

IUL School of Technology and Architecture

Department of Information Science and Technology

Towards a Software Defined Network based Multi-
Domain Architecture for the Internet of Things

Leonel Duque Piscalho Júnior

Dissertation submitted as partial fulfilment of the requirements for the degree

of

Master in Telecommunications and Computer Engineering

Supervisor:

Prof. José André Rocha Sá Moura, Assistant Professor,
ISCTE – IUL

Co-Supervisor:

Prof. Rui Neto Marinheiro, Assistant Professor

ISCTE – IUL

December 2019

i

Acknowledgements

There is no true victory without effort and sacrifice. This master's dissertation could not

come to an end without the precious support of many people.

Firstly, I thank God for always looking out for me and answering my prayers even though

they were mostly done in times of despair and distress.

Special thanks to my advisors, Professors José Moura and Rui Marinheiro for all the

patience, commitment, motivational and practical support with which they have always guided me

in this work.

I also wish to thank my family, especially my parents Leonel Duque Piscalho and Maria

Isabel de Carvalho for the unconditional support throughout my life, have been and always will be

examples of work and honour for me. Still in my family, a special thanks to my girlfriend and

partner Moira Margalha for the motivational support and the time she gave up her personal life to

help me on this journey.

Special thanks to the Instituto de Telecomunicações for the conditions available for this

dissertation.

Finally, thank my classmates Mickaël Cunha and Pedro Manso, despite they have already

finished the course, have shown themselves available to help.

We know it is hard to go after a dream and fight for what you want, but all those

sacrifices made today will be paid tomorrow when it all comes true.

ii

Resumo

As redes atuais de comunicação são heterogéneas, com uma diversidade de dispositivos e

serviços, que desafiam as redes tradicionais, dificultando a satisfação dos requisitos de qualidade

de serviço (QoS). Com o advento das Redes Definidas por Software (SDN), novas ferramentas

surgiram para projetar redes mais flexíveis. O SDN oferece uma gestão centralizada para os fluxos

de dados em redes distribuídas de sensores.

Assim, o principal objetivo desta dissertação é de investigar uma solução que cumpra os

requisitos de QoS do tráfego originado em dispositivos de Internet das coisas (IoT). Este tráfego é

transmitido para a Internet, num sistema distribuído com múltiplos controladores SDN.

Para atingir o objetivo, projetamos uma topologia de rede com múltiplos domínios, cada

um gerido pelo seu controlador. A comunicação entre os domínios, é feita através dum domínio

de trânsito SDN com a aplicação SDN-IP do controlador Sistema Operativo de Rede Aberta

(ONOS). Emulamos também uma rede para testar a QoS através de filas de espera do

OpenvSwitch. O objetivo é criar prioridades de tráfego numa rede com dispositivos tradicionais e

de IoT simulados.

De acordo com os testes realizados, conseguimos garantir a comunicação entre domínios

SDN e comprovamos que a nossa proposta é reativa a uma falha na topologia. No cenário do QoS

demostramos que, através da inserção de regras OpenFlow, conseguimos priorizar o tráfego e

oferecer garantias de qualidade de serviço. Desta forma comprovamos que a nossa proposta é

promissora para ser utilizada em cenários com múltiplos domínios administrativos.

Palavras-chave: SDN, IoT, QoS, ONOS, Múltiplos-Domínios

https://www.networkworld.com/article/3209131/lan-wan/what-sdn-is-and-where-its-going.html

iii

Abstract

The current communication networks are heterogeneous, with a diversity of devices and

services that challenge traditional networks, making it difficult to meet quality of service (QoS)

requirements. With the advent of software-defined networks (SDN), new tools have emerged to

design more flexible networks. SDN offers centralized management for data streams in distributed

sensor networks.

Thus, the main goal of this dissertation is to investigate a solution that meets the QoS

requirements of traffic originating on Internet of Things (IoT) devices. This traffic is transmitted

to the Internet in a distributed system with multiple SDN controllers.

 To achieve the goal, we designed a multi-controller network topology, each managed by

its controller. Communication between the domains is done via an SDN traffic domain with the

Open Network Operating System (ONOS) controller SDN-IP application. We also emulated a

network to test QoS through OpenvSwitch queues. The goal is to create traffic priorities in a

network with traditional and simulated IoT devices.

According to our tests, we have been able to ensure the SDN inter-domain communication

and have proven that our proposal is reactive to a topology failure. In the QoS scenario we have

shown that through the insertion of OpenFlow rules, we are able to prioritize traffic and provide

guarantees of quality of service. This proves that our proposal is promising for use in scenarios

with multiple administrative domains.

Keywords: SDN, IoT, QoS, ONOS, Multi-Domain

iv

Tables of Contents

Acknowledgements ... i

Resumo .. ii

Abstract ..iii

List of Tables ... vi

List of Figures... vii

List of Abbreviations .. ix

1. Introduction ...1

1.1. Context ...1

1.2. Research Questions ...2

1.3. Research Goal ..3

1.4. Investigation Method...3

1.5. Main contributions...3

1.6. Dissertation Outline...4

2. Literature Review ...5

2.1. SDN Architecture ..5

2.1.1. OpenFlow Protocol ..8

2.1.2. SDN Controllers.. 10

2.1.3. Inter Domains Communication .. 16

2.2. ONOS Controller Overview .. 19

2.2.1. System Components ... 19

2.2.2. ONOS Intent Framework ... 20

2.2.3. SDN-IP ONOS Application ... 22

2.3. SDN for Emerging Technologies .. 24

v

2.3.1. Related Research in QoS .. 25

2.4. Chapter Conclusion .. 26

3. System Design ... 27

3.1. Inter-domain communication strategy .. 29

3.2. QoS Strategy ... 30

3.3. Chapter Conclusions... 32

4. System Deployment.. 33

4.1. Technologies and Tools ... 33

4.2. Test Topology Setup .. 34

4.2.1. Routers and BGP Speaker Configurations .. 35

4.2.2. Start-up SDN-IP on ONOS .. 37

4.3. QoS Deployment .. 39

4.4. System Evaluation .. 42

4.4.1. SDN Inter-Domain Communication Test ... 42

4.4.2. Controller Failure Test ... 43

4.4.3. Link Failure Test... 44

4.5. QoS Data Rate Test .. 47

4.5.1. Test without QoS .. 48

4.5.2. Test with QoS.. 50

4.5.3. Results ... 51

4.6. Chapter Conclusions... 52

5. Conclusions and Future Works ... 53

5.1. Conclusions ... 53

5.2. Future Work .. 54

Bibliography ... 55

vi

List of Tables

Table 1. OpenFlow Versions ...9

Table 2. SDN controller solutions .. 15

Table 3. SDN Inter-Domain Communication methods ... 18

Table 4. Technologies and Tools .. 33

Table 5. Priority Level Queues ... 40

Table 6. Captured ICMP Request message from h1 to h3, s1-eth3 up .. 45

Table 7. Captured ICMP Request message from h1 to h2, s1-eth2 down 46

vii

List of Figures

Figure 1. SDN Architecture ...6

Figure 2. OpenFlow - enabled devices [15] ...9

Figure 3. Single Controller Approach .. 11

Figure 4. Logically centralized but physically distributed design .. 12

Figure 5. Distributed controller Approach ... 13

Figure 6. BGP Session [41]... 17

Figure 7. ONOS Architecture [47] ... 19

Figure 8. ONOS Intent Framework Compilation and Flow Installation [46] 21

Figure 9. SDN-IP Architecture [46] ... 22

Figure 10. System Design ... 27

Figure 11. Queues Management ... 30

Figure 12. Traffic priority Flowchart ... 31

Figure 13. Inter-domain Testbed scenario.. 34

Figure 14. Netwok-cfg.json File ... 36

Figure 15. Quagga configuration .. 37

Figure 16. ONOS CLI with SDN-IP application Installed.. 37

Figure 17. Point to Point Intent ... 38

Figure 18. MultiPoint to SinglePoint Intent ... 38

Figure 19. BGP Routes.. 39

Figure 20. QoS Testbed ... 40

Figure 21. Queues configuration .. 40

Figure 22. Queues validation at Mininet CLI .. 41

Figure 23. OpenFlow rules in set_priority script ... 41

Figure 24. The topology at ONOS GUI .. 42

Figure 25. Connectivity test .. 43

Figure 26. Failure of controller in a cluster.. 44

Figure 27. Link failure results ... 47

Figure 28. QoS moments tests .. 47

Figure 29. Vigilance camera without traffic competition ... 48

viii

Figure 30. UDP traffic receiver .. 49

Figure 31. Vigilance camera with traffic competition... 49

Figure 32. Flow rules at S1 ... 50

Figure 33. Transmission with QoS ... 50

Figure 34. QoS results ... 51

ix

List of Abbreviations

AMQP – Advanced Message Queuing Protocol

API – Application Programmable Interface

ARP – Address Resolution Protocol

AS – Autonomous System

BGP – Border Gateway Protocol

CLI – Command Line Interface

DISCO – Distributed multi-domain SDN controllers

GUI – Graphical User Interface

ICMP – Internet Control Message Protocol

ICONA – Inter Cluster ONOS Network application

IFWD – Intent Reactive Forwarding

IMR – Intent Monitor and Reroute

IoT – Internet of Things

IP – Internet Protocol

JSON – JavaScript Object Notation

MPLS – Multi Protocol Label Switching

NIB – Network Information Base

NOS – network operating system

ODL – OpendayLight

ONF – Open Networking Foundation

ONOS – Open Network Operating System

OSGi – Open Services Gateway Initiative

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as

x

OVS – OpenVSwitch

OvSDB – Open vSwitch Database

QoS – Quality of Service

REST – Representational State Transfer

RFID – Radio Frequency Identification

RTP – Real-time Transport Protocol

SDI – Software Defined Cross-Domain Routing

SDN – Software Defined Networking

SNMP – Simple Network Management Protocol

SSL – Secure Socket Layer

TC – Traffic Control

TCP – Transmission Control Protocol

UDP – User Datagram Protocol

VLAN – Virtual Local Area Network

VLC – Video Lan Client

VM – Virtual Machine

WAN – Wide Area Network

WSN – Wireless sensor network

YANG – Yet Another Next Generation

xi

“If you have a positive attitude and constantly strive to give your best effort,

eventually you will overcome your immediate problems and find you are ready for

greater challenges”

Pat Riley

https://www.brainyquote.com/authors/pat-riley-quotes

1

1. Introduction

1.1. Context

The exponential data traffic growth and the heterogeneity of communications networks are

challenging the legacy networking management solutions, because these scenarios demand for a

high-level of complexity to interconnect different types of services and smart devices like the

internet of things networks (IoT). They exchange real-time information through the networking

infrastructure which is processed by intelligent applications, which implies not only various types

of traffic, but also the ability to offer quality of service (QoS) guarantees across the network [1].

Due to high complexity of the infrastructure configuration and the difficulty of legacy

network innovation, many challenges arise to meet the requirements of today's networks, and the

advent of software defined networks (SDN) offers to the network designers new methods for

designing flexible and more efficient networks.

SDN stands out for its flexibility, programmability and centralized management, which

makes the SDN an increasingly popular paradigm. It separates the data layer from the control layer

to allow operational logic to pass to controller and data plane to handle only data routing. This

mitigates some limitations of legacy solutions and accelerates innovation in several key network

functions [2],[3].

Initially, most SDN contributions offered a single controller design to manage the entire

network. Nevertheless, this faces some robustness and performance problems when it is deployed

at larger networks. The robustness issue is due to the potential single point of failure of the

centralized SDN controller; and, the performance issue is associated to the eventual bottleneck of

having a single controller with scarce available computing resources to satisfy the entire service

demand. An alternative to the single controller is the multiple controllers [3]. However, the design

with multiple controllers increase the complexity of the network and put many challenges in

managing efficiently the entire networking infrastructure.

