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Resumo

Esta dissertação tem como objetivo o desenho e implementação de algoritmos
para a resolução de um problema de otimização de capacidade de contentores
versus frequência de recolha de lixo, tirando partido da informação do volume de
resíduos nos contentores obtida através de sensores.

Inicialmente será feito o estado da arte relativo a cidades inteligentes através
da utilização de sensores e as áreas onde a internet das coisas é melhor aplicada.
Serão revistos problemas de otimização de recolha de lixo estudados na literatura.

Posteriormente, através de dados fornecidos por sensores que medem o volume
ocupado em cada contentor, é feita uma análise estatística sobre os mesmos de
forma a perceber quais os contentores críticos (cuja capacidade se torna nula com
alguma frequência) e quais os contentores secundários (cuja frequência de recolha
poderia ser diminuída).

Em seguida são criados algoritmos para a resolução do problema de otimização
de capacidade de contentores versus frequência de recolha de lixo, gerados novos
modelos de capacidade frequência e são apresentados resultados sobre os mesmos.

Por último, é feita a validação dos modelos gerados através de modelos de
previsão e retiradas conclusões sob a performance de cada um dos algoritmos
apresentados.

Palavras-chave: Análise de Dados, Otimização, Internet das Coisas.
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Abstract

This dissertation aims the design and implementation of algorithms for solving
an optimization problem of container capacity versus collection frequency, taking
advantage of the information about the waste volume in containers obtained th-
rough sensors.

Initially, state of the art will be made relative to intelligent cities through
the use of sensors and the areas where internet of things is best applied. Waste
collection optimization problems studied in the literature will be reviewed.

Subsequently, through data provided by sensors that measure the volume oc-
cupied in each container, a statistical analysis is done on the same in order to
understand which critical containers (whose capacity becomes null with some fre-
quency) and which secondary containers (whose frequency of collection could be
reduced).

Next, algorithms are created to solve the problem of container capacity versus
collection frequency, new models of frequency capacity are generated and results
are present.

Finally, the models generated are validated through prediction models and
conclusions are drawn about the performance of each of the presented algorithms.

Keywords: Data Analytics, Optimization, Internet of Things.
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Chapter 1

Introduction

In smart cities, the use of technology is common to optimize several services

provided by the city council [23]. One of the areas where technology can be used is

in waste collection. With the addition of sensors in containers, with the ability to

measure the volume of waste in it each time the container is opened, it’s possible

to know the volume of waste in every container of the city. In Portugal this is

already used in cities like Castelo Branco, but all the data generated by the sensors

are typically used for routing optimization only. Problems like frequency-capacity

optimization with a fixed frequency of waste collection or the correlation of waste

data with other datasets are not typically addressed.

The frequency-capacity optimization problem consists in, given a set of con-

tainers in a city and its historical volume data, find the best frequency of waste

collection and container volume adjustments so that no container is ever full and

the overall cost is minimum. Or, in a more generic form, find a set of fixed fre-

quencies and capacity adjustment so that the overall cost is minimum.

This dissertation aims to explore the data generated by the sensors and the

correlation of that data with other data sets like weekday, events or atmospheric

conditions. It also aims the design and implementation of an algorithm-based

analysis to solve the problem of container frequency-capacity optimization. In

order to achieve this, real data was analyzed on the volume of containers over
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Chapter 1. Introduction

time in Castelo Branco between 2017 and 2018. In the next sections, motivation

and context about this subject and research questions are addressed. Next, the

objectives of the dissertation are defined, as well as the research methodology to

achieve them.

1.1 Motivation

The study on how technology can help cities to provide better services to

their citizens is a great motivation itself and one of the reasons why computer

engineering is so interesting and at the same time important.

The problem of finding the best frequency of waste collection and container

volume adjustments so that no container is ever full and the overall cost is min-

imum, has not yet been addressed in the literature, which increases the interest

of the topic addressed in this dissertation. The results obtained can be used to

save resources and reduce costs to the city councils that decide to implement the

algorithms under study. The correlation between waste volume data sets can also

provide interesting information about the citizens habits. Moreover, the appli-

cation of the knowledge obtained during this master directly to a real problem,

makes this dissertation of interest to those involved.

1.2 Context

The technological advances that have taken place since the beginning of the

2000s allowed more and more the use of technology for the optimization of re-

sources [21]. The necessity of resource management is one of the reasons for the

creation of the smart city and sustainable cities concept.

The smart city concept was first defined in 1994 and its definition has evolved

over time [12]. It can be viewed as a city that makes investments in human and

social capital and modern communication infrastructure, fuel sustainable economic

2



Chapter 1. Introduction

growth and high quality of life, with a wise management of natural resources,

through participatory governance [10]. A sustainable city is a city in which its

conditions of production do not destroy the conditions of its reproduction, over

time [11].

Smart cities use the Internet of Things technology, like sensors, to collect data

for servers in the Cloud and then treat that data using Data Mining, Big Data and

Machine Learning algorithms. The treatment of data has numerous applications

[16] such as optimization of the water distribution system, optimization of the

electrical distribution system, intelligent construction, bridge monitoring, seismic

monitoring, etc. One of the areas where technology can be of great use is in the

optimization of the waste collection system.

1.3 Research Questions

The study of the problem of the waste collection can go beyond the creation of

algorithms for the optimization of routes. With the use of sensor data in containers

to measure the volume of the contents in them, it is intend in this dissertation to

answer the following questions:

1. Is it possible, with the volume data of waste in the containers, to figure out

which containers require more or less frequent collection (or the addition or

removal of a container)?

2. Can this information be used to optimize waste collection routes? If so, can

it be done in real-time?

3. Is it possible, given the history of a container, to predict the volume of waste

deposited by the year, events or atmospheric conditions?

4. Can we relate this data with information on population density or families

income?

3



Chapter 1. Introduction

5. By setting a collection frequency, is it possible to estimate the required ca-

pacity (in containers) by geographical area?

6. Given the past volume data of a container, is it possible to define the optimal

collection frequency and required capacity by geographical area?

7. If we consider clusters of containers next to each other, can we improve the

solution of collection frequency and required capacity by geographical area?

To answer question 1, exploitation of the data sets and initial analysis has

to be made. Questions 2 and 3 are answered by literature review and with the

application of new algorithms in the data sets. Question 4 are also reviewed in the

literature and a statistical study is made, to find correlation between different data

sets. Focusing more on the frequency-capacity optimization problem, answering

questions 5, 6 and 7 are the main objective of this dissertation.

1.4 Goals

The main goal of this dissertation is to answer the research questions and pro-

vide new algorithms to solve optimization problems regarding waste collection in

smart cities. It is expected to obtain information about the capacity of containers

given a fixed frequency and depending on some factors like population density,

time of the year or events to happen. Furthermore, it is intended for the explo-

ration of data and the validation of all algorithms, by a comparison between them

and algorithms presented in the literature.

1.5 Research Methodology

In the previous sections, a first definition of the problem was addressed and

main goals were defined. In the next chapter, a literature review is done rela-

tive to smart cities using sensors and the areas where internet of things is best

4



Chapter 1. Introduction

applied. Related work about waste collection optimization, including routing prob-

lems studied in the literature are to be addressed. This allows the identification

of the problem and a justification of the value of the solution.

Next, a definition of the objectives for a solution will be presented. The solution

shall consist of a set of algorithms that can provide valuable information from the

data sets and solve the problems addressed.

Subsequently, through data provided by sensors that measure the volume oc-

cupied in each container, a statistical analysis is done and algorithms are applied

to realize which critical containers, whose capacity becomes full with some fre-

quency, and which secondary containers, whose frequency of collection could be

reduced. This will lead to the design and development of models for solving the

frequency-capacity optimization problem and a demonstration of the results on

them.

To measure the quality of the algorithms created, it will be used only 80% of

the data to estimate the capacity needed in the future given a frequency and then

using the result to see how it would perform on the other 20% of the data. This can

also be done to measure predictions about waste collection needs by population

density or time of the year. The analysis of the results and the solutions presented,

with potential cost reduction, will allow us to take advantage of the study.

Finally, a communication of the problem and its importance will be made

with the writing of this dissertation. It is expected that the results compose an

interesting new approach to the waste collection problem in smart cities.
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Chapter 2

Related Work

The role of technology in smart cities contributes to the contextualization of

the theme addressed in this dissertation, so we start by reviewing the concept of

smart city and its main objectives. Then we move to the main papers about waste

collection optimization and its different approaches, including routing problems

and frameworks proposed in literature.

2.1 Smart Cities

Smart cities are a concept that covers several purposes. One complete definition

of smart city is given in [15], that says that a smart city is “a city that monitors and

integrates conditions of all of its critical infrastructures, including roads, bridges,

tunnels, rails, subways, airports, seaports, communications, water, power, even

major buildings, can better optimize its resources, plan its preventive maintenance

activities, and monitor security aspects while maximizing services to its citizens”.

Although this definition is from 1999, it’s still accurate in it’s objectives, the only

difference is that more technology is used to help to achieve them. The evolution

of its definition can be viewed in [12]. Initially, in 1993, the concept of Digital City

was created and until 2010, that was the most common term for Smart City. After

2011, the concept of Smart City has grown exponentially and it’s now the most
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common term in literature. To study the several advances in smart cities, [16] looks

at the top areas where technology is used to make a city a smart city, like Smart

Infrastructures, Smart Surveillance, Smart Electricity and Water Distribution,

Smart Buildings, Smart Healthcare, Smart Services and Smart Transportation.

To distinguish these Smart areas of the classic ones, they point out the advantages

and disadvantages of using advanced sensing on them, which can be viewed in

Table 2.1.

