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Resumo 

 

O conceito de casas inteligentes está cada vez mais em constante expansão e o número 

de objetos que temos em casa que estão conectados cresce exponencialmente. A tão 

chamada internet das coisas abrange cada vez mais dispositivos domésticos crescendo 

também a necessidade de os controlar.  No entanto existem inúmeras plataformas que 

integram inúmeros protocolos e dispositivos, de inúmeras maneiras, muitas delas pouco 

intuitivas.  

Algo que transportamos sempre connosco são os nossos dispositivos móveis e com a 

evolução da tecnologia, estes vieram-se tornando cada vez mais potentes e munidos de 

variados sensores. Uma das portas para o mundo real nestes dispositivos é a câmara e as 

suas inúmeras potencialidades. Uma temática que tem vindo também a ganhar enorme 

relevância é a Inteligência Artificial e os algoritmos de Aprendizagem Máquina. Assim, 

com o processamento correto os dados recolhidos pelos sensores poderiam ser utilizados 

de maneira intuitiva para interagir com os tais dispositivos presentes em casa. 

Nesta dissertação é apresentado o protótipo de um sistema que integra os dispositivos 

móveis nas plataformas de automação de casas através da deteção de objetos na 

informação recolhida pela câmara dos mesmos, permitindo assim ao utilizador interagir 

com eles de forma intuitiva. A principal contribuição do trabalho desenvolvido é a 

integração não explorada até então, no contexto da automação de casas, de algoritmos de 

ponta capazes de superar facilmente os seres humanos na análise e processamento de 

dados adquiridos pelos nossos dispositivos móveis. Ao longo da dissertação são 

explorados os conceitos referidos, bem como a potencialidade dessa integração e os 

resultados obtidos. 

 

Palavras Chave: Internet das Coisas, Casas Inteligentes, Computação Visual, 

Aprendizagem Máquina, Dispositivos Móveis  
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Abstract 

 

The concept of smart homes is increasingly expanding and the number of objects we 

have at home that are connected grows exponentially. The so-called internet of things is 

increasingly englobing more home devices and the need to control them is also growing. 

However, there are numerous platforms that integrate numerous protocols and devices in 

many ways, many of them being unintuitive. 

Something that we always carry with us is our mobile devices and with the evolution 

of technology, they have become increasingly powerful and equipped with lots of sensors. 

One of the bridges to the real world in these devices is the camera and its many potentials. 

The amount of information gathered can be used in a variety of ways and one topic that 

has also gathered tremendous relevance is Artificial Intelligence and Machine Learning 

algorithms. Thus, with the correct processing, data collected by the sensors could be used 

intuitively to interact with such devices present at home. 

This dissertation presents the prototype of a system that integrates mobile devices in 

home automation platforms by detecting objects in the information collected by their 

cameras, consequently allowing the user to interact with them in an intuitive way. The 

main contribution of the work developed is the non-explored until then integration, in the 

home automation context, of cutting-edge algorithms capable of easily outperforming 

humans into analyzing and processing data acquired by our mobile devices. Throughout 

the dissertation the referred concepts are explored as well as the potentiality of this 

integration and the results obtained. 

 

 

Keywords: Internet of Things, Smart Homes, Computer Vision, Machine Learning, 

Mobile Devices   
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Chapter 1 – Introduction 

 

In recent years we have been witnessing a technological change of a dimension 

comparable to the industrial revolution [1]. This is based on the principle that all the 

objects that surround us are likely to become connectable and form an intelligent network 

that we can call the Internet of Things (IoT), a network that while connecting all the 

devices to the Internet allows them to communicate with each other and with the people, 

changing information according to a set of defined protocols.  

IoT can be seen as a bridge between the real and the virtual world since it allows 

“things” to gather information from the environment and share knowledge [2]. As a result, 

this translates into improved process efficiency and increased level of automation in tasks 

performed with these devices. 

These developments provide the ability to develop applications that allow us to 

improve our life quality in the different environments we attend. Thus, by making devices 

“smart”, we can design solutions for diverse areas such as: logistics, farming, 

transportation, health, smart environments (home, office) and even at a personal and 

social level [3]. 

 

1.1.  Motivation and Framework 

Homes are precisely one of the most predominant areas in IoT. By 2020 the number 

of connected devices is expected to grow exponentially to around 8 billion, with a large 

slice of approximately 30% [4] being devices in our homes. 

These devices, when used in a smart and dynamic way, form what we nowadays call 

"Smart Homes". With the right automation logic implemented, we can control lights, 

temperatures, appliances and other devices, set alarms and monitor systems in order to 

provide comfort and convenience to its residents. 

However, with incessant search for innovation and a constant emergence of new 

technologies, we come across an endless number of protocols and platforms to integrate 

all these new devices. One of the main obstacles to the development of an IoT is the 

standardization of this integration. As mentioned in [5], if we imagine a scenario where 

each car manufacturer used different controls and their drivers were forced to use wheels 
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on one type of car, joysticks on others and buttons on another type, we easily understand 

the complexity of the problem. If we apply the metaphor for Smart Homes, we can see 

that in a scenario where we have a vast set of devices connected at home, it becomes 

difficult to have a protocol or a bridge that connects all of them. 

Currently the Institute of Electrical and Electronics Engineers (IEEE) Standards 

Association in joint efforts with the International Telecommunications Union (ITU) have 

been working to define a standards framework to help overcome these barriers that 

prevent IoT from reaching its full potential. 

It is in this context that arises the opportunity for solutions based on Open Home 

Automation Bus (OpenHAB) [6] or OpenRemote [7]. Through the use of open standards, 

these platforms can integrate almost any type of device without despising the efficiency 

and benefits to the user. However, the configuration process and everyday use is time 

consuming and not so intuitive for the average user. This almost ends up narrowing the 

use of this platform to users with computational background or who are willing to take 

the time to learn how to use the system [8]. 

This scenario opens the door to the use of our personal mobile device to ease the 

interaction with the platform and make its usage more user friendly and intuitive. 

However, the integration of these devices on the automation platforms is still far from 

complete, especially considering the amount of information from the sensors that can be 

collected from the device. 

One of the sensors that allows a greater margin of integration is the camera. With the 

help of Computer Vision (CV) libraries such as the Open Source Computer Vision 

Library (OpenCV) [9] or image detection APIs such as Cloud Vision [10], there is room 

to progress towards using the camera as a sensor on the automation platforms and perform 

image recognition tasks. Furthermore, there are also other sensors in the mobile device 

that can support intuitive tasks, such as the light sensor and the gyroscope. 

 

1.2.  Objectives 

The main goal of this dissertation is to promote the integration of mobile devices into 

current home automation solutions, considering the device as a sensor, in particular the 

use of its camera in a user-friendly way in order to perform tasks based on image 

recognition. 
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Analyzing the related work in the smart homes sector, it is noticeable that an effort is 

being made in progressively using the mobile device to interact with the home automation 

platforms and control our home appliances in a user-friendly way. Still and all, there is 

no bridge between the mentioned subjects and this dissertation proposal aims to fill that 

gap, providing the device the ability to perform image recognition tasks from an intuitive 

application and consequently take actions in a smart home environment. 

This integration strives to go beyond the scope of the normal home automation mobile 

applications as far as the interaction with the user happens and as well as the concept of 

object recognition with real time detection is attached. 

Thus, the proposed system consists in a sequence of modules which provide the 

foundation to the whole work flow that needs to occur since back from the user to the end 

smart home devices. In a high-level system architecture overview, the system presented 

consists of a mobile application where the user takes interactions. This application is 

where the object recognition is performed in real time, analyzing the surrounding 

environment and enabling the interactions with the devices. Then, the application 

interacts with a message broker, which connects to the home automation platform and 

consequently triggers events in the devices themselves, according to the existing rules. 

The final objective is validating the prototype implementation analyzing real case 

scenarios and identifying and interacting with the smart home devices, considering the 

obtained accuracy and viability. 

 

1.3.  Dissertation Organization 

After contextualizing the motivation and introducing the scope of the dissertation, 

Chapter 2 reviews the work already developed, considering the existent solutions and the 

state of the art itself. In Chapter 3, a high-level system architecture is presented, 

introducing the modules of the system developed and the choices made for each of them. 

Later, Chapter 4 describes the major system development stages in order to successfully 

implement the proposed solution. In Chapter 5, the final solution achieved and its 

components are described as well as comparisons and tests on the implemented prototype 

are made. This analysis allows to draw the major conclusions depicted in Chapter 6, 

which also discusses possible system limitations and identifies topics for future work 

development.  
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Chapter 2 – Literature Review 

 

IoT for Smart Homes and Computer Vision are some of the most emerging trends in 

the 21st century and consequently there are numerous solutions and concepts developed 

in both domains. However, there are not many proposals that put together these two topics 

taking advantage of the integration between them. Nevertheless, extensive related work 

can be found mostly in independent subjects.  

Considering the context of IoT presented in Chapter 1 and the above statements, given 

the fact that home automation platforms provide a certain level of abstraction of the 

protocols implemented between the platform and the items, this Chapter will focus mainly 

on the home automation platforms and the integration with the mobile device itself, 

regarding all the tasks and integrations associated. Section 2.1 reviews the main home 

automation platforms considered. Section 2.2 discusses the integration with the mobile 

device and the mobile application as well as the communication with the platform. 