Due to the size, heterogeneity, and complexity of current networks, approaches based on

the hierarchical network division into multiple Autonomous System (AS) or SDN domains is a

viable alternative. Each domain focuses on managing its own network subset and optimizing

performance for providing QoS guarantees to end users. Some research like [4], study ways to

improve the IP domain routing management and provide end-to-end QoS paths [5]. This research

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/due
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/static
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/manage
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/entire
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/based
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/on
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/division
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/into
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/multiple
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/autonomous
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/system
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/or
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/is
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/viable
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/alternative
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/each
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/domain
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/on
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/its
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/subset
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/performance
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/provide
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/end
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/user

2

is based on a centralized controller approach that handles routing in only one administrative

domain. However, the SDN configuration in inter-domain scenarios is more challenging, and the

coherent interconnection of all these controllers is vital to ensure reliable end-to-end services, such

as routing and QoS deployment.

The interaction between the different SDN domains depends on a inter domain routing

protocol, and BGP is the base protocol for this interaction. ONOS [6] and ODL [7] SDN controllers

are those that meet the distributed complement requirement and are most commonly used in large-

scale WAN projects. Both are powerful SDN controllers with slight performance differences as

shown in [8].

The authors of [9], suggest a solution designated by Inter Cluster ONOS Network

application (ICONA). This solution manages a large networking scenario under the same

administrative domain (i.e. GEANT network) with geographically distributed ONOS controllers.

Their proposal aims to enhance fault tolerance and decrease the delay response to events originated

in large-scale networks. Another contribution [10], proposes a gradual implementation of SDN-

based solutions over different administrative domains which need to interoperate with other non-

SDN based domains. They study a peering application among distinct Autonomous Systems (ASs)

called SDN-IP which runs on the top of the SDN controller.

The SDN-IP application will be very important to achieve our goal, because unlike existing

studies, our work aims to connect different SDN-based administrative domains to create consistent

inter-domain routing. Due to the limited contributions and limited resources to ensure QoS on IoT

networks, it gives for network administrators the freedom to implement their own QoS algorithms.

However, we aim, as a novelty, to ensure QoS support in distributed systems with multiple SDN

controllers.

1.2. Research Questions

The Quality of service gives resources to intelligently manage the bandwidth, minimizing

packet loss and delays in different types of services. As the network grows and domains expand,

the network load grows and the resources become exhausted. In this way, end users cannot have

satisfied their initial QoS-level expectations for various applications .

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/interaction
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/between
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/different
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/on
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/domain
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/protocol
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/is
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/base
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/protocol
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/this
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/interaction
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/end
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/cannot
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/have
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/level
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/for
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/various

3

So, the research question that serves as a base for this dissertation is “How to provide the

necessary resources to meet QoS and robustness requirements for traffic originated in

heterogeneous IoT devices, in a multi-domain SDN-based system?”

1.3. Research Goal

The main objective of this dissertation is to investigate a solution that provides inter-

domain communication, failure robustness and meets the QoS requirements of traffic originating

of IoT devices. So, to achieve that goal we will design, deploy a distributed SDN formed by

multiple domains, a controller for each domain and and test QoS through differentiating traffic and

installing OpenFlow rules according to each priority.

1.4. Investigation Method

To test the viability of our proposal, several studies were performed, as follows:

 Literature Review about SDN, its architecture, protocols, controller design and the

different types of controllers. It will be also studied the inter-domain SDN communication

and how QoS can be provided in relevant emerging scenarios like IoT;

 Design and Deployment of a network prototype to ensure communication between

different SDN administrative domains and adopt methods to ensure QoS in the exchange

of information between the end devices;

 Evaluate the results and prove that the proposed solution is valid to answer in a satisfactory

way our initial research question.

1.5. Main contributions

The main contributions of this dissertation, is the implementation of a distributed network

system, formed by multiple domains totally based on SDN able to meet QoS and robustness

requirements for routing heterogeneous traffic inter-domain. The routed traffic is from

heterogeneous devices, including IoT, located at the network edge.

4

1.6. Dissertation Outline

The remainder part of the current dissertation has the following organization. Chapter 2

presents the literature review. All the theoretical background needed along the current work is

discussed. Here, we analyze how a distributed SDN system works, and what are the more recent

contributions in the current topic. Chapter 3 presents our proposal including the system design.

Chapter 4 is about the deployment of the proposal, including the performed tests and a complete

discussion about their results. Finally, Chapter 5 presents some general conclusions about the

current dissertation and some future work.

5

2. Literature Review

The literature review provided in this chapter, identifies the current related research and

provides some background in the fundamental technologies and systems used along the current

work. We will briefly discuss SDN and its architecture where we explain each layer and how one

interacts with the other. The OpenFlow protocol will be presented, which is the most used to

provision the communication between the physical devices and SDN controllers.

 Different SDN designs for single and distributed controllers as well as existing solutions

will be presented. A special attention is given to the distributed architecture approach of multiple

controllers, and methods to ensure the inter-domain communication will also be studied. As SDN

has been applied in different emerging areas, different ways of providing quality of service

guarantees in IoT networks will be studied.

2.1. SDN Architecture

In legacy or traditional networks, the control and data forwarding functions are both

embedded in the same network device (e.g. switch, router). In this way, it is difficult to deploy

new network services because the manual configuration of this legacy network devices takes a

long time and it is more prone to errors [12]. To overcome these limitations, the SDN is a viable

candidate. The SDN, is a network paradigm, which introduces the programmability options to how

the network infrastructures should operate. When the SDN concept is used, it implies, in each

network device, the separation between the control layer and the data layer. In this way, the SDN

controller provides the logic of network service operation, while physical devices only handle the

data plane forwarding, as fast as possible, according to their switching fabric [14].

The SDN paradigm offers some advantages, in how the network management is performed,

namely the simplicity for introducing new network services, the ability to innovate in the way the

network is managed, reduced equipment costs and the high-level programming based on

management policies, which is performed at the top of the SDN controllers. The reference [15],

presents the following benefits for using the SDN approach:

 It is simpler and less error-prone to program, run applications, and modify network

policies through high-level languages built into controllers compared to low-level

configurations implemented directly on network devices;

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/following
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/approach

6

 Offers a centralized network overview;

 Enables to automatically react to network topology changes, following high-level policies.

Since not everything just has advantages, the use of SDN has some limitations that have

been worked to overcome them. Among these limitations are security issues, controllers become

a priority target for attackers. Since all the "intelligence" of the network is centralized in a single

point and if the controller attacked, can be compromising the entire network. To mitigate this

limitation, there is the option to use distributed controllers, which can assist in the recovery of

physical and logical failures. However, there is a difficulty in keeping the network state always up

to date for all controllers in the network.

 Another limitation is due to technical support for SDN networks. To be a new paradigm

compared to other network architectures, there is a shortage of professionals in this area, so the

support is limited.

The SDN architecture consists essentially of three layers: infrastructure or data, control and

application. The Figure 1 shows the SDN architecture. We discuss below the several layers of this

architecture.

Figure 1. SDN Architecture

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/automatically
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/react
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/topology
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/high
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/level

7

The Data layer is the bottom-most layer of the SDN architecture. It aggregates diverse

SDN compatible network devices, such as routers and switches. This layer is responsible for

forwarding packets, which divert packets through the network topology according to the decisions

taken by the control layer. The communication between data layer network devices and SDN

controllers is typically made by Southbound API [13][16].

The Control layer is an intermediate layer of the SDN architecture. It is also designated

as the network operating system (NOS). It consists of one or more SDN controllers that support

the network control logic. The communication between top-most applications and the SDN

Controller is made via a northbound interface. This interface provides to the application layer a

high-level abstraction of the network infrastructure, hiding specifics of the network infrastructure.

There are several SDN controllers that will be discussed in the following sections. In spite of the

existence of several SDN controllers, there is among them a common set of basic functions like

topology manager, statistical manager, routing module, device manager, among others [13][16].

The Application layer is the top-most layer of the SDN architecture. This layer

communicates with intermediate-level SDN controllers via Northbound APIs (e.g. RESTful). In

this layer are running several programs such as monitoring, security, load balancing and flow

control. Through the Northbound API, SDN services and applications have access to the network

status and react to that by sending in the opposite direction some instructions to the SDN

controllers. These instructions being executed by the SDN controllers imply the installation of

local flow rules in the network devices forming the data plane [13][16].

Separating the three already mentioned layers of the SDN architecture, there are two

vertical communication channels to connect each pair of them Northbound/Southbound APIs, as

well as East/Westbound APIs to provide two horizontal communication channels between multiple

controllers. We give below further details about all these communication channels.

The Southbound API is the communication channel between the data layer and the control

layer. Consists of protocols that determine how the SDN controller should direct information to

the data plan network configurations, flow entries installation, and insertion of forwarding rules

into switches. There are many protocols such as OpenFlow, OvSDB [17], SNMP [18], NetConf

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/is
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/layer
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/with
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/through
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/northbound
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/restful
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/is
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/communication
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/channel
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/between
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/data
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/layer
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/control
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/layer
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/that
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/determine
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/how
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/controller
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/should
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/direct
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/information
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/data
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/plan
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/there
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/are
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/such
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as

8

[19]. In this document, we will discuss only SDN solutions with OpenFlow (section 2.1.1) , that it

is currently more used for this type of implementations [13] .

The Northbound API is used to connect the applications and network services from the

application layer to the SDN controllers. This API provides a dynamic management of network

traffic flows through programming feature. Different from Southbound API, the Northbound API

is not supported by a standard protocol [13].

The East/ Westbound API provides the communication between the SDN controllers in

a distributed network. They can be used to interconnect conventional IP domains and SDN

networks, also connects different administrative domains with federated SDN controllers.

Although there is no standardized protocol for this API, conventional border protocols such as

BGP can be used to support the interconnection of remote SDN domains [13][20].

2.1.1. OpenFlow Protocol

The OpenFlow protocol emerged in 2008, from a project launched by Stanford University.

In 2011, a group of service providers have created the organization called the Open Networking

Foundation (ONF), to standardize and promote the use of OpenFlow network protocol using SDN-

based solutions. The OpenFlow is currently the most used protocol by SDN systems. It provides

the communication between the control layer and the data layer through the Southbound API. The

OpenFlow protocol allows the control layer to centrally specify how data traffic is forwarded

through the data layer. These traffic forwarding decisions are made in OpenFlow compatible

devices, following packet forwarding rules stored into local flow tables of those devices. The Table

1 compares some relevant features among the different versions of OpenFlow Protocol [16][13].

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/this
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/document
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/we
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/will
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/address
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/only
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/with
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/it
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/is
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/currently
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/more
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/used
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/for
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/this
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/type
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/from
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/project
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/by
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/university
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/group
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/service
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/have
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/organization
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/open
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/foundation
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/standardize
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/promote
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/use
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/protocol
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/protocol
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/by
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/communication
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/between
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/control
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/plan
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/data
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/plan
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/table
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/different
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/protocol

9

Table 1. OpenFlow Versions

OpenFlow version Date Features

OpenFlow 1.0.0 [21] Dec,2009 Single flow table, IPv4

OpenFlow 1.1.0 [22] Feb,2011 Multiple flow table, group table, MPLS support and

VLAN

OpenFlow 1.2.0 [23] Dec,2011 IPv6, multiple controllers

OpenFlow 1.3.0 [23] Jun,2012 Single flow measure, IPv6 extend header, Meters for

QoS Capabilities

OpenFlow 1.4.0 [24] Oct,2013 Flow table synchronization mechanism, bundling

message

OpenFlow 1.5.0 [25] Dec,2014 Data packet type identification process, egress table,

scheduled bundle expansion

An OpenFlow switch manages several components, as shown in Figure 2. These

components are several Flow Tables, a Secure Channel, a Meter Table and the client part of the

OpenFlow Protocol.

