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Abstract: Additive manufacturing (AM) is a group of technologies that create objects by adding
material layer upon layer, in precise geometric shapes. They are amongst the most disruptive
technologies nowadays, potentially changing value chains from the design process to the end-of-life,
providing significant advantages over traditional manufacturing processes in terms of flexibility in
design and production and waste minimization. Nevertheless, sustainability assessment should also
be included in the research agenda as these technologies affect the People, the Planet and the Profit:
the three-bottom line (3BL) assessment framework. Moreover, AM sustainability depends on each
product and context that strengthens the need for its assessment through the 3BL framework. This
paper explores the literature on AM sustainability, and the results are mapped in a framework aiming
to support comprehensive assessments of the AM impacts in the 3BL dimensions by companies and
researchers. To sustain the coherence of boundaries, three life cycle methods are proposed, each one
for a specific dimension of the 3BL analysis, and two illustrative case studies are shown to exemplify
the model.

Keywords: additive manufacturing; sustainability assessment; framework; social; environmental;
economic

1. Introduction

Industry 4.0 (I4.0) introduces a series of opportunities for sustainable manufacturing, amongst
which is the introduction of advanced manufacturing technologies with higher efficiency [1]. However,
as with any significant change in paradigm, some risks arise with potential impact on the three pillars of
sustainability. The introduction of I4.0 technologies, in particular, advanced manufacturing techniques,
is said to result in higher efficiency, particularly from the resource standpoint, however, it will result in
significant investments, higher material consumption (to manufacture machines) and changes in the
workforce [2].

Often seen as necessary to achieve I4.0 are the additive manufacturing (AM) technologies, that
allow the production of three-dimensional objects one layer at a time [3]. AM is one of the most
relevant manufacturing technologies that are emerging in a context where the markets are rapidly
changing and the consumers are more exigent, demanding for more diversified and customized
products. AM can provide many significant advantages over traditional processes, such as design is no
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longer limited by traditional machining constraints, fine-tuned customization can be implemented on
small production lots, components which previously had to be constructed from multiple parts may be
consolidated, geometries can be optimized and lightweight components can be created, while waste is
reduced due to the possibility of creating spare parts on-demand [4–7]. So, this technology becomes
a source of product and process innovation, enabling customized and personalized products (e.g.
aircraft, dental restorations, medical implants, automobiles, replacement of old spare parts no longer
available and even fashion products). It provides a new set of opportunities for developing new ways
to create and capture value [8,9]. In addition, it could be applied along the different product life cycle
stages (in a cradle-to-grave logic, from the extraction of the raw materials to the product end-of-life)
or even for extending the product life through multiple usage cycles in a cradle-to-cradle logic [10].
Hence, AM is a highly flexible technology that enables a responsive process to the market needs at
a minimal cost. Because of these benefits, large, small and medium-sized companies, belonging to
several manufacturing sectors (e.g. aerospace and biomedical parts), are incorporating AM in their
processes [11,12].

The AM technology proposes major challenges to business models because it is a new approach to
traditional business models [13], creating new value propositions in what is related to the cost structure
(e.g. using economies of scale or small lots) and to the value chain configuration (e.g. local production
or distributed production). According to Gebler et al. [14], the adoption of AM and other advanced
manufacturing technologies appears in a context where value chains are shorter, smaller, more localized,
more collaborative and offer significant sustainability benefits aligned with the triple-bottom-line (3BL),
this is, the utilization of resources without environmental and ecological impacts, minimizing the
impacts of human activities and generating economic value. To this extent, AM technology promises
to reduce material consumption, eliminate waste, eliminate transport by decentralizing production
and create value by allowing customization of products and customer engagement [3,15–17]. Garetti
and Taisch [18] define sustainable manufacturing as “the ability to smartly use natural resources for
manufacturing, by creating products and solutions that, owing to new technology, regulatory measures
and coherent social behaviours, are able to satisfy economic, environmental and social objectives, thus
preserving the environment, while continuing to improve the quality of human life”. As stressed by
Despeisse et al. [19] the AM technology could be a driver for the implementation of sustainability
principles. However, its impacts on industrial systems are still to be understood. To this end, it is
necessary to consider multiple factors influencing the 3BL and to define proper boundaries for the
system under analysis (e.g. using the life-cycle concept).

The literature provides ample evidence of the AM impact on sustainability, considering a life
cycle analysis [7,14,20,21]. The life cycle analysis covers the entire product’s phases, namely: Design,
Material Preparation, Production, Post Processing, Use and End of Life. However, until now, there is a
lack of studies integrating the environmental, economic and social dimensions.

Previous studies provide some guidance for AM implementation. Holmström et al. [22] consider
that by introducing direct digital manufacturing technologies such as AM, companies change their
operational practices, which, in the last instance, will develop dynamic capabilities, generating
sustainable outcomes. However, they do not disclose which operational practices should be selected, in
which activities and how companies could assess their sustainability performance. Mellor et al. [23] for
instance, propose a framework composed of strategic, technological, organizational, operational and
supply chain factors. Nevertheless, the authors recognize the need to compare different implementation
scenarios and map these approaches using the factors suggested in their framework. Ford and
Despeisse [7] also referred the necessity to improve knowledge on sustainability impacts of the AM
processes. Moreover, as highlighted by Jin et al. [24], the lack of data hampers the development of
assessment methodologies, such as the Life Cycle Assessment (LCA), for advanced manufacturing.

To overcome these research gaps, this paper intends to answer the main research question: How
can companies use AM to improve their sustainability performance? This question, in turn, can be
subdivided into the following items: What operational practices can be used in AM context? Which
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tools or methods can be used to measure the AM impact on 3BL dimensions (economic, environmental,
and social)? What data would assist with such measurement?