Section 2.3 focus on the image processing tasks taking in charge by the integration 

referred and gives an approach on different techniques to object detection, image labeling 

and processing. 

2.1.  Home Automation Platforms 

With a constant expanding number of devices and sensors available to aid the task of 

automate and monitoring an everyday home, there is a growing market for solutions to 

tie them up together. Early 2019, the worldwide household penetration regarding smart 

devices is 9.5% and is expected to hit 22.1% by 2023 [11], being United States the major 

contributor, having 33.2% in the beginning of 2019 and expected to almost double that 

value by 2023.  

Figure 2.1 - Devices Connected to a Home Automation Platform 
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For this reason, it is crucial to have the ability to control lighting, air conditioning, 

heating and other connected devices from a single hub platform as shown in Figure 2.1. 

 

2.1.1. Platform Solutions 

There are currently countless solutions on the market that provide almost unlimited 

possibilities for what we can accomplish. Table 2.1 shows a comparison between some 

key features of the most popular home automation platforms. A more detailed approach 

on each one can be found in the subsections below. 

Table 2.1 - Home Automation Platforms Key Features 

Feature 
Home Automation Platform 

OpenHAB Domoticz Home Assistant OpenMotics OpenRemote Calaos 

Open-source Yes Yes Yes Yes Yes Yes 

Backend 

Language 
Java C/C++ Python Python, C Java C++, Shell 

Web UI Yes Yes Yes Yes Yes Yes 

Mobile Apps 

Yes 

(Android 

and iOS) 

Yes 

(Android 

and iOS) 

Yes (iOS) 
No (Under 

development) 

Yes (Android 

and iOS) 

Yes 

(Android 

and iOS) 

Number of 

supported 

devices and 

integrations 

Large Limited Large Limited 
Large (with 

retrofitting) 
Medium 

Installation Easy Medium Easy 

Medium (need 

to install the 

modules) 

Medium Easy 

Automation 

Rules 
Yes 

Yes (with 

LUA 

scripting) 

Yes No Yes Yes 

Community 

of Users 
Large Large Large Medium Medium Small 

Updates 
Slow (but 

stable) 

Slow (for 

latest 

devices) 

Fast (almost 

every week) 

Average 

(mainly bug 

correction) 

Regular Slow 

Can run on 

Linux, 

Windows, 

Mac OS, 

Raspberry 

Pi 

Linux, 

Windows, 

Mac OS, 

Raspberry 

Pi 

Raspberry Pi 

(recommended), 

Windows, Mac 

OS, CentOS 

Specific 

Modules 

Mac OS, 

Windows, 

Raspberry Pi, 

NAS, Debian 

x86 and x64 

PC, 

Raspberry 

Pi, Mele, 

Cubieboard 
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2.1.1.1 OpenHAB 

OpenHAB [6] is an 100% open-source automation platform built upon Eclipse 

SmartHome (ESH) IoT framework which supports more than 200 technologies/systems 

and thousands of devices. It is a flexible solution that allows to integrate these multiple 

devices and technologies into a single solution with a uniform and customizable Web 

User Interface (UI). This platform runs on any device capable of running Java Virtual 

Machine (JVM) and provides the ability to be integrated in other systems using its 

Application Programming Interfaces (APIs). Being one of the best-known home 

automation platforms, OpenHAB has a large and well stablished community of users. 

2.1.1.2 Domoticz 

Domoticz [12] is a lightweight open-source automation system that allows to integrate 

many devices such as lights, switches, multiple sensors and other third-party integrations. 

Written in C/C++ with a scalable HTML5 designed frontend, the platform can be 

accessed both in desktop and mobile devices running in different operating systems 

including Windows, Apple Unix and even on a Raspberry Pi. It is designed for simplicity 

and features to send notifications and alerts to any mobile device. The platform 

configuration is made through a Web interface and the functionalities can be extended 

with the use of plug-ins. Although being very stable, Domoticz interface is not that 

intuitive and the supported devices and configurations can be limited. 

2.1.1.3 Home Assistant 

Home Assistant [13] is an open source automation platform that will track the state of 

all the devices connected in a smart home using a single user-friendly interface. Putting 

privacy in first place, the platform stores data locally and away from the cloud. It is 

developed using Python 3 and Polymer and has frequent updates. The installation process 

is very simple and tries to connect to all your devices in the first run. With the set of 

advanced rules, it provides the ability to automate certain actions and simplify people 

needs in day to day life.  

2.1.1.4 OpenMotics 

OpenMotics [14] is a slightly different home automation system. Being open-source, 

this platform offers a complete solution with both software and hardware components that 

provide full control over devices instead of trying to combine and integrate multiple 
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solutions from different manufacturers. The OpenMotics platform is composed of several 

hardware components called Modules and each Module has a designated role in the home 

automation process. It has intuitive interfaces for computers, tablets and smartphones and 

the data can be accessed in each one of these devices or anywhere in the cloud. Having 

community scope in mind, the platform aggregates data from different Module groups 

allowing improved building management. 

2.1.1.5 OpenRemote 

OpenRemote [7] is an open-source project to integrate, design and manage solutions 

focused on smart cities, buildings, home automation and health care. In the home 

automation department, OpenRemote provides the ability to integrate all the devices in a 

smart home and create a universal remote to control them from your smartphone or tablet. 

With the use of Open Remote Designer, it is possible to tailor a specific solution to satisfy 

each user needs, also giving the ability to retrofit devices that were not thought to be smart 

in the first place and to design specific rules which will control lighting, entertainment, 

climate and others.  

2.1.1.6 Calaos 

Calaos [15] is a full stack project designed by a French company built in several layers 

and including a full Linux Operating System (OS), Calaos OS. This solution includes a 

server application, a touchscreen interface, mobile apps developed natively both to iOS 

and Android and even a Web App. It allows to control switches and lights in different 

rooms, to manage security cameras and to share media across the entire house. 

2.1.2. Remarks 

The choice of the automation platform is a major concern because it can easily dictate 

the system limitations and capabilities accordingly to the platform features and possible 

implementations. Bearing in mind the integration intended and given the descriptions 

made in the past sections, OpenHAB, Home Assistant and Domoticz are good choices to 

do further tests because they are all open-source, developed in a well-known easy to learn 

language, have a strong base community of users, a companion mobile app and can be 

installed on common hardware like a Raspberry Pi. 
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2.2.  Integration with Mobile Devices 

Since the integration with the mobile device is the focus of this Thesis, the device 

needs to be able to interact with the surrounding environment through a mobile 

application and to communicate with the automation platform in order to trigger actions 

on each of the devices connected.  

This section will discuss and compare the main related concepts and the solutions 

available to solve each of the situations stated. 

 

2.2.1 Mobile Application 

A mobile application is a software artifact designed to run on a mobile platform. 

Currently, the biggest players in the mobile operating systems are Android with 

approximately 75% and iOS with 22% market share worldwide being the remaining part 

distributed among other less known operating systems or proprietary solutions [16]. 

Additionally, given the fact that iOS and Android do not have a common framework 

development tool, there are solutions to multi-platform development like Web 

Applications, Hybrid Applications and proposals for new taxonomies to unify the cross-

platform development [17].  

Even tough cross-platforms solutions represent an efficient approach to develop 

software for multiple operating systems [18], the state-of-the-art work in this area acts as 

a limitation to integrations with already existing image processing APIs and frameworks 

which are not supported. As a result, the best solution in the context of this dissertation is 

to natively develop apps for each of the major operating systems in the market, 

respectively Android and iOS. 
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2.2.2 Communication  

As mentioned above, communication plays a major part in integrating the mobile 

device with the home automation platform. The communication protocol to use between 

the device and the platform (see Figure 2.2) depends heavily on the choice of the platform 

since each of the platforms referred on Section 2.1 supports a different set of protocols 

and integrations. 

 

Notwithstanding the choice of the platform, the most common binding supported are 

MQTT, HTTP and Bluetooth. The use of Bluetooth requires the development of a specific 

implementation to each platform tested as opposite to MQTT and HTTP which have 

already developed integrations with most of the platforms approached in Section 2.1. 

 

2.2.2.1 MQTT 

Message Queuing Telemetry Transport (MQTT) [47] is a lightweight Machine-to-

Machine communication protocol designed to be easily implemented on low bandwidth 

networks. It works on a publish/subscriber architecture (see Figure 2.3) and normally runs 

over TCP/IP. It was created back in 1999 and maintained its focus on being energy 

efficient and running on embedded devices using small data packets escalated to many 

receivers. 

MQTT considers two different entities, a broker and a variable number of clients. An 

MQTT client can act as a publisher or as a subscriber and both connect to the broker.  

Information is organized by topics and the first one will publish information to a given 

topic, sending a message to the broker which therefore is responsible to distribute the 

information to all the clients who subscribed that topic (Figure 2.3). 

Figure 2.2 - Communication between Mobile 

Device and Home Automation Platform 
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This protocol can specify a Quality of Service (QoS) for each connection which 

quantifies the guarantee of a specific message being delivered divided by 3 levels: At 

Most Once (0), At Least Once (1), Exactly Once (2). This QoS considers the two steps of 

the delivery which are the delivery from the publisher to the broker and the delivery from 

the broker to the subscriber. 

