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Abstract 

Short term electricity price forecasts have become increasingly important in the last 

few decades due to the rise of more competitive electricity markets throughout the 

globe. Accurate forecasts are now essential for market players to maximize their 

profits and hedge against risk, hence various forecasting methodologies have been 

applied to electricity price forecasting in the last few decades. This dissertation 

explores the main methodologies and how accurately can three popular machine 

learning models, SVR LSTM and XGBoost, predict prices in the Iberian market of 

electricity. Additionally, a study on input variables and their relationship with the 

final price is made.  
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1- Introduction 
 

 

Forecasting is a term used to define the ability to predict a future event or variable based 

on the past study of variables that affect the objective of the forecast. In a competitive 

liberalized power market, it’s vital for all participants to be able to forecast the electricity 

price with high accuracy to formulate strategies that allow them to bid and sell energy 

with the lowest risk possible. 

Since the early 1990s, various countries began a process of liberalization of energy trade 

leading to more competitive energy markets, one example being the Iberian market of 

electricity (MIBEL). Formed in 2007 as a collaboration between the governments of 

Portugal and Spain, this is an interconnected market with the goal of distributing 

electricity in the two countries while benefitting the final consumer by promoting a 

competitive and free market.  

The MIBEL includes three levels of trading one of them being long term and the 

remaining two being short term, the long term option is in the form of bilateral contracts 

and can span from a few months to a few years, while day-ahead electricity market and 

intraday electricity market sessions, also known as spot trading, are short term (Pastor, 

Pinho, & Esteves, 2018) (Szkuta, Sanabria, & Dillon, 1999).  

The short-term options consist of a market where participants bid in a shared pool and a 

market operator clears the price, this makes the price volatile, but it gives all consumers 

and providers an equal opportunity to maximize the value of their actions in MIBEL.  

The long-term option is used when companies prefer to avoid the volatility of daily 

market prices and want to hedge against the risk of participating in the short-term market. 

The main objective of the electricity market is to decrease the cost of electricity by 

promoting competition and transparency. 

As the market is interconnected energy prices are usually the same in both Portugal and 

Spain but there might be occasions where they differ due to the physical capability of the 

network (Pastor et al., 2018).  

Short-term trading options are highly dependent on the demand and available offers of 

energy which in turn makes the short-term electricity market extremely volatile. This 
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causes the ability to predict prices before-hand to be very valuable in order to maximize 

the value that the market participants get from the day-ahead electricity market. Providers 

want to maximize their profit and consumers want to get the highest amount of energy 

possible at the cheapest price.  

Day-ahead trading is especially important due to storing energy for later use not being a 

trivial matter, as the manufacturing of large-scale batteries is generally considered not 

economically viable. At the moment the most frequent way of storing energy in MIBEL 

is through water reservoirs by utilizing excess energy to pump water that is then stored to 

generate electric power at a later time. 

Long term predictions are also valuable, but they are mostly used for strategic decisions 

such as: 1-) modifying the amount of energy that is traded between regions. 2-) expanding 

energy generation. 3-) re-planning the distribution network (Szkuta et al., 1999). 

The electricity market has been studied extensively over the years, and certain aspects 

such as load forecasting have had great breakthroughs (Abdel-Aal, 2006) (Dang-Ha, 

Bianchi, & Olsson, 2017). Electricity price forecasting presents some characteristics that 

create difficulty when building prediction models, namely: 1-) it is highly affected by the 

calendar, especially by weekends and holidays where the prices vary when compared to 

normal weekdays, creating outliers throughout the year. 2-) It is highly affected by the 

sources of energy in the network. 3-) It affected by seasons because in drier seasons like 

the summer there is less hydropower energy being generated as opposed to the more 

humid seasons. 4-) The pricing can vary a lot in the same day, as early morning hours 

usually present much cheaper prices than afternoon hours. 5-) It is affected by the player’s 

bidding strategies that, naturally, are not known ahead by the market. 

This dissertation will be focused on predicting short term electricity prices in the MIBEL 

market, using machine learning algorithms which have been demonstrated to have good 

results when utilized to predict time-series problems (Aggarwal, Saini, & Kumar, 2009) 

(Jones et al., 1989) (Ruta & Gabrys, 2007) (Ahmed, Atiya, El Gayar, & El-Shishiny, 

2010). 

Machine learning has been applied to time-series prediction since the ’80s (Jones et al., 

1989), and since then these methods have increasingly grown in popularity. Being applied 

not only to electricity price forecasting but various different real-world scenarios, 
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including but not limited to financial market predictions, environmental state predictions 

and reliability forecasting (Sankar & Sapankevych, 2009).  

In the latest decades machine learning has proven to have equal or better results than 

classical statistical models in several different problems due to: 1-) The increase in 

theoretical understanding of the models. 2-) The number of varied models that have been 

developed. 3-) The increasingly ease of access to computing power and open-source 

machine learning libraries (Ahmed et al., 2010).  

Several machine learning models have been applied to predict electricity clearing prices 

in other markets (Weron, 2014), however to the best of our knowledge it is not an 

extensively explored methodology in MIBEL. 

Algorithms that have shown promising results in previous works, namely SVR, LSTM, 

and XGBoost, were selected in order to compare how each one performs in the MIBEL. 

Additionally, a baseline was established utilizing AR (1) and ARIMA. Before starting to 

describe the practical work, an analysis is made to understand which approaches have 

been proven useful when predicting time series, and more specifically, electricity price 

time series. 

 

Objectives 
 

This dissertation will be aimed at studying to what extent is it possible to forecast short 

term electricity prices utilizing machine learning models. The maximum time frame 

considered will be up to one week and as a comparative baseline other models that have 

shown good results will be used. It will also be interesting to compare the difference in 

the quality of the results in the various models as the time horizon is extended, for 

example, to compare the day-ahead forecast to the 1-week ahead forecast. 

The price of electricity is affected by several variables and the importance of each one to 

the final price is not yet fully understood, variables like the season, the time of the day, 

power generation, and others are suspected to be highly important to the final price. As 

such a study will be made as to how the variables identified as potentially important affect 

the final market price. For this dissertation, the Iberian electricity market will be studied 
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exclusively and all historical data is aggregated by technology and provided by R&D 

Nester. 

In short. the following questions can be identified to be resolved in this work: 

• What are the most important variables that affect electricity pricing? 

• Is it possible to forecast short term electricity prices in the MIBEL with “good” 

results using artificial intelligence models? 

• How do the results compare to other types of models? 

• How does the time horizon affect the forecast quality?  

 

 

Document Structure 
 

Chapter 2 starts as by describing the methodology utilized in this work followed by giving 

a brief introduction to the MIBEL market. The remainder of the chapter presents the 

related work done in electricity price forecasting with a special focus on machine 

learning. 

The theoretical background can be found in Chapter 3 where the main concepts behind 

the models relevant to the literature and to this dissertation are explained. 

Chapter 4 consists mainly of an extensive statistical analysis of all the relevant data to be 

used in the models. 

In Chapter 5 all the experiment definition and results can be found. 

 In chapter 6 the conclusions can be found as well as a suggestion for further work. 

 An appendix can be found after chapter 6 that contains all the relevant information about 

the training of each model. 
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2- Literature review and business 

understanding 
 

 

Development Methodology 
 

In this dissertation, the Cross-Industry Standard Process for Data Mining ( CRISP-DM) 

(Wirth, 2000) will be used as a development methodology. This framework splits the 

development process into six separate phases, Business Understanding, Data 

Understanding, Data Preparation, Modeling Evaluation, and Deployment.  

This is a flexible framework in which the developer can go back and forth between phases 

as needed to better adjust the final model.  

 

Figure 1 - CRISP-DM Framework (Sharma & Bradford, 2017) 

 

The outer circle shown in Figure 1 represents the idea that data mining can always be 

bettered, even after deployment the model can always be adjusted with new data to further 

improve its forecasting ability. Inside the circle, the different phases are represented, each 

phase can be defined as such: 



6 
 

Business Understanding: Initial phase of the project where the developer needs to 

understand the context of the problem that needs to be solved in order to identify potential 

issues. 

Data Understanding: Data exploration phase, in this phase the training data needs to be 

studied, in order to identify potential issues (null values, outliers), and to identify subsets 

that might have unexpected patterns of relationship between each other. 

Data Preparation: Treating the data by solving the problems identified in the previous 

phase. In addition to this, some data treatment techniques may be experimented in this 

phase, like normalizing the data or removing certain variables. 

Modeling: In this phase, the model is created or adjusted, the model parameters are 

calibrated in order to achieve the best results. 

Evaluation: After the model from the previous phase is finished training and predicting 

a data set, the results need to be carefully analyzed, if the results aren’t good enough then 

one of the previous phases needs to be adjusted, otherwise the developer moves on to the 

deployment phase. 

Deployment: The deployment phase presents the finished product, usually in the form of 

a report. 

The business understanding phase can be mostly seen in chapters 1, 2 and 3, where the 

motivation, objective, context, and scope of the problem are described, along with a 

description of how the MIBEL works as well as the theoretical background of the machine 

learning algorithms that will be applied. 

The data understanding phase relates to chapter 4, where the statistical analysis of every 

relevant variable found in the business understanding phase can be seen. 

The following phases mostly relate to the practical work presented in chapter 5, where 

information about the data preparation, model parameters, and result evaluation is 

found. 

 

 

Business Understanding 
 



7 
 

The day-ahead market in MIBEL follows a marginal price model. This model aims to 

keep electricity price as low as possible while completely satisfying the daily market 

demand. 

The agents bid supply and demand offers for the 24 hours of the next day. The selling 

offers are sorted in ascended order while the buying offers are sorted in descending order. 

Sessions are closed at 11:00 (GMT +0) in the previous day (D-1). The MIBEL spot 

market operator OMIE announces the clearing prices for each hour of the next day, taking 

into account the curve intersection between the supply curve (generated from aggregated 

supply bids) and the demand curve (generated from aggregated demand bids). 

Additionally, some adjustments might be needed to make sure the physical network is 

able to handle the load without fail (Pastor et al., 2018). 

Non-renewable energy providers need to pay coal or gas in order to generate electricity. 

Renewable energy providers on the other hand, generate electricity from sources in nature 

like the wind or the sun and as a result they do not have to pay for their primary energy 

sources. This results in renewable energy providers being able to provide cheaper offers 

than non-renewable providers.  

As the market follows a marginal price model this means that the last bid to match the 

demand will define the final price for each hour. That price is then the price that all 

transactions occur independently of the initial bidding price. This means that all providers 

will satisfy demand at the exact same price as long as their offer is lower or equal to the 

intersection between the supply and demand curves. As renewable energy providers sell 

at cheaper prices than non-renewable energy providers, they enter the market first and 

can sometimes completely fulfill the market demand. 
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Figure 2 - Example of spot market clearing price (neighbourpower.com/blog/solar-

deregulated-power-market/) 

 

As can be seen in Figure 2 non-dispatchable load generation such as wind and solar have 

the lowest supplier prices and critical appliances such as light, heating or 

telecommunication have the highest demand prices. The intersection between the two 

curves is where the marginal price for each hour is defined. This process occurs for every 

hour. 

 

Literature Review 
 

The purpose of an organized electricity market is to match the supply and demand of 

electricity to determine the market-clearing price (Weron, 2014). In the MIBEL 

participants can conduct their business in the day-ahead electricity market or in the form 

of bilateral contracts between companies.  

In the day-ahead electricity market, the participants bid supply and demand for the 24 

hours of the next day to a common pool, the sessions for the day-ahead market are always 

closed in the previous day at 11:00 (GMT +0). The spot market operator OMIE announces 
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the clearing price for each hour of the next day with the selling offers being sorted in 

ascending order while the buying offer being sorted in descending order. 

In addition to the day-ahead electricity market, bilateral contracts are utilized by 

companies to hedge against the day-ahead electricity market risk and to make sure they 

are able to satisfy their needs in the long term, in bilateral contracts the buyer and the 

seller negotiate directly and agree on the distribution of a fixed amount of energy at a 

fixed price during a certain amount of time. 