To address the above research questions, this paper proposes a tool to map the AM impacts in the
3BL dimensions. First, a critical review of the literature of relevant research articles on AM and LCA,
Life Cycle Cost (LCC) and Social Life Cycle Assessment (S-LCA) was done. An inductive research
approach was used to develop a mapping tool from the literature review. The tool is composed of three
main blocks: (i) life cycle stages, (ii) assessment tools or methods, (iii) input data. Furthermore, an
assessment framework at an abstract level is presented depicting the three main dimensions considering
the integration of the three aspects of sustainability (economic, environmental and social) through the
integration of LCA, LCC and S-LCA. This is also a contribution to the need to carry out research on the
social aspects of sustainability [20,25].

The paper is organized in a way that following the introduction, a bibliographic review on AM is
described and summarized into a table with advantages and limitations found in the literature. A
methodological review is then presented regarding research on economic, environmental and social
sustainability analysis on AM. These findings are then mapped in matrixes and a framework is
presented on the assessment of AM sustainability. Finally, some illustrative applications of the model
are presented through case studies and conclusions are drawn.

2. Additive Manufacturing Background

AM is a significant technological innovation in the field of advanced manufacturing. A number
of benefits of AM have been discussed in the literature, ranging from design flexibility, product
customization, and minimum raw material utilization to shortening of supply chains and potential
reduction of overall environmental impacts [5,26–31]. A comprehensive definition of AM is given by
American Society of Testing and Materials as “A process of joining materials to make objects from a
3D model data, usually layer upon layer, as opposed to subtractive manufacturing technologies” [32].
Therefore, no tools such as moulds and dies are required to manufacture products with this technology,
making it economically suitable for customized, high added value and complex products with low to
medium production volumes. AM is a disruptive technology which is transforming the landscape of
advanced manufacturing and there are numerous industries which are benefiting from this technology.
According to the Wohlers Report [33], some of the main target industries include consumer products,
aerospace, automotive, electronics, power generation and medical industries.

AM is known with many different names in the literature such as rapid manufacturing, solid
freeform fabrication, direct digital manufacturing, layered manufacturing or 3D printing [34]. Based
upon the state of the printed matter, i.e. liquid, solid and powder, AM can be subdivided into
several technologies such as fused deposition modelling (FDM), selective laser sintering (SLS),
stereo-lithography (SLA), electron beam melting (EBM) and binder jetting, as shown in Figure 1 [35].
Depending upon the technology, there are different types of materials that can be used in AM including
plastics, metals, ceramics and composites. However, there is yet a limited availability of materials
prepared in a suitable way to make parts by AM. As in many cases, certain special characteristics
are required such as mechanical strength, electrical conductivity, thermal endurance, durability
and multi-functionality; therefore, researchers are trying to introduce novel materials and materials
prepared/processed to achieve the aforementioned characteristics aiming to fulfil this gap.
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Figure 1. Classification of additive manufacturing processes, adapted from [35].

The potential advantages of AM are listed in Table 1, namely, less energy consumption and
CO2 emissions, maximum material utilization with lesser waste generation, lightweight design and
production, CAD-to-part production in a single process without the necessity of tools, shortening of
supply chains because of localized production, and reduced environmental impact.

Table 1. Advantages and limitations of additive manufacturing.

Advantages and Opportunities References

Design flexibility with complex geometries [5,7,26,29,36–43]

Reduced environmental impact [7,27,38–40,42,44–48]

Maximum material utilization with lesser waste generation [6,7,27,29,36,41,43,44,46,48,49]

Less energy consumption and CO2 emissions [6,14,26,38,39,43–45,48]

CAD-to-part in single process without the necessity of tools [6,7,36,41,43,49–51]

Design for customization [27,28,36,41,42,44]

Shortening of supply chains because of localized production [5,26,36,43–45]

Light weight design and production [6,26,28,29,43,50]

Reduced “time-to-market” [14,46]

No overproduction in stocks [7]

Potential benefits on worker health [5]

Equal possibilities to all participants and markets [5]

Potentially higher profit due to customer-specific solutions [5]

Limitations and Challenges

Limited material suitability [7,36,37,50,52]

Poor surface finish [36–38,50,52]

Issues of liability and security [7,53]

Lack of standardization [7,37]
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Table 1. Cont.

Advantages and Opportunities References

Intellectual property right issues [7,37]

Time consumption because of longer manufacturing time [5,37]

Need for quality control [5,50]

Supply chain management issues [45]

Need for new regulations [50]

More raw material consumption and waste due to misuse [50]

Speed of production [7]

Higher specific energy consumption [5]

Less suitable for high volume production [54]

No clear evidence on the employment situation [5]

Decline in imports and exports [45]

However, AM is still in its critical phase where several challenges exist at the same time, forming
different knowledge fields including lack of standardization, reliability, intellectual property issues,
productivity, process stability, product quality, materials and environmental challenges, etc. In addition,
most documented disadvantages or limitations of AM are limited material suitability and poor surface
finish and/or quality of the part. Furthermore, some advantages and opportunities may then lead to
some challenges, namely regarding supply chain issues. The potential for shorter supply chains with
localized production may lead to challenges in previously established supply chains by introducing
changes in suppliers. Furthermore, there are some aspects found in the literature that are within other
at an upper level, namely, the material optimization and lower energy consumption lead to reduced
environmental impact.