Figure 2. OpenFlow - enabled devices [15]

The OpenFlow secure channel connects each network device to the remote SDN controllers

via secure or direct SSL channel over TCP. The secure channel supports three types of messages,

controller-to-switch messages, asynchronous and symmetric messages. The external remote

controller uses the OpenFlow protocol to manage OpenFlow enabled network devices. The list of

SDN controllers are shown in the next sections. Flow tables and group tables are responsible for

10

performing packet lookups, matches and message forwarding. The forwarding table consists of a

list of flow entries in the matching format, actions, and counters. When a packet arrives, the header

of that packet is compared against the diverse existing entries. In case there is a positive match,

the counters associated to the matching rule are incremented and a particular action is performed.

These actions can be as follows [16]:

 Forward the packet to a specific port if the received packet matches a flow entry in the flow

table.

 If there is no rule with higher priority that matches the specifics of the received packet, the

device tries to apply a default and more generic rule. This type of rule has normally an

action that encapsulates the received packet and forwards it to the SDN controller for

further analysis. After the analysis of the SDN controller has been made, the controller

informs the device about the decision associated to the received packet. In addition, the

SDN controller installs a new flow entry in the device to further local processing for the

remaining packets of the same flow.

 Discard the package. This action can be taken to prevent malicious and denial of service

attacks.

The meter table allows OpenFlow to implement simple QoS resources like traffic shaping,

e.g. rate flow limitation.

2.1.2. SDN Controllers

The controller is the most important component of a SDN network. Located at the control

layer, it has the main function to manage protocols and network resources. It also manages traffic

on underlying network elements through a set of instructions called flow rules [26]. The

communication with data layer network devices is done via Southbound API and with the top layer

applications via Northbound API.

Nowadays, many SDN controllers are available, either open-source or commercial. Each

controller features may differ from each other, but the main functionality of all controllers is

similar, for example, topology information, statistics, notifications, and device management [13].

Therefore, the quantitative and qualitative comparative analysis of these controllers is very

important to choose the more suitable SDN controller for a specific networking scenario. In this

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/after
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/analysis
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/stream
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/entry
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/for
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/discard
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/package
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/this
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/action
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/can
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/be
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/taken
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/prevent
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/malicious
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/denial
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/service
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/currently
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/many
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/are
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/available
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/both
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/open
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/source
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/commercial

11

section, we will discuss about the SDN controller deployment design. The quantitative and

qualitative comparative analysis of the various well-known SDN controllers will be presented.

2.1.2.1. SDN Controller Design

The initial SDN implementations used the single controller approach (see Figure 3) to

manage the entire network [27]. In this approach, the network intelligence is centralized on a single

decision point that keep an of network overview, including the traffic load on each device along

the forwarding path. Some examples of single SDN controllers are as follows: Beacon [28],

Floodlight [29], NOX [30], Ryu [31]. Despite the work in [31], which proves the good performance

of this approach and some efforts like [32] to minimize the controller load, a single controller may

not keep up with network growth when deployed on a large-scale system. An SDN design with a

single controller can become unreliable due to the issue of a single point of failure. In addition, the

single SDN controller can become overwhelmed when working with multiple simultaneous

requests from the data plane, and thus cannot deliver the expected performance [27][16]. Issues

such as scalability, reliability, and vulnerability in single controllers were mentioned in [33], and

in [34].

Figure 3. Single Controller Approach

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/were
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/approach
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/manage
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/entire
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network

12

Alternatively, the approach with multiple controllers mitigates the problems just discussed

for the single controller approach [27]. Research such as [35], addresses the possibility to use a

distributed controller plan in a WAN network, where multiple SDN controllers should be placed

in the network topology to improve both control plane latency and fault tolerance. Despite, the

multi-controller distributed approach has more advantages than the single-controller approach,

challenges such as scalability, consistency, reliability and load balancing when implemented in

large-scale networks were discussed in [16][20], solutions to overcome these challenges were also

referenced in the literature.

The approach with multiple controllers can be classified in to two different types, such us,

logically centralized but physically distributed and fully distributed [13]. In the first type (see

figure 4), the controllers work in a coordinated way among them, i.e. they share information among

them to keep a consistent and updated view of the entire network. Usually, the distributed system

of SDN controllers has one master controller and others that are passive secondary controllers. The

passive controllers, may be activated if the main controller fails. However, this method imposes

many challenges, such as ensuring consistent synchronization among controllers in case of

topology changes and if the master controller fails . Examples of this implementation are ONIX

[36] and Hyperflow [37].

Figure 4. Logically centralized but physically distributed design

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/controller
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/approach
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/has
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/more
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/than
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/single
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/controller
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/approach
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/such
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/consistency
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/reliability
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/load
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/when
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/large
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/scale
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/were
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/overcome
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/these
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/were
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/also
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/passive
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/may
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/be
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/if
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/primary
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/controller
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/however
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/this
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/method
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/many
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/main
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/controller

13

The second type of distributed controller approach is fully distributed controller. Here, the

controllers are physically and logically distributed. Unlike the first approach, there is no state

synchronization between controllers to keep a global view because to constant changes and

inconsistencies in network state, it creates an overload that influences the bad performance of

running SDN applications [13]. Each controller only manages its own domain, where they

communicate with neighbouring controllers through specific routing protocols. Basically, fully

distributed controllers can use two different designs, Flat Design and Hierarchical Design as shown

in Figure 5.

Figure 5. Distributed controller Approach

14

In the Flat Design (see Figure 5 (a)), controllers are distributed horizontally across different

domains, where each controller manages a subset of the network. Different from the logically

centralized but physically distributed, all controllers have equal rights and share information (e.g.

topology, accessibility, device features, etc.) to each other, which communicates by

East/Westbound APIs [27] [13].

The controllers can also be structured in a hierarchical or vertical architecture, with two

layers of controllers. The Local Controllers are close to the data layer and only manage their own

domain. Root Controllers are responsible for keeping all network information and ensure end-to-

end communication among domain controllers [27] [13].

The fully distributed controller approach is the best solution for our research goal because,

is the most realistic for deploying large-scale multi-domain networks while maintaining federation

between controllers. Are typically examples of fully distributed controllers, OpenDaylight [7],

ONOS [6] and Kandoo [38].

2.1.2.2. List of available controllers

Research such as [8], [39], presents the performance comparisons of the most popular open

source controllers. They analyse the throughput and latency using benchmarking tools, in this case,

Cbench. From the analysis made by [8], three controllers stood out for their good performance in

different aspects. The ODL, contains better resources in terms of interface provider support . The

ONOS provided the best performance results, with the ability to respond to requests faster in cases

of traffic overload. However, RYU has the best latency results. The authors of [39], conclude from

their comparison results that OpenDaylight and ONOS are the best choices, essentially for IoT

scenarios.

The research paper [26], also makes quantitative analysis of nine different controllers using

three benchmarking tools. In addition, it analyses thirty-four different controllers qualitatively their

properties and capacities. It also presents different use cases of these controllers and the efforts

made to improve their performance They have concluded that distributed controllers

(OpenDaylight and ONOS) have slightly better performance in terms of latency and throughput

compared to centralized multithreaded controllers (Floodlight, Beacon and Maestro), and

significantly better performance than centralized and single-threaded controllers (NOX, POX and

15

RYU). However, despite the already mentioned winnings in terms of performance, the distributed

controllers require more physical resources to run efficiently than other alternatives. The table 2,

lists the most commonly available SDN controllers.

Table 2. SDN controller solutions

Controller Architecture Description

NOX [30] Physically Centralized The First OpenFlow controller. Used for high

performance flow processing capabilities.

Beacon [28] Physically Centralized Java-based controller, supports high-performance

stream processing capabilities using multithreaded

pipeline and shared queues.

Floodlight

[29]

Physically Centralized Based on Beacon implementation, works with both

physical and virtual OpenFlow switches to provide

high-performance flow processing capabilities.

RYU [31] Physically Centralized Aims for logically centralized control and APIs, to

create new management and network control

applications.

ONIX [36] Physically Distributed

Logically Centralized

For large-scale network deployment, SDN's first

distributed controller, it has a network information base

(NIB) to manage its controllers.

Hyperflow

[37]

Physically Distributed

Logically Centralized

Designed over the NOX, it transmits and updates

network events to the controllers in order to provide a

consistent global view of the network.

ODL [7] Fully Distributed Java-based, supports a Cluster system for scalability

and availability. Supports OSGi, Framework for

programming through Northbound APIs.

ONOS [6] Fully Distributed Network operating system, ideal for multi-domain wide

area network (WAN) and service provider networks.

Provides scalability and fault tolerance

Kandoo

[38]

Fully Distributed Uses the hierarchical design with two controller level,

local with own domain vision and root with global view

and establishes communication between local

controllers.

From the list, ONOS and ODL are the most popular open source controllers with fully

distributed architecture design. ONOS is a distributed core controller designed for high

availability, performance and scalability and support for next-generation devices. It keeps a global

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/based
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/high
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/performance
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/stream
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/pipeline
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/based
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/on
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/beacon
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/with
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/both
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/physical
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/virtual
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/provide
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/high
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/performance
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/flow
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/for
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/logically
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/control
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/create
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/new
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/management
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/control
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/over
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/it
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/order
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/provide
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/consistent
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/global
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/view
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network

16

view of each controller instance running on different servers through the Multi-Cluster Peering

provider, which helps to deploy services within a cluster formed by diverse domains. It utilizes a

set of configurable packages (OSGi), which ensures interaction with top layer SDN architecture

applications through high-level abstractions, e.g. Java and REST APIs. Different from ODL

controllers, ONOS is designed to work toward service providers as well as carriers.

ODL is a controller that also supports the cluster system, which enables the network to be

logically and / or physically divided into different network domains. The communication among

the different ODL instances is made by the ODL-SDNi [40] application that works as an East-

West protocol. It allows network developers to add new applications through a set of REST APIs

(i.e. Yang-UI).

2.1.3. Inter Domains Communication

A multi-domain SDN architecture refers to a set of different administrative SDN domains

or Autonomous Systems (ASs) that exchange information regarding the network status, QoS

configuration, or other relevant network services such as packet routing to a destination prefix.

From [41], controllers need to exchange information such as:

 Reachability update: helps to choose the best routing path between SDN domains, for a

single flow that traverses the network infrastructure.

 Flow setup, tear-down, and update requests: has information such as path requirements,

QoS that coordinate flow configuration requests.

 Capability Update: controllers exchange network-related resource information like

bandwidth, QoS and others in order to aggregate the resources of the different controllers

in the domain.

The East-Westbound APIs provides the SDN inter domain communication. However, the

East-Westbound API has not been standardized, which brings to an interoperability challenge in

deploying inter SDN domains projects. The Border Gateway Protocol (BGP) is the most

commonly used Internet protocol for providing the end-to-end routing service over multiple

administrative domains [41]. Then, each SDN controller needs to process an external learned BGP

route to a destination prefix and translate it to local routing rules which are only valid within the

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/you
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/choose
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/best
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/path
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/between
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/that
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/traverse
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/contain
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/information
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/such
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/path
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/that
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/coordinate
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/flow
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/configuration
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/exchange
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/related
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/resource
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/information
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/order
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/aggregate
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/different
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/domain
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/however
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/east
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/west
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/api
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/has
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/not
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/been
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/which
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/an
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/challenge
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in

17

network domain that controller is responsible for. It is expected that summing up the individual

routing contributions from the diverse SDN controllers results in a final aggregated outcome that

fulfils the end-to-end BGP route. In the real scenarios, an SDN domain contains different BGP

routers that speak BGP and exchange updates to each other to achieve stability. The establishing

BGP connection process, is shown in figure 6.

