

Department of Information Science and Technology

Integration of Mobile Devices in Home Automation with Use of

Machine Learning for Object Recognition

Rui Jorge Silva Passinhas

A Dissertation presented in partial fulfillment of the Requirements

for the Degree of

Master in Telecommunications and Computer Engineering

Supervisor:

Rui Miguel Neto Marinheiro, Assistant Professor

ISCTE-IUL

Co-Supervisor:

Paulo Jorge Lourenço Nunes, Assistant Professor

ISCTE-IUL

October, 2019

i

ii

Resumo

O conceito de casas inteligentes está cada vez mais em constante expansão e o número

de objetos que temos em casa que estão conectados cresce exponencialmente. A tão

chamada internet das coisas abrange cada vez mais dispositivos domésticos crescendo

também a necessidade de os controlar. No entanto existem inúmeras plataformas que

integram inúmeros protocolos e dispositivos, de inúmeras maneiras, muitas delas pouco

intuitivas.

Algo que transportamos sempre connosco são os nossos dispositivos móveis e com a

evolução da tecnologia, estes vieram-se tornando cada vez mais potentes e munidos de

variados sensores. Uma das portas para o mundo real nestes dispositivos é a câmara e as

suas inúmeras potencialidades. Uma temática que tem vindo também a ganhar enorme

relevância é a Inteligência Artificial e os algoritmos de Aprendizagem Máquina. Assim,

com o processamento correto os dados recolhidos pelos sensores poderiam ser utilizados

de maneira intuitiva para interagir com os tais dispositivos presentes em casa.

Nesta dissertação é apresentado o protótipo de um sistema que integra os dispositivos

móveis nas plataformas de automação de casas através da deteção de objetos na

informação recolhida pela câmara dos mesmos, permitindo assim ao utilizador interagir

com eles de forma intuitiva. A principal contribuição do trabalho desenvolvido é a

integração não explorada até então, no contexto da automação de casas, de algoritmos de

ponta capazes de superar facilmente os seres humanos na análise e processamento de

dados adquiridos pelos nossos dispositivos móveis. Ao longo da dissertação são

explorados os conceitos referidos, bem como a potencialidade dessa integração e os

resultados obtidos.

Palavras Chave: Internet das Coisas, Casas Inteligentes, Computação Visual,

Aprendizagem Máquina, Dispositivos Móveis

iii

iv

Abstract

The concept of smart homes is increasingly expanding and the number of objects we

have at home that are connected grows exponentially. The so-called internet of things is

increasingly englobing more home devices and the need to control them is also growing.

However, there are numerous platforms that integrate numerous protocols and devices in

many ways, many of them being unintuitive.

Something that we always carry with us is our mobile devices and with the evolution

of technology, they have become increasingly powerful and equipped with lots of sensors.

One of the bridges to the real world in these devices is the camera and its many potentials.

The amount of information gathered can be used in a variety of ways and one topic that

has also gathered tremendous relevance is Artificial Intelligence and Machine Learning

algorithms. Thus, with the correct processing, data collected by the sensors could be used

intuitively to interact with such devices present at home.

This dissertation presents the prototype of a system that integrates mobile devices in

home automation platforms by detecting objects in the information collected by their

cameras, consequently allowing the user to interact with them in an intuitive way. The

main contribution of the work developed is the non-explored until then integration, in the

home automation context, of cutting-edge algorithms capable of easily outperforming

humans into analyzing and processing data acquired by our mobile devices. Throughout

the dissertation the referred concepts are explored as well as the potentiality of this

integration and the results obtained.

Keywords: Internet of Things, Smart Homes, Computer Vision, Machine Learning,

Mobile Devices

v

vi

Acknowledgements

Firstly, I would like to express my sincere thanks to my supervisors, Professor Rui

Marinheiro and Professor Paulo Nunes for the availability and promptness in supporting

me during the course of this dissertation.

I would also like to thank Instituto de Telecomunicações for providing me the

conditions to the realization of all the work developed.

Finally, and not least important, I want to express my gratitude to all my family and

friends which helped me through this journey and always kept my motivation levels high.

Some of them accompanied me since the beginning of my academic journey and share

with me all the difficulties and step backs we all had to deal with to accomplish this goal.

Without all of them it would not be possible to complete this dissertation.

vii

viii

Contents

List of Tables ... xii

List of Figures .. xiv

Abbreviations ... xvi

Chapter 1 – Introduction ... 1

1.1. Motivation and Framework ... 1

1.2. Objectives .. 2

1.3. Dissertation Organization .. 3

Chapter 2 – Literature Review .. 5

2.1. Home Automation Platforms ... 5

2.1.1. Platform Solutions .. 6

2.1.1.1 OpenHAB .. 7

2.1.1.2 Domoticz ... 7

2.1.1.3 Home Assistant ... 7

2.1.1.4 OpenMotics ... 7

2.1.1.5 OpenRemote .. 8

2.1.1.6 Calaos .. 8

2.1.2. Remarks .. 8

2.2. Integration with Mobile Devices ... 9

2.2.1 Mobile Application ... 9

2.2.2 Communication .. 10

2.2.2.1 MQTT.. 10

2.2.2.2 Bluetooth ... 11

2.2.2.3 HTTP ... 12

2.2.2.4 Remarks ... 12

2.3. Image Processing ... 13

2.3.1 Computer Vision .. 13

2.3.1.1 Image Classification .. 14

2.3.1.2 Object Detection .. 14

2.3.1.3 Other Techniques .. 15

2.3.2 Machine Learning ... 15

2.3.2.1 Neural Networks ... 16

2.3.2.2 Deep Learning ... 17

2.3.3 Frameworks and Libraries .. 18

2.3.3.1 OpenCV ... 18

2.3.3.2 Tensor Flow... 18

ix

2.3.3.3 Cloud Vision ... 18

2.3.4 Remarks .. 19

2.4. Related Work ... 19

Chapter 3 – System Architecture .. 21

3.1. Mobile Module .. 22

3.1.1. Mobile Application ... 22

3.1.2. Inference Model .. 23

3.2. Communication .. 25

3.3. Home Module .. 26

3.3.1. Broker ... 27

3.3.2. Automation Platform .. 28

Chapter 4 – System Implementation .. 29

4.1. Inference Model ... 29

4.1.1. Collecting and Preparing the Dataset Broker ... 30

4.1.2. Training Elements .. 31

4.1.3. Training Process ... 32

4.1.3.1 Environment Configuration... 33

4.1.3.2 Network Re-training .. 34

4.1.3.3 Training Summary... 36

4.1.4. Exportation and Conversion ... 37

4.2. Mobile Application .. 38

4.2.1. Model Interpretation ... 39

4.2.1.1 Configuration .. 39

4.2.1.2 TFLite API .. 41

4.2.2. MQTT Communication .. 42

4.2.2.1 Configuration .. 42

4.2.2.2 Message Sending ... 43

4.3. Home Automation Platform ... 45

4.3.1. Platform Installation ... 45

4.3.2. MQTT Communication .. 46

4.3.3. Automation Rules ... 47

Chapter 5 – Validation Tests ... 49

5.1. Implemented Prototype .. 49

5.2. Server vs On-Device Machine Learning Performance Tests 50

5.3. Confidence Tests .. 52

5.3.1. Bulb .. 52

5.3.2. Air Conditioner ... 54

x

5.3.3. Window Shutter .. 55

5.4. Discussion .. 56

Chapter 6 – Conclusions and Future Work ... 57

6.1. Main Conclusions .. 57

6.2. System Limitations .. 58

6.3. Future Work ... 59

References.. 61

xi

xii

List of Tables

Table 2.1 - Home Automation Platforms Key Features ... 6
Table 5.2 - Bulb Tested Scenarios confidence ... 53

Table 5.3 - Air Conditioner Tested Scenarios Confidence ... 55
Table 5.4 - Window Shutter Tested Scenarios Confidence .. 56

xiii

xiv

List of Figures

Figure 2.1 - Devices Connected to a Home Automation Platform 5

Figure 2.2 - Communication between Mobile Device and Home Automation Platform 10

Figure 2.3 - MQTT Publish/Subscribe Architecture .. 11

Figure 2.4 - HTTP Client/Server Architecture [20] ... 12

Figure 2.5 - Traditional Computer Vision Algorithm Flow ... 13

Figure 2.6 - Image Classification Example .. 14

Figure 2.7 - Object Detection Example .. 14

Figure 2.8 - Image Segmentation Example .. 15

Figure 2.9- Deep Learning Algorithm Flow ... 16

Figure 2.10 - Neural Network Architecture.. 16

Figure 2.11 - Deep Learning Neural Network Example .. 17

Figure 3.1 - High-Level System Architecture .. 21

Figure 3.2 - Mobile Module Architecture .. 22

Figure 3.3 - Inference Model Architecture Stack Integration .. 24

Figure 3.4 - Communication Architecture Workflow .. 25

Figure 3.5 - Home Module Architecture .. 26

Figure 3.6 - Broker Communication Role In System Architecture 27

Figure 3.7 - Smart Devices Connected to Home Automation Platform 28

Figure 4.1 - Image Dataset for Training ... 30

Figure 4.2 - Image Labeling Example .. 31

Figure 4.3 - Label Map Example .. 32

Figure 4.4 - Python Environment Installation Commands [40] 33

Figure 4.5- Linux Shell Variables Representing the Hyper-Parameters 34

Figure 4.6 - Command to Run the Training Process .. 34

Figure 4.7 - retrain.py Final Output .. 35

Figure 4.8 - Training Accuracy (TensorBoard) .. 36

Figure 4.9 - Training Cross Entropy (TensoarBoard) .. 37

Figure 4.10 - Model Conversion Using TFLite .. 38

Figure 4.11 - Permissions and Features in AndroidManifest.xml 39

Figure 4.12 - Resources in Android Assets Folder ... 40

Figure 4.13 - App Module Gradle Dependencies and Repositories 40

Figure 4.14 - App Module Gradle AAPT Options ... 40

Figure 4.15 - ImageClassifier.java Constructor.. 41

Figure 4.16 - Frame Classification Method .. 42

Figure 4.17 - App Module Grade Paho Dependencies ... 43

file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416737
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416737
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416738
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416738
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416739
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416739
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416740
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416740
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416741
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416741
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416742
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416742
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416743
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416743
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416744
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416744
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416745
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416745
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416746
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416746
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416747
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416747
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416748
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416748
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416749
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416749
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416750
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416750
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416751
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416751
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416752
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416752
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416753
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416753
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416754
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416754
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416755
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416755
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416756
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416756
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416757
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416757
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416758
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416758
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416759
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416759
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416760
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416760
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416761
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416761
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416762
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416762
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416763
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416763
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416764
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416764
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416765
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416765
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416766
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416766
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416767
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416767
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416768
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416768
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416769
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416769
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416770
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416770
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416771
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416771

xv

Figure 4.18 - Paho Service Decalration inside Android Manifest 43

Figure 4.19 - Paho Connection Establishment ... 44

Figure 4.20 - Paho Message Publish .. 44

Figure 4.21 - Home Assistant Virtual Environment Activation 45

Figure 4.22 - Home Assistant Service File ... 46

Figure 4.23 - Mosquitto MQTT Broker Installation .. 46

Figure 4.24 - MQTT Broker Declaration in configurations.yaml 47

Figure 4.25 - Bulb Automation Rule .. 48

Figure 5.1 - Application Main Screen Example ... 49

Figure 5.2 - Automation Platform with Light Turned On .. 50

Figure 5.4 - Image Classification inside the Application Measuring Time Elapsed 51