 

2.2.2.2 Bluetooth 

Bluetooth [48] was created in 1994 with the objective of transmitting data in a master-

slave architecture based in packets. It is an open technology which uses 79 radio 

frequency channels in a Frequency Hopping Spreading Spectrum (FHSS) with a changing 

rate of 1600 times per second.  It established as an IEEE standard (802.15.1) in 2005 

operating in 2.4 GHz band.  

The Bluetooth enabled devices communicate in a master-slave architecture and 

together form an ad-hoc network of up to 7 slaves per master where the device working 

as master is responsible to initiate the communication while the slaves listen, letting the 

master know their address. The master can be communicating with one or more slaves, 

this way, the communication established can be point to point or point to multipoint, 

respectively.  

 

 

 

Figure 2.3 - MQTT Publish/Subscribe Architecture  



 

12 

2.2.2.3 HTTP 

Hypertext Transfer Protocol (HTTP) [19] is an application-level communication 

protocol based on TCP/IP used since 1990 for communication on the Web. It is a protocol 

based on a request-response architecture where the Web server responds to requests from 

the HTTP clients, as presented in Figure 2.4.  

 

The workflow consists on a request sent by the client which includes the Universal 

Resource Identifier (URI), the protocol version, request modifiers, among other 

parameters over a TCP/IP connection. Then, the HTTP server is responsible for fiving a 

response containing the status, message protocol version and informing the success or fail 

of the operation alongside the meta information and body content of the response. HTTP, 

despite being simple, is also powerful since it is a stateless, media independent and 

connectionless protocol. 

 

2.2.2.4 Remarks 

As discussed in [21, 22, 23] and stated above, MQTT is proven to be less power 

consumption, require less resources to be implemented, and less bandwidth providing 

better quality of service as opposite to HTTP. On the other hand, HTTP provides the 

ability to compose longer messages, has a larger specification and higher levels of 

security and interoperability. Thus, regarding the advantages and disadvantages 

presented, both protocols can be suited to testing. 

Figure 2.4 - HTTP Client/Server Architecture [20] 
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2.3.  Image Processing  

This interaction process mentioned in Section 2.2, based on image recognition, is one 

of the dissertation cores and can be taken in charge with two different approaches. In one 

hand, it can be implemented with more traditional Computer Vision techniques 

performing feature extraction over an image, using methods based on edge, corner, color 

schemes and texture detection to extract as many information as possible and provide the 

ability to discriminate objects. On the other hand, Machine Learning (ML) algorithms can 

come in handy, teaching a neural network by uploading a big number of images with 

lamps and other devices in it and let it do all the work. 

2.3.1 Computer Vision  

Conventionally, Computer Vision [24] is formally described as the construction of 

explicit and meaningful descriptions of objects from images. In Figure 2.5 is described 

an usual workflow using traditional CV algorithms. It implies performing visual 

recognition tasks in order to classify images and detect objects.  

 

A recurrent problem in Computer Vision tasks is defining if the images contain a given 

object or specific feature and this task can be performed with several levels of granularity. 

These visual recognition tasks can be divided in different categories which are described 

in detail in the next sub chapters. 

 

 

 

 

 

 

 

Figure 2.5 - Traditional Computer Vision Algorithm Flow 
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2.3.1.1 Image Classification 

Image classification [25] can be defined as the process of attributing a classification to 

an image, based on its content. Given an image as an input, an image classificator will 

output a class name identified or in some cases the probability of the input passed being 

a specific class, as exemplified in Figure 2.6. Multiple label classifiers can be created to 

classify an instance into one of n possible classes. 

 

2.3.1.2 Object Detection 

If the images considered for identification only have one object, a classification model 

can be easily ran and give right predictions and even if there are two different object 

intended to be classified inside the same image there are also solutions based on multi-

label classifiers but a drawback is not knowing where these objects are inside the image. 

This scenario is where Image Localization is needed and the concept of Object Detection 

[26] is introduced.  

Figure 2.6 - Image Classification Example [25] 

Figure 2.7 - Object Detection Example [26] 
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As exemplified in Figure 2.7 above, the concept of object detection goes by the ability 

of knowing the location of the objects detected inside the image alongside the class for 

each of them. Object detection techniques are usually associated with defining rectangular 

bounding boxes around the objects identified. 

 

2.3.1.3  Other Techniques 

Additionally, to image classification and object detection, there are other more 

complex computer vision techniques [25] such as object tracking, image segmentation 

and even semantic segmentation. 

For instance, image segmentation is the partition of a given image in various segments 

which allow to group together a number of pixels with similar properties that represent a 

particular segment of that image, as exemplified bellow in Figure 2.8. Image 

segmentation gives thus a better understanding of the different objects inside the image 

and its real shapes instead of rectangular boxes.  

 

2.3.2 Machine Learning 

The problem with feature extracting to classify an image is that you need to know in 

advance what to look for and which feature to identify in each one of the images under 

analysis. This situation grows exponentially with the number of different types of objects.  

Here is where Machine Learning algorithms come in handy. For example, if someone 

wants to identify a lamp in a given image, instead of manually deciding the methods to 

detect the features desired, like round shapes and filaments, it is easier to teach a neural 

network by uploading a big number of images with lamps in it and let it perform all the 

Figure 2.8 - Image Segmentation Example [25] 
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tasks, as shown in Figure 2.9, in comparison to the previous method described in Section 

2.3.1. 

 

 

Despite these benefits, deep learning algorithms require a large amount of computer 

resources and need to be trained and tweaked with huge annotated datasets in order to 

obtain the highest accuracy possible [27]. 

 

2.3.2.1 Neural Networks 

The main objective of a neural network is to understand data patterns and making 

decisions based on that pattern detections after analysis. Neural networks are designed to 

mimic the structure of the human brain, getting predictions from accretions of small data 

abstractions. These networks underly most of the so-called artificial intelligence systems 

and have the ability of detecting very complex relations between structured or 

unstructured data.  

The base unit on these networks are the nodes, or neurons, which are densely 

interconnected as depicted in Figure 2.10. The nodes are organized into layers and the 

network can have different topologies according to the number of layers and the number 

Figure 2.9- Deep Learning Algorithm Flow 

Figure 2.10 - Neural Network Architecture 
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of nodes per layer. A node or neuron has multiple connections, including one or more 

weighted inputs which lead to an output generated by internal functions. 

 

2.3.2.2 Deep Learning 

Deep learning is a subset class inside machine learning that uses the hierarchical 

multiple layers of neural networks to handle machine learning processes, enabling this 

way a nonlinear approach on unstructured data processing. Deep learning is based on 

artificial neural networks and implements deep neural networks to fields like computer 

vison, language processing, among others.  

A deep neural network is basically an Artificial Neural Network (ANN) with a higher 

number of layers between the layers that receives the input and the final output layer. 

Usually Deep Neural Networks are feedforward, which means no data loops back at the 

layer, flowing forward to the output. 

 

A specific class of deep neural networks is the Convolutional Neural Networks 

(CNNs) which are fully connected multi-layer networks that do not vary in space and 

meaning that one layer node is connected to all the nodes in the next layer, as presented 

above in Figure 2.11. 

 

 

Figure 2.11 - Deep Learning Neural Network Example 
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2.3.3 Frameworks and Libraries  

Given the advantages and tradeoffs of both approaches [28], state-of-the-art 

frameworks and libraries used in major implementations for classification, localization, 

object detection and image segmentation are described below.   

 

2.3.3.1 OpenCV 

OpenCV [9] is one of the best-known libraries for computer vision and it has most of 

the traditional image processing algorithms and methods already built-in. It has Java, C++ 

and Python interfaces and supports major platforms like Windows, Linux, MacOS and 

even iOS and Android. Being free to use, it is a mature and fast platform with a large 

community of users and extensive documentation containing examples for all the 

platforms.  

2.3.3.2 Tensor Flow 

Tensor Flow [29] is an open-source machine learning library with a flexible 

architecture that has implementations for a variety of platforms like Windows, Linux, 

MacOS and even for Android and iOS. Developed by Google Brain Team, this software 

allows to develop and train neural networks, providing both high and low level stable 

APIs in Python and C but also in other languages like Java, Go, or C++. 

In 2017, Google launched Tensor Flow Lite allowing to run machine learning models 

on mobile devices with low latency and fast performance. With Tensor Flow Lite, it is 

possible to build a new model, retrain an already existing one or even converting an 

original Tensor Flow model to a compressed and mobile solution. It has portability for 

iOS, Android and other IoT devices. 

2.3.3.3 Cloud Vision  

Cloud Vision [10] is a solution developed by google to integrate machine learning 

vision models with an application. Vision API allows to implement detection features like 

face detection, optical character recognition (OCR) or content tagging within applications 

and Auto ML Vision provides the ability to train a custom machine learning model that 

performs the desired task. 
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2.3.4 Remarks  

Even though Machine Learning (ML) processes are making a revolution in computer 

vision IoT applications, classic Computer Vision are still very useful and a combined use 

of both can offer much better results. For example, using basic computer vision 

techniques for image segmentation and then using deep learning to process those 

segments extracted instead of the whole frames can result on saving computing resources 

and reduce identification time. Therefore, there is a lot of space to improve and 

innumerous scenarios and use cases that can be adapted to the user needs. 