Without Advanced Sensing With Advanced Sensing
Structural
Health
Monitoring

High costs due to the number of personnel
required for scheduled inspections

Autonomous monitoring system reduces
costs of scheduled inspections and
provides continuous monitoring

Visual Inspection is not always effective Enables a more accurate analysis of
the structure’s state than visual inspection

Water
Distribution

High costs in disasters caused by missed
or late leak detections

Enables mitigation of costs caused by
possible accidents due to late leak detections
Monitoring the quality of water ensures that
the water is safe for human consumption

Electricity
Distribution Inaccurate metering and demand prediction Advanced sensing enables more

accurate metering and demand prediction
Smart
Buildings High electricity and water consumption Reduction in water and electricity

consumption due to HVAC and light control
Intelligent
Transportation

Inefficient traffic control schemes causing
traffic jams

Improved traffic control schemes
adaptive to traffic conditions

Surveillance Need for a human operator who is prone
to distraction

Intelligent detection of abnormal situations
without the need of an operator

Environmental
Monitoring

Hazardous conditions, like the presence
of dangerous gases, maybe detected too late

Continuous environmental gas sensing
ensures that hazardous conditions can
be detected timely

Table 2.1: Impact of advanced sensing in smart cities [16]

It’s common to see the concepts of smart cities and sustainable cities mixed

in literature, an accurate study on their differences can be viewed in [4], where

is explored to what extent smart cities address the same issues that sustainable

cities. It is concluded that some of the smart cities frameworks studied lack of

environmental indicators, which leads to less sustainability than expected. Smart

cities tend to focus more on Economy, Education Culture Science and Innova-

tion, Information and Communication Technology and Governance and Citizen

Engagement. Sustainable cities focus more on Natural and Built Environment,

Water Management, Transport, Energy and Waste Management.

Going deeply through the role of Internet of Things (IoT) and the current

solutions available, we can see a study of different technologies and protocols in

[26] that are close to being standardized. They start by referring the huge role

that IoT can provide in smart cities.

8
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Figure 2.1: Conceptual Representation of an urban IoT network [26]

With IoT it’s possible to enable easy access and interaction with home appli-

ances, monitoring sensors, vehicles, surveillance cameras, etc. A conceptual rep-

resentation of an urban IoT network framework is presented and an experimental

study for a Smart City is made.

Smart cities are a huge topic and according to Pike’s Research[1], it is expected

that the smart cities technology market to top $20 billion in annual value by 2020.

The use of technology in waste collection is just one example of how smart cities

and IoT are continually changing our life for the better.

2.2 Waste Collection Problem

Waste collection management is a service that every city provides to its resi-

dents [17]. As cities grow in size and number of citizens, optimizing this service

and reducing its costs is imperative. Many articles can be found on this subject,

either on routing optimization or new architectures to include sensors and help the

waste collection process. Some of the most important are reviewed in the following

sections.

9
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2.2.1 Optimizing Routes

Most of what has been studied about the waste collection are focused on

routing problems. It’s possible to associate the waste collection routing problem

with the generic Traveling Salesman Problem (TSP) or Vehicle Routing Problem

(VRP)[22]. The TSP consists in, given a set of n cities and the distance between

them, find the best path for a Salesman to visit all the cities once and only once

and return to the initial city. In the VRP, instead of one salesman or vehicle, we

have m vehicles to visit n cities. In waste collection optimization, the containers

represent the cities and the garbage trucks represent the vehicles. To limit the

waste collection schedule, it can be added time windows restrictions to this prob-

lem [22]. Despite their simple statement, both these problems are too complex to

solve obtaining the optimal solution when the number of containers is large, so it’s

typical to see heuristic approaches to obtain good solutions in less time [7].

Several articles study this problem, proposing algorithms for the calculation of

good routes using optimization and/or machine learning. In [13], a mathematical

formulation of the problem is presented and several papers in the literature are

classified by the type of algorithms proposed. In [18], a genetic algorithm (GA) is

presented for the identification of optimal routes for Municipal Solid Waste collec-

tion, supported by a geographic information system. Good solutions were achieved

but for a small and simplified waste collection routing problem. In practice, the

authors reduced the problem to the TSP and applied GA to it’s resolution.

In [5], the proposed algorithms differ from the previous ones in the literature

because they are dynamic algorithms and at the same time robust, being prepared

for the recalculation of the routes in the event of any failure or of a collection truck

reaching the limit of capacity. In their system, they take into account the trips

to dumps when the storage capacity of the trucks is full and consider two types

of trucks: low capacity trucks and high capacity trucks. The low capacity trucks

transport waste from bins to depots. The high capacity trucks transport waste

from depots to dumps outside the cities. This way, the amount of trips from bins

to dumps is reduced.

10
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Figure 2.2: IoT-enabled System Model Overview [5]

Some papers focus on optimizing time and costs of waste collection in particular

cities, like Xangai (Pudong area) [20] or Allahabad [24], proposing municipal solid

waste management systems suitable for those particular places. [9] summarizes

similar papers for the United Kingdom.

Focused on the logistics involved in waste collection and recycling in several

European cities, [8] carries out a detailed study on how to manage waste collection

and what standards are imposed by the European Union.

Figure 2.3: The recycling network flow of municipal solid waste [8]

One interesting topic about this study is the recycling network process of mu-

nicipal solid waste which includes the process of collection, separation, sorting and

re-processing. It provides a set of current information about the waste manage-

ment problem as well as what is expected in its resolution.
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2.2.2 System Architectures

More focused on cloud technologies, the article [19] presents a whole system for

the collection of waste in smart cities, proposing different solutions for different

stakeholders in the city. To collect data, the authors use not only the sensors but

also the surveillance system of a city and it addresses several possible problems in

the collection of waste in the containers, like inaccessible waste bins. The result

Figure 2.4: The big picture of a waste collection management system [19]

was a cloud-based system for waste collection in smart cities with a set of web

applications for the different stakeholders.

Similarly, [14] used sensors that can read, collect and transmit trash volume

and used this data to calculate new routes in real-time, guaranteeing that when

trashcans become full, they are collected on the same day. However, by doing

that, they increased the waste collection frequency too much, incrementing the

daily collection cost between 13− 25%.

In [25], the authors focused on forecasting quantity and variance of solid waste

and its correlation with other sets of data, like residential population, consumer

index and season, in Shanghai. The work [6] proposes a new architecture for the

12
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dynamic scheduling of waste collection considering the capacity of the same using

sensors for their measurement. This is one of the complete articles in the use of

measurements of capacities of the containers for the calculation of the frequency

of garbage collection and the calculation of routes in real-time taking these data

into account.

2.2.3 Frequency Capacity Problem

Even though there’s a large number of articles dedicated to routing optimiza-

tion, it can’t be found in literature a study about the frequency-capacity optimiza-

tion with a fixed frequency of waste collection. This can be modeled by a generic

optimization problem where we want to find the minimum number of containers

needed by geographic area that guarantees sufficient capacity (or maximize that

capacity) with the constrain of the collection frequency. It can also be viewed

as a multi-objective optimization problem where we want to minimize the total

number of containers while maximize the capacity by geographic area.

Figure 2.5: Waste Capacity Measured in Real-time [3]

In this dissertation we define the frequency-capacity optimization problem and

propose new algorithms to its resolution. We use other sets of data to take advan-

tage of the information provided by the sensors, like in [25] and use the information

on the waste volumes over time like in [6] and [14]. The improvement we expect to

13
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obtain over [14] is that we use the volume data to change not only the frequency

of collection but the capacity of the containers too. The goal is to propose mod-

els that not only prevent containers from becoming full but provide interesting

solutions that may reduce waste collection costs.

14



Chapter 3

Data Exploration

In this chapter, we present the data sets used for this problem and data explo-

ration using those data sets. First, an analysis of the data sets for the study and

tools is made. Next, data exploration and organization are done to define what is

the potential of these data sets and what problems we expect to solve with them.

Lastly, data visualization and some conclusions about its study are presented.

3.1 Data Sets and Tools

To study the problem of capacity optimization given a fixed frequency, we

start by analyzing sets of data of containers volume in time. Real data from the

Portuguese company Evox relative to containers of the city Castelo Branco are to

be used. The containers have each a sensor that measures the volume of waste

in it, each time the container is opened. The company already uses this data

for container volume control, waste collection, container washing and mostly for

routing optimization. Based on a pre-defined filled volume a collection route is

defined, like the example provided in Figure 3.1.

Our approach is the data analysis to identify deposition and collection patterns,

correlate with special events and weather conditions to identify what container
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Figure 3.1: Route optimization based on container capacity [2]

capacity should be installed, for a weekly uniform waste collection. To study this

problem, we start by analyzing sets of data of containers volume in time.

The data from each container consists on the following elements: container

id, description, container type, waste type, geographic localization, address,

localization zone and sets of reading date and time and respective volume.

Table 3.1 shows an example of those elements. This represents the core data of

the container and also data about the volume reading.

Field Example
Container Id 15415
Description Container 611
Container Type Four weel with 1000 litres
Waste Type Solid Urban Waste
Geo. Localization 39.826069 / -7.493849
Address R. do Arco do Bispo 21
Localization Zone Castle zone
Reading Date 08/06/2018 12:04;
and time 08/06/2018 17:21;...
Volume 59; 83; ...

Table 3.1: Data set an example
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This data must be cleaned and organized in appropriate structures to begin

their mining. To do so, we started by defining the tool/framework that is to be

used. There are several tools that can be used when it comes to doing data science

work, like:

• Apache Hadoop: Apache Hadoop is an open-source software for dis-

tributed and scalable computing. It is one of the most used tools to solve

big data problems and contains Hadoop Distributed File System (HDFS),

Hadoop MapReduce modules and Hadoop YARN;

• Python: It is one of the most popular programming languages for data

science. Provides a simple but complete set of tools to explore data and it

emphasizes productivity and code readability;

• R: The R project is a programming language initially used by statisticians.

R focuses on user-friendly data analysis, statistics and graphical models.

To explore the data available, we decided to work with the R project because of

its simplicity when working with data sets. Besides, its a powerful tool for statis-

tical studies which can be useful for the study of the correlation between different

data sets. Having the framework decided, we then proceed to the exploitation of

data.

We start by reading the data from the files into sets of data frames, containing

all the information about the containers and their waste volume readings through

time. A container data frame is created containing all generic data about the

containers, excluding the reading date and time and respective volume. This data

frame provides, for each container, information about its type and location, to be

of use later.

Then considering the set C of the containers in the study, the volumes readings

vit, for i ∈ C, can be worked as they can provide more information that the volume

itself. For that, let us consider the following definition:

17



Chapter 3. Data Exploration

Definition 3.1. Given a volume reading of a container i, vit, measuring the waste

volume within the container at t, when compared with the container previous

reading vit−1, is considered a:

1. Deposit if vit > vit−1;

2. Compression if 0 < vit−1 − vit ≤ ε and vit > 0;

3. Collection if vit−1 − vit > ε or vit = 0 ∧ vit−1 6= 0,

where ε is the collection threshold.