Publications on electricity price forecasting started roughly around the year 2000, prior 

to this date there is almost no literature on this topic, steadily increasing for the next few 

years and having doubled in 2005 and then tripled in 2006 when comparing to 2002 

numbers. For the next few years there was a steady increase in publications about this 

topic, with a slight drop-off in numbers in 2010, and then a huge increase in 2012 and the 

following years (Weron, 2014).  

Articles utilizing machine learning techniques for electricity price forecasting have 

increased tremendously in the past decade, when compared to the prior decade where 

most articles focused on developing statistical models. This is due to the increasing ease 

of access to computing power and open software machine learning libraries, which has 

caused the research community to have a renewed interest in this topic as it is yet an 

unsolved problem that can potentially be solved or at least vastly more understood 

utilizing machine learning algorithms.  

It is not obvious that machine learning algorithms are able to outperform other methods 

of prediction, mainly due to each study utilizing different datasets, different software 

implementations and different evaluation models (Weron, 2014), as such this section will 

include studies on other methodologies besides machine learning. 

 

 

Electricity price forecasting 
 

Accurate forecasts don’t guarantee profits and there is always risk in trading in the 

MIBEL market due to the high volatility of prices (Aggarwal et al., 2009). Since the price 

is directly related to the amount of energy in the network traded between suppliers and 
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consumers there is also an interest in the prediction from a viewpoint of the network 

managers in order to better plan how the network will operate. 

Electricity price is a time-series, which means that the series is defined as a consistent 

sequence of electricity prices over a period of time. Electricity price forecasting is the 

capability to predict the price of energy at one or more points in time. This prediction is 

complex seeing as there are multiple variables that affect the final price, and some of them 

like load forecasting are also complex to predict.  

Predictions can be classified into short-term price forecasting (STPF), medium-term price 

forecasting (MTPF) or long-term price forecasting (LTPF) (Singh, Husain, & Mohanty, 

2016). Short-term predictions allow companies to formulate strategies to optimize their 

participation in the spot market, while medium-term and long-term strategies allow 

companies to adjust their overall strategy. This may include the overall level of 

production in the case of suppliers, bilateral contracts with other companies, planning 

investments, among others (Aggarwal et al., 2009).  

The horizon of STPF is between an hour to a week, while MTPF and LTPF range from a 

few weeks to a few months and a few months to several years respectfully. The purpose 

of each horizon will be detailed further in the next subsections. 

 

 

Short-term price forecasting 
 

Short-term forecasts are essential for the players that participate in the spot market. 

Producers need to forecast energy prices in order to formulate their strategy for 

participation in the market but also to better optimize the scheduling of their electrical 

resources to maximize profits.  

Investment decisions in renewable generation in the current European regulatory 

framework with reduced subsidies may leverage short-term price forecasting to simulate 

markets and compute realistic cash flows in market simulations. For example, short-term 

price simulation can be used as input in the R&D Nester’s renewable portfolio simulator 

(Pastor et al., 2018).  
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Due to energy generally not being a storable resource, consumers need to be able to take 

advantage of the cheapest moments to get the maximum amount of usable energy. This 

means that consumers need to have an active participation on the market to satisfy their 

daily needs while wanting to minimize their risk as much as possible (Catalão, Mariano, 

Mendes, & Ferreira, 2007). 

 

 

Medium-term and Long-term price forecasting 
 

Medium-term and long-term price forecasting are very important to the overall electricity 

market. Most notably, these help strategize when to form bilateral contracts with other 

companies in order to maximize their profits while satisfying their needs. MTPF and 

LTPF are also important for other activities such as, generation expansion planning, 

maintenance scheduling and overall investing (Torbaghan, Motamedi, Zareipour, & 

Tuan, 2012). For network managers, these predictions help them to better plan how the 

network will need to change over time and to monitor distribution safety. 

 Doing medium and long-term predictions is an incredibly complex task, seeing as short-

term predictions are not yet fully understood. The time horizon is usually much longer 

and since electricity price is volatile predicting them accurately over a long period of time 

is much more difficult than in STPF. In addition to this, since the market liberalization 

happened somewhat recently along with the investing in renewable energies, the existing 

historical data with quality is limited which makes having good results with MTPF and 

LTPF compared to STPF very difficult (Torbaghan et al., 2012). 

 

 

Input Variables 
 

The best choice of input variables is still an open area of research, and there have been as 

many as 40 different input variables utilized by different researchers throughout the years.  



12 
 

The most widely used variable is the historical data of electricity prices, being utilized in 

practically every work related to electricity price forecasting (Aggarwal et al., 2009). It 

is apparent that prices exhibit seasonality on the daily, weekly and possibly at the yearly 

levels. The last one not being relevant for short-term price forecasting but the first two 

have to be taken into account. This is because peak hours during the day have 

considerably higher prices than hours in the middle of the night and there is also a sizable 

difference in the price curve between weekdays and weekends or holidays (Weron, 2014).  

Another variable that affects pricing in the spot market is system load. This is the level of 

demand and consumption to be expected in the system as it is the basic level of supply 

and demand in the spot market. 

Weather variables, such as temperature, wind speed, precipitation, and solar radiation are 

also suspected to be important to the final market price. These variables affect the quantity 

of energy that can be generated from renewable energy sources. This causes the price to 

have a clear pattern of pricing between seasons as can be seen in Figure 3. Dryer seasons 

like the summer have considerably less precipitation than wetter seasons like in the 

winter, which greatly affects the generation of hydraulic energy. This effect is significant 

enough that some researchers argue that the prediction should be made by training 

separate models for each season, instead of one model for various seasons to achieve 

better results (Niu, Liu, & Wu, 2010). 

 

 

Figure 3 - Average price of electricity for a day during cold and warm months in 

MIBEL 
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Fuel costs, especially oil, natural gas, and coal to a lesser extent, are also suspected to 

have an impact on spot market pricing. Scheduled maintenances, outages, or other types 

of failures in power grid components might also be responsible for shifts in pricing 

(Weron, 2014).  

In addition to previously stated variables, there are other events that cause shifts in 

pricing. For example, an important football game might draw a lot of additional power to 

certain areas over a period of time. This creates outliers, meaning sudden price spikes or 

drops in the data. 

 

 

Electricity price forecasting methodologies 
 

Electricity price forecasting has had an increasing interest since the early 2000s and many 

researchers have tried to contribute to solve this problem. As such there are various 

methodologies that have been applied to electricity price forecasting problems with 

varying degrees of success. The methodologies which have been proven to have the best 

results are: 1-) multi-agent models. 2-) statistical analysis methods. 3-) machine learning 

algorithms. (Aggarwal et al., 2009). In this section, each of these methodologies will be 

briefly described. 

 

 

Multi-agent models 
 

Multi-agent simulations consist of models which simulate how a system operates by 

generating heterogeneous agents that behave like real-life agents in a set environment. In 

this case, it can be done by simulating companies with different bidding strategies and 

making them interact with each other and analyze how the price shifts over time by 

companies trying to meet the supply and demand in a simulated market (Ventosa, Baíllo, 

Ramos, & Rivier, 2005).  
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These agent-based models are extremely flexible seeing as you can study how a different 

parameter in the bidding strategy can affect the overall result quite easily. On the other 

hand, developing these simulations require a lot of knowledge of how companies operate 

in the market.  This is because there are several different components that need to be 

defined including but not limited to the number of companies in the simulation, their 

bidding strategies and how they interact with each other.  

Relying on these types simulation to have precise quantitative results is very risky, as it 

relies too much on the developed simulation being perfectly modeled, as such these types 

of simulation generally focus on qualitative problems rather than quantitative ones. 

 

 

Statistical analysis 
 

Statistical methods try to forecast electricity price by using a mathematical combination 

of historical electricity pricing data, but certain methods can also include other relevant 

variables like weather forecasting or production and consumption figures.  

There are several stochastic models utilized in electricity price prediction, the most 

commonly found models being: 1-) Auto Regression. 2-) Moving Average. 3-) ARMA. 

4-) ARIMA. 5-) GARCH. These models all take into account the history of pricing, but 

there are other multivariate models like TF and ARMA with exogenous variables that 

take into account other variables that might affect electricity price (Aggarwal et al., 2009).  

These types of methods have performed poorly when dealing with outliers. Several 

researchers have tried to improve upon these models to better deal with outliers, seeing 

as electricity historical data is extremely volatile and can have outliers for no apparent 

reason. Some authors recommend filtering out outliers by replacing them with a more 

usual value, either by taking an average of the week or by taking the average price of 

nearby neighbors, before applying the stochastic model to the data in order to achieve 

better results(Weron & Misiorek, 2008)(Janczura, Trück, Weron, & Wolff, 2013).  

There exist several ways to detect outliers. Some simple methods include taking weekly 

price average and variance and then considering prices that are too distant from those 
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values as outliers. More sophisticated methods include recursive filters (Weron & 

Misiorek, 2008) or wavelet filtering (Stevenson, 2001). It is not recommended that a fixed 

price threshold is considered when detecting outliers seeing as electricity prices shifts 

somewhat significantly over the various seasons and that needs to be taken into account 

(Fanone, Gamba, & Prokopczuk, 2013). 

 

Machine Learning 
 

Machine learning has been an increasingly popular field since the ’80s, increasing in 

popularity in the last decade due to the ease of access to computational power and open 

source algorithms. These types of computational algorithms have been shown to have an 

immense ability to handle complexity and non-linearity amongst various different types 

of problems (Obermeyer & Emanuel, 2016). 

There are many different types of machine learning algorithms that have been developed 

for general use. In the case of prediction of a non-discrete variable, commonly known as 

regression, artificial neural networks (ANN) and support vector machine (SVM) are the 

main classes of machine learning techniques (Weron, 2014) and have been extremely 

effective when applied to some time-series forecasting problems in the past(Ahmed et al., 

2010). 

Despite generally being versatile these algorithms have some weaknesses. If the dataset 

is not correctly balanced or they are poorly configured they may overfit, that is lose the 

ability to generalize due to memorizing in too much detail the training dataset instead of 

capturing relationships between the data (Razak et al., 2015). Moreover, there are 

currently so many algorithms, most with many different configuration variables, that it 

can become very time consuming to find a good solution for each problem. 

In addition to the previously mentioned algorithms, there are also other types of 

techniques that can be useful when developing a machine learning model. Clustering 

algorithms, such as K-means, can be extremely useful to split the dataset into data groups 

that have more relationships between each other. This can then be utilized to find 

unexpected patterns of relationship between the data and better treat outliers and as a 

result improve the final forecasting.  
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As shown in Table 1, from a small number of studies exclusively utilizing machine 

learning models, it is possible to distinguish a multitude of different datasets, time periods 

studied, different prediction periods and several different methods of evaluation. This 

seems to support Weron’s (2014) claims that there is no model that obviously outperforms 

all the others in every situation in an EPF context. 