 

2.4.  Related Work 

In the field of IoT, the authors in [30] have taken a more mobile approach to Smart 

Homes using IoT. The proposed system aims to access and control devices in a Smart 

Home using a smartphone app. With the integration of wireless communication and cloud 

networking, the goal is to provide users with the possibility to control all the electrical 

smart appliances, devices and sensors using a friendly interface in a smartphone from 

remote locations. The proposed system is composed of a base station implemented in an 

Arduino Mega connected to Wi-Fi and multiple satellite stations based in Arduino Uno 

boards with Radio Frequency modules to communicate with the base station. 

The authors in [31] developed a mobile Android app than can access information of 

all the appliances in a smart home and allows to interact with them, manually or 

automatically from scheduled events. Implementing both AES and RSA algorithms, the 

app was designed taking into concern common security issues. The system is composed 

of two main blocks, an outdoor environment and an indoor environment. The outdoor one 

consists of the end user and the application cloud server whereas the indoor one has the 

access point, the hosts and all the nodes. Even though communication between the two 

environments is done using the Internet with encrypted information, communication 

inside indoor environment uses Zigbee. The application can be accessed in real-time in 

any remote location and has notifications, QR Code and Auto-Lock features. 

In the matter of Computer Vision, in [32] the authors present an application for object 

detection based on OpenCV libraries. The object detection system was developed and 

trained on a Windows machine and implemented on a Texas Instruments embedded 

platform. It adopted a cascade classifier based on Haar-like feature in order to reduce the 
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computational time and to increase the speed of object detection. The system was trained 

with a dataset of around 4000 images from different angles and positions. 

In [33], even though not related directly to IoT, the author trained his own object 

detector to accurately detect Raccoons around his house. The system was developed using 

TensorFlow Object Detection API and was trained with a specific dataset of about 200 

racoon images collected and labeled by the author. The training process was done with 

an object detection training pipeline based on a Single Shot MultiBox Detector [33] 

network with default settings and adapted to only one class. Since the image dataset was 

small and few training time was used, the detector does not recognize every single racoon 

but it can deliver decent results with relatively good accuracy.  

Analyzing the related work in the smart homes sector, it is noticeable that an effort is 

being made in progressively using the mobile device to interact with the home automation 

platforms and control our home appliances in a user-friendly way. Still and all, there is 

no bridge between the mentioned subjects and this dissertation proposal aims to fill that 

gap, providing the device the ability to perform image recognition tasks from an intuitive 

application and consequently take actions in a smart home environment. 
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Chapter 3 – System Architecture  

 

The main goal of this dissertation is to promote the integration of the mobile devices 

into the home automation segment, providing the user the ability to interact intuitively 

with the system. This integration strives to go beyond the scope of the normal home 

automation mobile applications as far as the interaction with the user happens and as well 

as the concept of object recognition with real time detection is attached.  

As referred in Chapter 2 there is a lot of work already develop in the subjects of home 

automation, from energy efficient to fully automated solutions, but the introduction of 

machine learning in the user interaction with the system is yet to be made and a fair long 

way from being established. 

Thus, the proposed system consists in a sequence of modules which provide the 

foundation to the whole workflow that needs to occur since back from the user to the end 

devices. In Figure 3.1, a high-level system architecture is presented in which can be 

identified the user representation, the mobile cluster, the automation platform aggregate 

and int the opposite end, the smart devices connected inside home. Each of these modules 

choices and their respective roles in the entire process will be detailed in the sections 

bellow whereas their implementation will be fully described in Chapter 4.    

 

 

 

Figure 3.1 - High-Level System Architecture 
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3.1.  Mobile Module 

This module serves has the entry point to the user in the whole workflow. All the 

interactions will happen within an application installed in the mobile device and the 

actions taken inside it will trigger series of events throughout the system.  

 

 

As illustrated in Figure 3.2, the mobile component is composed by a mobile 

application and a re-trained model integrated into the application. This integration occurs 

in real time providing the user instant feedback and therefore, according to the scenario, 

specific commands and actions will be sent through the channel of communication 

existing between this module and the home automation one.  Both components play a 

major role in the system responsiveness and utility and are described in the subsections 

ahead. 

 

3.1.1. Mobile Application  

The mobile application will be installed in the user device and its main role is to 

collect user interactions, interpret the data collected and stablish the communication with 

the automation platform. 

As discussed in Section 2.2 and having in mind the market share, ease of use and 

accessibility, the most reasonable choice in the given context is to have an Android 

application. Developing natively an iOS application would require specific hardware and 

would reach a smaller community of users than the Android. Moreover, the choice of a 

hybrid solution would create limitations to future integrations of frameworks and 

consequently narrow the use case scenarios. 

Figure 3.2 - Mobile Module Architecture 
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Therefore, with the choice of the Android operating system to the developments, it 

can be guaranteed that a large number of devices would be compatible, a vast number of 

users could be reached, and the communication process would not be limited by software 

restrictions.  

This application must furthermore allow the communication to be established 

between the mobile device and the home automation platform. To do so, it will need to 

play the client role in a communication protocol between both, sending information to the 

platform. Since Android supports a wide variety of integrations with communication 

plugins and software, this choice guaranteed that a close to optimal solution could be 

found. The communication scheme and implementation will be further detailed. 

 

3.1.2. Inference Model  

Being the main purpose of the integration proposed, the ability to use the mobile 

device sensors to interact intuitively with the smart devices. One of the major and biggest 

information collectors which can be found in every mobile device is the camera. So, to 

take advantage of all the potentialities, a way of interpreting the data collected by the 

camera sensor needed to be found. 

As discussed in Section 2.3, a possible solution was to implement traditional computer 

vision algorithms, using feature extraction and pattern recognition processes to manually 

identify objects. Notwithstanding the fact of these techniques have proven themselves to 

be reliable and effective, a more futuristic approach was taken in consideration.   

Here is where the Machine Learning component comes into play. The use of a 

machine learning library compatible with the architecture proposed, able to load and 

process data, build, train and re-use models with easy deployments was the solution. This 

way, the solution used in the interpretation component relies on the Tensor Flow 

framework [25]. 

In addition to providing the ability to re-train a neural network without the need of 

sophisticated and powerful hardware, the biggest overall advantage of this tool is the 

allowance to run machine learning models on mobile devices within a compressed and 

mobile solution, Tensor Flow Lite.  
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The use of on-device machine learning allows a simpler system architecture, without 

the need of executing consecutive server calls to evaluate information. That would require 

constant data streaming resulting in more energy consumption, higher latency and extra 

processing with back and forth communication also having to consider the possibility of 

data loss in it.  

As far as the solution architecture goes, Figure 3.3 presents the components stack 

involved in the process. On top, the Java and C++ application programable interfaces are 

responsible for loading and invoking the interpreter which in turn executes the model 

using a set of kernels. In Android versions superior to 8.1, Android Neural Networks API 

(NN API) [34] is supported and it allows to efficiently distribute the computation across 

device processors and benefit of running hardware acceleration through Android Neural 

Network Hardware Abstraction Layer (NN HAL). If none of these are available, normal 

CPU execution will run. 

 

The process of obtaining the Tensor Flow Lite model which will be loaded into the 

interpreter will be described in de system implementation sections ahead. 

 

 

Figure 3.3 - Inference Model Architecture Stack Integration 
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3.2.  Communication  

The connecting point between the main module described in Section 3.1 and the later 

one described in Section 3.3 is the communication established between both. As stated in 

Section 2.2.2, the communication protocol to use between the device and the platform 

depended heavily on the choice of the automation platform and the application ecosystem 

since each platform and operating system supports a different set of protocols and 

integrations.  

This way, considering the advantages and disadvantages already presented, MQTT is 

the most suitable choice in this scenario, providing a solution to assure communication 

between the two modules that is widely used across the IoT environments with low 

bandwidth, low latency and good performance.  

 

 

Within the system architecture context, and given the MQTT principles, one 

component will act as a publisher, one as a broker and the other as a subscriber. The most 

logical way of implementing the protocol architecture in this scenario is being the mobile 

device the subscriber responsible of publishing data to a certain topic which is subscribed 

at the automation platform end. By doing so, the mobile device can constantly push 

updates on state changes and user interactions knowing that these will be received on the 

automation platform listening for data in the specific topics subscribed. 

 

 

 

 

Figure 3.4 - Communication Architecture Workflow 
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3.3.  Home Module 

The last but not the least important element in the proposed system architecture is the 

home module. This one houses two main components, the broker, responsible for the 

communication, and the home automation instance, responsible for the integration of the 

smart devices and sensors. As displayed in the Figure 3.5, both of them are housed inside 

the same installation platform. 

 

 

One major concern was to have the broker and the automation platform installed in 

the same hardware so the need of extra hardware could be avoided. Consequently, the 

choice of all three components was made having in mind the need of each one being 

compatible between them.  

Keeping in mind the comparisons performed in Section 2.1 and the choice of the 

communication protocol made, a suitable solution to integrate both elements was to install 

them inside a Raspberry Pi. Therefore, giving the reduced cost and the ease of installation 

and maintainability, this whole module is based on a Raspberry Pi 3B+ [35] where the 

MQTT broker and the Automation Platform live. A detailed description of them is made 

in the subsections bellow.  