This means that whenever the volume of waste increases on a container, a

waste deposit was made. When the volume of waste decreases to zero, its for sure

a collection, but if it decreases to another value and the difference between the

volumes is less than the collection threshold (which in our case is set to 20% waste

volume), we consider that a waste compression.

With this, it’s possible to create a reading data frame , where each line

contains information about the container id, date, hour, volume and reading type.

This way, we have a data frame that joins the volume reading of all containers.

To this new data frame, is possible to add more context about the time of each

reading. The following information was added:

• season of the year;

• typeDay, if it’s a holiday or there’s a special event in town;

• weekDay, day of the week;

• dayFase, by the hour, if it’s morning (5h-12h), afternoon (12h-19h) or night

(19h-5h);

An example of some entries of this data frame is shown in Table 3.2.
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Id Season Day WeekDay D Fase Date Hour Vol Read
... ... ... ... ... ... ... ... ...
48843 Spring N Thursday Afternoon 07/06/2018 16:36 51 Deposit
48843 Spring N Friday Morning 08/06/2018 08:03 66 Deposit
... ... ... ... ... ... ... ... ...

Table 3.2: Reading Data Frame example

An analysis of the volumes and reading types is made using this complete

data frame. This analysis allows the measurement of the current waste collection

frequency.

The data sets containing the information mentioned provide a big portion of

the information we intend to use in the study of the capacity-frequency problem.

However, because the volume is measured each time a container is opened, these

discrete data doesn’t have a fixed time period between readings. One container

can be opened ten times in a day, while others might not be opened in that same

day.

To deal with this, we created a function that generates another dataset in

which the time period reading data frame is defined with a fixed time period

of every x hours (2 hours, 8 hours, or even 1 day). Each line of the data frame has,

for each container, information about the last measured volume and the mean and

median measure of volume in that time period. If there is no volume information in

that time period, the volume is considered to be the same as the previous volume

measured. It brings much more information to the data set and makes any period

of time comparable between different containers. This can also be viewed as a

continuous dataset in which the volume of a container on a datetime is the last

measure or the average volume in the time period containing that datetime. The
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algorithm used is the following:

input : byHours, currentDf
output: newDf

Dates← sequence from min(currentDf [′Dates′]) and
max(currentDf [′Dates′]) every 24/byHours;
MinHour ← sequence every byHours starting at 00:00;
MaxHour ←MinHour + byHours ;
V ol← {} ;
for i in length(Dates) do

samples← samples in currentDf where currentDf [′Dates′] == Date[i]
and currentDf [′Hour′] > MinHour[i] and
currentDf [′Hour′] < MaxHour[i];

if length(samples) > 0 then
V ol← V ol ∪ samples[1];

else
V ol← V ol ∪ V ol[i− 1];

end
end
newDf ← dataframe(Dates,MinHour,MaxHour, V ol;

Algorithm 1: Time period dataframe generation

With this, the time period reading data frame is similar to the reading data

frame, in terms of columns, but instead of Hour, we have a MinHour and MaxHour

column, as shown in Table 3.3.

Id Season Day WeekDay D Fase Date MinHour MaxHour Vol Read
... ... ... ... ... ... ... ... ...
48843 Spring N Thursday Afternoon 07/06/2018 12:00 20:00 51 Deposit
48843 Spring N Thursday Night 07/06/2018 20:00 04:00 51 None
48843 Spring N Friday Morning 08/06/2018 04:00 12:00 66 Deposit
... ... ... ... ... ... ... ... ...

Table 3.3: Time Period Reading Data Frame example

For visualization purposes, another data frame was created with the volumes

of the containers, in each time period, side by side. The first three columns of

the data frame are the date, initial time and final time (of the period) and the

remaining columns are volume measures, each column for each container in study.

A visualization of these volumes can be viewed in Table 3.4.
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Date IT FT V1 V2 V3 . . .
1 21/12/2017 00:00 06:00 0 0 0 . . .
2 21/12/2017 06:00 12:00 100 54 78 . . .
3 21/12/2017 12:00 18:00 100 24 10 . . .
4 21/12/2017 18:00 23:59 100 26 10 . . .
5 22/12/2017 00:00 06:00 100 26 10 . . .
6 22/12/2017 06:00 12:00 45 12 69 . . .
7 22/12/2017 12:00 18:00 45 61 100 . . .
8 22/12/2017 18:00 23:59 66 61 69 . . .
9 23/12/2017 00:00 06:00 66 100 69 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

Table 3.4: Volume Data Frame every 6 hours

This allows a direct comparison between the volumes of the different containers.

On top of that, if we consider a similar data frame with the deposits and collections

information instead of the volumes, it’s easy to see patterns on the current waste

collection frequency.

As an addition to this information, we also considered weather information

from the National Centers for Environmental Information (NCEI) using the in-

formation on air temperature and rain. For the following sections, all these

dataframes are used and the results provided with a reading data frame (RDF)

and a time period reading data frame (TPRDF) are to be compared.
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3.2 Data Analysis

In this section we analyse the data and try to extract information taking ad-

vantage of the different dataframes. We start by considering the RDF to get

information about the deposits and collections. The variation of volume by day is

too big, as it’s shown in Figure 3.2.
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Figure 3.2: Mean of Waste Volume of all Containers

To get more precise information, in the following sections we start by visualizing

the containers in the study across the city and their average volume by street.

Then, a study on the deposits and collections in those containers is made, using the

TPRDF, with time periods shorter than a day. To classify the collection efficiency

we introduce the concepts of critical points and needless collections. Finally, we

correlate the waste volumes with other data like weekday, season, air temperature

and precipitations and summarize the major findings of the data analysis.
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3.2.1 Visualization by zone

In this problem, we have access to data from 18 different containers that can

be of one of three types: the standard ones, with 800 litres (31450, 48843, 49619,

50443, 50708, 50856, 51698, 52910 and 54452) and 1000 litres (15415, 41483, 44289,

44776, 53181 and 54494) capacity and the underground containers (44263, 44966

and 50419) which can also store 1000 litres. The containers are split across the

district of Castelo Branco, on eight different streets, as shown in Figure 3.3, where

we can visualize the number of containers that are for disposal for each street,

following by their id number.

Figure 3.3: Container Locations

Considering the waste volume data between 2017-11-01 and 2018-05-31 (period

with the most amount of data), Table 3.5 shows the average volume of waste of each

cluster (street) by each month. We can see that even for an average calculation,

the values seem to appear quite aleatory, however, seems to be increasing over

time. Despite the fluctuation, we can notice that most of the volumes are between

the range of 30% to 60%.
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Dates 2017-11 2017-12 2018-01 2018-02 2018-03 2018-04 2018-05
Arco do Bispo 21 NA 55 62 61 53 58 64

Arressario 60 43 46 47 51 47 54 58
Arressario 41 40 48 47 26 41 63 49
Arressario 23 42 44 56 52 47 52 55

D Ega 51 55 62 47 44 46 48
Praca de Camoes 22 32 33 30 42 34 31

Choes 34 43 46 54 47 57 51 52
Arressario 40 44 43 49 51 47 56 60

Table 3.5: Mean of Volume by Street and Month

3.2.2 Deposits and Collections

The most important parameters for the frequency capacity problem, are the

deposits and collections that currently happen. Considering Definition 3.1, we

start by analyzing the number of deposits and collections that happen on these

containers. To this, we consider a period of time between 2017-12-21 and 2018-

05-17, which is the period of time with readings from all the containers. The total

amount of deposits and collections are shown in Figure 3.4.
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Figure 3.4: Total number of Deposits and Collections
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To have a notion of the frequency of deposits and collections, we consider the

number of weeks between 2017-12-21 and 2018-05-17 (approximately 52 weeks) and

the number of containers considered (18). The average of deposits and collections

by week and container is shown in Figure 3.5.
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Figure 3.5: Mean of Deposits and Collections By Week and Container

We can see that we usually have waste collections on Monday, Saturday and

Thursday and sometimes on the other weekdays. This indicates that the waste

collection frequency for these data is between 3 to 4 times a week. On the other

hand, the number of deposits in each day of the week doesn’t fluctuate much in

mean, by day of the week.

Regarding the deposits, an interesting statistic to check is the average of the

volume of waste that is deposit every day. Figure 3.6 shows this by weekday. We

can see that the amount of waste deposit is very similar in each weekday, meaning

that there’s no pattern on waste deposit by weekday. We check in the following

section this statistic against other variables.
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Figure 3.6: Mean Volume by Reading Type and Week Day

The high values of the volume collected on Monday, Saturday and Thursday

are consistent with the number of times the waste is collected on those days.

3.2.3 Collection analysis

Considering the waste volume in the containers when waste collections are

made, it is possible to evaluate, for each container, how well the current waste

collection frequency performs. To do so, let us consider the following definitions:

Definition 3.2. Given a reading of a container i corresponding to a waste col-

lection, with volume vit, we consider it a needless collection if the waste in the

container was less than 35%, that is, vit−1 < 35.

Definition 3.3. Given a TPRDF with time period of one hour and a reading of

a container i, with volume vit, we consider it a critical point if the volume of the

container is 100% for more than one day, that is vik = 100, k ∈ {t, t− 1, ..., t− 24}.
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According to the collections of each container, the percentage of needless col-

lections are presented in Figure 3.7.
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Figure 3.7: Percentage of Needless Collectionns by Container

We can see by this chart that at least 1/4 of the collections made, in each

container, are needless and could have been done later. For seven of the eighteen

containers, the amount of needless collections is more than 1/3. This indicates

that there is progress margin to decrease the waste collections frequency of these

containers.

On the other hand, it’s important to check for critical points. The best way

to see critical points is to use a time period data frame, that can easily provide

information like how much time a container was full. We can see the total amount

of critical points for each container in Figure 3.8.
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Figure 3.8: Number of Critical Points for each Container

We can see that the containers 5415, 44776, 53181 and 54452 have a high

number of critical points, which suggests that they should have a more frequent

waste collection frequency. Even the remaining containers seem to have been

full for more than one day too many times, with the exception of 44263, 44966

and 50419. On the other hand, they all presented a high percentage of needless

collections.