 

Table 1 - Examples of Machine Learning Models Applied to EPF 

 

Paper Model Training Data Predict

ed 

Period 

Preprocessing 

technique 

Results 

(Catalão et 

al., 2007) 

MLP trained 

with LM 

2002 Spanish 

Market, 2000 

Californian 

Market 

1 week - AvPE 3%-9% 

(Szkuta et 

al., 1999) 

MLP trained 

with BP 

Victorian 

Electricity 

Market, October 

1996-May 1997 

1 week - 
Daily AvE 2.18-

11.09 

(Razak et 

al., 2015) 

MLP trained 

with LM(1); 

LS-SVM(2) 

Ontario Power 

Market, 2003-

2006 

1 week Data normalization 

WMAPE(%)  

11.48-22.56(1); 

10.11-18.12(2) 

(Singh et 

al., 2016) 

MLP trained 

by LM(1); 

Custom Model 

with 4 NN(2) 

New South 

Wales electricity 

market 

1 day WT(2) 

WMAPE(%)-  

5.30-9.32(1); 

4.78-7.18(2) 

(Yamin, 

Shahidehp

our, & Li, 

2004) 

MLP trained 

with BP 

Californian 

Market - 1999 
1 week Outliers removed 

WMAPE(%)-  

11-13 
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(Wu, 

Zhou, Yu, 

Zhu, & 

Yang, 

2004) 

MLP trained 

with BP 

South Chinese 

Market, 2003 
10 days 

Noise Filtration 

using FWV 
AvPE 8% 

(Lin, Gow, 

& Tsai, 

2010) 

ERBFN 

Pennsylvana-

New Jersey- 

Maryland 

Market,2002 

1 week - 
MAPE(%) 

5.5622 

(Sansom, 

Downs, & 

Saha, 

2003) 

SVM 

NSW State 

Electricity 

Market, 1998 

7 days - 

MAPE(%) 

25.8 (over a  9 

week period) 

(Niu et al., 

2010) 
SVM 

Pennsylvana-

New Jersey- 

Maryland 

Market,2002 

1 week 
Clustering and SR 

[0,1] 

Error 

Distribution of 

[-10%,10%] 

(Yao, 

Song, 

Zhang, & 

Cheng, 

2000) 

RBF 
UK Electricity 

Market, 1997 
1 week 

WT and different 

models for each 

weekday 

AE(%) – 3.46- 

7.44 

AvE – Average error; AvPE – Average Percentage Error; ERBFN – Enhanced Radial Basis Function 

Network; FWV - Fourier Wave Filtering; LM – Levenberg Marquardt Algorithm; LS-SVM – Least-

Squared Support Vector Machines; MAPE – Mean Absolute Percentage Error; MLP- Multi-Layer 

perceptron;  RBF – Radial Basis Function Network; SVM – Support Vector Machine; SR – Scaling Range; 

WMAPE – Weekly Mean Absolute Percentage Error; WT- Wavelet Transformation;  

 

It was also noted that some studies are limited to specific predicted time-periods to avoid 

special weeks prone to outliers such as weeks containing holidays in the middle of the 

week or where a big event is occurring. This is also pointed out as a problem in (Aggarwal 

et al., 2009). One such example is (Razak et al., 2015) where LS-SVM is shown to have 

a slightly better forecast accuracy than an MLP trained with LM, yet the models were 

only applied to two different weeks of the year and only one month apart from each other. 
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It is not obvious that the MLP model wouldn’t outperform the LS-SVM in other weeks 

with slightly different patterns. 

 In order to do a comprehensive test in the MIBEL market, this dissertation will compare 

the most promising models found in literature. Furthermore, a comparison to other 

statistical models will also be made in order to see how the results differ while utilizing 

the exact same data. At this point in time, there is no study found to the best of our ability 

that compares different machine learning models and classical models in the context of 

the Portuguese market. 
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3- Theoretical Background 
 

 

Machine Learning Algorithms 
 

As previously stated, and shown in table 1, the two most popular methods for electricity 

price forecasting are ANN and SVM. Every ANN can be classified into a more specific 

type based on its architecture and training method. This section will go over the 

theoretical background of each algorithm used in this dissertation, namely LSTM, which 

is a type of ANN, SVR which are support vector machines applied to regression problems, 

and XGBoost which is an algorithm based on decision trees. 

 

 

Artificial neural networks 
 

ANN have several advantages over classic mathematical models most notably they have: 

1) High tolerance to noise in the data. 2) The ability to understand the relationship 

between variables that aren’t yet fully understood. 3) Form learning patterns that allow 

these algorithms to make good predictions without memorizing the data (Han, 2006).   

These algorithms are also efficient when dealing with vast amounts of data due to the 

possibility of parallelizing the processing that is needed to train the algorithm. This might 

not always be possible when dealing with classical mathematical models (Weron, 2014).  
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Figure 4- Example of an SLP (Wang, Zhang, Tao, & Wang, 2018) 

 

The simplest feed-forward neural network is called a single-layer perceptron, this 

network contains no hidden layers and is therefore equivalent to linear regression. 

As can be seen in Figure 4 initial inputs, xi, is given to the network and comes from the 

data, the input layer has as many nodes as input variables. 

The weight, w, represents how much a connection between two neurons weighs, they are 

initiated with a random seed and are then trained using a learning algorithm. 

The activation function, f, calculates the output of each node. There exist many different 

activation functions found in literature like threshold, sigmoid, radial basis, and linear 

functions as an example. Further detail can be found in Figure 5. 
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Figure 5 - Activation Functions (Hughes & Correll, 2016) 

 

Additionally, each node also has a bias, commonly referred to in the literature as Ɵ, which 

is a constant term added to the value of the node. Finally, Y is the final output of the 

network. 

 

 

Figure 6 - Example of an MLP (Mohamed, Negm, Zahran, & Saavedra, 2015) 

 

Figure 6 represents what is called a multi-layer perceptron. The units in each layer are 

connected to the next layer, but not each other, until they reach the output layer, which 

may have one or more nodes depending on the type of problem the ANN is solving. This 
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is the most commonly known and used type of ANN (Osório, Gonçalves, Lujano-Rojas, 

& Catalão, 2016).  

Finding the optimal model of the network to solve a specific problem is often through 

trial and error, the models can differ in the number of layers, the number of nodes in each 

layer, activation functions, and weight training models. 

A Recurrent Neural Network (RNN) is a more complex type of ANN. These types of 

networks excel at problems with sequential data like time-series (Graves, Mohamed, & 

Hinton, 2013) due to utilizing the previous hidden state for the next prediction as is 

exemplified by Figure 7. 

 

Figure 7 - Example of a Recurrent Neural Network ( icode9.com/content-4-

141370.html ) 

 

This architecture allows the network to utilize all previous information to predict the next 

data point as the current hidden state will be a function of all previous hidden states, which 

intuitively seems to provide better results in time-series problems than Feed-Forward 

neural networks due to these not taking the previous hidden states into account. 

 

Long Short-Term Memory Networks 
 

Long Short-Term memory networks, LSTM in short, are a type of recurrent network 

introduced in (Hochreiter & Schmidhuber, 1997), which try to solve the vanishing and 

exploding gradient problems present in classic RNN architecture (Hochreiter, 1998).  

These networks contain special units named memory blocks, these blocks contain 

memory cells with self-connections that act as mini-layers storing the temporal state of 
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the network, in addition to multiplicative units called gates that control the flow of 

information (Sak, Senior, & Beaufays, 2014). 

 

 

Figure 8 - Example of an LSTM unit 

(wagenaartje.github.io/neataptic/docs/builtins/lstm/ ) 

 

As can be seen in Figure 8 the more commonly used LSTM unit consists of three gates, 

the input gate, the output gate and the forget gate.  

The input and output gates control the flow of information through the network, as the 

names suggest the input gate control the input into the memory cell and the output gate 

controls the output into the rest of the network.  

The forget gate is a later addition to this architecture (Cummins, Gers, & Schmidhuber, 

1999) and it allows to adaptively reset the memory of the network as the context from 

previous information is needed. 

 

 

ANN Training 
 

Before being able to forecast efficiently, networks need to be trained. Feed-forward 

networks are usually trained in a supervised manner, meaning there is a training set 

available which contains the inputs and the expected outputs properly labeled. 
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 When learning it is expected that the network constructs an input-output 

mapping(Catalão et al., 2007), adjusting the weights and biases in each iteration with the 

goal of minimizing the error between the produced output and the desired output. 

Learning consists then of a minimization process where the error is minimized until an 

acceptable criterion for convergence is reached. 

 It is crucial that the network is not trained to achieve an error of 0 during training. This 

means that the network has been over trained and while it succeeds tremendously with 

the training data-set it will have a poor ability to generalize when forecasting new data 

that it has never seen before (Jain, Mao, & Mohiuddin, 1996).  

There are several ways to train a network, but by far the most popular learning algorithm 

in an EPF context is backpropagation (Aggarwal et al., 2009). In the backpropagation 

training algorithm, the input is passed through every layer until a final output is 

calculated. The output is then compared to the expected value and an error is calculated, 

which is then propagated back through the network adjusting the weights and biases of 

each node as necessary to better minimize the error. This is then repeated to every data 

entry of the training data set and if the network is well configured and the data set has the 

correct amount of information the network will learn how to predict other inputs based 

on the training data.  

The standard backpropagation learning algorithm is a steepest descent algorithm that tries 

to minimize the sum of square root errors (Catalão et al., 2007). The mean squared root 

error that is back propagated to the input layer is commonly defined as: 

𝑀𝑆𝐸 =  
1

2
∑‖𝑌𝑖 − 𝐷𝑖‖2

𝑖

𝑖=0

 

Yi -Real Value, Di -Network Output 

(Jain et al., 1996)(Szkuta et al., 1999) 

 

 

Support Vector Machines 
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Support vectors are a widely used tool that has been applied with success in several 

pattern recognition and classification problems but also in non-linear regression problems 

such as electricity price forecasting (Weron, 2014).  

This algorithm can be traced back to (Cortes & Vapnik, 1995) statistical learning theory 

and has been since then widely popularized in research literature.  

Support Vectors transforms the data into a high-dimensional space and then tries to find 

simple linear functions that form boundaries between the data allowing for a decision to 

be made. 

 In Figure 9 an illustration of a Support Vector Machine used for classification can be 

found. Initially an input space is given that has an extremely complex decision boundary. 

Those inputs are then transformed utilizing a Kernel, which is the function that maps 

lower-dimensional data into higher dimensions. The data is then separated by a 

hyperplane and a classification can be made, for instance points above the hyperplane 

belong to one class and points below it to another. 

 

Figure 9 - Example of an SVM classifier ( dataanalyticspost.com/Lexique/svm/) 

 

For Support Vector Regression, the principle is the same as for classification as it 

maintains all the characteristics that are associated with the Support Vector algorithm, 

with only a few minor differences. The major difference between the two is obviously the 

output. In classification the output is the class that the features belong to, in regression 

the output is a real number with infinite possibilities. Also, in the case of regression, a 

margin of tolerance (epsilon) is defined as can be seen in Figure 10. 
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Figure 10 - Schematic of a one-dimension SVR model (Kleynhans, Montanaro, Gerace, & 

Kanan, 2017) 

 

Utilizing Support Vectors is a two-step process. First, a sub-section of the data is utilized 

to train the algorithm and after it being trained it tries to predict the rest of the data, 

repeating this step as adjustments to the algorithm is necessary. In an EPF context, while 

not nearly as popular as ANN, SVMs have shown some promising results as can be seen 

in Table 1. 

 In one of the first researches utilizing SVM in EPF context, a direct comparison between 

MLP and SVM was made. SVM was shown to have the same forecasting accuracy as 

MLP while requiring less time to be trained (Sansom et al., 2003). Another recent research 

also showed that an SVM outperformed a simple ANN in terms of accuracy and 

efficiency (Razak et al., 2015).  

SVM however are typically utilized in a hybrid system to achieve the best results which 

add complexity to the model. One of the most popular hybrid SVM models in EPF is 

utilizing SOM classifiers to cluster hourly electricity price and then applying an SVM for 

each cluster (Niu et al., 2010). Another hybrid model combining ARMAX models and 

least-squares SVM shows an improvement over simpler SVM models (Chaâbane, 2014).  

Despite these promising results, there’s not a lot of research into SVM when compared 

to ANN. While some specific scenarios were shown to have excellent results utilizing an 

SVM or a hybrid model where SVM was involved, it is not possible to conclude that 
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generally, SVM models outperform ANN models in an EPF context because there is not 

enough research on the topic. 

 

 

XGBoost 
 

XGBoost is a scalable implementation of gradient boosted decision trees(Friedman, 

1999), available in the form of an open-source library for multiple popular programming 

languages and frameworks. This system has been widely used in the past few years 

winning multiple machine learning competitions in websites such as Kaggle (Chen & 

Guestrin, 2016).  

A decision tree consists of multiple decision nodes, decisions, and leaves, which represent 

the final prediction. The topmost node corresponds to the best-found predictor of the 

target variable, a simple visual representation can be found in Figure 11.  

 

Figure 11 - Simple decision tree example 

 

In order to improve the results of classical decision trees, ensemble methods are often 

used, which combine several different decision trees to improve the predictive 

performance of the model.  