Figure 6. BGP Session [41]

The SDN controllers must be started as BGP speakers and a BGP_START connection

happen. The BGP session is established through the Transmission Control Protocol (TCP) port to

exchange messages and BGP configuration information for each neighbour (another BGP speaker)

is configured manually. Once the TCP connection is established, it will be moved to OPEN state

and during OPEN state, BGP speakers can negotiate session resources using OPEN messages (per

RFC 5492). BGP peer are in a session, the controllers pass to the ESTABLISHED state and

exchanges BGP UPDATE messages. These messages contain information such as accessibility

data, bandwidth information, and other information that facilitate routing between SDN domains.

The routing choice, happens when there is more than single path available based on the BGP

process. When the path is established, the packets are successfully forwarded between SDN

domains, through the BGP OPEN and UPDATE messages [41] [42].

Therefore, based on the potential and research found in the literature on the development of

communication between SDN domains, BGP will be used as the Inter-domain SDN

communication protocol throughout this thesis. Research like WE Bridge [43] and in fully

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/real
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/an
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/domain
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/different
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/that
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/speak
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/exchange
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/each
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/other
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/achieve
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/stability
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/connection
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/process
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/shown
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/fig
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/must
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/be
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/connection
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/session
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/pass
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/established
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/state
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/update
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/these
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/contain
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/information
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/such
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/data
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/bandwidth
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/information
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/other
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/information
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/that
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/facilitate
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/between
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/when
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/there
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/is
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/more
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/than
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/one
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/path
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/available
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/based
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/on
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/when
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/path
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/is
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/established
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/are
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/between
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/through
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/open
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/update
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/therefore
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/based
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/on
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/potential
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/research
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/found
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/literature
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/on
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/development
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/communication
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/between
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/will
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/be
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/used
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/communication
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/protocol
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/throughout
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/this
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/thesis

18

distributed controllers such as OpenDaylight and ONOS use BGP to ensure communication

between SDN domains. Table 3, presents methods to implement a project with BGP in some SDN

controllers.

Table 3. SDN Inter-Domain Communication methods

Inter-Domain SDN

Communications

Proposed Base Protocol (s)

Description

IETF SDNi [44] BGP or SIP Using the extensions of BGP or SIP

DISCO [45] AMQP Limit the interoperability with legacy IP

network, proposed an additional BGP

agent

EW Bridge [43] BGP Modify BGP update into JSON form

ODL SDNi [40] BGP Exploit BGP applications of the

controller

ONOS SDN-IP BGP Exploit BGP applications of the

controller

SDN Interconnection (SDNi) [44] was the first work to provide communication between

SDN domains. SDNi proposed BGP and SIP as implementation protocols. Since 2012 there are

no advances related to SDNi and thus appears another framework called DISCO [45] for

communication between domains. This framework works on the Floodlight controller and initially

used the Advanced Messaging Queuing Protocol (AMQP). However, due to limitations of

interoperability with legacy networks they are using the BGP protocol.

East-West Bridge (EW Bridge) [43], emerges as an advanced method of interoperability

between SDN and legacy IP networks, allowing it to exchange elementary network information

between distinct administrative domains. It uses BGP with the modification of the BGP UPDATE

message to use JavaScript Object Notation (JSON).

ODL-SDNi [40] is a BGP application that supports the exchange of information between

ODL controllers in multiple domains. In ONOS controller, the SDN-IP application [46] was

developed to ensure interconnection between SDN domains with legacy IP network domains and

SDN domains.

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/table
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/implement
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/project
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/with
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the

19

2.2. ONOS Controller Overview

To achieve the goal of this dissertation, the controller chosen was the ONOS. To work with

ONOS, it is essential to understand its operation and internal architecture. In this section, we will

take a brief look about this controller and how the different ONOS modules are organized. In

addition, we analyse the main inter-domain proposals and projects already proposed, especially,

the SDN-IP, which is an application running in ONOS that connects distinct SDN domains using

the BGP protocol.

2.2.1. System Components

ONOS is one of the most widely used controllers for fully distributed scenario

deployments. Developed by ON.LAB, was designed to meet carrier-level requirements for

scalability, high availability, and performance. ONOS, can work as a cluster system (multiple

controller instances), providing fault tolerance if any instance fails, and real time updates of the

network, without interfering with the network traffic. Based on java, it has many modules managed

as Open Service Gateway Initiative (OSGi) bundles in the Karaf environment. So, it provides a

high-level abstraction to application programmers.

So, it is possible to develop new applications to run on ONOS. Distributed core, full

coherence, north and south abstraction, software modularity, easy addition and maintenance of

servers, are the most important benefits of ONOS architecture [47]. The system components of the

ONOS architecture are shown in Figure 7.

Figure 7. ONOS Architecture [47]

20

The Distributed Core is responsible for the management of resources, provides scalability,

high availability and performance. In addition, it offers resources to the level of the operator

control plan of the SDN. The ability of ONOS on being run as a cluster, allows on quickly meet

the needs of the control plan SDN and networks of service providers.

The Northbound Abstraction/APIs provide configuration and management services for

the development SDN applications. Includes representation by means of network graphs and

intentions of applications that facilitate the development of service control, configuration and

management.

The Southbound Abstraction/APIs provide southbound protocol plugins to communicate

with network devices through OpenFlow. The southbound abstraction enables support for

protocols to communicate with legacy devices, that isolate the Core of the many communication

protocols.

The Software Modularity allows the system to be easily customized. Makes it easy to

develop, debug, maintain, and upgrade ONOS as a software system by a community of developers

and by the providers.

2.2.2. ONOS Intent Framework

The SDN, essentially depends on its ability to support many types of applications through

Northbound Interface (NBI). The most recent SDN controllers such as ODL and ONOS mentioned

previously, offer an NBI capable of sending intents and converting them, through a compiler into

low-level flow rules to be installed on network devices. In this session, we will focus on the ONOS

controller that has an intent-based NBI called the Intent Framework [13]. The Intents represents

the highest level of abstraction. They are like virtual tunnels. The application developers can

express their “intentions”, through high-level policies without worrying about the specifics how

each “intent” is deployed at the data plane layer.

The Intent Framework [48], is an ONOS subsystem that allows applications and operators

to specify policies using a high-level abstraction or language. These policy-based policies are

called Intents. The ONOS controller core accepts the intents request and converts these policies to

routing rules installed on the network devices. The process of requesting and instal ling an intent

is represented in figure 8.

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/responsible
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/for
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/management
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/high
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/availability
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/performance
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/addition
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/it
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/level
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/operator
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/control
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/plan
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/ability
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/on
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/being
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/run
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/cluster
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/on
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/quickly
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/meet
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/control
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/plan
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/service
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/provide
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/configuration
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/management
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/for
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/development
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/representation
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/by
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/means
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/that
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/facilitate
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/development
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/control
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/configuration
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/management
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/provide
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/southbound
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/protocol
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/communicate
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/with
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/through
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/southbound
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/abstraction
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/support
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/for
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/communicate
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/with
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/legacy
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/that
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/isolate
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/core
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/communication
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/this
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/session
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/we
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/will
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/focus
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/on
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/controller
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/that
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/has
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/an
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/intent
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/based
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/intent
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/framework

21

When the controller receives an Intent, it is identified using two parameters, the unique

IntendID and ApplicationID of the sending application. As soon as an intent request is sent by an

application, it is directly forwarded to the compilation stage, where the request will be processed.

At this stage, the request for intent is converted to installable intents. If an application requests an

unavailable goal (for example, connectivity between unconnected devices), it can be recompiled

again. After the compilation phase, it is sent to the installation phase, where an installable intent

will be converted to flow rules. If successful, the process ends with the installed state, otherwise

they will go to the failed state.

Figure 8. ONOS Intent Framework Compilation and Flow Installation [46]

There are many types of Intents, but only the ones we will use in our research work will be

referenced in the next session, which will work on the SDN-IP application. Each type of Intent

allows the ONOS core to translate high level policies into low level rules installed on network

devices. In addition to intents for connecting hosts (for example, host-to-host intent), some intents

make it possible to specify a set of constraints to limit compilation results (for example, to

determine the resulting paths go through a set of nodes or to reserve a certain amount of bandwidth

for each path [13].

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/soon
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/an
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/intent
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/request
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/is
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/sent
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/by
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/an
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/application
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/it
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/is
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/directly
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/phase
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/where
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/request
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/will
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/be
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/processed

22

2.2.3. SDN-IP ONOS Application

The SDN-IP application is used to exchange data among different SDN administrative

domains with ONOS controllers. SDN-IP allows a software-defined network to connect to other

external Internet networks using the BGP protocol. The BGP sees a SDN domain as any traditional

autonomous system (AS), where within the AS, the SDN-IP works as a BGP speaker and provides

means for integration with the ONOS controller. In addition, the BGP speaker uses the ONOS

services to install and update the right forwarding state at the SDN data layer. Figure 9 shows the

SDN-IP architecture.

Figure 9. SDN-IP Architecture [46]

Basically, an SDN-IP network works as an autonomous transit system responsible for

interconnecting distinct domains of IP networks. Each domain interfaces with the transit SDN

network through its BGP speaker border routers. In transit SDN network, multiple OpenFlow

switches are managed by one or more ONOS controllers for high availability and scalability

running internal BGP speakers. The SDN-IP application supports one or more internal BGP

speakers. The other instances will be activated if the main instance fails. However, only one

instance of SDN-IP is currently active and is responsible for making the appropriate ONOS API

calls to install Intents.

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/ip
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/application
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/is
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/used
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/data
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/between
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/different
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/administrative
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/with
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/ip
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/software
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/connect
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/other
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/external
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/protocol
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/an
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/domain
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/any
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/traditional
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/autonomous
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/system
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/where
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/within
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/ip
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/speaker
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/means
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/for
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/with
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/controller
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/addition
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/it
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/install
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/update
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/appropriate
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/state
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/data

23

To exchange BGP routing information with the border routers of other domains, the system

uses eBGP and iBGP to disseminate that information inside each domain. Border routers from

external domains announce routes to BGP speakers that are processed according to BGP routing

policies and announced to other external domains. The routes are also advertised to SDN-IP

application instances that act as iBGP peers. After that, SDN-IP will choose the best routing

forward according to iBGP announcements and finally these are translated in intents at the ONOS

application. The intents are translated by ONOS into flow routing rules to exchange traffic between

interconnected IP domains in the network. ONOS has an internal Intent Framework, as referenced

in a previously session, for installing low-level flow rules on data layer network devices through

high-level abstract intentions.

Basically, SDN-IP uses two types of intents, namely Point-To-Point and Multi-Point-to-

Single-Point Intents [46].

The first intent type consists of one-way intent used to connect via external BGP protocol

external routers to SDN BGP speakers. Each Intent connects two unique connection points in the

SDN network, each containing information such as SDN DPID switch, a switch port identifier,

and the BGP router / speaker MAC address.

The second intent type consists of intents used to connect hosts from external networks,

i.e., it creates communication between network devices from different domains. The intent

corresponds to packets destined for the IP prefix and modifies the MAC destination address to the

physical address of the next hop router. In SDN-IP, one of the main advantages of relying on the

Intent Framework is that the application automatically restores BGP session connectivity and

transit traffic between domains, without changing any settings in the application code.

