

Departamento of Science and Technology

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa
Integration	

André Daniel Lopes dos Santos

Thesis submitted as partial requirement for the conferral of the degree of

Master in Open Source Software

Supervisor (a):
Professor João Ferreira, Assistant Professor (‘Agregação’),

ISCTE-IUL

September, 2019

Low-Cost, Lightweight IoT platform with custom LPWAN LoRa integration

i

Acknowledgments
To my thesis supervisor, family, and friends.

Low-Cost, Lightweight IoT platform with custom LPWAN LoRa integration

ii

Abstract
In this thesis, we present our IoT platform developed by using open source

technologies, following a flexible component approach. The platform architecture is

divided into multiple layers providing the flexibility required in order to allow the

integration of custom gateways and application servers.

The proposed IoT platform supports Low Power Wide Area Networks (LPWAN)

integration, such as LoRa, using a custom network server implementation. The network

server supports uplink/downlink communications with a Message Queuing Telemetry

Transport (MQTT) interface.

 This work may be applied in remote places, for example, in rural areas in order to

support the deployment of IoT solutions. To support multiple IoT enabled devices

through different network types, a multi-protocol approach is intended for the proposed

platform.

The main goal of our research is to provide a low-cost, lightweight, multi-protocol, as

a custom LoRa implementation alternative, that supports, IoT applications, gateways,

devices, and their respective sensors/actuators.

keywords: IoT, LoRa, MQTT, Open Source, Low Cost, Lightweight.

Low-Cost, Lightweight IoT platform with custom LPWAN LoRa integration

iii

Resumo
Nesta tese, é apresentada uma plataforma IoT desenvolvida através da utilização de

tecnologias open source, seguindo uma abordagem de componentes flexíveis. A

arquitectura da plataforma está dividida em múltiplas camadas providenciando assim a

flexibilidade necessária para permitir a integração de gateways e application servers

personalizados.

A plataforma IoT proposta suporta a integração de tecnologias Low Power Wide Area

Network (LPWAN), tal como LoRa, recorrendo a uma implementação adaptada no network

server. O network server suporta comunicações uplink/downlink com uma interface Message

Queing Telemetry Transport (MQTT).

Este trabalho pode ser aplicado em zonas remotas, como por exemplo, em áreas rurais

com o objetivo de suportar o desenvolvimento de soluções IoT. Para que seja possível

sustentar vários aparelhos IoT através de diferentes tipos de networks, é necessária uma

abordagem multi-protocolar para a plataforma proposta.

O principal objetivo desta pesquisa foi providenciar uma alternativa de baixo custo,

multi-protocolar e leve, com a implementação de tecnologias longo alcance que sustente

aplicações IoT, gateways, aparelhos e os seus respetivos sensores/atuadores.

Palavras-chave: IoT, LoRa, MQTT, Open Source, Baixo Custo, Leve.

Low-Cost, Lightweight IoT platform with custom LPWAN LoRa integration

iv

Contents
Acknowledgments .. i	
Abstract .. ii	
Resumo .. iii	
Contents .. iv	
List of Tables .. vi	
List of figures ... vii	
Glossary .. viii	
Chapter 1 – Introduction ... 1	

1.1.	 Research Background ... 1	
1.2.	 Motivation ... 2	
1.3.	 Investigation objectives .. 2	
1.4.	 Structure of the thesis .. 2	

Chapter 2 – Literature Review .. 3	
2.1 IoT platforms .. 3	

2.2.1 LPWAN LoRa integration ... 4	
2.1.2 Data collection protocols ... 4	

Chapter 3 – Platform proposal .. 6	
Chapter 4 – Implementation .. 9	

4.1 Communication layer .. 9	
4.1.1 Network server ... 9	

4.2 Devices layer ... 17	
4.2.1 Gateways .. 17	
4.2.2 End Devices ... 18	

4.3 Application layer ... 19	
4.3.1 Default application server .. 19	

Chapter 5 – Evaluation scenario and tests ... 21	
5.1 Communication layer deployment .. 22	
5.2 Custom Gateway implementation ... 22	

5.2.1 LPWAN LoRa implementation in custom gateway 23	
5.3 End-devices ... 24	

5.3.1 LoRa End devices .. 24	
5.3.2 End devices supporting MQTT protocol over WiFi interface 25	

5.4 Application servers ... 26	
5.5 Results ... 26	

5.5.1 MonitBee .. 26	
5.5.2 MonitPal ... 27	

Low-Cost, Lightweight IoT platform with custom LPWAN LoRa integration

v

Chapter 6 – Conclusion .. 30	
References .. 32	

Low-Cost, Lightweight IoT platform with custom LPWAN LoRa integration

vi

List of Tables
Table 1 – List of ten of the most used open-source IoT platforms 3	
Table 2 – Proposed platform architectural details ... 6	
Table 3 – Network server public API endpoints. ... 15	
Table 4 – Network server MQTT broker - Gateways topics. .. 18	
Table 5 – Evaluation scenario testing applications. ... 21	
Table 6 – Communication layer host service. ... 22	
Table 7 – Gateway components. ... 23	
Table 8 – LoRa configuration parameters used in Time – on – Air calculations. 25	
Table 9 – MonitBee application results. ... 27	
Table 10 – MonitBee applications hardware costs. .. 27	
Table 11 – MonitPal applications results. ... 28	
Table 12 – MonitPal applications hardware costs. ... 29	