The increasing awareness about environmental protection among society is causing a growing
number of research initiatives in the field of manufacturing to make it more sustainable for society and
the environment. One of the most common definitions of sustainability and sustainable development
was provided by the Brundtland commission [55]: “Sustainable development is the development that
meets the needs of the present without compromising the ability of future generations to meet their
own needs”. Being an immature technology, AM imposes numerous implications in terms of economic,
environmental and social sustainability. Many authors have done research on energy consumption,
cost estimation and environmental and social impacts of several AM technologies [14,46,49,56–58].
However, more research and development in sustainability implications of AM is required to fully
integrate AM in modern-day manufacturing industries. As an emerging technology, AM still have
high costs and there remain many technical problems that affect the efficiency of the productive system.
According to Chen et al. [5], the manufacturing systems are tightly interconnected and this is also true
for AM. AM techniques compete with traditional processes, especially for small to medium batch
production of metal parts. Machines and materials for AM are still expensive but the cost of these will
decrease as AM becomes a more commonly used technology [7]. Also, materials used for AM are not
necessarily greener than materials used in traditional manufacturing technique and the process may
require high energy consumption [7].

2.1. Literature Review Methodology

In this article, three dimensions of sustainability of AM has been explored from the literature
which are environmental, economic and societal. For this purpose, a critical review of the literature
was performed. According to Grant and Booth [59] critical review goes beyond a mere description of
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literature and includes a degree of analysis, typically results in a model comprising the most significant
items in the field.

In the first step, the criteria for including papers in the review were defined. Candidates for
inclusion were published journal articles (not limited to particular journals). Three classes of keywords
were selected: (i) keywords related to AM: “additive manufacturing”, “3-D printing”, “3D print”, “solid
freeform fabrication”, “direct digital manufacturing”, “laser sintering”, “layer manufacturing”, “laser
melting”, “additive layer manufacturing”, “additive laser manufacturing”, “design for sustainable
additive manufacturing”, “rapid prototyping”, “rapid manufacturing”, “rapid tooling”; (ii) keywords
related to the 3BL: “environmental”, “environmental impacts”, “cost”, “economics”, “social”, and
“sustainability”, “environmental assessment”, “cost model”; (iii) keywords related to life cycle
approaches: “life cycle”, “life cycle”, “LCA”, “LCC”, and “S-LCA”. Initially, papers on AM were
searched and then out of those papers only the ones containing the aforementioned keywords related
to the 3BL (such as “environmental impacts”, “LCC”, “S-LCA”, “economics”, or “social”) were
selected. The search strategy was to select papers that contain in the title, abstract or keywords various
combinations of those keywords, from 1998 to December 2018, in the databases SCOPUS, Emerald
Insight, EBSCO and Web of Science. Once papers were identified, the references were reviewed to
assist in locating additional papers, resulting in ‘snowball sampling’ effect.

It is also important to mention that in the literature there were only found conceptual papers on
S-LCA of AM, which did not present any quantitative analysis of social impacts of AM. The selected
papers were analysed mainly focusing on five knowledge points which include: life cycle phases,
materials utilized, technologies used, methodology and data. Data refers to what input data is required
for the methodology or model proposed/applied in each study and output data refers to the type of
outputs given by each methodology or model.

2.2. AM vs. Environmental Sustainability

The awareness about environmental protection has aroused more concerns about the sustainability
of the product manufacturing processes. Governments, corporations and research organization are
being pushed to pay more attention to the environmental impacts of any product during its life
cycle. Lou et al. [46] were amongst the first few people to investigate the overall environmental
performance of SLA by developing an environmental performance assessment model considering
material consumption, energy consumption and end-of-life scenarios. Similarly, many authors also
worked on environmental impact assessment of different AM technologies [39,40,46,47,49,60]. The
papers analysed in the environmental impact assessment are presented in Table 2. It can be seen in
Table 2 that many authors only considered the production or manufacturing phase in their research.
In terms of technologies used: SLS, EBM, FDM, selective laser melting (SLM), SLA, laser additive
manufacturing (LAM), Wire Arc Additive Manufacturing (WAAM) and powder bed fusion were
documented in the papers.
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Table 2. Environmental impact assessment studies in additive manufacturing (AM).

Environmental Analysis

(a) Raw Material (b) Design (c) Material Preparation (d) Production (e) Post Processing (f) Use (g) Maintenance (h)
End-of-Life

Ref.
Life Cycle

Phases Methodology 1. Technologies
2. Materials Data

a b c d e f g h

[46]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 LCA using
Eco-indicator95

1. SLS, FDM
2. Epoxy resin,

mixed steel, Ni, Al

Inputs: Material and energy consumption,
process parameters and process residues.

Outputs: EI (mPts)

[56]

1 
 

                                                 Experimental
measurement

1. FDM
2. ABS

Inputs: Energy and material consumption,
process variables.

Outputs: Energy consumption (KWh)

[57]

1 
 

                                                 

1 
 

                                                 LCA using
Eco-indicator95

1. SLS
2. Nylon-12

Inputs: Material and energy consumption,
process parameters.

Outputs: Total Energy Indicator

[61]

1 
 

                                                 Experimental
measurement

1. SLM and EBM
2. Stainless steel and Ti.

Inputs: Energy and material consumption,
process parameters.

Outputs: Energy consumption rate (KWh/kg)

[51]

1 
 

                                                 

1 
 

                                                 
Experimental
measurement
and literature

1. SLS, IM
2. Nylon Steel and Al

Inputs: Energy and material consumption,
process parameters.
Outputs: EC (MJ)

[40]

1 
 

                                                 

1 
 

                                                 LCA using
Eco-indicator99

1. SLS, SLM
2. PA, stainless steel

Inputs: Time, electric power, process
consumables and waste.