Figure 5.3 - Python Script to Evaluate an Image using the Inference Model 51

Figure 5.5 - Bulb Images Used for Testing .. 52

Figure 5.6 - Bulb Tested Scenarios .. 53

Figure 5.7 - Air Conditioner Tested Scenarios ... 54

Figure 5.8 - Window Shutters Tested Scenarios .. 55

file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416772
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416772
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416773
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416773
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416774
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416774
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416775
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416775
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416776
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416776
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416777
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416777
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416778
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416778
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416779
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416779
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416780
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416780
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416781
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416781
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416782
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416782
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416783
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416783
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416784
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416784
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416785
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416785
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416786
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416786
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416787
file:///C:/Users/ruijs/Desktop/Entrega%20Final/trabalho_final_68675_rui_passinhas.docx%23_Toc27416787

xvi

Abbreviations

AES Advanced Encryption Standard

ANN Android Neural Network

API Application Programming Interface

CNN Convolutional Neural Network

CV Computer Vision

DL Deep Learning

DSR Design Science Research

ESH Eclipse Smart Home

FHSS Frequency Hopping Spread Spectrum

HAL Hardware Abstraction Layer

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

ITU International Telecommunication Union

JVM Java Virtual Machine

ML Machine Learning

MQTT Message Queuing Telemetry Transport

OCR Optical Character Recognition

OS Operating System

QoS Quality of Service

RSA Rivest–Shamir–Adleman

TPU Tensor Processing Unit

UI User Interface

URI Universal Resource Identifier

xvii

1

Chapter 1 – Introduction

In recent years we have been witnessing a technological change of a dimension

comparable to the industrial revolution [1]. This is based on the principle that all the

objects that surround us are likely to become connectable and form an intelligent network

that we can call the Internet of Things (IoT), a network that while connecting all the

devices to the Internet allows them to communicate with each other and with the people,

changing information according to a set of defined protocols.

IoT can be seen as a bridge between the real and the virtual world since it allows

“things” to gather information from the environment and share knowledge [2]. As a result,

this translates into improved process efficiency and increased level of automation in tasks

performed with these devices.

These developments provide the ability to develop applications that allow us to

improve our life quality in the different environments we attend. Thus, by making devices

“smart”, we can design solutions for diverse areas such as: logistics, farming,

transportation, health, smart environments (home, office) and even at a personal and

social level [3].

1.1. Motivation and Framework

Homes are precisely one of the most predominant areas in IoT. By 2020 the number

of connected devices is expected to grow exponentially to around 8 billion, with a large

slice of approximately 30% [4] being devices in our homes.

These devices, when used in a smart and dynamic way, form what we nowadays call

"Smart Homes". With the right automation logic implemented, we can control lights,

temperatures, appliances and other devices, set alarms and monitor systems in order to

provide comfort and convenience to its residents.

However, with incessant search for innovation and a constant emergence of new

technologies, we come across an endless number of protocols and platforms to integrate

all these new devices. One of the main obstacles to the development of an IoT is the

standardization of this integration. As mentioned in [5], if we imagine a scenario where

each car manufacturer used different controls and their drivers were forced to use wheels

2

on one type of car, joysticks on others and buttons on another type, we easily understand

the complexity of the problem. If we apply the metaphor for Smart Homes, we can see

that in a scenario where we have a vast set of devices connected at home, it becomes

difficult to have a protocol or a bridge that connects all of them.

Currently the Institute of Electrical and Electronics Engineers (IEEE) Standards

Association in joint efforts with the International Telecommunications Union (ITU) have

been working to define a standards framework to help overcome these barriers that

prevent IoT from reaching its full potential.

It is in this context that arises the opportunity for solutions based on Open Home

Automation Bus (OpenHAB) [6] or OpenRemote [7]. Through the use of open standards,

these platforms can integrate almost any type of device without despising the efficiency

and benefits to the user. However, the configuration process and everyday use is time

consuming and not so intuitive for the average user. This almost ends up narrowing the

use of this platform to users with computational background or who are willing to take

the time to learn how to use the system [8].

This scenario opens the door to the use of our personal mobile device to ease the

interaction with the platform and make its usage more user friendly and intuitive.

However, the integration of these devices on the automation platforms is still far from

complete, especially considering the amount of information from the sensors that can be

collected from the device.

One of the sensors that allows a greater margin of integration is the camera. With the

help of Computer Vision (CV) libraries such as the Open Source Computer Vision

Library (OpenCV) [9] or image detection APIs such as Cloud Vision [10], there is room

to progress towards using the camera as a sensor on the automation platforms and perform

image recognition tasks. Furthermore, there are also other sensors in the mobile device

that can support intuitive tasks, such as the light sensor and the gyroscope.

1.2. Objectives

The main goal of this dissertation is to promote the integration of mobile devices into

current home automation solutions, considering the device as a sensor, in particular the

use of its camera in a user-friendly way in order to perform tasks based on image

recognition.

3

Analyzing the related work in the smart homes sector, it is noticeable that an effort is

being made in progressively using the mobile device to interact with the home automation

platforms and control our home appliances in a user-friendly way. Still and all, there is

no bridge between the mentioned subjects and this dissertation proposal aims to fill that

gap, providing the device the ability to perform image recognition tasks from an intuitive

application and consequently take actions in a smart home environment.

This integration strives to go beyond the scope of the normal home automation mobile

applications as far as the interaction with the user happens and as well as the concept of

object recognition with real time detection is attached.

Thus, the proposed system consists in a sequence of modules which provide the

foundation to the whole work flow that needs to occur since back from the user to the end

smart home devices. In a high-level system architecture overview, the system presented

consists of a mobile application where the user takes interactions. This application is

where the object recognition is performed in real time, analyzing the surrounding

environment and enabling the interactions with the devices. Then, the application

interacts with a message broker, which connects to the home automation platform and

consequently triggers events in the devices themselves, according to the existing rules.

The final objective is validating the prototype implementation analyzing real case

scenarios and identifying and interacting with the smart home devices, considering the

obtained accuracy and viability.

1.3. Dissertation Organization

After contextualizing the motivation and introducing the scope of the dissertation,

Chapter 2 reviews the work already developed, considering the existent solutions and the

state of the art itself. In Chapter 3, a high-level system architecture is presented,

introducing the modules of the system developed and the choices made for each of them.

Later, Chapter 4 describes the major system development stages in order to successfully

implement the proposed solution. In Chapter 5, the final solution achieved and its

components are described as well as comparisons and tests on the implemented prototype

are made. This analysis allows to draw the major conclusions depicted in Chapter 6,

which also discusses possible system limitations and identifies topics for future work

development.

4

5

Chapter 2 – Literature Review

IoT for Smart Homes and Computer Vision are some of the most emerging trends in

the 21st century and consequently there are numerous solutions and concepts developed

in both domains. However, there are not many proposals that put together these two topics

taking advantage of the integration between them. Nevertheless, extensive related work

can be found mostly in independent subjects.

Considering the context of IoT presented in Chapter 1 and the above statements, given

the fact that home automation platforms provide a certain level of abstraction of the

protocols implemented between the platform and the items, this Chapter will focus mainly

on the home automation platforms and the integration with the mobile device itself,

regarding all the tasks and integrations associated. Section 2.1 reviews the main home

automation platforms considered. Section 2.2 discusses the integration with the mobile

device and the mobile application as well as the communication with the platform.

Section 2.3 focus on the image processing tasks taking in charge by the integration

referred and gives an approach on different techniques to object detection, image labeling

and processing.

2.1. Home Automation Platforms

With a constant expanding number of devices and sensors available to aid the task of

automate and monitoring an everyday home, there is a growing market for solutions to

tie them up together. Early 2019, the worldwide household penetration regarding smart

devices is 9.5% and is expected to hit 22.1% by 2023 [11], being United States the major

contributor, having 33.2% in the beginning of 2019 and expected to almost double that

value by 2023.

Figure 2.1 - Devices Connected to a Home Automation Platform

6

For this reason, it is crucial to have the ability to control lighting, air conditioning,

heating and other connected devices from a single hub platform as shown in Figure 2.1.

2.1.1. Platform Solutions

There are currently countless solutions on the market that provide almost unlimited

possibilities for what we can accomplish. Table 2.1 shows a comparison between some

key features of the most popular home automation platforms. A more detailed approach

on each one can be found in the subsections below.

Table 2.1 - Home Automation Platforms Key Features

Feature
Home Automation Platform

OpenHAB Domoticz Home Assistant OpenMotics OpenRemote Calaos

Open-source Yes Yes Yes Yes Yes Yes

Backend

Language
Java C/C++ Python Python, C Java C++, Shell

Web UI Yes Yes Yes Yes Yes Yes

Mobile Apps

Yes

(Android

and iOS)

Yes

(Android

and iOS)

Yes (iOS)
No (Under

development)

Yes (Android

and iOS)

Yes

(Android

and iOS)

Number of

supported

devices and

integrations

Large Limited Large Limited
Large (with

retrofitting)
Medium

Installation Easy Medium Easy

Medium (need

to install the

modules)

Medium Easy

Automation

Rules
Yes

Yes (with

LUA

scripting)

Yes No Yes Yes

Community

of Users
Large Large Large Medium Medium Small

Updates
Slow (but

stable)

Slow (for

latest

devices)

Fast (almost

every week)

Average

(mainly bug

correction)

Regular Slow

Can run on

Linux,

Windows,

Mac OS,

Raspberry

Pi

Linux,

Windows,

Mac OS,

Raspberry

Pi

Raspberry Pi

(recommended),

Windows, Mac

OS, CentOS

Specific

Modules

Mac OS,

Windows,

Raspberry Pi,

NAS, Debian

x86 and x64

PC,

Raspberry

Pi, Mele,

Cubieboard

7

2.1.1.1 OpenHAB

OpenHAB [6] is an 100% open-source automation platform built upon Eclipse

SmartHome (ESH) IoT framework which supports more than 200 technologies/systems

and thousands of devices. It is a flexible solution that allows to integrate these multiple

devices and technologies into a single solution with a uniform and customizable Web

User Interface (UI). This platform runs on any device capable of running Java Virtual

Machine (JVM) and provides the ability to be integrated in other systems using its

Application Programming Interfaces (APIs). Being one of the best-known home

automation platforms, OpenHAB has a large and well stablished community of users.

2.1.1.2 Domoticz

Domoticz [12] is a lightweight open-source automation system that allows to integrate

many devices such as lights, switches, multiple sensors and other third-party integrations.

