continuous Delivery.

The growth opportunities for DevOps continue to increase. Ovum, a market-

leading data, research and consulting company, sees plenty of evolution potential in

DevOps as there is potential for improved integration with Application Lifecycle

Management on the dev side and improved integration with operations and IT business

http://https/ovum.informa.com/products-and-services/data-services/forecaster
http://https/ovum.informa.com/resources/product-content/research-agenda-19
http://https/ovum.informa.com/products-and-services/consulting-services

Chapter 1 – Introduction

3

services (Azoff, 2016). According with the 2018 State of DevOps Report has been

registered a steady increase in survey responses from people on DevOps teams, from just 16

percent in 2014 to 29 percent in 2019 (Velasquez, Kim, Kersten, & Humble, 2018).

The adoption of DevOps drives a challenging cultural shift towards collaboration and

knowledge-sharing between SD, quality control and operations (Colomo-Palacios,

Fernandes, Soto-Acosta, & Larrucea, 2018). The tremendous growth in demand for

DevOps has, however, led to the appearance of new needs. For St, Ab, and Bosch (2017),

despite wanting to implement DevOps, many companies find it difficult to understand

what DevOps is and what advantages it will have. Furthermore, they ask themselves how

to implement DevOps or how can they improve their DevOps practices.

Many companies miss the maturity of the concept – with no clear definition of

DevOps and its practices, no clear goals available and a lack of understanding about

development workflow phases and responsibilities (Bucena & Kirikova, 2017). There is

both a lack of understanding around DevOps and a clear definition of what it is

(Lwakatare et al., 2015). Therefore, organizations are not sure how to effectively

implement DevOps capabilities (Qumer Gill, Loumish, Riyat, & Han, 2018).

The disruptive nature of the changes required to adopt DevOps leads to organizational

and business stress. While L. Zhu, Bass, and Champlin-Scharff (2016) consider the

organizational strains as being standard for new technologies, for Bucena and Kirikova

(2017) the adoption of DevOps is not trivial and can require complex changes in an

enterprise’s process, organization and workflow. To succeed in adopting DevOps, the

enterprises should understand the different aspects that are related to the DevOps

approach and have a well-thought-out strategy. They should start the adoption process

with a clear idea of what actions should be performed, how they should be prioritized,

what tools could support these actions, and how to measure the success of the adoption

process (Bucena & Kirikova, 2017). Moreover, the way an organization is structured may

influence DevOps’ adoption, for example, when discussing communication, common

goals and practices, decision making, and systems thinking within the organization

(Smeds, Nybom, & Porres, 2015).

Whereas DevOps benefits are widely discussed regarding DevOps culture and

available tools, it makes sense to exist a MM for DevOps approaches. A MM is a widely

used technique that has proven valuable for assessing business processes or certain

aspects of organizations, as it represents a path towards an increasingly organized and

systematic way of doing business. (Proenca, 2016). They also allow for a better

Chapter 1 – Introduction

4

positioning of the organization and help find better solutions for change (Becker,

Knackstedt, & Pöppelbuß, 2009).

As organizations are under constant pressures to gain and maintain competitive

advantages, identifying ways of cutting costs, improving quality, reducing time to market

and so on, they become increasingly important.

1.2.Research Objectives

In this section, the researcher will explain how the research objectives will be

addressed. According to the literature, both areas and capabilities play an important role

in DevOps adoption and maturation. Therefore, the researcher has defined that studying

the key areas and capabilities that relate to DevOps should be an integral part of this

research.

Based on the previously presented information in the last section, the researcher

defined the following objectives:

RO1: To develop a MM for DevOps

RO1.1: Identify DevOps capabilities

RO1.2: Identify DevOps Areas

1.3.Structure

The remainder of this dissertation consists of eight chapters that are structured as

follows. The second chapter presents the Theoretical Background, about DevOps and

MM. The third chapter presents the related work, studies related with DevOps MM. In

the fourth chapter, the author presents the Research Methodology that was used on this

study. In the fifth chapter, it is presented the design phase. In the sixth chapter, it is present

the development and demonstration of our implementation and the respective results. In

the seventh chapter, the Evaluation and Communication is assessed. In the eighth chapter,

our conclusions, possible future work and the felt limitations along dissertation are

presented.

Chapter 2 – Theoretical Background

5

Chapter 2 – Theoretical Background

The clarification of concepts and definitions, related to our topic and derived from

existing theories and empirical studies available in the academic literature, is provided in

this section. The topics that will be further detailed are DevOps and MM.

2.1. DevOps

A good cooperation between IT Development and IT Operation teams is viewed to be

crucial in order to ensure successful deployment and operations of IT systems (Tessem

& Iden, 2008). However, for historical reasons, most IT organizations are characterized

by clear boundaries between these two teams, which have very different goals, mindsets

and cultures (Swanson & Beath, 1990; Gazivoda, 2018).

According to Sharma (2014), many organizations are not successful with software

projects and their failures are related to the challenges in product development and

delivery. Despite this, many companies find that the development and delivery of

software applications are crucial to their business, and that only 25% of companies

consider their teams to be efficient (Sharma, 2014). This gap in efficiency leads to many

losses of business opportunities. This demonstrates that even a disruptive methodology

cannot be perfect for every project.

Given the distinct nature and typology of the functions of each of these teams, it is

easy to understand why there are some conflicts when they interact. Such conflicts are

essentially related to the different focuses of both teams. Despite actively seeking

collaboration from all its stakeholders, most agile projects do not extend themselves to

operations people (Diel, Marczak, & Cruzes, 2016). These two teams (Operations and

Development) should maintain a close and agile relationship, as it is this relationship

which represents the stream of values between the business (where requirements are

defined) and the customer (where value is created) (Kim, 2015).

However, the relationship between Dev and Ops is not always linear and transparent

enough to be able to create synergies capable of overcoming new problems that appear

throughout the application’s life cycle. While Dev is focused on faster innovation and

doing new things, Ops is mainly focused on stability, control, and predictability (Tingley

& Anderson, 1986). This cultural difference between the development and operations

departments has been reported to lead to conflicts. For example, developers need to get

used to operation personnel not having experience with working on projects (J Humble

& Molesky, 2011). When development and operations are divided into different

Chapter 2 – Theoretical Background

6

departments, some processes cross departmental boundaries. This makes it difficult to

automate these processes (DeGrandis, 2011). For Debois (2011), despite the fact that both

development and operations serve the same customer, the needs of both should be

discussed at the same time.

According to Virmani (2015), as part of the Agile transformation in the past few years,

IT organizations have introduced Continuous Integration (CI) principles into their

software delivery lifecycle, which has improved the efficiency of development teams.

Over time, however, it became clear that the optimization resulting from CI was not

helping to make the entire delivery lifecycle efficient nor to increase the efficiency of the

organization. Unless all the pieces of a software delivery lifecycle work like a well-oiled

machine, the efficiency of the delivery lifecycle cannot be optimized.

In order to address the problems between the development and operations teams a

new agile approach appeared, namely DevOps. DevOps has been heralded as a novel

paradigm to overcome the traditional boundaries between IT Development (Dev) and IT

Operations (Ops) teams (Nielsen, Winkler, & Nørbjerg, 2017). According to Riungu-

Kalliosaari et al. (2016), DevOps is a set of practices intended to reduce the time between

making a change to a system and this change being placed into normal production, while

ensuring high quality. The main goal associated with this concept is to avoid common

problems when operations and developers are kept as separated teams (Bezemer,

Eismann, Ferme, & Grohmann, 2018).

In a more general approach, DevOps integrates a set of characteristics and principles

for software delivery that focuses on: speed of delivery, Continuous Testing in a an

environment where production takes place, being ready for shipping at any moment,

continuous feedback, the ability to react to change more quickly, and teams working to

accomplish a goal instead of a task (no more team boundaries causing a delay) (Sharma

& Coyne, 2015). It involves an organizational paradigm shift from distributed siloed

groups performing functions separately to cross-functional teams working on continuous

operational feature deliveries. Instead of confining themselves to highly artificial process

concepts that will never fly, organizations set up continuous delivery with small upgrades

(Ebert, Gallardo, Hernantes, & Serrano, 2016).

DevOps integrates the two worlds of development and operations, using automated

development, deployment, and infrastructure monitoring (Ebert et al., 2016). For Sharma

and Coyne (2015), because DevOps improves the way that a business delivers value to

Chapter 2 – Theoretical Background

7

its customers, suppliers, and partners, it is an essential business process, not just an IT

capability.

2.2. Maturity Model

Software organizations deploy software process improvement (SPI) initiatives as a

way to enhance software product quality (Staples & Niazi, 2008). Since the nineties of

the last century, software companies have assessed the capability of their processes

according to MMs such as CMM, CMMI, and ISO/IEC 15504, at the diagnosing phase

in the SPI initiative (Fe, 2008; Staples & Niazi, 2008). Diverse proposals can be found

which are geared at enhancing maturity of process in diverse disciplines and domain areas

(Anderson, Watson, & Armstrong, 1982). The idea of capability or process maturity is

therefore fundamental in SPI initiatives. To García-mireles (2012), this idea has been the

springboard from which MM have been developed to assist organizations to enhance

software quality. These organizations are concerned with the establishment of standard

operation norms and criteria to improve processes. In the software engineering domain,

the models are in search of organizational maturity, defined as the capability of an

organization to implement, establish, standardize, measure and improve software

processes.

According to Cooke-Davies (2007) there is no common and generally accepted

definition of what a “mature project-based organization” looks like. For Mettler (2011),

maturity is a measurement of the ability of an organization for continuous improvement

in a particular discipline and, as a measure to evaluate the capabilities of an organization

in regards to a certain discipline, has become popular since the Capability Maturity Model

(CMM) has been proposed by the Software Engineering Institute at Carnegie Mellon

University. Whilst the original CMM has a specific focus on the evaluation of SD

processes, this model has been varied and extended in several approaches and is now

applied for the evaluation of IT Infrastructure Management, Enterprise Architecture

Management and Knowledge Management to name a few. CMM is now one of the best

and most widespread models today is the Capability Maturity Model Integration (CMMI),

which, in five stages, provides sequences for improvement as well as a basis to assess the

deployment maturity of specific projects or organizations (Verrier, Rose, & Caillaud,

2016).

MM’s are commonly used as an instrument to conceptualize and measure maturity of

an organization or a process regarding some specific target state (Schumacher, Erol, &

Chapter 2 – Theoretical Background

8

Sihn, 2016). Further, MM intended for a prescriptive purpose of use include good or best

practices which is helpful to provide practical guidance (Maximilian &

Schwindenhammer, 2018). They refer that maturity not only implies a potential for

growth in capability, but also focuses on richness and consistency regarding execution.

In this regard Andersen & Jessen (2003) define maturity as the quality or state of being

mature. The maturity concept must be related to a state in which organizations are in

perfect conditions to achieve their goals (Berssaneti, Carvalho, & Muscat, 2012).

The higher the maturity, the higher will be the chances that incidents or error

correction will lead to improvements either in the quality or in the use of the resources of

the discipline as implemented by the organization. Most MMs assess qualitatively

people/culture, processes/structures, and objects/technology (Mettler, 2011).

These MMs are an interesting approach to solving the problem described in Section

1.1., regarding the lack of knowledge about DevOps, since the presence of a maturity

classification provides a roadmap for process improvement and allows the comparison

between organizations to encourage competition and differentiation.

Two approaches for implementing MMs exist. With a top-down approach, such as

proposed by Becker et al. (2009) a fixed number of maturity stages or levels is specified

first and further corroborated with characteristics (typically in form of specific assessment

items) that support the initial assumptions about how maturity evolves. On the other hand,

when using a bottom-up approach, such as suggested by Lahrmann, Marx, Mettler,

Winter, & Wortmann (2011), distinct characteristics or assessment items are determined

first and clustered in a second step into maturity levels to induce a more general view of

the different steps of maturity evolution. This research follows the top-down MM

approach proposed by Becker et al. (2009).

2.3.CMMI

CMMI (and its predecessor CMM) is a framework intended to cover many software

engineering best practices and can be used for SPI. CMMI is most well known in its

“staged” representation, which has five maturity levels. To reach a maturity level, a

company must satisfy the goals of the process areas for that and all lower levels. The

expected capacity of an organization that operates in a more mature way depends directly

on your ability to perform, control, and improve performance in one or more areas of

implementation of the model practices (Barbosa, Furtado, & Gomes, 2007).

Chapter 2 – Theoretical Background

9

CMMI evokes barriers in some because of the processes involved in certification.

However, CMMI at its core is not a methodology but rather a set of principles. In the case

of CMMI, the set of principles focuses on maturation of a SD process. This is an emphasis

which is quite differentiated from the Agile approach. CMMI is concerned with defining

metrics and practices to ensure continuous improvement (Chrissis, Konrad, & Shrum,

2010). The goal of CMMI is not just to support a minimum set of standards to achieve to

a particular level, but to enable increasing improvement in organizational processes.

CMMI’s approach is based on MM. It supports both a staged approach and a continuous

model for improvement. It provides several key process areas at different levels. The key

process areas are intended to help gauge where an organization is at in the maturation

process as well as provide guidance for how to achieve the desired level. CMMI

associates skill in different process areas with higher maturity levels. Maturity levels are

those that are related to the path which helps organizations to apply improvements to a

set of related processes by incrementally addressing successive sets of process areas and

goes through 1 to 5 as follows:

• Level 1: Initial – There is no formal process.

• Level 2: Managed – There is a minimal process and the status of projects is visible

to management at major milestones

• Level 3: Defined – Processes are well characterized and understood, and are

described in standards, procedures, tools, and methods.

• Level 4: Quantitatively Managed – The organization and projects establish

quantitative objectives for quality and process performance and use them as criteria

in managing processes

• Level 5: Optimizing – All processes are already defined and managed. Goals for

levels one to four are all achieve.

Chapter 2 – Theoretical Background

10

Chapter 3 – Related Work

11

Chapter 3 – Related Work

This section intends to describe the main contributions of the scientific community in

DevOps maturity. Since this research aims to study DevOps’ maturity, it is mandatory to

search literature where it is possible to study other proposals for DevOps’ MMs.

However, given that DevOps is a new term and concept recently introduced, the author

decided to extend the scope of the study to SD MMs. To do that, the author performed a

literature review.

A literature review may be helpful distinguishing what has been done from what needs

to be done, discovering important variables relevant to the topic, synthesizing and gaining

a new perspective or identifying relationships between ideas and practice (Hart, 1998).

An effective review creates a solid foundation for advancing knowledge. It facilitates

theory development, closes areas where a plethora of research exists, and uncovers areas

where research is needed (Webster & Watson, 2002). For easier understanding of the

peers, as well as to add more scientific rigor to our research, the author decided to follow

the concept centric approach proposed by Webster & Watson(2002).

To perform the literature, review the researcher have searched and consulted the

following digital repositories: IEEExplore, ACM, Research Gate and it was also used the

search engine of Google Scholar.

This research was carried out between September of 2018 and January of 2019. The

keywords used to perform this research were: “DevOps maturity model”, “DevOps

maturity”, “Software Development Projects maturity model”, “Software development

projects maturity”, “Scrum maturity model” and “Scrum maturity”.

In this section, the main findings regarding SDP, Scrum and DevOps MMs are

presented (Table 1). Table 2 intends to give a perspective about this studies characteristic,

while Table 3 contains all the studies mapped with the corresponding maturity vectors

found by the researcher in the proposed MMs. These three tables are expected to clarify

the existing related work on this area and related domains.

Since DevOps is a recent theme and there are not a lot of dedicated maturity studies

in literature (Rong, Zhang, & Shao, 2016a). The researcher has decided to include agile

and scrum MMs.

Both Scrum and DevOps have in common to broaden the usage of Agile practices to

operations to streamline the entire software delivery process in a holistic way

Chapter 3 – Related Work

12

(Hüttermann, 2012; Bang, Chung, Choh, & Dupuis, 2013). Table 1 presents all the MMs

for SDP, Scrum and DevOps found among the literature.

Table 1 - SDP, and DevOps MMs

ID

Author

MMs

Model

Maturity

Levels

Dimension DevOps Scrum SDP

S.1 (Mohamed, 2015) X CMMI 5 4

S.2 (Bucena & Kirikova, 2017) X Not defined 5 4

S.3 (A. P. G. Yin, 2011) X CMMI 5 Not defined

S.4 (Srivastava, Bhardwaj, & Saraswat,

2017)

 X Not defined Not defined

S.5 (Kawamoto & De Almeida, 2017) X CMMI Not defined Not defined

S.6 (Baskarada, Gao, & Koronios, 2005) X CMMI 5 Not defined

S.7 (Patel & Ramachandran, 2009) X CMMI 5 Not defined

S.8 (Buglione, 2011) X CMMI 5 4

S.9 (Santana, Soares, Romero De, & Meira,

2013)

 X CMMI 5 Not defined

S.10 (Fontana, Meyer, Reinehr, & Malucelli,

2015)

 X CMMI Not defined 6

S.11 (Stojanov, Turetken, & Trienekens,

2015)

 X Not defined 5 5

From the analysis of Table 1 some conclusions can be withdrawn. The low number

of DevOps MMs that has been found indicate that few studies exist deep studying

DevOps. The number of studies on SDP is greater than for scrum and DevOps. One of

the main reasons for this is that most of the SDP uses Agile methodology, which in turn

is the basis for both DevOps and Scrum so it is expected that there exist more studies

about this theme than for the others.