  

 

 

Figure 3.5 - Home Module Architecture 
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3.3.1. Broker 

The choice of MQTT as the communication protocol resulted in the need of having a 

broker to manage all the publish and subscribe calls and therefore maintain the 

communication between the elements involved.  

The MQTT Broker solution could be managed in three different ways: the first one 

relies on having a public broker providing the services, the second one is to have a private 

broker and the third one implies using an in-platform broker, when available. Since in a 

public broker, any device or entity can publish and subscribe to any topic on it, and that 

most home automation platforms analyzed in Section 2.1.1. did not have a broker by 

default, the securest and easiest way to integrate this node into the architecture was relying 

on a private broker where only the devices with given permission can publish and 

subscribe to the topics managed by that broker.   

In order to do this integration, the chosen MQTT broker was Mosquitto [36]. As an 

open-source lightweight solution widely used on IoT messaging and additionally able to 

be easily installed on a Raspberry Pi, Mosquitto provides the tools needed to act as the 

communications mediator.  

 

Figure 3.6 represents the Broker placement within the system architecture, receiving 

subscribing requests from the Automation Platform and therefore delivering the messages 

there upon a data publish receipt from the Mobile Device, consequently establishing the 

connection for data transfer between both. 

 

Figure 3.6 - Broker Communication Role In System Architecture 
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3.3.2. Automation Platform 

Since the automation platform is a core element of the system, it plays a key role on 

its potential and limitations. Architecture wise, as referred in the beginning of this chapter, 

the home automation platform is installed inside the Raspberry Pi alongside the MQTT 

broker also already mentioned.  

Bearing in mind the integration intended and given the statements conclusions 

obtained in Section 2.1, Home Assistant [37] is a good choice to implement because it 

checks all the boxes: is open-source, developed in a well-known easy to learn language, 

has a strong base community of users and can be installed on a low processing power and 

costless device like the Raspberry Pi. 

The installation consists in a Home Assistant instance, housed in the Raspberry Pi, 

running natively on a virtual Python environment over the Raspian OS. As illustrated in 

Figure 3.7, the platform will also have the Smart Home Devices connected to itself, being 

able to send commands, perform operations and state changes accordingly to the 

information sent by the user from the mobile device and transmitted through the broker. 

The whole implementation and integration process are described in detail in Chapter 4. 

 

 

 

 

Figure 3.7 - Smart Devices Connected to Home Automation Platform 
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Chapter 4 – System Implementation  

 

In order to reach the concept solution proposed and implement the system architecture 

described in the previous chapter, an iterative and objective-centered approach 

development was taken. This way, having the desired solution defined and bearing in 

mind what already existed and the limitations and possibilities of the integration 

proposed, the design and development process was divided into a set of stages which are 

stated along this chapter. 

At first, the machine learning component was developed and converted into the 

desired format. After that, the mobile application responsible for integrating the model in 

real time was built. Therefore, the automation platform was installed and configured and 

consequently the communication processes where implemented. These four major stages 

of system development and implementation are the keys to successful operation of the 

solution proposed and are described in the Sections bellow.  

 

4.1.  Inference Model 

To implement the architecture solution described in Section 3.1.2 and having in mind 

the conclusions made in Section 2.3, a machine learning model had to be trained, 

converted and later deployed on the mobile device.  

Considering the visual perception task categories already described, it is clearer that 

a more complex approach like object detection or even image segmentation would 

generate more precise results than image classification only. As the complexity of the 

approach increases, the complexity of the training process also grows, and image 

segmentation would be overkill to have in a context like the one presented. This way, for 

the sake of this dissertation, an object detection first approach was considered ideal to 

fulfill the requirements implicit. 

Unfortunately, even though the use of object detection instead of image classification 

would result in a better overall solution, this approach has come not to be feasible since 

the cost and hardware requirements attached. In any case, the first training approach will 

be briefly described before the one taken in the sub sections bellow. 
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4.1.1. Collecting and Preparing the Dataset Broker 

Regardless of the final solution, a custom ML model training process requires an 

image dataset as an input. As stated before, for the model to perform in a certain scenario, 

it will have to be trained with enough data to learn the patterns and features desired. The 

amount of images provided, the number of classes existent and variety of the images 

inside the same class are all going to influence the final model precision and accuracy. 

Logically, a larger number of images and various angles, brightness and scales of the 

same object would return better results during the training processes applied and 

described along Section 2.3. 

In order to start the initial approach considering object detection, a dataset of images 

divided in 3 groups, exemplified in Figure 4.1, was gathered. The training process could 

have been done with many classes and devices but for the purpose of the implementation 

and to prove the main concept, the choice of 3 objects that can be found in most of so-

called smart homes was made:  

• Bulbs – 608 images 

• Air Conditioners – 508 images 

• Window Shutters – 808 images 

Figure 4.1 - Image Dataset for Training 
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Manually preparing the dataset for the training process is the most time-consuming 

part since after collecting all the images, all of them have to be filtered, labeled and 

consequently exported into TFRecord format to be interpreted by TensorFlow.  

The filtration consists in verifying if all the images are not too large for the training 

pipeline, maintaining the average size below 600x600 to prevent memory related 

problems and that all of them are in PNG or JPEG format which are the supported ones. 

The labeling part is done by identifying inside the image with a surrounding box where 

the object is, in other words, defining the minimum and maximum x and y coordinates, 

as illustrated in Figure 4.2, which will be therefore passed with the image to the model. 

Since the labeling part is a very slow process, a tool called Labelbox [38] was used. 

This tool basically provides an in-browser user interface to draw rectangles along the 

dataset uploaded and after that allows to export the information already prepared into 

TFRecord files. 

 

4.1.2. Training Elements 

After gathering all the data needed and obtained the final TFRecord files, there were 

several choices to be made that would outline the path from here forward. To begin the 

training process, the following elements were needed: 

• TFRecord Files – Containing the dataset provided and labeled above; 

Figure 4.2 - Image Labeling Example 
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• Label Map – Containing the classes used in the training, as illustrated partially 

in Figure 4.3; 

 

• Model Config File – A training pipeline is needed to define the type of model 

being trained, the parameters utilized in the training, the evaluation metrics 

and the dataset inputs. This is where are also defined, for example, the learning 

rate, memory configurations, training steps and batch size; 

• Pre-Trained Model – Training a model from scratch could take several days 

and a lot more images that the ones used. An already trained model can be 

used as a checkpoint for transfer learning and to retrain the final layers 

providing the data wanted for the model to perform the recognition process it 

was already intended to; 

Having the elements needed, the next implementation task was to train the actual 

model. The training process could be done in 2 different ways: the first one is locally, and 

the second use is using Cloud Tensor Processing Units (TPUs) based solutions. 

Subsequently, the training can be done from scratch or using a pre-trained model as a 

base.  

 

4.1.3. Training Process 

Here is where the unfeasible approach due to the limitations referred in the beginning 

of the chapter made an alternative but also functional path to be taken. To train the model 

locally, a lot of computational power was required for intense GPU in order to obtain an 

acceptable and realistic time and precision of training. Using a Cloud solution those 

hardware limitations are no longer real since options like Google Cloud TPU [39] provide 

the ability to run state of the art machine learning models with performances reaching the 

100 Petaflops mark with the latest versions. 

Figure 4.3 - Label Map Example 
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Despite being a step back compared to object detection, an approach using image 

classification solved both the problems since could be trained in a less powerful machine, 

using the dataset and files already prepared but with an equivalent use of the TensorFlow 

API returning similar results. The result of the model evaluation thus became more 

limited giving the fact that it returns only a label from an image instead of the coordinates 

of that same object identified inside the image. 

 

4.1.3.1 Environment Configuration  

In order to advance in the implementation, a training environment had to be set. 

TensorFlow can run both on Windows and Linux but since the installation process, 

dependency management and execution are easier and smoother on Linux systems, the 

base OS working environment used to support the implementation was Ubuntu – Version 

14.0. 

Therefore, TensorFlow was installed via normal Python development environment 

with Pip Installs Python (pip) which is a cross-platform package manager for installation 

of Python packages, as presented in Figure 4.4. Although it is also recommended to 

configure TensorFlow inside a virtual Python environment to isolate package installations 

from the system, there was no need to have that precaution here because the environment 

is only intended to perform the tasks related to this dissertation.  

 

At the time of the implementation, the TensorFlow version installed was 1.12.0 

although there is now a 2.0 stable version already released bringing some overall 

improvements to the process. 

 

Figure 4.4 - Python Environment Installation Commands [40] 
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4.1.3.2 Network Re-training 

After setting up the environment, the next step was the re-training process. This one 

was done using MobileNets [41] which are a set of computer vision models optimized to 

TensorFlow, designed to obtain high accuracy using limited computation power and 

restricted resources, building this way light weight convolutional neural networks.   

 A MobileNet is configurable with 2 hyper-parameters, input image resolution and 

relative size compared to the largest MobileNet, that scale the relations between accuracy 

and latency. Logically, with the choice of a bigger image resolution results in a more time 

consuming but more accurate model. Under this dissertation scenario, the default 

parameters were maintained, having an input image resolution of 224px and a 0.5 fraction 

of the model. These 2 parameters were passed inside Linux shell variables, as presented 

in Figure 4.5.  