Low-Cost, Lightweight IoT platform with custom LPWAN LoRa integration

vii

List of figures
Figure 1 – Platform proposal architecture .. 7	
Figure 2 – Network server MQTT broker architecture overview. 9	
Figure 3 – Uplink flow UML activity diagram. .. 10	
Figure 4 – Device uplink message format. ... 10	
Figure 5 – Encryption approach for LoRa packages. ... 11	
Figure 6 – Device uplink message format. ... 12	
Figure 7 – LoRa uplink message uplink flow. .. 13	
Figure 8 – Platform persistence architecture schema. .. 14	
Figure 9 – Network management app, UML use case diagram. 15	
Figure 10 – Platform deployment models. .. 17	
Figure 11 – Communication pattern overview between application servers and
communication layers. .. 19	
Figure 12 – Default application server, UML use case diagram. 20	
Figure 13 – Test scenario over Google maps image. .. 21	
Figure 14 – Gateway and respective components. .. 23	
Figure 15 – LoRa communication between end-device and gateway. 24	
Figure 16 – LoRa end-device used by MonitBee (testing app)with tilt sensor and 1000
mAh battery. ... 24	
Figure 17 – MQTT communication between end – device and gateway. 25	
Figure 18 – WiFi end-device used in MonitPal(testing app) with Hum/Temp sensor and
1000mAh battery. ... 26	
Figure 19 – Temperature over two days chart in two of the warehouse rooms. 28	

Low-Cost, Lightweight IoT platform with custom LPWAN LoRa integration

viii

Glossary
IoT – Internet of Things

MQTT – Message Queuing Telemetry Transport

LoRa – Long Range

OTAA – Over The Air Activation

ABP – Activation by Personalization

M2M – Machine to Machine

LPWAN – Low Power Wide Area Network

Introduction

1

Chapter 1 – Introduction
1.1. Research Background

As the demand for Internet-of-Things (IoT) applications and the associated produced

data rises, the number of devices available will continue to grow. According to IoT

Analytics [1], by 2025, the prediction of device connections is of 21.5 billion from (IoT)

devices only. Application domains like Smart Cities, Smart Grids, Smart Buildings,

Agriculture, Internet of Vehicles (IoV), Industry 4.0 and others, require a large number

of devices that are currently distributed among multiple types of networks, such as

Wireless Personal Networks (WPAN), Wireless Local Area Networks (WLAN), Low-

power Wide Area Networks (LPWAN) and many others. IoT platforms provide an answer

to a fast-growing market, with tools that facilitate the IoT application development

process. Each platform provides a set of services, such as data hosting, data routing,

analytics, notifications, and respective data transfer/analysis between large amounts of

devices and application servers.

By using an existing IoT platform, a given user is relieved of the end-to-end

communication handling and the software maintenance process. All these advantages

make IoT platforms indispensable when it comes to develop and maintain a solution with

multiple applications, devices, users, and many other features. Following the IoT

expansion, open-source hardware platforms, like Arduino [2], Beagleboard [3], Wiznet

[4] and many others, provide open-source hardware for multiple use cases that are

fundamental when creating customized solutions. When compared to proprietary IoT

hardware prices, these hardware platforms gain incredible interest.

Existing communication protocols such as MQTT (a machine-to-machine (M2M) /IoT

connectivity protocol, that was designed as an extremely lightweight publish/subscribe

messaging transport [5]) provide a viable solution for IoT communications between

devices and applications and the abstraction layer needed to support multiple application

domains. MQTT requires a small code footprint and featuring scarce network bandwidth.

The usage of high-level programming languages like Javascript, in combination with the

MQTT protocol, decouples the low-level gateway/devices functionalities from the high-

level post-processing features [6] in the network server, when routing communications

between devices and applications.

Introduction

2

1.2. Motivation

Recent LPWAN provides long-range connectivity in the IoT context for multiple

application domains. The motivation for this research work is the possibility of exploring

these new types of networks and their respective integration within an IoT platform built

with fully open-source technologies.

1.3. Investigation objectives

The research objective of the following thesis, is oriented to, the integration of

LPWAN technologies in a multi-protocol IoT platform. The investigation is segmented

with the following objectives:

1. Develop an end-to-end multi-protocol IoT platform;
2. Use only available open-source technologies;
3. Perform an evaluation scenario with multiple application with different business

domains;

1.4. Structure of the thesis

The first two investigation objectives will be accomplished in chapter four. We go

through our proposed platform implementation. Within these sections, we develop a

prototype IoT platform based on the proposed conceptual model (Chapter 3). In order to

develop the proof of concept, multiple programming languages will be used together with

the MQTT protocol and LPWAN LoRa technology.

The last two sections of the document (Chapter 5 - Evaluation scenario and results,

and chapter 6- Conclusions) are dedicated to evaluation and results. With this section we

intend to fulfill the last investigation objectives, evaluate and withdraw conclusions over

the developed proof of concept IoT platform;

Literature Review

3

Chapter 2 – Literature Review
2.1 IoT platforms

An IoT platform should handle the end-to-end communications within a given IoT

application. Besides the communication process, an IoT platform should provide a way

of managing the integrated devices and respective applications.

As components, an IoT platform contemplates devices, gateways, network servers, and

application servers. There are multiple ways of integrating devices within the platforms:

i) centralized approach or, ii) using gateways serving as routing middleware for the

devices. Gateways are commonly used to bridge network protocols not supported by the

network server implementations.

The existing open-source platforms have similar provided services and very identical

implementations, differing in implementation purposes and internal usage paradigm.

When choosing an IoT platform, it all depends on the requirements of the IoT application

to develop and the technical capabilities and limitations of the technology. In table 1, we

can observe a list of the ten most-used open source IoT platforms and some of the

architectural, technical details.

Table 1 – List of ten of the most used open-source IoT platforms

Name protocols for
data collection LoRa analytics support for

visualization ref

Kaa MQTT, CoAP,
XMPP, TCP,

HTTP
No*

Real-time IoT Data Analytics
and Visualization with Kaa,

Apache Cassandra, and Apache
Zeppelin

Yes [7]

SiteWhere MQTT, AMQP,
Stomp,

WebSockets
No* Real-time analytics (Apache

Spark) No [8]

ThingSpeak HTTP No* MATLAB Analytics No [9]

DeviceHive REST API,
WebSockets or

MQTT
No* MATLAB Analytics Yes [10]

Zetta HTTP No* Using Splunk No [11]
IoT-DSA HTTP No* No No [12]

Thingsboard.io MQTT, CoAP,
and HTTP No* Real time analytics(Apache

Spark, Kafka) No [13]
Thinger.io MQTT, CoAP,

and HTTP No* Yes, Platform not confirmed No [14]
WSo2 HTTP, WSO2

ESB, MQTT No* WSO2 Data Analytics Server Yes [15]

Mainflux HTTP, MQTT,
WebSocket,

CoAP
No* (integrated) Platform not

confirmed Yes [16]

Literature Review

4

* Through the use of the third-party platforms[17] or open-source libraries[18][19], it is
possible to integrate LPWAN networks in this case LoRaWAN[23] (or LoRa with
customized gateways[20]).