In [11], was created a SDN testbed, aimed to connect different SDN-based domains to form

an SDN Internet, with a more refined method through a mechanism called SDI (Software Defined

Cross-Domain Routing). According to the author, it can improve the ability to express multiple

paths and inter-domain routing policies based on flow-level traffic control by combining multiple

fields in the IP header. The communication is ensured by BGP protocol with floodlight controller

based in WE-Bridge [43] technology, SDI uses the path vector routing algorithm and the hop-to-

hop propagation mechanism, like BGP between SDN domains.

In research [10], a scenario has been implemented for the exchange of routing information

between legacy autonomous systems via an SDN-based autonomous transit system. The transit

24

AS, is running on top of the controller the SDN-IP application developed by the ONOS group as

described in the previous chapter, which acts as a BGP speaker and provides the exchange routing

information between the different legacy ASs. The network is emulated using Mininet and shows

a topology with an SDN-based AS, interconnected three legacies ASs.

In [49], it is discussed KREONET, which consists in a national research network in Korea.

They have proposed a SDN system to evolve KREONET to a virtualized, dynamic and flexible

environment. KREONET-S adopts distributed control architecture, with SDN-IP application

running over the ONOS controller to provide a federated SDN service.

The authors of [9], suggest a solution called the Inter Cluster ONOS Network (ICONA)

application. ICONA divides the service provider's network into multiple domains, each managed

by a different cluster of ONOS instances. This application provides a network status orchestration

and synchronization mechanism on all instances of the ONOS cluster. This proposal aims to

improve fault tolerance and decrease the delay response to events originating in large scale

networks. The biggest success story of an ICONA implementation was in the GEANT project [50].

This project is a pan-European network linking Europe's national research and education networks.

2.3. SDN for Emerging Technologies

SDN has been applied in new technology areas. The Internet of things (IoT), has attracted

a great deal of attention and SDN presents methods to improve these emerging networking

scenarios. The IoT is a network of physical devices and sensors with embedded technology that

contains the ability to interact with the local environment. Usually, are physical devices equipped

with RFID tags, actuators, wireless sensors, and / or wireless communication devices when

connected to the Internet from an IoT network. The IoT network not only collects data but it also

exchanges it to some servers located at remote clouds or even to some fog servers located at the

network periphery. There are many areas of IoT application such as health automation, smart

homes, smart transportation, environmental monitoring system, or smart grid, among others. The

authors in [46], [47] present research about IoT, architecture, technologies, applications, and IoT-

related issues.

Recent work has highlighted the high relevance of SDN-based systems for controlling

network domains formed by IoT devices and surveyed some solution already available [9].

However, SDN solutions for wireless infrastructureless networks and, more specifically, in

25

wireless sensor (and actuators) networks (WSNs), do not abound [10]. Unfortunately, delivering

end-to-end service orchestration chains, across multiple SDN domains, for an IoT infrastructure

deployment, including data collection at the cloud, edge processing, and publishing services with

quality differentiation it is still at its infancy [11].

2.3.1. Related Research in QoS

The IoT keeps expanding in terms of domains, interconnected devices, data, and

applications. About QoS, IoT has several issues such as availability, reliability, mobility,

performance, scalability, and interoperability. Several surveys have attempted to define QoS

strategies and QoS architectures, as it is necessary to ensure adequate mechanisms at each IoT

layer. The authors in [1], provides an in-depth analysis of QoS issues across various types of IoT

network architecture, and implement their proposal in the application of a smart city.

 In [51], investigate the different types of traffic for IoT with many QoS requirements and

different priority levels. An analytical model is presented for scheduling priority-based traffic on

an established capacity queue system and evaluates model performance for delay-sensitive traffic

against low priority traffic. The two proposals to ensure QoS are applicable in a standard IoT

context. About the quality of service in SDN and OpenFlow the contributions are more limited.

There are no defaults defined as IntServ and DiServ in SDN [48]. Nevertheless, it increases the

flexibility of the architecture and gives network administrators and developers the freedom to

implement their own QoS algorithms. Therefore, more complex QoS functions, such as Traffic

Engineering (TE), Load Balancing (LB), need to be deployed as an SDN program or application,

which then generates actions to be applied to the network devices through the controller.

In [12], is discussed a proposal that aims to satisfy the QoS requirements through dynamic

resource allocation in SDN. The authors present a leaf-based structure, classifying flows into

different priority classes. According to them, the controller must know the state of the network,

including load, delay and jitter. So, they create a separate thread to periodically monitor network

usage. In addition, there is a proxy to reduce frequent communication between the switches and

the controller, which can generate extra traffic. The proposal was tested on Mininet and on a

physical network with real hardware switches and controllers. Experimental results show that the

algorithm meets the requirement for QoS streams. In addition, it is applicable for streaming video,

applications, multimedia that evaluate with different QoS metrics.

26

The authors in [52] present an experimental assessment of bandwidth utilization of traffic

between ONOS controllers. The research explores the use of a physically distributed but logically

centralized controller. Scenarios with two and three controllers were analysed. In both scenarios,

shows a similar behaviour, that is, an increase in linear traffic between nodes. For the three-

controller scenario, it was found that bandwidth utilization was lower than the first scenario, due

to the smoother consistency of Anti-Entropy, which used a random controller selection. So,

according to the authors, traffic distribution between controllers contributes to QoS issues on SDN

networks when deployed at a large scale in the real world.

In [53], they present two possible use cases to ensure quality of service (QoS) through

ONOS Intent Monitor and Reroute (IMR) [54]. The first use case shows how a user can request

path monitoring and optimization through intents created by the ONOS Intent Reactive

Forwarding (IFWD) application [55]. In this case, the application code is not changed and IMR

service is enabled through the ONOS CLI. So, an algorithm was deployed to maximize the

throughput of flows carried by the intent created by the application. In the second use case, they

used the IMR to improve the performance of the SDN-IP application, already explained in the

previous chapter. Here, they used a much more advanced external routing logic based on

optimization tools to minimize Maximum Network Link Utilization.

2.4. Chapter Conclusion

The literature review presented in this chapter allowed us to gain knowledge to understand

SDN concepts and the current status of cross-domain communications, including a description of

BGP. We study SDN architecture, its layers, interfaces, and OpenFlow protocol as the main SDN

enabler. This review discussed the different architectures and type of SDN controllers, in which

we concluded that approaches based on distributed multiple controllers have resolved the

limitations of controller scalability, fault tolerance, and overloading.

We study the application of SDN in emergent areas such as IoT, and how we can use SDN

to ensure interoperability between heterogeneous networks, providing QoS and allowing the

management of the large volume of data generated by these networks.

27

3. System Design

As previously mentioned, this dissertation aims to study how to deploy a distributed system

with multiple SDN controllers to support the end-to-end communication among the distinct

networking domains. In addition, we intend to deploy a system capable of providing enough

resources to meet the QoS requirements of traffic originating on heterogeneous IoT devices. In

this chapter, we will present our system design and our ideas so that the goal of the proposal is

achieved.

The figure 10 presents the design of the proposed system formed by three physically

distributed SDN domains. Despite each domain has its own SDN controller, the network logic is

centralized on the central domain controller that operates as a transit autonomous system (AS),

which interconnects the different external SDN domains via border routers BGP. Therefore, the

external domain controllers deal only with local events belonging to their own domain. For better

insight of our prototype, we will be based on the SDN architecture already mentioned in the

literature review in section 2.1.

Figure 10. System Design

28

In the Data Layer will be the various network devices compatible with SDN. These include

BGP speakers, software-based BGPs border routers, in this case Quagga, which is used to collect

network information and convert it to routing updates. In addition to Hosts representing the end

devices, OpenFlow Switches (OVS) are the most important device of this layer that are responsible

for forwarding traffic according to policies sent from the controller. To emulate the network,

Mininet emulator was the option. A custom python script called “interdomain.py” was developed

to build the network topology of our project.

The logic of this implementation in the Control Layer will be based on the ONOS

controller explained in section 2.2. The reason for choosing ONOS are:

 APIs and abstractions provided by controller that allows to add features and

permissions.

 Simplicity of use due to its user-oriented software such as CLI, GUI and standard

system applications.

 It is an extensible, modular and distributed SDN controller.

 Solid documentation and information sharing through the SDN application developer

community.

The communication between the control layer and the data layer is done by OpenFlow

protocol.

 In the Application Layer is where the various applications will be running, and the

network administrators can define mechanisms that will be activated by the controller so that

network behavior is the expected. In this design, the expected network operation is the

communication between distinct SDN domains. Therefore, the SDN-IP application will be running

to enable the communication between SDN domains using BGP as explained in section 2.1.3.

Some auxiliary ONOS applications will need to be installed (i.e. Configs and ProxyARP). These

applications are required and for SDN-IP operation, allow the controller to read multiple

configuration files and respond to ARP requests between the external border routers and BGP

speakers. About the QoS, a script called “set_priority” flow rules will be installed through a flow

POST request to the ONOS REST APIs, and these rules will be installed on switches that will

allow traffic to be forwarded to different queues according to each traffic priority.

29

3.1. Inter-domain communication strategy

Each domain is controlled by an SDN controller located at the intermediate level of the

proposed architecture (see Figure 10). The topology routing operation logic will be completely

centralized in the central domain A, which will have running the applications capable of ensuring

inter-domain communication. In this way, the SDN domain A, works as a transit autonomous

system (AS), which interconnects different externals SDN domains that interface with the domain

A, through Border Gateway Protocol (BGP) border routers. Each administrative domain contains

at its data path layer several SDN-based switches controlled by the SDN controller responsible for

that domain. The SDN controller should be designed for high scalability and availability. It should

also support some relevant network services (e.g. routing) among the different administrative

domains, enabling what is normally designated as the WAN.

As it was already mentioned, there is the SDN-IP application running above the Domain A

SDN controller, which allows communication among software-defined networks, using the path

vector routing protocol, BGP. Within each SDN network, there are one or more internal BGP

speakers. BGP speakers can be BGP routers or software that implements BGP functionality. The

operation of this system is quite simple, as it is following explained. The announced routes by

Domains B and C border BGP routers are received by the BGP speakers in domain A, which are

processed according to BGP processing and routing rules. The best route for each destination

prefix is chosen and translated into intents by the SDN controller. An intent is like a high-level

tunnel directly connecting two network devices (not necessarily direct neighbours at the data path

layer). Then, each intent is converted into forwarding rules. Afterwards, these rules are transferred

from the SDN controller to each network device (e.g. switch) involved in the initial BGP routing

path.

As already mentioned in section 2.2.1, there are several types of intent. SDN-IP installs

two types of intent as shown in Chapter 4. Point to Point Intents ensure the connection between

BGP external speakers and BGP internal nodes and creates a Multi-Point to Single-Point intent,

allowing communication between devices from different external domains. The SDN-IP

application has the great advantage that in case of topology change, it will automatically restore

BGP session connectivity and transit traffic between network domains without having to change

application code.

30

3.2. QoS Strategy

With QoS we aim to guarantee end users with enough bandwidth for the best possible

network performance, according to applications requirements. There are many ways in which such

guarantees can be obtained. One of its precepts is that, when requested, traffic should not be

treated equally, i.e., prioritizing bandwidth is a viable alternative to ensure quality of service

through priority access.

Our goal is to provide enough resources to meet traffic QoS requirements from

heterogeneous IoT devices. Therefore, our proposal is to create a system that allows differentiating

different types of traffic and installing OpenFlow rules on switches according to different priority

levels. The priorities are managed through of different virtual output queues and meter tables will

be defined in the OpenFlow specification in version 1.3 as shown in figure 11.