Outputs: EI (mPts)

[39]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 LCA using Eco-
indicator99

1. Additive layer
distributed

manufacturing
2. PLA, ABS

Inputs: Energy consumed.
Outputs: GHG emissions (kg CO2 eq) & CED

(MJeq)

[62]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 LCA using
Eco-indicator99

1. LAM
2. Metals

Inputs: Electricity, material and fluid
consumption.

Outputs: EI (mPts)

[63]

1 
 

                                                 Mathematical
model

1. FDM
2. ABS, PLA

Inputs: Material and energy consumption.
Outputs: Energy demand (Wh)

[40]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 LCA using
Eco-indicator99

1. Powder bed fusion
2. Steel

Inputs: Energy, material and fluid consumption
and waste produced
Outputs: EI (mPts)

[43]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 Mathematical
model

1. FDM
2. ABS

Inputs: Energy and material consumption,
Process parameters, waste.

Outputs: E.C (J) and EI (mPts)

[38]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 Process-based
model

1. SLM, DMLS, EBM,
FDM,

2. Steel, Ti, Ni and Al
alloys

Inputs: Energy, material and fuel consumption,
process parameters, waste.

Outputs: Primary energy (GJ) and CO2e
emissions (million t CO2e)

[24]

1 
 

                                                 Experimental
measurement

1. LAM
2. Metal powders

Inputs: Energy and material consumption,
process variables.

Outputs: ECUDV, in J/mm3

[47]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

LCA using the
ReCiPe

Endpoint H
Method

1. FLM
2. HIPS and Sodium

chloridewith additives

Inputs: Energy and materials consumption and
process parameters.

Outputs: Emissions and EI (Pts)

[64]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

LCA using the
ReCiPe

Endpoint H
Method

1. WAAM
2. Stainless steel 308 l

Inputs: Energy, material and fuel consumption,
shielding gas, waste, air emissions

Outputs: E.I (Pts)

[65]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

LCA using the
ReCiPe

Endpoint H
Method

1. SLM
2. Aluminium

Inputs: Energy and material, waste, process
parameters

Outputs: EI (Pts), Equivalent CO2 Emissions

[66]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

LCA using the
ReCiPe

Endpoint H
Method

1. FDM
2. PLA

Inputs: Energy, material and fuel consumption,
waste

Outputs: EI (mPt)

[67]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 LCA 1. SLA
2. Ti

Inputs: Energy, material and fuel consumption,
process parameters, waste

Outputs: E.I (Pts/part)



Sustainability 2020, 12, 929 8 of 22

Materials utilized in different papers to produce AM parts include polyamide (PA), ABS, PLA,
stainless steel, polycarbonate, nylon, polyethylene, and metal alloys [40,49]. Moreover, there were
authors who also compared the environmental impact of AM and conventional manufacturing
technologies [29,47,64,68]. Paris et al. [68] compared the environmental impact of producing an
aeronautic turbine composed of 13 blades by EBM and milling. Kafara et al. [47] used the ReCiPe
Midpoint H (Europe) for impact assessment in 18 impact categories such as climate change, ozone,
water and metal depletion and marine ecotoxicity, etc. The ReCiPe Endpoint H Method was used
to normalize, weight and to combine these 18 impact categories to the single score and this single
score was used to compare the environmental impact of casting, milling and AM processes. Similarly,
Bekker and Verlinden [64] assessed the environmental impact of WAAM compared to Green Sand
Casting and CNC milling using the ReCiPe Midpoint H method.

The mentioned studies, being the most representative found to date, demonstrate that there
is a great lack of information on several life cycle steps. Even though some studies focus on
environmental impact assessment, only few studies consider cradle-to-grave scenarios [40,46,47,66,
67,69]. More so, most environmental studies on AM technologies are still based on approximation,
estimation and simplifications. Due to the lack of standardized methodologies to assess energy/material
consumption and to establish supply-chain environmental impacts, most environmental studies on
AM processes/products have significant data gaps in different life cycle stages, from raw material to
the end of life [70].

2.3. AM vs. Economic Sustainability

Cost is an important factor for decision making to analyse the economic viability of any technology
or product. Therefore, an important consideration for the deployment of AM is the cost-effectiveness
of this technology in comparison to classical production methods such as injection moulding. In fact,
if the future of AM is to compete with traditional manufacturing processes then economic viability
will play an important role which makes it necessary to perform a cost comparison of AM with other
conventional manufacturing technologies.

The oldest work on cost estimation, as found in the literature, was carried out by Alexander et al. [71].
The aim of the work was to determine the best build orientation and minimize the build cost of a
part manufactured by layered manufacturing (LM) process. The cost analysis was only limited to the
manufacturing phase of the part. It was concluded that the general characteristics of part orientation
which affect the final cost of the part include the height of the part in the build direction, the total
volume of support material used and total contact area of the part with the support structure.

After that Hopkinson and Dicknes [36] developed a model for a cost comparison of AM with
conventional manufacturing such as injection moulding. The analysis included labour, material,
machine costs and depreciation. Other factors such as power consumption and space rental were
also considered but they contributed less than one per cent of the total costs and therefore, were not
included in the results. This model was used to calculate the first approximation breakeven analysis
between several AM technologies and injection moulding. Stereolithography and FDM both appear
to be more suitable methods than injection moulding for volumes up to around 6000 units, with
stereolithography as a more viable option than injection moulding for production volumes of up to
around 14,000 units.

Following these works, many authors carried out their research work on cost calculation
of a particular AM technology. Initial cost studies assumed that the same part was produced
repeatedly However, one of the benefits of AM is its ability to produce different components
simultaneously. Therefore, a “smart mix” of components in the same build might reduce manufacturing
costs. In a single part production, the cost per part for a build is obtained by dividing the total cost
by the number of parts produced. However, the cost estimation for different parts being built
contemporaneously is more complicated which was also calculated by Ruffo and Hague [73].
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In relation to economic analysis, it is interesting to note that almost half of the papers only
considered the production phase for cost estimation of the additively manufactured part as shown in
Table 3.