CMMI seems to be the basis of these models since it was used in 73% of these studies.

It was not explicit any of the vectors that constitutes the Scrum’ MMs and, apart from one

study, the same happened to the number of levels used. This is justified by the fact that

CMMI is a well-known methodology used to develop and refine an organization’s SD

process (Farkas & Walsh, 2002). CMMI is an approach to improve processes that

provides elements that are essential for an effective process. It brings together best

practices that address development and maintenance activities, thus covering the entire

lifecycle of a product from conception to delivery and maintenance (Chrissis et al., 2010).

It has been also included a vector named “Dimension” that represents the number of

Chapter 3 – Related Work

13

vectors that were represented in model. From the previous table, it is possible to see that

the study with less dimensions had four and on the opposite side, the study with more

dimensions has six. This helps the researcher to put into perspective the number of

dimensions used in other MM, to understand the number of dimensions that should be

used in this study.

Mohamed (2015) built a DevOps MM based on CMMI with five maturity levels.

More concretely, the model comprises an initial, managed, defined, measured, and

optimized level that denote an increase in maturity with respect to four dimensions, which

are known as communication, automation, governance, and quality management.

Bucena & Kirikova (2017) also proposed a MM for DevOps. Although the researcher

did not used the CMMI approach, the presented model also have 5 levels of maturity.

These five levels of maturity relate to four enterprise areas, namely, technology, process,

people, and culture. For each chunk in the MM, corresponding DevOps practices reported

by DevOps practitioners were associated. Bucena & Kirikova (2017) developed this

model as an attempt to facilitate the adoption of DevOps in small enterprises. The

experimental application of this model was done in the IT department of a medium sized

enterprise where Its main business is not related to IT, where Bucena & Kirikova (2017)

considered the department with twenty one IT department employees as a small

enterprise.

There are other studies among the literature that, although not presenting any MM,

indicate a creation of a CMMI based MM for DevOps. For Rong et al. (2016), it is

important to mature adoption of the DevOps for software companies, no dedicated MMs

for DevOps exist. On Rong et al. (2016) study, the authors reports a case study with a

real-world project, which sheds light on the adoption status of the DevOps in a project in

its early stage of transition from products delivery to services deployment and

maintenance. Furthermore, the results of his study reveal that the CMMI models could

provide a good foundation to extend the models.

To obtain a clearer view about the characteristics of the studies of the MM which have

been found, the researcher has constructed the following table (Table 2). In this table,

vectors have been used to that help for a better understanding of the characteristics of

these studies, such as the year in which the model was developed, which MM was based

on, if it follows Becker’s top-down approach, if the author justified the vectors used,

whether they comply with the Design Science Research (DSR) steps and if any

demonstration of the model was made.

Chapter 3 – Related Work

14

Table 2 - MMs characteristics

ID Year Proposed

MM

Based

MM

Becker’s top-

down approach

Vectors

validation

DSR Demonstration

S.1 2015 DevOps CMMI Not used Not validated Not

used

Not applied

S.2 2017 DevOps Not

defined

Not used Validated Not

used

Applied

S.3 2011 Scrum CMMI Not used Not defined Not

used

Not applied

S.4 2017 Scrum Not

defined

Not used Not defined Not

used

Not applied

S.5 2017 Scrum CMMI Not used Not defined Not

used

Not applied

S.6 2005 SDP CMMI Not used Not defined Not

used

Not applied

S.7 2009 SDP CMMI Not used Not defined Not

used

Not applied

S.8 2011 SDP CMMI Not used Not Validated Not

used

Applied

S.9 2013 SDP CMMI Not used Not defined Not

used

Not applied

S.10 2015 SDP Not

defined

Not used Validated Not

used

Applied

S.11 2015 SDP CMMI Not used Validated Not

used

Not applied

Overall, two MMs for DevOps were identified in literature. However, as one can see

in Table 2, both MMs lack the use of structured methods in the design process which may

raise doubts on the rigor of the MMs. For instance, only one is based on CMMI and none

adopts Becker theory or DSR.

Table 3 intends to list and synthesize the related work and identify what vectors were

used on the MM which have been found. By doing it, the researcher aimed to identify the

main vectors that were applied on those case studies and understand the reasons behind

those.

For a better understanding, the studies have been grouped by approach. A vector can

be written on a different way depending on its context, so the researcher has grouped

these vectors by the meaning of the vector. Table 3 shows the vectors grouped by study.

Chapter 3 – Related Work

15

Table 3 - Vectors used in the MMs from related work

Vector

DevOps

Scrum

Agile

S.1 S.2 S.3 S.4 S.5 S.6 S.7 S.8 S.9 S.10 S.11
Culture X

Collaboration X X

Process X

Quality X

Automation X

Governance X

Technology X

People X X X

General X

Sustained Success X

Organization’s Environment X

Interested parties, needs and

expectations

 X

Embrace Change to Deliver

Customer Value

 X

Plan and Deliver Software

Frequently

 X

Technical Excellence X

Practices X

Deliveries X

Requirements X

Product X

Customer X

Through the analysis of Table 3, it can be devised that several MM exist in the

literature. In six of these studies, the authors did not specify the vectors that would be

used. Although DevOps studies are less than agile studies, some agile MMs use the same

vectors defined by the DevOps MMs. This may be due to the fact that, first, DevOps and

agile keep a close relationship and, secondly, DevOps is a recent topic and there is not

much information available about it (Hussain, Clear, & MacDonell, 2017). On agile

studies, with some exceptions, it appears that each author defined most of their vectors.

Focusing on DevOps studies, there are no common characteristics present among the

two models found. This also proves that the field needs further developments to reach

more consensus and completeness. Each author decided to establish their own vectors

based on what they thought best defines the characteristics and that could help define the

maturity of DevOps in the context of their studies.

To Mohamed (2015), the keys to successful adoption of DevOps are quality,

automation, collaboration, and governance/process, while claiming that, together, these

fundamental elements can unify the traditional IT silos to enable agility across the end-

to-end application life cycle. On the other hand, Bucena & Kirikova (2017) DevOps MM

was developed on the basis of analysis of related work and includes five levels of maturity

with respect to the four enterprise areas, namely, technology, process, people, and culture.

No surprises with the absence of DevOps as possible vectors to assess DevOps maturity.

Chapter 3 – Related Work

16

With the lack of consensus among the studies as well as the absence of both the use

of rigorous methods/methodologies in the design process and DevOps capabilities as

vectors of maturity assessment, the design of a new MM for DevOps can be faced as an

opportunity and a step forward on the perspective of associated mature practices.

Chapter 4 – Research Methodology

17

Chapter 4 – Research Methodology

4.1.Design Science Research

For the development of the proposed DevOps MM, it was applied the design science

research methodology (DSRM) presented by Peffers et al. (2006) and the seven

guidelines for DSR proposed by Hevner, March, Park, & Ram (2004). DSR approach was

selected since this research aims at solving practical problems by creating and evaluating

IT artifacts intended to solve identified organizational problems (Hevner et al., 2004).

IT artifacts are broadly defined as constructs (i.e., vocabulary and symbols), models

(i.e., abstractions and representations), methods (i.e., algorithms and practices), and

instantiations (i.e., implemented and prototype systems) (Hevner et al., 2004). According

to Becker et al. (2009) and Mettler (2009), it can be assumed that the development of

MMs falls within the application area for the guidelines by Hevner et al (2004). and

accordingly, DSR.

 According to Peffers et al. (2006), the DSRM consists of six activities (i.e. steps).

Figure 1 presents our applied techniques and performed activities in each DSRM step. In

order to achieve rigorous as well as relevant research results, it was drawn upon the

following DSRM steps, whereby the paper is structured accordingly:

• Problem identification and motivation: In the first chapter, it was specified the

problem, provided practical relevance and justified the value of a solution.

Additionally, based on problem scope, research questions were derived guiding

this research.

• Define the objectives for a solution: The second chapter provides objectives of

the intended collaboration MM. Based on a literature review, design

recommendations in MM design and assessment will be identified and

suggestions for circumvention will be proposed.

• Design and Development: This activity is present in Chapter 5 and describes the

MM development. Based on a literature review the MM will be designed and

iteratively developed according to the requirements of MM construction (Becker

et al., 2009).

• Demonstration: By means of an application test with three participant

organizations the applicability and usability of the artifact was demonstrated. The

utility of the MM will be further validated DevOps experts.

Chapter 4 – Research Methodology

18

• Evaluation: According to Hevner et al. (2004), the artifact will be evaluated in

terms of quality, utility and efficacy which cannot be demonstrated fully in this

research.

• Communication: Communicate the problem, the importance, the utility, the rigor

and the effectiveness of its design.

Figure 1 - Applied DSR guidelines

4.2.Systematic Literature Review

One of the major tools used in other domains to support an evidence-based paradigm

is the generation of Systematic Literature Reviews (SLR), which is used to aggregate the

experiences gained from a range of different studies in order to answer a specific research

question (Khan, Kunz, Kleijnen, & Antes, 2004).

A SLR is a literature review method that aims to address a problem by identifying,

evaluating, integrating all relevant findings, and interpreting research on research topics

to answer research questions based on the stages used in SLR (Siddaway, 2014). The

process of addressing the problem of lack of knowledge aims to identify the relationships

and gaps in the existing literature. The identification process is used to describe directions

for future research, because it consists of the process of formulating a general statement

or an overarching conceptualization, commenting on, evaluating, extending, or

developing theory from existing literature (Siddaway, 2014).

This research follows Kitchenhams Procedures for SLR (Kitchenham, 2004),

complemented by the centric approach from Webster and Watson (Webster & Watson,

2002), which encompass the following steps:

Identify Problem and

Motivation

Define Objetives of

a Solution

Design and

Development
Demonstration Evaluation Comunication

Lack of Knowledge

about DevOps

Practices

Include SLR to

elicit capabilities

and areas of

DevOps

Lack of support in the

implementation of

DevOps

Populate the MM

based on the SLR

No scientifically

rigorous MM for

DevOps

Interviews with

practitioners
Research Article

Section 1.1 Section 1.2 Chapter 5 Chapter 6 Chapter 7 Chapter 8

Develop a MM for

DevOps

Interview with

experts

Paper thesis
Apply the Model to

teams that practice

DevOps

Chapter 4 – Research Methodology

19

- Planning. It is necessary to confirm the need for such a review. It is also necessary

to define the research question(s) that the systematic review will address and

produce a review protocol (i.e. plan) which defines the basic review procedures.

- Conducting. Apply the review protocol previously designed in order to obtain

studies which will be the object of the review.

- Reporting. The final phase of a systematic review, which involves writing up the

results of the review and circulating these results to potentially interested parties.

4.3.Semi-structured Individual Interviews and Email Interviews

The interview study reported here was carried out with DevOps practitioners

Professionals from all over the world. The study took place as a qualitative interview

study in the tradition of the qualitative research interview, which allows the researcher to

ask questions to different issues in the interviewees’ life-world, including practical issues

of how to do things and cognitive issues such as personal and professional epistemologies

(Kvale, 1996).

Before conducting an interview, it is important for the researcher to have a thorough

preparation to help in screening potential individuals who will be used as participants and

it may be helpful in gaining preliminary ideas and important information about the topic

and individuals to be interviewed. In this study, participants were provided with

background information and an overview of the topics prior to its discussion.

One-to-one (or individual) interviews are as old as mankind and had already been

used by the Ancient Egyptians for demographic investigations (Fontana and Frey, 1994).

For individual interviews to be used as a research method, one of the participants should

act as a researcher, and conduct the interview with the objective to answer a research

question. Individual interviews can take a large variety of formats, ranging from

structured (or close-ended) to unstructured (or ethnographic): While the first gives little

room for variation in the answers (Fontana and Frey, 1994) the latter is closer to

observation and leads to open-ended data (Fielding & Maanen, 1989). Between these two

extremes, semi-structured interviews allow for long and in-depth accounts, while also

providing guidance on the interview topic.

There are several advantages of one-to-one, face-to-face interviews. First, qualitative

interviewing enables the researcher to gain deep insights into the respondents’

perspectives (Liguori, Selltiz, Jahoda, Deutsch, & Cook, 2007). Second, qualitative

interviews are relatively inexpensive and allow collection of very rich data, enabling the

Chapter 4 – Research Methodology

20

researcher to notice and correct the respondents’ misunderstandings, to probe vague

answers, as well as to clarify doubts or concerns. Compared to other research methods,

face-to-face interviews allow to monitor the order in which the questions are answered,

and to control the context of the interview, thereby avoiding the possible biasing presence

of other people (Liguori et al., 2007). Finally, the interviewing methodology is easily

adjustable and can be combined with quantitative methods.

Semi-structured interviews are characterized by the use of a script consisting of closed

or open predefined questions (Rijo, 2008). They are suitable when the research wants to

validate several hypotheses but also to know the fieldwork and to explore new ones

(Pozzebon, 2006). Particularly, they enable the interviewee to discuss the subject matter

without being too attached to the formulated inquiry (Manzini, 2004). They also facilitate

the interviewer to have clear support following the questions (Manzini, 2004). Moreover,

they ensure to researchers that their hypotheses or assumptions will be broadly covered

by the conversation (Minayo, 2004).

Qualitative research has become essential to the humanities over the past twenty years

(Ratislavová & Ratislav, 2014). During that time, researchers have identified weaknesses

in the qualitative approach, such as the fact that it is very time consuming, difficult to

access, and expensive. Synchronous and asynchronous interviews and virtual focus

groups are the most common methods (Ratislavová & Ratislav, 2014). The use of Email

Interview can be employed quickly, conveniently, and inexpensively and can generate

high-quality data when handled carefully. Although the method has a number of

challenges, many of them were found to be easy to overcome, presenting scholars with a

new technique for conducting efficient and effective qualitative research. While a mixed

mode interviewing strategy should always be considered when possible, semi-structured

e-mail interviewing can be a viable alternative to the face-to-face and telephone

interviews, especially when time, financial constraints, or geographical boundaries are

barriers to an investigation (Meho, 2006).

Chapter 5 – Design and Development

21

Chapter 5 – Design and Development

To design the artifact, the author followed the steps listed below:

Step 1: Identify which are the main DevOps capabilities

 Method(ology): SLR

Step 2: Identify which are the areas that most relate with DevOps.

 Method(ology): SLR

Step 3: Identify the main practices of each DevOps capability

 Method(ology): Literature Review

Step 4: Identify the maturity level of each DevOps practice

 Method(ology): Interview

For a better understanding of the Design and Development’s phase, the researcher

built the workflow (Figure 2) of the four previously described steps.

Figure 2 - Workflow of the Design and Development's phase

5.1.Step 1 (Capabilities)

Figure 3 details the SLR phases adopted in Step 1. The SLR was chosen as a starting

point to develop our Research Methodology to summarize the existing evidence regarding

DevOps’ capabilities, with the aim of answering the proposed Research Objectives.

Chapter 5 – Design and Development

22

Planning the Review Conducting the Review Reporting the Review

Identify the Problem and

Motivation

Obtain a set of Selected

Studies

Summarize the Extracted

Data

Lack of guidance and lack of
knowledge for organizations to
implement DevOps

DevOps Capabilities

Specify the Research

Questions

DevOps Capabilities – 76
documents

What are the main DevOps
Capabilities

Report the Findings

Design a Review Protocol

Answer the proposed
Research Question

Search Strings, Datasets and
Inclusion and Exclusion

Criteria

Figure 3 - SLR Methodology for DevOps’ capabilities

5.1.1. Review protocol

The review protocol starts with a literature search, with the definition of the search

string that will be used in the chosen datasets in order to retrieve the maximum number

of studies that may address the proposed research questions. The search string which was

used and respective datasets are listed below.

Search String:

For DevOps capabilities. DevOps AND (Capability OR Capabilities OR Practice)

Datasets: Google Scholar, ScienceDirect, IEEEXplore, ACM.

 After that, inclusion and exclusion criteria must be applied to filter the obtained

documents. Our criteria are presented in Table 4.

Table 4 - Inclusion and Exclusion Criteria for DevOps' Capabilities

Inclusion Criteria Exclusion Criteria

Written in English or Portuguese Not written in English or Portuguese

Scientific papers in conferences or

journals and books

Non-Free documents nor Master Thesis

Title relevance regarding DevOps No title relevance DevOps

Afterwards, the first set of documents is obtained. Then, in a first phase, the abstracts

must be screened to decide their relevance to the research. Finally, these documents are

read in order to obtain the final selection of studies to perform the review. The review

protocol is illustrated in Figure 4.

Chapter 5 – Design and Development

23

Figure 4 - Review Protocol for DevOps' Capabilities

For a better understanding, as well as to add more scientific rigor to the research, the

researcher decided to follow the centric approach proposed by Webster and Watson

(Webster & Watson, 2002).

5.1.2. Conducting the Review

This section corresponds to the second step of the SLR Methodology. It has been

started by applying the review protocol previously defined and perform an analysis of the

extracted data.

5.1.2.1 Selection of Studies

After applying the relevant search string in the listed datasets, with the inclusion and

exclusion criteria presented in Figure 5, 112 papers were obtained, excluding duplicates.

Afterwards, the abstracts were read to further determine the documents’ relevance.