The network server component is responsible for the high-level logic within the IoT

platform, managing the entire communications routing process. The application server

component functions as user interface, data storage, data analytics tool, and many other

services, providing the user with the analysis and interaction tools within the IoT

platform.

2.2.1 LPWAN LoRa integration

When regarding LPWAN integration, in this case, LoRa, we can observe that none of

the existing platforms in table 1 contemplates a native LoRa support. Instead, the

platforms are relying on third-party platform services and libraries. LPWAN technologies

for IoT, introduced by Sigfox (UNB solution) and Semtech (LoRa™) [21], triggered a

new innovation cycle as they provide long-range connectivity answer for the IoT context.

Most of these long-range technologies can achieve up to 20 km or higher range in line-

of-site (LOS) condition and about 2km-4km in non-LOS conditions, just like dense

urban/city environments. Initiatives based on LoRa such as TheThingsNetwork™ (TTN)

[22] provide dense city environments solutions. It has, however, limited range coverage

on remote areas [24], having a direct impact on IoT specific domains as beekeeping,

agriculture, innovation, or sensor metering. In this article, our research aims to develop

an IoT platform, proof of concept solution, that besides supporting the integration with

third-party libraries and platforms for LPWAN, also contemplates a native custom LoRa

integration.

2.1.2 Data collection protocols

Focussing on data collection, there are multiple available protocols. In table 1, we can

notice that the existing platforms all rely on identical approaches. However, the MQTT

protocol is a constant in almost all of the IoT platforms approaches. The MQTT is an

established open protocol in machine-to-machine (M2M) communications, which was

introduced in 1999 by Andy Stanford-Clark of IBM and Arlen Nipper of Arcom Control

Systems Ltd (Eurotech). It has been used and supported by organizations such as IBM,

Facebook, and Cisco and standardized by the OASIS Technical Committee. It is a

Literature Review

5

publish/subscribe messaging protocol, where clients publish/subscribe to multiple

addresses, known as topics. It was designed for lightweight M2M communications in

constrained networks[25]. It supports three levels of Quality of service (QoS). Being an

Oasis standard [26] makes this protocol easy to adopt for the wide variety of IoT devices,

platforms, and operating systems. On the proposed platform, we focus on MQTT for its

lightweight properties and scarce network bandwidth, ideal for remote places and low

resource devices.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

6

Chapter 3 – Platform proposal

When regarding LPWAN integration, in this case, LoRa, we can observe that none of

the existing platforms in table 1 contemplates a native LoRa support. Instead, the

platforms are relying on third-party platform services and libraries.

LPWAN technologies for IoT, introduced by Sigfox (UNB solution) and Semtech

(LoRa™) [21], triggered a new innovation cycle as they provide long-range connectivity

answer for the IoT context. Most of these long-range technologies can achieve up to 20

km or higher range in line-of-site (LOS) condition and about 2km-4km in non-LOS

conditions, just like dense urban/city environments. Initiatives based on LoRa such as

TheThingsNetwork™ (TTN) [22] provide dense city environments solutions.

It has, however, limited range coverage on remote areas [24], having a direct impact

on IoT specific domains as beekeeping, agriculture, innovation, or sensor metering. In

this thesis, our research aims to develop an IoT platform, proof of concept solution, that

besides supporting the integration with third-party libraries and platforms for LPWAN,

also contemplates a native custom LoRa integration.

As requirements for the proposed platform, it should:

• Provide connectivity to multiple devices and respective communications;

• Support medium and long-range connectivity;

• As any IoT platform, provide an abstraction over the system communication,

turning its interaction intuitive, scalable and easy to use for the users.

Table 2 – Proposed platform architectural details

Protocols for data
collection LoRa Analytics Support for

visualizations

MQTT, HTTP Native custom
implementation No Yes

Figure 1 shows our platform architecture, where a diverse range of sensors was

installed over an array of devices to transmit collected data. These devices provide data

to a cloud network where data is then transmitted through the associated applications.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

7

Figure 1 – Platform proposal architecture

The proposed IoT platform is divided into three major layers, the devices, the

communication, and the application layer:

1. Devices layer - Sensor data acquisition, transmission, and gateways;

2. Communication Layer - Network management - Data exchange between

app/device layer;

3. Applications layer - Where the developer can apply any business logic and data

analytics;

Each layer, with its respective components, provides the full architecture for the end-

to-end communication between devices and applications. Each layer is further described

and analyzed through this document. The current approach resembles the LoRaWAN

protocol architecture, organized in a star-of-stars topology, where the network server is

also a bridge between gateways and applications [23], although LoRaWAN networks are

specific for LoRa communications. With this star-of-stars topology in opposition to the

centralized approach, it becomes very intuitive when migrating to a local deployment

model, just by deploying the communication layer into a gateway. As the main features,

the proposed platform aims to support:

• Protocol bridging (i.e. HTTP, MQTT, LoRa);

• Device management through a network management platform application;

• Access control through Basic Authentication using JSON Web Tokens (JWT),

HTTPS, MQTTS;

• Default application server;

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

8

• Lightweight deployment for remote and local model approaches;

With our intention being the development of a low cost, lightweight, and hardware

flexible platform for IoT that can be applied in multiple use cases. In order to support

multiple types of network, customized gateways and application servers can be integrated

to interact with the communication layer through the MQTT protocol, granting the

flexibility to adapt to different application scenarios and respective needs.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

9

Chapter 4 – Implementation

4.1 Communication layer

The bridge between the application and the device layers is the “Communication

Layer.” The goal for this layer is to have an optimized lightweight solution that can be

deployed to less resourceful microprocessors, if needed, giving the developer the option

to implement the complete platform using, for example, an embedded Linux system like

Raspberry Pi. It was also developed keeping in mind the idea of saving the least amount

of information as possible, making sure that the amount of storage used for this layer is

optimized to the minimal required to normally perform its associated tasks. The

communication layer is composed of two elements, network server, and management

app.