Table 3. Economic analysis of several AM technologies.

Economic Analysis

(a) Raw Material (b) Design (c) Material Preparation (d) Production (e) Post Processing (f) Use
(g) Maintenance (h) End-of-Life

Ref.
Life Cycle

Phases Methodology 1. Technologies
2. Materials

Data

a b c d e f g h

[71]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 Process-based cost
model

1. FDM and SLA
2. Resin

Inputs: Part design, process parameters
Outputs: Cost ($)

[36]

1 
 

                                                 Cost model 1. SLA, FDM
2. Epoxy, ABS, nylon.

Inputs: Machine, material and labour costs,
process parameters.

Output: Cost per part (€)

[72]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 Process-based cost
model

1. Laser Sintering
2. Duraform, PA powder

Inputs: Software, hardware costs, process
parameters, material consumption and cost.

Outputs: Cost per part (€)

[58]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 LCC using Activity
Based Costing

1. MAM
2. Metals

Inputs: Process parameters
Outputs: Cost per part (€)

[74]

1 
 

                                                 Activity-based cost
model by Ruffo et al.

1. DMLS
2. Metals

Inputs: Process parameters, material and energy
consumption and cost.

Outputs: Cost (£/cm3) and Energy (MJ/cm3)

[75]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 
Experimental model

based upon Alexander
et al. cost model

1. Selective laser melting
2. Metal powder

Inputs: Process parameters
Output: Cost per part (€)

[28]

1 
 

                                                 LCEA by developing a
cost model

1. FDM
2. PLA, ABS, HDPE

Inputs: Process parameters, material and energy
consumption

Outputs: Cost ($)

[76]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 LCC using
Activity Based Costing

1. Metal AM
2. Metals

Inputs: Process parameters, material and energy
consumption

Outputs: Cost ($ or €)

[77]

1 
 

                                                 Activity-based cost
model by Ruffo et al.

1. SLS
2. Nylon composite and

PA2200

Inputs: Process parameters, energy and material
consumption and costs

Outputs: Machine productivity (cm3/h), SEC
(MJ/kg), Resource cost rate ($/cm3)

[78]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 Activity-based costing 1. WAAM
2. Ti6A14V

Inputs: Process parameters, consumables and
costs. Energy and material consumption and

costs.
Outputs: Unit Cost ($)

[66]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 Activity-based costing 1. FDM
2. PLA

Inputs: Process parameters, energy, material and
fuel consumption and costs. Machine and Waste

management costs.
Outputs: Unit Cost ($)

[67]

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 

1 
 

                                                 Activity-based costing 1. SLA
2. Ti

Inputs: Machine and labour costs. Energy,
material and fuel consumption and costs.

Recycling costs.
Outputs: Unit Cost ($)

[79]

1 
 

                                                 

1 
 

                                                 Activity-based costing
1. FDM and Material

jetting
2. ABS

Inputs: Process parameters, energy and material
consumption and costs.
Outputs: Unit Cost ($)

[80]

1 
 

                                                 Data-driven 1. FDM
2. -

Inputs: Process parameters and part cost,
Outputs: Machine cost ($/prt), material cost

($/prt) and Unit Cost ($)

Different types of materials utilized for the production of AM parts include polyamide (PA),
acrylonitrile butadiene styrene (ABS), PLA, steel, DuraForm, polyethene, nylon, epoxy resin,
polycarbonate, metal powder and polypropylene.

Moreover, some papers also focused on cost comparison of producing a part by conventional
as well as AM processes [28,36,72,76,77]. For example, Lindemann et al. [77] compared the costs of
producing a part which is used as an upright of a formula student racing car by milling and metal AM.
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Similarly, Hopkinson and Dicknes [36] developed a model to compare the cost of producing a lever by
AM and injection moulding.

2.4. AM vs. Social Sustainability

From a social perspective, some people predicted the potential social implications of AM [5,14,53,81].
However, using the criteria defined for this literature review, only three publications were found
covering both AM and S-LCA [5,20,70]. Yet, these publications do not contain practical applications
relating AM with S-LCA, being qualitative, and very generic and theoretical by nature.

Huang et al. [20] discussed the work conditions and impact on worker’s long-term health as
the social indicators of AM. The authors conducted a review on the societal impacts of AM from a
technical perspective, with an emphasis on design optimization and customized production. S-LCA is
addressed, in the main, from the health and safety occupational risk perspective. They found that
the health benefits of AM, when compared to the conventional processes, are greater. Also, they
argued that AM has the potential to change the social and labour structures due to high degrees of
automation and an expected shift towards more localized means of production in consumer countries.
In a macro-economic perspective, they found that in developed countries with ageing societies, AM can
bring some benefits whereas, in developing countries, unemployment and social insecurity might grow.

Rejeski et al. [71] discussed research needs and recommendations on the sustainability of additive
manufacturing. The authors referred that form a societal perspective, there is an information gap
on occupational health issues. They recommend researchers to focus on occupational health issues,
particularly in understanding the toxicity of fine powders (metal AM) and the potential risk of
nanoparticle emissions.