This resulted in 82 documents, which were, in turn, individually read. As a result of this

process, 76 relevant studies were obtained for our research.

Figure 5 shows the number of papers found. As it shows in Figure 5, the search which

has been conducted aims to find all papers in which DevOps capabilities has been

mentioned.

Chapter 5 – Design and Development

24

5.1.2.2 Data Extraction Analysis

Through the analysis of Figure 6 it is possible to see the distribution over the years of

the articles which deal with DevOps capabilities. In 2011, only two capabilities were

related with DevOps. Since then, there has been an increase in the number of documents

and capabilities. This can be explained by the fact that DevOps gained popularity and the

increase of interest over time would be expected, this is reflected on the number of

publishes articles. Since 2015, the quantity of documents rose slightly and in 2016 interest

grew exponentially.

It is also possible to see that the interest in CI and Continuous Deployment (CD)

documents has remained above the interest in the remaining capabilities over the years.

Figure 6 - DevOps Capabilities Articles Distribution per year

0

5

10

15

20

25

2011 2012 2013 2014 2015 2016 2017 2018

continuous integration Continuous deployment

Continuous Monitoring Continuous Testing

Feedback Loops between Dev and Ops Infrastructure as code

Records identified through database

searching (N=127)

(IEEE = 74, ACM = 53)

112 papers screened

82 full-texts

15 duplicates removed

30 papers excluded as not

relevant

76 papers that meet the inclusion criteria

Id
en

ti
fi

ca
ti

o
n

S

cr
ee

n
in

g

E
li

g
ib

il
it

y

In
cl

u
d

ed

Figure 5 - Search strings, databases used and results from search conducted for

DevOps capabilities

Chapter 5 – Design and Development

25

5.1.3. Reporting the Review

This section corresponds to the third and last step of the SLR Methodology, where it

was summarized the extracted data from the selected studies. It was identified one main

topic, which integrate this section: DevOps Capabilities.

A recent study was published (Jabbari, bin Ali, Petersen, & Tanveer, 2016) where the

authors have synthesized the practices that DevOps practitioners have applied so far

(Table 2). Since this study seems to be complete and the author did not find a single

DevOps’ practice that was not included in Jabbari’s list, the author decided to use this list

assuming that is the most completed collection of DevOps practices among the literature.

Other studies related to DevOps capabilities can be found among the literature - in

Hüttermann (2012); Sharma (2017a), Punjabi and Bajaj (2017), Soni (2016), and

Stoneham et al. (2017). However, they are not as exhaustive as the one presented in Figure

6.

Within these studies, a capability can be described in a different way, depending on

its context, but maintain the same meaning. As such, the researcher has grouped these

capabilities together by using vectors and basing such groupings on what they have

understood of the meaning of the capability. Table 5 shows the grouping that the author

made for these vectors. Although the study was already quite complete, the author decide

to carry out a literature review that could corroborate these abilities presented in the study

of Jabbari et al. (2016a).

Having analyzed Table 5, and observing that there is a considerable gap between C6

and C7, the researcher has decided to describe all the capabilities from C1 and C6. The

description of each capacity is presented considering the various definitions which have

been found.

5.1.3.1 Continuous Integration

The CI concept was first practiced and described as “doing everything in parallel,

with frequent synchronizations” in the 1998 book Microsoft Secrets (Pang & Hindle,

2017). CI consists of established practices in modern agile SD (Steffens, Lichter, &

Döring, 2018a). It accommodates rapid changes (Bai, Li, Pei, Li, & Ye, 2018) and is

widely considered to be the best in SD (Debroy, Miller, & Brimble, 2018).

Chapter 5 – Design and Development

26

Table 5 - DevOps capabilities SLR

ID Capabilities Reference # of References

C1 Continuous Integration (Bai et al., 2018; Bucena & Kirikova, 2017; H. M. Chen, Kazman, Haziyev, Kropov, & Chtchourov, 2015; Cleveland et al., 2018; Colomo-

Palacios et al., 2018; Croker & Hering, 2016; De Bayser et al., 2015; de França et al., 2016; Debois, 2011; Debroy et al., 2018; Düllmann

et al., 2018; Fitzgerald & Stol, 2014; Hüttermann, 2012; Jabbari et al., 2016; Kuusinen et al., 2018; Laukkarinen, Kuusinen, & Mikkonen,

2017, 2018; Lewerentz et al., 2018; Mackey, 2018; Mansfield-Devine, 2018; Marijan, Liaaen, & Sen, 2018; Mohan & Ben Othmane, 2016;

Molto, Caballer, Perez, Alfonso, & Blanquer, 2017; Moore et al., 2016; Palihawadana et al., 2017; Pang & Hindle, 2017; Punjabi & Bajaj,

2017; Rahman, Mahdavi-Hezaveh, & Williams, 2018; Rodríguez et al., 2018; I. D. Rubasinghe et al., 2017; I. Rubasinghe, Meedeniya,

Perera, & Practice, 2018; Shahin, Babar, & Zhu, 2016; Sharma, 2017a; Shivakumar, 2017; Snyder & Curtis, 2017; Soni, 2016; Steffens et

al., 2018a; Stoneham et al., 2016; Tuma et al., 2018; Vassallo et al., 2017; Wiesche, 2018; Wongkampoo & Kiattisin, 2018; Xia , Zhang,

Wang, Coleman, & Liu, 2018; Yin, Zhang, & Wang, 2004; H. Zhu & Bayley, 2018)

44

C2 Continuous Deployment (Ali, Caputo, & Lawless, 2017; Bass, 2017; Bhattacharjee, Barve, Gokhale, & Kuroda, 2018; Bucena & Kirikova, 2017; H. M. Chen et al.,

2015; Cleveland et al., 2018; Debois, 2011; Debroy et al., 2018; Düllmann et al., 2018; Farshchi, Schneider, Weber, & Grundy, 2015;

Fitzgerald & Stol, 2014; Fördős & Cesarini, 2016; Hüttermann, 2012; Jabbari et al., 2016; Karapantelakis et al., 2016; Kuusinen et al.,

2018; Laukkarinen et al., 2018; Mackey, 2018; Mansfield-Devine, 2018; Mohan & Ben Othmane, 2016; Palihawadana et al., 2017; Pang

& Hindle, 2017; Perera, Bandara, & Perera, 2017; Punjabi & Bajaj, 2017; Rahman et al., 2018; Rana & Staron, 2016; I. D. Rubasinghe et

al., 2017; I. Rubasinghe et al., 2018; Shahin et al., 2016; Sharma, 2017a; Shivakumar, 2017; Soni, 2016; Steffens et al., 2018a; Steffens,

Lichter, & Döring, 2018b; Stoneham et al., 2016; Tuma et al., 2018; Ur Rahman & Williams, 2016b; Wiesche, 2018; Xia et al., 2018; Yin

et al., 2004; H. Zhu & Bayley, 2018)

39

C3 Continuous Monitoring (Bai et al., 2018; Bucena & Kirikova, 2017; H. M. Chen et al., 2015; de França et al., 2016; Düllmann et al., 2018; Fitzgerald & Stol, 2014;

Hanappi, Hummer, & Dustdar, 2016; Hüttermann, 2012; John et al., 2015; Karapantelakis et al., 2016; Kuusinen et al., 2018; Li, Zhang, &

Liu, 2017; Pang & Hindle, 2017; Perera, Bandara, et al., 2017; Rana & Staron, 2016; Roche, 2013; I. D. Rubasinghe et al., 2017; Rufino,

Alam, & Ferreira, 2017; Sharma, 2017a; Shivakumar, 2017; Snyder & Curtis, 2017; Soni, 2016; Steffens et al., 2018b; Ur Rahman &

Williams, 2016b; Vassallo et al., 2017; Yin et al., 2004)

25

C4 Continuous Testing (Bucena & Kirikova, 2017; H. M. Chen et al., 2015; Croker & Hering, 2016; de Feijter, Rob, Jagroep, Overbeek, & Brinkkemper, 2017;

Fitzgerald & Stol, 2014; Hüttermann, 2012; Jabbari et al., 2016; Kuusinen et al., 2018; Murugesan, 2017; Nielsen et al., 2017; Palihawadana

et al., 2017; Pang & Hindle, 2017; Punjabi & Bajaj, 2017; Roche, 2013; I. Rubasinghe et al., 2018; Samarawickrama & Perera, 2018;

Shahin et al., 2016; Sharma, 2017a; Shivakumar, 2017; M. M. A. Silva et al., 2018; Snyder & Curtis, 2017; Soni, 2016; St et al., 2017;

Stoneham et al., 2016; Vassallo et al., 2017; Wiesche, 2018; Yin et al., 2004)

26

C5 Feedback Loops between

Dev and Ops

(Bucena & Kirikova, 2017; de Feijter et al., 2017; Debroy et al., 2018; Hanappi et al., 2016; Hüttermann, 2012; Jabbari et al., 2016; John

et al., 2015; Kuusinen et al., 2018; Mikkonen, Lassenius, Männistö, Oivo, & Järvinen, 2018; Murugesan, 2017; Nielsen et al., 2017; Pang

& Hindle, 2017; Roche, 2013; Sharma, 2017a; M. M. A. Silva et al., 2018; St et al., 2017; Stoneham et al., 2016; Wongkampoo & Kiattisin,

2018; Yin et al., 2004)

18

C6 Infrastructure as code (Bhattacharjee et al., 2018; Bucena & Kirikova, 2017; De Bayser et al., 2015; de França et al., 2016; Debroy et al., 2018; Düllmann et al.,

2018; Fördős & Cesarini, 2016; Hüttermann, 2012; Jabbari et al., 2016; Jimenez et al., 2017; Rahman et al., 2018; Rana & Staron, 2016;

Shahin et al., 2016; Sharma, 2017a; Steffens et al., 2018b, 2018a; Yin et al., 2004)

15

C7 Change Management (Abdelkebir, Maleh, & Belaissaoui, 2017; Debois, 2011; Hüttermann, 2012; Jabbari et al., 2016; Mohamed, 2015; I. D. Rubasinghe et al.,

2017; C. Science & Sciences, 2015; Sharma, 2017c; H. Zhu & Bayley, 2018)

9

C8 Continuous planning (Fitzgerald & Stol, 2014; Hüttermann, 2012; Jabbari et al., 2016; Kuusinen et al., 2018; Pang & Hindle, 2017; Sharma, 2017c; Ur Rahman

& Williams, 2016a)

7

C9 Prototyping application (Cleveland et al., 2018; De Bayser et al., 2015; Fitzgerald & Stol, 2014; Hüttermann, 2012; Jabbari et al., 2016; Sharma, 2017c) 6

C10 Process Standardization (Hüttermann, 2012; Jabbari et al., 2016; Rana & Staron, 2016; Roche, 2013; Sharma, 2017c) 5

C11 Stakeholder Participation (Hüttermann, 2012; Jabbari et al., 2016; Sharma, 2017c) 3

C12 Shift Left (de Feijter et al., 2017; Hüttermann, 2012; Sharma, 2017c) 3

Chapter 5 – Design and Development

27

Developers integrate their work frequently (usually each person integrates at least

daily), leading to multiple integrations per day (Jabbari et al., 2016; St et al., 2017). For

Sharma and Coyne (2015), CI ensures that each team’s work is continuously integrated

with that of other development teams and then validated. CI, thereby, reduces risk and

identifies issues earlier in the SD life cycle.

Implementing CI this way ensures that bugs are caught earlier in the development

cycle, which makes them less expensive to fix. Automated tests are run for every build,

in order to ensure that builds maintain a consistent quality. The main objective of CI is to

foster discussion and fast validation by peers (De Bayser, Azevedo, & Cerqueira, 2015).

As CI allows developers to immediately see the impact of their code changes and fix

problems on the spot in the development environment, it became one of the major points

of interest in the DevOps movement as smaller and more frequent changes reduced merge

and integration issues (Debois, 2011).

5.1.3.2 Continuous Deployment

DevOps emphasizes the use of CD, which means deploying a number of smaller

changes as soon as they are released, instead of waiting until a “full package” of changes

is ready, and follows directly from the practice of frequent releases (Nielsen et al., 2017).

This allows users to benefit from the changes much earlier and developers to see whether

their changes work in practice (Feitelson, Frachtenberg, & Beck, 2013). To Düllmann,

Paule, & Van Hoorn (2018) one important DevOps practice is the usage of CD as it helps

to automate many steps, ranging from a source code commit to the deployment of a

software artifact to production. When commonly adopted, CI and CD can cause the SD

lifecycle to shorten (Tuma, Calikli, & Scandariato, 2018). For Debois (2011), this

capability is just like exercise: “the more you practice deployment to production, the

better you will get at it”.

The implementation of CD should also reduce the effort required in order to carry out

a task. Many of the tasks related to the release of DevOps are being automated, and

manual tasks such as configurations are being dealt with automatically. As such, the pool

of resources can be released immediately after the task is completed (Kuusinen,

Balakumar, Jepsen, & Larsen, 2018). There is a strong relationship between the quality

of the software developed and the agility of the organization to the DevOps practices of

Chapter 5 – Design and Development

28

SD. Therefore, DevOps practices contribute to the enhancement of these software quality

attributes within a CD process (I. D. Rubasinghe, Meedeniya, & Perera, 2017).

5.1.3.3 Continuous Monitoring

Continuous Monitoring collects data and metrics that come from the different stages

of the application lifecycle, allowing all involved parties to react quickly in order to

improve or modify the functionalities which are being used (Debois, 2011; Sharma &

Coyne, 2015). Effective monitoring is essential to allow DevOps teams to deliver at

speed, to get feedback from production, and to increase customers’ satisfaction,

acquisition and retention. By aligning development of monitoring with the development

of the whole solution (implementing functional and nonfunctional requirements, building

up the application, middleware, infrastructure), they will be able to improve monitoring

continuously, to catch gaps in monitoring early, and to ensure that monitoring is always

aligned with concrete needs (Hüttermann, 2012).

One of the major contributions is that continuous monitoring may enable early

detection of quality-of-service problems, such as performance degradation, and also the

fulfillment of service level agreements (Fitzgerald & Stol, 2014).

5.1.3.4 Continuous Testing

Continuous Testing means to test as soon as possible and continuously during the

development lifecycle, leading to a development cost reduction as well as to a better

software quality. This practice is viable using techniques such as test automation and

virtualization, in order to simulate the production environments in which the tests are to

be executed and in a scenario that is as realistic as possible (Sharma & Coyne, 2015; Soni,

2016). Also for Sharma and Coyne (2015), continuous testing is known as “shift-left

testing”, which stresses integrating development and testing activities to ensure that

quality is built in as early as possible in the life cycle and nothing is left behind to later

instances.

The importance of this capability is that the benefits of Continuous Testing will

eventually increase customer satisfaction, as the customer has a larger and more

immediate impact on the product. Because the CD pipeline relies heavily on testing, the

quality of the system will improve over time, as fewer bugs are introduced into the system

Chapter 5 – Design and Development

29

(Kuusinen et al., 2018). This capability also permits a reduction in overall costs, shortens

later testing cycles and ensures continuous feedback on quality (Nielsen et al., 2017).

5.1.3.5 Continuous Feedback

The goal of this practice is to get as much feedback as possible in order to perform

the necessary corrections. Continuous feedback is developer - focused, which means that

feedback relates to coding or architectural problems, build failures, test status and uploads

of file releases (L. Zhu et al., 2016).

The new technologies provide the ability to monitor customer behavior, which allows

the business team or any other interested parties to take the necessary actions to improve

the software (M. M. A. Silva et al., 2018). Monitoring information and user feedback can

be used for the purpose of improving the application and thereby enhancing the customer

experience (Nielsen et al., 2017).

5.1.3.6 Infrastructure as Code

Infrastructure as code involves fast scaling up and down of infrastructure on demand,

treating the configuration code in the same way as the application code (Rana & Staron,

2016). It also emphasizes developing automation logic for deploying, configuring and

upgrading software and infrastructure repeatedly and quickly, particularly in a cloud

environment (Lwakatare et al., 2015).

Teams avoid manual environmental configuration and enforce consistency through

code to represent the desired state of their environments. Deployment of infrastructure as

code is repeatable and prevents runtime problems due to configuration drift or lack of

dependency. DevOps teams can work with a unified set of practices and tools to deliver

applications and infrastructure support quickly, reliably and on a scale. The use of

infrastructure as code was recurrently cited as a means of guaranteeing that everyone

knows how the execution environment of an application is provided and managed (Luz,

Pinto, & Bonifácio, 2018a).

5.2.Step 2 (Areas)

The three SLR phases, described in section 4.1 are represented in Figure 7, and were

specifically adapted to this section purpose.

Chapter 5 – Design and Development

30

 SLR was chosen as Research Methodology since it was intended to summarize the

existing evidence regarding DevOps’ areas, with the aim of answering the proposed

Research Question.

Planning the Review Conducting the Review Reporting the Review

Identify the Problem and

Motivation

Obtain a set of Selected

Studies

Summarize the Extracted

Data

Lack of guidance and lack of
knowledge for organizations to

implement DevOps

DevOps Areas

Specify the Research

Questions

DevOps Areas – 44 documents

What are the main DevOps
Areas

Report the Findings

Design a Review Protocol

Answer the proposed
Research Question

Search Strings, Datasets and
Inclusion and Exclusion
Criteria

Figure 7 - SLR Methodology for DevOps Areas

5.2.1. Review protocol

The review protocol starts with a literature search, with the definition of the search

string that will be used in the chosen datasets in order to retrieve the maximum number

of studies that may address the proposed research questions. The search string which was

used and respective datasets are listed below.

