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Resumo

Este estudo apresenta uma proposta de metodologias de clustering para reconhecimento
de padrões de consumo usando um conjunto de dados de caudal coletados em redes de
distribuição de água em Portugal. A maioria dos estudos existentes sobre clustering em
séries temporais de caudal baseia-se em algoritmos de clustering hierárquicos ou de k-Means
com medidas de distâncias inelásticas. Este estudo explora alternativas de algoritmos de
clustering, medidas de distância, janelas temporais de comparação, medidas de índice interno
e protótipos de clustering.

O desempenho das metodologias de clustering foi avaliado em termos de medidas de índice
interno e também através da caracterização dos centroides dos clusters. As metodologias
com melhor desempenho foram o Algoritmo de Partição com distância DTW, protótipo
PAM e janela de temporal de 15 minutos e o Algoritmo de Partição com distância GAK,
protótipo PAM e janela de temporal de 15 minutos, pois permitiram a formação três
clusters. O primeiro método identifica um padrão de consumo noturno, um padrão típico de
fim-de-semana e um padrão típico de dia útil, enquanto o segundo método destaca-se por
apresentar um padrão com pequena variabilidade entre o consumo noturno e diurno.

Para melhorar a extração de conhecimento, operações adicionais de clustering foram
realizadas ao conjunto de dados que pertence ao cluster com pequena variabilidade entre
consumo noturno e diurno. Novos clusters foram identificados e caracterizados, mostrando
que os padrões associados à irrigação são independentes do período do dia e da época do
ano, o que indica um uso ineficiente da água.

Palavras-Chave: Aprendizagem não supervisionada; Clustering de series temporais; Séries
temporais de caudal; Reconhecimento de padrões de consumo; Sistemas de distribuição de
água.
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Abstract

This study presents a proposal of clustering methodologies for demand pattern recognition
using network flow data collected from a large set of drinking water distribution networks in
Portugal. Most of the existing studies about clustering in flow time series rely on hierarchical
or k-Means clustering algorithms with inelastic measures distances. This study explores
alternative clustering algorithms, distance measures, comparison time windows, internal
index metrics and clustering prototypes. The performance of the alternative clustering
methodology was assessed in terms of multiple internal index metrics and the characterization
of the cluster centroids.

The methods with the best performance were Partition Algorithm with DTW distance, PAM
prototype with 15 minutes time window and the Partition Algorithm with GAK distance,
PAM prototype and 15 minutes time window because they allow a clear partition of flow
time series in three clusters. The first method identifies a night consumption pattern, a
typical weekend pattern and a typical working day pattern, whereas the second one identifies
a pattern with small variability between night and daily consumption.

To improve knowledge extraction, in terms of typical and anomalous existing patterns,
additional clustering operations were performed with the flow data set that belongs to
the cluster with small variability between night and daily consumption. New clusters were
identified and characterized regarding weekday, geographical location, and dry months and
wet months, showing that patterns associated with garden irrigation are independent of the
period of the day and season of the year, which indicates an inefficient water use.

Keywords:Unsupervised learning; Time series clustering; Flow time series; Demand pattern
recognition; Water distribution systems.
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Chapter 1

Introduction

1.1 Overview
The present chapter is organized as follows:

• 1.2 Motivation and framework: introduces the context of the domain of water
supply systems and water use efficiency;

• 1.3 Research questions: presents the research questions;
• 1.4 Objectives: describes the dissertation objectives;
• 1.5 Thesis outline: describes the structure of the dissertation.

1.2 Motivation and framework
Water supply systems are infrastructures of great importance for the proper functioning of
any urban agglomerate. Currently, water supply systems present problems related to water
losses. These losses are associated with aging infrastructures, implying: system failures,
high pumping energy costs and network rehabilitation needs. These factors, coupled with
budgetary constraints, result in the need to improve the processes of loss control in water
supply networks (Candelieri et al. 2014).

The most efficient loss control processes allow less need for extraction of water for human
consumption, generate financial savings by delaying the need for investment in the
construction of new water supply infrastructures and reduce the energy needs of treatment
processes and systems associated with water supply systems (Loureiro et al. 2016a).

According to the Portuguese Water and Waste Services Regulation Authority (ERSAR),
Portugal presents on average 35% of losses (apparent and real) of the total water produced.
This percentage includes unbilled consumption, apparent losses and actual losses. Being
that 24% correspond to actual losses and 11% to apparent losses and unbilled consumption
(ERSAR 2013).

Globally more than 48 billion cubic meters per year of treated water are identified as losses,
of which 66% are due to actual losses of water distribution systems, representing a significant
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economic impact: over 14 billion dollars per year are lost by the managing entities (Kingdom
et al. 2006).

Water losses in water supply systems are comprised of the following components (Alegre et
al. 2006; Loureiro et al. 2016a; Sela et al. 2015):

1. Apparent loss due to unauthorized consumption: consumption through
unauthorized connections to the water distribution system;

2. Apparent loss by unmeasured consumption: municipal fountains and irrigation
systems without flow metering systems for billing control;

3. Apparent loss due to measurement errors or communication errors: errors in
measuring devices or errors in communication with telemetry or remote management
centers;

4. Actual losses: leaks or ruptures of conduits and leakage or overflow in cells of the
reservoirs represent physical losses of water resources.

The typical method of flow analysis for loss control is characterized by sectioning a water
distribution network in small sections, consisting of about 500 to 3000 household connections.
These zones are referred to as District Metered Areas (DMAs). At the boundaries that
separate the zones, flowmeters are installed that measure what goes in and what leaves each
section of the distribution network. Figure 1.1 typifies a layout of DMAs:

Figure 1.1: DMAs layout (Farley (2001) and Strategic Alliance for
Water Loss Reduction (2017)).

Through the flowmeters installed in the DMAs it is possible to obtain Time Series of Average
Flow. The data from each of the DMAs is transmitted to the remote control systems, allowing
a reactive action in an event of abrupt consumption (e.g., rupture of a conduit) and a more
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precise identification of the zone where this event may be occurring. However, the analysis of
a history of these flow time series of flow can allow for preventive actions (e.g., identification
of leakage in its initial stages), consuption beahavior analysis (e.g.,using statistical analysis
and unsupervised learning clustering techniques) and predictive action (e.g., using supervised
learning techniques for classifying real-time events).

From the point of view of the preventive and predictive actions at the level of the operation
of the systems, it is essential the identification and evaluation of outliers in historical data of
time series of medium flow (Loureiro et al. 2016a).

Outliers in water distribution systems can be a consequence of:

1. Periods of abnormal consumption (domestic or non-domestic);
2. Changing in the operation of the system;
3. System failures: rupture of conduits or in fittings of connections;
4. Problems with instrumentation, communication and data storage.

Outliers for instrumentation, communication or storage read errors may reflect an arbitrary
change in the flow time series. Changes in the operation of the system by opening valves or
starting pumps, can also lead to the appearance of outliers (Loureiro et al. 2016a).

In the case of leaks and ruptures of conduits, this type of events causes increases in measured
flow (contributing to actual losses and service interruptions). In these cases, the analysis of
the time series of the nocturnal period between midnight and five in the morning becomes
essential to evaluate the real losses. During this periods since the water consumption is
low and consequently the flow associated with leakage tends to be a significant part of the
consumption identified (Loureiro et al. 2016a).

Outliers related to periods of abnormal consumption may reflect a significant change in
consumption habits due to fluctuating population and changes in water use (Loureiro et al.
2016a).

The use of DMAs has become common practice for water utilities. Continuous collection
of flow data in DMAs generates large volumes of historical data. Typically, this data is
only used for online operation and control of water distribution systems. Historical data
is discarded over time or stored in aggregate form (e.g., dailly mean value). Preservation
of historical data by water utilities to extract knowledge about consumption behaviors has
yet to be seen as an important practice (Loureiro et al. 2016a). In this case, we intend to
show the added value of employing clustering techniques over the historical data of DMAs
for knowledge extraction and decision support.

According to the Portuguese National Program for the Efficient Use of Water (PNUE),
Portugal started the 21st century with an annual demand for water in the continental territory
estimated at about 7500 million m3 in all three sectors: urban, agricultural and industrial.
The agricultural sector is, in volume terms, the largest consumer (> 80%). In terms of supply
costs, the urban sector is the most significant, since water for human consumption requires
treatment. Total water demand declined significantly between 2000 and 2009 (around 43%).
Several factors contributed to this reduction. Several water supply management entities
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(urban sector) have made a considerable effort to reduce losses in the transportation and
distribution systems (APA 2012).

The most significant reduction in consumption was in the agricultural sector, the largest
water consumer. This reduction was due to a combination of factors related, on one hand,
to the national situation, which led to a reduction of irrigated areas in the first decade of the
century, mainly in the north and center of the country and, on the other hand, water use
efficiency related to management of losses associated with the storage, transportation and
distribution systems and also to the application of more efficient water irrigation systems in
parcels. The drought that occurred between 2004 and 2006 also contributed to a temporary
reduction of irrigated areas (APA 2012).

The application of some measures in the various sectors provided for the improvement of water
use efficiency. The inefficiency associated with losses in the adduction and distribution system
was more significant in the urban sector (APA 2012). Figure 1.2 indicates the reduction of
inefficiency between 2000 and 2009 for the various sectors.