4.1.1 Network server

The network server component is responsible for the network communication

bridge between devices and application layer. Through the use of high-level languages,

we were able to create an abstraction layer decoupled from the gateway communications

and provide logic to manipulate the communication routing process.

4.1.1.1 Network server MQTT broker

For our network server implementation, the “mosca” MQTT broker [27] open-source

library was used. Its CPU performance equates to that of the Mosquito, which is the one

used as reference MQTT broker [28]. Every gateway and application is an MQTT client

of the network server MQTT broker (Figure 2).

Figure 2 – Network server MQTT broker architecture overview.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

10

The high-level logic, implemented into the network server MQTT broker, over the

communication turn downlink and uplink message routing possible. In Figure 3, we

demonstrate how we handled uplink messages using the high-level logic build with

Javascript.

Figure 3 – Uplink flow UML activity diagram.

By the time the following flow occurs the IoT gateway is already authenticated

within the network server MQTT broker. Taking into account the MQTT protocol QoS

functionality, we are able to assure QoS between the multiple layers.

The accepted message format is as follows in Figure 4.

Figure 4 – Device uplink message format.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

11

4.1.1.2 Custom LoRa implementation

One of the main objectives of this article investigation is the integration of

LPWAN LoRa with IoT platforms. Within our state the art, we realized the usage of third

party platforms and libraries, associated with the integration of a LoRa communication

protocol LoRaWAN[23]. LoRaWAN builds on top of LoRA, complementing with

addressing, encryption, and other additional layers. The implementation of the full

LoRaWAN specification requires the gateway component to be able to listen on several

channels and LoRa settings simultaneously, such gateways could increase the price of the

solution and the complexity of a simple LoRa gateway. The usage of the LoRaWAN

protocol also implies the existence of a LoRaWAN network server, even for a local

platform deploy. In our approach, we implemented a custom LoRa integration. We didn’t

use the LoRaWAN protocol because the related network server complexity and

specifications, would oppose this investigation purposes. Our approach does not imply

any type of LoRa related software impositions, allowing us to maintain our flexible

gateways approach and network server lightweight deployment. Therefore the network

server does not handle retransmissions and many other LoRaWAN requirements [23].

Duty cycle regulations [29], when downlinking and uplinking, must also be prepared by

the application developer. The regulation restrictions to uplink should be handled by the

end-device and the downlink by the application layer. To assure some level of security

within our exchanged messages, we used a similar approach to LoRaWAN authentication

by personalization (ABP) method figure 5. We persist the device crypto key inside the

communication layer and use it for every message decryption. This ABP approach is not

as safe as Over-The-Air Activation (OTAA) but fits in our approach for its performance

and flexibility of implementation.

Figure 5 – Encryption approach for LoRa packages.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

12

When submitting a LoRa message to the network server broker, the message

should be in the format presented in figure 6. Both message payload and uuid, must be

encrypted inside the message data attribute.

Figure 6 – Device uplink message format.

Regarding LoRa packets that might be published from gateways, the network

server predicts different rules (figure 7), in opposition to regular MQTT end-device

published messages. It’s expecting an encrypted field from a LoRa published message.

This is used to validate the authenticity of the incoming communication. It tries to decrypt

the provided message with the device crypto encryption key. If successful, stores

temporarily the message UUID (universally unique identifier) in order to avoid message

redundancy between layers. This way, supporting gateway redundancy by validating if a

message with a specific UUID was already routed. Application domain data encryption

in published messages should be handled by the IoT application developer for

uplink/downlink.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

13

Figure 7 – LoRa uplink message uplink flow.

4.1.1.3 Persistence

MongoDB is a cross-platform and open-source document-oriented database

engine [30]. MongoDB, as a NoSQL database, prevents the relational database’s table-

based structure to adapt JSON-like documents with dynamic schemas BSON [31].

MongoDB was adopted for our platform as a consequence of its capability to store and

analyze any type of data, in real-time and respective scalability [32]. MongoDB can

support thousands of nodes, petabytes of data, and hundreds of thousands of operations

per second. With the proper implementation, MongoDB can achieve a good performance

on CRUD operations and low-power consumption metrics on embedded systems [33].

For the proposed platform persistence, the database schema present in Figure 8 was

implemented in the Mongo database engine, making use of the available data models and

patterns[34]. Entities, such as "applications", "users," "devices," and "gateways", define

the data model.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

14

Figure 8 – Platform persistence architecture schema.

For every received, uplink message, a packet log is created. It's through these logs

that we store the devices routing information, like a gateway, message UUID and

timestamp. In order to emit a downlink message to a specific end-device, it must have

sent at least one uplink message. Regarding the relation between devices and applications,

each application has multiple devices, and one device might belong to multiple

applications. Each application has a user relation, one user might have multiple

applications, and an application can have multiple associated users.
Users relate to devices through applications, for every application, a set of devices

can be associated that users can interact with. Users are also divided into multiple roles.

These roles are used to manage the network permissions over certain actions (section

4.1.1.5).

4.1.1.4 RESTful API

A RESTful API is an application program interface (API) that uses HTTP requests

to GET, PUT, POST, and DELETE data. For a given IoT application, the real-time

devices data stream might not be sufficient to implement some functionalities. Obtaining

the list of devices associated to a specific platform application, or getting information

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

15

about a specific device or application, are some examples of basic features that justify the

need for an API implementation for the proposed platform. Besides routing, the network

server has an available API that provides the application owners endpoints (Table 3) to

obtain end-devices and applications’ related information that is designed for this end, in

opposition to the MQTT broker functionality within the proposed platform.