Search String:

For DevOps Areas. DevOps AND (Area, Principles, View, Dimensions and

Perspective)

Datasets: Google Scholar, ScienceDirect, IEEEXplore, ACM.

 After that, inclusion and exclusion criteria must be applied to filter the obtained

documents. Our criteria are presented in Table 6.

Table 6 - Inclusion and Exclusion Criteria for DevOps Areas

Inclusion Criteria Exclusion Criteria

Written in English or Portuguese Not written in English or Portuguese

Scientific papers in conferences or

journals and books

Non-Free documents nor Master Thesis

Title relevance regarding DevOps No title relevance DevOps

Afterwards, the first set of documents is obtained. Then, in a first phase, the

abstracts must be screened to decide their relevance to the research. Finally, these

Chapter 5 – Design and Development

31

documents are read in order to obtain the final selection of studies to perform the review.

The review protocol is illustrated in Figure 8.

Figure 8 - Review Protocol for DevOps Areas

For a better understanding, as well as to add more scientific rigor to our research, the

researcher decided to follow the centric approach proposed by Webster and Watson

(Webster & Watson, 2002).

5.2.2. Conducting the Review

This section corresponds to the second step of the SLR Methodology. It starts by

applying the review protocol previously defined and performing an analysis of the

extracted data.

5.2.2.1 Selection of studies

After applying the needed search string in the listed datasets, with the inclusion and

exclusion criteria presented in Figure 9, 82 papers were obtained, excluding duplicates.

Afterwards, the abstracts were read to further decide the documents’ relevance. This

resulted in 46 documents. Each one of these documents was read and 44 relevant studies

were obtained for our research.

Figure 9 shows the number of papers found per database. As depicted, the search

conducted aims to find all papers in which DevOps areas have been mentioned.

Chapter 5 – Design and Development

32

5.2.2.2 Data Extraction Analysis

In order to understand the current importance of the information about DevOps, the

author analyzed the dates of the articles regarding this theme. By analyzing at Figure 10,

it is possible to observe the distribution of these articles dealing with DevOps areas in the

last years. It evidences that interest in DevOps grew in 2015 and in 2016 it grew

exponentially. Since then, the level of interest seems to have stabilized. The top area

changed in 2018 but Culture is one of the most consistent areas and has generated more

interest in recent years.

Measurement, Sharing and Automation have maintained the same level of interest in

the past three years, while the interest in Technology, People and Process decreased in

2018 to half of what it was in 2017.

Records identified through database searching

(N=115)

(IEEE = 63, ACM = 52)

82 papers screened

46 full-texts

33 duplicates removed

36 papers excluded as not

relevant

44 papers that meet the inclusion criteria

Id
en

ti
fi

ca
ti

o
n

S

cr
ee

n
in

g

E
li

g
ib

il
it

y

In
cl

u
d

ed

Figure 9 - Search strings, databases used and results from search conducted

for DevOps areas

Chapter 5 – Design and Development

33

Figure 10 - DevOps Areas Articles Distribution per year

5.2.3. Reporting the Review

This section corresponds to the third and last step of the SLR Methodology, where

the data extracted from the selected studies is summarized.

We have identified one main topic, which integrate this section: DevOps Areas. This

section presents the findings from a thorough literature analysis aiming to find the

DevOps dimensions that characterize this phenomenon. Either they are categories that

work as DevOps enablers or are expected outcomes of a DevOps adoption process. Next

table (Table 7) presents the main findings related to DevOps dimensions.

Because there is no standard definition of DevOps and its related processes (M. M.

A. Silva et al., 2018) and little has thus far been presented in order to describe and

formalize what it constitutes (Lwakatare et al., 2015) the author will now go on to detail

the areas that best define DevOps practices.

5.2.3.1. Culture

In DevOps, there is a culture of collaboration between the SD organization and the

operations organization (Lwakatare et al., 2015) where there is joint responsibility for the

delivery of high quality software (Colomo-Palacios et al., 2018). For de França, Jeronimo,

and Travassos (2016) the so-called DevOps culture recognizes trust as a relevant

characteristic for influencing organizational change. The culture aims to change the

dynamics in which development and operational teams interact, highlighting the tasks

between design and operation, such as operational design, test-driven development and

CI (Diel et al., 2016).

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

2011 2012 2013 2014 2015 2016 2017 2018

Culture Measurement Sharing Automation Technology People Process

Chapter 5 – Design and Development

34

The DevOps culture encourages small, multidisciplinary teams that work

independently and collectively to take responsibility for the experience of actual users of

their software (Sharma & Coyne, 2015). There is no place like production for a DevOps

team. All they do is to improve the live experience of customers. There are no silos and

no blame-game, because the team is responsible for each other. DevOps teams stress

being able to move fast, understand the impact and react quickly (Hüttermann, 2012).

5.2.3.2. Measurement

The ability to measure the development process by incorporating different metrics

will help increase efficiency in product development (Lwakatare et al., 2015). Based on

data rather than instinct, decisions lead to an objective and irreproachable path to

improvement. The data should be transparent, accessible to everyone, meaningful and

capable of being viewed ad hoc. Furthermore, measurement includes monitoring high-

level business metrics such as revenue or end-to-end transactions per unit time (Debois,

2011).

At a lower level, it requires careful choice of key performance indicators, since people

change their behavior according to how they are measured (Nielsen et al., 2017). DevOps

use various forms of measurements and monitoring which include business metrics (e.g.

revenue) to metrics for a technical overview (Rana & Staron, 2016).

5.2.3.3. Sharing

Sharing operates at several levels. Information and knowledge are disseminated

among individuals to promote the exchange of personal learning and project information.

In this sense, individuals should spread relevant information. For instance, information

regarding how to implement and perform practices recommended in the context of

DevOps (de França et al., 2016). A simple but effective form of sharing is for

development and operations teams to celebrate successful releases together (Debois,

2011). It also means sharing knowledge, such as making sure the relevant operations team

knows what new functionality is coming their way as soon as possible, and not on the day

of the release. Sharing development tools and techniques to manage environments and

infrastructure is also a key part of DevOps (Debois, 2011). Sharing concepts contributes

to the collaborative culture. For example, all team members gain not only better insight

into the entire software production process, but also a solid understanding of shared

Chapter 5 – Design and Development

35

responsibilities. A shared vocabulary also emerged from sharing, and this facilitates

communication (Luz, Pinto, & Bonifácio, 2018b).

5.2.3.4. Automation

It is believed that manual, and repetitive tasks can be automated to reduce unnecessary

effort and improve software delivery. Hence, automation would improve not only the

delivery speed, but also the infrastructure consistency, productivity of teams, and

repeatability of tasks (de França et al., 2016). Automation is used not just to save time,

but it also prevents defects, creates consistency, and enables self-service. Automation is

one of the main areas of DevOps: it allows for capabilities such as CI and CD (Mohamed,

2015). Although transparency and sharing can be used to ensure collaboration even in

manual tasks, with automation the points where silos may arise are minimized (Luz et al.,

2018b).

5.2.3.5. Technology

Technology enables people to focus on high-value creative work while delegating

routine tasks to automation. Technology also allows teams of practitioners to leverage

and scale their time and abilities (Sharma & Coyne, 2015).

A technology stack and tools are used to quickly and reliably operate and develop

applications. These tools also help engineers carry out tasks independently (e.g. code

deployment and infrastructure supply), which would normally require the assistance of

other teams, and this further increases the speed of the team (Hüttermann, 2012).

5.2.3.6. People

The relations between colleagues should be based on trust and confidence.

Transparency should be faced as the rule of thumb for a DevOps team. The members of

the team should also have common goals and incentives, and not only developers for

delivering in time, with quality new features and operations personnel for having an

uptime of excellence (M. M. A. Silva et al., 2018). To (Sharma & Coyne, 2015), people

are the main characters of DevOps culture.

5.2.3.7. Process

Chapter 5 – Design and Development

36

The DevOps process can be considered a business process because it aims to affect

the entire lifecycle of an application as being a collection of activities or tasks that produce

a specific result for customers (Hüttermann, 2012). When the DevOps approach is in

place within an organization, all parties involved from the highest level of the business

down to the operations should be able to have transparency and cooperate in the entire

lifecycle of a change (M. M. A. Silva et al., 2018).

5.3.Step 3 (DevOps practices)

Having analyzed Table 5, and considering that there is a considerable gap between

C6 and C7, the researcher has decided to identify all the practices for each capability from

C1 and C6. Since that the information regarding these capabilities are spread in a lot of

studies, each capability’s practices will be synthetized by grouping it by Area.

After analyzing the descriptions of the areas from 5.2.3.1 to 5.2.3.7, the researcher

has concluded that some areas identify themselves with other areas. Considering that it

would be complex to detail all the practices of all these areas, and since there are areas

that cover other areas, the researcher has decided to group some Areas. Thus, Technology

will include Automation, Culture includes Sharing and Process includes Measurement.

 This leave us with the four main Areas: Culture, Technology, People and Process.

In order to study the practices from the Capabilities in a determined Areas, all the

documents that were used in the SLR of the Capabilities and the Areas were analyzed.

The next tables (Table 8,

Table 9, Table 10,

Table 11Table 12 and

Table 13) presents all the practices found for DevOps capability, ordered by area.

Chapter 5 – Design and Development

37

Table 7 - DevOps Areas SLR

ID Area References # of References

A1 Culture (Bang et al., 2013; Bucena & Kirikova, 2017; Colomo-Palacios et al., 2018; de França et al., 2016; Debois,

2011; Diel et al., 2016; Erich, Amrit, & Daneva, 2014a; Gupta, Kapur, & Kumar, 2017; Hüttermann, 2012;

Jabbari et al., 2016; Nielsen et al., 2017; Perera, Silva, & Perera, 2017; Rana & Staron, 2016; Sharma &

Coyne, 2015; M. M. A. Silva et al., 2018; Smeds et al., 2015)

16

A2 Measurement (Bang et al., 2013; Colomo-Palacios et al., 2018; de França et al., 2016; Debois, 2011; Erich et al., 2014a;

Gupta et al., 2017; Hüttermann, 2012; Jabbari et al., 2016; Luz et al., 2018b; Nielsen et al., 2017; Perera,

Silva, et al., 2017; Rana & Staron, 2016; M. M. A. Silva et al., 2018; Smeds et al., 2015)

14

A3 Sharing (Bang et al., 2013; Colomo-Palacios et al., 2018; de França et al., 2016; Debois, 2011; Erich et al., 2014a;

Gupta et al., 2017; Hüttermann, 2012; Jabbari et al., 2016; Luz et al., 2018b; Nielsen et al., 2017; Perera,

Silva, et al., 2017; Rana & Staron, 2016; M. M. A. Silva et al., 2018; Smeds et al., 2015)

14

A4 Automation (Bang et al., 2013; Colomo-Palacios et al., 2018; de França et al., 2016; Debois, 2011; Erich et al., 2014a;

Gupta et al., 2017; Hüttermann, 2012; Jabbari et al., 2016; Luz et al., 2018b; Mohamed, 2015; Nielsen et

al., 2017; Perera, Silva, et al., 2017; Rana & Staron, 2016; M. M. A. Silva et al., 2018; Smeds et al., 2015)

14

A5 Technology (Abdelkebir et al., 2017; Bucena & Kirikova, 2017; Diel et al., 2016; Gazivoda, 2018; Hussain et al., 2017;

Hüttermann, 2012; McCarthy et al., 2015; Sharma & Coyne, 2015; M. M. A. Silva et al., 2018; Sturm,

Pollard, & Craig, 2017)

10

A6 People (Abdelkebir et al., 2017; Bucena & Kirikova, 2017; Gazivoda, 2018; Hussain et al., 2017; Hüttermann,

2012; McCarthy et al., 2015; Sharma & Coyne, 2015; M. M. A. Silva et al., 2018; Sturm et al., 2017)

9

A7 Process (Abdelkebir et al., 2017; Bucena & Kirikova, 2017; Gazivoda, 2018; Hussain et al., 2017; Hüttermann,

2012; McCarthy et al., 2015; Sharma & Coyne, 2015; M. M. A. Silva et al., 2018; Sturm et al., 2017)

9

A8 Quality (Erich et al., 2014a; Luz et al., 2018b; Mohamed, 2015) 3

A9 Collaboration (Luz et al., 2018b; Mohamed, 2015) 2

A10 Diy Deployments (Debois, 2011) 1

A11 Agility (Luz et al., 2018b) 1

A12 Resilience (Luz et al., 2018b) 1

A13 Transparency (Luz et al., 2018b) 1

A14 Services (Erich et al., 2014a) 1

A15 Structures (Erich et al., 2014a) 1

A16 Standards (Erich et al., 2014a) 1

A17 Governance (Mohamed, 2015) 1

Chapter 5 – Design and Development

38

Table 8 - CD Practices

Table 9 - CI Practices

 Continuous Integration

Practice Author

People - -

Process Automation of tasks

Provision of virtualized hardware resources via scripts (instead of doing manual

configuration work)

Developers should make use of continuous integration, that is branch-out and merge-

back their work with the software mainline (the trunk) several times a day, in order to

discover integration risks as early as possible

(Nielsen et al., 2017)

Continuous integration cycles to include also software release.

Continuous feedback loop
(de França et al., 2016)

Enable rapid automated regression testing of code changes (Marijan et al., 2018)

Test in a clone of the production environment

Make it easy for anyone to get the latest executable
(Sharma, 2017a)

Technology Use of cloud services (Nielsen et al., 2017)

Tools interoperability for unifying force across diverse teams, skills, technology

languages, and methodologies

Version Control

An Automated Build

(Jez Humble & Farley,

2011)

Use build servers

Maintain a single-source repository

Automate the build

(Sharma, 2017a)

Culture Collaboration between teams (Luz et al., 2018b)

Development and QA teams perform unit and integration testing

Operations participates in integration and load testing to assess operational readiness (Sturm et al., 2017)

Agreement of the Team (Jez Humble & Farley,

2011)

Make sure everyone can see what is happening (Sharma, 2017a)

Table 10 - Continuous Monitoring Practices

 Continuous Monitoring

Practice Author

People Analysis skills (Wiesche, 2018)

Process Define some useful measurement metrics (Nielsen et al., 2017)

 Continuous Deployment

Practice Author

People - -

Process Orchestrated deployments

Track which version is deployed

Manage the configurations of the environments of all the stages

Manage the software components that get deployed

Manage the middleware components and middleware configurations that need to be

updated

Manage the database components that need to be changed

Manage the configuration changes to the environments to which these components are

to be deployed

(Sharma & Coyne, 2015)

Release working software any time, any place

Label a repository’s assets

Produce a clean environment

Label each build

Create build feedback Reports

Possess capability to roll back release

(Duvall, Matyas, &

Glover, 2007)

Multiple deployments to production

Deploy a new release whenever one is needed
(Mohamed, 2016)

Technology Development and production share a homogenous infrastructure

Configuration management tools
(Ebert et al., 2016)

Automated deployment of software to different environments (Nielsen et al., 2017)

Deployments should include the automated provisioning of all environments (Debois, 2011)

Automated deployment

Continuous deployment
(Nielsen et al., 2017)

Culture Early and frequent involvement of operations staff in the planning stages of major new

releases
(Debois, 2011)

Chapter 5 – Design and Development

39

Ensure continuous feedback provided through the monitoring process and the users

Application monitoring

System monitoring

Application user behavior

User sentiment

Delivery pipeline metrics

(Sharma, 2017c)

Systems are monitored after deployment (L. Zhu et al., 2016)

• Instrumenting your applications and your infrastructure so you can collect

the data you need

• Storing the data so it can easily be retrieved for analysis

• Creating dashboards which aggregate the data and present it in a format

suitable for operations and for the business

• Setting up notifications so that people can find out about the events they

care about

(Jez Humble & Farley,

2011)

Technology Analytics can be used to integrate the system and infrastructure performance data with

customer usage behavior
(Lwakatare et al., 2015)

Not just gather this data but also run analytics on it (Sharma, 2017c)

Basic services such as dashboards (Senapathi, Buchan, &

Osman, 2018)

Use a Realtime User Monitoring tool (Erich, Amrit, & Daneva,

2014b)

APIs or services

The application should use to notify the operations team of its state

(Jez Humble & Farley,

2011)

Culture Collaboration between developers and operations so that the systems are designed to

expose relevant information
(Lwakatare et al., 2015)

Table 11 - Continuous Testing Practices

 Continuous Testing

Practice Author

People Understand test automation functions

Automate tests

Understand functionalities for test management

(Wiesche, 2018)

Process Script-based testing early and throughout the software delivery process

Shorten later testing cycles

Ensure continuous feedback on quality

(Nielsen et al., 2017)

Testing earlier and continuously across the life cycle (Sharma & Coyne, 2015)

High test coverage of high-risk areas (Marijan et al., 2018)

Integrate testing activities as closely as possible with coding (Fitzgerald & Stol, 2014)

Technology Virtualization to simulate the production environments (M. M. A. Silva et al.,

2018)

Test case generation (Vassallo et al., 2017)

Culture Both IT Development and IT Operations should carry out quality assurance and be

responsible for test automation
(Nielsen et al., 2017)

Each developer should take personal responsibility for their code and write the test cases (De Bayser et al., 2015)

Testing on real users at scale (Feitelson et al., 2013)

Driving development with tests (Vassallo et al., 2017)

TDD is a development practice that starts with writing tests before you write any code

BDD encourages working with the business stakeholder to describe the desired business

functionality of the application

ATDD builds on TDD and BDD, and it is involved in finding scenarios from the end

user perspective

(Perera, Silva, et al.,

2017)

Testing/quality team is connected with Development team early in the development

cycle to create the required test cases
(Mohamed, 2015)

Table 12 - Infrastructure as a Code Practices

 Infrastructure as code

Practice Author

People - -

Process Versioning environments (Mohamed, 2016)

Technology Entire infrastructure in a common language (Luz et al., 2018b)

Automate server

Generic tools

Application or middleware-centric tools

Environment and deployment tools

(Sharma & Coyne, 2015)

Culture Everyone knows how the execution environment of an application is provided and

managed
(Luz et al., 2018b)

Chapter 5 – Design and Development

40

Table 13 - Feedback Loops Practices

 Feedback Loops between Dev and Ops

Practice Author

People Feedback ability, in both directions - so, to give feedback but also to accept it (Wiesche, 2018)

Process Shorten later testing cycles to ensure continuous feedback

Ensure continuous feedback provided through the monitoring process and the users
(Nielsen et al., 2017)

The frequency of integration is also important in that it should be regular enough to

ensure quick feedback to developers
(Fitzgerald & Stol, 2014)

Mechanisms to involve users in the development process and collect user feedback from

deliveries as early as possible

Techniques need to be nonintrusive so that users are not stressed with continuous

feedback requests.