40 %

40 %

30 %

25 %

37.5 %

22.5 %
Industrial

Urban

Agriculture

Reduction in inefficient water use between 2000 and 2009

Figure 1.2: Variation of inefficiency in water use between 2000 and 2009
in Portugal by sector, based on APA (2012).

The inefficiency of water use is especially burdensome in periods of water scarcity. Portugal
has already experienced several periods of drought, the most recent one being in 2004/2005.
In addition to the social dimension inherent to the drought experienced by the directly
affected populations and productive sectors, a drought can have a strong economic impact
(APA 2012). Figure 1.3 shows the economic impact of 2005 drought by sector.
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Figure 1.3: Sectoral costs of the 2005 drought, based on APA (2012).

Taking into account the efforts that have been made in Portugal, there is still an important
component of wastage associated with losses and the inefficient use of water for the intended
purposes. The inefficiency of water use leads to high environmental, social and economic
damages. These impacts are more severe in areas that are more sensitive to dry periods.
It is therefore important to characterize consumption behaviors throughout the regions of
Portugal in order to be able to develop specific actions taking into account the specificity of
each region.

1.3 Research questions
The initial problem identified was finding a process to organize of the time series of average
daily flow, wiched allowed to characterize them in several representative groups.

Starting from this problem, this work raises a set of questions like:

1. What are the best clustering approaches to apply to daily time series of mean flow?
2. What are the appropriate distance measures for characterization of similarity in daily

time series of mean flow?
3. What are the appropriate prototypes to be used in clustering methods for daily time

series of mean flow?
4. How to evaluate the performance of the clustering algorithms and the proposed

solutions?
5. Will it be possible to detect the occurrence of anomalous behaviors (e.g., unsustainable

consumption habits, ruptures or water leaks), based on historical data and through the
approaches of unsupervised learning proposed in this dissertation?
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1.4 Objectives
Flow measurement in urban water supply systems is fundamental for improving knowledge
about domestic and non-domestic (public, commercial and industrial) urban consumption
components and water losses. The clustering of time series allows to classify zones with
similar behavior in terms of consumption (e.g., seasonality), and to identify zones whose
consumption behavior can be considered inefficient (e.g., ruptures, anomalous consumption),
whose study is important for loss control and efficient management of water distribution
systems.

The present dissertation intends to contribute to the study of the temporal series of mean
flow timeseries focusing on the following objectives:

1. Organization of daily time series of mean flow in similar groups, through approaches of
unsupervised learning, to understand the behaviors and patterns present in the dataset;

2. Comparison of results obtained through the various approaches of unsupervised
learning, taking into account the empirical knowledge about the data domain and the
accuracy of the solutions obtained;

3. Characterization of groups formed with the following parameters:
• Working days vs. weekend / holiday;
• Geographical region;
• Dry months vs. months.

4. Identification of groups with anomalous water consumption behaviors that may lead to
inefficient water use.

1.5 Thesis outline
This dissertation is divided into 5 chapters.

• Chapter 1: presents a context of the domain of water supply systems and water use
efficiency, the research questions, the objectives and the structure of the dissertation;

• Chapter 2: review of the state of the art concerning unsupervised learning techniques
applied to time series and also review of research work in the domain of water demand
management with clustering techniques;

• Chapter 3: methodology and theoretical description of the techniques used in
preprocessing, clustering operations, cluster evaluation and cluster visualization;

• Chapter 4: the techniques and methodology described in Chapter 3 will be applied
to the dataset to characterize it and extract knowledge about the various identifiable
behaviors in daily mean flow patterns.

• Chapter 5: dedicated to the conclusions on the analyzes carried out and the proposed
future works.
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Chapter 2

State-of-the-art

2.1 Overview
This chapter will present a general review on unsupervised learning applied to time series and
also a review on research work in the field of water demand management that have applied
unsupervised learning techniques.

The present chapter is organized as follows:

• 2.2 Unsupervised learning of time series: an overview of time series clustering
techniques;

• 2.3 Unsupervised learning in water demand management domain: a review
of research work in water management that used unsupervised learning techniques.

2.2 Unsupervised learning of time series
One of the branches of Machine Learning is Unsupervised Learning. This branch encompasses
a set of techniques that group data homogeneously, without prior knowledge of the definition
of groups (Aghabozorgi et al. 2015; Rai and Singh 2010; Warren Liao 2005). This set
of techniques is useful in the exploratory analysis of data because they identify structures
in non-categorized data sets by organizing similar data into groups. The groups are formed
taking into account the maximization of similarity of the objects belonging to the same group
and minimization of similarity between objects belonging to different groups (Aghabozorgi
et al. 2015).

The clustering of time series data is a particular case for the application of unsupervised
learning techniques, since the time series present dynamic characteristics (the value of the
characteristics analyzed is time dependent). As such, each point in the time series is a
chronological observation. This typology is typically composed of a large number of data of
various dimensions (Aghabozorgi et al. 2015; Keogh and Kasetty 2002; Lin et al. 2004; Rani
and Sikka 2012).

The use of this type of techniques allows the detection of patterns in the time series data and
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the reduction of dimensionality through the grouping in clusters. The subsequent graphical
visualization of the behavior of each of the groups allows the user a better understanding of
the data structure, anomalies and other irregularities. On the other hand, this technique can
be used as a subroutine for more complex machine learning algorithms such as rule discovery,
indexing, classification and detection of anomalies (supervised learning) (Aghabozorgi et al.
2015).

2.2.1 Time series clustering approaches
Time series clustering can be performed according to one of the following approaches
(Aghabozorgi et al. 2015):

1. Adaptation of conventional non-supervised learning algorithms (applied to static data)
in order to be compatible with the dynamic nature of the time series, typically by
changing the distance measure;

2. Transformation of the time series into static objects and later application of
conventional algorithms of unsupervised learning;

3. Multi-phase approaches that use different temporal resolutions as input.

In addition to the described approaches, the methods for grouping time-series data can be
classified as (Aghabozorgi et al. 2015; Warren Liao 2005):

1. Form-based approaches: time series are best adjusted by contraction or extension
of the time axis. In this approach, conventional clustering algorithms are applied, but
distance measures are adapted to the time series typology;

2. Characteristic-based approaches: time series are converted into feature vectors of
smaller size. Subsequently, grouping operations are performed;

3. Model-based approaches: each time series is transformed into a set of parameters
of a model. Each model generated for each series is later grouped taking into account
a distance measure and a grouping algorithm. This type of approach usually presents
scalability problems and its performance is reduced when the groups formed are close
(Mahalakshmi et al. 2016; Vlachos et al. 2004).

Figure 2.1 outlines the different approaches of time series clustering:
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Figure 2.1: Time series clustering approaches, based on Aghabozorgi
et al. (2015) and Vlachos et al. (2004).

2.2.2 Components of time series clustering
Time series clustering can be defined according to the following five components:

1. Representation of the time series;
2. Measures of distance or similarity to be applied;
3. Clustering prototypes;
4. Clustering algorithms to be used;
5. Measures of performance evaluation.

Time series representation

The appropriate choice for time representation is an important component as it directly
affects the execution efficiency and the end result of the clustering approach used. Given
that the time series are typically composed of a large number of data of several dimensions,
size reduction methods are usually used in order to improve the performance of the algorithms
(Keogh and Kasetty 2002).

These methods of time representation can be grouped into the following typologies
(Aghabozorgi et al. 2015):

1. Adaptive to data: they are applied to all dataset of time series and try to minimize
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the overall reconstruction error using arbitrary length segments. Example of this type
of algorithm are the reductions through Singular Value Decomposition (SVD) matrices
or with Principal Component Analysis (PCA). This methods can represent better each
original series, but the comparison between different time series may be more complex;

2. Non-adaptive to data: this typology of representation is suitable for time series of
equal length and the comparison between several time series is direct;

3. Model-based approach: based on stochastic representations such as Markov Models
or Hidden Markov Models (HMM) (Minnen et al. 2006, 2007; Panuccio et al. 2002).
In this approach, as in the previous ones, the level of data compression can be adapted
according to the type of application;

4. Data-dependent compression: in this approach, unlike those presented above, the
compression level is automatically set based on the original time series.

Distance measures

Distance measures are an important parameter in the definition of time series clustering
methods. Typically the time series present different time spacings which makes the
comparison more complex. In temporal series problems there are four typologies of
similarity distances between series (Aghabozorgi et al. 2015):

1. Similarity based on form: Euclidean distances, Dynamic Time Warping (DTW),
Longest Common Subsequence (LCSS), Minimum Variance Matching (MVM) can be
applied in these cases. They are suitable for short time series;

2. Similarity based on compression: these are distances suitable for both short and
long time series. Included in this category are distance measures such as Pearson’s
correlation coefficient, Cepstrum and Cousine Wavelets;

3. Similarity based on the characteristics: the long time series are appropriate
in these cases, since the time series have undergone a process of extraction of
characteristics allowing to decrease the dimensionality;

4. Similarity based on models: these cases are also appropriate for long time series.
In this group, models are created using HMM and Autoregressive-moving-average
(ARMA).