Written in C/C++ with a scalable HTML5 designed frontend, the platform can be

accessed both in desktop and mobile devices running in different operating systems

including Windows, Apple Unix and even on a Raspberry Pi. It is designed for simplicity

and features to send notifications and alerts to any mobile device. The platform

configuration is made through a Web interface and the functionalities can be extended

with the use of plug-ins. Although being very stable, Domoticz interface is not that

intuitive and the supported devices and configurations can be limited.

2.1.1.3 Home Assistant

Home Assistant [13] is an open source automation platform that will track the state of

all the devices connected in a smart home using a single user-friendly interface. Putting

privacy in first place, the platform stores data locally and away from the cloud. It is

developed using Python 3 and Polymer and has frequent updates. The installation process

is very simple and tries to connect to all your devices in the first run. With the set of

advanced rules, it provides the ability to automate certain actions and simplify people

needs in day to day life.

2.1.1.4 OpenMotics

OpenMotics [14] is a slightly different home automation system. Being open-source,

this platform offers a complete solution with both software and hardware components that

provide full control over devices instead of trying to combine and integrate multiple

8

solutions from different manufacturers. The OpenMotics platform is composed of several

hardware components called Modules and each Module has a designated role in the home

automation process. It has intuitive interfaces for computers, tablets and smartphones and

the data can be accessed in each one of these devices or anywhere in the cloud. Having

community scope in mind, the platform aggregates data from different Module groups

allowing improved building management.

2.1.1.5 OpenRemote

OpenRemote [7] is an open-source project to integrate, design and manage solutions

focused on smart cities, buildings, home automation and health care. In the home

automation department, OpenRemote provides the ability to integrate all the devices in a

smart home and create a universal remote to control them from your smartphone or tablet.

With the use of Open Remote Designer, it is possible to tailor a specific solution to satisfy

each user needs, also giving the ability to retrofit devices that were not thought to be smart

in the first place and to design specific rules which will control lighting, entertainment,

climate and others.

2.1.1.6 Calaos

Calaos [15] is a full stack project designed by a French company built in several layers

and including a full Linux Operating System (OS), Calaos OS. This solution includes a

server application, a touchscreen interface, mobile apps developed natively both to iOS

and Android and even a Web App. It allows to control switches and lights in different

rooms, to manage security cameras and to share media across the entire house.

2.1.2. Remarks

The choice of the automation platform is a major concern because it can easily dictate

the system limitations and capabilities accordingly to the platform features and possible

implementations. Bearing in mind the integration intended and given the descriptions

made in the past sections, OpenHAB, Home Assistant and Domoticz are good choices to

do further tests because they are all open-source, developed in a well-known easy to learn

language, have a strong base community of users, a companion mobile app and can be

installed on common hardware like a Raspberry Pi.

9

2.2. Integration with Mobile Devices

Since the integration with the mobile device is the focus of this Thesis, the device

needs to be able to interact with the surrounding environment through a mobile

application and to communicate with the automation platform in order to trigger actions

on each of the devices connected.

This section will discuss and compare the main related concepts and the solutions

available to solve each of the situations stated.

2.2.1 Mobile Application

A mobile application is a software artifact designed to run on a mobile platform.

Currently, the biggest players in the mobile operating systems are Android with

approximately 75% and iOS with 22% market share worldwide being the remaining part

distributed among other less known operating systems or proprietary solutions [16].

Additionally, given the fact that iOS and Android do not have a common framework

development tool, there are solutions to multi-platform development like Web

Applications, Hybrid Applications and proposals for new taxonomies to unify the cross-

platform development [17].

Even tough cross-platforms solutions represent an efficient approach to develop

software for multiple operating systems [18], the state-of-the-art work in this area acts as

a limitation to integrations with already existing image processing APIs and frameworks

which are not supported. As a result, the best solution in the context of this dissertation is

to natively develop apps for each of the major operating systems in the market,

respectively Android and iOS.

10

2.2.2 Communication

As mentioned above, communication plays a major part in integrating the mobile

device with the home automation platform. The communication protocol to use between

the device and the platform (see Figure 2.2) depends heavily on the choice of the platform

since each of the platforms referred on Section 2.1 supports a different set of protocols

and integrations.

Notwithstanding the choice of the platform, the most common binding supported are

MQTT, HTTP and Bluetooth. The use of Bluetooth requires the development of a specific

implementation to each platform tested as opposite to MQTT and HTTP which have

already developed integrations with most of the platforms approached in Section 2.1.

2.2.2.1 MQTT

Message Queuing Telemetry Transport (MQTT) [47] is a lightweight Machine-to-

Machine communication protocol designed to be easily implemented on low bandwidth

networks. It works on a publish/subscriber architecture (see Figure 2.3) and normally runs

over TCP/IP. It was created back in 1999 and maintained its focus on being energy

efficient and running on embedded devices using small data packets escalated to many

receivers.

MQTT considers two different entities, a broker and a variable number of clients. An

MQTT client can act as a publisher or as a subscriber and both connect to the broker.

Information is organized by topics and the first one will publish information to a given

topic, sending a message to the broker which therefore is responsible to distribute the

information to all the clients who subscribed that topic (Figure 2.3).

Figure 2.2 - Communication between Mobile

Device and Home Automation Platform

11

This protocol can specify a Quality of Service (QoS) for each connection which

quantifies the guarantee of a specific message being delivered divided by 3 levels: At

Most Once (0), At Least Once (1), Exactly Once (2). This QoS considers the two steps of

the delivery which are the delivery from the publisher to the broker and the delivery from

the broker to the subscriber.

2.2.2.2 Bluetooth

Bluetooth [48] was created in 1994 with the objective of transmitting data in a master-

slave architecture based in packets. It is an open technology which uses 79 radio

frequency channels in a Frequency Hopping Spreading Spectrum (FHSS) with a changing

rate of 1600 times per second. It established as an IEEE standard (802.15.1) in 2005

operating in 2.4 GHz band.

The Bluetooth enabled devices communicate in a master-slave architecture and

together form an ad-hoc network of up to 7 slaves per master where the device working

as master is responsible to initiate the communication while the slaves listen, letting the

master know their address. The master can be communicating with one or more slaves,

this way, the communication established can be point to point or point to multipoint,

respectively.

Figure 2.3 - MQTT Publish/Subscribe Architecture

12

2.2.2.3 HTTP

Hypertext Transfer Protocol (HTTP) [19] is an application-level communication

protocol based on TCP/IP used since 1990 for communication on the Web. It is a protocol

based on a request-response architecture where the Web server responds to requests from

the HTTP clients, as presented in Figure 2.4.

The workflow consists on a request sent by the client which includes the Universal

Resource Identifier (URI), the protocol version, request modifiers, among other

parameters over a TCP/IP connection. Then, the HTTP server is responsible for fiving a

response containing the status, message protocol version and informing the success or fail

of the operation alongside the meta information and body content of the response. HTTP,

despite being simple, is also powerful since it is a stateless, media independent and

connectionless protocol.

2.2.2.4 Remarks

As discussed in [21, 22, 23] and stated above, MQTT is proven to be less power

consumption, require less resources to be implemented, and less bandwidth providing

better quality of service as opposite to HTTP. On the other hand, HTTP provides the

ability to compose longer messages, has a larger specification and higher levels of

security and interoperability. Thus, regarding the advantages and disadvantages

presented, both protocols can be suited to testing.

Figure 2.4 - HTTP Client/Server Architecture [20]

13

2.3. Image Processing

This interaction process mentioned in Section 2.2, based on image recognition, is one

of the dissertation cores and can be taken in charge with two different approaches. In one

hand, it can be implemented with more traditional Computer Vision techniques

performing feature extraction over an image, using methods based on edge, corner, color

schemes and texture detection to extract as many information as possible and provide the

ability to discriminate objects. On the other hand, Machine Learning (ML) algorithms can

come in handy, teaching a neural network by uploading a big number of images with

lamps and other devices in it and let it do all the work.

2.3.1 Computer Vision

Conventionally, Computer Vision [24] is formally described as the construction of

explicit and meaningful descriptions of objects from images. In Figure 2.5 is described

an usual workflow using traditional CV algorithms. It implies performing visual

recognition tasks in order to classify images and detect objects.

A recurrent problem in Computer Vision tasks is defining if the images contain a given

object or specific feature and this task can be performed with several levels of granularity.

These visual recognition tasks can be divided in different categories which are described

in detail in the next sub chapters.

Figure 2.5 - Traditional Computer Vision Algorithm Flow

14

2.3.1.1 Image Classification

Image classification [25] can be defined as the process of attributing a classification to

an image, based on its content. Given an image as an input, an image classificator will

output a class name identified or in some cases the probability of the input passed being

a specific class, as exemplified in Figure 2.6. Multiple label classifiers can be created to

classify an instance into one of n possible classes.

2.3.1.2 Object Detection

If the images considered for identification only have one object, a classification model

can be easily ran and give right predictions and even if there are two different object

intended to be classified inside the same image there are also solutions based on multi-

label classifiers but a drawback is not knowing where these objects are inside the image.

This scenario is where Image Localization is needed and the concept of Object Detection

[26] is introduced.

Figure 2.6 - Image Classification Example [25]

Figure 2.7 - Object Detection Example [26]

15

As exemplified in Figure 2.7 above, the concept of object detection goes by the ability

of knowing the location of the objects detected inside the image alongside the class for

each of them. Object detection techniques are usually associated with defining rectangular

bounding boxes around the objects identified.

2.3.1.3 Other Techniques

Additionally, to image classification and object detection, there are other more

complex computer vision techniques [25] such as object tracking, image segmentation

and even semantic segmentation.

For instance, image segmentation is the partition of a given image in various segments

which allow to group together a number of pixels with similar properties that represent a

particular segment of that image, as exemplified bellow in Figure 2.8. Image

segmentation gives thus a better understanding of the different objects inside the image

and its real shapes instead of rectangular boxes.

2.3.2 Machine Learning

The problem with feature extracting to classify an image is that you need to know in

advance what to look for and which feature to identify in each one of the images under

analysis. This situation grows exponentially with the number of different types of objects.

Here is where Machine Learning algorithms come in handy. For example, if someone

wants to identify a lamp in a given image, instead of manually deciding the methods to

detect the features desired, like round shapes and filaments, it is easier to teach a neural

network by uploading a big number of images with lamps in it and let it perform all the

Figure 2.8 - Image Segmentation Example [25]

16

tasks, as shown in Figure 2.9, in comparison to the previous method described in Section

2.3.1.

Despite these benefits, deep learning algorithms require a large amount of computer

resources and need to be trained and tweaked with huge annotated datasets in order to

obtain the highest accuracy possible [27].

2.3.2.1 Neural Networks

The main objective of a neural network is to understand data patterns and making

decisions based on that pattern detections after analysis. Neural networks are designed to

mimic the structure of the human brain, getting predictions from accretions of small data

abstractions. These networks underly most of the so-called artificial intelligence systems

and have the ability of detecting very complex relations between structured or

unstructured data.

The base unit on these networks are the nodes, or neurons, which are densely

interconnected as depicted in Figure 2.10. The nodes are organized into layers and the

network can have different topologies according to the number of layers and the number

Figure 2.9- Deep Learning Algorithm Flow

Figure 2.10 - Neural Network Architecture

17

of nodes per layer. A node or neuron has multiple connections, including one or more

weighted inputs which lead to an output generated by internal functions.