This data shows that the waste collections frequency and/or the capacity of the

containers can be changed and improved for each container. It suggests that many

times the collections are needless and other times the waste should be collected

and it isn’t. This is where the information of the volume of waste in each container,

at real-time, can prove to be of great usage when optimizing waste collection.

Ideally, there would be no critical points or needless collections, but our focus

is not to minimize these points individually for each container but to consider

all the containers grouped by their location and address the frequency capacity

problem.
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3.2.4 Data Correlation

In this subsection, we try to find patterns that may influence the number and

volume amount of waste deposits. To do this, we use TPRDF to fill any gaps in

the volume data and have a more significant data set.

This case studies four scenarios, according to the class weekday, with every

day of the week, season, which represents the partition of the database into the

different seasons, precipitation [mm], which can represent days without rain, rainy

days or very rainy days and air-temperature, that vary from a mild day, cold day,

very cold day, hot day or very hot day. The mean volumes of the waste deposits

can be seen in Figure 3.9.
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Figure 3.9: Mean Volumes of Waste Deposits

Relatively to the levels of precipitation, we can notice the average waste de-

posits are very close to each other, showing our lower value of 161 on a normal

rainy day, and the higher value of 168, in days without rain. Concerning to the

air temperature, the verified mean values of waste deposits differ from 143 to 168
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litres. The amounts are also very similar, with the exception of the variable very

hot day, which is a much lower value. This may be due to the seasonal time cor-

responding to the summer or simply because the tendency to deposit waste is less

on very hot days. Comparatively to the season, one can observe the volume of

deposits in the summer is significantly lower than in the rest of the seasons. There

seem to appear some correlation between the variables summer and very hot day

and so, the values can be interpreted as the seasonal time of the year, where a set

of families go out to another city which decreases the demographic population of

Castelo Branco.

Another variable seen was the type of day and, in average, the amount of waste

deposits is similar between the type of days, which are normal days, holidays and

event days. The values obtained were close to each other but they do not provide

much value because the sample of other types of day is of very small size.

In short, we can observe that the most promising class is the season, probably

due to the reduced number of people in summer. That can be used as a natural

division to solve the capacity frequency problem in multiple periods of time. We

expect that summer may require a lower waste collection frequency that the other

seasons.

3.3 Major Findings

In this section it was shown a lot of information about the dataset and a good

data visualization and analysis, which is to be used to leverage information for the

algorithms coming in the following sections.

Regarding the class day-of-week we saw that the frequency of collection is

dynamic, as it may vary according to the time of the year. Also, the days of week

for collection are fixed on Monday, Thursday and Saturday. Tuesday is also added

when the frequency is increased to four.
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The daily average volume of the containers is mostly between 30% and 60%,

and the few days where the volume is higher than 60%, most of them correspondent

to Wednesdays. As the volume of deposits is, on average, about 180 litres per day

and the containers have capacity between 800 to 1000 litters, it is expected to be

easily possible to decrease the frequency to three times a week and in the summer

to two times a week.

A quick analysis on the current collection showed that a large percentage of the

collections are needless collections and some of the containers have a considerable

amount of critical points, which leads to the idea that waste collection can be

generally improved, not only by its frequency but also by the days and hours that

the waste is collected.

On data correlation to waste deposits, it was found that the classes weekday,

precipitation and air temperature, haven’t shown concrete results, as the variation

was very low. Relatively to the class season, this indicated us that in the summer

season, the volume of waste deposits decayed, which may be due to less population

density and we must take that into account.

31





Chapter 4

Frequency-Capacity Problem

The Frequency-Capacity Problem is the major focus of this dissertation and

it is important to define it correctly before moving on to its resolution. In this

chapter, we start by defining the problem and some variants. Then we move to

its resolution: we propose three different algorithms to help solve the Frequency-

Capacity Problem.

4.1 Definition

The Frequency-Capacity Problem (FCP) is the problem of, given a set of con-

tainers in a city and its historical volume data, find the best frequency of waste

collection and container volume adjustments so that no container is ever full and

the overall cost is minimum. Volume adjustments are the replacement of contain-

ers for bigger containers or the addition of containers in specific zones to increase

container capacity on those zones.

A container in the problem can be viewed as a single container or a set of

containers close together (container cluster). The overall cost is defined by the

waste collection cost (in a year) plus the cost of the containers addition. Each

container or container cluster has a maximum capacity that cannot be exceeded.

Otherwise, we could arrive at solutions where the streets were full of containers.
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4.1.1 Problem Formulation

Considering the set of n containers with {c1, ..., cn} and its historical volume

data {{v11, ..., v1m}, ..., {{vn1, ..., vnm}}, we want to find the waste collection fre-

quency f and the new containers capacity {c′1, ..., c
′
n} so that the the new volume

data {{v′
11, ..., v

′
1m}, ..., {{v

′
n1, ..., v

′
nm}} is always less than 100% and we minimize

the waste collection cost wc and container addition cost ai for each container i.

This is an optimization problem and can be formulated as it follows:

minimize wcf +
n∑

i=1

ai

s.a. v
′

ij < 100, i = 1, ..., n, j = 1, ...,m (4.1)

c
′

i < cmax, i = 1, ..., n, (4.2)

Restrictions (4.1) guarantee that the new volume of waste is never above 100%

for every container at every moment. Restrictions (4.2) guarantee that no con-

tainer of a cluster of containers has more than a maximum capacity that as to be

defined to prevent too many containers on the streets. This problem has a total

of m× n+ n = (m+ 1)× n restrictions, where n is the number of containers and

m is the number of readings. As we consider for this problem a fixed time period

and the time period data frame with readings every x hours, we have a fixed m

equal for each container.

One of the challenges of this problem is to, given the new frequency and volume

capacity, calculate the new volumes of waste for every container at every moment.

This dependency suggests that numerical algorithms that tend to the solution over

iterations are a natural approach to solve this problem.
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4.1.2 Variants

With the historical volume data on a time period it’s possible, as shown in

Chapter 3, to deduce when the waste collections were done on that time period.

With that, it’s possible to take into account needless waste collections and critical

points. A variant of the FCP is to find the best frequency of waste collection and

container volume adjustments so that no needless or critical points occur and the

overall cost is minimum.

A more generic approach would be to not fix a frequency for the whole year

but to find a set of fixed frequencies for example by year station or even month.

This problem could take advantage of some historical variables like season, month

or even event days.

In the following sections we propose algorithms to solve the FCP using con-

tainers individually and clusters of containers by zone. We then proceed to the

FCP in its generic variant.

4.2 Algorithms

To solve the FCP problem making the most of the data available, we divide the

problem in three steps that can help to find a good solution after few iterations.

The first step is to, after defining a fixed waste collection frequency (for example

one/two/three times a week), to see what happens to the waste volume in the

containers every hour. This is to be done with the Volume Simulation Algorithm.

A second step is to check if the current capacity of the containers is enough to

satisfy the problem restrictions or if it needs to be readjusted. This is made with

the Capacity Readjustment Algorithm. After that, a new validation is made. This

is made until a solution is found for the problem.
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4.2.1 Volume Simulation

With the historical data from each container, it’s possible to simulate what

happens to the volume waste after fixing a new waste collection frequency, for every

container. By fixing a set of dates D′ and times T ′ for the new collection and,

from the historical volume data by hour V = {{v11, ..., v1m}, ..., {vn1, ..., vnm}},

being n the number of containers and n the number of records over time, we

generate an entire new set of volume data V ′
= {{v′

11, ..., v
′
1m}, ..., {v

′
n1, ..., v

′
nm}}.

The algorithm used is the following:

input : V , D′
, T

′

output: V ′

numberContainers← length(V ) ;
for i in numberContainers do

gap← 0;
currentV ← Vi;
V

′
i ← {};

for v in currentV do
d← date of v;
t← time of v;
if d ∈ D′ and t ∈ T ′ then

gap← −v;
status← Model Collection ;

else
if prevv − v > δ then

gap+ = prevv − v;
status← Original Collection;

else
status← Normal Register;

end
end
V

′
i ← V

′
i ∪ max(v + gap, 0)

end
V

′ ← V
′ ∪ V ′

i

end

Algorithm 2: Volume Simulation Algorithm

This means that for every entry of the historical volume data set we check date

d, hour h and volume v. If d ∈ D′ and t ∈ T ′ it’s time for a new collection, so we

set gap = −v. This is done because the new volume is always the sum of the old

volume with the gap, and this way, the new volume is 0. Otherwise, we check if it
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was an old collection and we set gap+ = prevv − v otherwise gap stays the same.

Then we set the new volume for this date and time v′
= v + gap.

4.2.2 Capacity Readjustment

After obtaining the new set of waste volumes, it’s easy to see if the capacity of

the container is enough for every container cluster, since its waste volume has to

be under 100%. If constrains (4.1) are not satisfied, the capacity of each container

cluster is increased by the maximum waste volume registered for each cluster. If

that increasing violates constrains (4.2), the waste collection frequency has to be

changed. Otherwise, the new volume set V ′ is recalculated accordingly with the

capacity of the new clusters.

input : V ′ , C
output: V ′′ , C ′

numberContainers← length(V );
Ctp← {}; % Containers to Update
C

′ ← C;
V

′′ ← V
′ ;

for i in numberContainers do
maxV oli ← max(v

′ ∈ V ′
i );

if maxV oli > 100 then
c
′
i = c

′
i ∗maxV oli;

Ctp← Ctp ∪ i;
end
for i in Ctp do

for v
′′ in V

′′ do
v
′′ ← (v

′ ∗ ci)/c
′
i

end
end

Algorithm 3: Capacity Readjustment Algorithm

Joining this algorithm with the Volume Simulation Algorithm, we can simulate

the volume of waste over time of the new waste collection module with the new

waste collection frequency and containers capacity.

Note that the use of containers clusters is highly important for these algorithms

because it’s easy that a single container reach a volume waste above 100%. When

considering clusters of containers next to each other, it’s important just to ensure
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that the sum of their waste volumes is less than n× 100%, where n is the number

of containers in the cluster.

4.2.3 Multiple Period Algorithm

The idea of the previous algorithms is to take advantage of the locations of the

containers to form clusters of containers and the historical volume data to define

a good frequency-capacity for a time period. But, as refered in Chapter 3, some

periods of time may require more waste collections that others.