From a societal perspective, Chen et al. [5] analysed the sustainability indicators for Direct Digital
Manufacturing (DDM) with the objective to provide a foundation for manufacturers to enhance their
manufacturing systems. The authors referred to a limited number of studies that analysed this topic,
due to the complexity of the assessment for the social dimension. They considered that the only
relevant study relating AM with S-LCA is precisely the study proposed by Huang et al. [20]. The
authors explored the sustainability implications of DDM by studying the implications in each of
the three pillars of sustainability (environmental, economic and social). They referred to the social
dimension of AM in the context of DDM considering the “Working conditions” and “Work impact
on worker’s long-term health” and the respective indicators to allow the assessment of these social
impacts. Also, they argued that AM permits the democratization of the production, because consumers
are no longer passive, they are becoming prosumers. Effectively consumers are no longer passive,
instead they have become powerful because they are able to participate in the productive process,
producing by themselves and becoming prosumers [5]. This particular study focuses mainly on the
Production/ Manufacturing aspects of DDM.

So, these three studies, being the most representative found to date, demonstrate that there is a
great lack of knowledge about the social and societal impacts of AM. Despite the scarcity of publications
linking AM with S-LCA, a few others have emerged from the literature by cross-referencing, which
captured attention. The later cover wide LCA studies in the context of AM, rather than S-LCA, but
they also discuss some social and/or societal impacts. Some of these are summarized below.

AM will change the supply chain structures, requiring adjustments of labour and more qualified
workers in digital manufacturing [45]. Gershenfeld [82] argued that the rise of AM will bring changes
in patterns and intensity of work, as well as in employment schemes and types of work. Both studies
cover essentially design and production aspects of AM.

On the other hand, Ford and Despeisse [7], just as Huang et al. [20] did before, referred case
studies focused on social issues of work conditions and workers’ health, mentioning several life cycle
stages, namely, design, production, use and end-of-life.

Within the societal scope, Pearce et al. [83] referred that AM, in association with open-sources of
information, could improve living conditions; this study addressed Design and Production. Likewise,
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Gebler et al. [14] argued that AM can improve the development of the countries that could produce
their own goods, adapted to their local necessities.

From the above mentioned social studies on AM, it was established that the most frequently
referred cycle phases are Design and Production. From the findings, it can be concluded that the analysis
of social impacts is complex due to the intrinsic characteristics of social aspects, often qualitative and
difficult to predict and to quantify. As AM is an emergent technology, studies have been more focused
on LCA and LCC that have less subjective dimensions and therefore easier to evaluate.

3. Mapping Relevant Relationships Between AM Sustainability Dimensions Based on Literature
Review

The literature review can be materialized in a mapping tool, in the form of matrices, which allows
us to pinpoint all relevant relationships between the three dimensions: Life Cycle, Data, and Methods.
Table 4 shows the application of this tool to summarize the results from the literature review carried
out in the present study, i.e., it maps the number of relationships found in the publications reviewed,
allowing to show the many possible scenarios of AM technology in a life cycle context, the most
common sustainability analyses developed for AM and also to identify its gaps.

The proposed tool consists of two matrices. Matrix 1 displays the main relationships between
the specific life cycle phases that are influenced by the implementation of AM and the corresponding
input/output data involved in this technological change. For instance, the number ‘8’ in the first
row means that, in this study, the authors found eight publications relating the phase “raw material
extraction” with “material consumption” data.

Complementarily, Matrix 2 displays the links between methods and data, i.e., the relationships
between assessment methodologies used to evaluate the impact of this technological change (within
3BL perspective) and the data needed for the assessment. Using the same analogy, the number ‘11’ of
the first column means that 11 publications were found using LCA and “Material consumption” data.

The mapping tool with the data from the literature review from Sections 2.2–2.4 illustrates the
focus of the literature mainly on production phase, with few studies addressing other life cycle phases.
Another main point found with this analysis is the lack of social analyses to real AM applications.
Furthermore, this tool serves also as a framework to visualize the assessment methodologies required
for comprehensive sustainability analysis in a specific case study, along with the data required and
expected results. This is explored in Section 4.

Whilst the environmental and economic dimensions are commonly studied, the only publications
found on social dimension are purely theoretical, pointing only to possible social benefits and drawbacks,
advantages and disadvantages. In addition, no case study was found with a structured social analysis.
Therefore, given the definition of sustainability as comprising the three dimensions, no example or
case study was found in AM with a comprehensive sustainability assessment.

This tool, besides allowing mapping the gaps in the literature, it is also a good support tool
to define the required analyses for a particular application or case study. The two matrices are
inter-connected, facilitating building and illustrating scenarios because it maps relationships between
the different key elements. This ability could be of paramount importance to assist companies who are
planning to move into AM technology. Based on this research a sustainability assessment framework
for AM is proposed in the next section. Some illustrative examples of applications and analyses are
also presented based on the conceptual model and using the mapping tool.
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Table 4. Framework for mapping the number of evidence found in the literature about the relationships between AM sustainability dimensions (from literature review).

Raw material (a) 12 13 13 8 3 9 2 3

Matrix 1

Design (b) 5 2 4 1 6 2 2 2 1 5 1
Material

preparation (c) 11 2 11 2 11 6 3 4 7 5 3

Production (d) 26 8 25 6 30 9 2 5 9 10 11 4
Post

processing (e) 8 2 9 2 11 5 3 1 5 4 2

Use (f) 6 1 6 1 5 4 1 1 4 3 1
Maintenance (g) 2 1 2 2 2

Life cycle Phases

End of life (h) 7 3 6 2 6 3 2 1 6 2 1

Data Inputs Material
Consumption

Material
Unit
Cost

Energy
Consumption

Energy
Unit
Cost

Other
Process

Parameters
Waste

Software and
Hardware

Cost

Part
Geometry

Energy
Consumption

Output

Environmental
Impact Cost Emissions Data

Outputs

LCA using ReCiPe
Endpoint H, or

Eco-indicator 95 or 99
11 2 12 2 12 7 1 2 2 10 2 3

Matrix 2

Experimental
measurement 4 1 4 4 4

Mathematical model 2 1 1 1 2 1Environmental

Process-based model 1 2 1 1 1
LCC using TD-ABC 1 1 2 2

Activity based cost model 6 6 6 6 5 2 1 1 2 2 7
Process-based cost model 1 1 1 1 1 1 1 2