2.3.2.2 Deep Learning

Deep learning is a subset class inside machine learning that uses the hierarchical

multiple layers of neural networks to handle machine learning processes, enabling this

way a nonlinear approach on unstructured data processing. Deep learning is based on

artificial neural networks and implements deep neural networks to fields like computer

vison, language processing, among others.

A deep neural network is basically an Artificial Neural Network (ANN) with a higher

number of layers between the layers that receives the input and the final output layer.

Usually Deep Neural Networks are feedforward, which means no data loops back at the

layer, flowing forward to the output.

A specific class of deep neural networks is the Convolutional Neural Networks

(CNNs) which are fully connected multi-layer networks that do not vary in space and

meaning that one layer node is connected to all the nodes in the next layer, as presented

above in Figure 2.11.

Figure 2.11 - Deep Learning Neural Network Example

18

2.3.3 Frameworks and Libraries

Given the advantages and tradeoffs of both approaches [28], state-of-the-art

frameworks and libraries used in major implementations for classification, localization,

object detection and image segmentation are described below.

2.3.3.1 OpenCV

OpenCV [9] is one of the best-known libraries for computer vision and it has most of

the traditional image processing algorithms and methods already built-in. It has Java, C++

and Python interfaces and supports major platforms like Windows, Linux, MacOS and

even iOS and Android. Being free to use, it is a mature and fast platform with a large

community of users and extensive documentation containing examples for all the

platforms.

2.3.3.2 Tensor Flow

Tensor Flow [29] is an open-source machine learning library with a flexible

architecture that has implementations for a variety of platforms like Windows, Linux,

MacOS and even for Android and iOS. Developed by Google Brain Team, this software

allows to develop and train neural networks, providing both high and low level stable

APIs in Python and C but also in other languages like Java, Go, or C++.

In 2017, Google launched Tensor Flow Lite allowing to run machine learning models

on mobile devices with low latency and fast performance. With Tensor Flow Lite, it is

possible to build a new model, retrain an already existing one or even converting an

original Tensor Flow model to a compressed and mobile solution. It has portability for

iOS, Android and other IoT devices.

2.3.3.3 Cloud Vision

Cloud Vision [10] is a solution developed by google to integrate machine learning

vision models with an application. Vision API allows to implement detection features like

face detection, optical character recognition (OCR) or content tagging within applications

and Auto ML Vision provides the ability to train a custom machine learning model that

performs the desired task.

19

2.3.4 Remarks

Even though Machine Learning (ML) processes are making a revolution in computer

vision IoT applications, classic Computer Vision are still very useful and a combined use

of both can offer much better results. For example, using basic computer vision

techniques for image segmentation and then using deep learning to process those

segments extracted instead of the whole frames can result on saving computing resources

and reduce identification time. Therefore, there is a lot of space to improve and

innumerous scenarios and use cases that can be adapted to the user needs.

2.4. Related Work

In the field of IoT, the authors in [30] have taken a more mobile approach to Smart

Homes using IoT. The proposed system aims to access and control devices in a Smart

Home using a smartphone app. With the integration of wireless communication and cloud

networking, the goal is to provide users with the possibility to control all the electrical

smart appliances, devices and sensors using a friendly interface in a smartphone from

remote locations. The proposed system is composed of a base station implemented in an

Arduino Mega connected to Wi-Fi and multiple satellite stations based in Arduino Uno

boards with Radio Frequency modules to communicate with the base station.

The authors in [31] developed a mobile Android app than can access information of

all the appliances in a smart home and allows to interact with them, manually or

automatically from scheduled events. Implementing both AES and RSA algorithms, the

app was designed taking into concern common security issues. The system is composed

of two main blocks, an outdoor environment and an indoor environment. The outdoor one

consists of the end user and the application cloud server whereas the indoor one has the

access point, the hosts and all the nodes. Even though communication between the two

environments is done using the Internet with encrypted information, communication

inside indoor environment uses Zigbee. The application can be accessed in real-time in

any remote location and has notifications, QR Code and Auto-Lock features.

In the matter of Computer Vision, in [32] the authors present an application for object

detection based on OpenCV libraries. The object detection system was developed and

trained on a Windows machine and implemented on a Texas Instruments embedded

platform. It adopted a cascade classifier based on Haar-like feature in order to reduce the

20

computational time and to increase the speed of object detection. The system was trained

with a dataset of around 4000 images from different angles and positions.

In [33], even though not related directly to IoT, the author trained his own object

detector to accurately detect Raccoons around his house. The system was developed using

TensorFlow Object Detection API and was trained with a specific dataset of about 200

racoon images collected and labeled by the author. The training process was done with

an object detection training pipeline based on a Single Shot MultiBox Detector [33]

network with default settings and adapted to only one class. Since the image dataset was

small and few training time was used, the detector does not recognize every single racoon

but it can deliver decent results with relatively good accuracy.

Analyzing the related work in the smart homes sector, it is noticeable that an effort is

being made in progressively using the mobile device to interact with the home automation

platforms and control our home appliances in a user-friendly way. Still and all, there is

no bridge between the mentioned subjects and this dissertation proposal aims to fill that

gap, providing the device the ability to perform image recognition tasks from an intuitive

application and consequently take actions in a smart home environment.

21

Chapter 3 – System Architecture

The main goal of this dissertation is to promote the integration of the mobile devices

into the home automation segment, providing the user the ability to interact intuitively

with the system. This integration strives to go beyond the scope of the normal home

automation mobile applications as far as the interaction with the user happens and as well

as the concept of object recognition with real time detection is attached.

As referred in Chapter 2 there is a lot of work already develop in the subjects of home

automation, from energy efficient to fully automated solutions, but the introduction of

machine learning in the user interaction with the system is yet to be made and a fair long

way from being established.

Thus, the proposed system consists in a sequence of modules which provide the

foundation to the whole workflow that needs to occur since back from the user to the end

devices. In Figure 3.1, a high-level system architecture is presented in which can be

identified the user representation, the mobile cluster, the automation platform aggregate

and int the opposite end, the smart devices connected inside home. Each of these modules

choices and their respective roles in the entire process will be detailed in the sections

bellow whereas their implementation will be fully described in Chapter 4.

Figure 3.1 - High-Level System Architecture

22

3.1. Mobile Module

This module serves has the entry point to the user in the whole workflow. All the

interactions will happen within an application installed in the mobile device and the

actions taken inside it will trigger series of events throughout the system.

As illustrated in Figure 3.2, the mobile component is composed by a mobile

application and a re-trained model integrated into the application. This integration occurs

in real time providing the user instant feedback and therefore, according to the scenario,

specific commands and actions will be sent through the channel of communication

existing between this module and the home automation one. Both components play a

major role in the system responsiveness and utility and are described in the subsections

ahead.

3.1.1. Mobile Application

The mobile application will be installed in the user device and its main role is to

collect user interactions, interpret the data collected and stablish the communication with

the automation platform.

As discussed in Section 2.2 and having in mind the market share, ease of use and

accessibility, the most reasonable choice in the given context is to have an Android

application. Developing natively an iOS application would require specific hardware and

would reach a smaller community of users than the Android. Moreover, the choice of a

hybrid solution would create limitations to future integrations of frameworks and

consequently narrow the use case scenarios.

Figure 3.2 - Mobile Module Architecture

23

Therefore, with the choice of the Android operating system to the developments, it

can be guaranteed that a large number of devices would be compatible, a vast number of

users could be reached, and the communication process would not be limited by software

restrictions.

This application must furthermore allow the communication to be established

between the mobile device and the home automation platform. To do so, it will need to

play the client role in a communication protocol between both, sending information to the

platform. Since Android supports a wide variety of integrations with communication

plugins and software, this choice guaranteed that a close to optimal solution could be

found. The communication scheme and implementation will be further detailed.

3.1.2. Inference Model

Being the main purpose of the integration proposed, the ability to use the mobile

device sensors to interact intuitively with the smart devices. One of the major and biggest

information collectors which can be found in every mobile device is the camera. So, to

take advantage of all the potentialities, a way of interpreting the data collected by the

camera sensor needed to be found.

As discussed in Section 2.3, a possible solution was to implement traditional computer

vision algorithms, using feature extraction and pattern recognition processes to manually

identify objects. Notwithstanding the fact of these techniques have proven themselves to

be reliable and effective, a more futuristic approach was taken in consideration.

Here is where the Machine Learning component comes into play. The use of a

machine learning library compatible with the architecture proposed, able to load and

process data, build, train and re-use models with easy deployments was the solution. This

way, the solution used in the interpretation component relies on the Tensor Flow

framework [25].

In addition to providing the ability to re-train a neural network without the need of

sophisticated and powerful hardware, the biggest overall advantage of this tool is the

allowance to run machine learning models on mobile devices within a compressed and

mobile solution, Tensor Flow Lite.

24

The use of on-device machine learning allows a simpler system architecture, without

the need of executing consecutive server calls to evaluate information. That would require

constant data streaming resulting in more energy consumption, higher latency and extra

processing with back and forth communication also having to consider the possibility of

data loss in it.

As far as the solution architecture goes, Figure 3.3 presents the components stack

involved in the process. On top, the Java and C++ application programable interfaces are

responsible for loading and invoking the interpreter which in turn executes the model

using a set of kernels. In Android versions superior to 8.1, Android Neural Networks API

(NN API) [34] is supported and it allows to efficiently distribute the computation across

device processors and benefit of running hardware acceleration through Android Neural

Network Hardware Abstraction Layer (NN HAL). If none of these are available, normal

CPU execution will run.

The process of obtaining the Tensor Flow Lite model which will be loaded into the

interpreter will be described in de system implementation sections ahead.

Figure 3.3 - Inference Model Architecture Stack Integration

25

3.2. Communication

The connecting point between the main module described in Section 3.1 and the later

one described in Section 3.3 is the communication established between both. As stated in

Section 2.2.2, the communication protocol to use between the device and the platform

depended heavily on the choice of the automation platform and the application ecosystem

since each platform and operating system supports a different set of protocols and

integrations.

This way, considering the advantages and disadvantages already presented, MQTT is

the most suitable choice in this scenario, providing a solution to assure communication

between the two modules that is widely used across the IoT environments with low

bandwidth, low latency and good performance.

Within the system architecture context, and given the MQTT principles, one

component will act as a publisher, one as a broker and the other as a subscriber. The most

logical way of implementing the protocol architecture in this scenario is being the mobile

device the subscriber responsible of publishing data to a certain topic which is subscribed

at the automation platform end. By doing so, the mobile device can constantly push

updates on state changes and user interactions knowing that these will be received on the

automation platform listening for data in the specific topics subscribed.

Figure 3.4 - Communication Architecture Workflow

26

3.3. Home Module

The last but not the least important element in the proposed system architecture is the

home module. This one houses two main components, the broker, responsible for the

communication, and the home automation instance, responsible for the integration of the

smart devices and sensors. As displayed in the Figure 3.5, both of them are housed inside

the same installation platform.

One major concern was to have the broker and the automation platform installed in

the same hardware so the need of extra hardware could be avoided. Consequently, the

choice of all three components was made having in mind the need of each one being

compatible between them.