 

Therefore, the model used was MobileNet_v1_0.50_224, an intermediate solution, 

based on an ImageNet pre-trained classification checkpoint and considering the tradeoff 

between accuracy and latency with 150 Million Multiply-Accumulates (MACs) and 1.4 

Million Parameters [42].  

To begin the training, a Python Script obtained from TensorFlow repository was used. 

The script retrain.py is responsible to download the pre-trained model and consequently 

add the new layer to be trained on the dataset given. The default number of iterations 

(4000) was used and the script was executed (see Figure 4.6) with the remaining 

parameters passed: 

 

Figure 4.5- Linux Shell Variables Representing the Hyper-Parameters 

Figure 4.6 - Command to Run the Training Process 
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• bottleneck_dir – Path to bottleneck layer files; 

• model_dir – Path to pb file, label map and pbtxt file; 

• summaries_dir – Path to TensorBoard summaries log; 

• output_graph – Location to save the trained graph; 

• output_labels – Location to save the trained graph labels; 

• architecture – Model architecture used; 

• image_dir – Path to the labeled images folders; 

The re-training process took long time to complete but at the end, after analyzing all 

the images, calculating the bottleneck values and feeding the input to the final 

classification layer, the Script output reported a Final test accuracy of 91.9%, as presented 

in Figure 4.7 below.  

For each of the training steps (4000 in this case) a 10 images set is chosen randomly 

to be fed into the final layer to obtain predictions, which are afterwards compared to the 

initial training labels and therefore updated with a backpropagation method. The idea of 

the backpropagation algorithm is, based on the calculation of the error occurred in the 

output layer of the neural network, to recalculate the value of the weights of the last layer 

of neurons and thus proceed to the previous layers, from back to front, that is, to update 

all the weights of the layers from the last one until reaching the input layer of the network, 

for this doing back-propagation the error obtained by the network. 

 

 

 

 

 

 

 

Figure 4.7 - retrain.py Final Output 
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4.1.3.3 Training Summary 

Before the training execution, a monitoring tool included in TensorFlow called 

TensorBoard was launched in background. This process was running alongside the 

training one to monitor a series of training parameters.  

Consulting TensorBoard, during and after the training, a set of outputs could be 

evaluated: 

• Accuracy – Divided in training accuracy and validation accuracy, these values 

represent, respectively, the percentage of images labeled correctly and the 

validation precision on a set of images chosen. In Figure 4.8, the accuracy, 

represented in the y-axis, is a function of the training progress, represented in 

the x-axis. The orange line represents the training accuracy of the model while 

the blue line exhibits the validation accuracy. As the validation accuracy 

remained the same as the training accuracy increases, we can say that the 

model did not entered in overfitting which is a scenario when the model is 

learning more of the training data proprieties than the data patterns itself. 

 

 

• Cross Entropy – In short, cross entropy is a positive loss function which tends 

to zero as the neuron improves computation of the desired output, y, for all 

training inputs, x, as represented in Figure 4.9; 

 

Figure 4.8 - Training Accuracy (TensorBoard) 

x – Number of Training Inputs 

y – Accuracy Obtained [0-1] 
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After running all the training process, a final script was run to test the accuracy of the 

model evaluation which returned the value of 91.9% as referred in the previous section. 

This number translates the overall performance of the model in a real classification 

scenario and since the training was done on only 3 classes, a high accuracy could be 

obtained. 

 

4.1.4. Exportation and Conversion  

After obtaining the final re-trained graph from the previous training output, the model 

needed to be converted and optimized to run on the mobile device. As mentioned before, 

the process will use TensorFlow Lite and its tools, namely, a TFLite Converter and a 

TFLite interpreter. To set the python environment for the conversion, an image 

manipulation tool built over Python Image Library (PIL), PILLOW [43] had to be 

installed.  

The inference graph was then converted using the TensorFlow Lite Optimizing 

Converter, tflite_convert. It is part of the TensorFlow installation and is easily ran as a 

command line script. This tool was responsible for optimizing and converting the model, 

consequently outputting a model in TFLite format.  

 Concerning the optimization part, while TensorFlow uses Prtotocol Buffers to 

optimize the generate ProtoBuffer file, TFLite uses FlatBuffers to do so. FlatBuffers [44] 

is an efficient cross platform serialization library which does not need a 

parsing/unpacking step to directly access data, allowing them to be memory mapped and 

Figure 4.9 - Training Cross Entropy (TensoarBoard) 

x – Number of Training Inputs 

y – Cross Entropy Obtained [0-1] 
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consequently achieve faster speed retrieving pages from the model file and without killing 

the process when low on memory. 

Therefore, the tflite_convert program was ran with the command presented in Figure 

4.10 bellow and the remaining parameters passed: 

 

• graph_def_file – Path to the file containing the model generate; 

• output_file – Path to the output file; 

• input_format – Input file format; 

• output_format - Output file format; 

• input_shape - Shapes corresponding to --input_arrays, colon separated; 

• input_array - Names of the input arrays, comma-separated; 

• output_array - Names of the output arrays, comma-separated; 

• inference_type - Target data type of real-number arrays in the output file; 

• input_data_type - Target data type of real-number input arrays; 

After the script execution, the optimized_graph.lite file was generated under the 

output path defined. 

 

4.2.  Mobile Application 

After generating the .lite file, the customized model was then prepared to be integrated 

inside the Application. As referred above in Chapter 3, the application is an Android 

Application and it was developed using Android Studio, Version 3.2, later updated to 

Version 3.4. It has a minSdkVersion of 21, which stands for Android 5.0 – Lolipop, 

granting minimum compatibility of approximately 88.2% of the devices [50]. 

Figure 4.10 - Model Conversion Using TFLite 
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The official TensorFlow example application [45] was used as a base since it 

contained all the Classes and Libraries needed to implement the image classifier 

pretended. Therefore, in a general overview, the app was then built to classify what is 

captured from the device back camera based on the inference model interpreted. 

The application has to handle two main tasks: the interpretation of the model in real 

time and the communication with the forward elements of the architecture. Both of these 

and their implementation are described in the subsections bellow. 

 

4.2.1. Model Interpretation  

The first step was to integrate the model already trained, optimized and converted into 

the TFLite interpreter. The development process could be tested either on a real Android 

device or in an Android emulator of choice (including the Android Studio Emulator) but 

using the emulator would imply to use the computer camera and to simulate other real 

aspects so, a physical device was used during the whole process, making easier to capture 

images from the camera sensor and handle that information. 

 

4.2.1.1 Configuration 

Initially, the permissions required were (shown in Figure 4.11) placed under 

AndroidManifes.xml.  These configurations were needed to allow the device to build 

TensorFlow dependencies and to enable Camera, File System and Internet access, among 

others. 

Figure 4.11 - Permissions and Features in AndroidManifest.xml 
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The model file in TFLite format optimized and converted in the previous section, 

alongside the retrained labels file also generated were placed inside the main Assets folder 

(see Figure 4.12) from where they will be loaded to the application execution. 

Since the application needs to use a pre-compiled version of the TFLite Android 

Archive (AAR) the dependencies and the Maven TensorFlow bintray Repository where 

the archives are hosted (see Figure 4.13) need to be added to the app Module build.gradle 

file. These will import the AAR which is similar to a JAR file import but in addition to 

Java classes and methods it also allows to include activities, drawables and layout 

resources.  

  

Giving the FlatBuffers serialization, the inference model will be mapped into memory 

and cannot be compressed. Therefore, the project had to be instructed not to compress the 

model or the model related files. To do so, the instructions presented below in Figure 4.14 

also had to be added to the app Module build.gradle file. The instruction block was placed 

inside the Android brackets and uses the Android Asset Packaging Tool Options 

(aaptOptions) containing the instructions not to compress neither the tflite nor the lite file 

formats. 

Figure 4.12 - Resources in Android Assets Folder 

Figure 4.13 - App Module Gradle Dependencies and Repositories 

Figure 4.14 - App Module Gradle AAPT Options 
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4.2.1.2 TFLite API 

The implementation of the TFLite API into project is contained inside 

ImageClassifer.java. As the name suggests, this class is going to be responsible for 

classifying images using TensorFlow Lite and there are two main focus points in the API 

implementation: (i) the initialization process when instantiated the class, and (ii) the 

model run itself.  

In the first one (see Figure 4.15), a TFLite Interpreter is initially created with a 

MappedByteBuffer passed as an argument. The MappedByteBuffer is generated in the 

method loadModelFile(Activity activity) where the model in .lite format already placed 

in the assets folder is read as a input stream and then mapped in the file channel. 

Afterwards, the categories labels are loaded to a list, an input data buffer is created to 

receive image data and an output buffer is created as a float array to output the probability 

generated by the model for each label. 

Concerning the model execution, the method classifyFrame (see Figure 4.16) is where 

the inference is run and the image classification is obtained. Inside the method, after 

converting the Bitmap received as an input to the ByteBuffer, the interpreter’s run method 

is called with 2 parameters: the ByteBuffer converted and the output label array to be 

populated with the generated results of the execution. Therefore, for each frame of the 

preview stream, an image classification is generated by the model and presented in real 

time. 