Table 3 – Network server public API endpoints.

Endpoint Description
device returns all devices associated with a specific application with the respective static

information.
device/:id returns device static information for the provided Id.

application returns all applications associated with a specific app owner login.
application/:id returns application static information for the provided Id.

4.1.1.5 Network Management App

In order to manage the network traffic logic and network settings, a management

app associated with the network server was developed. The network management

application, grants the user access to real-time message tracking, static information about

users, devices, applications, and gateways. Figure 9 presents a use case UML diagram

for multiple actors, such as network admin, managers, and app owners. These actors have

the ability to influence the platform by creating users, devices, gateways, manage

applications, and track routed data. The goal of this application is to have an abstraction

layer over the network server that allows intuitive network management by different user

roles.

Figure 9 – Network management app, UML use case diagram.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

16

For the proposed platform, three types of roles were created for the management app.

The “manager”, “admin” and “app owner”.

• For the “manager” role, it was given permission to access the management

dashboard and monitoring the device’s traffic. The management dashboard allows

the users to have a general view of the network (how many devices, gateways,

users), as well as monitoring the effectiveness of the communication.

• As for the “admin” role, it was given access to the same features as the manager.

The “admin” also has access to users’ and applications’ management , enabling

him to create users (new “app owners”) and to register new applications on the

management app.

• The “app owner”, has the possibility to access the device’s traffic analysis,

allowing him to comprehend the gateway range regarding the devices. It also can

manage the applications that the “admin” gave him permission to. As for the

management of the devices, the app owner is the only entity with access to the

devices.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

17

4.2 Devices layer

4.2.1 Gateways

IoT Gateways are emerging as a key element on the legacy and next-gen devices

support. Gateways are flexible with different hardware implementations, networking

protocols, storage and facilitate data flow securely between end-devices and the network

server. The proposed platform isn't restricted to any gateway specific implementation

pattern or software. The gateway objective is providing the end-devices the support for

the applications data flow, with the necessary networking requirements(e.g., support

LoRa or WiFi communications) and respective communication exchanges (e.g.,

downlink/uplink).

In remote locations where connectivity is limited or non-existent and many other

scenarios, the gateway assumes a highly important role in the platform deployment

model. In a local deployment model, the gateway element should be able to host the

network server and respective application servers, that would demand an embedded

system environment like Raspberry Pi, to ensure the proposed platform communication

layer deployment. In Figure 10, we can observe multiple deployment models for the

gateway and the entire platform.

Figure 10 – Platform deployment models.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

18

In a remote deployment model, the gateway needs to ensure connectivity to the

Internet with ideal fallbacks (e.g., WiFi, 3G), this redundancy would allow for a more

stable gateway/network. For certain implementation scenarios, the gateway could even

be deployed in a microcontroller.

The network server, integrates gateways into the IoT platform, through the use of

the available MQTT broker. The network server MQTT broker predicts the following

topics that gateways are allowed to publish (Table 4).
To receive downlink messages, the gateway should subscribe to the

“GATEWAY/<gateway_id>/device/downlink” topic. This will allow the network server

to reach the gateway when downlinking through the MQTT protocol.
Table 4 – Network server MQTT broker - Gateways topics.

Topic Description
device/connected topic to publish when Wifi end-device connects to gateway MQTT broker.

device/disconnected topic to publish when Wifi end-device disconnects from the gateway MQTT
broker.

device/LoRa Topic to publish when sending uplink LoRa communication.
device/WiFi Topic to publish when sending uplink WiFi communication.

4.2.2 End Devices

End-devices are a key component of the proposed platform. They provide the real-

world collected data, that is further stored and analyzed in multiple contexts. Platforms

such as Arduino, have a wide range of available board models with different features from

large and powerful to smaller with less energy consumption. With alternatives like

Arduino [35], nodeMCU [36] and many others, it becomes possible, and it’s clearly an

opportunity to integrate the proposed platform with a variety of end-devices and sensor

data.

When building an IoT application, a variety of end-devices and respective sensors

can be used. It's up to the developer the implementation of the application domain logic

specifics. As an end-device in order to connect to an application, it must be in the range

of a supported gateway network. The communication layer is abstracted from the “low-

level” device/gateway communications, and therefore, the end-devices communication

requirements depend directly on the gateway implementation.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

19

 4.3 Application layer

The application layer is the bridge between the business logic, user interface, and the

communication layer. This layer is responsible for storing and managing the routed raw

data. The proposed platform provides a default application server with limited data

visualization capabilities. It’s up to the developer to manage how to receive the devices

data flow and respective operations over the exchanged data, such as analytics and others.

The application layer interacts with the network server through the MQTT protocol and

also with an available API (Figure 11). A specific application receives the associated

device's data and is able to interact with that application(s) related devices.

Figure 11 – Communication pattern overview between application servers and communication

layers.

The application server specifications depend directly on the IoT Application

requirements to be developed. In a local deployment model, the application(s) server(s)

must be able to reach, the communication layer, network server component, assuring that

all functionalities work in a local environment. Therefore it is very important to have in

consideration the required resources associated with the IoT application(s) server(s).
4.3.1 Default application server

In order to facilitate the IoT application integration, we developed a default

application server. This application server is prepared only for data visualization. In

Figure 12 we can find a use case UML diagram for the default application server.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

20

Figure 12 – Default application server, UML use case diagram.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

21

Chapter 5 – Evaluation scenario and tests

Taking into account, the developed IoT platform we wanted a test scenario that

holds multiple IoT application with different requirements. We want to test the developed

platform in different rural scenarios creating two dedicated application to validate,

identified in Table 5.

Table 5 – Evaluation scenario testing applications.