Clustering prototypes

Proper choice of a representative of a group is an essential subroutine of some time-series
clustering algorithms. In algorithms such as k-Means, k-Medoids, Fuzzy C-Means, the choice
of prototypes has direct implications on the quality of the formed groups (Aghabozorgi et al.
2015; Bagnall and Janacek 2005; Chu et al. 2013; Corradini 2001; Keogh and Pazzani 1998;
Rabiner et al. 1979).

Generally there are three approaches to defining prototypes:

1. Use of medoid as prototype: in this method the distance of all pairs of time series
belonging to the same group, using distances such as Euclidean, DTW or LCSS, is
calculated. Subsequently, the time series that has the smallest sum of the quadratic
error is chosen as the prototype of the group (Vuori and Laaksonen 2002);
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2. Use of an average prototype: applies to time series of equal size in which a
measure of rigid distance was used in the grouping process (e.g., Euclidean distance).
The process of choosing the prototype is performed by calculating the average or the
median of all time series at each point. However, in case the time series have different
lengths, it is not possible to apply this method directly, and in a first phase the average
prototypes of the series with the same time length must be calculated, and later use
these prototypes to calculate a prototype medoid through distance measures such as
the DTW or LCSS (Banerjee and Ghosh 2001; Sakoe and Chiba 1971, 1978; Vlachos
et al. 2002);

3. Use of local search prototype: this method calculates as a first approach a medoid
to represent the group. Later, using a method of calculation of average prototype,
through the warpping path of the previous calculated distance matrix, it is calculated
a new prototype. Finally, to this new prototype it is applied again the process of
calculation of new warping paths. The type of approach to obtain prototypes by local
search is used instead of medoids to overcome the poor quality in time-series clustering
in Euclidean space (Hautamaki et al. 2009).

Time series clustering algorithms

Generally the time series clustering algorithms can be classified into six groups: partition
clustering, hierarchical clustering, density-based clustering, model-based clustering,
grid-based clustering and hybrid clustering (Aghabozorgi et al. 2015; Warren Liao 2005).

Partition clustering The grouping through these methods resorts to k pre-defined or
random groups and to n elements to be categorized, so that each group contains at least
one element (Aghabozorgi et al. 2015). One of the algorithms belonging to this family
is k-Means, where each group contains a representative prototype of the group that was
constructed based on the average value of all the objects belonging to that group (Macqueen
1967). Another possible approach is the k-Medoids algorithm, where the prototype of each
group is the closest element to the cluster center (Gentle et al. 2006). These approaches are
more efficient when compared with hierarchical algorithms (Bradley et al. 1998; Macqueen
1967).

K-Means and k-Medoids are algorithms whose clusters are constructed so that an element
can only belong to a cluster, known as a strict clustering rule. Other approaches such as
FCM (Fuzzy c-Means) or Fuzzy c-Medoids, allow an element to have a degree of belonging
to each cluster (Bezdek 1981; C. Dunn 1973; Krishnapuram et al. 2001; Warren Liao 2005).

These algorithms require the definition or delivery of initial prototypes, which implies that
the precision of the algorithms depends directly on the definition of these prototypes and
the methods of updating them. This family of algorithms has better performances when the
time series are of equal size, because it is not clear how to define the centroid of the cluster
when they are of different size (Aghabozorgi et al. 2015; Warren Liao 2005).

Hierarchical clustering This algorithm typology creates a hierarchy of groups that
can be additive or divisive. The additives initially consider each cluster item as a group
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and gradually agglomerate groups according to the proximity of the measure similarity
(bottom-up approach). The divisive algorithms begin with all items in a single group, being
later and sequentially divided into smaller groups, until each group consists of only one item
(top-down approach) (Gentle et al. 2006).

The similarity in hierarchical groupings of time series is evaluated based on the generation
of a time series distance matrix (Vlachos et al. 2003).

This algorithm typology has the advantage of visualizing the structure of the data, namely
the visualization of dendrogram. Another aspect that is important to note is that these
algorithms do not require the definition of the number of groups to be created as the initial
parameter. In the case of time series this characteristic is very important due to the difficulty
in defining which number of initial clusters to use (Aghabozorgi et al. 2015).

It is also important to note that this type of algorithm allows the grouping of time series
with different lengths through distance measurements such as DTW or LCSS (Banerjee and
Ghosh 2001; Sakoe and Chiba 1971, 1978; Vlachos et al. 2002).

The rigidity imposed by the divisive hierarchical algorithms does not allow adjustment after
the separation of groups, which implies that there is no reversibility of the process after an
element is associated with a lower level group. In the case of the additives, the same happens
when the union of two groups occurs. This aspect may be detrimental to the quality of the
groups formed (Aghabozorgi et al. 2015). In addition, these algorithms are not able to deal
effectively with long time series because they are of quadratic computational complexity.
Consequently, the use of this algorithm typology is suitable for small data sets because of its
poor scalability (Wang et al. 2006).

Density-based clustering In this category of algorithms the groups are dense subspaces
composed of objects and are separated by subspaces where the density of objects is low. One
of the most used algorithms is the Density-based spatial clustering of applications with noise
(DBSCAN) (Ester et al. 1996). The application of this algorithm to temporal series is not
common due to its high degree of computational complexity (Aghabozorgi et al. 2015).

Model-based clustering In these algorithms a model is assumed for each cluster and
the best fit of data is set to each one. In general, this typology needs a set of parameters
and is based on user premises, which may be false and, consequently, result in inappropriate
groups. On the other hand, they have slow processing times in large datasets (Aghabozorgi
et al. 2015; Andreopoulos et al. 2009; Warren Liao 2005).

Grid-based clustering In these algorithms the space of observations is represented by a
grid with a finite number of cells. Subsequently the objects are grouped based on the existing
cells. Statistical Information Grid-based Algorithm (STING) and Wave Cluster algorithms
are examples of this typology (Sheikholeslami et al. 1998; Wang et al. 1997).

It is not common to apply this typology to time series, since it implies a brute-force approach,
which in the case of real problems with large data groups generates problems of efficiency
and precision (Aghabozorgi et al. 2015).
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Hybrid clustering These approaches are typically combinations of algorithms from other
families, where grouping operations are performed by levels. Taking advantage of at each
level the groups formed in the previous level to apply a new algorithm and thus to produce
new groups (Aghabozorgi et al. 2015).

Measures of performance evaluation

The evaluation measures are an important topic in the characterization of the quality of the
groups produced by unsupervised learning. Typically, the data set does not have a category
that classifies them, so visualization of groups or group prototypes is an important method for
assessing the appropriateness of the method used to the nature of the data, or even whether
the method needs parameters calibration.

In addition to the visualization, scalar measures can be applied for the evaluation of the
precision of the clustering operation. These measures can be classified into two categories:

1. Internal index: these measures allow to evaluate the quality of adjustment of the
groups formed to the data. One of the means applied in this category is the sum of
the quadratic errors related to the measure of similarity used (Han et al. 2011). These
measures should only be used for the comparison between different grouping approaches
that were generated using the same model and metrics (Aghabozorgi et al. 2015).

2. External index: these measures assume that the data are categorized (ground truth)
and, in a generic way, evaluate the accuracy with which the formed groups represent the
true categories, verifying the percentage of True positive (correct) and False positive
(wrong category) in each group. Purity, F-measure, Entropy and Jaccard are examples
of these type of measures, they are typically used in supervised learning analysis
(Aghabozorgi et al. 2015).

Figure 2.2 outlines the different performance evaluation approaches for time series clustering:
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Figure 2.2: Time series performance evaluation approaches, based on
Aghabozorgi et al. (2015); Sarda-Espinosa (2019) and Han et al.
(2011).

2.3 Unsupervised learning in water demand management
domain

This section provides an overview of water demand management studies that use
unsupervised learning techniques in their methodology as an important step in resolving a
problem in this domain. In order to manage water supply systems more effectively, studies
have been carried out on the following topics:

1. Water demand profiling;
2. Identification of outliers;
3. Disaggregation of consumption taking into account its use;
4. Data reconstruction of flow time series.

2.3.1 Water demand profiling
Characterization models of water that demand profiling are quite important in the
management, operation and planning of water distribution systems. The design of more
rigorous models to characterize the water needs of a region throughout the day, taking
into account the climate, seasonality (weekly, monthly and annual), water uses and
socio-demographic characteristics. These models provide valuable insight that will allow
water utilities to more effectively manage water distribution systems.

A multiple linear regression model for water profiling was proposed by Loureiro (2010)
and later improved by Mamade (2013). This model takes into account socio-demographic
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characteristics that allows improving the understanding about spatial demand distribution
within the water distribution network, which is fundamental to reduce the uncertainty in
network operation and planning and to identify clients with a large potential to improve water
efficient use. One of the steps in this methodology is to apply a hierarchical clustering with a
Euclidean distance measure, taking as parameters the flow series. Through the dendrogram
formed, cutoffs are performed to form clusters. It is considered a mean prototype and
typically the clusters formed allow to identify the monthly seasonality (e.g., summer and
winter pattern) and weekly seasonality (e.g., weekday and weekends pattern). These formed
clusters allow the construction of scenarios that come to define the consumption variables to
be used as dependent variables in the construction of multiple linear regression models that
will have as independent variables socio-demographic indices, infrastructure characteristics
and billing.

Figure 2.3 shows the methodology for the construction of the scenarios and the expected
results for the scenarios as an example.