 

 

Figure 4.15 - ImageClassifier.java Constructor 
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4.2.2. MQTT Communication 

After successfully integrating the inference model in real-time with data collected 

from the camera main sensor, the device needed to send the commands to the platform in 

order to trigger the user desired actions. As already described in System Architecture, this 

communication process was implemented using MQTT.  

The solution was to implement Paho Android Service [46], which provides an 

interface to the Original Paho Java MQTT Client. This allows to encapsulate the 

connection inside a service and to run it in background along the Android Activities 

providing reliability in MQTT connections and message receiving and sending. 

 

4.2.2.1 Configuration 

Since, in the Android system, dependencies and build are managed through the app 

Module build Gradle File, the first step was to add the respective Paho service inside it, 

as presented in Figure 4.17. 

 

 

Figure 4.16 - Frame Classification Method 



 

43 

 

In the repositories section, the repository containing the Paho releases is added to the 

configuration so that the required JAR files can be downloaded. Therefore, in the 

dependencies section, the latest Paho release as a dependency to the present application 

runtime. 

Concerning the connection itself, for Paho to be able to create the binding needed to 

the MQTT connection encapsulation, the service also needs to be declared as a service 

tag inside the Android Manifest file (see Figure 4.18). Paho will also need the already 

declared permissions to access phone state, network state and the Internet.  

 

 

4.2.2.2 Message Sending  

Before being able to publish messages, a connection to the broker needs to be 

established. To enable this connection, the service is going to bind through an interface 

called MttAndroidClient. In Figure 4.19 below is the code containing the described 

action.  

 

 

 

Figure 4.17 - App Module Grade Paho Dependencies 

Figure 4.18 - Paho Service Decalration inside Android Manifest 
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Initially, a Client Id is randomly generated by the MqttClient object and the referred 

MqttAndroidClient responsible for the connection is instantiated with the server and 

client attributes. The username and respective password are also defined as an 

MqttConnectOptions attribute. After that, the MqttAndroidClient will try to connect with 

the MQTT broker, returning a token which is used to define Listener Callbacks and 

successfully or unsuccessfully establish the connection. 

After establishing the connection, the client allows the device to send messages via 

the publish method. The method is part of the MqttAndroidClient and is called (see Figure 

4.20) passing the encoded message payload and the topic desired to send the message.  

 

Figure 4.19 - Paho Connection Establishment 

Figure 4.20 - Paho Message Publish 
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The implementation of the topics subscription and message reception will be 

explained in the following section. 

 

4.3.  Home Automation Platform  

Having the inference model trained and integrated inside the android application, the 

third and last step to complete the system implementation was the installation of the 

automation platform on the Raspberry Pi, including the MQTT broker to allow the 

platform to receive the messages originated in the mobile device and consequently trigger 

automation rules and perform actions.  

As referred in Chapter 3, the components were installed in a Raspberry Pi 3B+ and 

all the 3 implementation steps are described in the subsections bellow. 

 

4.3.1. Platform Installation  

A common solution to install Home Assistant in a Raspberry Pi is to install Hass.io 

[37] inside a Docker container but that would restrain the installation of other components 

inside the raspberry and complicate the communication with the broker which also needs 

to be installed. The solution used was to install Home Assistant inside a python virtual 

environment, providing the flexibility needed to the system implementation. 

The major concern to have in mind using the virtual environment is the fact that any 

update or changes under the home assistant installation have to be made inside the 

environment or it can cause the duplication of the install, one inside the virtual 

environment and other in the host, and possibly generate conflicts between both of them. 

Before the installation process, all the dependencies needed were installed using pip 

package manager and a system account and a home directory for Home Assistant were 

created.  

 

Figure 4.21 - Home Assistant Virtual Environment Activation 
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Figure 4.21 shows the Virtual environment creation and activation. This is the 

environment where the platform was installed and where it runs over. After running the 

installation, the directories, configurations and other libraries installation were completed 

and the service was ready to be started and accessed via the Web interface on port 8123 

of the device. 

Each time the raspberry pi is powered on, the Home Assistant instance needs to be 

initiated. This way, hass service has been set has a daemon and defined to autostart on 

raspberry boot using system which is a tool for daemons managing on Debian based 

systems. The necessary system file, presented in Figure 4.22, was created under the 

system directory containing the indication to execute the service after the machine is 

successfully started and connected. 

 

4.3.2. MQTT Communication 

As already referred, despite HomeAssistant has the possibility to define an in-

platform broker and the existence of public brokers, a private MQTT broker was used to 

implement the MQTT communication on the server side.  

The choice relied on Mosquitto [36] as the solution to implement the machine-

to-machine messaging protocol. The service was easily installed (see Figure 4.23) in the 

raspberry and afterwards protected with username and password inside a system file. 

 

Figure 4.22 - Home Assistant Service File 

Figure 4.23 - Mosquitto MQTT Broker Installation 
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After the installation, the system can be started and is able to receive publish and 

subscribe requests. Again, the broker runs as a service and needs to be started each time 

the system boots so, to enable automatic start two things needed to be defined. First, the 

mosquito service was indicated to run at system boot in the service file under /etc/init.d 

directory, then, the HomeAssistant Service file was modified to instead of starting after 

the network is connected, starting after the mosquito broker starts. Therefore, the broker 

could be integrated inside the automation platform and making sure it is always running 

and listening for messages. 

In order to integrate the MQTT broker in the automation platform, an entry 

containing the broker address, username and password was added to the 

configuration.yaml file, as shown in figure 4.24.  

 

4.3.3. Automation Rules 

One big advantage of Home Assistant is the ability to define automation rules. An 

automation rule contains 3 main blocks:  

• Trigger – Describes the event which should fire the automation rule. There are 

many types and it is possible to have multiple triggers in the same rule; 

• Condition – Is an optional field where can be defined specific conditions where 

the automation rule should work. When a condition does not return true, the action 

will not perform can also exist multiple conditions for the same rule;  

• Action – Is the action that it will be performed after a trigger has been started and 

the conditions validated. 

One of the trigger types is the MQTT trigger and is fired when a specific message 

is received in a specific topic. This way, automation rules could be created to make the 

desired system actions according to the MQTT messages received. For example, Figure 

Figure 4.24 - MQTT Broker Declaration in configurations.yaml 
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4.25 bellow shows an automation rule where an action is triggered when a message with 

the payload “switch” is received on topic “room/switch/bulb” with no conditions implicit. 

The action will take place on the bulb described in the entity tag with the service 

light.toggle, which is responsible for switching the bulb. Additionally, the system Web 

interface has a tool to create the automations, displaying the list of triggers, entities 

available, actions and the respective services. 

The automation rules created to fulfill the desired system implementation were 

placed inside the automations .yaml file and loaded to the system at startup.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25 - Bulb Automation Rule 
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Chapter 5 – Validation Tests  

 

Having the implementation completed, a prototype of the system proposed was 

obtained. This Chapter, describes the solution achieved and its components. A 

comparison between the manual inference and the on-device machine learning final 

solution will also be made, considering the evaluation times obtained and accuracy losses 

and finally tests over real application scenarios, which will be followed by a discussion 

over the overall scenario provisioned by the implementation made and its results. 

 

5.1.  Implemented Prototype 

The developments made across this dissertation aim at a hypothetical scenario 

where a user can control the devices existent in his house through the camera user 

interface having visual representation of the actions and providing intuitive interactions. 

Looking at the implementation obtained, the major visual results come from the mobile 

application and the device connected to the platform.   

The implementation described in Section 4.2 resulted in a mobile application 

which after installed in and android device is where the user will interact. Figure 5.1 

bellow represents the application main screen, containing the camera viewfinder, a label 

containing the object identified and the accuracy of the evaluation alongside the buttons 

to take actions on that device when evaluated with accuracy over a pre-defined threshold. 

Figure 5.1 - Application Main Screen Example 
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In the screenshot presented in Figure 5.1, it is visible that the user was pointing 

the device at a light bulb and since the evaluation result is constantly returning values 

close to 100% the button to switch on the device is presented, which represents the action 

passible to be taken at that moment. When the button is pressed, the whole process 

described in Chapter 3 takes place and the bulb will then light up. Additionally to the 

evident visual feedback on the bulb, looking at HomeAssistant Web platform it is possible 

to see the event occurrence, as illustrated ahead in Figure 5.2. 

 

5.2.  Server vs On-Device Machine Learning Performance Tests 

Even though traditionally, machine learning and neural networks are concepts 

associated with increased computation power and robust hardware, the scope of this 

dissertation addresses the on-device artificial intelligence arising ubiquitousness and its 

major potential. Therefore, an interesting result to analyze is the accuracy obtained with 

lighter models and the existence of latency or performance decreasing when running on 

less powerful devices. 

This way, a metric that can give indicators of both benefits and drawbacks of this 

approach is the time spent during the execution of the model trained to produce an output 

and effectively label the input image. A possible way of analyzing this is by running the 

inference model at the machine where it was trained with a python script, label_image.py 

shown in Figure 5.3, and after that running the same model already integrated in the 

mobile application, measuring the times before and after the run (see Figure 5.4).  