Boosting is one of the most commonly found ensemble techniques (Chen & Guestrin, 

2016) and it consists of fitting consecutive decision trees and the final prediction for a 

given example is the sum of predictions from each tree, this can be described 

mathematically as: 
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𝑌𝑖 =  ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

 , 𝑓𝑘 ∈ F 

K- Number of trees 

𝑓𝑘(𝑥𝑖) – Prediction value for given example in a given tree 

F- Space of all decision trees 

 

In order for the algorithm to adjust its set of functions in each iteration, the following 

objective function is minimized:   

𝐿(𝜙) =  ∑ 𝑙(𝑌𝑖, 𝑅𝑖) +  ∑ Ω(𝑓𝑘)

𝑘𝑖

 

l- Function that measures the difference between the prediction and the real value 

Ω – Penalizes the complexity of the model 

Ω(𝑓) =  Υ𝑇 +  
1

2
𝜆‖𝑤‖2 

T – Number of leaves 

w – Leaf weights  

 

In Gradient boosting a gradient descent algorithm is utilized to optimize the loss functions 

of each tree. In regression this loss function can be based on the residuals between the 

predicted value and the real value. This means that on each tree iteration, the objective is 

to improve on the residual error from the last tree, taking account information from every 

prior tree. 

 Gradient boosted decisions trees can potentially suffer from the same problems as other 

algorithms that utilize gradient descent, such as overfitting or local minima and those 

problems need to be taken into account when utilizing this algorithm. 
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Grid Search 
 

As can be understood from reading the previous sub-chapters, every algorithm has 

many different parameters than can be tweaked in order to increase the accuracy of the 

predictions.  

As it would be impractical to test every possible parameter in each algorithm, one 

possible solution is to utilize a grid search. By defining jumps in each parameter every 

possible combination of those parameters is tested as an individual model and then 

compared to the others. This can potentially be extremely time-consuming if small 

jumps in each parameter are defined and so it is important to understand what each 

parameter means and how a certain increase or decrease will possibly affect the model.  

To give a practical example, in SVM one of the most important hyper-parameters is C, 

which, usually, takes values from anywhere between 0.1 to 100 in literature. If every 

value between 0.1 and 100 was to be tested in increments of 0.1 it would take 

impossibly long to test every combination of C. In this case it would be much more 

practical to take jumps by increments of 10 or even slightly higher which would 

compute much faster but still maintain around the same level of accuracy.  

Grid Search can then be defined, in short, as a method to perform hyper-parameter 

optimization for a given model (Syarif, Prugel-Bennett, & Wills, 2016) 

.  
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4- Statistical analysis 

 
 

From the literature review, it is clear that electricity prices tend to present commonly 

found patterns on a monthly, weekly and daily levels. In this section these trends will be 

explored in the data utilized for this dissertation. The data utilized spans from 2015 to 

2017 in Portugal and was aggregated by technology. 

It is expected to find common patterns found in literature such as prices variations in 

colder/hotter months, afternoon/morning hours, workdays/weekends, as well as possibly 

identifying other patterns. This section directly relates to the data understanding phase of 

the CRISP-DM methodology, explained previously in chapter 3.  

Additionally, it’s extremely important to understand the significance of other variables 

like consumption levels, renewable energy generation and energy generated from fossil 

fuel and their relationship with the final market price. 

 

 

Calendar 
 

In literature, it is commonly accepted that the hour is a major factor to take into 

consideration when trying to predict electricity prices, as obviously the needs and 

demands vary greatly throughout the day especially when comparing middle of the night 

hours when few people are awake to peak activity hours. 
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Figure 12 - Average Price of each hour in 2015,2016 and 2017 

 

As can be seen in Figure 12Figure 12, electricity price presents a very clear relationship 

with the different hours throughout the day. Generally, prices tend to drop during morning 

hours, dipping to its lowest at about 3, and during the beginning of the afternoon at about 

12. On the other hand, they tend to start increasing at about 5 and 16, hitting their daily 

high at about 20. This pattern is clearly present in every year as the shape of the curve is 

about the same in all the years studied despite overall prices being higher or lower 

depending on the year.  

Electricity pricing has also shown key differences in different days of the week mainly 

due to holidays, workdays and weekends and the different needs correspondent to each 

one. 
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Figure 13 - Boxplot of Electricity Prices from Monday to Sunday and Holidays 

 

Generally, as can be seen in Figure 13, prices tend to be higher during weekdays than 

when compared to weekends, with Sunday being the day that presents the lowest prices 

on average. Furthermore, Saturday seems to be the day where prices are more stable as it 

shows the least amount of standard deviation compared to all other days. During the week 

all 5 workdays show very similar patterns. 

During holidays average prices tend to be slightly lower than prices during weekdays 

which suggests that during public holidays prices tend to behave more closely to 

Saturdays than weekdays.  
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Figure 14 - Price distribution during cold months (October to March) 

 

 

Figure 15 - Price distribution during hot months (April to September) 

 

Daily prices also present some key differences in the different seasons of the year, as can 

be seen in Figure 14 and Figure 15. During early morning hours it doesn’t seem to be 
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significant what season of the year it is, as prices are extremely similar in both cold and 

hot months. However, prices in cold months quickly rise when compared to their hotter 

counterpart, resulting in higher average prices throughout the rest of the day.  

The overall series shape doesn’t present many differences, except that hot months seem 

to be relatively more stable throughout the day, not presenting a lot of variation between 

the lowest and highest points. This further confirms that hotter months will tend to be 

easier to predict than colder months. In addition to this, one other relevant difference 

between the two series is that the highest peak price happens a few hours later (20:00) in 

hotter months than colder months (18-19), while the lowest point happens at the same 

time (at about 3). 

 

 

 

Figure 16 - Monthly distribution of Electricity Price during 2015 
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Figure 17 - Monthly distribution of Electricity Price during 2016 

 

 

 

Figure 18 - Monthly distribution of Electricity Price during 2017 
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As can be seen in Figure 16, Figure 17 and Figure 18 prices during colder months (from 

October to March), tend to have a much higher standard deviation than prices during 

hotter months (from April to September). This effect is especially noticeable in the year 

of 2016, where colder months have increased volatility when compared to 2015 and 2017. 

 

Table 2 - Mean, Standard Deviation, Minimum, and Maximum of hotter months 

 

Year Mean Standard 

Deviation 

Minimum Maximum 

2015 52.11 10.90 10.00 72.48 

2016 35.30 10.43 2.79 58.00 

2017 47.78 6.09 26.60 60.15 

 

 

Table 3 - Mean, Standard Deviation, Minimum, and Maximum of colder months 

 

Year Mean Standard 

Deviation 

Minimum Maximum 

2015 48.71 13.25 2.00 85.05 

2016 43.57 17.35 0.00 75.00 

2017 57.19 13.94 8.00 101.99 

 

 

From the analysis of Table 2 and Table 3 it is possible to verify in greater detail that as 

generally found in literature, colder months have a highest average price than hotter 

months despite not always having the highest average price, as can be seen in 2015 where 

hotter months had a higher average price than colder months. 

 Additionally, it seems correct to assume that hotter months present a much more stable 

price series when compared to colder months, as every standard deviation was smaller in 

hotter months when compared to their colder counterpart.  

Furthermore, in every year studied, the highest and lowest peak of the price series are 

always present in the coldest months, this naturally results in a higher difficulty in 

predicting the price series during cold months than hotter months due to the increased 

volatility shown in the data. This means that seasonality through the year is an extremely 
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important factor that has a direct and easily identifiable relationship with how and when 

the price will shift throughout the months and it needs to be taken into account when 

predicting electricity price series. 

 

 

Consumption 
 

 

Figure 19 - Average Consumption of each Hour 
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Figure 20- Correlation between Consumption and Electricity prices 

 

Analyzing Figure 19 it’s clear that the overall shape of the series is about the same as the 

price series in Figure 12, with the key difference that consumption levels don’t seem to 

vary at all between each year while prices, especially in 2016, varied a lot. This is 

probably a good indicator that consumption levels don’t have a strong correlation with 

the final market price, at least not directly. By analyzing Figure 20 where it can be seen 

that a low price does not necessarily mean low consumption levels and vice-versa the 

previous assumption is further confirmed. The correlation between these two variables is 

0.47 which is to be expected given the previous explanation. 

 In Figure 21 the hourly distribution can be seen in further detail via a boxplot, and it 

becomes even clearer that consumption levels present a very strong correlation with the 

calendar variables, dipping to low levels in morning hours and generally rising to high 

levels during more active hours.  

 

Figure 21 - Distribution of Hourly Consumption levels 
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Figure 22 -Distribution of Consumption from Monday to Sunday 

 

Analyzing Figure 22 the correlation between the period of time and consumption levels 

becomes even more evident as it follows the  exact same pattern as electricity market 

prices in Figure 12, being stable through the week with not much difference between each 

work-day and then dropping on the weekends, Sunday being the day where it is at its 

lowest.  
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Figure 23 - Daily Average Consumption during hot and cold months 

 

Figure 23 shows the average level of consumption during each year for hot and cold 

months, and it is clear that despite the year all consumption levels are extremely similar 

as long as it’s the same season. This is contrary to the pattern shown by electricity prices, 

shown in Table 2 and Table 3, where the average price in 2015 during hot months was 

higher than the average price during cold months, and while there were significant 

differences between the average price of each year and each season, those differences are 

not reflected in the consumption levels. 

It is clear then that both consumption level and electricity prices are strongly connected 

to the calendar variables such as the current hour of the day or the weekday but knowing 

the expected consumption level at a certain hour is not enough to be able to accurately 

predict the price, as lower consumption levels can still potentially hit high price points 

and vice-versa. It seems then extremely important to understand the source of the energy 

that was generated at each point in time and not just the overall energy expended. 

 

Renewable Energy Sources 
 

Hydropower 
 

 

Figure 24 - Average energy generated from hydropower sources on each hour 
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Figure 25 - Correlation between Energy generated by hydropower and electricity 

price 

 

 

 

Figure 26 - Average energy used for pumping water on each hour 



42 
 

 

Figure 27 - Correlation between Water Pumping and Electricity Price 

 

Figure 24 represents the added values of hydropower energy generated by hydropower 

plants with no reservoirs, reservoirs and mini-hydropower plants, which can generate up 

to 10 MW/h.  

Mini hydropower plants have the lowest contribution to the overall generation, as both 

reservoirs and hydropower plants generate about 10x more energy each, but it’s still 

significant enough to include in the data analysis.  

Negative energy occurs when plants utilize energy to store water for generating energy at 

a later time. This usually occurs at night due to prices being cheaper, as can be seen in 

Figure 26. This means that a high level of consumption for water pumping is usually 

related to cheaper prices. Figure 27 confirms this assumption, as it shows that starting at 

about the 50€/MWh mark there is much less consumption being utilized for water 

pumping when compared to lower price points. The lower end of the price range is lot 

more distributed, meaning that higher levels of water pumping are probably a good 

indicator to identify when prices are going to be low, as it is likely that water is pumped 

during periods where price is low.  

Water pumping is not however a good predictor for the exact value of price, as for 

example a consumption level of 0 can be related to any price between 0€/MWh to 

100€/MWh.  
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The curves in Figure 24 tend to have the same pattern as the consumption curves in 

Figure 19 as it would be expected that more energy is generated on peak hours as opposed 

to less active hours.  

More interestingly, 2016 had a significantly higher hydropower energy generation than 

both 2015 and 2017 which can partially explain why that year had a significantly lower 

overall price, as energy from renewable sources is cheaper than fossil fuels. It is still 

important to note however that electricity prices in 2015 and 2017 are very similar. While 

2017 did have the highest average price overall, the difference is not as significant as 

Figure 24 would imply, as there is even a point where the average price in 2015 surpasses 

2017, which never happens for hydropower energy generation. This means that while 

hydropower energy generation does seem to have a big impact on the price, it is not the 

only variable that needs to be considered.  

Finally, looking at Figure 25 it’s possible to see that when energy generated from 

hydraulic sources is at its highest, the price is always in the lower range and at the very 

low price range, between 0€/MWh and 20€/MWh negative energy almost never occurs 

which seems to further indicates that high energy generated from hydraulic sources is a 

good contributor to bringing the final market price down. 