Figure 11. Queues Management

In this OpenFlow version, the concept of meter tables was introduced to achieve more

granular QoS in OpenFlow networks. The queues manage the traffic exit rate and meter tables are

used to monitor the traffic rate before the exit. The traffic will be prioritized through a script called

"set_priority". When the script is executed, it should be possible to put the priority in high or low,

and in this way, we can protect the traffic and offer guarantees on the quality of service.

Figure 12 shows the flowchart of the possible actions that when the script is executed will

be able to do.

31

Figure 12. Traffic priority Flowchart

The first task is to analyse the incoming traffic, and this analysis is done through the source

and destination IPs. If these IPs match the traffic we define as a priority, let's move this traffic to

the high priority queue and the OpenFlow rule will be installed on the switch.

About an IoT context, we propose the deployment of a video vigilance system in public

environments for security reasons, and this system is being monitored by a remote entity (e.g.

Police). Basically, it will consist of a mixed network with vigilance cameras equipped with motion

sensors and traditional network devices such as users' computers that generate another type of

traffic. The cameras with motion sensors will be emulated devices, but that can be applied with

real sensors.

In this case, if the motion sensor detects any motion, the system must be able to recognize

incoming traffic and install OpenFlow rules in the high priority queue to stream uninterrupted

quality video and other competing traffic remained in the lower priority queue for not disturb the

transmission of the image. If there is no more movement, the system should move traffic to the

lowest priority queue to leave the queue free for new priority situations.

32

3.3. Chapter Conclusions

In this chapter we present our proposal and all we idealized for this work. We present the

general system design applicable an IoT context of a network formed by multiple distributed

domains and the strategy used to ensure the inter-domain communication. Basically the strategy

was the use of SDN-IP application which allows the externals SDN domains exchange network

information via BGP protocol. This application will be installed on ONOS controller of the central

transit domain that will make all the routing management.

About QoS, we think of a scenario based on different traffic priority queues. The system

should analyse incoming traffic and install OpenFlow Rules according to each priority level. The

scenario that will be emulated, consists on a video vigilance system to monitoring the public road

through of cameras with move sensors. We will prioritize the traffic from the cameras when they

detect some movement in order to transmit without interruption the image. The proposal presented

in this chapter will be implemented in practice in the next chapter 4.

33

4. System Deployment

In this chapter, we present how our project was deployed. A detailed description of the

deployment strategy of our testbed topology and its configurations will be given. A description of

QoS implementation strategies will be described simulating a scenario that may be applicable in

an IoT context. Finally, a description of the test scenarios and the results obtained on the fulfilment

or not of the objectives of this dissertation will be performed.

4.1. Technologies and Tools

Table 4 lists the main technologies and tools that we have used in the proposed system.

Table 4. Technologies and Tools

Category Software/ technology

Northbound Application SDN-IP

SDN Controller ONOS 1.15.0

Software Switch OpenvSwitch 2.9.2

Southbound Communication OpenFlow 1.3

Inter-domain Protocol BGP

Network Emulator Mininet

BGP Software Quagga

Traffic Analyser Wireshark, Tcpdump

Virtual Hypervisor Oracle Virtual Box

 VM Operating System Ubuntu 18.04

Traffic Generator and

Measurement

Iperf

Video transmitter Application VLC

To simulate the system environment, we use a virtual machine, Oracle Virtual Box

platform with Ubuntu Operating System in version 18.04. To emulate network topology an their

devices like OVS, hosts and create their links in the data layer, we use the Mininet emulator. This

emulator provides a virtual network on a computer, similar to a complex real-world network. The

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/emulate
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/create
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/their
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/data
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/tier
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/we
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/use
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/this
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/virtual
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/on
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/computer
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/similar
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/complex
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/real
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/world
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the

34

network topology was created through Python language code. The Mininet will also be used with

changes in the switch's parings to make our QoS experiences. Still at the data layer, routers with

the Quagga software will be configured to enable BGP on the controllers. We use the ONOS

controller in version 1.15.0 to manage each SDN domain. The OpenFlow protocol will be used for

communication between the controller and the data. In the top layer will be running the SDN-IP

application, the previously explained, to ensure communication between SDN domains via BGP.

Other software implementations were used, Wireshark and Tcpdump to analyse network traffic

and Iperf to test and measure bandwidth, perform packet injection to measure the performance of

our network topology. It will also be used to test the effects of QoS settings.

4.2. Test Topology Setup

The general idea is to deploy a scenario where is provided end-to-end communication

between different SDN domains across multiple paths to meet QoS requirements . A virtual

network topology was built to meet these conditions and is presented in figure 13.

Figure 13. Inter-domain Testbed scenario

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/topology
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/was
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/through
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/language
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/code
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/will
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/also
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/be
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/used
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/with
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/switch
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/make
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/our
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/still
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/at
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/data
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/with
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/software
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/will
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/be
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/enable
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/on
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/we
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/use
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/controller
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/version
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/manage
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/each
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/domain
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/protocol
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/for
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/communication
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/between
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/controller
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/data
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/upper
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/layer
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/will
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/be
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/used
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/ip
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/application
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/previously
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/ensure
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/communication
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/between

35

The topology has three SDN domains, each one controlled by its own ONOS controller.

The central domain (A) acts as the transit domain or root controller where has all the centralized

logic, responsible for interconnecting the remaining external networks. Each external network, in

this case B, C are considered different domains that interface with the central domain (A) through

border routers (r1 and r2), which runs Quagga. BGP configuration were made for each router. In

the central domain (A), there is an SDN controller with an SDN-IP application running on its top

that learns BGP routes to destination prefixes previously announced by the BGP routers of the

network topology. After, the learning phase, the SDN controller of domain A translates each

learned BGP route to SDN intents. Then, the same SDN controller converts each intent in to several

flow rules which are then transferred from the SDN controller to the data plane switches, using the

OpenFlow protocol. These switches are the ones previously selected by the SDN controller to

support a specific BGP route path across the central domain, i.e. domain A.

In terms of physical equipment present in each external domain, there are one Open flow

switch and two hosts connected to it, as shown in the figure 13, with their IP addresses and linked

interfaces. In the central domain A, are three OpenFlow switches connected to the ONOS

controller. S1 and S2 are connected to the border routers through interface 1. In addition, the

internal BGP Speaker is connected to Switch 1 via interface 2, which will forward routing

information listened of BGP border routers to the controller with the SDN-IP application installed.

The Switch 3 (s3) has no direct influence on inter domain communication, it will serve as an

alternate path in case of primary link failure and for QoS implementation.

4.2.1. Routers and BGP Speaker Configurations

For SDN-IP to know where BGP internal and external BGP speakers are, so that it can

respond to ARP correctly and program connectivity for BGP traffic, the BGP routers and speakers

must be configured accordingly. For each pairing session configured, there will be a pair of IP

addresses. The first is the address of the external pair and the other address is used by the BGP

speaker, usually these addresses must be on the same subnet (e.g. IP 10.0.1.101 of the speaker is

associated with domain B 10.0.1.1). The configurations must be placed directly in a file with

extension ". JSON" to be recognized by the SDN-IP application. In our scenario, the configurations

were made manually and saved in the "network-cfg.json" file (see figure 14), because the SDN-IP

currently only supports reading the static configuration.

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/must
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/be
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/directly
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/file
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/with
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/extension
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/recognized
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/by
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/ip
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/application
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/our
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/scenario
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/were
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/made
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/file

36

Figure 14. Netwok-cfg.json File

In this type of files, the configurations are divided into two sections as shown in Figure 14,

from our configuration file:

 Port configuration: we configure the ports on the switch interfaces that connect to the

external BGP border routers. In our topology, switches 1 and 2 were configured, connected

to the r1 and r2 routers. In addition to the port number, the IP address and MAC address has

been specified.

 BGP configuration: we configure the internal BGP speakers of our SDN network

topology. In this section, we add a connection point to our BGP speaker, that is, we specify

the switch in which the BGP speaker is connected. The list of pairs with the addresses of

the BGP speaker is listening was also specified.

To announce the routes, we have to make the BGP configurations separately. As the BGP

router is a Quagga process, then we configure each router in a file (quagga.config). It will be

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/this
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/type
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/are
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/divided
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/into
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/two
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/as
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/shown
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/figure
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/from
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/our
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/configuration
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/file
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/we
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/configure
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/on
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/switch
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/that
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/connect
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/external
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/our
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/topology
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/were
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/connected
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/addition
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/port
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/number
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/ip
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/address
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/and
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/mac
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/address
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/has
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/been
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/we
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/configure
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/internal
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/our
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/network
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/topology
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/this
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/section
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/we
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/add
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/connection
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/point
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/our
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/speaker
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/that
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/is
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/we
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/specify
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/switch
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/which
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/speaker
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/is
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/connected
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/announce
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/we
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/have
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/to
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/make
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/separately
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/because
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/the
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/router
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/is
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/process
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/then
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/we
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/configure
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/each
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/router
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/in
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/a
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/file

37

instantiated in the python script of our network topology the file “quagga-sdn.config” (domain A

quagga configurations), which have all configurations of routers and speakers. Figure 15 shows

the router one (r1) configurations. The router two (r2) configuration is similar like r1.

Figure 15. Quagga configuration

4.2.2. Start-up SDN-IP on ONOS

Firstly, we must start the ONOS controller system and for that we start using Docker

Images. This, allows in safely way, run isolated applications in a container, packed with all its

dependencies and libraries. After ONOS is running, we must install additional applications on

which SDN-IP depends. These applications allow ONOS to read BGP configuration files and

respond to ARP requests between external border routers and BGP internal speakers. The

commands to install the applications are in Figure 16.

Figure 16. ONOS CLI with SDN-IP application Installed

38

Next, let's start our testbed topology saved in a python file called interdomain.py and

connect it to our SDN controller. Many events happen as soon as the SDN-IP application is

installed on the top of ONOS and paired with the network like installing Intents. Figure 17 and 18

shows examples of the intents which the application has installed to operate on our test topology.

Figure 17. Point to Point Intent

This Figure 17 shows the Point to Point Intents installed, that allows the border BGP

routers to communicate with our internal BGP speaker.

Figure 18. MultiPoint to SinglePoint Intent

 Based on the exchange of information obtained from the first intent, it will allow external

BGP routers to relay routes capable of forwarding to SDN-IP using Multi Point to Single Point

Intents and thus communicate between external domains (B and C).

ONOS received the possible routes and converted them to rules on the switches using the

intent API. Figure 19 shows the best routes received from BGP peers, including BGP specific

information.

39

Figure 19. BGP Routes

Note that the intents in our topology are for routing issues only as we will show in the

testing section, it has no impact on QoS issues whose implementation will be demonstrated in the

system evaluation section 4.4.

4.3. QoS Deployment

Our goal, as described in the previous chapter in section 3.2, is to provide a mechanism

that makes traffic prioritization decisions to test programmable network QoS through the

OpenFlow 1.3 queues.

We consider a scenario, consisting of vigilance cameras equipped with motion sensors

transmitting RTP video flow and generic user computers generating UDP traffic. Initially the

traffic is all going in the same row and if the motion sensor detects any movement, the surveillance

cameras should have higher priority passed to another queue and consequently transmit the highest

quality image without interference generated by traffic from other devices. Similarly, if there is no

movement the cameras transmit normal quality image and continue to divide the bandwidth with

the generic traffic to leave the bandwidth free for the priority traffic.

Figure 20 is a testbed called “QoS_topology.py” with dummy emulated IoT devices (sensor

cameras), end hosts, OpenFlow Switches in version 2.9.2, and ONOS controller that applies traffic

prioritization rules to active flows. We limit links through TCLinks (Mininet fixed bandwidth

emulated links) between S1 to S2, between hosts and S2 with 10 Mbits / s bandwidth.