Name Description Network requirements
monitBee monitors unwanted intrusion detection in beehives long-range network

monitPal monitors temperature and humidity in the farm’s warehouse wifi network

Our farm is located with a distance of approximately 120 km from Lisbon, where

internet coverage is not available, the only cellular. On Figure 13 we can see a satellite

photo of the place. The beehives area is represented in green and the warehouse in blue.

The beehives are separated in multiple areas all distant from the warehouse.

Figure 13 – Test scenario over Google maps image.

The farm’s warehouse is where many of the farm's products are stored, and It’s

important for the farmer to control the temperature and humidity of its rooms.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

22

Our test was performed in multiple steps:

1. Communication layer deployment;

2. build a custom gateway (supporting WiFi and LoRa communications);

3. acquire end-devices that comply with the gateway custom implementation;

4. develop and deploy custom application servers;

5.1 Communication layer deployment

To achieve a remote distributed deployment environment, we deployed our

communication layer into a cloud service [37], that provides, among other services,

ARMv8 servers built for developers. They include a server, a volume, and an IPv4 and

its dedicated to development, prototyping and running services. For our communication

layer deployment, we used a server with the characteristics in Table 6.
Table 6 – Communication layer host service.

Spec Description
vCPUs 2 vCPUs

Memory 2 GB
SSD Storage 20 GB
Bandwidth 100 Mbits/s

In this virtual server instance, we used a Linux Debian distribution as our

operating system. The hosting costs are less than five euros, a very comfortable price for

our tests. Besides the server, we also acquired a domain to easily reach our remote

network server instance.

5.2 Custom Gateway implementation

The provided gateway (Figure 14) supports LoRa/WiFi communications, is able

to connect to the web and has a power supply. It provides a WiFi network using the

raspberry pi and with the “HelTec WiFi LoRa 32” we were able to bridge the LoRa

packages into MQTT.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

23

Figure 14 – Gateway and respective components.

Table 7 – Gateway components.

Component Description
Radio antenna Connects to the HelTec WiFi LoRa 32 System-on-Chip (SoC) as a LoRa radio

antenna
HelTec WiFi
LoRa 32

SoC is responsible for mapping LoRa messages into MQTT over WiFi when
uplinking and MQTT to LoRa when downlinking.

Raspberry Pi 3 SoC used for WiFi LAN creation, GSM integration, network server
communication, and Ethernet interface support.

GSM antenna In remote areas where connectivity issues arise, this gateway supports a GSM
connection as an alternative.

Ethernet
interface (RJ45)

external ethernet interface connects to a microprocessor (raspberry pi) grating the
gateway with an internet connection it’s possible to connect the gateway to the
internet with GSM or to use the ethernet interface.

Power supply 5v, 1 amp power supply.

5.2.1 LPWAN LoRa implementation in custom gateway

For the proposed platform test gateway, LoRa implementation was made through

the use of an open-source library that exposes the LoRa radio directly [38] and allows

sending data to any radios in range with the same radio parameters. All data is

broadcasted, and there is no addressing. To manage the addressing issue, this library

offers the possibility of using radios with different Sync Words, and InvertIQ function to

create a simple Gateway/Node logic by inverting the LoRa I and Q signals. In the current

platform context, the addressing layer was created based on the end-device identifier and

an asynchronous encryption key. It’s possible to develop a low-cost LoRa single and

multiple channel architectures independent of the network server architecture as long as

the communications through MQTT remain between the gateway and the network server.

The developed gateway is single-channel and its highly susceptible to package collisions

since we didn’t develop any time-slot reservation algorithm.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

24

Providing more radio channels, developing gateway-driven frequency hopping

scheme and collision-free access for higher priority traffic, are some mechanisms that

improve the gateway's performance and still keep a low-cost approach [39].

5.3 End-devices

5.3.1 LoRa End devices

When sending a message through LoRa Figure 15, the gateway receives the

message and routes it to the network server through MQTT (Figure 15). The LoRa end-

device must be in the range of the developed gateway to be able to reach the IoT

platform data flow.

Figure 15 – LoRa communication between end-device and gateway.

In order to accomplish the application objective (“beehive human intrusion

detection, monitoring”), we integrated into the end-device a tilting sensor(SW-420)

that would report every time the beehive was tilted (Fig. 16). Two long-range end-

devices were placed on each of the beehives areas. Our LoRa supporting end-device

is a development board by BSFrance “LoRa32u4” that has a battery circuit built-in.

With our end-device, we included a 1000mAh battery with 3.7v.

Figure 16 – LoRa end-device used by MonitBee (testing app)with tilt sensor and

1000 mAh battery.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

25

Duty cycle regulations for long-range communications were calculated based

on parameters of Table 8.

Table 8 – LoRa configuration parameters used in Time – on – Air calculations.

Parameter Value Description
Payload size 40

bytes Total data payload
Spread factor SF8 Higher means more range and better reception, and consequent increase in airtime

Explicit header yes This is the low-level header that indicates coding rate, payload length, and
payload CRC presence

Low DR
optimize no intended to correct for clock drift at SF11 and SF12

Coding rate 4 / 5 This is the error correction coding. Higher values mean more overhead.
Preamble
symbols 8 8 for all regions defined in LoRaWAN 1.0, can be different using plain LoRa

Bandwidth 125kHz Usually 125, sometimes 250 or 500

According to the parameters in Table 8, and using a LoRa ToA Time-on-Air

online calculator tool, we determined that the time between t subsequent packet starts

would be 15.41 seconds. With this parameter configuration, and according to the duty

cycle regulations, we would be allowed to emit 5712 messages/day. This is not very

important in this test scenario because our long-range hive devices can only emit if

the tilt sensor is triggered, so a given end-device, could go several days without

sending a single message.

5.3.2 End devices supporting MQTT protocol over WiFi interface
Any end-device that has a WiFi/Ethernet interface and supports MQTT protocol

is suitable to integrate the provided testing gateway. In figure 17, we have an overview

of the device/gateway communication flow.

Figure 17 – MQTT communication between end – device and gateway.