Short feedback loops

(Rodríguez et al., 2018)

Feedback loops strategy (M. Science, 2016)

The measurement results should be provided to not only the operation people, but also

the development people
(Rong et al., 2016b)

Any change, of whatever kind, needs to trigger the feedback process.

The feedback must be delivered as soon as possible.

The delivery team must receive feedback and then act on it.

(Jez Humble & Farley,

2011)

Technology - -

Culture Share feedback freely without blame (Perera, Bandara, et al.,

2017)

High focus on requirements

Management through close relationship with the users to determine their needs and

quickly react on their feedback

(Nielsen et al., 2017)

Keeping a constant feedback about the current state of the system (Rodríguez et al., 2018)

5.4.Step 4 (Maturity Levels)

The results of each conducted interview iteration are presented, followed by the

associated emerging final MM for DevOps.

5.4.1. First Iteration

To perform the first round of interviews, 15 DevOps professionals were interviewed.

The LinkedIn database was used to find the interviewees. Overall, 87 invites were made

to DevOps experts and 33 were accepted. In this list of 33 contacts, only 15 responded to

the interview.

In this research, it was considered the position of the possible participant, always

willing to interview professionals with higher positions than DevOps developers.

Interviewees information can be seen in Table 14.

Although some of the DevOps capabilities already exists, the term DevOps was born

in 2011. The average age of the 15 interviewed is 39,4 years, while the average experience

in DevOps is 5,6 years. Since DevOps was born 9 years ago, 5,6 years in average of

experience means that the interviewed have been working in this area during more than

half of its existence as a practice. Plus,13 out of the 15 interviewees work in the IT sector.

Chapter 5 – Design and Development

41

Table 14 - Information from the Interviewees

ID Role Age
DevOps Experience

(Years)
Industry

First

Iteration

Second

Iteration

I1 Head of DevOps

Transformation

41 6 Software development X X

I2 Solution Architect 46 8 Software development X X

I3 Senior Manager 41 8 Software development X X

I4 Senior DevOps Engineer /

Team Lead

26 3 Software development X X

I5 Head of Agile and DevOps

Transformation

38 3 Software development X X

I6 DevOps Manager/Evangelist 42 3 Finance X X

I7 Lead DevOps specialist 39 3 Healthcare X X

I8 DevOps Architect 38 8 Software development X X

I9 DevOps Operations Lead 40 3 Software development X X

I10 DevOps Engineer 33 4 Software development X X

I11 Managing Director 48 8 Software development X X

I12 Senior Developer 38 6 Software development X X

I13 Lead DevOps specialist 45 8 Software development X

I14 Senior Manager 39 7 Software development X

I15 IT Development T. Leader -

Applications

37 6 Software development X X

Average 39,4 5,6

The same interviewer conducted all the 15 interviews ensuring that the same interview

guides and protocol were used throughout the interviews. The first, second, third, fourth

and last interviews were conducted in the participants’ workplace, while the rest were

carried out by Skype. The interview was semi-structured and aimed at exploring

practitioners’ experiences with DevOps practices. All the 15 interviews were conducted

between March and June 2019.

The researcher has interviewed DevOps practitioners according to a preset script

which included semi-structured open-ended questions. The interview guideline addressed

topics such as the expert’s background, expert’s team and company information, DevOps

practices and observations about it.

Grounded on maturity levels classification, and since all organization are at level 1

(ad-hoc) by default, the researcher has only asked the interviewees to associate the

practices with levels 2, 3, 4 and 5. The distribution of the practices by levels is presented

in Table 15.

Chapter 5 – Design and Development

42

Table 15 - Distribution of the number of practices per level from First Iteration

Level Frequency

Level 2 31

Level 3 50

Level 4 19

Level 5 9

5.4.2. Second Iteration

All the 15 interviewees from the first iteration were asked to participate in a second

round. From those, 13 accepted to participate. The objective of this phase was to

breakdown the practices that had the same number of votes to more than one level of

maturity and try to reach consensus on all practices. therefore, the participant had a chance

to choose between the most voted levels of the first phase in each of the enlisted practices.

All the interviews were conducted by email. The interviews were semi-structured and

aimed at exploring practitioners’ experiences with DevOps practices. All the 13

interviews were conducted between June and August 2019.

DevOps practitioners were interviewed according to a preset script which included

semi-structured open-ended questions. The interview guideline addressed topics such as

DevOps practices and observations about it. Since no relevant conclusions could be

drawn from the first iteration, in this second phase the authors changed the possible

answers for the DevOps practices maturity levels to the most voted levels from the first

phase. This was held since there were many maturity levels for each practice.

Grounded on maturity levels classification, and since all organization are at level 1

(ad-hoc) by default, the researcher only asked the interviewees to associate the practices

with the most voted levels for each practice from the first phase. The distribution of the

practices by levels and the difference from the first iteration are presented in Table 16.

Table 16 - Distribution of the number of practices per level from Second Iteration

Level Frequency Difference

Level 2 10 -21

Level 3 54 +4

Level 4 27 +8

Level 5 18 +9

Chapter 5 – Design and Development

43

Analyzing Table 16, one of the most relevant difference between the two phases is

the migration of some level two responses to the other levels. There is a clear increase of

level 5 votes. On the other hand, level 3 continues to be the most voted level.

Only about one third of the previous level two votes remained. Although none of the

participants said anything about this, it seems that, since each participant had the chance

to choose from the most voted level from the first iteration, they considered a higher level

since that it was a possibility. Also, since that two from the first iteration interview did

not answer this issue, it may have had an influence on this result.

The most voted levels are concentrated in two levels: three and four. The participants

only considered 18 practices to belong to a much higher maturity level (level 18). Since

level three is one of the most basic level, it had a much higher number of practices.

5.4.3. Maturity Model

Heaving completed all interview’s stages, the researcher presents the final MM in this

section. Although it is a single model, for its better comprehension, it was divided into 6

parts, one for each capability. Even though the interviewees had the chance to add or

remove practices from the initial list, none of them did. This means that the initial list of

DevOps practices remained unchanged through all these interview phases. Although

every participant had the chance to remove a practice and/or add an observation, there

were only few cases where it happened. However, since it was not coherent nor consistent

among the participants, those removed practices and observations were not taken in

consideration.

Each MM table is divided by areas (People, Process, Technology and Culture) in

which are presented the respective practices. The next tables (Table 17, Table 18, Table

19, Table 20 and Table 21) present de MM for DevOps. According these tables that,

together, integrate the MM for DevOps, an analysis has been made.

Observing Table 17, it is possible to devise that there is only one practice from level

2. Level 3 is the level with more practices and level 4 and level 5 almost have the same

number of practices. Looking to the practices per area, since the author was not able to

find any practice associated with this area and the interviewees did not add any, People

does not have any practice. on the other hand, Process seems to be the area with more

practices, since it has at least one at each level.

Chapter 5 – Design and Development

44

Table 18 has in common with the previous table the fact that People does not have

any associated practice. On the other hand, level 2 is more populated than it was in the

previous table. Level 3 is the level with more practices, while Process continues to be the

area of DevOps with more practices. Technology has at least a practice per level.

In the Continuous Monitoring (Table 19) it is possible to see the first practice for the

People’s area and is the only practice for the level 2 on this table. Process and Technology

have practices from the level 3 to level 5.

Table 20 People’s area contains more practices than the tables before. There are three

People practices and they are all in level 3. Culture is the most completed area in this

table, since it has practices in every level. Level 5 only has one practice.

Table 21 is the one with less practices. The author could not identify more practices

from the literature and the interviewees did not add any. Level 3 is the most populated

level and there is only on practice that does not belong to this level. Technology is the

Area with most practices. On the other hand, there is no practice in People’s area.

Last but not least,

Table 22 presents all the practices from Feedback Loops capability. There was not

found any practice in level 2. Level 3 only have practices for the Process area, while level

4 contains practices for People, Process and Culture. Culture seems to be an area where

all its practices are from a greater maturity, since three out of four practices presented in

this area belong to level 5. The level with more practices is level 4.

 After analyzing all the tables that contained the MM for DevOps, a last analysis must

be conducted. The preliminary list for the MM was conducted by the author, through a

literature review. Although the fact that all the interviewees had the chance to add or

remove any practices they want, none of them did. This result in some capabilities with

less practices than others, and some areas with just few practices. If any of them had less

than four practices, it means that there will be levels with no practices. This is clear in

Table 21.

People is the area with less practices from the four. On the other hand, Process,

followed by Technology are the areas with more practices. Level 3 is the level with most

practices while level 2 is the one with less practices. This may be due to the lack of

literature about this theme.

Chapter 5 – Design and Development

45

Table 17 - CD MM

 Level 2 Level 3 Level 4 Level 5

C
o

n
ti

n
u

o
u

s
D

ep
lo

y
m

en
t

People

Process

CD9 Label a

repository’s

assets

CD2 Track which version is deployed

CD3 Manage the configurations of the environments of all the stages

CD4 Manage the software components that get deployed

CD5 Manage the middleware components and middleware

configurations that need to be updated

CD6 Manage the database components that need to be changed

CD10 Produce a clean environment

CD11 Label each build

CD12 Create build feedback Reports

CD14 Deploy a new release whenever one is needed

CD17 Automated deployment

CD18 Continuous deployment

CD1 Orchestrated deployments

CD16 Deployments should include the

automated provisioning of all

environments

CD1 Orchestrated deployments

CD7 Manage the configuration changes to

the environments to which these components

are to be deployed

CD8 Release working software any time, any

place

CD15 Multiple deployments to production

Technology -
CD19 Development and production share a homogenous infrastructure

CD20 Configuration management tools

CD21 Automated deployment of software

to different environments
-

Culture -

CD22 Team must provide overall visibility into your application

release activities and timing to all major stakeholders

CD25 Unite the two teams that worked independently to work at

tighter integration

CD26 Both development and operations personnel should share the

same knowledge management resources

CD27 Testers and operations personnel would be able to self- service

deployments of the required version of the system to their

environments on demand

CD28 Early and frequent involvement of operations staff in the

planning stages of major new releases

CD24 Team must be able to speed lead

times and make more frequent application

deployments at the pace demanded by the

business

CD23 Teams must be able to provide self-

service, on-demand provisioning and

management of cloud environments and

infrastructure resources

Chapter 5 – Design and Development

46

Table 18 - CI MM

 Level 2 Level 3 Level 4 Level 5

C
o

n
ti

n
u

o
u

s
In

te
g

ra
ti

o
n

People - - - -

Process

CI8 Make it easy for

anyone to get the latest

executable

CI1 Automation of tasks

CI2 Provision of virtualized hardware resources via scripts (instead

of doing manual configuration work)

CI3 Developers should make use of continuous integration, that is

branch-out and merge- back their work with the software mainline

(the trunk) several times a day, in order to discover integration

risks as early as possible

CI5 Continuous integration cycles to include also software release

CI6 Enable rapid automated regression testing of code changes

CI4 Continuous feedback loop

CI7 Test in a clone of the

production environment

-

Technology
CI11 Version Control

CI15 Automate the build

CI12 An Automated Build

CI13 Use build servers

CI9 Use of cloud services CI10 Tools interoperability for unifying

force across diverse teams, skills,

technology languages, and methodologies

CI14 Maintain a single-source repository

Culture

CI16 Collaboration

between teams

CI19 Agreement of the

Team

CI17 Development and QA teams perform unit and integration

testing

CI18 Operations participates in

integration and load testing to

assess operational readiness

CI20 Make sure everyone can see

what is happening

-

Table 19 - Continuous Monitoring MM

 Level 2 Level 3 Level 4 Level 5

C
o

n
ti

n
u

o
u

s
M

o
n

it
o

ri
n

g

People CM1 Analysis skills - - -

Process

 CM4 Application monitoring

CM5 System monitoring

CM8 Delivery pipeline metrics

CM11 Storing the data so it can easily be

retrieved for analysis

CM13 Setting up notifications so that

people can find out about the events they

care about

CM2 Define some useful measurement metrics

CM6 Application user behavior

CM7 User sentiment

CM9 Systems are monitored after deployment

CM10 Instrumenting your applications and your

infrastructure so you can collect the data you need

CM12 Creating dashboards which aggregate the

data and present it in a format suitable for

operations and for the business

CM3 Ensure continuous feedback provided through the

monitoring process and the users

Technology

CM16 Basic services such as dashboards

CM17 Use a Realtime User Monitoring

tool

CM18 APIs or services

CM19 The application should use to notify the

operations team of its state

CM14 Analytics can be used to integrate the system and

infrastructure performance data with customer usage

behavior

CM15 Not just gather this data but also run analytics on

it

Culture

CM20 Collaboration between developers

and operations so that the systems are

designed to expose relevant information

Chapter 5 – Design and Development

47

Table 20 - Continuous Testing MM

 Level 2 Level 3 Level 4 Level 5

C
o

n
ti

n
u

o
u

s
M

o
n

it
o

ri
n

g

People -

CT1 Understand test automation functions

CT2 Automate tests

CT3 Understand functionalities for test

management

- -

Process -

CT4 Script-based testing early and throughout

the software delivery process

CT6 Ensure continuous feedback on quality

CT5 Shorten later testing cycles

CT7 Testing earlier and continuously across

the life cycle

CT8 High test coverage of high-risk areas

CT9 integrate testing activities as closely as

possible with coding

-

Technology -

CT10 Virtualization to simulate the production

environments

CT11 test case generation

- -

Culture

CT15 driving development with

tests

CT16 TDD is a development

practice that starts with writing tests

before you write any code

CT19 Testing/quality team is

connected with Development team

early in the development cycle to

create the required test cases

CT13 Each developer should take personal

responsibility for their code and write the test

cases

CT17 BDD encourages working with the

business stakeholder to describe the desired

business functionality of the application

CT18 ATDD builds on TDD and BDD, and it is

involved in finding scenarios from the end user

perspective

CT12 Both IT Development and IT Operations

should carry out quality assurance and be

responsible for test automation

CT14 Testing on real users at scale

Table 21 - Infrastructure as Code MM

 Level 2 Level 3 Level 4 Level 5

C
o

n
ti

n
u

o
u

s

M
o

n
it

o
ri

n
g

People - - - -

Process - IAC1 Versioning environments - -

Technology -

IAC2 Entire infrastructure in a common language

IAC3 Automate server

IAC4 Generic tools

IAC5 Application or middleware-centric tools

IAC6 Environment and deployment tools

- -

Culture -
-

-
IAC7 Everyone knows how the execution environment of

an application is provided and managed

Chapter 5 – Design and Development

48

Table 22 - Feedback Loops MM

 Level 2 Level 3 Level 4 Level 5

C
o

n
ti

n
u

o
u

s
M

o
n

it
o

ri
n

g

People -
- FL1 Feedback ability, in both directions—so, to give

feedback but also to accept it

-

Process -

FL2 Shorten later testing cycles to ensure

continuous feedback

FL4 The frequency of integration is also

important in that it should be regular enough

to ensure quick feedback to developers

FL7 Short feedback loops

FL11 The delivery team must receive

feedback and then act on it.

FL3 Ensure continuous feedback provided through the

monitoring process and the users

FL5 Mechanisms to involve users in the development

process and collect user feedback from deliveries as early as

possible

FL8 Feedback loops strategy the measurement results should

be provided to not only the operation people, but also the

development people

FL10 The feedback must be delivered as soon as possible.

FL6 Techniques need to be nonintrusive so that users are

not stressed with continuous feedback requests.

FL9 Any change, of whatever kind, needs to trigger the

feedback process.