Keeping in mind the comparisons performed in Section 2.1 and the choice of the

communication protocol made, a suitable solution to integrate both elements was to install

them inside a Raspberry Pi. Therefore, giving the reduced cost and the ease of installation

and maintainability, this whole module is based on a Raspberry Pi 3B+ [35] where the

MQTT broker and the Automation Platform live. A detailed description of them is made

in the subsections bellow.

Figure 3.5 - Home Module Architecture

27

3.3.1. Broker

The choice of MQTT as the communication protocol resulted in the need of having a

broker to manage all the publish and subscribe calls and therefore maintain the

communication between the elements involved.

The MQTT Broker solution could be managed in three different ways: the first one

relies on having a public broker providing the services, the second one is to have a private

broker and the third one implies using an in-platform broker, when available. Since in a

public broker, any device or entity can publish and subscribe to any topic on it, and that

most home automation platforms analyzed in Section 2.1.1. did not have a broker by

default, the securest and easiest way to integrate this node into the architecture was relying

on a private broker where only the devices with given permission can publish and

subscribe to the topics managed by that broker.

In order to do this integration, the chosen MQTT broker was Mosquitto [36]. As an

open-source lightweight solution widely used on IoT messaging and additionally able to

be easily installed on a Raspberry Pi, Mosquitto provides the tools needed to act as the

communications mediator.

Figure 3.6 represents the Broker placement within the system architecture, receiving

subscribing requests from the Automation Platform and therefore delivering the messages

there upon a data publish receipt from the Mobile Device, consequently establishing the

connection for data transfer between both.

Figure 3.6 - Broker Communication Role In System Architecture

28

3.3.2. Automation Platform

Since the automation platform is a core element of the system, it plays a key role on

its potential and limitations. Architecture wise, as referred in the beginning of this chapter,

the home automation platform is installed inside the Raspberry Pi alongside the MQTT

broker also already mentioned.

Bearing in mind the integration intended and given the statements conclusions

obtained in Section 2.1, Home Assistant [37] is a good choice to implement because it

checks all the boxes: is open-source, developed in a well-known easy to learn language,

has a strong base community of users and can be installed on a low processing power and

costless device like the Raspberry Pi.

The installation consists in a Home Assistant instance, housed in the Raspberry Pi,

running natively on a virtual Python environment over the Raspian OS. As illustrated in

Figure 3.7, the platform will also have the Smart Home Devices connected to itself, being

able to send commands, perform operations and state changes accordingly to the

information sent by the user from the mobile device and transmitted through the broker.

The whole implementation and integration process are described in detail in Chapter 4.

Figure 3.7 - Smart Devices Connected to Home Automation Platform

29

Chapter 4 – System Implementation

In order to reach the concept solution proposed and implement the system architecture

described in the previous chapter, an iterative and objective-centered approach

development was taken. This way, having the desired solution defined and bearing in

mind what already existed and the limitations and possibilities of the integration

proposed, the design and development process was divided into a set of stages which are

stated along this chapter.

At first, the machine learning component was developed and converted into the

desired format. After that, the mobile application responsible for integrating the model in

real time was built. Therefore, the automation platform was installed and configured and

consequently the communication processes where implemented. These four major stages

of system development and implementation are the keys to successful operation of the

solution proposed and are described in the Sections bellow.

4.1. Inference Model

To implement the architecture solution described in Section 3.1.2 and having in mind

the conclusions made in Section 2.3, a machine learning model had to be trained,

converted and later deployed on the mobile device.

Considering the visual perception task categories already described, it is clearer that

a more complex approach like object detection or even image segmentation would

generate more precise results than image classification only. As the complexity of the

approach increases, the complexity of the training process also grows, and image

segmentation would be overkill to have in a context like the one presented. This way, for

the sake of this dissertation, an object detection first approach was considered ideal to

fulfill the requirements implicit.

Unfortunately, even though the use of object detection instead of image classification

would result in a better overall solution, this approach has come not to be feasible since

the cost and hardware requirements attached. In any case, the first training approach will

be briefly described before the one taken in the sub sections bellow.

30

4.1.1. Collecting and Preparing the Dataset Broker

Regardless of the final solution, a custom ML model training process requires an

image dataset as an input. As stated before, for the model to perform in a certain scenario,

it will have to be trained with enough data to learn the patterns and features desired. The

amount of images provided, the number of classes existent and variety of the images

inside the same class are all going to influence the final model precision and accuracy.

Logically, a larger number of images and various angles, brightness and scales of the

same object would return better results during the training processes applied and

described along Section 2.3.

In order to start the initial approach considering object detection, a dataset of images

divided in 3 groups, exemplified in Figure 4.1, was gathered. The training process could

have been done with many classes and devices but for the purpose of the implementation

and to prove the main concept, the choice of 3 objects that can be found in most of so-

called smart homes was made:

• Bulbs – 608 images

• Air Conditioners – 508 images

• Window Shutters – 808 images

Figure 4.1 - Image Dataset for Training

31

Manually preparing the dataset for the training process is the most time-consuming

part since after collecting all the images, all of them have to be filtered, labeled and

consequently exported into TFRecord format to be interpreted by TensorFlow.

The filtration consists in verifying if all the images are not too large for the training

pipeline, maintaining the average size below 600x600 to prevent memory related

problems and that all of them are in PNG or JPEG format which are the supported ones.

The labeling part is done by identifying inside the image with a surrounding box where

the object is, in other words, defining the minimum and maximum x and y coordinates,

as illustrated in Figure 4.2, which will be therefore passed with the image to the model.

Since the labeling part is a very slow process, a tool called Labelbox [38] was used.

This tool basically provides an in-browser user interface to draw rectangles along the

dataset uploaded and after that allows to export the information already prepared into

TFRecord files.

4.1.2. Training Elements

After gathering all the data needed and obtained the final TFRecord files, there were

several choices to be made that would outline the path from here forward. To begin the

training process, the following elements were needed:

• TFRecord Files – Containing the dataset provided and labeled above;

Figure 4.2 - Image Labeling Example

32

• Label Map – Containing the classes used in the training, as illustrated partially

in Figure 4.3;

• Model Config File – A training pipeline is needed to define the type of model

being trained, the parameters utilized in the training, the evaluation metrics

and the dataset inputs. This is where are also defined, for example, the learning

rate, memory configurations, training steps and batch size;

• Pre-Trained Model – Training a model from scratch could take several days

and a lot more images that the ones used. An already trained model can be

used as a checkpoint for transfer learning and to retrain the final layers

providing the data wanted for the model to perform the recognition process it

was already intended to;

Having the elements needed, the next implementation task was to train the actual

model. The training process could be done in 2 different ways: the first one is locally, and

the second use is using Cloud Tensor Processing Units (TPUs) based solutions.

Subsequently, the training can be done from scratch or using a pre-trained model as a

base.

4.1.3. Training Process

Here is where the unfeasible approach due to the limitations referred in the beginning

of the chapter made an alternative but also functional path to be taken. To train the model

locally, a lot of computational power was required for intense GPU in order to obtain an

acceptable and realistic time and precision of training. Using a Cloud solution those

hardware limitations are no longer real since options like Google Cloud TPU [39] provide

the ability to run state of the art machine learning models with performances reaching the

100 Petaflops mark with the latest versions.

Figure 4.3 - Label Map Example

33

Despite being a step back compared to object detection, an approach using image

classification solved both the problems since could be trained in a less powerful machine,

using the dataset and files already prepared but with an equivalent use of the TensorFlow

API returning similar results. The result of the model evaluation thus became more

limited giving the fact that it returns only a label from an image instead of the coordinates

of that same object identified inside the image.

4.1.3.1 Environment Configuration

In order to advance in the implementation, a training environment had to be set.

TensorFlow can run both on Windows and Linux but since the installation process,

dependency management and execution are easier and smoother on Linux systems, the

base OS working environment used to support the implementation was Ubuntu – Version

14.0.

Therefore, TensorFlow was installed via normal Python development environment

with Pip Installs Python (pip) which is a cross-platform package manager for installation

of Python packages, as presented in Figure 4.4. Although it is also recommended to

configure TensorFlow inside a virtual Python environment to isolate package installations

from the system, there was no need to have that precaution here because the environment

is only intended to perform the tasks related to this dissertation.

At the time of the implementation, the TensorFlow version installed was 1.12.0

although there is now a 2.0 stable version already released bringing some overall

improvements to the process.

Figure 4.4 - Python Environment Installation Commands [40]

34

4.1.3.2 Network Re-training

After setting up the environment, the next step was the re-training process. This one

was done using MobileNets [41] which are a set of computer vision models optimized to

TensorFlow, designed to obtain high accuracy using limited computation power and

restricted resources, building this way light weight convolutional neural networks.

 A MobileNet is configurable with 2 hyper-parameters, input image resolution and

relative size compared to the largest MobileNet, that scale the relations between accuracy

and latency. Logically, with the choice of a bigger image resolution results in a more time

consuming but more accurate model. Under this dissertation scenario, the default

parameters were maintained, having an input image resolution of 224px and a 0.5 fraction

of the model. These 2 parameters were passed inside Linux shell variables, as presented

in Figure 4.5.

Therefore, the model used was MobileNet_v1_0.50_224, an intermediate solution,

based on an ImageNet pre-trained classification checkpoint and considering the tradeoff

between accuracy and latency with 150 Million Multiply-Accumulates (MACs) and 1.4

Million Parameters [42].

To begin the training, a Python Script obtained from TensorFlow repository was used.

The script retrain.py is responsible to download the pre-trained model and consequently

add the new layer to be trained on the dataset given. The default number of iterations

(4000) was used and the script was executed (see Figure 4.6) with the remaining

parameters passed:

Figure 4.5- Linux Shell Variables Representing the Hyper-Parameters

Figure 4.6 - Command to Run the Training Process

35

• bottleneck_dir – Path to bottleneck layer files;

• model_dir – Path to pb file, label map and pbtxt file;

• summaries_dir – Path to TensorBoard summaries log;

• output_graph – Location to save the trained graph;

• output_labels – Location to save the trained graph labels;

• architecture – Model architecture used;

• image_dir – Path to the labeled images folders;

The re-training process took long time to complete but at the end, after analyzing all

the images, calculating the bottleneck values and feeding the input to the final

classification layer, the Script output reported a Final test accuracy of 91.9%, as presented

in Figure 4.7 below.

For each of the training steps (4000 in this case) a 10 images set is chosen randomly

to be fed into the final layer to obtain predictions, which are afterwards compared to the

initial training labels and therefore updated with a backpropagation method. The idea of

the backpropagation algorithm is, based on the calculation of the error occurred in the

output layer of the neural network, to recalculate the value of the weights of the last layer

of neurons and thus proceed to the previous layers, from back to front, that is, to update

all the weights of the layers from the last one until reaching the input layer of the network,

for this doing back-propagation the error obtained by the network.

Figure 4.7 - retrain.py Final Output

36

4.1.3.3 Training Summary

Before the training execution, a monitoring tool included in TensorFlow called

TensorBoard was launched in background. This process was running alongside the

training one to monitor a series of training parameters.