For the short-range devices, we added a temperature/humidity sensor that allows

the end-device to collect that data (Fig. 18). These end-devices connect to the gateway

using the WiFi network generated by the raspberry pi. In our wifi end-devices

“NodeMCU” we also included the same battery as the LoRa devices.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

26

Figure 18 – WiFi end-device used in MonitPal(testing app) with Hum/Temp sensor and 1000mAh
battery.

By using the deep sleep function, we’re able to sleep the device while not

transmitting, this way, saving power and extending the battery range.

5.4 Application servers

Within our test scenario, we have two distinct applications that require different

application server instances. We developed two sample application servers, based on the

nodeJS technology, that included a FrontEnd component built with the Angular

framework. We persisted every package received from the network server in the same

MongoDB engine instance used for the communication layer.

We implemented some basic functionalities for both applications. The beehive

app provides the user with an interface to monitor the beehives movements and an alarm

system based on web sockets that warn the user of the beehive tampering. For the

warehouse temp/hum monitoring app, we store every package received by the end-

devices and display them in graphics, showing the temp/hum variations along a defined

timeline.

Since we’ve deployed both our applications in the same remote environment of

the network server, they’re now reachable using a mobile phone or any other device with

an internet browser and internet access. This makes it possible for the beehives keepers

to be warned anywhere as long as an internet connection is established.

5.5 Results

We conducted our prototype for three months at the farm site in Figure 13. In this

section, we present the results associated with the collected data for both testing apps.

5.5.1 MonitBee

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

27

This application’s objective was to warn the beekeeper of possible beehive

tampering. We used long-range devices that supported LPWAN in this case, LoRa

(section 7.3.1). To sense the beehive movements, we use a tilt sensor, that would activate

the device in sleep mode, every time it tilts. The device would send a message to the

gateway and respective application, where an alarm would be generated. In Table 9, we

can see some of the metrics associated with the communication for the three months

experience.

Table 9 – MonitBee application results.

Name Nº
end-dev Nº Exchanged messages Message size

monitBee 4 17 40 byte

None of the received messages where real alarms with the beehives. All messages

match the beekeeper visits to the beehive sites, for maintenance purposes. The total

hardware costs, for MonitBee are described in Table 10. It accounts for end-devices and

respective sensors and batteries.

Table 10 – MonitBee applications hardware costs.

Component unit Unit cost Total cost
LoRa32u4 II Lora 4 ≈ 13.00 € ≈ 50.00 €

Tilt sensor 4 ≈ 1.00 € ≈ 4.00 €

Battery 4 ≈ 3.00 € ≈ 12.00 €

Wiring and casing 4 ≈ 1.00 € ≈ 4.00 €

Total 4 ≈ 18.00 € ≈ 72.00 €

The total hardware costs for the MonitBee app were off, approximately seventy-

two euros to have 4 devices, 2 on each beehive area according to the evaluation scenario

in Figure 13.

5.5.2 MonitPal

The MonitPal IoT application has the objective of providing the farm with metrics

associated with humidity and temperature in the farm’s warehouse, where all the farm’s

goods are stored. For this application, WiFi end-devices were used with a

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

28

humidity/temperature sensor (section 7.3.2). In Table 11, we can see some of the metrics

associated with application communication.

Table 11 – MonitPal applications results.

Name Nº

end-dev Nº Exchanged messages Message size

monitPal 4 ≈ 25 000 22 byte

Warehouse rooms with windows vary in temperature during the day and keep

ideal humidity values (≈50%). However, more isolated rooms revealed more stable

temperatures with higher values of humidity (80%). We can observe this by looking at the

data collected (stored on the application server of section 7.4) for two days of metering

in Figure 12. In the present chart with the violet color, we have a room with solar

exposition and in blue a more isolated room of the warehouse.

Figure 19 – Temperature over two days chart in two of the warehouse rooms.

With the collected data from the application server (section 7.4), we can now

use it to improve the warehouse conditions to store the farm’s goods. The total

hardware costs, for the MonitPal application, are described in Table 12. It accounts

for end-devices and respective sensors and batteries.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

29

Table 12 – MonitPal applications hardware costs.

Component unit Unit cost Total cost
Node MCU Amica 4 ≈ 5.00 € ≈ 20.00 €

Hum/Temp sensor 4 ≈ 1.00 € ≈ 4.00 €

Battery 4 ≈ 3.00 € ≈ 12.00 €

Wiring and casing 4 ≈ 1.00 € ≈ 4.00 €

Total 4 ≈ 10.00 € ≈ 40.00 €

The total hardware costs for the MonitPal app were off, approximately forty euros

to have four devices, one on each warehouse room according to the evaluation scenario

in Figure 13.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

30

Chapter 6 – Conclusion

By incorporating a custom LoRa implementation, we were able to reach remote

areas where connectivity is an issue and gather data for multiple ends. Anyone can

develop a LoRa network custom implementation. The only must is to comply with

regulatory rules. In our tests, we calculated the ToA associated with our LoRa

configuration parameters (table 8) and determined that our end devices could send as

much as 5712 messages/day. Besides being vulnerable to many issues when regarding

the custom within our network server LoRa implementation serves the needs of the

proposed testing apps.

With the proposed platform, we were able to integrate two different applications

with different business domains and technology requirements. We integrated a custom

gateway that we developed, supporting LPWAN LoRa and Wifi. Both hardware and

software, open-source goals were achieved, having a direct impact on the implementation

costs, we implemented the described solution for less than two hundred euros. This was

the developed platform fulfills the requirements to support long/ medium

communications, have a low-cost approach and a lightweight design.

6.1 Future work

 As future developments, for the proposed platfoms, we would like to

implement a gateway driven QoS system that would improve downlink communications.

Apply an asynchronous security pattern for the communications in the devices layer,

improving security. Also very important would be to develop a tool, that allows for basic

data analysis, incorporated into the default application server.