The purpose of the multiple period algorithm is to define a good set of time

periods so that the previous algorithms can be applied to each period. Considering

gt the daily volume growth rate of a time period, we define that:

• If gt ≤ 12%, that period may require only a waste collection per week;

• If 12% < gt ≤ 25%, that period may require only two collections per week;

• If gt > 25%, that period may require three or more waste collections per

week.

In order to define specific rules for each period (to make the solution doesn’t fit

only to the current volume data) we can take into account the correlation between

events, year seasons, month and weather conditions with the waste volume growth

rate for each container or cluster of containers.

4.3 Finding Solutions

In order to find good solutions (and the best) for the FCP, a combination of

the algorithms above is to be used. Given a set of volumes, the first thing to do is

to calculate the current waste collection frequency and its total cost. Next, is to

chose a new collection frequency, apply the Volume Simulation Algorithm and the
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Capacity Readjustment Algorithm and finally calculate the total cost of the new

solution.

The costs associated with waste collection are typically far bigger than the

increase of container capacity, so finding the better solution is on a standard case,

trying to get possible solutions for a waste collection frequency of once, twice or

three times a week.

1. Calculate current frequency and total cost;

2. Define new frequency;

(a) Volume Simulation Algorithm -> new volume data;

(b) Capacity Readjustment Algorithm-> validate if this is a possible

solution and readjust container capacity;

3. Calculate current cost and check improvement;

Algorithm 4: Standard Algorithm

When multiple period are involved, the Multiple Period Algorithm must be

applied first and then the Volume Simulation Algorithm and the Capacity Read-

justment Algorithm must be applied to each time period, in order to find the

overall solution with the minimum cost.

1. Calculate current frequency and total cost;

2. Find patterns to define time periods

3. Apply Standard Algorithm to each period;

4. Calculate current cost and check improvement;

Algorithm 5: Dynamic Algorithm

It’s possible that the priority of a city council is to avoid critical points and

needless collections. The previews algorithm may be used for that, calculating the
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critical points and needless collections for each period.

1. Calculate current frequency, critical points and needless collections;

2. Find patterns to define time periods

3. Apply Standard Algorithm to each period;

4. Calculate current critical points and needless collections;

Algorithm 6: Dynamic Algorithm on Critical Points and Needless Collections

These algorithms provide a complete information on the cost reduction pro-

duced by the solutions. As we do not know the current waste collection costs

or the costs of adding new containers, in the following Chapter we just focus on

finding the best solutions in terms of reducing the waste collection frequency and

find the necessary capacity adjustments for those solutions.

Over the next chapter, we solve the FCP using the standard algorithm, con-

sidering each container separately and then moving on to clusters of containers

to check if, for these set of containers, by using clusters we can reduce the cost

of the capacity readjustment. We then try to solve the FCP using the dynamic

algorithm, by defining first the time periods considering other data like season.

For simplification purposes, we just try to get a better waste collection frequency

for summer season, which has the least waste deposits.
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Problem Resolution

The study presented in Chapter 3 suggested that the current waste collection

frequency in Castelo Branco is between three to four times a week, most of the time

on Monday, Thursday and Saturday. On the other hand, if we consider that we

just need to collect a container waste if the container has more than 35% of waste

volume, it was shown that more than 40% of the past collections were needless

collections, meaning the collection frequency should be easily decreased.

In this chapter we apply the algorithms mentioned in Chapter 4 to analyze

what would happen if the waste collection frequency were reduced to one, two or

three times a week. To do this, we start by applying the standard algorithm which

consists of applying the volume simulation algorithm and the capacity readjust-

ment algorithm in order to find solutions to the FCP. Next we see what changes in

the solutions if we consider clusters of containers and how that influence the capac-

ity readjustment. Lastly, we see how to apply the dynamic algorithm by defining

multiple time periods and solving the problem for each one of them. Conclusions

on the results are made.
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5.1 Solving with Standard Algorithm

In this section, we want to analyze what is the capacity needed if we reduce the

waste frequency to one, two or three times a week and present good models to find

the best day or days for waste collection. To validate these models, an analysis of

the containers overload (new volumes provided by the model higher than 100%)

is made.

5.1.1 One Time a Week

To start, we simulate a situation where the waste collection frequency would

be once a week considering each container as a container cluster in separate.

Considering a time period data set with the time period of 2 hours we start

by applying the Volume Simulation Algorithm to generate the new volumes of

waste if the waste collection frequency was once a week (Thursday at 10P.M.).

The figure 5.1 shows an example of the new model volume, compared to the real

volume with the current collection frequency:

As we can see, a waste collection frequency of once a week is not enough for

container 49619 between 06/08/2017 and 15/10/2017, with too many occurrences

of waste overload. Table 5.1 shows the mean of the new volume by container and

the number of waste overloads for each container.

42



Chapter 5. Problem Resolution

0

50

100

150

200

2017−08−06 2017−08−20 2017−09−03 2017−09−17 2017−10−01 2017−10−15

M
ea

n 
V

ol
um

e 
(%

)

New Volume

Old Volume

Collection for once a week

Figure 5.1: First Records of Once Week Frequency for container 49619

Container Average Volume No of Overloads
15415 114 81
31450 72 85
41483 103 100
44263 32 26
44289 108 95
44776 101 104
44966 125 114
48843 103 103
49619 51 44
50419 66 56
50443 104 96
50708 96 102
50856 105 126
51698 112 104
52910 82 85
53181 116 112
54452 127 114
54494 102 84
Mean 95% 90

Table 5.1: Once a Week Frequency Results

We can see by the results that a collection frequency of once a week is clearly

not enough for these containers. The average volume in the containers is almost
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their full capacity and the number of overloads are incredibly high which asks for

improvement of the container capacity or the collection frequency.

Applying the capacity readjustment algorithm to this data we see the improve-

ment needed on the capacity of the container in order to never have an overload of

waste, in each container. The problem with this approach is that the new capacity

is as big as the maximum waste volume ever seen on the new model.

Container Old Capacity New Capacity
15415 1000 3650
31450 800 2560
41483 1000 3910
44263 1000 1430
44289 1000 2970
44776 1000 2470
44966 1000 3800
48843 800 2688
49619 800 1640
50419 1000 2090
50443 800 2256
50708 800 2344
50856 800 2272
51698 800 2920
52910 800 2360
53181 1000 3160
54452 800 3208
54494 1000 3150
Total 16200 48878

Table 5.2: Capacity Readjustment Needed for Waste Collection on Thursday

The results are shown in Table 5.2, using the volume data generated by the

volume simulation algorithm. Some of the containers capacity improvements need

a capacity increase of around three times the current capacity. That certainly

violates restrictions (4.2) of the FCP, when considering any reasonable value for

cmax.

This results are when we consider a waste collection of one time a week on

Thursday at 10P.M., but that may not be the best day and hour to collect the

waste. To take better conclusions on the sufficiency of a collection of once a

week, we applied the volume simulation algorithm and the capacity readjustment

algorithm for every day of the week (we considered that the waste can only be
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collected at night around 10P.M.) and considered the best day. The best day is

the day in which the sum of the new capacities is the least.

In this case, the best day of the week to collect waste, when considering a waste

collection frequency of once a week is Sunday, with the overall capacity increase of

55044 litres. Table 5.3 shows the capacity readjustment needed for each container.

Container Old Capacity New Capacity
15415 1000 3360
31450 800 2528
41483 1000 3080
44263 1000 1670
44289 1000 3190
44776 1000 2420
44966 1000 3150
48843 800 2864
49619 800 1896
50419 1000 2000
50443 800 2088
50708 800 1984
50856 800 2240
51698 800 3592
52910 800 2256
53181 1000 2890
54452 800 2592
54494 1000 2970
Total 16200 46770

Table 5.3: Capacity Readjustment Needed for Waste Collection on Sunday

Even on the best day, the overall capacity would have to increase around

three times the current capacity, which is not practicable. With this result we

immediately conclude that a waste collection of one time a week is not suitable

for our problem data.

45



Chapter 5. Problem Resolution

5.1.2 Two times a Week

After trying a waste collection of once a week, we simulate a situation where

the waste collection frequency would be twice a week considering each container

as a container cluster in separate. We start by showing an example similar to the

previous shown and then apply the volume simulation algorithm and the capacity

readjustment algorithm for every pair of days of the week.

Considering the same container and time period, Figure 5.2 shows the simula-

tion for a twice a week frequency (Wednesday and Sunday at 10P.M.):
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Figure 5.2: First Records of Twice Week Frequency for container 49619

We can see in this example that a waste frequency of twice a week is perfectly

enough for container 49619 between 06/08/2017 and 15/10/2017, with only two

occurrences of waste overload.

Table 5.4 shows the mean of the new volume by container and the number of

waste overloads for each container.
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Container Average Volume No of Overloads
15415 62 35
31450 36 22
41483 53 34
44263 15 2
44289 56 29
44776 49 22
44966 53 35
48843 49 36
49619 27 8
50419 27 4
50443 46 21
50708 46 16
50856 56 37
51698 58 37
52910 37 19
53181 57 37
54452 63 41
54494 52 25
Mean 46% 25

Table 5.4: Twice a Week Frequency Results

The results are much more reasonable, with a total average of 46% of volume.

Besides, the number of waste overloads are much less than when considering once

a week, as expected.

Applying the Capacity Readjustment Algorithm using the volumes generated

by considering a waste collection frequency of two times a week on Wednesday

and Sunday at 10P.M., we get the results shown in Table 5.5.
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Container Old Capacity New Capacity
15415 1000 2480
31450 800 1296
41483 1000 1910
44263 1000 1190
44289 1000 2040
44776 1000 1470
44966 1000 2290
48843 800 1600
49619 800 1200
50419 1000 1350
50443 800 1720
50708 800 1152
50856 800 1384
51698 800 2328
52910 800 1520
53181 1000 1930
54452 800 1712
54494 1000 1790
Total 16200 30362

Table 5.5: Capacity Readjustment Needed for Waste Collection on Wednesday
and Sunday

As we can see from these results, the capacity increase needed is still a little

too high for us to consider this a possible solution, but again, these days may be a

bad pair of days to collect waste. Running both algorithms for every pair of days

of the week, Monday and Friday are the best days for waste collection.