Consulting TensorBoard, during and after the training, a set of outputs could be

evaluated:

• Accuracy – Divided in training accuracy and validation accuracy, these values

represent, respectively, the percentage of images labeled correctly and the

validation precision on a set of images chosen. In Figure 4.8, the accuracy,

represented in the y-axis, is a function of the training progress, represented in

the x-axis. The orange line represents the training accuracy of the model while

the blue line exhibits the validation accuracy. As the validation accuracy

remained the same as the training accuracy increases, we can say that the

model did not entered in overfitting which is a scenario when the model is

learning more of the training data proprieties than the data patterns itself.

• Cross Entropy – In short, cross entropy is a positive loss function which tends

to zero as the neuron improves computation of the desired output, y, for all

training inputs, x, as represented in Figure 4.9;

Figure 4.8 - Training Accuracy (TensorBoard)

x – Number of Training Inputs

y – Accuracy Obtained [0-1]

37

After running all the training process, a final script was run to test the accuracy of the

model evaluation which returned the value of 91.9% as referred in the previous section.

This number translates the overall performance of the model in a real classification

scenario and since the training was done on only 3 classes, a high accuracy could be

obtained.

4.1.4. Exportation and Conversion

After obtaining the final re-trained graph from the previous training output, the model

needed to be converted and optimized to run on the mobile device. As mentioned before,

the process will use TensorFlow Lite and its tools, namely, a TFLite Converter and a

TFLite interpreter. To set the python environment for the conversion, an image

manipulation tool built over Python Image Library (PIL), PILLOW [43] had to be

installed.

The inference graph was then converted using the TensorFlow Lite Optimizing

Converter, tflite_convert. It is part of the TensorFlow installation and is easily ran as a

command line script. This tool was responsible for optimizing and converting the model,

consequently outputting a model in TFLite format.

 Concerning the optimization part, while TensorFlow uses Prtotocol Buffers to

optimize the generate ProtoBuffer file, TFLite uses FlatBuffers to do so. FlatBuffers [44]

is an efficient cross platform serialization library which does not need a

parsing/unpacking step to directly access data, allowing them to be memory mapped and

Figure 4.9 - Training Cross Entropy (TensoarBoard)

x – Number of Training Inputs

y – Cross Entropy Obtained [0-1]

38

consequently achieve faster speed retrieving pages from the model file and without killing

the process when low on memory.

Therefore, the tflite_convert program was ran with the command presented in Figure

4.10 bellow and the remaining parameters passed:

• graph_def_file – Path to the file containing the model generate;

• output_file – Path to the output file;

• input_format – Input file format;

• output_format - Output file format;

• input_shape - Shapes corresponding to --input_arrays, colon separated;

• input_array - Names of the input arrays, comma-separated;

• output_array - Names of the output arrays, comma-separated;

• inference_type - Target data type of real-number arrays in the output file;

• input_data_type - Target data type of real-number input arrays;

After the script execution, the optimized_graph.lite file was generated under the

output path defined.

4.2. Mobile Application

After generating the .lite file, the customized model was then prepared to be integrated

inside the Application. As referred above in Chapter 3, the application is an Android

Application and it was developed using Android Studio, Version 3.2, later updated to

Version 3.4. It has a minSdkVersion of 21, which stands for Android 5.0 – Lolipop,

granting minimum compatibility of approximately 88.2% of the devices [50].

Figure 4.10 - Model Conversion Using TFLite

39

The official TensorFlow example application [45] was used as a base since it

contained all the Classes and Libraries needed to implement the image classifier

pretended. Therefore, in a general overview, the app was then built to classify what is

captured from the device back camera based on the inference model interpreted.

The application has to handle two main tasks: the interpretation of the model in real

time and the communication with the forward elements of the architecture. Both of these

and their implementation are described in the subsections bellow.

4.2.1. Model Interpretation

The first step was to integrate the model already trained, optimized and converted into

the TFLite interpreter. The development process could be tested either on a real Android

device or in an Android emulator of choice (including the Android Studio Emulator) but

using the emulator would imply to use the computer camera and to simulate other real

aspects so, a physical device was used during the whole process, making easier to capture

images from the camera sensor and handle that information.

4.2.1.1 Configuration

Initially, the permissions required were (shown in Figure 4.11) placed under

AndroidManifes.xml. These configurations were needed to allow the device to build

TensorFlow dependencies and to enable Camera, File System and Internet access, among

others.

Figure 4.11 - Permissions and Features in AndroidManifest.xml

40

The model file in TFLite format optimized and converted in the previous section,

alongside the retrained labels file also generated were placed inside the main Assets folder

(see Figure 4.12) from where they will be loaded to the application execution.

Since the application needs to use a pre-compiled version of the TFLite Android

Archive (AAR) the dependencies and the Maven TensorFlow bintray Repository where

the archives are hosted (see Figure 4.13) need to be added to the app Module build.gradle

file. These will import the AAR which is similar to a JAR file import but in addition to

Java classes and methods it also allows to include activities, drawables and layout

resources.

Giving the FlatBuffers serialization, the inference model will be mapped into memory

and cannot be compressed. Therefore, the project had to be instructed not to compress the

model or the model related files. To do so, the instructions presented below in Figure 4.14

also had to be added to the app Module build.gradle file. The instruction block was placed

inside the Android brackets and uses the Android Asset Packaging Tool Options

(aaptOptions) containing the instructions not to compress neither the tflite nor the lite file

formats.

Figure 4.12 - Resources in Android Assets Folder

Figure 4.13 - App Module Gradle Dependencies and Repositories

Figure 4.14 - App Module Gradle AAPT Options

41

4.2.1.2 TFLite API

The implementation of the TFLite API into project is contained inside

ImageClassifer.java. As the name suggests, this class is going to be responsible for

classifying images using TensorFlow Lite and there are two main focus points in the API

implementation: (i) the initialization process when instantiated the class, and (ii) the

model run itself.

In the first one (see Figure 4.15), a TFLite Interpreter is initially created with a

MappedByteBuffer passed as an argument. The MappedByteBuffer is generated in the

method loadModelFile(Activity activity) where the model in .lite format already placed

in the assets folder is read as a input stream and then mapped in the file channel.

Afterwards, the categories labels are loaded to a list, an input data buffer is created to

receive image data and an output buffer is created as a float array to output the probability

generated by the model for each label.

Concerning the model execution, the method classifyFrame (see Figure 4.16) is where

the inference is run and the image classification is obtained. Inside the method, after

converting the Bitmap received as an input to the ByteBuffer, the interpreter’s run method

is called with 2 parameters: the ByteBuffer converted and the output label array to be

populated with the generated results of the execution. Therefore, for each frame of the

preview stream, an image classification is generated by the model and presented in real

time.

Figure 4.15 - ImageClassifier.java Constructor

42

4.2.2. MQTT Communication

After successfully integrating the inference model in real-time with data collected

from the camera main sensor, the device needed to send the commands to the platform in

order to trigger the user desired actions. As already described in System Architecture, this

communication process was implemented using MQTT.

The solution was to implement Paho Android Service [46], which provides an

interface to the Original Paho Java MQTT Client. This allows to encapsulate the

connection inside a service and to run it in background along the Android Activities

providing reliability in MQTT connections and message receiving and sending.

4.2.2.1 Configuration

Since, in the Android system, dependencies and build are managed through the app

Module build Gradle File, the first step was to add the respective Paho service inside it,

as presented in Figure 4.17.

Figure 4.16 - Frame Classification Method

43

In the repositories section, the repository containing the Paho releases is added to the

configuration so that the required JAR files can be downloaded. Therefore, in the

dependencies section, the latest Paho release as a dependency to the present application

runtime.

Concerning the connection itself, for Paho to be able to create the binding needed to

the MQTT connection encapsulation, the service also needs to be declared as a service

tag inside the Android Manifest file (see Figure 4.18). Paho will also need the already

declared permissions to access phone state, network state and the Internet.

4.2.2.2 Message Sending

Before being able to publish messages, a connection to the broker needs to be

established. To enable this connection, the service is going to bind through an interface

called MttAndroidClient. In Figure 4.19 below is the code containing the described

action.

Figure 4.17 - App Module Grade Paho Dependencies

Figure 4.18 - Paho Service Decalration inside Android Manifest

44

Initially, a Client Id is randomly generated by the MqttClient object and the referred

MqttAndroidClient responsible for the connection is instantiated with the server and

client attributes. The username and respective password are also defined as an

MqttConnectOptions attribute. After that, the MqttAndroidClient will try to connect with

the MQTT broker, returning a token which is used to define Listener Callbacks and

successfully or unsuccessfully establish the connection.

After establishing the connection, the client allows the device to send messages via

the publish method. The method is part of the MqttAndroidClient and is called (see Figure

4.20) passing the encoded message payload and the topic desired to send the message.

Figure 4.19 - Paho Connection Establishment

Figure 4.20 - Paho Message Publish

45

The implementation of the topics subscription and message reception will be

explained in the following section.

4.3. Home Automation Platform

Having the inference model trained and integrated inside the android application, the

third and last step to complete the system implementation was the installation of the

automation platform on the Raspberry Pi, including the MQTT broker to allow the

platform to receive the messages originated in the mobile device and consequently trigger

automation rules and perform actions.

As referred in Chapter 3, the components were installed in a Raspberry Pi 3B+ and

all the 3 implementation steps are described in the subsections bellow.

4.3.1. Platform Installation

A common solution to install Home Assistant in a Raspberry Pi is to install Hass.io

[37] inside a Docker container but that would restrain the installation of other components

inside the raspberry and complicate the communication with the broker which also needs

to be installed. The solution used was to install Home Assistant inside a python virtual

environment, providing the flexibility needed to the system implementation.

The major concern to have in mind using the virtual environment is the fact that any

update or changes under the home assistant installation have to be made inside the

environment or it can cause the duplication of the install, one inside the virtual

environment and other in the host, and possibly generate conflicts between both of them.

Before the installation process, all the dependencies needed were installed using pip

package manager and a system account and a home directory for Home Assistant were

created.

Figure 4.21 - Home Assistant Virtual Environment Activation

46

Figure 4.21 shows the Virtual environment creation and activation. This is the

environment where the platform was installed and where it runs over. After running the

installation, the directories, configurations and other libraries installation were completed

and the service was ready to be started and accessed via the Web interface on port 8123

of the device.

Each time the raspberry pi is powered on, the Home Assistant instance needs to be

initiated. This way, hass service has been set has a daemon and defined to autostart on

raspberry boot using system which is a tool for daemons managing on Debian based

systems. The necessary system file, presented in Figure 4.22, was created under the

system directory containing the indication to execute the service after the machine is

successfully started and connected.

4.3.2. MQTT Communication

As already referred, despite HomeAssistant has the possibility to define an in-

platform broker and the existence of public brokers, a private MQTT broker was used to

implement the MQTT communication on the server side.

The choice relied on Mosquitto [36] as the solution to implement the machine-

to-machine messaging protocol. The service was easily installed (see Figure 4.23) in the

raspberry and afterwards protected with username and password inside a system file.