Figure 5.2 - Automation Platform with Light Turned On 
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This analysis was performed using three different images (see Figure 5.5) and ran 

three times in each of them to guarantee a minimum coherence in the results. In the case 

of the mobile device, since the input comes as a video stream, the three images were 

represented by three different scenarios with the three different bulbs. The results are 

presented bellow in Table 5.1  

Table 5.1 - Comparison between Manual Inference versus On-Device Run 

 Server Run On-Device 

Times 

(ms) 
Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 

Image 1 12.8 12.7 12.9 16.0 15.0 16.0 

Image 2 13.5 13.7 13.6 20.0 19.0 17.0 

Image 3 12.4 12.4 12.5 30.0 30.0 30.0 

Figure 5.3 - Python Script to Evaluate an Image using the Inference Model 

Figure 5.4 - Image Classification inside the Application Measuring Time Elapsed 
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Figure 5.5 above shows the 3 example images used to do the testing. The test 

results obtained are presented in milliseconds and are further ahead discussed in section 

5.4. 

 

5.3.   Confidence Tests 

As referred in Section 4.1, the system implemented is based on a neural network 

retrained to identify smart household objects, particularly bulbs, air conditioners and 

electrical window shutters. The logical scenarios to validate the final solution was to put 

the system to the test against these items, therefore, each of the next three sections 

presents three scenarios to one of the three classes trained. 

 

5.3.1. Bulb 

The first test represents a use case scenario where the user points de device at a 

light bulb. In this case, when the evaluation output is higher than the 95% confidence 

threshold, the switch option appears on the screen and the user can interact with the 

device. To obtain maximum results and since the image dataset used for testing was 

simple light bulbs, the 3 tests performed was on simple lightbulbs connected to power 

(see Figure 5.6). 

Figure 5.5 - Bulb Images Used for Testing 
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Table 5.2 presents a summary of the results obtained after executing the three test 

scenarios. Looking at the confidence obtained, it is possible to see that in the first test, the 

inference method evaluated the object with a conviction of 94%, in the second one, 95% 

certainly and the last one with maximum confidence. Again, only the identifications 

superior to the threshold provide the user the ability to interact with the device. 

 

Table 5.2 - Bulb Tested Scenarios confidence 

 Bulb 1 Bulb 2 Bulb 3 

Confidence 94% 95% 100% 

 

 

 

 

 

 

Figure 5.6 - Bulb Tested Scenarios 
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5.3.2. Air Conditioner  

The second test represents a use case scenario where the user points the device at 

an air conditioner. In this case, when the evaluation output is higher than the 95% 

confidence threshold, the hotter/colder options, represented by the options up and down 

appear on the screen and the user can interact with the device. To obtain maximum results 

and since the image dataset used for testing was traditional house air conditioners, the 3 

tests performed were on those instead of industrial or bigger ones. (see Figure 5.7). 

 

 

Table 5.3 presents a summary of the results obtained after executing the three test 

scenarios. Looking at the confidence obtained, it is possible to see that in the first test, the 

inference method evaluated the object with a conviction of 95%, in the second one, 90% 

certainly and the last one with 93% confidence. Again, only the identifications superior 

to the threshold provide the user the ability to interact with the device. 

 

 

Figure 5.7 - Air Conditioner Tested Scenarios 
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Table 5.3 - Air Conditioner Tested Scenarios Confidence 

 Air Conditioner 1 Air Conditioner 2 Air Conditioner 3 

Confidence 95% 90% 93% 

 

 

5.3.3. Window Shutter 

The last test represents a use case scenario where the user points the device at the 

window shutters. In this case, when the evaluation output is higher than the 95% 

confidence threshold, the up and down options appear on the screen and the user can 

interact with the device, respectively opening or closing the shutters. The 3 scenarios 

tested are presented bellow in Figure 5.8.   

 

 

Table 5.4 presents a summary of the results obtained after executing the three test 

scenarios. Looking at the confidence obtained, it is possible to see that in the first test, the 

Figure 5.8 - Window Shutters Tested Scenarios 
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inference method evaluated the object with a conviction of 99%, in the second one, 91% 

certainly and the last one with 98% confidence. Again, only the identifications superior 

to the threshold provide the user the ability to interact with the device. 

 

Table 5.4 - Window Shutter Tested Scenarios Confidence 

 Window Shutter 1 Window Shutter 2 Window Shutter 3 

Confidence 99% 91% 98% 

 

 

5.4.  Discussion 

This chapter was focused on showing the final prototype obtained, demonstrating 

the potentiality of on-device machine learning and generally showing the results obtained 

when effectively testing the developed solution confidence and consistency. 

Analyzing the results obtained, concerning the comparison made between 

manually running the inference model on the training environment and the inference 

happening on the mobile device, we can see that the results were not that distant and 

therefore, the system can produce fast results in real time without compromising the 

performance obtained. In terms of confidence obtained, every test provided result higher 

than 90%, which is positive and allowed to control the devices in almost every situation 

with confidence. 
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Chapter 6 – Conclusions and Future Work 

 

This chapter presents the main conclusions, considering the work developed, the 

obstacles and limitations encountered as well as the future work that can be developed to 

add value to the already proposed solution. 

 

6.1.  Main Conclusions 

As an overall solution, the developed system worked as a proof of concept of the 

integration of mobile devices in home automation with use of machine learning for object 

recognition. Throughout the dissertation, several obstacles were found due to the nature 

of the integration proposed, however, the initial objectives were achieved and a stable 

work foundation and architecture for future developments were set. 

An initial envisaged solution was to use traditional computer vision manual methods 

to fulfill the proposed objectives, but the use of machine learning techniques to replace 

these more traditional algorithms proved to be a great evolutionary step forward and to 

give the robustness needed to a more futureproof system. Even though machine learning 

and deep learning-based systems often need massive hardware to be trained and 

developed, the work developed in this dissertation proves that lightweight alternatives 

can be found and adapted to meet the desired goals. 

The choice of the MQTT for communication allowed to maintain a low resource 

lightweight communication between the modules given the small amount of data sent in 

each transmission.  This way, the system relies on simple machine to machine interaction 

with acceptable latency in order to maintain the possibility to use in a real-time 

integration. 

Being Home Assistant the automation hub for all the integrations allowed multiple 

advantages. To begin, the platform was installed in a Raspberry Pi 3B+, an embedded 

platform in which the software was optimized to run and consequently resulted in an easy 

installation and maintenance. Additionally, the ability to define automation rules revealed 

to be crucial in the automation process, providing the ability to implement complex 

scenarios depending on the command received via the MQTT messages. 
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Looking at the results obtained, an important conclusion to bear in mind is that 

the on-device classification based on machine learning proved to be surprisingly accurate 

and able of handling the tasks defined, confirming this way the already arising paradigm 

of AI increasingly moving to the edge devices without compromising functionality. 

Despite the fact that the last layer of the neural network was only retrained with 3 classes 

but also giving the fact that the model was trained in a normal computer without powerful 

hardware and that the inference is running on a mobile device, this could be proven 

analyzing the confidence obtained which was positive and higher than expected. 

This way, the final solution developed in this dissertation proves that an inference 

machine learning model can be used in real time evaluation, integrated inside an android 

application providing instantaneous visual feedback. This leads to also real-time action 

triggering in the automation platform making use of the integration and consequently built 

a seamless and uninterrupted information workflow.  

 

6.2.  System Limitations 

Even though all the work developed in this dissertation culminated in a functional 

prototype, certain assumptions were made to make the integration easier to prove.  

For instance, the existence of two identical elements inside home would make the 

inference model return the same result for both, not being able to distinguish between 

them. In order to distinguish different instances of the same object, a solution like indoor 

location would have to be implemented, giving the device the ability to know where each 

of the objects were placed inside home and consequently know which object was being 

analyzed.  

In order to make the integration possible, it was also assumed that the devices were 

already connected to the actuation platform. This required pre-configuration is a system 

limitation because the application developed does not offer a solution to configure each 

user specific smart devices. 
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6.3.  Future Work 

Despite the integration proposed in the solution was implemented and considering the 

existing limitations, the room for improvement is notorious. The system acts as a proof 

of concept and as a basis to major breakthroughs in future developments. 

First of all, there are a lot of sensors in the mobile device which were not used in the 

course of this dissertation that can be further explored. The mobile device has the ability 

to measure ambient light, temperature, proximity and even magnetic fields. This enables 

the possibility to control a range of smart devices, from air humidifiers to door locks, in 

new and innovative ways.  

Concerning the computer vision topic, the evolution from image classification to 

object detection would also provide the ability to track multiple objects at the same time 

and allow better precision and control of the devices. Even though implying major 

developments in the application and a whole new recourse consuming re-training process, 

this improvement would unlock more possibilities of user interaction and functionalities 

to the application. 

Additionally, a contribution than can be remarking in the potentiality of the concept 

introduced is the re-training of the inference model based on user feedback. Even though 

a solution can be prepared for a general use case scenario, each case is unique, and each 

user will have different needs. This way, if the mobile application provided a way of 

collecting user feedback according to his respective scenario and reality, this input could 

be used to re-train the model with improved accuracy and consequently to obtain flawless 

and consistent results. 
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