Container Old Capacity New Capacity
15415 1000 1830
31450 800 1344
41483 1000 1790
44263 1000 1050
44289 1000 2250
44776 1000 1280
44966 1000 1960
48843 800 1456
49619 800 1392
50419 1000 1290
50443 800 1328
50708 800 1432
50856 800 1432
51698 800 1472
52910 800 1592
53181 1000 1630
54452 800 1600
54494 1000 1930
Total 16200 28058

Table 5.6: Capacity Readjustment Needed for Waste Collection on Monday
and Friday
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Table 5.6 shows the results for the best pair of days in twice a week waste

collection frequency. These results show that, for a waste collection frequency of

twice a week, we had to increase the capacity of the overall container by almost the

double capacity. This is because we are trying to prevent the worst-case scenario of

having any waste overload. The average volume of 46% seem to suggest that if we

consider clusters of containers for the capacity readjustment, instead of individual

containers, it’s possible that that readjustment would be much less than doubling

the capacity. For now, however, this is not a solution to consider.

5.1.3 Three Times a Week

As seen in Chapter 3, the current waste collection frequency in Castelo Branco

is between three to four times a week. This means that the three times a week

model is the less attractive because it provides little improvement on the cur-

rent waste collection cost, but it can be the only solution for when considering

individual containers and not considering multiple time periods.

Running the volume simulation algorithm and the capacity readjustment al-

gorithm for every three days of the week, we see that the best days for waste

collection are Monday, Thursday and Saturday. For these days, Table 5.7 shows

the mean of the new volume by containers and the number of waste overloads for

each container.

We can see that there are containers that don’t even have any overloads, which

means they won’t need a capacity readjustment. Other containers like 41483,

44289 and 48843 still have some overloads, which is probably inevitable.
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Container Average Volume No of Overloads
15415 33 6
31450 21 5
41483 34 16
44263 12 0
44289 36 10
44776 32 1
44966 37 8
48843 33 11
49619 19 5
50419 23 0
50443 33 4
50708 32 8
50856 31 6
51698 34 8
52910 29 6
53181 36 6
54452 38 9
54494 32 6
Mean 30% 6

Table 5.7: Twice a Week Frequency Results

We can see in Table 5.8 the necessary capacity improvements that need to be

made to have a waste collection frequency of three times a week for the whole

year.

Container Old Capacity New Capacity
15415 1000 1330
31450 800 1048
41483 1000 1440
44263 1000 1000
44289 1000 1870
44776 1000 1010
44966 1000 1710
48843 800 1056
49619 800 1008
50419 1000 1000
50443 800 976
50708 800 1160
50856 800 1056
51698 800 1112
52910 800 1352
53181 1000 1350
54452 800 1192
54494 1000 1340
Total 16200 22010

Table 5.8: Capacity Readjustment Needed for Waste Collection on Monday
and Friday

We can confirm that containers 44263 and 50419 don’t need a capacity im-

provement. Container 44776 improvement is residual and containers 31450, 48843,
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49619, 50443, 50856 and 51698 need to be upgraded from a 800 litres to a 1000

litres container. Containers 44289 and 44966 need to practically double their ca-

pacity. The remaining ones just need little improvement.

This proves to be a good solution for the FCP, for this set of data.

5.1.4 Results Conclusion

In this first attempt to solve the FCP, we saw that a waste collection frequency

of once and twice a week is not enough when considering individual containers

and an overall period of a year. However, the results when considering a waste

collection frequency of two times a week are quite interesting as they provide

an overall average volume of 46% on containers, which leads to believe that if

we consider clusters of containers for the capacity readjustment, this may be a

possible solution for the problem. This case is study on the next section.

For the three times a week waste collection frequency case, we saw that with

little improvements on the capacity of some containers, this frequency is enough

for this set of historical volume data. This result alone is already an improvement

of the current waste collection frequency in Castelo Branco, that is between three

to four times a week. As the containers capacity improvement have a one time

cost, this solution provides cost reduction to the city council.

In the following section, we consider clusters with several containers instead of

individual containers, to see how that affects the container capacity improvement

and we check if the solution of two times a week is enough for those clusters.

51



Chapter 5. Problem Resolution

5.2 Models Considering Clusters

As shown in Chapter 3, this is possible to high proximity of some containers (for

example containers 41483, 44289 and 53181), so we can assume that if a container

is full, one can simply use another container on the cluster.

To do this, we agregate the containers by their location, which in this case

means considering the following clusters:

• Cluster of Rua D Ega 28-40 : 41483, 44289, 53181;

• Cluster Rua Arco do Bispo 21 : 15415, 54494;

• Cluster Praça te Camões 6 : 44263, 44966, 50419;

• Cluster Rua do Arressário 60 : 31450, 51698;

• Cluster Rua do Arressário 40 : 50708;

• Cluster Rua do Arressário 41 : 48843, 52910;

• Cluster Rua do Arressário 23 : 50443, 54452;

• Cluster Rua dos Chões 34 : 44776, 49619, 50856.

The data frames associated with each cluster have the capacity and volume

(by each date and time) equal to the sum of corresponding capacities and volumes

of the containers on each cluster.
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5.2.1 Two times a Week

Considering, for example, the cluster Rua D Ega and like previously a period

dataset with the time period of 2 hours, Figure 5.3 shows the simulation for a

twice a week frequency on Monday and Friday, the best days for collection as seen

in the previous section:
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Figure 5.3: First Records of Twice Week Frequency for cluster Rua D Ega

In this graphic, we see values between 0% and 300% volume due to having

three containers in this cluster. This is just an example of the aggregated volumes

for this container.

Cluster Mean V N Containers Mean V/Container Overloads
Arco do Bispo 21 97 2 49 13

Arressario 60 92 2 46 12
Arressario 41 92 2 46 19
Arressario 23 107 2 54 19

D Ega 165 3 55 24
Praca de Camoes 103 3 34 0

Choes 34 124 3 41 10
Arressario 40 50 1 50 24

Mean 103 2,25 46 15

Table 5.9: Aggregate Twice a Week Frequency Results
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Mean V Mean V/Container
71 36
53 27
52 26
60 30
105 35
91 30
100 33
46 46
72 33

Table 5.10: After Capacity Readjustment

We can see in Table 5.10 the average volume of the clusters and of each con-

tainer in the clusters. The number of waste overloads is far less than when con-

sidering individual containers for the same waste collection frequency.

Using the capacity readjustment algorithm, the new capacities for each clusters

can be seen in Table 5.11.

Container Old Capacity New Capacity
Arco do Bispo 21 2000 3450

Arressario 60 1600 2288
Arressario 41 1600 2192
Arressario 23 1600 2416

D Ega 3000 4430
Praca de Camoes 3000 3000

Choes 34 2600 3284
Arressario 40 800 1432

Total 16200 22492

Table 5.11: Capacity Readjustment Needed for Twice Week Frequency With
Clusters

In this case, the new capacity of Arressario 40 is the same as the new capacity

of container 50708, because that’s the only container in this cluster. Cluster Praca

de Camoes doesn’t need changing and cluster Arco do Bispo and cluster D Ega

need two new containers of 800 litters. The remaining clusters just need an extra

container of 800 litres.

We can see by these results that the capacity improvement is almost as good as

the capacity improvement that has to be made when considering single containers

and collecting three times a week. The new overall capacity of 22492 is a major

improvement when compared with the 28058 obtained in the previous section.

This means that considering clusters is definitely worth it.
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5.2.2 Three Times a Week

Considering the cluster Rua D Ega and like previously a period dataset with

the time period of 2 hours, Figure 5.4 shows the simulation for three times a week

frequency on Monday, Thursday and Saturday, the best days for collection as seen

in the previous section:
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Figure 5.4: First Records of Three Times a Week Frequency for cluster Rua
D Ega

The number of overloads in this example is immediately way less than when

considering a twice a week frequency, as expected. The mean of the volume by

cluster and container and the total number of waste overloads can be seen in Table

5.12.

The only cluster with a non residual number of overloads is Arressario 40,

that is the cluster with only one container, the other ones seem to do well with a

three times a week waste collection frequency. Running the capacity readjustment

algorithm for this case, we can see in Table 5.13 that we almost don’t need capacity

improvement for clusters with more than one container.
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Cluster Mean V N Containers Mean V/Container Overloads
Arco do Bispo 21 65 2 33 2

Arressario 60 57 2 29 0
Arressario 41 61 2 31 3
Arressario 23 72 2 36 2

D Ega 108 3 36 2
Praca de Camoes 76 3 25 0

Choes 34 82 3 27 2
Arressario 40 32 1 32 8

Mean 69 2,25 31 2,4

Table 5.12: Aggregate Three Times a Week Frequency Results

Container Old Capacity New Capacity
Arco do Bispo 21 2000 2270

Arressario 60 1600 1600
Arressario 41 1600 1816
Arressario 23 1600 1760

D Ega 3000 3150
Praca de Camoes 3000 3000

Choes 34 2600 2799
Arressario 40 800 1160

Total 16200 17555

Table 5.13: Capacity Readjustment Needed for Three Times aWeek Frequency
With Clusters

With these results we confirm the results of the previous section, that the waste

collection frequency of three times a week is perfectly enough for our historical

volumes data set.

5.2.3 Results Conclusion

In this section, we concluded that, when considering clusters of containers close

together, the waste collection frequency of twice a week is a possible solution for

the FCP with this set of volume historical data. Although this solution requires

the addition of 10 containers to improve the clusters capacity, it’s a solution that

may require a much lower overall cost.

The waste collection frequency of three times a week proves to be the safest

solution for the future, with more cost but almost no need for capacity improve-

ment.
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5.3 Multiple Time Periods

In this section, we analyse what happens in the summer regarding the waste

collection frequency. As referred on Chapter 3 this is the period with less de-

posits of waste volume, so it may be useful to check the required waste collection

frequency for this period alone.