Figure 4.22 - Home Assistant Service File

Figure 4.23 - Mosquitto MQTT Broker Installation

47

After the installation, the system can be started and is able to receive publish and

subscribe requests. Again, the broker runs as a service and needs to be started each time

the system boots so, to enable automatic start two things needed to be defined. First, the

mosquito service was indicated to run at system boot in the service file under /etc/init.d

directory, then, the HomeAssistant Service file was modified to instead of starting after

the network is connected, starting after the mosquito broker starts. Therefore, the broker

could be integrated inside the automation platform and making sure it is always running

and listening for messages.

In order to integrate the MQTT broker in the automation platform, an entry

containing the broker address, username and password was added to the

configuration.yaml file, as shown in figure 4.24.

4.3.3. Automation Rules

One big advantage of Home Assistant is the ability to define automation rules. An

automation rule contains 3 main blocks:

• Trigger – Describes the event which should fire the automation rule. There are

many types and it is possible to have multiple triggers in the same rule;

• Condition – Is an optional field where can be defined specific conditions where

the automation rule should work. When a condition does not return true, the action

will not perform can also exist multiple conditions for the same rule;

• Action – Is the action that it will be performed after a trigger has been started and

the conditions validated.

One of the trigger types is the MQTT trigger and is fired when a specific message

is received in a specific topic. This way, automation rules could be created to make the

desired system actions according to the MQTT messages received. For example, Figure

Figure 4.24 - MQTT Broker Declaration in configurations.yaml

48

4.25 bellow shows an automation rule where an action is triggered when a message with

the payload “switch” is received on topic “room/switch/bulb” with no conditions implicit.

The action will take place on the bulb described in the entity tag with the service

light.toggle, which is responsible for switching the bulb. Additionally, the system Web

interface has a tool to create the automations, displaying the list of triggers, entities

available, actions and the respective services.

The automation rules created to fulfill the desired system implementation were

placed inside the automations .yaml file and loaded to the system at startup.

Figure 4.25 - Bulb Automation Rule

49

Chapter 5 – Validation Tests

Having the implementation completed, a prototype of the system proposed was

obtained. This Chapter, describes the solution achieved and its components. A

comparison between the manual inference and the on-device machine learning final

solution will also be made, considering the evaluation times obtained and accuracy losses

and finally tests over real application scenarios, which will be followed by a discussion

over the overall scenario provisioned by the implementation made and its results.

5.1. Implemented Prototype

The developments made across this dissertation aim at a hypothetical scenario

where a user can control the devices existent in his house through the camera user

interface having visual representation of the actions and providing intuitive interactions.

Looking at the implementation obtained, the major visual results come from the mobile

application and the device connected to the platform.

The implementation described in Section 4.2 resulted in a mobile application

which after installed in and android device is where the user will interact. Figure 5.1

bellow represents the application main screen, containing the camera viewfinder, a label

containing the object identified and the accuracy of the evaluation alongside the buttons

to take actions on that device when evaluated with accuracy over a pre-defined threshold.

Figure 5.1 - Application Main Screen Example

50

In the screenshot presented in Figure 5.1, it is visible that the user was pointing

the device at a light bulb and since the evaluation result is constantly returning values

close to 100% the button to switch on the device is presented, which represents the action

passible to be taken at that moment. When the button is pressed, the whole process

described in Chapter 3 takes place and the bulb will then light up. Additionally to the

evident visual feedback on the bulb, looking at HomeAssistant Web platform it is possible

to see the event occurrence, as illustrated ahead in Figure 5.2.

5.2. Server vs On-Device Machine Learning Performance Tests

Even though traditionally, machine learning and neural networks are concepts

associated with increased computation power and robust hardware, the scope of this

dissertation addresses the on-device artificial intelligence arising ubiquitousness and its

major potential. Therefore, an interesting result to analyze is the accuracy obtained with

lighter models and the existence of latency or performance decreasing when running on

less powerful devices.

This way, a metric that can give indicators of both benefits and drawbacks of this

approach is the time spent during the execution of the model trained to produce an output

and effectively label the input image. A possible way of analyzing this is by running the

inference model at the machine where it was trained with a python script, label_image.py

shown in Figure 5.3, and after that running the same model already integrated in the

mobile application, measuring the times before and after the run (see Figure 5.4).

Figure 5.2 - Automation Platform with Light Turned On

51

This analysis was performed using three different images (see Figure 5.5) and ran

three times in each of them to guarantee a minimum coherence in the results. In the case

of the mobile device, since the input comes as a video stream, the three images were

represented by three different scenarios with the three different bulbs. The results are

presented bellow in Table 5.1

Table 5.1 - Comparison between Manual Inference versus On-Device Run

 Server Run On-Device

Times

(ms)
Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

Image 1 12.8 12.7 12.9 16.0 15.0 16.0

Image 2 13.5 13.7 13.6 20.0 19.0 17.0

Image 3 12.4 12.4 12.5 30.0 30.0 30.0

Figure 5.3 - Python Script to Evaluate an Image using the Inference Model

Figure 5.4 - Image Classification inside the Application Measuring Time Elapsed

52

Figure 5.5 above shows the 3 example images used to do the testing. The test

results obtained are presented in milliseconds and are further ahead discussed in section

5.4.

5.3. Confidence Tests

As referred in Section 4.1, the system implemented is based on a neural network

retrained to identify smart household objects, particularly bulbs, air conditioners and

electrical window shutters. The logical scenarios to validate the final solution was to put

the system to the test against these items, therefore, each of the next three sections

presents three scenarios to one of the three classes trained.

5.3.1. Bulb

The first test represents a use case scenario where the user points de device at a

light bulb. In this case, when the evaluation output is higher than the 95% confidence

threshold, the switch option appears on the screen and the user can interact with the

device. To obtain maximum results and since the image dataset used for testing was

simple light bulbs, the 3 tests performed was on simple lightbulbs connected to power

(see Figure 5.6).

Figure 5.5 - Bulb Images Used for Testing

53

Table 5.2 presents a summary of the results obtained after executing the three test

scenarios. Looking at the confidence obtained, it is possible to see that in the first test, the

inference method evaluated the object with a conviction of 94%, in the second one, 95%

certainly and the last one with maximum confidence. Again, only the identifications

superior to the threshold provide the user the ability to interact with the device.

Table 5.2 - Bulb Tested Scenarios confidence

 Bulb 1 Bulb 2 Bulb 3

Confidence 94% 95% 100%

Figure 5.6 - Bulb Tested Scenarios

54

5.3.2. Air Conditioner

The second test represents a use case scenario where the user points the device at

an air conditioner. In this case, when the evaluation output is higher than the 95%

confidence threshold, the hotter/colder options, represented by the options up and down

appear on the screen and the user can interact with the device. To obtain maximum results

and since the image dataset used for testing was traditional house air conditioners, the 3

tests performed were on those instead of industrial or bigger ones. (see Figure 5.7).

Table 5.3 presents a summary of the results obtained after executing the three test

scenarios. Looking at the confidence obtained, it is possible to see that in the first test, the

inference method evaluated the object with a conviction of 95%, in the second one, 90%

certainly and the last one with 93% confidence. Again, only the identifications superior

to the threshold provide the user the ability to interact with the device.

Figure 5.7 - Air Conditioner Tested Scenarios

55

Table 5.3 - Air Conditioner Tested Scenarios Confidence

 Air Conditioner 1 Air Conditioner 2 Air Conditioner 3

Confidence 95% 90% 93%

5.3.3. Window Shutter

The last test represents a use case scenario where the user points the device at the

window shutters. In this case, when the evaluation output is higher than the 95%

confidence threshold, the up and down options appear on the screen and the user can

interact with the device, respectively opening or closing the shutters. The 3 scenarios

tested are presented bellow in Figure 5.8.

Table 5.4 presents a summary of the results obtained after executing the three test

scenarios. Looking at the confidence obtained, it is possible to see that in the first test, the

Figure 5.8 - Window Shutters Tested Scenarios

56

inference method evaluated the object with a conviction of 99%, in the second one, 91%

certainly and the last one with 98% confidence. Again, only the identifications superior

to the threshold provide the user the ability to interact with the device.

Table 5.4 - Window Shutter Tested Scenarios Confidence

 Window Shutter 1 Window Shutter 2 Window Shutter 3

Confidence 99% 91% 98%

5.4. Discussion

This chapter was focused on showing the final prototype obtained, demonstrating

the potentiality of on-device machine learning and generally showing the results obtained

when effectively testing the developed solution confidence and consistency.

Analyzing the results obtained, concerning the comparison made between

manually running the inference model on the training environment and the inference

happening on the mobile device, we can see that the results were not that distant and

therefore, the system can produce fast results in real time without compromising the

performance obtained. In terms of confidence obtained, every test provided result higher

than 90%, which is positive and allowed to control the devices in almost every situation

with confidence.

57

Chapter 6 – Conclusions and Future Work

This chapter presents the main conclusions, considering the work developed, the

obstacles and limitations encountered as well as the future work that can be developed to

add value to the already proposed solution.

6.1. Main Conclusions

As an overall solution, the developed system worked as a proof of concept of the

integration of mobile devices in home automation with use of machine learning for object

recognition. Throughout the dissertation, several obstacles were found due to the nature

of the integration proposed, however, the initial objectives were achieved and a stable

work foundation and architecture for future developments were set.

An initial envisaged solution was to use traditional computer vision manual methods

to fulfill the proposed objectives, but the use of machine learning techniques to replace

these more traditional algorithms proved to be a great evolutionary step forward and to

give the robustness needed to a more futureproof system. Even though machine learning

and deep learning-based systems often need massive hardware to be trained and

developed, the work developed in this dissertation proves that lightweight alternatives

can be found and adapted to meet the desired goals.

The choice of the MQTT for communication allowed to maintain a low resource

lightweight communication between the modules given the small amount of data sent in

each transmission. This way, the system relies on simple machine to machine interaction

with acceptable latency in order to maintain the possibility to use in a real-time

integration.

Being Home Assistant the automation hub for all the integrations allowed multiple

advantages. To begin, the platform was installed in a Raspberry Pi 3B+, an embedded

platform in which the software was optimized to run and consequently resulted in an easy

installation and maintenance. Additionally, the ability to define automation rules revealed

to be crucial in the automation process, providing the ability to implement complex

scenarios depending on the command received via the MQTT messages.

58

Looking at the results obtained, an important conclusion to bear in mind is that

the on-device classification based on machine learning proved to be surprisingly accurate

and able of handling the tasks defined, confirming this way the already arising paradigm

of AI increasingly moving to the edge devices without compromising functionality.

Despite the fact that the last layer of the neural network was only retrained with 3 classes

but also giving the fact that the model was trained in a normal computer without powerful

hardware and that the inference is running on a mobile device, this could be proven

analyzing the confidence obtained which was positive and higher than expected.

This way, the final solution developed in this dissertation proves that an inference

machine learning model can be used in real time evaluation, integrated inside an android

application providing instantaneous visual feedback. This leads to also real-time action

triggering in the automation platform making use of the integration and consequently built

a seamless and uninterrupted information workflow.