Figure 2.3: Methodology for consuption scenarios, based on Loureiro
(2010) and Mamade (2013).

Another study of Loureiro et al. (2015) was developed with the aim of identifying through
a Spearman correlation matrix the most important socio-demographic factors that can
influence household consumption. The application of this methodology in this study was
possible since it was available a dataset with consumptions at the level of the network
as well as data of household consumption. In this study the author performed clustering
operations using the K-means algorithm with a Euclidean distance on each of the following
sets of consuption variables:
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1. Average daily consumption at the level of the statistical sections;
2. Average daily consumption for each client;
3. Dimensionless daily average patterns for working days for each client;
4. Dimensionless daily average patterns for weekends for each client.

The clusters formed in each of the clustering operations allowed to create a set of new variables
that correspond to the distribution of the clients by each one of the clusters. These new
consumption variables were correlated with socio-demographic variables through a Spearman
correlation matrix in order to validate the most important socio-demographic factors in
household comption.

Another study was conducted by Loureiro et al. (2016b) with the objective of presenting a
comprehensive approach for spatial and temporal demand profiling in network areas, focusing
on domestic consuption. This study presents, in the first phase, a multiple linear regression
classifier (supervised learning) similar to that presented in the Loureiro (2010) and Mamade
(2013) studies. This model uses a Euclidean distance clustering to obtain consumption
variables to serve as dependent variables of model . In a second phase, this study presents
another supervised learning model based on Classification And Regression Trees (CART)
algorithm with Gini impurity to classify consumption patterns on working days based on
the variables public billed consumption and individuals mobility. In this second model
a hierarchical clustering with Euclidean distance is also used to group the daily demand
patterns.

Cheifetz et al. (2017) study was conducted with the objective of characterizing the
consumption profiles existing in DMAs installed in the largest water distribution network in
France. This study consisted of an application of the Fourier-based time series decomposition
method to extract seasonal components from time series. Then, two clustering methods were
applied to the extracted seasonal components: k-Means with PCA and Fourier regression
model. To evaluate the best number of clusters to obtain was used as Bayesian Information
Criterion evaluation method. In this study both models formed 8 clusters and through the
prototype analysis it was possible to characterize the profiles in the following categories:
residential use, commercial use, industrial use and noise cluster.

Cominola et al. (2016) study characterizes the water consumption behavior of 175 households
in the municipality of Tegna in Switzerland. The methodology used in this study consisted of
categorizing the flow values recorded by 4 categories (no consuption, low consuption, medium
consuption and high consuption). Subsequently, a PCA was applied to reduce dimensionality.
After dimensional reduction, the first main component was used to apply the clustering
method k-Means with formation of 3 clusters. These formed clusters were characterized at
prototype level to describe the consumption behaviors present in the dataset.

Another study using the k-Means clustering method was conducted by Mounce et al. (2016)
to characterize the consumption behaviors present in a dataset composed of 3428 counters
installed in the cities of Reading, Swindon and London (United Kingdom). The series
featured a 15-minute time step and a duration of 3 years. The clustering operation performed
in this study allowed to obtain 3 clusters that were subsequently correlated with the types
of activity present in each cluster, allowing to verify that there were clusters associated
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with a residential consumer profile and others with a commercial consumer profile. After
this characterization and given that the data were previously categorized as residential or
commercial use, k-Neirest Neighbor and Decision Trees classifiers (supervised learning) were
trained to classify the flow series as consumption for commercial or residential use.

2.3.2 Identification of outliers
Outliers detection methods allow the identification of anomalous events in flow time series.
More specifically, the detection of real losses associated with leakage are important for the
management of water distribution networks in a more efficient way, since they allow the
identification of more degraded sectors of the network that need a primary intervention.

In this domain, Loureiro (2010) and Mamade (2013) present the “Symmetrical method”. This
method consists of the algorithm described in Equation (2.1) which uses two robust statistics:
median (MED) and Qn which is a robust standard deviation measure of Qn observations
(Rousseeuw and Croux 1993). In this approach no clustering operation is applied previously.

OTL ≥MED + c×Qn ∨ OTL ≥MED − c×Qn (2.1)

In which OTL [m3/h] and MED [m3/h] are the outlier value in the data series and the median
of a set of previous observations defined by the user, respectevly. The variables c [-] and Qn

[m3/h] are the threshold value to be defined by the user (with c > 0) and the robust standard
deviation of the observations based on the Qn scale, respectively.

Given that the time series of flow have seasonal, weekly and in some cases monthly seasonality
(Silva 2016). Another approach was proposed by Silva (2016) using outliers detection models
such as TBATS (Trigonometric Seasonal, Box-Cox Transformation, ARMA residuals, Trend
and Seasonality), Symbolic Aggregate approXimation (SAX), Twitter method and Tukey
method.

Prior to the application of Outliers detection models, this study proposes a Z-normalization
of the annual series and a hierarchical clustering operation with DTW distance measurement
to the daily median flow values of each normalized annual series. Clusters are then obtained,
which differ from each other at the level of weekly and monthly seasonality. To each of the
clusters formed the outliers detection models are applied and the most efficient model in
each cluster is chosen. Figure 2.4 describes the methodology applied by Silva (2016) for the
application of outliers detection models taking into account the seasonality of the series.
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Figure 2.4: Methodology for outliers detection models, based on Silva
(2016).

The process of validating outliers in a new series involves a K-nearest neighbors (KNN)
classifier to verify which cluster is most similar to the evaluated series and then apply
the corresponding outliers detection method associated with the cluster. This way it is
guaranteed that the method of detection of outliers is more appropriate to the seasonality of
the series to be evaluated.

This study also evaluates methods of prediction of uncertainty in the calculation of water
balance, such as: Delta method, Confidence intervals and Monte Carlo method. But in these
methods no clustering operations were applied.

2.3.3 Disaggregation of consumption taking into account its use
The increase of tourism that has been verified, as well as the problem of the saline intrusion
that has led to the closure of boreholes used in irrigations of gardens. These events have
led to a greater demand for water distribution systems in areas of the coast of Portugal and
also in tourist areas in the south of the country (Marques 2018). Studies related to the
characterization of the external water consumption are relevant for the management entities
assigned to these regions.
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The study conducted by Marques (2018) aims to characterize the consumption of water for
outdoor use. In this study it is proposed a set of predictive models of water consumption
based on Generalized Additive Models (GAM).

First step of the construction of the predictive models, is to normalize the series that has
internal and external water consumption measurement, and then perform a hierarchical
clustering operation with median type prototype for clusters representation. For this
clutering operation three distance measures were tested: DTW, Dissimilarity Index
Combining Temporal Correlation and Raw Values Behaviours, and Priodogram Based
Dissimilarity. The construction of each of the GAM models will be based on the formed
clusters.

In addition to the predictive models, a monthly weighting of the consumption of outdoor use
against the total water consumption is also calculated for each cluster.

Another important contribution of this study was the development of a methodology for the
disaggregation of consumption between uses (indoor vs. outdoor). In this methodology, in
a first phase, customer consumption series that only have a single flowmeter are normalized
and later a hierarchical clustering is performed, similar to what was done for the predictive
models.

The next phase of the methodology is characterized by the use of a KNN classifier (supervised
learning) to identify which cluster of predictive models is most similar with each of the clusters
formed in the first phase of this methodology. This correspondence allows us to identify which
predictive model to use to estimate total consumption and then apply the monthly weighting
of external consumption to estimate this type of consumption.

2.3.4 Data reconstruction of flow time series
The existence of reliable and complete information on historical consumption data is
extremely important for analysis of water demand profiling, water loss management and
real-time management of the systems through telemanagement or telemetry systems.

In the case of DMAs, the flow and pressure series data can often be incorrect (e.g., missing,
duplicate or off-scale values). These situations can be the result of a set of problems that
occur in the sensors and dataloggers or in the infrastructures of communication and data
storage:

1. Power problems in equipment;
2. Poorly calibrated flow meters or pressure sensors;
3. Communication errors between the sensors and the datalogger;
4. Communication errors between the datalogger and the control center;
5. Data storage and processing errors.

The development of data reconstruction models that allow estimation of the missing values
based on the values before and after the occurrence of the loss of information are important
for an efficient management of the water distribution infrastructures.

In this context, Barrela (2015) presents a study of reconstruction of data of series of
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instantaneous flow. The study is based on only three annual series of instantaneous flow
with a time step of 15 minutes. Each of these series refers to a different DMA. In this study
the author proposes TBATS models with several variants:

1. Forecast method;
2. Backast method;
3. Combined method (forecast and backast).

The author also proposes the JQ method that is based on an Autoregressive integrated
moving average (ARIMA) model to reconstruct the daily flow data. It is then combined
with the prototype of the daily flow series referring to the week day to which the data is to
be reconstructed. In this approach, the author proposes to construct for each month of the
annual series a set of average or median prototypes of daily flow series representative of each
day of the week.

In this study, no clustering operations were performed prior to the application of data
reconstruction methods. This option is understandable since only three annual series of
instantaneous flow were available for this study. However, in situations where larger datasets
are available, it may be important to perform clustering operations to estimate the prototypes
and also to aggregate series with identical seasonal behaviors, with the aim of arranging
models that have a good compromise between generalization and overfitting.