5.3.1 Summer Collection Frequency

In this period, only containers 31450, 44263, 49619 and 50856 have a signifi-

cant amount of data to analyse their waste collection frequency. We applied to

these containers the volume simulation algorithm and the capacity readjustment

algorithm for every day of the week, for summer data. The best day for waste

collection is again Wednesday, similar to the results for the whole year. The figure

5.5 shows an example of the new volume model, side by side with the real volume:
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Figure 5.5: Summer Records of Once Week Frequency for container 49619

Table 5.14 shows the average of waste volume and waste overloads during

summer, if the collection frequency was set to once a week.
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Container Average Volume No of Overloads
31450 90 14
44263 37 9
49619 45 4
50856 92 1
Mean 66% 7

Table 5.14: Once a Week Frequency in Summer Results

As we can see these are much more acceptable results than the 95% average

of waste volume seen for the whole year. Besides, the mean of overloads is much

less, although we have to consider that there we are analyzing 1/4 of the period

previously analyzed. The results from the capacity readjustment algorithm are

shown in Table 5.15.

Container Old Capacity New Capacity
31450 800 1528
44263 1000 1520
49619 800 944
50856 800 936
Total 3400 4928

Table 5.15: Capacity Readjustment Needed for Waste Collection on Wednes-
day in Summer

We can see that containers 31450 and 44263 need an extra container to prevent

waste overloads. As for containers 49619 and 50856, an upgrade from 800 litres to

1000 litres would be enough.

5.3.2 Results Analysis

Considering the model of waste collection frequency of twice a week using

clusters, and with the addition of the 10 containers, we see that in summer, it’s

perfectly possible to consider a waste collection frequency of once a week. This is

another improvement on the current waste collection frequency.
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Model Validation

In this chapter, we validate the solutions obtained in Chapter 5 by predicting

how they behave in the future in terms of waste collections needs. We start

by making predictions over the original data, in order to validate the prediction

models themselves. Then, we apply the same predictions to the models created in

order to have an idea of how they behave in the future.

6.1 Predictions

Using information of the season, weekday, precipitation and air temperature

can provide good predictions on whether a container waste must be collected or

not. To do so, we used data from the main data set and several datasets with

fixed time periods. In both cases we considered that a container waste must be

collected if the amount of waste in the container is higher than 60%. We pretend

to compare the results between the original datasets.

6.1.1 Data Preparation

Data with categorical values, in this case season, day-of-week, precipitation

and air temperature, are pre-processed where the number of columns is equal to
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the number of categories. The target (volume) is what we want to predict. More

specifically we want to predict if a container has to be collected. To improve the

performance and match the points of interest of the article, we transferred the

values, which vary from 0% to 100%, to binary data. When the volume filled is

inferior to 60%, is considered Full (in the sense that needs collection), otherwise

is considered Not Full.

This data is prepared for each container. The summary of the data used for

container 31450 can be seen in Table 6.1

Season WeekDay Precipitation Temperature Volume
Fall 1092 Friday 504 Rainy Day 228 Mild Day 1212 Full 1269

Spring 960 Monday 504 Very Rainy Day 468 Cold Day 1008 Not Full 2235
Summer 372 Saturday 492 Day without Rain 2808 Very Cold Day 120
Winter 1080 Sunday 492 Hot Day 1020

Thursday 504 Very Hot Day 144
Tuesday 504

Wednesday 504

Table 6.1: Data for Machine Learing

The data is divided in two sets: the training set, with 80% of the data, and

the validation set, with 20% of the data.

6.1.2 Prediction by container

Considering a dataset with volume values every 8 hours, for every container

and using information about season, weekday, precipitation and temperature, we

predicted if a container waste should be collected using, in this case, five algo-

rithms: k-nearest neighbours (KNN), Latent Dirichlet Allocation (LDA), decision

tree (cart) and random forest (RF). An example of the training results is presented

in Figure 6.1

In this example, we can see that the random forest algorithms present the

better results, with up to 80% of accuracy. With this, the random forest was the

elected algorithm for the remaining tests. Although this is not a bad accuracy

result, when making predictions to compare with the validation set, the accuracy

of the predictions doesn’t go further than 75%, for most of the containers data

used.
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Figure 6.1: Training Results

Container/TP 6H 8H 12H 24H
15415 0,65 0,66 0,65 0,71
31450 0,76 0,71 0,8 0,74
41483 0,69 0,68 0,78 0,67
44263 0,91 0,91 0,92 0,9
44289 0,79 0,67 0,78 0,72
44776 0,69 0,64 0,76 0,77
44966 0,75 0,71 0,84 0,72
48843 0,67 0,71 0,73 0,61
49619 0,86 0,82 0,84 0,81
50419 0,92 0,92 0,92 0,93
50443 0,73 0,64 0,74 0,7
50708 0,76 0,66 0,75 0,6
50856 0,63 0,58 0,69 0,79
51698 0,64 0,58 0,67 0,68
52910 0,8 0,77 0,81 0,78
53181 0,66 0,62 0,75 0,65
54452 0,66 0,63 0,74 0,7
54494 0,7 0,66 0,71 0,62
Mean 0.73 0.70 0.77 0.72

Table 6.2: Prediction results by time period

All results are shown in Table 6.2. The mean of the accuracy obtained was

around 70% for the datasets with volume values every 8 hours. The same algo-

rithm was applied for datasets with time periods of 6 hours, 12 hours and a day.

The mean accuracy obtained was 73%, 77% and 72% respectively. The results

61



Chapter 6. Model Validation

presented show that information like season, weekday, temperature and precipita-

tion provide good predictions on whether a container waste must be collected or

not.

6.1.3 Prediction by cluster

In this section we see how well predictions perform on clusters instead of in-

dividual containers. We check if the sum of the volume of the containers in the

cluster divided by the number of containers in the cluster are above or below 60%.

The algorithm used was again the random forest algorithm. The results can be

seen in Table 6.4.

Cluster/TP 6H 8H 12H 24H
Arco do Bispo 21 0,65 0,55 0,62 0,83
Arressario 60 0,71 0,7 0,78 0,73
Arressario 41 0,82 0,76 0,82 0,71
Arressario 23 0,75 0,7 0,83 0,8

D Ega 0,74 0,7 0,67 0,81
Praca de Camoes 0,92 0,9 0,92 0,9

Choes 34 0,77 0,76 0,81 0,84
Arressario 40 0,76 0,66 0,75 0,6

Mean 0.77 0.72 0.78 0.78

Table 6.3: Prediction results by time period

We can see that there’s no particular improvement when considering the clus-

ters of containers instead of the containers individually. Still, these predictions

have a pretty good accuracy to predict if a container or cluster should be collected

or not. This is useful, in the following section, to validate the solutions obtained

in Chapter 5, providing a way to study how they change in terms of the amount

of waste volume, not only for the dates on the datasets but also to predict how

they behave in the future.
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6.2 Model Comparison

In this section, we compare the number of times we have to collect waste given

the current frequency versus the new frequency of models obtained on chapter 5. If

it’s they are similar, it means that the new models are probably good solutions, not

only for the current volume data but for the future too. This is always considering

the 77% of average accuracy on the previous section.

For this study, we only consider the best solution obtained for this data, which

is a waste collection frequency of twice a week and considering clusters of contain-

ers. We start by applying the same predictions to the new sets of data, obtained

after running the volume simulation algorithm to time periods of 6h, 8h and 12h.

The results on the predictions accuracy are shown in Table

Cluster/TP 6H 8H 12H
Arco do Bispo 21 0,81 0,85 0,78
Arressario 60 0,78 0,89 0,82
Arressario 41 0,84 0,84 0,8
Arressario 23 0,82 0,81 0,8

D Ega 0,89 0,88 0,86
Praca de Camoes 0,89 0,92 0,92

Choes 34 0,89 0,9 0,87
Arressario 40 0,84 0,88 0,82

Mean 0,85 0,87 0,83

Table 6.4: Prediction results by time period

The accuracy obtained for the new data is better than in the original data.

This happens because in practice, the amount of times a cluster is consider full is

even less than in the original data, due to the capacity improvement in this model.

Table 6.5 shows the difference between the original data and the data from the

model with two times a week collection frequency.
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Original Data New Data
Clusters Full Not Full Full Not Full

Arco do Bispo 21 275 317 173 419
Arressario 60 250 586 202 634
Arressario 41 217 695 221 691
Arressario 23 271 545 292 524

D Ega 742 2 265 479
Praca de Camoes 69 731 83 717

Choes 34 254 650 170 734
Arressario 40 317 603 233 687

Total 2395 4129 1639 4885

Table 6.5: Amount of Full Containers in Original and New Models

These values present another good argument to have a waste collection fre-

quency of two times a week, as they indicate that this model is not only better for

the current data, but it’s likely to be better for future waste collections.
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Conclusions

In this final chapter, we provide a summary of what was studied in this dis-

sertation. We start by revisiting the research questions made in Chapter 1. Next

we talk about the major findings in this study. Lastly, we draw some conclusions

and talk about future work.

7.1 Questions Answered

Going back to the research questions made in Chapter 1, we can see in this

dissertation the answer to almost all of them.

Regarding question 1, we saw in Chapter 3 and 5 that this question could be

answered considering critical points in each container and the frequency needed

for each container individually to avoid waste overload. For this set of waste

volume historical data, the containers 15415, 44776, 53181 and 54452 have the

most critical points. On the other hand, containers 41483, 44289 and 48832 need

more than twice a week collection for the best overall pair of days. So yes, with

the volume data of waste in the containers, it’s possible to know which containers

require more or less frequent collection.
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As mention in Chapter 3, Evox, the company that provided the data sets

for this study, already use the volume data for collection routes optimization in

real-time, answering to question 2.

Although this is not something yet addressed in the literature, on Chapter 6

it was shown that we could predict with an accuracy of around 78% if a container

waste volume is above 60%, using information like season, weekday, air tempera-

ture and precipitation.

Question 4 was not answered in this dissertation. We saw on Chapter 6 that

the waste deposit volume is less in the summer, where probably the population

density is less, but to truly answer this question, we would need a much larger set

of containers and information on families income.

The capacity readjustment algorithm presented in Chapter 4 and applied in

Chapter 5 solve Question 5.

Question 6 is solved using the volume simulation algorithm combined with the

capacity readjustment algorithm combined. This was done in Chapter 5 and for

this set of data and considering individual containers, the best collection frequency

is three times a week with the addition of two containers and the upgrade from

800 litres to 1000 litres of six containers.

Question 7 is also solved in Chapter 5. When considering clusters of containers

next to each other, we saw that a waste collection frequency of twice a week with

the capacity improvement of adding ten containers is an optimal solution for these

set of volume data. This is a major improvement over the current three to four

times week collection in Castelo Branco.