 

Wind Energy 
 

Figure 28 - Average Energy Generated from Wind on each hour 
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Figure 29 - Distribution of hourly Wind energy generation during Hot months 

. 

 

 

Figure 30 - Distribution of hourly Wind energy generation during cold months 
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Figure 31 - Correlation between Wind Energy Generation and Electricity Price 

 

 

Figure 28 shows the energy generated from wind turbines, similarly to Figure 24, 2016 

was the year with the highest amount of energy generated, although the difference is not 

as significant as energy generated from hydraulic sources to other years, it is an added 

reason for significantly cheaper overall prices in 2016.  

Additionally, the energy generated in 2017 was slightly higher than in 2015, which is the 

opposite of energy generated from hydraulic sources. This is also a good indicator of the 

importance of these two variables, as both price curves ended up being similar in Figure 

12. However, the highest difference of the two curves at any point is only about 100MWh, 

which is a lot lower than the highest difference in Figure 24 which is about 500MWh. 

This means that these two variables are not enough to explain the final market price, as 

even adding wind energy to hydropower energy, 2015 still presents a consistently higher 

overall energy generation than 2017.  

It is also important to note that the shape of the curve is completely different to the 

consumption levels presented in Figure 19. The lowest point of energy generation in 

Figure 28 occurs in the middle of the day, while the highest points occur in the middle of 

the night, this is the opposite behavior of the other patterns analyzed so far. One possible 

explanation for this is that Eolic turbines are usually installed on mountain ridges, in these 
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areas winds tend to be stronger at night than during the day. This effect is especially 

noticeable during the summer, and as can be seen by comparing Figure 29 to Figure 30. 

During hot months Wind energy generation during the day has less standard deviation 

than during the night making the energy generation consistently lower, while during cold 

months the difference between night and day is not as noticeable.  

It is then concluded that when Wind energy generation is high, it’s extremely unlikely for 

prices to be high as well as can be seen in Figure 31, as most high peaks of energy 

generation will occur during the night, where price is usually much cheaper, this being 

especially true during the summer. 

 

 

Biomass 
 

 

Figure 32 - Average energy generated from Biomass on each hour 
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Figure 33 - Correlation between Biomass Energy Generation and Electricity Price 

 

Figure 32 shows the average energy generated hourly by biomass throughout the three 

different years being analyzed. As opposed to the previous variables analyzed, all 3 years 

are very similar, as the point of highest difference is only about 50MWh higher in 2015 

when compared to the following years. Additionally, the overall energy contribution from 

biomass is shown to be lower than the energy generated from both water and wind power, 

as the highest average point, is only about 900MWh.  

In relation to the final market price, it’s possible to see in Figure 33 that it is very rare for 

prices to be extremely low when energy generated from biomass is high. This can be 

explained by the lowest price points occurring generally during early morning hours, 

where energy generated from biomass is at the lowest as those are generally the lowest 

points of expected consumption.  

On the other end of the graphic, however, it can be seen that there are multiple points 

where both the price and energy generated is very high. This opposes what was previously 

stated throughout this chapter, as an increase in generation from renewable energies 

sources should bring the price down. While it is possible to see some slight correlation 

with less frequency of prices over 70 €/MWh and high energy generation levels it is not 

enough to state that a high energy generation from biomass will result in a lower price, 

especially as prices above 90€/MWh, occur multiple times with biomass energy 



48 
 

generation being almost at its maximum. This is a good indicator that biomass probably 

has a small, but not irrelevant, effect on the final market price. 

 

Solar Energy 
 

 

Figure 34 - Average energy generated from Solar Panels on each hour in 2015,2016 

and 2017 

 

 



49 
 

Figure 35 - Distribution of hourly Solar energy generation during Hot months 

 

 

Figure 36 - Distribution of hourly Solar energy generation during Cold months 

 

Solar energy presents the overall lowest contribution from renewable energy sources as 

can be seen in Figure 34, as the highest point in the graph is only about 280MW/h, which 

is much lower than the other variables analyzed so far. 

It is possible to see a slight increase every year, as 2015 was the year with the lowest 

average energy generation, followed by 2016 and 2017 being the year with the highest. 

This is possibly due to an increasing number of solar panels generating energy, but the 

difference does not seem significant enough to affect the overall final price, as it is only 

a minor increase on a very low overall energy generation. 

Figure 35 and Figure 36 show the seasonal difference in solar energy generation. As 

expected, hotter months tend to have a more significant contribution to the overall energy 

generation than colder months. This is not only due to the energy generated from solar 

panels being consistently higher in hotter months but also to the number of hours where 

energy is generated being higher as well, as in cold months energy generation from solar 



50 
 

sources stops at around 17:00 while in hotter months it only stops at 19:00 due to the 

increased hours of sun exposure. 

 

 

Figure 37 - Correlation between Solar energy generation and electricity price 

 

Due to the overall low contribution of solar energy, it is unlikely that it has a significant 

impact on the final market price, and as can be seen in Figure 37, there doesn’t seem to 

be any significant correlation present between the two variables, as both high and low 

prices occur with high and low solar energy generation. 
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Figure 38 - Correlation between Electricity Price and Renewable energy 

generation 

 

In Figure 38 it’s possible to see the added values of all renewable energy sources analyzed 

in this section and its relation to the final market price. It is verifiable that very high 

energy generation from renewable energy sources always results in very low prices. This 

is due to the fact that marginal cost of electricity from RES has lower marginal cost than 

that of non-RES electricity generation and MIBEL follows a marginal price model. 

 On the other end of the graph, it is possible to see that there exist some points in time 

where both energy and prices are high. Comparing this data to Figure 20 , it can be seen 

that in the higher price range there exist several points in time where total consumption 

exceeds 7000 MWh, which never happens in that price range for renewable energy 

generation. This means that when consumptions levels are unusually demanding, energy 

from renewable energy sources is not enough to fulfill the total requirements of the 

market. As non-renewable energy needs to be utilized to fulfill the market demands the 

price goes up, this will be further explored in the next sub-section.  

Finally, around the middle price range in Figure 38 it’s possible to see multiple points 

where energy generation is at a negative point, which can be directly related to Figure 26  

and Figure 27, as energy is sometimes used to pump water for future use, usually during 

night hours when consumption is low.  
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Non-Renewable Energy Sources 
 

In MIBEL, non-renewable energy comes in the form of coal and natural gas.  

 

Coal 
 

 

Figure 39 - Average energy generated by Coal on each Hour during 2015, 2016 and 

2017 
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Figure 40 -Correlation between energy generated by Coal and electricity price 

 

Coal is an expensive form of non-renewable energy, and so it is expected that the more 

coal is utilized to generate energy the higher the final market price will tend to be.  

Analyzing Figure 39, it’s possible to see that the energy generated by coal has very 

similar curve shapes to the final market price shown in Figure 12, as both coal energy 

and final market price were significantly lower in 2016 when compared to the other two 

years, showing potential for a strong correlation of these two variables. Additionally, 

energy generated by coal clearly has a strong relationship with renewable energies. 

The more energy generated by renewable sources, the less energy is needed from non-

renewable sources to fulfill demands of consumption. Coal was much less used in 2016 

possibly due to this year having a greater contribution from renewable energies. 

hydropower energy was much higher in that year as can be seen in Figure 24, which 

reduced the need of coal which caused the average price to be lower.  

In Figure 40 it is possible to confirm the strong correlation between the usage of coal to 

generate energy and the final market price, as low prices occur exclusively when energy 

fueled by coal is very low, and high prices only occur when energy generated by coal is 

high, making energy generated by coal on a given hour a good predictor to the final 

market price. The calculated correlation between these two variables is 0.63 which is a 

further indicator that coal generation is a good variable to take into account for the 

predictions models.  

 

Natural Gas 
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Figure 41 - Average energy generated by natural gas on each hour 

 

 

Figure 42 - Correlation between energy generated by natural gas and electricity 

price 

 

Natural gas is the other relevant source of non-renewable energy in the MIBEL, as can 

be seen in Figure 41 this type of energy has been the source of considerable investment, 

as the average energy generated from natural gas increases every year, especially 

comparing 2016 to 2017. 
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 Again in Figure 42, it’s possible to see the correlation between low energy generated 

from non-renewable sources and low prices, as these only occur when the energy 

generated from natural gas is below 1000MWh. On the other end, it’s possible to see that 

high prices generally occur when the energy generated from natural gas is high, which in 

turn means that the energy from renewable sources will be lower than usual which 

naturally causes prices to go up. 

 

 

 

Figure 43 - Correlation between Electricity Price and Non-Renewable Energy 

generation 

 

Figure 43 shows the added values of coal and natural gas and its relationship with the 

final price. As it is expected due to the marginal price model of the day-ahead market in 

MIBEL, the graphic shows a positive correlation between energy generation and 

electricity price. This is because non-renewable energy enters the market with higher 

prices than renewable energy, so the more non-renewable energy it is utilized to fulfill 

the market requirements the higher the price usually is. 

 As can be seen and as expected from the previous analysis of Figure 38 in the low-price 

range there is very little requirement from non-renewable energy sources to fulfill market 

needs which naturally brings the price down. 
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 On the high price range, it’s possible to verify the assumption that high prices always 

require high energy generation from non-renewable energy sources. This also helps to 

explain why in Figure 38 there are some points where energy from renewable sources is 

high in the high price range, as in Figure 20 in that price range there are some points with 

an exceptionally high consumption levels which need both renewable and non-renewable 

energy sources to be fulfilled which brings the price up. 

 In the middle price range, it’s possible to see both high and low levels of energy 

generated which also happens in Figure 38 which probably indicates that non-renewable 

energy is highly dependent on total consumption and the total amount of energy that can 

be satisfied by renewable sources, as these usually enter the market with lower prices and 

as such have priority over non-renewable sources. 

 

 

Weather 
 

From the analysis of the previous sub-chapter, it’s possible to conclude that the most 

contributing renewable energy sources are Wind and Water energy. Both these sources 

of energy are highly dependent on the weather, as Wind energy is only generated if there 

exist strong winds in the area where Wind turbines are installed, and hydropower energy 

is potentially higher as more water exists from raining.  

Temperature or solar radiation could also be important factors to consider but as could be 

seen in the previous sub-chapter, energy from solar sources contributes much less than 

most other sources of renewable energy and so these variables are not expected to have a 

strong effect on the predictive capacity of the models due to them affecting a variable that 

does not contribute much to the overall energy generation.  

In this subchapter, the relationship between real weather data and the energy generated 

from renewable energy at those points in time will be explored in order to evaluate how 

well the available weather data can be ultimately related to the final market price. 
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Wind 
 

 

Figure 44 - Correlation between Wind energy generation and wind speed 

 

 

Figure 45 - Correlation between Wind energy generation and gust speed 
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Data from wind was generated considering the contribution of each district of Portugal to 

the overall Wind energy contribution and then averaging each district weather variables 

with that value in consideration. As such the highest contributing districts like Viseu will 

have a higher impact to the final value as opposed to less contributing districts like 

Santarem.  

Data from wind comes in two different forms, wind speed, and gust speed. A gust of wind 

is a short-term burst that reaches much higher velocity than average winds, these occur 

much more commonly around mountains or hills where Eolic turbines are usually 

installed. Due to that reason, it might be important to distinguish between average wind 

speeds and gusts as these are more likely to occur around Eolic turbines. 