2.3.5 Summary and conclusions
Table 2.1 presents the various unsupervised learning methodologies applied in the studies
mentioned in previous sections:
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Table 2.1: Summary of clustering methods applied

Study Purpose of the clustering
operation

Seasonality Flow time series type for
clustering operation input

Time step Clustering
algorithm

Distance
measure

Prototype

Address seasonality in water
demand profiling

Monthly Average daily flow time series for
each month

60 minutes Hierarchical
Agglomerative
(Ward)

Euclidean Mean

Loureiro 2010
Address seasonality in water
demand profiling

Daily Average daily flow time series of
each day of the week for each
month

60 minutes Hierarchical
Agglomerative
(Ward)

Euclidean Mean

Address seasonality in water
demand profiling

Monthly Average daily flow time series for
each month

15 minutes Hierarchical
Agglomerative
(Ward)

Euclidean Mean

Mamade 2013
Address seasonality in water
demand profiling

Daily Average daily flow time series of
each day of the week for each
month

15 minutes Hierarchical
Agglomerative
(Ward)

Euclidean Mean

Address seasonality in water
demand profiling

Monthly Average daily flow time series for
each month

15 minutes K-means Euclidean Mean
Loureiro et al. 2015

Address seasonality in water
demand profiling

Daily Average daily flow time series of
each day of the week for each
month

15 minutes K-means Euclidean Mean

Address seasonality in water
demand profiling

Monthly Average daily flow time series for
each month

15 minutes Hierarchical
Agglomerative
(Ward)

Euclidean Median

Loureiro et al. 2016
Address seasonality in water
demand profiling

Daily Average daily flow time series of
each day of the week for each
month

15 minutes Hierarchical
Agglomerative
(Ward)

Euclidean Median

Cominola et al. 2016 Characterize flow profiles in
water demand profiling

Daily Daily flow time series PCA principal
components

K-means Euclidean Mean

Mounce et al. 2016 Characterize flow profiles in
water demand profiling

Daily Daily flow time series 15 minutes K-means Correlation
distance

Mean

Cheifetz et al. 2017 Characterize flow profiles in
water demand profiling

Weekly Weekly flow time series 60 minutes for
Fourier
Regression
Model and PCA
principal
components for
K-means model

K-means and
Fourier regression
mixture model

Euclidean and
Fourier regression
mixture model
distance

Mean and Fourier
regression mixture
model prototype

Silva 2016 Address seasonality in outlier
detection

Montlhy Daily median flow Day Hierarchical
Agglomerative
(Ward)

DTW* Median

Marques 2018 Address seasonality in
disaggregation of consumption

Montlhy Daily median flow Day Hierarchical
Agglomerative
(Ward, Complete
linkage, Single
linkage and
Average likage)

DTW*

DICTCRVB† and
PBD‡

Median

Barrela 2015 No clustering operation was
performed

- - - - -

* Distance Time Warping
† Dissimilarity Index Combining Temporal Correlation and Raw Values Behaviours
‡ Priodogram Based Dissimilarity
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As can be seen from Table 2.1, most of the studies presented incorporate a method of
clustering in their methodology. Typically the application of a clustering method has
the objective of grouping flow time series with similar seasonalities to later train specific
supervised learning models for each cluster.

Since the clustering process is an important component in the methodologies, it is verified
that in these studies the choice is mainly between hierarchical or k-Means clustering
algorithms. The present dissertation intends to explore and evaluate other families of
clustering algorithms applicable to the time series domain and consequently applicable to
the studies presented in this chapter.

It was also verified that in most of the studies the Euclidean distance was chosen as measure
of similarity. The present study will also explore alternative distance measures that allow
for some temporal flexibility in order to better capture the forms and seasonality of the time
series. This is a path that has been explored in the studies of Silva (2016) and Marques
(2018) and that the present dissertation also intends to contribute.

Another important aspect that was verified in the previous studies was the choice of the
representative prototype of the clusters to be the average or the median of the series present
in the cluster. Since in most of these studies hierarchical clustering was used, the choice of
the prototype is not relevant for the formation of the clusters and was only considered as
a method of visualization of the characteristics of the series present in the clusters. In this
dissertation partition algorithms were analyzed where the choice of prototype is relevant for
the formation and quality of the formed clusters.

Through the column “Flow time series type for clustering operation input” of Table 2.1, it
was verified that in the presented studies flow data was used in a grouped way as input for
the clustering operations. This option allows for less complex clustering operations since the
distance matrices will have smaller dimensions. However, with the previous data grouping,
useful information can be hidden in the formation of the groups by the clustering operation.
Since the focus of the present study is on clustering operations, it was decided not to aggregate
information prior to the application of clustering methods. This choice naturally introduces
larger distance matrices and a greater number of comparisons to verify similarity, requiring
the planning of a system with greater computational capacity.

It is also verified that, in the majority of the studies presented, there is a greater focus on
the Monthly Seasonality. The present dissertation will focus on clustering normalized daily
time series of medium flow rate (15 minutes timestep), intending to explore more the weekly
seasonality.
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Chapter 3

Methodology

3.1 Overview
Section 2.2 gives an overview of the various clustering techniques applicable to time series.
This chapter aims to further describe the methods and the various components that make
up the clustering models to be analyzed in chapter 4.

In addition to the components of clustering models, this chapter describes the Boxplot method
that will be used for data preprocessing and dataset description in chapter 4.

This chapter also describes the methods used for performance evaluation of clustering models,
namely the internal index measures and the Principal Component Analysis method used to
view the clusters formed by the clustering models.

The present chapter is organized as follows:

• 3.2 General methodology: an overview of the methodology to be applied in this
dissertation;

• 3.3 Boxplot method: technique used in preprocessing for dataset characterization
and outlier analysis;

• 3.4 Data normalization method: method used for series normalization to compare
series that come from different DMAs (with different flow amplitudes);

• 3.5 Timeseries clustering Algorithms: definition of clustering algorithms to be
used in clustering models;

• 3.6 Distance measures: definition of distance measures that will be used in clustering
models;

• 3.7 Prototype Methods: definition of prototypes that will be used in clustering
models;

• 3.8 Internal Indexes methods: definition of the internal index measures that will
be used to evaluate clustering models;

• 3.9 Princiapal Component Analysis: definition of the method used to visualize
clusters formed by clustering models;

• 3.10 Definition of clustering models and methodology application: presents
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the models according to their model components in the context of the analysis
methodology to be applied in chapter 4.

3.2 General methodology
Figure 3.1 shows the sequence of steps of the general methodology.

Figure 3.1: General methodology.

As can be seen from the sequence shown in Figure 3.1, the general methodology for clustering
methods evaluation is an iterative process that groups the following steps:

1. Raw Data: represents flow time series of medium flow rate with 15 minutes step
collected over 1 year from 52 DMAs distributed across Portugal;

2. Data Pre-Processing: in this stage, characterization of the flow series will be
performed through the graphic visualization of descriptive statistics such as the
median, average, 1st quartile, 3rd quartile and outliers through bar graphs, boxplots
and violin plots. These analyzes will allow the evaluation of the amplitude of the flow
rates present in each series as well as to identify abnormal flow records present in the
series (e.g., negative flow rates and extremely high flow rates). Days with anomalous
flow values will be removed as they occur due to errors in the data recording process
and don’t represent anomalous events occurring in the infrastructure. Afterwards, the
annual series will be split into daily series and these will be normalized so that in
clustering operations the daily series can be compared regardless of the DMA they
come from;

3. Model Defenition: as already mentioned in section 2.2.1 the definition of a model
involves the selection of time series algorithms, distance measurements and prototypes.
In the present chapter the methods used in these 3 components of model definition will
be described in detail;

4. Clustering Operation: this phase describes the execution of the defined model;
5. Clustering Performance Evaluation: after the clustering model implementation it

is necessary to evaluate the formed groups. At this stage internal index measures, as
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well as visual methods, are used by projecting the points of the various groups according
to the first 3 components of the Principal Component Analysis (PCA). At the end of
this iterative process, a set of models characterized by the size of the formed clusters
and also by the ability of the models to identify clusters with different day typologies
(e.g., weekend vs. working day) will be defined and the most performing models are
selected;

6. Final Cluster Models Analysis: the prototypes of the clusters of the most
performing models of the previous stage will be analyzed according to geographical
location and also by the predominance of the season of the year in order to identify
distinctive behaviors according to these dimensions;

7. Knowledge Extraction: in this step we intend to create a combined model that tries
to group the characteristics of the most performing models and thus to characterize
more completely the behaviors present in the daily patterns throughout the dataset.

3.3 Boxplot method
The boxplot method allows the visualization of the main statistical characteristics of the
data in summary form (Benjamini 1988; Kampstra 2007; Patil et al. 2018; Williamson et
al. 1989). Figure 3.2 represents a boxplot and a probability density function applied to a
Normal population (N(0,1σ2)).

Figure 3.2: Boxplot method (Chen-Pan (2012)).