Cost model 1 1 1
Experimental model based

on Alexander et al. [71] 1 1
Economics

Data-driven cost model 1 1
Social - - - - - - - - - - - - -
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4. Assessment Framework

This section describes an assessment framework, at an abstract level, which depicts the three
main dimensions that companies need for assessing the impacts of AM technologies on their processes’
performance with respect to 3BL perspective, i.e., economic, environmental and social impacts. The
three dimensions of the model, as illustrated in Figure 2, are:

1. Life cycle phases of AM, as found in the literature,
2. Data, i.e., input and output data for each particular phase, and
3. Methods for assessing AM sustainability impacts.
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Figure 2. The proposed framework for assessing the impacts of AM technologies.

These three elements depend essentially on the activity sector and/or business context, which will
influence the choice of each particular item to be included in the assessment.

This framework was developed using several subjective and empirical evidence presented in the
literature reviewed before. The current proposal follows an inductive approach where theory emerges
from data collected on the topic [84,85]. Such methodological approach is useful when the purpose
is to learn from available data. The fact that inductive research is open-ended makes it possible to
discover correlations among data [86].

The circular 3BL approach implies the interconnected view of economic, environmental and social
perspectives. This model tries to express the balance between them, although their relative contribution
can have different weights, depending on the specific product and life cycle phase under evaluation.
Based on the literature, the three impacts can be assessed through different methods, of which the
so-called LC-based methods (life cycle approaches) are the most preferred for this purpose. In fact,
from the authors’ point of view, a life cycle framework should be always taken into account when
evaluating the sustainability of a particular application, even though some phases can be left out of the
assessment in cases where it is not relevant for the purpose of the study. This fosters the consistency of
boundaries throughout the three bottom lines of sustainability. In Section 4.1 are further explained the
application and suitability regarding each method proposed in this model.
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Regarding the life cycle phases proposed, these are the most common found in literature and are
applicable to most applications. However, as previously explained, some of them can be irrelevant or
an additional phase, for example, transport, can be added in particular cases. The inputs greatly depend
on the tools and methods used for life cycle methods. For example, if an experimental procedure
is used, then the inputs are the resources measured. If a mathematical model is used, perhaps the
inputs are related to the geometry of the part or other model inputs to calculate resources. The outputs
are the necessary data for computing the LCC, LCA and S-LCA of a case. Therefore, it depends on
the assumption made regarding the boundaries (life cycle phases included). The use of standardized
and/or well-established methods for each pillar assures the validity and benchmarking of results.

Based on this framework, two case studies within AM context are illustrated in Section 4.2 with
a brief description and discussion of the methods to apply to assess the sustainability of each case.
The tool described in Figure 2 is used here to map the life cycle phases to analyse in each case, the
resources and other data required and the method to use in each assessment analysis.

4.1. Methods for Assessing Sustainability

For a cleaner production, environmental impacts that would occur during the whole life cycle of a
product should be assessed with maximum possible accuracy. Most environmental impact assessment
models or methods for AM are developed based on the general framework of LCA [40]. The standard
ISO 14040 (2006) suggests a protocol with 4 main steps to apply the LCA method. The first step
deals with Definition of Goal and Scope, as it happens in many assessment standards. The step of
Inventory Analysis implies identifying and analysing the relevant inputs /outputs, of which all flows
consumed and outputs released must be listed as exhaustively as possible. The subsequent Impact
Assessment aims at evaluating the magnitude and significance of potential environmental impacts of a
product/system, throughout its whole life cycle. Finally, Interpretation is the phase of LCA in which
the findings of either the inventory analysis or the impact assessment, or both, are evaluated in relation
to the defined goal and scope, to reach conclusions and recommendations.

The choice of this framework for the proposed framework results mainly from the great unanimity
that exists in its use to assess environmental impacts. In fact, during the last decade, the research
around LCA application has been growing and the number of scientific publications involving LCA has
had an exponential increase. LCA methodologies have been developed and governments encourage
the use of LCA [87]. At the same time, research also makes the link between sustainability and value
creation, by demonstrating how the application of LCAs can provide useful insights for business
decisions. Another important aspect is the recognition of this methodology by ISO 14040 [88] and by
the United Nations Environmental Programme (UNEP) and the Society for Environmental Toxicology
and Chemistry (SETAC) Life Cycle Initiative, UNEP Setac Life Cycle Initiative, 2009) [89].

Regarding the economic dimension, the correspondent economic life cycle approach selected for
the proposed framework is the LCC. It generally refers to the “assessment of all the costs associated
with the life cycle of a product that are directly covered by the any one or more of the authors in the
product life cycle (supplier, producer, user/consumer, EOL-actor), with complimentary inclusion of
externalities that are anticipated to be internalized in the decision-relevant future” [90]. Its objective is
to cover the assessments of costs in all steps of the product’s life cycle, including the costs that are
not normally expressed in the product market price [91], such as costs incurred during the usage and
end-of-life. LCC is essentially an evaluation tool in the sense that it gets on to important metrics for
choosing the most cost-effective solution from a series of alternatives [92]. LCC is often based on a
widely established investment appraisal method, Net Present Value (NPV). This method assesses the
profitability of a project or product based on the required operational cash flows and investments and
allows the comparison of different options. The profitability is measured within a time period and the
project or product is profitable when the NPV is greater than zero [93]. This allows taking into account
different life cycle phases in a determined life span of a product. However, other economic, accounting
or investment appraisal methods can be used.
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While LCC and LCA are widely established methods, the application of LCA techniques to
social impacts is still a field in development. In fact, the UNEP/SETAC, Life Cycle Initiative has
recently published the first official set of “Guidelines for Social Life Cycle Assessment of Products” [89].
These guidelines are the standard framework to which S-LCA researchers will seek to harmonize and
standardize the S-LCA process. Like LCA, S-LCA is based on four steps of analysis: goal definition,
scope definition, inventory analysis and impact assessment.