In Figure 44 and Figure 45 it’s possible to see the relation between these two variables 

and the wind energy generated. It is possible to see a clear correlation between high wind 

speeds and high wind energy generation, as low energy generation mostly occurs during 

times where wind speed is low and high energy generation when wind speeds are high. It 

is also important to note the difference between wind and gust speed. Figure 45 shows 

that gusts present a stronger correlation to wind energy generation when compared to 

Figure 44 as was initially expected due to gusts occurring more frequently in areas where 

Eolic turbines are usually installed.  
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Figure 46 - Hourly distribution of wind speed 

 

 

Figure 47 - Hourly distribution of Gust Speed 

 

Looking at Figure 46 and Figure 47 and comparing to Figure 28 it’s possible to see that 

gust speed seems to have a much more similar distribution to wind energy generation than 

wind speed. Gusts speeds are generally higher during the night than during the day which 

is exactly the same as wind energy generation. On the other hand, wind speeds do not 

seem to follow this pattern as they are generally higher during afternoon hours. This is 

further indication that gust speed seems to have a much stronger correlation to wind 

energy generation when compared to wind speed. Calculating these two values, it is seen 

that wind speed has a correlation with price of -0.28, while gust speed has a correlation 

of -0.43. This is further indication that gust speed is much more related to the final price 

than wind speed. 
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Figure 48 - Distribution of Hourly gust speed during cold months 

 

 

Figure 49 - Distribution of Hourly gust speed during hot months 
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Comparing Figure 48 and Figure 49 to Figure 29 and Figure 30 it is possible to see in 

further detail that gust speeds and wind energy generation present very similar behaviors. 

During hot months gust speeds during the beginning of the day are significantly lower 

than during the night which is exactly the same behavior as presented in wind energy 

generation. The same is true for colder months, as the difference in gust speeds and wind 

energy generation is much more stable throughout the entire day. 

 

Temperature 
 

 

Figure 50 - Correlation between Electricity price and Temperature 

 

In Figure 50 it is possible to see the correlation between electricity price and temperature. 

As was previously seen, electricity price tends to follow seasonal patterns with colder 

months usually having more volatile prices and a higher standard deviation. This can be 

seen in the data presented as high prices occur exclusively when temperatures are low 

and low prices occur mostly on low temperatures as well. 

As a predictor for the exact price however, temperature does not seem to be a good metric, 

as prices when temperatures are low can range from anywhere 0€/MWH to 100€/MWh 

and even in higher temperatures prices can range anywhere from 5€/MWH to 70€/MWh. 

This makes it very hard to directly relate a given temperature in a given day to the price 
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that is to be expected. Even in the highest temperatures the price range is still very large. 

This is possibly due to the same temperature occurring in both cold and hot months at 

different times of the day. For example, 20ºC might be the temperature during peak hours 

in the winter and early morning hours in the summer.  

As such, it is clear that temperature has some relation with the seasonality of the prices, 

but as an exact price predictor there seem to be much more promising metrics analyzed 

so far. 

 

Humidity and precipitation 

 

 

Figure 51 - Correlation between Electricity price and Humidity 
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Figure 52 - Correlation between Hydraulic Generation and Humidity 

 

Figure 51 shows the correlation between price and humidity. High humidity values, over 

90%, represent times when it was raining. It is possible to see that for high humidity 

values it is more frequent for prices to be lower rather than higher as more precipitation 

allows for an higher generation of hydraulic power, this can be further seen in Figure 52. 

However, for humidity values lower than 90% there does not seem to be a strong 

relationship to the price, as both high and low prices appear almost equally frequent.  

As the vast majority of data is humidity values below 90%, it is hard to correlate humidity 

to the final market price, as there is only a slight change of pattern in the very topmost 

humidity values that are vastly outnumbered by lower values. 
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Figure 53 - Correlation between Hydropower Energy Generation and 

Precipitation 

 

 

Figure 54  - Correlation between Electricity price and Precipitation 

 

As can be seen in Figure 53 and Figure 54, precipitation presents one major issue has an 

input variable which is having an extremely unbalanced dataset. This is because in the 

vast majority of hours it does not rain which causes the majority of entries in the 

precipitation dataset, about 93% of the data, to be below 0.1mm. Just taking into account 
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values where average precipitation is exactly 0mm, that accounts for about 82% of the 

dataset. 

Looking at the relationship of precipitation with hydraulic generation in Figure 53 it can 

be seen that the more negative hydropower energy generation is the less common it is to 

be raining. 

Analyzing Figure 54 there seems to be a higher tendency for lower prices to happen when 

it is raining, as opposed to prices above 70€/MWh where the instances where it rained 

were very few.  

 

 

Figure 55 - Correlation between Electricity price and Precipitation above 0.1mm 

 

Overall it seems like precipitation is a significantly worse variable to use as an input 

feature when compared to some previous variables like gust speed. It can be clearly seen 

in Figure 55 that prices are more likely to not be on the higher end when precipitation is 

above 0.1mm. However, it is hard to utilize that information to accurately predict a 

specific price as a precipitation of 1mm for example can be directly related to any price 

between 7€/MWh and 80€/MWh. Furthermore, the extremely unbalanced dataset 

presents a serious challenge when utilizing precipitation has an input feature. 
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5- Defining the models and results 
 

 

Establishing a baseline 
 

Before modeling and running experiments with machine learning algorithms it is 

important to establish a comparative baseline with other types of models already 

established in literature to better evaluate the performance and results.  

Two different statistical analysis models were used to establish a baseline, a simpler 

model in AR (1) and a more complex model in ARIMA. In order to evaluate the models, 

all of them were tested to predict 50 randomly chosen days as the day-ahead from August 

2015 to December 2017 additionally a week-ahead point was also predicted to compare 

the loss of accuracy between day-head to week-ahead predictions.  

It is important to note that due to how the MIBEL market works, we cannot use every 

point of data before the predicted target hour as an input to the models. This is due to the 

closing hour of the market: 11:00 of day D. meaning that if we want to predict D+1 at 

most the data available is going to be until the previous hour of the market closing for 

D+1 which corresponds to day D at 10:00, assuming a prediction of D+1 at the last 

possible moment. This means that the models will be trying to predict the next 12-36 

hours after the last hour of possible offers on day D. 

The metrics used for result evaluation are the mean absolute percentage error (MAPE%) 

and root-mean-square error (RMSE) 
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AR(1) 
 

AR(p) is an autoregressive model that utilizes past observations, denominated as the lag 

variables, in order to predict future values. To do this, it measures the correlation between 

the output value and the provided inputs and if a strong correlation exists, either positive 

or negative, it is a good indicator that good predictions can be expected. The higher the 

correlation, the more likely that past variables will be able to predict the future. In this 

case, the input and the output are the same, electricity price. As such it is important to 

study the autocorrelation of this variable, that is, the correlation between the variable and 

itself in previous time steps. AR(1) is the first-order process, which means that the current 

value is based on the immediately preceding value. 
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Figure 56 - Autocorrelation of electricity price with the next hour price 

 

 

 

 

Figure 57 - Autocorrelation of electricity price after 36 hours  
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As can be seen in Figure 56, electricity price presents a very strong autocorrelation within 

a 1-hour timeframe. This means that prices usually do not have extremely big variations 

from one hour to the next, which can contribute to making a more accurate prediction. 

Naturally, as the time frame is increased the correlation gets weaker. This can be seen in 

Figure 57 where the autocorrelation gets significantly weaker within a 36-hour timeframe 

when compared to Figure 56, it’s still worth to note however that some correlation is still 

clearly present, especially as prices get higher. 

The electricity price at time t defined as Xt has the following model in AR(1) (Hua, Li, & 

Li-zi, 2008): 

 

 

In order to simplify the implementation of the model, a python library named statsmodels 

was used whereby inputting data from the previous week to D (day before the targeted 

day for prediction), the above equation parameters were automatically measured for each 

hour of D+1 and a prediction for 50 random days was made, achieving the following 

results:  

 

Table 4 - AR(1) Results 

Time Period MAPE(%) RMSE 

Day-Ahead Prediction  26.53% ± 8.16 11.15 ± 4.12 

Week-Ahead Prediction 41.68% ± 9.23 16.25 ± 4.81 

 

 

AR (1) is by far the simplest algorithm used in this work with almost instantaneous 

runtime and for such a simple algorithm the final results are not too bad. The week-ahead 

prediction proved to be significantly worse than the day-ahead prediction which was to 

be expected for a linear regression model.  

While the RMSE values are not very high, it is important to keep in mind that electricity 

prices do not have a very high standard- deviation as can be seen in Table 2 and Table 

3, and so these results are not usable in a real scenario, as it is essentially guessing the 

price within the standard deviation. Nonetheless, this is a good indicator that more 
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complex algorithms might have some usability in a real-world scenario as it is expected 

that results improve as more input features other than the previous price get added into 

the models. 

 

 

ARIMA 
 

ARIMA is an acronym that stands for AutoRegressive Integrated Moving Average. This 

model is a class of statistical models commonly used to analyze time series. 

The model utilized for the comparative baseline was created using the models of 

(Contreras, Espínola, Nogales, & Conejo, 2003) as an example. The creation of these 

models consists of four steps. 

Step 1 is optional and it consists of transforming the data to achieve a more stable mean 

and variance, in order to do this the library StandardScaler was utilized, as ARIMA 

models have been well documented to have bad performance when exposed to outliers 

and high variance in the data and it would make the baseline unreliable if this step was 

skipped over. 

Step 2 and 3 consist of choosing and validating the parameters of the model. In order to 

do this the python library pmdarima was utilized to test every possible combination of p, 

d, and q between values of 0 and 5 against the available data. p corresponds to the order 

of the autoregressive model, it is commonly referred to as the lag order as it consists of 

the number of lag observations to include in the model. d is the integrated part of the 

model and corresponds to the degree of differencing. Finally, q corresponds to the order 

of the moving-average model and sets the error of the model as a linear combination of 

the error values of past observations. Any one of these parameters can take the value of 0 

which means that an ARIMA model can be configured to perform the functions of an 

ARMA (AutoRegressive Moving Average), Ar (AutoRegressive) or MA(Moving 

Average) models. 

Step 4 consists of utilizing the trained model to predict the target variables, again using 

the statsmodels library, the better fitting model which was p=2, d=1 and q=3 as this was 

the model that outputted the lowest AIC value (Akaike Information Criterion) which 
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measures how well a model fits to the data while taking into account the overall 

complexity of the model. This model was then applied to the same 50 days chosen 

randomly in the previous experiment, achieving the following results: 

 

Table 5 - ARIMA results 

Time Period MAPE(%) RMSE 

Day-Ahead Prediction 15.21% ± 5.06 6.91 ± 2.96 

Week-Ahead Prediction 22.92% ± 6.94 11.52 ± 3.98 

 

 

ARIMA models are significantly more complex than AR (1) and as such it is expected to 

show significant improvement. As it is possible to verify comparing Table 5 to Table 4, 

analyzing the day-ahead prediction the MAPE(%) was reduced by more than 10% and 

the RMSE by about 4 which for a time-series where the values do not vary a lot is a good 

improvement as it means that predictions are much more consistently closer to the real 

values. The week-ahead prediction still has a lot of room for improvement as the RSME 

is still very similar to the values of the electricity price standard deviation. 

 

 

Defining the models 
 

As can be seen in Table 1 there have been several different machine learning algorithms 

applied to electricity price forecasting, with different training methods, applied to 

different time periods and electricity markets and with different result metrics. This makes 

comparing results from different works and finding the best performing one a difficult 

task. As such, this work applied the most promising algorithms found from the literature 

review in the same conditions to try to find out the best performing algorithm in the 

MIBEL market. 
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There are several possible ways to train machine learning algorithms, the most common 

ones being either feeding random samples from the entirety of the available data or 

feeding sequential data up to a certain point in time.  

As this work is based on predicting data from a time-series, context from the sequential 

past data is crucial, as such the data selected for training the algorithms is sequential. For 

each predicted hour of the day-ahead a different model was trained with data up to the 

last 36 hours of the final predicted point. The data goes back to a maximum of 5 months, 

depending on the month that’s being predicted, as some months may vary a lot between 

each other as was previously analyzed at the beginning of chapter 4. 

To keep the models realistic, only data until 10:00 of D as the market closes at 11:00 is 

available and the day ahead prediction begins at 23:00 of D and ends at 22:00 of D+1. An 

example of the model used to predict the last hour of the day-ahead can be seen in Figure 

58, where t represents the closing hour of the market, 11: 00, and X represents the number 

of hours that the training data goes back to, up to a maximum of 3720 which represent 5 

months. 