Figure 3.2 shows the central rectangle that gives the name of this chart typology. The third
quartile (Q3) is represented by the vertical line that makes up the right side of the rectangle.
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In contrast the first quartile (Q1) is represented by the vertical line that makes up the left
side of the rectangle. The median is a vertical line drawn inside the rectangle. The step
corresponds to 1.5 times the interquartile range (Q3-Q1). From the center of the right side
of the rectangle a horizontal line with the step range is constructed. Similarly, the same
procedure is performed from the center of the left side of the rectangle. The dataset points
that are beyond the step range can be considered outliers or noise points according to the
characteristics of the dataset domain (Benjamini 1988; Frigge et al. 1989; Patil et al. 2018).

This method will be used in chapter 4 for the initial characterization of data and detection
of flow values that may be considered Outliers.

3.4 Data normalization method
In order to clustering algorithms focus on structural similarities / dissimilarities (shape) and
not on amplitude driven ones in the formation of clusters. A process of normalization of time
series is performed previously. The method used in Chapter 4 is Z-score (Z-normalization or
Standard score).

Equation (3.1) presents this normalization method (MathWorks 2019; Senin 2016).

zi = xi − µ
σ

,where i ∈ N (3.1)

Where µ and σ are the population’s mean and standard deviation, respectively.

3.5 Time series clustering algorithms
In this section the clustering algorithms used in the analyzes performed in chapter 4 will be
presented. These algorithms in combination with distance measurements (section 3.6) and
prototype functions (section 3.7) will allow to form clusters that characterize the dataset
under study.

3.5.1 Hierarchical clustering
Hierarchical clustering performs a grouping as the hierarchical level increases. Clusters
are formed by joining clusters from the level immediately below, thus obtaining an orderly
sequence of clusters (Hastie et al. 2009; Sarda-Espinosa 2017). This family of algorithms can
be subdivided into bottom-up or top-down approaches as described in Chapter 2. But the
buttom-up strategy is more common (Hastie et al. 2009) and will be the strategy applied in
the hierarchical clustering analysis in Chapter 4.

For hirarchical clustering it is not necessary a priori to specify the number of clusters to
form, on the other hand this typology of clustering algorithm is deterministic which means
it will always give the same result for a specified distance measurement. Both approaches
to hierarchical custering have little flexibility, which means that every time a top-down or
buttom-up split occurs, no adjustments can be made (Sarda-Espinosa 2017).

26



Bottom-up hierarchical clustering typically follows the following steps (Matteucci 2019b):

1. Each object is assigned to a cluster, so that having N objects has N clusters each with
an object;

2. The distances between the various clusters are calculated;
3. The most similar (shorter distance) pair of clusters is joined into a single cluster so as

to have one less cluster;
4. The distances between the newly formed cluster and the other clusters that did not

undergo a merge operation in the previous step are calculated;
5. Steps three and four are repeated until all objects belong to a single cluster.

Step four distances can be calculated using a linkage criterion of the following typologies
(Matteucci 2019b):

• Complete-linkage: the distance between two clusters is the maximum distance
between a member of one cluster and a member of another cluster;

• Single-linkage: the distance between two clusters is the minimum distance between
a member of one cluster and a member of another cluster;

• Centroid-linkage: the distance between two clusters corresponds to the distance
between a centroid of one cluster and the centroid of another cluster;

• Average-linkage: the distance between two clusters is the average of the distances
between members of one cluster and members of the other cluster.

The methods of single-linkage and centroid-linkage will not be used. The former will not
be used because it typically forms unbalanced dendrograms and the latter typically presents
inversions in the dendrograms (Legendre 2012).

The average-linkage method will also not be used because although it presents balanced
dendograms it does not allow to visualize the intra-cluster distance in the dendogram for
each cluster formed as the complete-linkage method allows. In Chapter 4 Euclidean distance
will be used in complete-linkage criterion.

3.5.2 Partiton clustering
Partition algorithms identify as methods that minimizes intracluster distance and maximizes
intercluster distance. To achieve this goal, this family of algorithms uses iterative greedy
descent strategies that scan a portion of the search space until they find convergence.
However, through this strategy one can converge to a local minimum instead of an absolute
minimum (Sarda-Espinosa 2017).

This family of clustering algorithms typically uses the following steps (Matteucci 2019c):

1. K centroids are initialized randomly (usually k randomly chosen dataset objects);
2. A distance measurement (section 3.6) calculates the distances of all objects to the

centroids and all objects are subsequently assigned to the nearest centroid;
3. A prototype function (section 3.7) is applied to each cluster to calculate a new

representative cluster centroid;
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4. Steps two and three are iteratively repeated until a maximum number of iterations have
been reached or there are no cluster-changing objects.

This methodology always attempts to maintain the number of initially assigned clusters,
which may result in instability or divergence in some cases. In these situations a different
distance measurement is used or the number of clusters k to be formed is decreased.

This family of clustering algorithms requires that the cluster number to be formed (k) be
assigned initially, but generally the ideal number of clusters to form is not known. To get
around this, the algorithm is run with different numbers of clusters to form and use cluster
validation indices (section 3.8) to evaluate which number of clusters best fits the dataset to
be studied.

3.5.3 k-Shape clustering
This algorithm is a particular case of partition algorithms because it uses the custom distance
measurement Shape based distance (section 3.6.4) and Shape extraction prototype function
(section 3.7.4) (Paparrizos and Gravano 2015).

3.5.4 Fuzzy clustering
This method belongs to the partition algorithm family but allows you to make a soft or
fuzzy partition so that each member belongs to each cluster to a certain degree. In contrast,
traditional partition algorithms and hierarchical algorithms that make hard-type partitions
where each member belongs exclusively to one cluster and the clusters are mutually exclusive
(Matteucci 2019a; Sarda-Espinosa 2017).

Equation (3.2) defines the minimization function:

min
N∑
i=1

k∑
j=1

umi,j‖ xi − cj ‖
2 , 1 ≤ m ≤ ∞ (3.2)

In which:
k∑
j=1

ui,j = 1 and ui,j ≥ 0 (3.3)

Where xi and cj are the ith of d-dimensional measured data and the d-dimension center of
the cluster, respectively. The variables ui,j and m are the degree of membership of xi and the
fuzziness exponent with a common value of 2, respectively. The variable ‖ ∗ ‖ is the norm
expressing the similarity between any measured data and the centroid.

The minimization function for Fuzzy partitioning can be performed using an iterative update
process of membership uij and centroids cj until the stop criterion ‖ Uk+1 −Uk ‖≤ ε is met.
The iterative process is described according to the following steps (Matteucci 2019a):

1. Matrix U0 = [uij] initialization;
2. At each iteration k, calculate the centroids Ck = [cj] with Uk using the equation (3.19).
3. At each k iteration, update the matrix from Uk to Uk+1 through the equation:
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uij = 1∑C
k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

(3.4)

4. Verify that the ‖ Uk+1−Uk ‖≤ ε stop criterion is met. If not fulfilled return to step 2.

3.6 Distance measures
Distance measurements are one of the important elements in the definition of a clustering
model, as they provide a way to calculate dissimilarity between two time series. For any time
series clustering algorithm the calculation of distances and cross-distance matrix is essential
for the formation of groups that maximize similarity between group members and minimize
similarity between groups (Sarda-Espinosa 2017).

This section will present the definitions of distance measurements that will be used in Chapter
4.

3.6.1 Euclidean
One of the most common distance measurements used in clustering operations is Euclidean
distance. This measurement can be computed efficiently but is sensitive to noise, scale, time
shifts and can only be used in situations where time series are of equal size (Sarda-Espinosa
2017).

Equation (3.5) gives the definition of Euclidean distance.

d(p, q) = d(q, p) =
√√√√ n∑
i=1

(qi − pi)2 (3.5)

Where p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) are two objects in Euclidean n-space.

3.6.2 Dynamic time warping (DTW)
Dynamic time warping (DTW) is a dynamic programming algorithm that calculates an
optimum warping path between two time series. The first step in calculating the DTW
distance is to create a local cost matrix (LCM), which has a dimension of n ×m, for each
comparison between two time series (Sarda-Espinosa 2017).

The equation (3.6) presents the local cost matrix calculation formula based on a Euclidean
space. It is denoted by the v in the equation that this method allows time series with
multivariables.

lcm(i, j) =
√∑

v

| xvi − yvi |
2 (3.6)

The equation (3.6) considers x and y as input series, where for each element (i, j) of the lcm
matrix the norm between xi and yj is calculated.

In the second step, the DTW algorithm looks for an alignment between x and y that minimizes
the aggregate cost through an iterative process of walking over the lcm matrix, starting at
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lcm(1, 1) and ending at lcm(n,m). In every step the algorithm goes in the direction in which
the aggregate cost increases less given certain constraints (Giorgino 2009; Sarda-Espinosa
2017).

Equation (3.7) defines the calculation of the distance DTW between two time series.

DTW (x, y) =

√√√√∑ mφlcm(k)2

Mφ

,∀k ∈ φ (3.7)

In which φ = {(1, 1), ..., (n,m)} and mφ are the set of points that belongs to the optimal
path and the per-step weighting, respectively. The variable Mφ is a normalization constant.

Figure 3.3 illustrates the optimum warping path and alignment between two time series.

Figure 3.3: Otimum path found (on the left) and alignment (on the
right) between two time series, based on Sarda-Espinosa (2017).