One important difference between LCA and S-LCA is the definition and quantification of the
indicator. Given the developing phase of the method and the subjectivity inherent to the social impacts,
it is up to the stakeholders to determine the most appropriate indicators. Also, regarding the impact
assessment phase, the guidelines for S-LCA do not discuss normalization or valuation of impacts, as
assessment methodologies are under development and S-LCA is an open field for future research.

Some researchers have proposed other approaches to overcome the current limitations in the
S-LCA standardization, namely the Franze and Ciroth [94] approach, with a rating system as the
assessment method for the impact categories for each subcategory of each stakeholder. Despite the
S-LCA emergent characteristics, this approach was selected for the framework on sustainability due to
the standardization attempts and harmonization with LCA following UNEP/SETAC guidelines (2009).
Furthermore, the life cycle perspective and consistent boundaries of the 3BL analysis are then assured.

4.2. Application of the Sustainability Model to Case Studies

The application of the proposed matrix (Figure 3) is shown here applied on two different
components, a motorcycle lever (case A, Figure 3a) and a bellcrank (case B, Figure 3b). Both of
these components can be produced by AM as well as conventional manufacturing processes. In the
motorcycle lever case, the traditional manufacturing process is die-casting. Changing the production
process to FDM using fibre reinforced polymers would allow full customization of the part, which
was found to be appealing to a niche market. This would mean a change not only in the production
process but also in the type of material used in the product. The second case is a bellcrank used in a
prototype racing car. The current process is hand lay-up and it requires a curing process that would
not be necessary if this part was produced by FDM.
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It uses the same type of composite material, carbon fibre reinforced plastic. Therefore, in this case,
the difference between the current case and the alternative is only in the production process.

In both case studies, the objective is to support the decision of changing a product and/or a
production process. The life cycle framework proposed provided the base for the definition of the
methods to apply.

The mapping of the required life cycle phases to analyse, the data required and the methods to use
are shown in Table 5. The differences in the case studies are translated into different analyses required
for each. While in the first case, the motorbike lever (A), the material changes and therefore a full life
cycle analysis is required. In the bell crankcase (B) the only phases important to analyse for the sake of
comparison are the design, production and post-production phases.
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Table 5. Mapping tool applied to the case studies motorcycle lever (A) and bellcrank (B).

Raw material (a) A A A A A A A A A A A A A

Matrix 1

Design (b) A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B
Material preparation (c) A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B

Production (d) A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B
Post processing (e) A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B A,B

Use (f) A A A A A A A A A A A A A
Maintenance (g) A A A A A A A A A A A A A

Life cycle
Phases

End of life (h) A A A A A A A A A A A A A

Data Inputs Material Energy Equipment Emissions Process Waste Stakeholders Cost
Functions Env/Impact Social

Impact

Life Cycle
Phases

Cost

Life Cycle
Phases

Env/Impact

Life Cycle
Phases Social

Impact

Data
Outputs

LCA

Process-based
model A,B

Matrix 2

Experimental method A,BEnvironment
ReCiPe method

LCC
Prcess-based

model A,B
Economics

Experimental method A,B

S-LCA
Interviews with

stakeholders A,B A,B A,B A,B
Social Data

mining techniques A,B A,B
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The methods to develop the LCA, LCC and S-LCA analysis are defined in the thirds column of
Table 5 and are common for both cases. An experimental apparatus is required for the prototypes in
AM and to gather data regarding resources and emissions. The data for production processes currently
used in each case are determined by process-based cost models and empirical data. All environmental
impacts can be assessed by the Recipe method [95]. Given the changes in stakeholders by changing the
process, in both cases, a social assessment is required through the S-LCA methodology.

5. Conclusions

With the aim of contributing to the area of AM sustainability assessment, the three dimensions
of sustainability of AM—environment, economics, and society—have been explored in a literature
review. Five key points were considered to analyse the literature: life cycle phases, materials utilized,
technologies used, methodology and data collection. The majority of the authors only considered the
production phase for energy consumption, cost estimation and environmental impacts assessment
without making a comparison with conventional manufacturing and disregarding the social dimension.
These findings were mapped in matrixes to better understand the gaps in current research.

Results showed clearly the need for systematic analysis considering the three dimensions of
sustainability and method(s) to support it. While in the environmental and economic cases there are
well-established life cycle methodologies, namely LCC and LCA, this is not the case in the social sphere.
A proposal for using the S-LCA was added to a sustainability assessment framework so that the same
life cycle boundaries are kept in the different dimensions of analysis. Furthermore, this method follows
the same norm of LCA and is the most promising one until now for assessing the social impact of
products. Finally, the model was illustrated through two illustrative case studies so that the required
phases to analyse, methods and data were defined for each following this sustainability framework.

This work contributed for the current knowledge on the sustainability of AM by exposing the
existing gaps and by proposing a model and a mapping tool to support companies and researchers
on the definition of the problem and required data and methods to assess the sustainability of
their products.
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