Technology - - - -

Culture - - FL13 High focus on requirements

FL12 Share feedback freely without blame

FL14 Management through close relationship with the

users to determine their needs and quickly react on their

feedback

FL15 Keeping a constant feedback about the current state

of the system

Chapter 6 – Demonstration

49

Chapter 6 – Demonstration

In order to demonstrate the artifact, two teams fully compliant with DevOps were

assessed. Then, an interview was held with DevOps teams where the proposed MM was

tested. The objective is to demonstrate that the MM fulfils the purpose it was designed to

applying it in a professional environment. Since not all capabilities or areas have

practices, only the capabilities/areas with at least one practice have been considered to

assess teams maturity. According with CMMI, which has been previously presented, a

level can only be reached if all the practices from that level are executed.

6.1 First demonstration

The first team assessed operates in the services sector, in the field of Cloud and

DevOps consulting. The person responsible to conduct this demonstration is the DevOps

Operations Lead with three years of experience in DevOps. The next figure (Figure 11)

shows the maturity of the DevOps in this team.

Figure 11 - First demonstration maturity

 Figure 11 shows the maturity of the first team. As it evidences, the most matured

capability is the Feedback Loops, followed by CI.

At level 4, Feedback Loops has a maturity level almost all areas at level 5, if it was

not by the People’s area. This means that the team has all the practices implemented for

Culture and Processes, and a big part of the People’s practices. Looking to the CI,

Technology is at its maximum, level 5. Culture is the next area with more maturity and

Process is at the end.

0

1

2

3

4

5

6

Continuous
Deployment

Continuous
Integration

Continuous
Monitoring

Continuous
Testing

Infrastructure as
code

Feedback Loops

People Process Technology Culture DevOps Level

Chapter 6 – Demonstration

50

Looking to the other capabilities, they all are at level 2. Continuous Monitoring has

3 areas at level 3 and seems to be the next most maturated capability.

In a more general view, the most maturated capability is Feedback Loops. The most

maturated area is Process.

6.2 Second demonstration

The second team is from the SD industry. The person responsible to conduct this

demonstration is the Senior Manager with eight years of experience in DevOps. The next

figure (Figure 12) shows the maturity of the DevOps in this team.

Figure 12 - Second demonstration maturity

Looking at this figure, it is perceptible that this team has, in general, a much higher

maturity than the previous one. Two capabilities at level 4 and one in level 3. CD,

Feedback Loops are the most matured capabilities while Infrastructure as a Code is the

less matured one.

Looking to the CD graphic, one of the areas reached level 5, while the others are at

level 4. Feedback loops has all its areas with similar maturity levels. Continuous Testing

has one area in level 5, one in level 4 and the others in level 3.

CI, although it has 1 area in level 5 and another one in level 4, it is only in the maturity

level 2, due to its lack of culture maturity. Continuous Monitoring has the same problem:

although it has 1 area in level 5, one in level 4 and another in level 3, its maturity is only

2. The most immature capability is Infrastructure as a Code. On the three areas evaluated,

only one is above level 2.

0

1

2

3

4

5

6

Continuous
Deployment

Continuous
Integration

Continuous
Monitoring

Continuous
Testing

Infrastructure as
code

Feedback Loops

People Process Technology Culture DevOps Level

Chapter 7 – Evaluation and Communication

51

Chapter 7 – Evaluation and Communication

In accordance with the DSRM evaluation step, here is presented our plan to evaluate

the proposal artefact in order to prove the relevance and applicability of the artefacts

produced in the resolution of the research problem described in section 3.

Following the Pries-Heje, Baskerville, & Venable (2008) approach, in which the

authors present the importance of an ex ante perspective, with the evaluation occurring

both prior to the construction of an artefact IS, and an ex post evaluation, that is,

evaluations that take place after the artefact has been built. Plus, Venable identifies two

main forms for the DSRM evaluation (J. R. Venable, 2006):

• Artificial Evaluation is evaluating a solution technology in a contrived, non-

real way.

• Naturalistic evaluation enables a researcher to explore how well or poorly a

solution technology works in its real environment – the organization.

Furthermore, an additional dichotomy is incorporated into the Pries-Hege’s

framework, which is comprised of the design product and design process. Using the

definition of Dubin for each aspect of design theory (Dubin, 1976):

• Design product is “a plan of something to be done or produced”

• Design process is “to so plan and proportion the parts of a machine or structure

that all requirements will be satisfied”

By distinguishing all these concepts, it is possible to map the objectives of evaluation

and what is more accurately adapted to the artefact constructed in order to prove the

utility, effectiveness and other criteria, as shown in Figure 13.

This framework for the DSRM evaluation is supposed to facilitate the answer to the

following questions – “What” is evaluated, “When” to evaluate, and “How” to evaluate.

Figure 13, helps us to answer these questions by providing a high-level perspective,

also considering that “P summarizes the essential characteristics of the evaluation

Process, while C indicates the evaluation Criteria (Pries-Heje et al., 2008).

Chapter 7 – Evaluation and Communication

52

Figure 13 - Strategic DSRM evaluation framework. Adapted from (Pries-Heje et al., 2008)

However, further details are needed to answer these questions and several decisions

need to be made. This non-compliance is fulfilled with the proposed framework by J.

Venable, Pries-Heje, & Baskerville (2012) that is intended to be a complement to the

strategic DSRM evaluation framework mentioned above, providing for example a guide

on how to select evaluation methods.

The DSRM Evaluation Method Selection Framework suggests possible evaluation

methods. For the current study, Survey was selected, in a form of interviews and

questionnaires.

At this point, by analyzing Figure 13 and using the selected methods of Figure 14, the

answers to the previously mentioned questions are as follows:

• What is intended to evaluate? In this case it is the developed DevOps MM.

• How will it be evaluated? The researcher will perform a survey.

• When will be evaluated? It will be evaluated following an iteration approach,

basically as an ex-post evaluation

Concerning research communication, a part of this research is presented by one paper

and the whole research is represented by this document.

The researcher will now show the evaluation that was given by the demonstration

inquires, where the constructed MM was applied by DevOps practitioners in its teams.

The researcher asked the participant to evaluate the proposed MM. the inquired person

had the chance to say anything he wanted about this MM, if it was useful, complete or

applicable in real life cases.

Iterations C: Improvements identified

Perceived Success

Ex Ante Ex Post

Artificial

Naturalistic

Design Process

Design Product Design Product

Design Process Design Process

Design ProductDesign Product

P: Interview & Questionnaire

Chapter 7 – Evaluation and Communication

53

Figure 14 - DSR Evaluation Method Selection Framework. Adapted from (J. Venable, Pries-

Heje, & Baskerville, 2012)

This first evaluation corresponds to the First demonstration case, where the participant

of 40 years old and 3 years of experience on the DevOps field applied the MM in his

team. The second evaluation is from the SD industry, where the participant is responsible

to conduct this demonstration is the Senior Manager with eight years of experience in

DevOps. The following was stated (Error! Reference source not found.):

The participants evaluated the MM positively as it can be seen in evidenced by their

feedback. On the first case, the participant said that it is a valuable work and it can be a

good help for the DevOps implementation. The participant also said that as a service

provider, some practices can be hard to get through because they are a true challenge to

implement.

The second participant in the evaluation stated that this MM is a useful tool to know

the maturity of DevOps in a team. The fact that the MM was build based on the literature

and improved with DevOps practitioners, gives this research more credibility. Although

the participant considers this MM complete, for him, it could get better if all the Areas

had at least one practice, so it can measure the maturity of all the DevOps.

Taking these two evaluations in consideration, the feedback received is positive. Both

participants thought this is a useful tool to measure the DevOps adoption. By the

feedback, it is possible to perceive that this MM is applicable in real cases. The suggestion

of improving the model to have at least one practice in each area is shared by the

researcher. However, it was not possible to find in the literature studies that deeply

explore DevOps and the people interviewed for the construction of this MM did not add

any practice.

Field Experiment

Computer Simulation

Role Playing Simulation

Mathematical or Logical Proof

DSR Evaluation

Method

Selection

Framework

Computer Simulation

Lab Experiment

Action Research

Case Study

Focus Group

Participant Observation

Ethnography

Survey (qualitative or quantitative)

Criteria-Based Evaluation

Ex Ante Ex Post

Naturalistic

Artificial

Action Research

Focus Group

Mathematical or Logical Proof

Lab Experiment

Chapter 7 – Evaluation and Communication

54

Table 23 - Evaluations of the MM applicability

ID Evaluation

E1

“You produced such valuable work. This list can act as a service menu for a DevOps

process and culture implementation and at the same time this will help the person in

charge of the DevOps transformation keep the focus on what should be delivered to the

stakeholders.

As a service provider, I cannot deny the difficulty to address some targets of your work

with my clients. For example, when you are working to transform an ITIL organization

to an Agile/DevOps organization, people tend to refrain the changes and points as the "

Share the feedback freely without blame" are a true challenge to be implemented.

For me, decide which parts of your practices should or not be implemented is a

matter to balance the client needs, the size of the client organization and keep the process

as simple as possible.”

E2

“It is hard to find DevOps practices in the existent literature. It is even harder to

understand what is important and what is the correct order to implement, so the team has

solids basis.

This work provides an interesting set of DevOps practices, divided by the most

important capabilities. It is even better because I can have a vision by area. Applying

this MM to our team gave me insight into what should be implemented and in what order.

Knowing that this was made with interviews to DevOps practitioners give me more

confidence in using this model as basis to future team improvements decisions, as I can

rely on this research.

This is a useful tool if you want to know the maturity of your team in DevOps.

Although I believe that it is a complete tool, I would consider it more complete if it has

more practices. At least, if every capability and every area had at least one practice.”

Chapter 8 – Conclusions

55

Chapter 8 – Conclusions

In this research two SLR were conducted to respond to the call by researchers and

practitioners for a deeper theoretical and practical understanding of DevOps capabilities

and areas that could work as determinant factors and contribute to the implementation of

DevOps. Then, a total of 28 interviews were performed with DevOps practitioners. With

their experience, the interviewees helped to assign a specific maturity level for each

DevOps practice. At the end of the previous steps, the proposed MM for DevOps was

then completed. Grounded on the previous sections one may argue that all the proposed

Research Objectives were achieved:

• Concerning RO1.1, the main DevOps capabilities have been also identified

and detailed. The elicited capabilities include CI, CD, continuous testing,

feedback loops between Dev and Ops and infrastructure as code.

• Regarding RO1.2, the main DevOps areas were elicited and described, and

they specifically include culture, measurement, sharing, automation,

technology, people and process.

• After these sub-objectives are met, a MM for DevOps was built. It was

sustained on the previous main areas and main capabilities. It was developed

a new DevOps MM based on CMMI MM to enable assessing any organization

working model/state against DevOps model

Regarding this, the main objectives that this research proposed were hit. Despite

this, it was possible to conclude the following set of insights:

• Both DevOps practitioners and scientific studies continue to increase since

2015. This study also identified some relationships between the DevOps areas

and capabilities based on the analysis of Figure 7. The documents that focus

on the DevOps culture are most likely to relate it to all of the main capabilities

found. On the other hand, it is more difficult to find a document that relates

Technology, People and Process with the main capabilities.

• The capabilities of CI and CD are the more investigated in the literature. The

areas that most relate with them are Culture, Sharing and Automation. These

three areas are the most referred DevOps areas in the literature. Processes

seems to be the area that less influences the capabilities, while Infrastructure

as Code is the capability which the fewest studies tend to relate with DevOps.

Chapter 8 – Conclusions

56

• This research has brought contributions to the academic and scientific

community by exploring a field that had not yet been explored and proposing

a novel artifact. It has also improved the knowledge base and endeavored to

lay down new bases for further research.

• This research is a new systematized contribution to knowledge, through the

identification of patterns that have been recognized in the literature - and that,

as such, corresponds to a new level of knowledge in the approach to the topic.

This research also provides some contributions for professionals and

practitioners. In the absence of studies exploring the DevOps main capabilities

and DevOps areas, and even the relationship between them, this research

brings new insights on how and why practitioners should adopt DevOps

practices and which areas they have to change or, at least, keep in mind as

being relevant for an effective adoption of DevOps.

• Based on these findings, and using the summarized information provided in

this work as a starting point, the authors deepened the identified DevOps areas

and capabilities to be an a priori and open model, which was the target of this

research project - which aimed to test and refine this systematized view (in the

form of a MM), having not only implications for existing scientific knowledge

but also being useful for organizational practices of DevOps

•

8.1 Limitations

Regarding limitations, it was not possible to gather enough information and present a

robust conclusion regarding specific topics, such as Outcomes, since DevOps is a recent

subject. The current research cannot fully avoid biases since it has excluded literature

sources written in other languages or unavailable in electronic databases. Since DevOps

is recent, there are not a lot of experts in this area. This limited the interviews on each

phase.

8.2 Future Work

In the future, research should be carried out into the most referenced capabilities, CI

and CD and the most referenced areas, Culture, Sharing and Automation, as they seem to

be essential in the DevOps movement. Also, it would be interesting to deeply explore the

57

relationship between CI and Culture, Sharing and Automation, as these areas seem to

relate the most with the main capability found among this literature review.

58

References

59

References

A. P. G. Yin. (2011). Scrum Maturity Model. Dissertacao para obtencao do Grau de

Mestre em Engenharia Informática e de Computadores. Universidade Técnica de

Lisboa, 165.

Abdelkebir, S., Maleh, Y., & Belaissaoui, M. (2017). An Agile Framework for ITS

Management In Organizations. Proceedings of the 2nd International Conference

on Computing and Wireless Communication Systems - ICCWCS’17, 1–8.

https://doi.org/10.1145/3167486.3167556

Ali, E., Caputo, A., & Lawless, S. (2017). Entity attribute ranking using learning to

rank. CEUR Workshop Proceedings, 1883, 19–24. https://doi.org/10.1145/1235

Andersen, E. S., & Jessen, S. A. (2003). Project maturity in organisations. International

Journal of Project Management, 21(6), 457–461. https://doi.org/10.1016/S0263-

7863(02)00088-1

Anderson, W. F., Watson, A. J., & Armstrong, P. J. (1982). HIGH VELOCITY

PROJECTILE IMPACT ON FIBRE REINFORCED CONCRETE. (May), 368–378.

Azoff, M. (2016). Ovum Decision Matrix : Selecting a DevOps Release Management

How enterprises can improve their software application delivery.

Bai, X., Li, M., Pei, D., Li, S., & Ye, D. (2018). Continuous delivery of personalized

assessment and feedback in agile software engineering projects. Proceedings -

International Conference on Software Engineering, Part F1373, 58–67.

https://doi.org/10.1145/3183377.3183387

Bang, S. K., Chung, S., Choh, Y., & Dupuis, M. (2013). A grounded theory analysis of

modern web applications. Proceedings of the 2nd Annual Conference on Research

in Information Technology - RIIT ’13, 61.

https://doi.org/10.1145/2512209.2512229

Barbosa, D. F., Furtado, E. S., & Gomes, A. S. (2007). Uma proposta de

institucionalização da usabilidade alinhada com práticas do modelo CMMI e foco

nas necessidades da organização. 45. https://doi.org/10.1145/1298023.1298060

Baskarada, S., Gao, J., & Koronios, A. (2005). Agile maturity model approach to

assessing and enhancing the quality of asset information in engineering asset

management information systems.

Bass, L. (2017). The Software Architect and DevOps. IEEE Software, 35(1), 8–10.

https://doi.org/10.1109/MS.2017.4541051

References

60

Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing Maturity Models for IT

Management. Business & Information Systems Engineering, 1(3), 213–222.

https://doi.org/10.1007/s12599-009-0044-5

Berssaneti, F. T., Carvalho, M. M. De, & Muscat, A. R. N. (2012). Impacto dos

modelos de referência e maturidade no gerenciamento de projetos: estudo

exploratório em projetos de tecnologia da informação. Production, 22(3), 404–435.

https://doi.org/10.1590/S0103-65132012005000027

Bezemer, C., Eismann, S., Ferme, V., & Grohmann, J. (2018). How is Performance

Addressed in DevOps? A Survey on Industrial Practices. (arXiv:1808.06915v1

[cs.SE]). (August). https://doi.org/10.1145/nnnnnnn.nnnnnnn

Bhattacharjee, A., Barve, Y., Gokhale, A., & Kuroda, T. (2018). (WIP) CloudCAMP:

Automating the Deployment and Management of Cloud Services. 2018 IEEE

International Conference on Services Computing (SCC), 237–240.

https://doi.org/10.1109/SCC.2018.00038

Bucena, I., & Kirikova, M. (2017). Simplifying the devops adoption process. CEUR

Workshop Proceedings, 1898.

Buglione, L. (2011). Light maturity models (LMM). Proceedings of the 12th

International Conference on Product Focused Software Development and Process

Improvement - Profes ’11, 5(Lmm), 57. https://doi.org/10.1145/2181101.2181115

Chen, H. M., Kazman, R., Haziyev, S., Kropov, V., & Chtchourov, D. (2015).

Architectural Support for DevOps in a Neo-Metropolis BDaaS Platform.

Proceedings of the IEEE Symposium on Reliable Distributed Systems, 2016-Janua,

25–30. https://doi.org/10.1109/SRDSW.2015.14

Chen, L. (2018). Microservices: Architecting for Continuous Delivery and DevOps.