DTW is computationally expensive. If x has length n and y has length m, the DTW distance
between them can be computed in O(nm) time, which is quadratic if m and n are similar.
Additionally, the DTW distance can potentially deal with series of different length directly.
This is not necessarily an advantage, as it has been shown before that performing linear
reinterpolation to obtain equal length may be appropriate if m and n do not vary significantly
(Ratanamahatana and Keogh 2004).

One of the possible modifications of DTW to deal with complexity is to use window
constraints. These limit the area of the LCM that can be reached by the algorithm. One of
the most common ones is the Sakoe-Chiba window (Sakoe and Chiba 1978), with which an
allowed region is created along the diagonal of the LCM. These constraints can marginally
speed up the DTW calculation, but they are mainly used to avoid pathological warping. It is
common to use a window whose size is 10% of the series’ length, although sometimes smaller
windows produce even better results (Ratanamahatana and Keogh 2004; Sarda-Espinosa
2017).
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Figure 3.4 shows Sakoe-Chiba window constraints in lcm matrix.

Figure 3.4: Sakoe-Chiba constraint for DTW. The red elements
will not be considered by the algorithm when traversing the LCM
(Sarda-Espinosa (2017)).

3.6.3 Global alignment kernel (GAK)
Global Alignment kernels (GAK) allow you to consider the cost of all alignments between
two time series by calculating a soft minimum, enabling a more concise quantification of
similarities than DTW (Sarda-Espinosa 2017). Equation (3.8) explains the calculation of
similarity between two time series according to a global alignment kernel.

kGA(x, y) =
∑

π∈A(n,m)

|π|∑
i=1

κ(xπ1(i), yπ2(i)) (3.8)

Where π and | π | are the alignment between two series x and y and the length of π,
respectively. The variables κ and A(n,m) are the local similarity function and the set of all
possible alignments constrained by the lengths of x and y, respectively.

The consideration of the various alignments makes this methodology have some limitations
such as diagonal dominance and complexity O(nm) (Sarda-Espinosa 2017). However the
diagonal dominance is not relevant as long as one of the series is not twice as long as the
other (Cuturi 2011).

Regarding the complexity problem O(nm), it is possible to reduce complexity by using a
tringular local kernel (TLK) which limits the number of alignments to be considered for
GAK calculation of similarity. Equation (3.9) presents the formulation of the TLK.

w(i, j) =
(

1− | i− j |
T

)
(3.9)
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Where T represents the order of the kernel.

Combining TLK with GAK gives the triangular global alignment kernel (TGAK) where the
number of alignments to consider for calculating similarity is constrained by TLK. This kernel
can be calculated with a complexity of O(Tmin(n,m)) (Sarda-Espinosa 2017).

Equation (3.10) formulates the GAK (based on Gaussian kernel).

k(x, y) = e
−

(
1

2σ2 ‖x−y‖
2+log

(
2−e−

‖x−y‖2

2σ2

))
(3.10)

In which:
σ = c ·med(‖ x− y ‖) ·

√
med(| x |) (3.11)

Where med(.) and c are the empirical median and a constant (the value of 1 will be used
since it is the value adopted in R package dtwclust (Sarda-Espinosa 2019)), respectively. The
variables x and y are subsampled vectors from the dataset.

The TGAK is then defined by equation (3.12).

TGAK(x, y, σ, T ) = w(i, j)k(x, y)
2− w(i, j)k(x, y) (3.12)

when:

• T = 0 or T →∞ - all alignments are considered and TGAK converges to the original
GAK;

• T = 1 - only compares series of equal length;

• T > 1 - only alignments that meet the constraint−T < π1(i)−π2(i) < T are considered.

The similarity obtained by TGAK can be normalized between 0 and 1. The distance
measurement is obtained by subtracting 1 by the value of the normalized TGAK similarity.
Equation (3.13) formulates the distance measurement obtained through the normalized
TGAK similarity:

Dx,y = 1− elog(TGAK(x,y,σ,T ))− log(TGAK(x,x,σ,T ))+log(TGAK(y,y,σ,T ))
2 (3.13)

3.6.4 Shape-based distance (SBD)
Associated with the Shape-based clustering algorithm is the shape-based distance
measurement (SBD). This measurement is based on cross-correlation with coefficients
normalization (NCCc) which makes it scale sensitive, so time series z-normalization must
be done before applying this method (Paparrizos and Gravano 2015). After obtaining the
NCCc sequences, the SBD distance is calculated according to equation (3.14).

SBD(x, y) = 1− max(NCCc(x, y))
‖ x ‖2‖ y ‖2

(3.14)
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Where ‖ . ‖ is the Euclidean norm. This distance measure varies between 0 and 2, where 0
indicates perfect similarity between the two series. SBD presents itself as a faster alternative
than DTW, efficiently utilizing Fast Fourier Transform (FFT) to obtain the NCCc sequences
(Paparrizos and Gravano 2015).

3.7 Prototype methods
Prototyping methods are an important component in defining a time series clustering model.
This component has special relevance in partition clustering algorithms since prototypes are
used as cluster centroids in the iterative group formation process. Apart from the clustering
algorithm, the choice of prototype method is intrinsically related to the distance measurement
to be used and similar to distance measurements, it is typically not known a priori which
prototype method is the best (Sarda-Espinosa 2017).

In this section we will present the various prototype methods that will be evaluated in Chapter
4.

3.7.1 Mean
The use of arithmetic mean as a prototype of clusters is quite common when associated
with the Euclidean distance average. However, due to the structure of the time series, the
arithmetic mean prototype is considered a poor choice and may affect convergence of the
clustering algorithm (Sarda-Espinosa 2017).

The cluster prototype calculation according to this method considers the average of each
time-point i for all variables taking into account all time series belonging to the group.
Equation (3.15) formulates the prototype calculation according to this method for a cluster
C of size N.

µvi = 1
N

∑
c

xvc,i,∀c ∈ C (3.15)

In which xvc,i is the i-th element of the v-th variable from the c-th series that belongs to
cluster C.

3.7.2 Partition around medoids (PAM)
The prototype according to partition around medoids (PAM) is defined as an object of a
cluster where the average distance to the other elements of the cluster is minimal. This
approach has some advantages over mean approaches since medoid is always an element of
the original data series (Kaufmann and Rousseeuw 1987; Sarda-Espinosa 2017).

The equation (3.16) defines the calculation of a medoid prototype

xmedoid = argminy∈(x1,x2,...,xn)

n∑
i=1

d(y, xi) (3.16)

In which x1, x2, ..., xn is a set of n points in a space with a distance function d.
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3.7.3 DTW barycenter averaging (DBA)
DTW barycenter averaging (DBA) is a method that iteratively redefines an average sequence
with the objective of minimize the sum of squared DTW distances from the average sequence
to the set of sequences. This sum is formed by single distances between each coordinate of
the average sequence and coordinates of sequences associated to it. Thus, the contribution
of one coordinate of the average sequence to the total sum of squared distance is actually a
sum of euclidean distances between this coordinate and coordinates of sequences associated
to it during the computation of DTW. Note that a coordinate of one of the sequences
may contribute to the new position of several coordinates of the average. Conversely, any
coordinate of the average is updated with contributions from one or more coordinates of
each sequence. In addition, minimizing this partial sum for each coordinate of the average
sequence is achieved by taking the barycenter of this set of coordinates (Petitjean et al. 2011).

The process of refinement of the average sequence is composed by the following steps:

1. Computing DTW between each individual sequence and the temporary average
sequence to be refined, in order to find associations between coordinates of the average
sequence and coordinates of the set of sequences;

2. Updating each coordinate of the average sequence as the barycenter of coordinates
associated with it during the first step.

The process of updating the average sequence can be defined by:

C
′

t = barycenter(assoc(Ct)) (3.17)

In which:
barycenter {X1, ..., Xα} = X1 + ...+Xα

α
(3.18)

Where assoc and α are the function that links each coordinate of the average sequence to
one or more coordinates of sequences to be averaged and the number of sequences associated
to C, respectively. The variables C =< C1, ..., CT > and C

′ =< C
′
1, ..., CT

′ > represent
the average sequence at iteration i and the update of C at iteration i+1, respectively. The
variables X1 + ...+Xα are coordinates of the set of sequences associated to C during the first
step.

3.7.4 Shape extraction
This method to calculate time-series prototypes is part of the k-Shape algorithm. For this
method centroids are selected by an optimization problem where the objective is to find
the minimizer of the sum of squared distances to all other timeseries sequences. However,
as cross-correlation intuitively captures the similarity rather than the dissimilarity of time
series, we can express the computed sequence as the maximizer of the squared similarities to
all other time-series sequence (Paparrizos and Gravano 2015; Sarda-Espinosa 2017).

As this approach is used in the context of iterative clustering, the previously computed
centroid is used as reference and align all sequences towards this reference sequence. Since
the previous centroid will be very close to the new centroid. For this alignment SBD
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distance is used, which identifies an optimal shift for every sequence. Subsequently, as
sequences are already aligned towards a reference sequence, it is performed a so-called
maximization of Rayleigh Quotient to obtain the final prototype (Paparrizos and Gravano
2015; Sarda-Espinosa 2017).

3.7.5 Fuzzy-based prototype
The centroid function used by fuzzy c-means calculates the mean for each point across
all members in the data, weighted by their degree of belongingness (Matteucci 2019a;
Sarda-Espinosa 2017).