6.2. System Limitations

Even though all the work developed in this dissertation culminated in a functional

prototype, certain assumptions were made to make the integration easier to prove.

For instance, the existence of two identical elements inside home would make the

inference model return the same result for both, not being able to distinguish between

them. In order to distinguish different instances of the same object, a solution like indoor

location would have to be implemented, giving the device the ability to know where each

of the objects were placed inside home and consequently know which object was being

analyzed.

In order to make the integration possible, it was also assumed that the devices were

already connected to the actuation platform. This required pre-configuration is a system

limitation because the application developed does not offer a solution to configure each

user specific smart devices.

59

6.3. Future Work

Despite the integration proposed in the solution was implemented and considering the

existing limitations, the room for improvement is notorious. The system acts as a proof

of concept and as a basis to major breakthroughs in future developments.

First of all, there are a lot of sensors in the mobile device which were not used in the

course of this dissertation that can be further explored. The mobile device has the ability

to measure ambient light, temperature, proximity and even magnetic fields. This enables

the possibility to control a range of smart devices, from air humidifiers to door locks, in

new and innovative ways.

Concerning the computer vision topic, the evolution from image classification to

object detection would also provide the ability to track multiple objects at the same time

and allow better precision and control of the devices. Even though implying major

developments in the application and a whole new recourse consuming re-training process,

this improvement would unlock more possibilities of user interaction and functionalities

to the application.

Additionally, a contribution than can be remarking in the potentiality of the concept

introduced is the re-training of the inference model based on user feedback. Even though

a solution can be prepared for a general use case scenario, each case is unique, and each

user will have different needs. This way, if the mobile application provided a way of

collecting user feedback according to his respective scenario and reality, this input could

be used to re-train the model with improved accuracy and consequently to obtain flawless

and consistent results.

60

61

References

[1] D. Hanes, G. Salgueiro, P. Grossetete, R. Barton and J. Henry, IoT Fundamentals:

Networking Technologies, Protocols, and Use Cases for the Internet of Things. Cisco

Press, Indianapolis, USA, 2017.

[2] S. Chen, H. Xu, D. Liu, B. Hu and H. Wang, "A Vision of IoT: Applications,

Challenges, and Opportunities With China Perspective," in IEEE Internet of Things

Journal, vol. 1, no. 4, pp. 349-359, Aug. 2014.

[3] L. Atzori, A. Iera, G. Morabito, "The Internet of Things: A survey", Computer

network 54.15.2010, pp. 2787-2805.

[4] J. Y. Kim, H. Lee, J. Son and J. Park, "Smart home web of objects-based IoT

management model and methods for home data mining," 2015 17th Asia-Pacific

Network Operations and Management Symposium (APNOMS), Busan, 2015, pp.

327-331.

[5] S. Greengard, The Internet of Things. The MIT Press, London, England, 2015.

[6] OpenHAB Community and OpenHAB Foundation e.V., “openHAB – empowering

the smart home,” 2018, [Online] Available: https://www.openhab.org/, (visited

19/11/2018).

[7] OpenRemote Inc, “OpenRemote | Open Source for Internet of Things,” 2016, [Online]

Available: http://www.openremote.com/, (visited 20/11/2018).

[8] N. Gyory and M. Chuah, "IoTOne: Integrated platform for heterogeneous IoT

devices," 2017 International Conference on Computing, Networking and

Communications (ICNC), Santa Clara, CA, 2017, pp. 783-787.

[9] OpenCV team, “OpenCV library,” 2018, [Online] Available: https://opencv.org/,

(visited 21/11/2018).

[10] Cloud Vision, “Vision API - Image Content Analysis,” [Online] Available:

https://cloud.google.com/vision/, (visited 22/11/2018).

[11] The Statistics Portal, “Market Directory – Smart Home – Worldwide,” [Online]

Available: https://www.statista.com/outlook/279/100/smart-home/worldwide,

(visited 10/01/2018)

[12] Domoticz, “Domoticz - Control at your finger tips,” 2017, [Online] Available:

https://domoticz.com/, (visited 27/12/2018).

[13] Home Assistant, “Awaken your home,” [Online] Available: https://www.home-

assistant.io/, (visited 27/12/2018).

[14] OpenMotics, “Smart Building Automation as Basic as Tap Water!,” [Online]

Available: https://www.openmotics.com/, (visited: 28/12/2018)

[15] Calaos Team, “Calaos | Open Source Home Automation.,” [Online] Available:

https://calaos.fr/en/, (visited: 28/12/2018)

[16] StatCounter, “Mobile Operating System Market Share Worldwide,” [Online]

Available: http://gs.statcounter.com/os-market-share/mobile/worldwide (visited:

11/01/2018)

62

[17] R. Nunkesser, "Beyond Web/Native/Hybrid: A New Taxonomy for Mobile App

Development," 2018 IEEE/ACM 5th International Conference on Mobile Software

Engineering and Systems (MOBILESoft), Gothenburg, 2018, pp. 214-218.

[18] C. M. S. Ferreira et al., "An Evaluation of Cross-Platform Frameworks for

Multimedia Mobile Applications Development," in IEEE Latin America

Transactions, vol. 16, no. 4, pp. 1206-1212, April 2018.

[19] The IETF Trust, “Hypertext Transfer Protocol -- HTTP/1.1”, 2007, [Online]

Available: https://www.w3.org/Protocols/HTTP/1.1/rfc2616bis/draft-lafon-

rfc2616bis-03.html, (visited 10/07/2019)

[20] TutorialsPoints, “HTTP - Overview”, 2019, [Online] Available:

https://www.tutorialspoint.com/http/http_overview.htm, (visited 11/07/2019)

[21] B. Wukkadada, K. Wankhede, R. Nambiar and A. Nair, "Comparison with HTTP

and MQTT In Internet of Things (IoT)," 2018 International Conference on Inventive

Research in Computing Applications (ICIRCA), Coimbatore, India, 2018, pp. 249-

253.

[22] N. Naik, "Choice of effective messaging protocols for IoT systems: MQTT, CoAP,

AMQP and HTTP," 2017 IEEE International Systems Engineering Symposium

(ISSE), Vienna, 2017, pp. 1-7.

[23] T. Yokotani and Y. Sasaki, "Comparison with HTTP and MQTT on required network

resources for IoT," 2016 International Conference on Control, Electronics,

Renewable Energy and Communications (ICCEREC), Bandung, 2016, pp. 1-6.

[24] D. Ballard and C. Brown, Computer Vision, Prentice Hall, First edition, 1982.

[25] James Le, ” The 5 Computer Vision Techniques That Will Change How You See

The World,” 2018, [Online] Available: https://heartbeat.fritz.ai/the-5-computer-

vision-techniques-that-will-change-how-you-see-the-world-1ee19334354b, (visited

10/07/2019)

[26] Google Developer Team, “Object detection,” 2019, [Online] Available:

https://www.tensorflow.org/lite/models/object_detection/overview, (visited

20/08/2019)

[27] A.Canziani, A. Paszke and E. Culurciello, “An Analysis of Deep Neural Network

Models for Practical Applications,” CoRR, 2018.

[28] A. Lee, “Comparing Deep Neural Networks and Traditional Vision Algorithms in

Mobile Robotics,” 2016.

[29] TensorFlow, “Tensor Flow - An open source machine learning framework for

everyone,” [Online] Available: https://www.tensorflow.org/, (visited 27/12/2018).

[30] V. Govindraj, M. Sathiyanarayanan and B. Abubakar, "Customary homes to smart

homes using Internet of Things (IoT) and mobile application," 2017 International

Conference On Smart Technologies For Smart Nation (SmartTechCon), Bangalore,

2017, pp. 1059-1063.

[31] T. Adiono, S. Harimurti, B. A. Manangkalangi and W. Adijarto, "Design of smart

home mobile application with high security and automatic features," 2018 3rd

International Conference on Intelligent Green Building and Smart Grid (IGBSG),

Yi-Lan, 2018, pp. 1-4.

63

[32] S. Guennouni, A. Ahaitouf and A. Mansouri, "Multiple object detection using

OpenCV on an embedded platform," 2014 Third IEEE International Colloquium in

Information Science and Technology (CIST), Tetouan, 2014, pp. 374-377.

[33] Dat Tran, “How to train your own Object Detector with TensorFlow’s Object

Detector API,” 2017, [Online] Available: https://towardsdatascience.com/how-to-

train-your-own-object-detector-with-tensorflows-object-detector-api-bec72ecfe1d9,

(visited 22/12/2018).

[34] Android Developer Team, “NeuralNetworks,” 2019, [Online], Available:

https://developer.android.com/ndk/reference/group/neural-networks, (visited

20/08/19)

[35] Raspberry Pi Foundation, “Raspberry Pi 3 Model B+,” 2018, [Online] Available:

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/, (visited

17/23/2019)

[36] Eclipse Foundation, Inc, “Eclipse Mosquitto, An open source MQTT broker,” 2019,

[Online] Available: https://mosquitto.org/, (visited 24/04/2019)

[37] Fredrik Lindqvist, “Hass.io,” 2019, [Online] Available: https://www.home-

assistant.io/hassio/, (visited 10/07/2019)

[38] Labelbox, Inc, “Labelbox: The leading training data solution,” 2019, [Online]

Available: https://labelbox.com/, (visited 17/08/2019)

[39] Google Cloud Development Team, “Cloud TPU,” 2019, [Online] Available:

https://cloud.google.com/tpu/, (visited 14/07/2019)

[40] Google Developers Team, “Install Python Packages,” 2019, [Online] Available:

https://codelabs.developers.google.com/, (visited 29/07/2019)

[41] Howard, Andrew G, “MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications”, 2017

[42] Andrew G. Howard, “MobileNets: Open-Source Models for Efficient On-Device

Vision,” 2019, [Online] Available: https://ai.googleblog.com/2017/06/mobilenets-

open-source-models-for.html, (visited 10/07/2019)

[43] Fredrik Lundh, “Pillow,” 2019, [Online] Available:

https://pillow.readthedocs.io/en/stable/, (visited 12/05/2019)

[44] FPL, “FlatBuffers,” 2019, [Online], Available: https://google.github.io/flatbuffers/,

(visited 10/07/2019)

[45] Tensor Flow Team, “TensorFlow Lite image classification Android example

application,” 2019, [Online] Available:

https://github.com/tensorflow/examples/tree/master/lite/examples/image_classificat

ion/android, (visited 10/07/2019)

[46] Eclipse Foundation, “Eclipse Paho Android Service,” 2019, [Online] Available:

https://github.com/eclipse/paho.mqtt.android, (visited 10/04/2019)

[47] OASIS, “MQTT,”, 2018, [Online] Available: http://mqtt.org/faq, (visited

20/06/2019)

[48] M. Kumar and B. K. Gupta, "Security for Bluetooth enabled devices using BlipTrack

Bluetooth detector," 2015 International Conference on Advances in Computer

Engineering and Applications, Ghaziabad, 2015, pp. 155-158.

64

[49] StatCounter, “Mobile & Tablet Android Version Market Share Worldwide,” 2019,

[Online] Available: https://gs.statcounter.com/android-version-market-

share/mobile-tablet/worldwide