Proceedings - 2018 IEEE 15th International Conference on Software Architecture,

ICSA 2018, 39–46. https://doi.org/10.1109/ICSA.2018.00013

Chrissis, M. B., Konrad, M. D., & Shrum, S. (2010). CMMI for Development, Version

1.3. In Carnegie Mellon University. https://doi.org/CMU/SEI-2010-TR-033 ESC-

TR-2010-033

Cleveland, S. B., Dooley, R., Perry, D., Stubbs, J., Fonner, J. M., & Jacobs, G. A.

(2018). Building Science Gateway Infrastructure in the Middle of the Pacific and

Beyond. Proceedings of the Practice and Experience on Advanced Research

Computing - PEARC ’18, (Ci), 1–8. https://doi.org/10.1145/3219104.3219151

Colomo-Palacios, R., Fernandes, E., Soto-Acosta, P., & Larrucea, X. (2018). A case

References

61

analysis of enabling continuous software deployment through knowledge

management. International Journal of Information Management, 40(October),

186–189. https://doi.org/10.1016/j.ijinfomgt.2017.11.005

Cooke-Davies, T. (2007). Project Management Maturity Models. In The Wiley Guide to

Managing Projects. https://doi.org/10.1002/9780470172391.ch49

Croker, M., & Hering, M. (2016). DevOps: Delivering at the speed of today’s business

DevOps: A matter of survival in the digital age.

Da Silva, G. C., & De Figueiredo Carneiro, G. (2016). Software process improvement

in small and medium enterprises: A systematic literature review. In Advances in

Intelligent Systems and Computing (Vol. 448, pp. 603–613).

https://doi.org/10.1007/978-3-319-32467-8_53

De Bayser, M., Azevedo, L. G., & Cerqueira, R. (2015). ResearchOps: The case for

DevOps in scientific applications. Proceedings of the 2015 IFIP/IEEE

International Symposium on Integrated Network Management, IM 2015, 59(3),

1398–1404. https://doi.org/10.1109/INM.2015.7140503

de Feijter, R., Rob, van V., Jagroep, E., Overbeek, S., & Brinkkemper, S. (2017).

Towards the adoption of DevOps in software product organizations: A Maturity

Model Approach. (May), 1–173.

de França, B. B. N., Jeronimo, H., & Travassos, G. H. (2016). Characterizing DevOps

by Hearing Multiple Voices. Proceedings of the 30th Brazilian Symposium on

Software Engineering - SBES ’16, 53–62.

https://doi.org/10.1145/2973839.2973845

Debois, P. (2011). DevOps: A software Revolution in the Making. Cutter IT Journel,

24(8), 34. https://doi.org/10.1016/B978-0-08-025947-5.50004-2

Debroy, V., Miller, S., & Brimble, L. (2018). Building lean continuous integration and

delivery pipelines by applying DevOps principles: a case study at Varidesk.

Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering - ESEC/FSE 2018, 851–856.

https://doi.org/10.1145/3236024.3275528

DeGrandis, D. (2011). Devops: So you say you want a revolution? Cutter IT Journal,

24(8), 34–39.

Diel, E., Marczak, S., & Cruzes, D. S. (2016). Communication Challenges and

Strategies in Distributed DevOps. 2016 IEEE 11th International Conference on

References

62

Global Software Engineering (ICGSE), 24–28.

https://doi.org/10.1109/ICGSE.2016.28

Dubin, R. (1976). Theory Building in Applied Areas. Handbook of Industrial and

Organizational Psychology.

Düllmann, T. F., Paule, C., & Van Hoorn, A. (2018). Exploiting devops practices for

dependable and secure continuous delivery pipelines. Proceedings - International

Conference on Software Engineering, Part F1378, 27–30.

https://doi.org/10.1145/3194760.3194763

Duvall, P. M., Matyas, S., & Glover, A. (2007). Continuous integration : improving

software quality and reducing risk. In Addison-Wesley signature series.

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. IEEE Software,

33(3), 94–100. https://doi.org/10.1109/MS.2016.68

Erich, F., Amrit, C., & Daneva, M. (2014a). Cooperation between information system

development and operations. Proceedings of the 8th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement - ESEM ’14, 1–

1. https://doi.org/10.1145/2652524.2652598

Erich, F., Amrit, C., & Daneva, M. (2014b). DevOps Literature Review. University of

Twente, (October), 27. https://doi.org/10.1007/978-3-319-13835-0

Farkas, A., & Walsh, C. (2002). A Perspective of the Common Criteria in Modern IT

Business. 3rd International Common Criteria Conference, May, 1–8. Retrieved

from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.1073&rep=rep

1&type=pdf

Farshchi, M., Schneider, J.-G., Weber, I., & Grundy, J. (2015). Experience report:

Anomaly detection of cloud application operations using log and cloud metric

correlation analysis. 2015 IEEE 26th International Symposium on Software

Reliability Engineering (ISSRE), 24–34.

https://doi.org/10.1109/ISSRE.2015.7381796

Feitelson, D. G., Frachtenberg, E., & Beck, K. L. (2013). Development and deployment

at facebook. IEEE Internet Computing, 17(4), 8–17.

https://doi.org/10.1109/MIC.2013.25

Fielding, N., & Maanen, J. Van. (1989). Tales of the Field: On Writing Ethnography.

The British Journal of Sociology. https://doi.org/10.2307/590904

Fitzgerald, B., & Stol, K.-J. (2014). Continuous software engineering and beyond:

References

63

trends and challenges. Proceedings of the 1st International Workshop on Rapid

Continuous Software Engineering - RCoSE 2014, 1–9.

https://doi.org/10.1145/2593812.2593813

Fontana and Frey. (1994). Interviewing: The art of science. Handbook of Qualitative

Research. https://doi.org/10.1016/j.jconhyd.2010.08.009

Fontana, R. M., Meyer, V., Reinehr, S., & Malucelli, A. (2015). Progressive Outcomes:

A framework for maturing in agile software development. Journal of Systems and

Software, 102, 88–108. https://doi.org/10.1016/j.jss.2014.12.032

Fördős, V., & Cesarini, F. (2016). CRDTs for the configuration of distributed Erlang

systems. Proceedings of the 15th International Workshop on Erlang - Erlang 2016,

42–53. https://doi.org/10.1145/2975969.2975974

García-Mireles, G. A., Ángeles Moraga, M., & García, F. (2012). Development of

maturity models: a systematic literature review. 16th International Conference on

Evaluation & Assessment in Software Engineering (EASE 2012), 279–283.

https://doi.org/10.1530/ERC-15-0123

Gazivoda, M. (2018). Application of DevOps Approach in Developing Business

Intelligence System in Bank. (June), 11–14.

Gupta, V., Kapur, P. K., & Kumar, D. (2017). Modeling and measuring attributes

influencing DevOps implementation in an enterprise using structural equation

modeling. Information and Software Technology, 92, 75–91.

https://doi.org/10.1016/j.infsof.2017.07.010

Hanappi, O., Hummer, W., & Dustdar, S. (2016). Asserting reliable convergence for

configuration management scripts. ACM SIGPLAN Notices, 51(10), 328–343.

https://doi.org/10.1145/3022671.2984000

Hart, C. (1998). Doing a literature review: Releasing the social science research

imagination. SAGE: London, 1(1), 1–25.

https://doi.org/10.1080/01422419908228843

Hevner, March, Park, & Ram. (2004). Design Science in Information Systems

Research. MIS Quarterly. https://doi.org/10.2307/25148625

Humble, J, & Molesky, J. (2011). Why {Enterprises} {Must} {Adopt} {Devops} to

{Enable} {Continuous} {Delivery}. Cutter IT Journal, 24(8), 6–12.

Humble, Jez, & Farley, D. (2011). Continuous Delivery. In Addison-Wesley Signature

Series. https://doi.org/10.1017/CBO9781107415324.004

Hussain, W., Clear, T., & MacDonell, S. (2017). Emerging trends for global DevOps: A

References

64

New Zealand perspective. Proceedings - 2017 IEEE 12th International Conference

on Global Software Engineering, ICGSE 2017, 21–30.

https://doi.org/10.1109/ICGSE.2017.16

Hüttermann, M. (2012). Introducing DevOps. In DevOps for Developers (Part I) (pp.

15–31). https://doi.org/10.1007/978-1-4302-4570-4_2

Jabbari, R., bin Ali, N., Petersen, K., & Tanveer, B. (2016). What is DevOps?

Proceedings of the Scientific Workshop Proceedings of XP2016 on - XP ’16

Workshops, (March 2018), 1–11. https://doi.org/10.1145/2962695.2962707

Jimenez, I., Sevilla, M., Watkins, N., Maltzahn, C., Lofstead, J., Mohror, K., … Arpaci-

Dusseau, R. (2017). The popper convention: Making reproducible systems

evaluation practical. Proceedings - 2017 IEEE 31st International Parallel and

Distributed Processing Symposium Workshops, IPDPSW 2017, 1561–1570.

https://doi.org/10.1109/IPDPSW.2017.157

John, W., Meirosu, C., Pechenot, B., Sköldström, P., Kreuger, P., & Steinert, R. (2015).

Scalable Software Defined Monitoring for Service Provider DevOps. Proceedings

- European Workshop on Software Defined Networks, EWSDN, 61–66.

https://doi.org/10.1109/EWSDN.2015.62

Jones, S., Noppen, J., & Lettice, F. (2016). Management challenges for DevOps

adoption within UK SMEs. Proceedings of the 2nd International Workshop on

Quality-Aware DevOps - QUDOS 2016, (July), 7–11.

https://doi.org/10.1145/2945408.2945410

Karapantelakis, A., Liang, H., Wang, K., Vandikas, K., Inam, R., Fersman, E., …

Giannokostas, V. (2016). DevOps for IoT applications using cellular networks and

cloud. Proceedings - 2016 IEEE 4th International Conference on Future Internet

of Things and Cloud, FiCloud 2016, 340–347.

https://doi.org/10.1109/FiCloud.2016.55

Kawamoto, S., & De Almeida, J. R. (2017). Scrum-DR: An extension of the scrum

framework adherent to the capability maturity model using design rationale

techniques. 2017 CHILEAN Conference on Electrical, Electronics Engineering,

Information and Communication Technologies, CHILECON 2017 - Proceedings,

2017-Janua, 1–7. https://doi.org/10.1109/CHILECON.2017.8229530

Khan, K., Kunz, R., Kleijnen, J., & Antes, G. (2004). Systematic Reviews to Support

Evidence-Based Medicine: How to Review and Apply Findings of Healthcare

Research. Postgraduate Medical Journal. https://doi.org/10.1016/S1036-

References

65

7314(00)70624-2

Kim, G. (2015). Top 11 Things You Need to Know about DevOps. IT Revolution Press,

1–20. Retrieved from http://info.leankit.com/top-eleven-things-to-know-about-

devops

Kitchenham, B. (2004). Procedures for performing systematic reviews. In Joint

Technical Report, Computer Science Department, Keele University.

https://doi.org/10.1.1.122.3308

Kuusinen, K., Balakumar, V., Jepsen, S. C., & Larsen, S. H. (2018). A Large Agile

Organization on its Journey towards DevOps. 60–63.

https://doi.org/10.1109/SEAA.2018.00019

Kvale. (1996). An Introduction to Qualitative Research Interviewing. Qualitative

Research. https://doi.org/10.1093/iclqaj/12.2.704

Lahrmann, G., Marx, F., Mettler, T., Winter, R., & Wortmann, F. (2011). Inductive

design of maturity models: Applying the Rasch algorithm for design science

research. Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics).

https://doi.org/10.1007/978-3-642-20633-7_13

Laukkarinen, T., Kuusinen, K., & Mikkonen, T. (2017). DevOps in regulated software

development: Case medical devices. Proceedings - 2017 IEEE/ACM 39th

International Conference on Software Engineering: New Ideas and Emerging

Results Track, ICSE-NIER 2017, 15–18. https://doi.org/10.1109/ICSE-

NIER.2017.20

Laukkarinen, T., Kuusinen, K., & Mikkonen, T. (2018). Regulated software meets

DevOps. Information and Software Technology, 97, 176–178.

https://doi.org/10.1016/j.infsof.2018.01.011

Lewerentz, M., Bluhm, T., Daher, R., Dumke, S., Grahl, M., Grün, M., … Werner, A.

(2018). Implementing DevOps practices at the control and data acquisition system

of an experimental fusion device. Fusion Engineering and Design, (November), 0–

1. https://doi.org/10.1016/j.fusengdes.2018.11.022

Li, Z., Zhang, Y., & Liu, Y. (2017). Towards a full-stack devops environment

(platform-as-a-service) for cloud-hosted applications. Tsinghua Science and

Technology, 22(1), 1–9. https://doi.org/10.1109/TST.2017.7830891

Liguori, S. M., Selltiz, C., Jahoda, M., Deutsch, M., & Cook, S. W. (2007). Research

Methods in Social Relations. The American Catholic Sociological Review.

References

66

https://doi.org/10.2307/3709611

Luz, W. P., Pinto, G., & Bonifácio, R. (2018a). Building a collaborative culture.

Proceedings of the 12th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement - ESEM ’18, 18(3), 1–10.

https://doi.org/10.1145/3239235.3240299

Luz, W. P., Pinto, G., & Bonifácio, R. (2018b). Building a collaborative culture.

Proceedings of the 12th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement - ESEM ’18, 18(3), 1–10.

https://doi.org/10.1145/3239235.3240299

Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2015). Dimensions of devOps. Lecture Notes

in Business Information Processing, 212, 212–217. https://doi.org/10.1007/978-3-

319-18612-2_19

Mackey, T. (2018). Building open source security into agile application builds. Network

Security, 2018(4), 5–8. https://doi.org/10.1016/S1353-4858(18)30032-1

Mansfield-Devine, S. (2018). DevOps: finding room for security. Network Security,

2018(7), 15–20. https://doi.org/10.1016/S1353-4858(18)30070-9

Manzini, E. (2004). Entrevista semi-estruturada: análise de objetivos e de roteiros.

Seminário Internacional Sobre Pesquisa e Estudos Qualitativos.

https://doi.org/10.1590/S0036-36342005000100012

Marijan, D., Liaaen, M., & Sen, S. (2018). DevOps Improvements for Reduced Cycle

Times with Integrated Test Optimizations for Continuous Integration. 2018 IEEE

42nd Annual Computer Software and Applications Conference (COMPSAC), 22–

27. https://doi.org/10.1109/COMPSAC.2018.00012

Maximilian, R., & Schwindenhammer, L. (2018). Business Process Management

Forum. 329, 194–210. https://doi.org/10.1007/978-3-319-98651-7

McCarthy, M. A., Herger, L. M., Khan, S. M., & Belgodere, B. M. (2015). Composable

DevOps: Automated Ontology Based DevOps Maturity Analysis. Proceedings -

2015 IEEE International Conference on Services Computing, SCC 2015, 600–607.

https://doi.org/10.1109/SCC.2015.87

Meho, L. I. (2006). E-Mail Interviewing in Qualitative Research : A Methodological

Discussion. 57(2004), 1284–1295. https://doi.org/10.1002/asi

Mettler, T. (2009). A Design Science Research Perspective on Maturity Models in

Information Systems. Universiteit St. Gallen:Technical Report: BE IWI/HNE/03.

https://doi.org/10.2174/97816080506351100101

References

67

Mettler, T. (2011). Maturity assessment models: a design science research approach. Int.

J. Society Systems Science. https://doi.org/10.1504/IJSSS.2011.038934

Mikkonen, T., Lassenius, C., Männistö, T., Oivo, M., & Järvinen, J. (2018). Continuous

and collaborative technology transfer: Software engineering research with real-

time industry impact. Information and Software Technology, 95(October), 34–45.

https://doi.org/10.1016/j.infsof.2017.10.013

Minayo, M. C. S. (2004). O desafio do conhecimento: pesquisa qualitativa em saúde. In

Saúde em debate.

Mohamed, S. I. (2015). DevOps Shifting Software Engineering Strategy Value Based

Perspective. IOSR Journal of Computer Engineering Ver. IV, 17(2), 2278–2661.

https://doi.org/10.9790/0661-17245157

Mohamed, S. I. (2016). DevOps Maturity Calculator DOMC -Value oriented approach.

International Journal of Engineering Research & Science, 2(2), 2395–6992.

Mohan, V., & Ben Othmane, L. (2016). SecDevOps: Is it a marketing buzzword?

Mapping research on security in DevOps. Proceedings - 2016 11th International

Conference on Availability, Reliability and Security, ARES 2016, 542–547.

https://doi.org/10.1109/ARES.2016.92

Molto, G., Caballer, M., Perez, A., Alfonso, C. De, & Blanquer, I. (2017). Coherent

Application Delivery on Hybrid Distributed Computing Infrastructures of Virtual

Machines and Docker Containers. Proceedings - 2017 25th Euromicro

International Conference on Parallel, Distributed and Network-Based Processing,

PDP 2017, 486–490. https://doi.org/10.1109/PDP.2017.29

Moore, J., Kortuem, G., Smith, A., Chowdhury, N., Cavero, J., & Gooch, D. (2016).