Low-Cost, Lightweight IoT Platform with Custom LPWAN LoRa Integration

31

References

32

References

1. Lueth, K. (2018). State of the IoT 2018: Number of IoT devices now at 7B – Market

accelerating. Available online: https://iot-analytics.com/state-of-the-iot-update-

q1-q2-2018-number-of-iot-devices-now-7b/ (accessed on 08-Dec-2018).

2. Arduino official organization site. Available online: https://www.arduino.org/

(accessed on 8-Dec-2018).

3. Beagleboard About page. Available online:

http://beagleboard.org/about/(accessed on 6-Jan-2018).

4. Wiznet Homepage. Available online: http://wiznet.io/(accessed on 12-Jan-2018).

5. MQTT home page . Available online: http://mqtt.org/(accessed on 08-Jan-2018).

6. Congduc Pham, (Univ. Pau, LIUPPA Laboratory); Abdur Rahim , (CREATE-

NET); Philippe Cousin, (Easy Global Market). Low-cost LoRa IoT platforms.

“Low.cost, Long-range Open IoT for Smarter Rural African Villages”.

7. KAA documentation. Available online:

http://kaaproject.github.io/kaa/docs/v0.10.0/Welcome/ (accessed on 5-Feb-

2018).

8. Sitewhere documentation. Available online: https://sitewhere1.sitewhere.io/

(accessed on 5-Feb-2018).

9. Thingspeak documentation. Available online:

https://www.mathworks.com/help/thingspeak/ (accessed on 5-Feb-2018).

10. Devicehive documentation. Available online: https://docs.devicehive.com/docs

(accessed on 5-Feb-2018).

11. Zetta documentation. Available online: https://github.com/zettajs/zetta/wiki

(accessed on 5-Feb-2018).

12. IoT-DSA documentation. Available online: https://github.com/IOT-

DSA/docs/wiki (accessed on 5-Feb-2018).

13. Thingsboard.io documentation. Available online: https://thingsboard.io/docs/

(accessed on 5-Feb-2018).

14. Thinger.io documentation. Available online: http://docs.thinger.io/ (accessed on

5-Feb-2018).

15. WSo2 documentation. Available online: https://wso2.com/wso2-documentation

(accessed on 5-Feb-2018).

References

33

16. Mainflux documentation. Available online: https://mainflux.readthedocs.io/

(accessed on 5-Feb-2018).

17. TheThingsNetwork architecture page. Available online:

https://www.thethingsnetwork.org/docs/network/architecture.html (accessed on

5-Feb-2018).

18. Lora-server github page. Available online: https://github.com/brocaar/loraserver

(accessed on 5-Feb-2018).

19. Lora-adapter github page. Available online:

https://github.com/mainflux/mainflux/ (accessed on 5-Feb-2018).

20. KAA gateway support. Available online: https://www.kaaproject.org/platform

(accessed on 5-Feb-2018).

21. SEMTECH, A., & Basics, M. (2015). AN1200. 22. LoRa Modulation Basics, 46.

22. TheThingsNetwork homepage. Available online: https://thethingsnetwork.org

(accessed on 12-Feb-2018).

23. LoRaAlliance, “LoRaWAN specification v1.1” 2017.

24. Congduc Pham, (Univ. Pau, LIUPPA Laboratory); Abdur Rahim , (CREATE-

NET); Philippe Cousin, (Easy Global Market). Introduction - Limit dependency

to proprietary infrastructures and provide local interaction model . “Low.cost,

Long-range Open IoT for Smarter Rural African Villages”.

25. N. Naik; "Choice of effective messaging protocols for IoT systems: MQTT, CoAP,

AMQP and HTTP," 2017 IEEE International Systems Engineering Symposium

(ISSE), Vienna, 2017, pp. 1-7. doi: 10.1109/SysEng.2017.8088251.

26. Standard, O. A. S. I. S. (2014). MQTT version 3.1. 1. Available online: http://docs.

oasis-open. org/mqtt/mqtt/v3, 1 (accessed on 12-Feb-2019).

27. MQTT broker as a module. Available online:

https://www.npmjs.com/package/mosca (accessed on 15-Feb-2019).

28. Andrei B. B. Torres; Atslands R. Rocha; José Neuman de Souza; Grupo de Redes

de Computadores, Engenharia de Software e Sistemas (GREat) Universidade

Federal do Ceará (UFC) – Fortaleza – CE – Brazil. Results - “Análise de

Desempenho de Brokers MQTT em Sistema de Baixo Custo”.

29. The Things Network TTN - Duty Cycle for LoRaWAN Devices. Available online:

https://www.thethingsnetwork.org/docs/lorawan/duty-cycle.html (accessed on

18-Dec-2018).

References

34

30. MongoDB Homepage. Available online: https://www.mongodb.com/(accessed on

10-Jan-2019).

31. BSON. Available online: http://bsonspec.org/ (accessed on 4-Mar-2019).

32. MongoDB documentation. Available online: https://docs.mongodb.com/

(accessed on 11-Nov-2018).

33. Paethong Pornpat, (Tokyo University of Agriculture and Technology); Mitaro

Namiki, (Tokyo University of Agriculture and Technology). MongoDB Database,

“Low-power Distributed NoSQL Database with Message Queue Protocol on

Embedded System”.

34. MongoDB - Model Relationships Between Documents. Available online:

https://docs.mongodb.com/manual/applications/data-models/ (accessed on 18-

Mar-2018).

35. Arduino official organization site. Available online: https://www.arduino.org/

(accessed on 19-Mar-2018).

36. NodeMCU official organization site. Available online: https://www.nodemcu.com

(accessed on 22-Mar-2018).

37. Scaleway Cloud Homepage. Available online:

https://www.scaleway.com/en/(accessed on 22-Mar-2018).

38. Arduino-Lora. Available online: https://github.com/sandeepmistry/arduino-LoRa

(accessed on 16-Mar-2018).

39. Nuno Gil Polónia Manita Nico (Instituto Superior Técnico); Development of the

LoRa Gateway. “Development of Low-cost LoRaWAN Gateway for Private

Deployments“.

35