 

Figure 58 - Example of data used to predict the last hour of the day-ahead 

 

In order to find the best performing parameters for each algorithm, the GridSearchCV 

library was applied to every algorithm used in this work, which tests a number of different 

specified values in the parameters and scores them against each other. Due to the added 

complexity of some parameters, and as a result an added increase in the run time, each 
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set of parameters was applied to 60 random days during hyper-parameter testing. Detailed 

information about the tests can be found in the appendix. 

During this work several input variables were tested, it is important to note that a lot of 

the variables analyzed in chapter 4 such as total consumption levels or energy generated 

from renewable sources are not known at the time of the prediction and so it wouldn’t be 

realistic to utilize them as inputs for the models. As such, in order to keep the models 

realistic, consumption and wind energy values are based on real predictions. Weather data 

was extracted from a public API. Wind energy prediction and gust speed, while they 

ultimately present the same variable, are both utilized to get a sense on how much 

accuracy is lost by utilizing weather data as an input feature instead of existing 

predictions. The description of each input variable can be seen in Table 6. 

 

Table 6 -Input Variables 

Symbol Description 

P(t-x) Electricity price x hours ago (t represents 

the target prediction time, x varies 

between 13 and 37 depending on the 

model) 

DoW Day of the week (specified numerically) 

H Hour of the day (specified numerically, 

i.e. Midnight- 0, 1 AM – 1, 3 PM- 15) 

C Expected Consumption 

WEP Wind Energy Prediction 

GS Gust Speed 

 

 

 

Long Short-Term Memory 
 

Artificial neural networks are by far the most commonly found algorithm in electricity 

price forecasting literature. For this work an Artificial Recurrent Network (RNN) named 
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Long Short-Term Memory (LSTM) was used. This is a type of recurrent neural network 

that can better utilize long-term information, in comparison to classic RNN, as is needed 

to improve the forecast accuracy. It has shown excellent results in time-series forecasting 

problems. More detailed information can be found in the theoretical background chapter.  

For the practical implementation, the lstm module from the keras library in python was 

utilized, a hyperbolic tangent(tanh) as the activation function inside the LSTM module. 

On the outer NN layer, backpropagation was used as a training method and with an added 

bias on each node. From the Grid Search the best layer composition (in terms of runtime 

and overall score quality), was found to be a hidden layer composition with 100 neurons. 

For adjusting the weights, the- Adam optimization algorithm (Kingma & Ba, 2014) was 

found to be the best performing. 

 

Table 7 - Results for day-ahead predictions with LSTM 

 

Input variables  MAPE(%) RMSE (€/MWh) 

P(t-x) + H 15.44 ± 5.31 7.01 ± 3.02 

P(t-x) + H + DoW 15.12 ± 5.12 6.89 ± 2.93 

P(t-x) + H + DoW + C 14.31 ± 5.02 6.22 ± 2.84 

P(t-x) + C 15.03 ± 5.09 6.84 ± 2.96 

P(t-x) + H + DoW + C + GS 13.86 ± 4.36 5.97 ± 2.19 

P(t-x) + H + DoW + C + WEP 13.23 ± 4.13 5.62 ± 2.05 

 

 

Table 8 - Results for week-ahead predictions with LSTM 

 

Input variables  MAPE(%) RMSE (€/MWh) 

P(t-x) + H 23.36 ± 7.11 11.95 ± 4.11 

P(t-x) + H + DoW 22.75 ± 6.95 11.56 ± 3.96 

P(t-x) + H + DoW + C 22.11 ± 6.78 10.76 ± 3.75 
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P(t-x) + C 22.84 ± 6.99 11.63 ± 4.04  

P(t-x) + H + DoW + C + GS 21.96 ± 6.11 10.56 ± 3.41 

P(t-x) + H + DoW + C + WEP 21.03 ± 6.08 10.21 ± 3.32 

 

 

XGBoost 
 

XGBoost has gained immense popularity in the last few years, being initially released in 

2014, and has since been used to win many machine learning competitions and is 

generally found to be one of the best performing machine learning algorithms. For this 

work the python XGBoost library was used, the best performing parameters were found 

to be 1000 estimators, a learning rate of 0.01 and a max depth of 4 on each tree. 

 

Table 9 - Results for day-ahead predictions with XGBoost 

 

Input variables  MAPE(%) RMSE (€/MWh) 

P(t-x) + H 14.78 ± 4.99 6.51 ± 2.82 

P(t-x) + H + DoW 13.94 ± 4.78 6.04 ± 2.75 

P(t-x) + H + DoW + C 12.98 ± 4.14 5.55 ± 2.03 

P(t-x) + C 13.87 ± 4.69 5.98 ± 2.67 

P(t-x) + H + DoW + C + GS 12.79 ± 4.02 5.40 ± 1.91 

P(t-x) + H + DoW + C + WEP 11.91 ± 4.00 5.19 ± 1.89 

 

 

Table 10 - Results for week-ahead predictions with XGBoost 

 

Input variables  MAPE(%)  RMSE (€/MWh) 

P(t-x) + H 22.32 ± 6.56 11.05 ± 3.91 
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P(t-x) + H + DoW 22.16 ± 6.51 10.86 ± 3.80 

P(t-x) + H + DoW + C 21.89 ± 6.23 10.42 ± 3.33 

P(t-x) + C 22.21 ± 6.59 10.91 ± 3.93 

P(t-x) + H + DoW + C + GS 21.29 ± 6.10 10.03 ± 3.29 

P(t-x) + H + DoW + C + WEP 20.74 ± 6.04 9.81 ± 3.23 

Support Vector Regression 
 

SVR was implemented using the SVR module from the sklearn python library. The best 

performing parameters were found to be a C of 70 and an epsilon of 0.1. The kernel 

utilized was RBF as it showed to be the best performing in early testing. This was to be 

expected as this is a commonly used kernel in previous EPF works (Weron, 2014) and it 

has shown to be the most appropriate for forecasting financial variables (Papadimitriou, 

Gogas, & Stathakis, 2014). 

 

Table 11 - Results for day-ahead prediction with SVR 

 

Input Variables MAPE(%) RMSE (€/MWh) 

P(t-x) + H 16.26 ± 4.98 7.98 ± 3.05 

P(t-x) + H + DoW 15.76 ± 4.90 7.56 ± 2.99 

P(t-x) + H + DoW + C 15.42 ± 4.11 7.00 ± 2.91 

P(t-x) + C 15.71 ± 4.82 7.51 ± 2.97 

P(t-x) + H + DoW + C + GS 15.32 ± 3.98 6.94 ± 2.76 

P(t-x) + H + DoW + C + WEP 15.03 ± 3.64 6.61 ± 2.68 

 

 

 

Table 12 - Results for week-ahead prediction with SVR 

 

Input Variables MAPE(%) RMSE (€/MWh) 

P(t-x) + H 23.74 ± 7.28 12.31 ± 4.83 

P(t-x) + H + DoW 23.03 ± 7.05 11.76 ± 4.53 
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P(t-x) + H + DoW + C 22.36 ± 6.58 11.09 ± 4.11 

P(t-x) + C 22.86 ± 6.94 11.64 ± 4.51 

P(t-x) + H + DoW + C + GS 22.14 ± 6.35 10.85 ± 3.94 

P(t-x) + H + DoW + C + WEP 21.58 ± 6.31 10.56 ± 3.92 

 

Analyzing the results, it can be seen that SVR showed the worst performance of the three 

algorithms tested, while XGBoost showed to be the best performing. This is true for both 

day-ahead and week-ahead predictions. It is important to note that for the week-ahead 

predictions the results were closer between the three algorithms than the day-ahead 

predictions.  

Comparing to the baseline algorithms, ARIMA initially outperformed SVR and LSTM 

while AR (1) was immediately outperformed by every algorithm. SVR and LSTM 

eventually outperformed ARIMA as more variables were added to the models. This is an 

advantage over the ARIMA model. 

In the next chapter a more detailed analysis can be found of what these results mean to 

the initial proposed questions, as well as a brief summary of the entire work. 
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6- Conclusion 
 

Summary 
 

Electricity price forecasting is a complex problem that is extremely important in today’s 

electricity market both for providers and consumers. This problem has been studied by 

several researchers in various electricity markets, using various techniques, from classic 

mathematical models to complex machine learning algorithms, the last ones being 

especially prominent in more recent years. This works focuses on predicting electricity 

price in the Iberian electricity market utilizing machine learning algorithms. 

The work began by exploring the related work in the field, several bodies of works that 

predict electricity price can be found in the literature with various different approaches, 

including classical mathematical, multi-agent and machine learning models.  

Due to each different electricity market having its set of working rules and the fact that 

there doesn’t exist a universally accepted scoring metric, comparing the results of 

different works proved to be a difficult task. Literature spans to dozens of different 

electricity markets, predicting different time-frames and often being evaluated with 

different metrics, an example of this can be found in Table 1. 

 In regard to input variables, there are dozens of different input variables utilized in the 

different works, some based on practical data, others purely theoretical and as such 

unrealistic in a real scenario. This adds another layer of complexity to comparing different 

works, as a promising input variable in one market doesn’t necessarily directly translate 

to other markets, as they are not only bound to different rules, but some markets are more 

dependent on certain types of energy compared to others.  

From the literature review, due to the difficulties that were found and explained so far in 

this chapter, it was concluded that it would not be possible to take only one high 

performing algorithm, as different algorithms proved to be effective in different contexts.  
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In the initial phase of testing SVR and MLP were the chosen algorithms. After further 

testing and researching, LSTM was concluded to generally outperform MLP in the 

context of this problem. XGBoost also showed promising results and had not yet been 

applied to electricity price forecasting to the best of our knowledge. 

As such, three different algorithms were selected for the final experiments, support vector 

machines (SVR), LSTM, and XGBoost, additionally to define a baseline, a simple 

mathematical algorithm, AR(1) and a more complex algorithm that showed good results 

in some works, ARIMA, were utilized. 

The next step consists of analyzing the data available and seeing which variables could 

be relevant for the last phase of the work, five groups of variables were analyzed 

consisting of time, consumption, renewable energy sources, non-renewable energy 

sources and weather variables, this can be seen in chapter 4. 

A strong pattern with time variables was found early on, where electricity price clearly 

shows hourly, daily and monthly shifts very consistently, as prices are usually cheaper on 

weekends than during work-days, cheaper in late-night hours than in the afternoon and 

more stable during hotter months compared to colder months. 

Consumption levels also presented a very consistent pattern when analyzed taking the 

calendar into account as it consistently shifts at the same times of day during each season. 

However a high or low level of consumption does not necessarily directly reflect on the 

price, as it is clearly shown in  Figure 12 and Figure 19. In these figures it can be clearly 

seen that consumptions levels stayed about the same during 2015, 2016 and 2017 while 

prices, varied significantly, especially in 2016. This indicated that consumption levels by 

themselves were not enough to accurately predict the final price and it would be important 

to understand the sources of the energy and their effect on the price. 

The next logical step was then to analyze renewable and non-renewable energy sources, 

wherein short it was found that in general, the more non-renewable energy sources are 

needed to fulfill the market needs, the higher the market price is expected to be. 

 In renewable energy sources, the two highest contributors were found to be hydraulic 

and wind energy. As for non-renewable energies, coal was found to be the highest 

contributor to high prices.  
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The last group of variables analyzed were weather variables, in an attempt to correlate 

observable weather data to the final market price. As values of consumption of each 

source of energy are not known at the time of the prediction.  

Two variables were analyzed related to wind energy, gust speed and wind speed. Gust 

speed was found to have very similar patterns to wind energy generation, which is a good 

indicator that it could be used to predict the final price. This is contrary to what was 

initially expected, as eolic turbines are built with a preventive system that causes them to 

shut down during very strong wind speeds and so it was expected that strong gusts would 

shut down the turbines which should make gust speed have a weak or even a negative 

correlation to energy generation. After further researching, it was concluded that wind 

turbines generally only cut-off their power generation at wind speeds above 90 km/h as 

can be seen in Figure 59. As can be seen in Figure 45 the highest registered average gust 

speed is only about 68 km/h, which means that it’s extremely rare for gust speeds to reach 

a point where they trigger the shutdown mechanisms of wind turbines. In this figure it is 

also possible to see the cut-in speed in action, as energy generation only begins on gust 

speeds slightly above 5km/h. 