DevOps for the Urban IoT. Proceedings of the Second International Conference on

IoT in Urban Space - Urb-IoT ’16, 78–81.

https://doi.org/10.1145/2962735.2962747

Murugesan, S. (2017). Opening statement. Cutter IT Journal, 30(3), 3–5.

https://doi.org/10.1111/j.1467-8268.1991.tb00046.x

Nidagundi, P., & Novickis, L. (2017). Towards Utilization of Lean Canvas in the

Devops Software. Environment. Technology. Resources. Proceedings of the

International Scientific and Practical Conference, 2, 107.

https://doi.org/10.17770/etr2017vol2.2522

Nielsen, P. A., Winkler, T. J., & Nørbjerg, J. (2017). Closing the IT development-

operations gap: The devops knowledge sharing framework. CEUR Workshop

References

68

Proceedings, 1898.

Palihawadana, S., Wijeweera, C. H., Sanjitha, M. G. T. N., Liyanage, V. K., Perera, I.,

& Meedeniya, D. A. (2017). Tool support for traceability management of software

artefacts with DevOps practices. 3rd International Moratuwa Engineering

Research Conference, MERCon 2017, 129–134.

https://doi.org/10.1109/MERCon.2017.7980469

Pang, C., & Hindle, A. (2017). Continuous maintenance. Proceedings - 2016 IEEE

International Conference on Software Maintenance and Evolution, ICSME 2016,

458–462. https://doi.org/10.1109/ICSME.2016.45

Patel, C., & Ramachandran, M. (2009). Agile Maturity Model (AMM): A software

process improvement framework for agile software development practices. Int. J.

of Software Engineering, IJSE, 2(I), 3–28. https://doi.org/10.4304/jsw.4.5.422-435

Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui, W., Virtanen, V., & Bragge,

J. (2006). The Design Science Research Process: A Model for Producing and

Presenting Information Systems Research. The Proceedings of Design Research in

Information Systems and Technology DESRIST 2006.

https://doi.org/10.2753/MIS0742-1222240302

Perera, P., Bandara, M., & Perera, I. (2017). Evaluating the impact of DevOps practice

in Sri Lankan software development organizations. 16th International Conference

on Advances in ICT for Emerging Regions, ICTer 2016 - Conference Proceedings,

(December), 281–287. https://doi.org/10.1109/ICTER.2016.7829932

Perera, P., Silva, R., & Perera, I. (2017). Improve software quality through practicing

DevOps. 2017 Seventeenth International Conference on Advances in ICT for

Emerging Regions (ICTer), 2018-Janua, 1–6.

https://doi.org/10.1109/ICTER.2017.8257807

Pozzebon, M. (2006). Conducting and Evaluating Critical Interpretive Research:

Examining Criteria as a Key Component in Building a Research Tradition. In

Information Systems Research. https://doi.org/10.1007/1-4020-8095-6_16

Pries-Heje, J., Baskerville, R., & Venable, J. R. (2008). Association for Information

Systems AIS Electronic Library (AISeL) Strategies for Design Science Research

Evaluation. European Conference on Information Systems, 87. Retrieved from

http://aisel.aisnet.org/ecis2008

Proenca, D. (2016). Methods and techniques for maturity assessment. 2016 11th Iberian

Conference on Information Systems and Technologies (CISTI), 1–4.

References

69

https://doi.org/10.1109/CISTI.2016.7521483

Punjabi, R., & Bajaj, R. (2017). User stories to user reality: A devops approach for the

cloud. 2016 IEEE International Conference on Recent Trends in Electronics,

Information and Communication Technology, RTEICT 2016 - Proceedings, 658–

662. https://doi.org/10.1109/RTEICT.2016.7807905

Qumer Gill, A., Loumish, A., Riyat, I., & Han, S. (2018). DevOps for information

management systems. VINE Journal of Information and Knowledge Management

Systems, 48(1), 122–139. https://doi.org/10.1108/VJIKMS-02-2017-0007

Rahman, A., Mahdavi-Hezaveh, R., & Williams, L. (2018). A systematic mapping

study of infrastructure as code research. Information and Software Technology,

(November). https://doi.org/10.1016/j.infsof.2018.12.004

Rana, R., & Staron, M. (2016). First International Workshop on Emerging Trends in

DevOps and Infrastructure. Proceedings of the Scientific Workshop Proceedings of

XP2016 on - XP ’16 Workshops, 1–3. https://doi.org/10.1145/2962695.2962706

Ratislavová, K., & Ratislav, J. (2014). ASYNCHRONOUS EMAIL INTERVIEW AS A

QUALITATIVE RESEARCH METHOD IN THE HUMANITIES. 452–460.

https://doi.org/10.2478/s13374-014-0240-y

Razzak, M. A. (2016). An empirical study on lean and agile methods in global software

development. Proceedings - 11th IEEE International Conference on Global

Software Engineering Companion Proceedings, ICGSEW 2016.

https://doi.org/10.1109/ICGSEW.2016.22

Rijo, R. P. C. L. (2008). Framework para a Gestão de Projectos de Sistemas de

Informação de Contact Centers. (February), 326.

Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L. E., Tiihonen, J., & Männistö, T.

(2016). DevOps adoption benefits and challenges in practice: A case study. Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 10027 LNCS, 590–597.

https://doi.org/10.1007/978-3-319-49094-6_44

Roche, J. (2013). Adopting DevOps practices in quality assurance. Communications of

the ACM, 56(11), 38–43. https://doi.org/10.1145/2524713.2524721

Rodríguez, P., Mäntylä, M., Oivo, M., Lwakatare, L. E., Seppänen, P., & Kuvaja, P.

(2018). Advances in Using Agile and Lean Processes for Software Development.

Advances in Computers. https://doi.org/10.1016/bs.adcom.2018.03.014

Rong, G., Zhang, H., & Shao, D. (2016a). CMMI guided process improvement for

References

70

DevOps projects. Proceedings of the International Workshop on Software and

Systems Process - ICSSP ’16, 76–85. https://doi.org/10.1145/2904354.2904372

Rong, G., Zhang, H., & Shao, D. (2016b). CMMI guided process improvement for

DevOps projects. Proceedings of the International Workshop on Software and

Systems Process - ICSSP ’16, 76–85. https://doi.org/10.1145/2904354.2904372

Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2017). Towards Traceability

Management in Continuous Integration with SAT-analyzer. Proceedings of the 3rd

International Conference on Communication and Information Processing, 77–81.

https://doi.org/10.1145/3162957.3162985

Rubasinghe, I., Meedeniya, D., Perera, I., & Practice, A. T. (2018). Automated Inter-

artefact Traceability Establishment for DevOps Practice. 211–216.

https://doi.org/10.1109/ICIS.2018.8466414

Rufino, J., Alam, M., & Ferreira, J. (2017). Monitoring V2X applications using DevOps

and docker. 2017 International Smart Cities Conference, ISC2 2017.

https://doi.org/10.1109/ISC2.2017.8090868

Samarawickrama, S. S., & Perera, I. (2018). Continuous scrum: A framework to

enhance scrum with DevOps. 17th International Conference on Advances in ICT

for Emerging Regions, ICTer 2017 - Proceedings, 2018-Janua, 19–25.

https://doi.org/10.1109/ICTER.2017.8257808

Santana, F., Soares, F., Romero De, S., & Meira, L. (2013). An Agile Maturity Model

for Software Development Organizations. Proceedings of the Eighth International

Conference on Software Engineering Advances (ICSEA’13), 324–328. Retrieved

from http://s3.amazonaws.com/academia.edu.documents/31692670/ICSEA-

AgileMM_v2.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=

1492019091&Signature=%2B72RILftao361ieM7EnKqlsWA38%3D&response-

content-disposition=inline%3B filename%3DAn_Agile_Maturity_Model_for_

Schumacher, A., Erol, S., & Sihn, W. (2016). A Maturity Model for Assessing Industry

4.0 Readiness and Maturity of Manufacturing Enterprises. Procedia CIRP, 52,

161–166. https://doi.org/10.1016/j.procir.2016.07.040

Science, C., & Sciences, N. (2015). Full-scale Software Engineering FsSE 2015. Full-

Scale Software Engineering FsSE, 31–36.

Science, M. (2016). RESEARCH ARTICLE GOAL ORIENTED DEVOPS

TRANSFORMATION FRAMEWORK – METRIC PHASED APPROACH * Samer I

. Mohamed Modern Science and Arts University , Faculty of Engineering ,

References

71

Electrical and Communication Department.

Senapathi, M., Buchan, J., & Osman, H. (2018). DevOps Capabilities, Practices, and

Challenges. Proceedings of the 22nd International Conference on Evaluation and

Assessment in Software Engineering 2018 - EASE’18, 57–67.

https://doi.org/10.1145/3210459.3210465

Shahin, M., Babar, M. A., & Zhu, L. (2016). The Intersection of Continuous

Deployment and Architecting Process. Proceedings of the 10th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement -

ESEM ’16, 1–10. https://doi.org/10.1145/2961111.2962587

Sharma, S. (2017a). DevOps Plays for Driving Innovation. In The DevOps Adoption

Playbook (pp. 189–260). https://doi.org/10.1002/9781119310778.ch5

Sharma, S. (2017b). The DevOps Adoption Playbook.

https://doi.org/10.1002/9781119310778

Sharma, S. (2017c). The DevOps Adoption Playbook.

https://doi.org/10.1002/9781119310778

Sharma, S., & Coyne, B. (2015). DevOps For Dummies. In John Wiley & Sons, Inc.

(Vol. 1). https://doi.org/10.1017/CBO9781107415324.004

Shivakumar, S. K. (2017). DevOps for Digital Enterprises Brief Introduction to DevOps

Scope.

Siddaway, A. (2014). What is a Systematic Literature Review and how do I do one?

University of Stirling.

Silva, M. M. A., Faustino, J., Pereira, R., & Silva, M. M. A. (2018). Productivity gains

of DevOps adoption in an IT team: a case study. 27th International Conference on

Information Systems Development. Retrieved from https://repositorio.iscte-

iul.pt/handle/10071/16388

Smeds, J., Nybom, K., & Porres, I. (2015). DevOps: A Definition and Perceived

Adoption Impediments. In C. Lassenius, T. Dingsøyr, & M. Paasivaara (Eds.),

Lecture Notes in Business Information Processing (pp. 166–177).

https://doi.org/10.1007/978-3-319-18612-2_14

Snyder, B., & Curtis, B. (2017). Using Analytics to Guide Improvement during an

Agile-DevOps Transformation. IEEE Software, 35(1), 78–83.

https://doi.org/10.1109/MS.2017.4541032

Soni, M. (2016). End to End Automation on Cloud with Build Pipeline: The Case for

DevOps in Insurance Industry, Continuous Integration, Continuous Testing, and

References

72

Continuous Delivery. Proceedings - 2015 IEEE International Conference on

Cloud Computing in Emerging Markets, CCEM 2015, 85–89.

https://doi.org/10.1109/CCEM.2015.29

Srivastava, A., Bhardwaj, S., & Saraswat, S. (2017). SCRUM model for agile

methodology. Proceeding - IEEE International Conference on Computing,

Communication and Automation, ICCCA 2017, 2017-Janua, 864–869.

https://doi.org/10.1109/CCAA.2017.8229928

St, D., Ab, E., & Bosch, J. (2017). Continuous Practices and DevOps : Beyond the Buzz

, What Does It All Mean ? 2017 43rd Euromicro Conference on Software

Engineering and Advanced Applications (SEAA) Continuous, 440–448.

https://doi.org/10.1109/SEAA.2017.78

Staples, M., & Niazi, M. (2008). Systematic review of organizational motivations for

adopting CMM-based SPI. Information and Software Technology.

https://doi.org/10.1016/j.infsof.2007.07.003

Steffens, A., Lichter, H., & Döring, J. S. (2018a). Designing a Next-Generation

Continuous Software Delivery System : Concepts and Architecture. 1–7.

Steffens, A., Lichter, H., & Döring, J. S. (2018b). Designing a next-generation

continuous software delivery system. Proceedings of the 4th International

Workshop on Rapid Continuous Software Engineering - RCoSE ’18, 1–7.

https://doi.org/10.1145/3194760.3194768

Stojanov, I., Turetken, O., & Trienekens, J. J. M. (2015). A Maturity Model for Scaling

Agile Development. Proceedings - 41st Euromicro Conference on Software

Engineering and Advanced Applications, SEAA 2015, 446–453.

https://doi.org/10.1109/SEAA.2015.29

Stoneham, J., Thrasher, P., Potts, T., Mickman, H., DeArdo, C., & Limoncelli, T. A.

(2016). DevOps Case Studies. 46.

Stoneham, J., Thrasher, P., Potts, T., Mickman, H., DeArdo, C., & Limonchelli, T. A.

(2017). DEVOPS CASE STUDIES: The Journey to Positive Business Outcomes

(1st ed.). Oregon, Portland: IT Revolution Press.

Sturm, R., Pollard, C., & Craig, J. (2017). DevOps and Continuous Delivery. In

Application Performance Management (APM) in the Digital Enterprise (pp. 121–

135). https://doi.org/10.1016/B978-0-12-804018-8.00010-3

Swanson, E. B., & Beath, C. M. (1990). Departmentalization in software development

and maintenance. Communications of the ACM.

References

73

https://doi.org/10.1145/78973.78976

Tessem, B., & Iden, J. (2008). Cooperation between developers and operations in

software engineering projects. Proceedings of the 2008 International Workshop on

Cooperative and Human Aspects of Software Engineering - CHASE ’08.

https://doi.org/10.1145/1370114.1370141

Tingley, G. A., & Anderson, R. M. (1986). Environmental sex determination and

density-dependent population regulation in the entomogenous nematode

Romanomermis culicivorax. Parasitology, 92(02), 431.

https://doi.org/10.1017/S0031182000064192

Tuma, K., Calikli, G., & Scandariato, R. (2018). Threat analysis of software systems: A

systematic literature review. Journal of Systems and Software, 144, 275–294.

https://doi.org/10.1016/j.jss.2018.06.073

Ur Rahman, A. A., & Williams, L. (2016a). Security practices in DevOps. Proceedings

of the Symposium and Bootcamp on the Science of Security - HotSos ’16, 109–111.

https://doi.org/10.1145/2898375.2898383

Ur Rahman, A. A., & Williams, L. (2016b). Software security in DevOps. Proceedings

of the International Workshop on Continuous Software Evolution and Delivery -

CSED ’16, 70–76. https://doi.org/10.1145/2896941.2896946

Vassallo, C., Zampetti, F., Romano, D., Beller, M., Panichella, A., Di Penta, M., &

Zaidman, A. (2017). Continuous delivery practices in a large financial

organization. Proceedings - 2016 IEEE International Conference on Software

Maintenance and Evolution, ICSME 2016, 519–528.

https://doi.org/10.1109/ICSME.2016.72

Velasquez, N. F., Kim, G., Kersten, N., & Humble, J. (2018). State of DevOps Report

2018. In Puppetlabs. https://doi.org/10.1016/S0022-3913(12)00047-9

Venable, J., Pries-Heje, J., & Baskerville, R. (2012). A comprehensive framework for

evaluation in design science research. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). https://doi.org/10.1007/978-3-642-29863-9_31

Venable, J. R. (2006). A Framework For Design Science Research Activities. Emerging

Trends and Challenges in Information Technology Management, (2), 184–187.

https://doi.org/10.4018/978-1-59904-019-6.ch044

Verrier, B., Rose, B., & Caillaud, E. (2016). Lean and Green strategy: The Lean and

Green House and maturity deployment model. Journal of Cleaner Production, 116,

References

74

150–156. https://doi.org/10.1016/j.jclepro.2015.12.022

Virmani, M. (2015). Understanding DevOps & bridging the gap from continuous

integration to continuous delivery. 5th International Conference on Innovative

Computing Technology, INTECH 2015, (Intech), 78–82.

https://doi.org/10.1109/INTECH.2015.7173368

Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future:

Writing a Literature Review. MIS Quarterly, 26(2), xiii–xxiii.

https://doi.org/10.1.1.104.6570

Wiesche, M. (2018). ARE YOU READY FOR DEVOPS ? REQUIRED SKILL SET

FOR DEVOPS TEAMS DevOps teams. Twenty-Sixth European Conference on

Information Systems (ECIS2018).

Wongkampoo, S., & Kiattisin, S. (2018). Atom-Task Precondition Technique to

Optimize Large Scale GUI Testing Time based on Parallel Scheduling Algorithm.

ICSEC 2017 - 21st International Computer Science and Engineering Conference

2017, Proceeding, 6, 229–232. https://doi.org/10.1109/ICSEC.2017.8443913

Xia, C., Zhang, Y., Wang, L., Coleman, S., & Liu, Y. (2018). Microservice-based cloud

robotics system for intelligent space. Robotics and Autonomous Systems, 110, 139–

150. https://doi.org/10.1016/j.robot.2018.10.001

Yin, X., Zhang, J., & Wang, X. (2004). Summary for Policymakers. In

Intergovernmental Panel on Climate Change (Ed.), Climate Change 2013 - The

Physical Science Basis (Vol. 32, pp. 1–30).

https://doi.org/10.1017/CBO9781107415324.004

Zhu, H., & Bayley, I. (2018). If Docker is the Answer, What is the Question?

Proceedings - 12th IEEE International Symposium on Service-Oriented System

Engineering, SOSE 2018 and 9th International Workshop on Joint Cloud

Computing, JCC 2018, 152–163. https://doi.org/10.1109/SOSE.2018.00027

Zhu, L., Bass, L., & Champlin-Scharff, G. (2016). DevOps and Its Practices. IEEE

Software, 33(3), 32–34. https://doi.org/10.1109/MS.2016.81