40

Figure 20. QoS Testbed

4.3.1. Queues and flows Configurations

For our system, we created two queues with different priority levels, as shown in table 5

with the appropriate rate for each one.

Table 5. Priority Level Queues

Queue Priority Rate (Min; Max)

Q1 Low 2 Kbits/s; 10 Mbits/s

Q2 High 1 Mbits/s; 10 Mbits/s

The queues were created using the ovs-vsctl command in OVS. This command creates an

entry in OVSDB and implements it on the switch using Linux TC. In our case the queues were

directly created in our Mininet script as shown in figure 21.

Figure 21. Queues configuration

41

The figure above creates a QoS and queues on switch S1 on port eth2. The queue 1 is for

low and 2 for high priority, activated as soon as there is any motion detected by the sensor and the

vigilance camera in question will transmit images with full bandwidth. Figure 22 shows the queues

created in Mininet as soon as the topology is started.

Figure 22. Queues validation at Mininet CLI

To simulate a motion detection, we implemented a script called "set_priority" shown in

figure 23. This script differentiates the data traffic through source and destination IP and installs

OpenFlow rules on switches according to each priority queue. It can set traffic to (hi) for high

priority and (lo) return to low priority as soon as there is no movement.

Figure 23. OpenFlow rules in set_priority script

42

4.4. System Evaluation

In this section, we present the system evaluation and demonstration of the results of the

obtained tests. In this case, we will perform the following tests:

 SDN Inter-Domain Communication Test;

 Controller Failure Test;

 Link Failure Test;

 QoS Data Rate Test.

4.4.1. SDN Inter-Domain Communication Test

In Figure 24 shows the web ONOS GUI. The figure shows that our topology being

controlled by SDN ONOS controllers and the summary information.

Figure 24. The topology at ONOS GUI

43

There are three SDN controllers, each represented by a colour to differentiate the domain

in which it manages. The first SDN controller (172.17.0.5) controls the transit domain which

contain three central switches . The second SDN controller (172.17.0.6), represented by the light

blue colour, manages the left domain, which contains a single switch, interconnecting two terminal

hosts (for example, h1 with IP address 192.168.1.1/24). The same happen with the SDN domain

(172.17.0.7) represented by red colour on the right, which contains a switch with two hosts (h3

and h4). So, we have a physically distributed system with multiple controllers, each managing

their own domain autonomously, but the central domain managing the inter-domain logic. We

have validated our system using ICMP traffic originated at host h1 (192.168.1.1) and with the

destination host h3 (192.168.2.1). Figure 25 shows the successful PING between domain B host 1

and domain C host 3.

Figure 25. Connectivity test

4.4.2. Controller Failure Test

As in our system the controllers are presented in a cluster, let's see how ONOS reacts to

the failure of one of the controllers. In the ONOS CLI we will shut down one of the instance

controllers (172.17.0.7) in order to inactivate the controller. Then, we verify that the powered down

controller will turn grey to indicate that the node is not accessible, as shown in figure 26.

44

Figure 26. Failure of controller in a cluster

4.4.3. Link Failure Test

The system failure detection is a very important aspect of ensuring fault tolerance in large

scale distributed systems. Our solution should be able to detect link failures. In order to evaluate

and simulate a failure, we first must analyse which path the traffic goes. In our case, if the SDN

controller detects a link failure, it can quickly and effectively divert traffic to an alternate path to

ensure the service until the primary link is operational again. Our main goal is to reduce the time

required to detect a failure.

Table 6 shows the results of catches made by Tcpdump. At this time, the topology was

operating without any failure and the used routing path between h1 and h3 was that involving the

switches s1 and s2 of the transit Domain A (s1-eth3, s2-eth2). One can also note that the initial

TTL of the ICMP Request is 64 (h1-eth0) is decremented down to 61 (h2-eth0), meaning that

message has traversed three routers (i.e. r1, BGP speaker, r2) on its way from the source node to

45

the destination node. Through the shortcut “A” in the ONOS GUI it is also possible to see the

traffic path and its speed.

Table 6. Captured ICMP Request message from h1 to h3, s1-eth3 up

To
p

o
lo

gy

H1 - eth0

S2 - eth2

S3 - eth1

 H3 - eth0

Then, we turned off the link between s1 and s2, forcing the link to fail. The traffic captured

from this second test is shown in Table 7. Analysing these results, one can conclude that the SDN-

IP/BGP proposal has detected the topology failure and automatically has successfully selected an

alternative path through the transit Domain A (s1-eth4, s3-eth1, s3-eth2, s2-eth3).

46

Table 7. Captured ICMP Request message from h1 to h2, s1-eth2 down
To

p
o

lo
gy

H1 - eth0

S2 - eth2

S3 - eth1

H3 - eth0

We have validated the SDN-IP/BGP integration proposal, using a scenario where after we

have failed a network interface in use by a specific routing path, that failure was detected and

corrected in an adequate way by choosing an alternative path, avoiding the disruption of the

network operation. Figure 27 shows the graph referring to the system reaction in case of a link

failure. The system has been operating without fail for up to 28 seconds. When the link failure

occurs there is a slight drop in debt that quickly settles after three seconds but at no time is the

system unavailable due to this link failure.

47

Figure 27. Link failure results

4.5. QoS Data Rate Test

In this section, we will validate our QoS deployment tests. Essentially, we will test the

reaction of our system at three interval moments as shown in the figure 28.

Figure 28. QoS moments tests

The first moment is when the traffic generated by camera 1 and camera 2 transmit video

without interference from any competing traffic. The second moment is when we inject concurrent

traffic to disrupt camera transmission and the third moment is when we apply the QoS mechanism

to protect the video traffic transmitted by the cameras.

From the beginning, traffic from camera 1 will be in the priority queue, so that we can

analyze the reaction of video from camera 2 at all times of our test.

48

When the topology “QoS_topology.py” is started, five terminals will be opened, two of

them are VLC terminals that will transmit a video simulating a vigilance camera and we will use

the video, “video_test.mp4” as proof of concept. In terminal 1 which we named "RTP Video

Emitter" we started broadcasting Video Stream with the following command: ./send_video.sh

video_test.mp4. Figure 29 shows the video be transmitted on both servers and simulates the

vigilance camera transmission.

Figure 29. Vigilance camera without traffic competition

At this time the images are being transmitted with no problem as no other traffic interfering

with this transmission. As mentioned before one of the video servers was already in the priority

queue, in this case the video on the left side and the other server is in the non-priority queue sharing

traffic with other devices.

4.5.1. Test without QoS

In this test, we generate a UDP data stream through Iperf that will pass through the low

priority queue for the purpose of competing for camera bandwidth also in the same queue (for 200

seconds) as shown in figure 30. In terminal 2 “UDP Traffic Sender” we enter command: iperf -u -

c 10.0.0.5 -b 8M -t 200.

49

Figure 30. UDP traffic receiver

Figure 31 shows that host2's injection of UDP traffic is negatively influencing quality real-

time video transmission because its video stream shares the s1 switch output queue with the UDP

traffic data stream. We can see that the left side camera initially in the high priority queue continues

to stream the video smoothly, while the right-side camera is experiencing quality issues and the

video jam several times.

Figure 31. Vigilance camera with traffic competition

50

4.5.2. Test with QoS

In this test we intend to dynamically reassign the video host, that camera 2 will switch to

high priority queue to improve its transmission quality. Therefore, as we do not have a real sensor

that can detect motion and automatically make this priority queuing, we send an OpenFlow rule

directly to switch s1 to do this update. So, we open a terminal and execute the script

“set_priority.sh” with the command: ./set_priority.sh 10.0.0.1 10.0.0.4 hi. We can see the rule

added in figure 32.

Figure 32. Flow rules at S1

From this moment on, host 4 referring to camera 2 is now in the priority queue and

transmission starts to be transmitted with good quality like camera 1 transmission, as shown in

figure 33.

Figure 33. Transmission with QoS

If there is no more movement, we can simulate this situation with the same script through

the command: ./set_priority.sh 10.0.0.1 10.0.0.3 lo. This command will cause the video user to

start see bad transmission because we have dynamically reassigned the video flow to the non-

priority queue.

51

4.5.3. Results

Figure 29 is referred to a graph showing the events in a temporal order of the moment that

there is interference in traffic and QoS in action.

Figure 34. QoS results

We can see the reaction in the three interval moments. The first one is when there is no

interference in the video traffic transmission. We can see that when the video transmission starts,

the blue line (camera 1) is transmitting the video simultaneously to the red line (camera 2).In this

moment, the camera 1 is in the high priority queues and camera 2 in the low priority queue.

The second interval begins around the second 24, when UDP traffic is injected for the

purpose to causing interference with the camera 2 video transmission. Therefore, we can see that

UDP (black line) traffic assumes practically all bandwidth and the red line traffic decreases, and

camera 2 video faces transmission problems. This is because UDP traffic is competing bandwidth

with camera 2 at the same queue. Currently, we do not feel the influence of QoS.

The last interval is applied QoS to improve the transmission quality of camera 2, and this

occurs around the second 26. A flow rule has been dynamically applied to change the problematic

video to the high priority queue. However, we can see that the transmission will begin to improve,

and the red line will return to normal as it was in the first interval. We note that UDP is no longer

interfering with the quality of the transmission.

52

4.6. Chapter Conclusions

In this chapter, we demonstrate how our proposal presented in chapter 3 was deployed in

practice. First, we present a list of the main technologies and tools used. We present the detailed

deployment testbed with their physical, logical components and IP identifiers. The topologies were

about the inter-domain communication scenario and QoS scenario. We also demonstrated how

each one was configured.

After the practical deployment, we present the system evaluation and demonstration of the

test results obtained. These tests are related to inter-domain SDN communication, failures

robustness, and QoS data rate testing. All deployment processes and tests was performed to be

applied in an IoT context.

53

5. Conclusions and Future Works

In this chapter, some conclusions of this dissertation are discussed and a brief critical

reflection in order to analyse if we can answer the initial research question in order to achieve the

final goal. In this dissertation we face limitations that are also discussed and leave some

suggestions of what could be improved to possible future works.

5.1. Conclusions

With the exponential growth of data traffic and the heterogeneity of today's

communications networks, it challenges legacy network management solutions such that it is

almost impossible to keep up with demand and the required QoS and performance requirements.

As an ally for overcoming the problems faced by legacy networks, SDN due to their

programmability and centralized management, offers the network designer’s tools to design

flexible networks in distributed IoT networks.

While multi-controller scenarios in distributed systems increase network complexity and

pose many challenges in efficient network infrastructure management, it is the best way to achieve

good network performance and offer QoS guarantees because dividing the network into different

Domains allows each controller to manage their domain independently and can cooperate with

other domains consistently.

Therefore, the main goal of this dissertation was to understand how we can deploy and

manage a network infrastructure consisting of several distinct administrative domains, in order to

meet the QoS requirements in heterogeneous IoT networks. So, to achieve the proposed goal, a

literature review was made with the purpose of understanding the functioning of the SDN,

protocols and how we could ensure communication between distinct administrative domains.

With this, we designed and deployed a distributed network system, with two SDN edge

domains, interconnected by an SDN traffic domain where all topology routing logic is centralized.

We use knowledge related to BGP and the SDN-IP application running on the ONOS controller to

act as a BGP speaker and translate intent into routing rules installed on OpenFlow switches.

After that, we pretended to deploy a way to ensure QoS in such scenarios. We opted to

provide a mechanism that makes a traffic prioritization decision to test the QoS through OpenFlow

54

1.3 queues. The proposed scenario consists of a mixed network with traditional network devices

and fictitious smart devices simulating IoT devices. These are vigilance cameras equipped with

motion sensors, installed in public environments to meet security concerns. Therefore, we create

priority queues that will be dynamically activated as soon as the cameras detect any movement

and can transmit the highest quality image possible without interference from other network traffic.