7.2 Major Findings

In this study, it was shown that grouping the containers by streets, the monthly

average volume was always between 30% to 60% and the average volume of deposits
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were never above 20% of waste a day. On the other hand, the waste collection

was, in most cases, done wrong, with a high number of needless collections and

critical points. It was also found that the classes weekday, precipitation and air

temperature had a week correlation with the volume data while season had a

strong correlation.

Using machine learning algorithms, we predicted if a container waste has to be

collected or not with a 78% accuracy, just using the information on season, week-

day, air temperature and precipitation. These predictions can be used to propose

more complex models where the waste collection frequency varies by season.

We propose three different solutions of frequency-capacity. The first proposal

was a waste collection frequency of one time a week. For this model, we saw that

almost every container had an average waste volume over 95% which shows that

a frequency of once a week is not enough for this case. The second proposal was a

waste collection frequency of twice a week considering individual containers. This

model shows a great improvement over the previous one with an average waste

volume over 46% volume by container, but it needed an increase of the capacity

of the overall container by almost the double of the current capacity. The third

proposal was a waste collection of three times a week. We saw that the average

volume was around 30% and this frequency requires addition of two containers

and the upgrade of six containers from 800 litres to 1000 litres, but it provides a

better solution than the current solution of three to four times a week. The last

proposal was a frequency of two times a week considering clusters of containers

next to each other. We saw that if when a container is full, a person uses another

container of the cluster, to prevent waste overloads it would only need to be added

ten containers to the current ones. On top of that, we saw that the collection

frequency may be reduced to once a week in summer. With predictions, it was

shown that this solutions is likely to do well in the future, due to having less

probability of having containers with waste volume above 60%. Because the cost

of collecting is much greater over time than the cost of adding containers, this is a

major improvement over the current three to four times week collection in Castelo

Branco, making this a successful capacity-frequency solution for our containers.

67



Chapter 7. Conclusions

7.3 Conclusion

In this dissertation we addressed the waste collection process with a different

approach by studying the capacity-frequency problem.

It was possible analyze waste deposition volume and to identify patterns for

a determinist and uniform waste collection. For this case, we concluded that a

uniform collection of twice a week, with small improvements in containers capacity,

proved to be enough for these containers, which is a major improvement to the

current collection frequency of three to four times a week.

This process, composed mostly by the volume simulation algorithm and the

capacity readjustment algorithm is easy to implement for other sets of data because

the processes to generate the model’s new volume data and capacities required are

scalable, so it’s easy to apply this study for other use cases.

For future work, we pretend to use more information to propose mixed different

waste collected frequencies by season, month or other periods of time, providing

an automated dynamic calculation of frequency-capacity solutions.

68



Bibliography

[1] Pike research. https://smartcitiescouncil.com/tags/pike-research,

2011. Accessed: 2019-04-22.

[2] Evox 360 waste. https://www.360waste.pt, 2018. Accessed: 2019-06-06.

[3] Evox 360 waste dashboard. https://www.360waste.pt/dashboardpt, 2018.

Accessed: 2019-06-03.

[4] Hannele Ahvenniemi, Aapo Huovila, Isabel Pinto-Seppä, and Miimu Airaksi-

nen. What are the differences between sustainable and smart cities? Cities,

60:234 – 245, 2017.

[5] T. Anagnostopoulos, A. Zaslavsky, and A. Medvedev. Robust waste collection

exploiting cost efficiency of iot potentiality in smart cities. In 2015 Interna-

tional Conference on Recent Advances in Internet of Things (RIoT), pages

1–6, April 2015.

[6] T. Anagnostopoulos, A. Zaslavsy, A. Medvedev, and S. Khoruzhnicov. Top –

k query based dynamic scheduling for iot-enabled smart city waste collection.

In 2015 16th IEEE International Conference on Mobile Data Management,

volume 2, pages 50–55, June 2015.

[7] Joaquín Bautista, Elena Fernández, and Jordi Pereira. Solving an urban

waste collection problem using ants heuristics. Computers And Operations

Research, 35(9):3020 – 3033, 2008. Part Special Issue: Bio-inspired Methods

in Combinatorial Optimization.

69

https://smartcitiescouncil.com/tags/pike-research
https://www.360waste.pt
https://www.360waste.pt/dashboardpt


References

[8] Xiaoyun Bing, Jacqueline M. Bloemhof, Tania Rodrigues Pereira Ramos,

Ana Paula Barbosa-Povoa, Chee Yew Wong, and Jack G.A.J. van der Vorst.

Research challenges in municipal solid waste logistics management. Waste

Management, 48:584 – 592, 2016.

[9] Stephen J. Burnley. A review of municipal solid waste composition in the

united kingdom. Waste Management, 27(10):1274 – 1285, 2007. Wascon 2006

6th International Conference: Developments in the re-use of mineral waste.

[10] Andrea Caragliu, Chiara Del Bo, and Peter Nijkamp. Smart cities in europe.

Journal of Urban Technology, 18(2):65–82, 2011.

[11] Manuel Castells. Urban sustainability in the information age. City, 4(1):118–

122, April 2000.

[12] Renata Dameri and A Cocchia. Smart city and digital city: Twenty years

of terminology evolution. X Conference of the Italian Chapter of AIS,

ITAIS2013, pages 1–8, 01 2013.

[13] G. Ghiani, D. Laganà, E. Manni, R. Musmanno, and D. Vigo. Operations

research in solid waste management: A survey of strategic and tactical issues.

Computers and Operations Research, 44:22 – 32, 2014.

[14] Jose M. Gutierrez, Michael Jensen, Morten Henius, and Tahir Riaz. Smart

waste collection system based on location intelligence. Procedia Computer Sci-

ence, 61:120 – 127, 2015. Complex Adaptive Systems San Jose, CA November

2-4, 2015.

[15] Peter Hall. Creative cities and economic development. Urban Studies,

37(4):639–649, 2000.

[16] Gerhard P. Hancke, Bruno de Carvalho e Silva, and Gerhard P. Hancke, Jr.

The role of advanced sensing in smart cities. Sensors, 13(1):393–425, 2013.

[17] Perinaz Hoornweg, Daniel; Bhada Tata. What a Waste : A Global Review of

Solid Waste Management. 2012.

70



References

[18] Nikolaos Karadimas, Katerina Papatzelou, and Vassili Loumos. Genetic Al-

gorithms for Municipal Solid Waste Collection and Routing Optimization, vol-

ume 247, pages 223–232. 09 2007.

[19] Alexey Medvedev, Petr Fedchenkov, Arkady Zaslavsky, Theodoros Anagnos-

topoulos, and Sergey Khoruzhnikov. Waste management as an iot-enabled

service in smart cities. In Sergey Balandin, Sergey Andreev, and Yevgeni

Koucheryavy, editors, Internet of Things, Smart Spaces, and Next Genera-

tion Networks and Systems, pages 104–115, Cham, 2015. Springer Interna-

tional Publishing.

[20] Zhu Minghua, Fan Xiumin, Alberto Rovetta, He Qichang, Federico Vicentini,

Liu Bingkai, Alessandro Giusti, and Liu Yi. Municipal solid waste manage-

ment in pudong new area, china. Waste Management, 29(3):1227 – 1233,

2009.

[21] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris. Smarter

cities and their innovation challenges. Computer, 44(6):32–39, June 2011.

[22] Teemu Nuortio, Jari Kytöjoki, Harri Niska, and Olli Bräysy. Improved route

planning and scheduling of waste collection and transport. Expert Systems

with Applications, 30(2):223 – 232, 2006.

[23] S. Pellicer, G. Santa, A. L. Bleda, R. Maestre, A. J. Jara, and A. G. Skarmeta.

A global perspective of smart cities: A survey. In 2013 Seventh International

Conference on Innovative Mobile and Internet Services in Ubiquitous Com-

puting, pages 439–444, July 2013.

[24] Mufeed Sharholy, Kafeel Ahmad, Rakesh Chandra Vaishya, and Rana Datta

Gupta. Municipal solid waste characteristics and management in allahabad,

india. Waste management, 27 4:490–6, 2007.

[25] F. Vicentini, A. Giusti, A. Rovetta, X. Fan, Q. He, M. Zhu, and B. Liu.

Sensorized waste collection container for content estimation and collection

71



References

optimization. Waste Management, 29(5):1467 – 1472, 2009. First interna-

tional conference on environmental management, engineering, planning and

economics.

[26] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of

things for smart cities. IEEE Internet of Things Journal, 1(1):22–32, Feb

2014.

72


	Abstract
	Acknowledgements
	List of Figures
	List of Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Context
	1.3 Research Questions
	1.4 Goals
	1.5 Research Methodology

	2 Related Work
	2.1 Smart Cities
	2.2 Waste Collection Problem
	2.2.1 Optimizing Routes
	2.2.2 System Architectures
	2.2.3 Frequency Capacity Problem


	3 Data Exploration
	3.1 Data Sets and Tools
	3.2 Data Analysis
	3.2.1 Visualization by zone
	3.2.2 Deposits and Collections
	3.2.3 Collection analysis
	3.2.4 Data Correlation

	3.3 Major Findings

	4 Frequency-Capacity Problem
	4.1 Definition
	4.1.1 Problem Formulation
	4.1.2 Variants

	4.2 Algorithms
	4.2.1 Volume Simulation
	4.2.2 Capacity Readjustment
	4.2.3 Multiple Period Algorithm

	4.3 Finding Solutions

	5 Problem Resolution
	5.1 Solving with Standard Algorithm
	5.1.1 One Time a Week
	5.1.2 Two times a Week
	5.1.3 Three Times a Week
	5.1.4 Results Conclusion

	5.2 Models Considering Clusters
	5.2.1 Two times a Week
	5.2.2 Three Times a Week
	5.2.3 Results Conclusion

	5.3 Multiple Time Periods
	5.3.1 Summer Collection Frequency
	5.3.2 Results Analysis


	6 Model Validation
	6.1 Predictions
	6.1.1 Data Preparation
	6.1.2 Prediction by container
	6.1.3 Prediction by cluster

	6.2 Model Comparison

	7 Conclusions
	7.1 Questions Answered
	7.2 Major Findings
	7.3 Conclusion

	Bibliography