 

 

Figure 59 - Wind speed cut in and cut out speeds 
(energy.kth.se/compedu/webcompedu/webhelp/S9_Renewable_Energy/B2_Wind_Energy/C1_Introductio

n_to_Wind_Power/ID33_files/Power_curve.htm) 

 

After the analysis, the algorithms mentioned previously were applied to the data, where 

XGBoost slightly outperformed LSTM and both outperformed SVR, both in the day-

ahead and week-ahead predictions.  
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Comparing to the baseline all algorithms outperformed AR (1) independently of the 

number of input variables. ARIMA was only initially outperformed by XGBoost, as 

LSTM and SVR only started outperforming ARIMA as more input variables were added 

to the models.  

From analyzing how the input variables affected the results, it’s interesting to note that 

having the consumption or the day of the week and hour provides very similar results, 

which further confirms the strong relationship that exists between consumption and time 

variables mentioned earlier. Furthermore, the best results are consistently given by having 

consumption, time variables and gust speed, which indicates that the real gust data that 

was gathered does have some effect on the final price. 

 

 

Objective Discussion 
 

As stated in the introduction, this work had four main questions which it tried to answer. 

In this section each of those questions will be discussed more deeply. 

Starting with the most important variables, from this work it is clear that in the MIBEL, 

renewable energies have a large impact on the final pricing. This is clearly shown in 

chapter 4, where it can be seen that hydraulic and eolic generation especially present very 

clear patterns in relation to the final market price. It is important to note that not all 

renewable energy sources have an impact on price, as for example solar energy generation 

has a very small contribution to the network compared to other sources.  

Calendar variables like weekdays or time of the day are also extremely important as they 

show very strong correlation with the expected consumption levels, which greatly affects 

pricing.  

The last major variable of note is previous hour pricing, as can be seen in Figure 56 

electricity price has a very strong autocorrelation with the previous hour as it is very rare 

for the price to go up or down by  a lot from one hour to the next. This means that if the 

price of t-1 is known, predicting t becomes much easier. This strong autocorrelation goes 

down quickly however as can be seen Figure 57 where by increasing the difference from 

1 hour to 36 hours, the price is shown to vary much more. 
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The previous point is related to the next question, how does the time prediction horizon 

affect the model results. In chapter 5 it is clearly seen that the results of the next day-

prediction are significantly better than the results of the week-ahead prediction. This is 

mainly due to the autocorrelation of pricing being much weaker after a week when 

compared to the timeframes necessary for day-ahead prediction, as after a week the price 

could have completely varied, making the knowledge of last week price not very valuable. 

Furthermore, a simplification was made in this work where the weather variables utilized 

were not the forecasted values but the actual registered values, so in a real-world scenario 

the week-ahead predictions would possibly be even worse as the error in forecasting 

week-ahead weather is higher than day-ahead. 

 

 

Figure 60 – Best input RMSE values for day-ahead LSTM, XGBoost and SVR 
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Figure 61 - Day-ahead RMSE for different inputs using XGBoost 

 

 

Analyzing the day-ahead results shown in Figure 60, it is clear that there is still some 

room for improvement as XGBoost, the best performing model, presented an RMSE of 

5.23. The other two models utilized slightly underperformed when compared to XGBoost 

but their results are also promising.   

Analyzing the error for different inputs shown in Figure 61 it can be seen that knowing 

some information about energy generation, in this case wind energy generation in the 

form of gust speed or wind energy prediction , improves the predictive capability of the 

models and makes them more stable, as both models that used wind related variables 

presented a lower average RMSE and standard deviation than the rest.  

It is also interesting to note that knowing either the consumption levels or the hour and 

the day of the week provided similar results yet knowing the three variables improved the 

results comparatively. Because price follows a clear trend with calendar variables, 

knowing only the consumption but not what time or day it is, may result in error when 

predicting the price. On the other hand, knowing what time it is but not knowing the 

consumption also results in some error in the predictions, because while price usually 

follows trends between night and day it is still important to know the expected 
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consumption levels as for example two Mondays at the same hour can still have very 

different consumption levels which may affect the price. 

Comparing the day-ahead predictions to the week-ahead predictions it is clear that week-

ahead predictions are not close to being good enough to be utilized in a real-world 

scenario. This is an indicator that for medium-term predictions to be viable there needs 

to be another type of data preparation and model construction.  

Comparing these results to the baseline models, AR (1) which is a very simple statistical 

model was clearly outperformed by every other model. However, ARIMA was only 

initially slightly outperformed by XGBoost. This indicates that statistical models are a 

still viable methodology for predicting electricity prices in the MIBEL, even when taking 

advanced machine learning models into account. 

In short, the answers to the initial questions can be summarized as such: 

• Day-ahead predictions in the MIBEL are a realistic goal in the short-term with the 

type of models utilized in this work. Medium-term predicitions with goods results 

do not seem to be realistic utilizing the type of models and data preparation as 

shown in chapter 5. 

• Advanced machine learning models like LSTM do not seem to be obviously better 

than complex statistical models like ARIMA as it was only initially outperformed 

by XGBoost. SVR and LSTM models needed more features added to them in 

order to outperform ARIMA. 

• Time-horizon grealy affects the prediction results, as just in a week difference the 

results got significantly worse. 

• The most important variables in the MIBEL were found to be calendar variables, 

which greatly affect consumption, and renewable energy generation, mainly 

hydraulic and eolic sources. Non-renewable energy sources also greatly affect 

price but they go hand-in-hand in the previously two mentioned variables. For 

very-short term predictions, previous hour prices were also found to be very 

important. 
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Future Work 
 

From the work in this dissertation it is clear that renewable energy sources greatly affect 

the final market price. As such, an important piece of information missing from the 

models utilized, that can potentially vastly improve the results, is hydropower energy 

generation. From the analysis done in chapter 4 it is clear that utilizing just the humidity 

or precipitation values is not enough to predict hydropower energy generation, as it does 

not rain in the majority of hours in Portugal. This results in an extremely unbalanced 

dataset. Furthermore, some of the hydraulic generation comes from stored water, so that 

needs to be taken into account as well.  

Other sources of renewable energy, while not as contributing as eolic or hydraulic, could 

also be taken into account like biomass and solar energy. Developing accurate models 

that can predict these values, especially hydropower energy generation, in an hourly 

timeframe, should be a priority for future researches. 

From a model standpoint, XGBoost showed the best results from the models tested. As 

such it would be interesting to see a work focused exclusively on improving this model, 

with a deeper hyper-parameter tuning and further data optimizations. Splitting the model 

into more specific models that only deal with daytime or nighttime data, workdays or 

weekends, or other patterns found in this work could also potentially greatly improving 

the predictive capabilities of the models. This would obviously come with an increased 

computational cost and model complexity as a trade-off for potentially better results. 

As stated in the previous sub-chapter, accurate short-term predictions seem to be a 

realistic goal utilizing the type of models and data preparation that were used in this 

dissertation. However, for medium-term and long-term predictions it seems that a lot of 

work still needs to go into developing models that work with real-world data.  

Models that try to predict medium or long-term values seem to not be able to utilize 

previous prices as a training feature, as the prices from one week to the next can shift 

drastically. Furthermore, utilizing weather data to predict renewable energy generation in 

the long term is not feasible, as there is a lot of error associated with weather predictions 

longer than a week’s time. If short-term predictions are further improved these could 

potentially be utilized in a more complex model for medium-term predictions. 
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Appendix 
 

 

GridSearchCV 
 

In this section all the scorings for each parameter combination can be found for the three 

algorithms tested. Like previously stated, the tested data is equivalent to 60 randomly 

picked days. The validation was made using 5-fold. The scoring metric for parameter 

tuning utilized was the Coefficient of determination ( 𝑅2) which measures the proportion 

of the variance for a dependent variable that’s explained by the independent variables in 

the model (Aggarwal et al., 2009). 

 

SVR 
 

 

                                                  Epsilon 

C
 

 
0.01 0.1 0.5 

0.1 (1) (2) (3) 

1 (4) (5) (6) 

30 (7) (8) (9) 

70 (10) (11) (12) 
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100 (13) (14) (15) 

 

Table 13 - Parameters tested for SVR model 

 

Model Score 

(1) 0.22 ± 0.02 

(2) 0.23± 0.03 

(3) 0.22± 0.02 

(4) 0.22± 0.03 

(5) 0.46± 0.08 

(6) 0.46± 0.09 

(7) 0.35± 0.09 

(8) 0.48± 0.1 

(9) 0.45± 0.09 

(10) 0.49± 0.08 

(11) 0.55± 0.09 

(12) 0.50± 0.11 

(13) 0.47± 0.1 

(14) 0.53± 0.09 

(15) 0.48± 0.11 

 

Table 14 - Scoring for each SVR model tested 

 

LSTM 
 

Optimizer 

h
id

d
en

_
n

o
d

es
 

 
relu adam 

10 (1) (6) 

30 (2) (7) 

50 (3) (8) 

100 (4) (9) 

200 (5) (10) 

 

Table 15 - Parameters tested for LSTM model 
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Model Score 

(1) 0.19 ± 0.03 

(2) 0.23± 0.03 

(3) 0.31± 0.04 

(4) 0.37± 0.03 

(5) 0.38± 0.04 

(6) 0.28± 0.04 

(7) 0.33± 0.05 

(8) 0.39± 0.1 

(9) 0.50± 0.07 

(10) 0.50± 0.08 

 

Table 16 - Scoring for each LSTM Model 

 

XGBoost 
 

 

n_estimators learning_rate max_depth Score 

10 0.001 2 0.12 ± 0.03 

100 0.001 2 0.17 ± 0.05 

500 0.001 2 0.19 ± 0.05 

1000 0.001 2 0.21 ± 0.05 

2000 0.001 2 0.21 ± 0.06 

10 0.01 2 0.14 ± 0.03 

100 0.01 2 0.22 ± 0.04 

500 0.01 2 0.26 ± 0.06 

1000 0.01 2 0.31 ± 0.06 

2000 0.01 2 0.30 ± 0.07 

10 0.1 2 0.14 ± 0.04 

100 0.1 2 0.21 ± 0.04 
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500 0.1 2 0.27 ± 0.07 

1000 0.1 2 0.31 ± 0.07 

2000 0.1 2 0.31 ± 0.07 

10 0.001 4 0.20 ± 0.04 

100 0.001 4 0.22 ± 0.08 

500 0.001 4 0.27 ± 0.06 

1000 0.001 4 0.30 ± 0.05 

2000 0.001 4 0.29 ± 0.07 

10 0.01 4 0.24 ± 0.05 

100 0.01 4 0.41 ± 0.07 

500 0.01 4 0.48 ± 0.08 

1000 0.01 4 0.59 ± 0.08 

2000 0.01 4 0.58 ± 0.09 

10 0.1 4 0.22 ± 0.03 

100 0.1 4 0.39 ± 0.05 

500 0.1 4 0.43 ± 0.04 

1000 0.1 4 0.51 ± 0.05 

2000 0.1 4 0.52 ± 0.05 

10 0.001 6 0.19 ± 0.04 

100 0.001 6 0.22 ± 0.08 

500 0.001 6 0.25 ± 0.04 

1000 0.001 6 0.28 ± 0.05 

2000 0.001 6 0.29 ± 0.06 

10 0.01 6 0.22 ± 0.03 

100 0.01 6 0.38 ± 0.06 

500 0.01 6 0.44 ± 0.06 

1000 0.01 6 0.55 ± 0.07 

2000 0.01 6 0.54 ± 0.06 

10 0.1 6 0.21 ± 0.03 

100 0.1 6 0.36 ± 0.05 

500 0.1 6 0.42 ± 0.04 

1000 0.1 6 0.51 ± 0.06 

2000 0.1 6 0.52 ± 0.06 
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Table 17 - Scoring for each XGBoost model tested 
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