Then we reach the stage of trying to answer the research question initially posed, “How to

provide the necessary resources to meet QoS and robustness requirements for traffic originated in

heterogeneous IoT devices, in a multi-domain SDN-based system?” According to the

experimental result made in chapter 4 in section 4.4.1, we have shown that we are able to ensure

communication between physically distributed SDN domains via the BGP protocol through a

transit SDN system with the SDN-IP application running on the ONOS controller. We also

demonstrate that our scenario is sensitive to link failures by redirecting traffic directly to another

available path without causing service downtime.

Referring to the quality of service we demonstrate through the results obtained in chapter

4 in section 4.5.3, our system differs traffic and installs OpenFlow rules according to each priority

in the corresponding queue. We have shown that vigilance cameras move to the priority queue as

soon as they detect any movement and transmit the quality image without interference from other

types of traffic, thus meeting safety concerns in public environments.

5.2. Future Work

Although our desire is always to do our best to achieve a goal, because of the limitations

that have arisen during this work and the time that eludes us when we need it most, we are not

always able to implement all our ideas. Therefore, it follows the ideas that we were unable to

implement and suggestions for future work. Keeping this in mind, there are several possible ways

to continue with the current work.

Improve the communication between SDN domains by creating a federation between them,

that is, federate programmable resources distributed across different administrative domains

through a cross-domain routing system with flexible policies for all members.

The use of real sensors to analyse system behaviour in terms of quality of service. So our

application would be even more automated in making traffic prioritization decisions rather than

manually, so this is a suggestion for future work.

55

Bibliography

[1] J. Jin, M. Palaniswami, J. Gubbi, and T. Luo, “Network architecture and QoS issues in the

internet of things for a smart city” International Symposium on Communications and

Information Technologies (ISCIT), pp. 974–979, 2012.

[2] W. Xia et al., “A Survey on Software-Defined Networking”, IEEE Communication Surveys

& Tutorials, vol. 17, no. 1, pp. 27–51, 2015.

[3] Y. Zhang, L. Cui, W. Wang, and Y. Zhang, “A survey on software defined networking with

multiple controllers,” J. Netw. Comput. Appl., vol. 103. December 2017, pp. 101–118, 2018.

[4] A. Gupta et al., “SDX: A software defined internet exchange,” Comput. Commun. Rev., vol.

44, no. 4, pp. 551–562, 2015.

[5] V. Kotronis, X. Dimitropoulos, R. Kloti, B. Ager, P. Georgopoulos, and S. Schmid,

“Control Exchange Points: Providing QoS-enabled End-to-End Services via SDN-based

Inter-domain Routing Orchestration,” T-Labs & TU Berlin, Germany Introduction.pp. 3–4,

2016.

[6] P. Berde et al., “ONOS : Towards an Open , Distributed SDN OS,” pp. 1–6.

[7] S. Badotra, “Open Daylight as a Controller for Software Defined Networking,”

International Journal of Advanced Computer Research . 2018.

[8] L. Mamushiane, A. Lysko, and S. Dlamini, “A comparative evaluation of the performance

of popular SDN controllers,” IFIP Wirel. Days, vol. 2018-April, pp. 54–59, 2018.

[9] M. Gerola et al., “ICONA: Inter Cluster ONOS Network Application,” 2015.

[10] P. Lin et al., “Seamless interworking of SDN and IP,” Comput. Commun. Rev., vol. 43, no.

4, pp. 475–476, 2013.

[11] D. Gupta and R. Jahan, “Inter-SDN Controller Communication: Using Border Gateway

Protocol,” no 1. April, pp. 1–16, 2014.

[12] C. Xu, B. Chen, and H. Qian, “Quality of service guaranteed resource management

dynamically in software defined network,” J. Commun., vol. 10, no. 11, pp. 843–850, 2015.

[13] Z. Latif, K. Sharif, F. Li, M. M. Karim, and Y. Wang, “A Comprehensive Survey of

Interface Protocols for Software Defined Networks,” IEEE Globecom Workshops (GC

Wkshps), Dec pp. 1–30, 2019.

[14] R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN networks: A survey of existing

approaches,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 3259–3306, 2018.

[15] D. Kreutz et al., “Software-Defined Networking : A Comprehensive Survey,” IEEE

Communications Surveys & Tutorials, pp. 1–61, 2014.

[16] I. C. Surveys et al., “Distributed SDN Control : Survey, Taxonomy and Challenges,” IEEE

Communications Surveys & Tutorials, no 1. December, 2017.

[17] B. Davie et al., “A database approach to SDN control plane design,” Comput. Commun.

Rev., vol. 47, no. 1, pp. 15–26, 2017.

[18] Murray. P, Stalvig. P, “SNMP : Simplified”, F5 White Paper, 2015.

[19] N. Sambo, A. Giorgetti, F. Cugini, M. Dallaglio, and P. Castoldi, “Control and Management

of Sliceable Transponders,” Eur. Conf. Opt. Commun. ECOC, vol. 2017-Septe, no. 3, pp.

56

1–3, 2017.

[20] F. X. A. Wibowo, M. A. Gregory, K. Ahmed, and K. M. Gomez, “Multi-domain Software

Defined Networking : Research status and challenges,” 26th International

Telecommunication Networks and Applications Conference (ITNAC), vol. 87, no. March,

pp. 32–45, 2017.

[21] V. W. Protocol, “OpenFlow Switch Specification,” vol. 0, 2009.

[22] V. Implemented and W. Protocol, “OpenFlow Switch Specification,” 2011.

[23] V. W. Protocol, “OpenFlow Switch Specification,” vol. 0, pp. 0–105, 2012.

[24] V. W. Protocol, “OpenFlow Switch Specification,” vol. 0, pp. 1–206, 2013.

[25] V. Protocol, “OpenFlow Switch Specification” vol. 0, 2014.

[26] L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M. Guizani, “SDN Controllers:

Benchmarking & Performance Evaluation,” Under Review at IEEE JSAC pp. 1–14, 2019.

[27] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, “Multi-controller Based Software-Defined

Networking: A Survey,” IEEE Access, vol. 6, pp. 15980–15996, 2018.

[28] D. Erickson, “The Beacon OpenFlow Controller,” 2013.

[29] V. B. Harkal, “Software Defined Networking with Floodlight Controller,” Int. J. Comput.

Appl., pp. 975–8887, 2016.

[30] N. Gude, J. Pettit, and S. Shenker, “Nox: Os for Networks”, In ACM SIGCOMM Computer

Communication Review, 2009.

[31] S. Asadollahi, B. Goswami, and M. Sameer, “Ryu controller’s scalability experiment on

software defined networks,” 2018 IEEE Int. Conf. Curr. Trends Adv. Comput. ICCTAC

2018, pp. 1–5, 2018.

[32] O. Michel and E. Keller, “SDN in wide-area networks: A survey,” Proc. IEEE Fourth Int.

Conf. Softw. Defin. Syst., pp. 37–42, 2017.

[33] M. Karakus and A. Durresi, “A survey: Control plane scalability issues and approaches in

Software-Defined Networking (SDN),” Comput. Networks, vol. 112, pp. 279–293, 2017.

[34] O. Michel and E. Keller, “SDN in wide-area networks: A survey,” 2017 4th Int. Conf. Softw.

Defin. Syst. SDS 2017, pp. 37–42, 2017.

[35] M. T. I. Ul Huque, W. Si, G. Jourjon, and V. Gramoli, “Large-Scale Dynamic Controller

Placement,” IEEE Trans. Netw. Serv. Manag., vol. 14, no. 1, pp. 63–76, 2017.

[36] T. Koponen et al., “Onix : A Distributed Control Platform for Large-scale Production

Networks.”

[37] A. Tootoonchian, “HyperFlow : A Distributed Control Plane for OpenFlow”, SIGCOMM

Computer Communication Review 38, 2010.

[38] S. H. Yeganeh, “Kandoo : A Framework for Efficient and Scalable Offloading of Control

Applications,” pp. 19–24, 2012.

[39] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “SDN controllers: A comparative study,”

Proc. 18th Mediterr. Electrotech. Conf. Intell. Effic. Technol. Serv. Citizen, MELECON

2016, no. October 2017, 2016.

[40] and D. C. K. R. Jahan, S. Shaik, K. Kotaru, “ODL-SDNi,” ODL Wiki. 2014.

57

[41] D. Gupta, T. Consultancy, and S. Limited, “Inter-SDN Controller Communication : Using

Border Gateway Protocol,” no. April, 2018.

[42] F. X. A. Wibowo and M. A. Gregory, “Software Defined Networking properties in multi-

domain networks,” 26th Int. Telecommun. Networks Appl. Conf. ITNAC 2016 , pp. 95–100,

2017.

[43] P. Lin, J. Bi, Z. Chen, Y. Wang, H. Hu, and A. Xu, “WE-bridge: West-east bridge for SDN

inter-domain network peering,” Proc. - IEEE INFOCOM, no. February 2015, pp. 111–112,

2014.

[44] H. Yin, H. Xie, T. Tsou, P. Aranda, D. Lopez, and R.Sidi, “SDNi: A Message Exchange

Protocol for Software Defined Networks (SDNS) across,” Internet Research Task Force.

pp. 1–14, 2012.

[45] K. Phemius et al., “DISCO : Distributed Multi-domain SDN Controllers To cite this

version : HAL Id : hal-00854899 DISCO : Distributed Multi-domain SDN Controllers,”

2013.

[46] J. H. and L. Prete., “SDN-IP - ONOS,” ONOS wiki. 2016.

[47] ONOS, “ONOS : An Overview,” ONOS wiki. .

[48] ONOS, “Intent Framework architecture.,” ONOS wiki. .

[49] D. Kim, Y. H. Kim, C. Park, and K. Il Kim, “KREONET-S: Software-defined wide area

network design and deployment on KREONET,” IAENG Int. J. Comput. Sci., vol. 45, no.

1, pp. 27–33, 2018.

[50] G. T. Service and O. Icona, “GEANTʹs Pan-European ONOS ICONA Deployment Delivers

Benefits of Open Source SDN to Europeʹs Research and Education Networks”, 2015.

[51] I. Awan, M. Younas, and W. Naveed, “Modelling QoS in IoT applications,” Proc. - 2014

Int. Conf. Network-Based Inf. Syst. NBiS 2014, pp. 99–105, 2014.

[52] A. S. Muqaddas, A. Bianco, P. Giaccone, and G. Maier, “Inter-controller traffic in ONOS

clusters for SDN networks,” 2016 IEEE Int. Conf. Commun. ICC 2016, pp. 1–17, 2016.

[53] D. Sanvito, D. Moro, M. Gulli, I. Filippini, A. Capone, and A. Campanella, “Enabling

external routing logic in ONOS with Intent Monitor and Reroute service,” 2018 4th IEEE

Conf. Netw. Softwarization Work. NetSoft 2018 , no 1. NetSoft, pp. 37–45, 2018.

[54] D. Sanvito, D. Moro, M. Gulli, I. Filippini, A. Capone, and A. Campanella, “ONOS Intent

Monitor and Reroute service: Enabling plugplay routing logic,” 2018 4th IEEE Conf. Netw.

Softwarization Work. NetSoft 2018 , no 2. NetSoft, pp. 456–461, 2018.

[55] B. K. Thapa and B. Dikici, “Reactive Forwarding Applications in ONOS,” no 2, 2016 IEEE

Int. Conf. Commun. ICC, January, 2018.

[56] K. Ishiguro, “Quagga A routing software package for TCP/IP networks Quagga 1.2.0,” no.

March, Int. J. Comput. Appl, 2017.

58