Equation (3.19) describes the calculation of centroids by this method.

cj =
∑N
i=1 u

m
ij · xi∑N

i=1 u
m
ij

(3.19)

Where cj and xi are the d-dimension center of the cluster and the ith measured data of
d-dimensional, respectively. The variables uij and m represent the degree of membership of
xi and the fuzziness exponent with a common value of 2, respectively.

3.8 Internal index methods
One of the important steps of this general methodology is to identify how the clusters formed
by each algorithm fit the data. This question is complex to answer because different clustering
algorithms produce different clusters and none of them are proven to be the best for all
situations. Cluster validation is the process responsible for estimating how well formed
clusters fit the underlying structure of the data (Arbelaitz et al. 2013).

In addition to the comparison between clustering algorithms, it should also be noted that
cluster validation is also used in algorithms that a priori cannot determine the number of
clusters that naturally exist in the data and need to initially provide the number of clusters
to be formed. In these cases it is usual to run the algorithm several times and with different
number of clusters to form and evaluate each of the iterations by a cluster validation process
in order to obtain the number of ideal clusters to be formed for the dataset under analysis.

Cluster validation can be separated into external validation or internal validation as defined
in chapter 2. Since the underlying structure of the data is not known for the dataset to be
analyzed in chapter 4, cluster validation methods will be based on internal validation. The
following sections will present internal index validation methods that directly estimate the
quality of the formed clusters based on the measurement of the cohesion and separation of
the formed clusters.

The internal validation indexes to be used in Fuzzy clustering algorithms are different from
those used in other clustering approaches since for Fuzzy algorithms the degree of cluster
membership has to be taken into account when calculating an internel index. Thus internal
index algorithms will be classified as follows:
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• Internal indexes for hard partitions: evaluation measures applicable to hard
patition clustering algorithms (k-Means, k-Medoids and Hirarchical clustering);

• Internal indexes for fuzzy partitiions evaluation measures applicable to soft
partition clustering algorithms (Fuzzy custering).

3.8.1 Internal indexes for hard partitions
Silhouette index

For silhouette index cohesion is measured based on the distance between all points in the
same cluster and separation is based on the distance from the nearest neighbor(equation
(3.20)). For this index a larger value indicates a better partition (Arbelaitz et al. 2013;
Rousseeuw 1987).

Sil(C) = 1�N
∑
ck∈C

∑
xi∈ck

b (xi, ck)− a (xi, ck)
max {a (xi, ck) , b (xi, ck)}

(3.20)

In which:
a (xi, ck) = 1�|ck|

∑
xj∈ck

de(xi, xj) (3.21)

b (xi, ck) = min
cl∈C�ck

1�|cl|
∑
xj∈cl

de(xi, xj)

 (3.22)

Dunn index

This index is composed of the ratio between the estimated cohesion using nearest neighbor
distance and the separation by the maximum cluster diameter value (equation (3.23)). For
this index a larger value indicates a better partition (Arbelaitz et al. 2013; C. Dunn 1973).

D(C) = minck∈C {minc∈C�ck {δ(ck, cl)}}
maxck∈C {4(ck)}

(3.23)

In which:
δ(ck, cl) = min

xi∈ck
min
xj∈cl
{de(xi, xj)} (3.24)

4(ck) = max
xixj∈ck

{de(xi, xj)} (3.25)

COP index

This index is presented as the ratio between the cohesion estimated by distance from the
points in a cluster to its centroid and the separation which is the furthest neighboring distance
(equation (3.26)). For this index a smaller value indicates a better partition (Arbelaitz et al.
2013; Gurrutxaga et al. 2010).

COP (C) = 1
N

∑
ck∈C
|ck|

1�|ck|
∑
xi∈ck de(xi, ck)

minxi /∈ckmaxxj∈ckde(xi, xj)
(3.26)
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Davies-Bouldin index

Through this index cohesion is estimated based on the distance of the points in a cluster to
its centroid and the separation based on the distance between the centroids (equation (3.27)).
For this index a smaller value indicates a better partition (Arbelaitz et al. 2013; L. Davies
and Bouldin 1979).

DB(C) = 1
K

∑
ck∈C

max
cl∈C�ck

{
S(ck) + S(cl)
de(ck, cl)

}
(3.27)

In which:
S(ck) = 1�|ck|

∑
xi∈ck

de(xi, ck) (3.28)

Modified Davies-Bouldin index

This index is a variation of the previous method according to equation (3.29). For this index
a smaller value indicates a better partition (Arbelaitz et al. 2013; Kim and Ramakrishna
2005).

DB∗(C) = 1
K

∑
ck∈C

maxcl∈C�ck {S(ck) + S(cl)}
mincl∈C�ck {de(ck, cl)}

(3.29)

Calinski-Harabasz index

This index is based on the ratio of the estimated cohesion based on the distance of points
in a cluster to its centroid and the separation based on the distance from centroids to a
global centroid (equation (3.30)). For this index a larger value indicates a better partition
(Arbelaitz et al. 2013; Caliński and JA 1974).

CH(C) = N −K∑
ck∈C |ck|de(ck, X)

K − 1∑ck∈C
∑
xi∈ck de(xi, ck)

(3.30)

Score Function

In this index the separation is measured based on the distance between the cluster centroids
and the global centroid and the cohesion is based on the distance from the points of a cluster
to its centroid (equation (3.31)). For this index a larger value indicates a better partition
(Arbelaitz et al. 2013; Saitta et al. 2007).

SF (C) = 1− 1
eebcd(C)+wcd(C) (3.31)

In which:
bcd(C) =

∑
ck∈C |ck|de(ck, X)

N ×K
(3.32)

wcd(C) =
∑
ck∈C

1/|ck|
∑
xi∈ck

de(xi, ck) (3.33)
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3.8.2 Internal indexes for fuzzy partitions
Modified Partition Coefficient index

This index only takes into account membership values by minimizing the overall content of
pairwise fuzzy intersection in U (partition matrix). The index PC(C) corresponds to the
average relative amount of membership sharing done between pairs of fuzzy subsets. The
MPC(C) index is a modification to PC(C) that reduces the monotonic evolution tendency
imposed by number of clusters increases (c) (equation (3.34)). For this index a larger value
indicates a better partition (Dave 1996; Wang and Zhang 2007).

MPC(C) = 1− c

c− 1(1− PC(C)) (3.34)

In which:
PC(C) = 1

n

c∑
i=1

n∑
j=1

(3.35)

Kwon index

This index takes into account membership values as well as the dataset itself (equation
(3.36)). To deal with monotonic evolution tendency imposed by number of clusters increase,
this index introduces a punishing function 1

c

∑c
i=1 ‖ vi − v ‖2. For this index a smaller value

indicates a better partition (Kwon 1998; Wang and Zhang 2007).

K(C) =
∑n
j=1

∑c
i=1 u

2
ij ‖ xj − vi ‖2 +1

c

∑c
i=1 ‖ vi − v ‖2

mini 6=k ‖ vi − vk ‖2 (3.36)

In which:
v =

n∑
j=1

xj
n

(3.37)

Improved Validation index

This index is a variation of the previous method according to equation (3.38) whith a different
punishing function 1

c(c−1)
∑c
i=1

∑c
k=1
k 6=i
‖ vi − v ‖2. For this index a smaller value indicates a

better partition (Tang et al. 2005; Wang and Zhang 2007).

T (C) =

∑c
i=1

∑n
j=1 u

2
ij ‖ xj − vi ‖2 + 1

c(c−1)
∑c
i=1

∑c
k=1
k 6=i
‖ vi − v ‖2

mini 6=k ‖ vi − vk ‖2 +1
c

(3.38)
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Validity Function

This index also takes into account membership values as well as the dataset itself, but
introduces the concepts of fuzzy conpactness and fuzzy separation in the same way as the
traditional internal index of validation presented in section 3.8.1 (equation (3.39)). The
SC1 component considers the degree of compaction and separation across membership and
geometric properties of the data structure. The SC2 component introduces the concept of
fuzzy union and fuzzy intersection to achieve the degree of fuzzy conpactness/separation.
For this index a larger value indicates a better partition (Wang and Zhang 2007; Zahid et al.
1999).

SC(C) = SC1(c)− SC2(c) (3.39)

In which:
SC1(c) =

∑c
i=1 ‖ vi − v ‖2 �c∑c

i=1

(∑n
j=1(umij ) ‖ xj − vi ‖2 �∑n

j=1 uij
) (3.40)

SC2(c) =
∑c
i=1

∑n
l=i+1

(∑n
j=1(min(uij, ulj))2�∑n

j=1 min(uij, ulj)
)

∑n
j=1(max1≤i≤cuij)2�∑n

j=1(max1≤i≤cuij)
(3.41)

PBMF index

Similar to the Validity Function presented earlier, this index also makes use of the traditional
concepts of compactness and separation that the indexes in section 3.8.1 present (equation
(3.42)). The 1

c
component indicates the divisibility of a c cluster system. The E1

Jm
component is

a measure of c cluster system compactness. The Dc component is the maximum intercluster
separation in c cluster system. For this index a larger value indicates a better partition
(Pakhira et al. 2004; Wang and Zhang 2007).

PBMF (C) =
(1
c
× E1

Jm
×Dc

)2
(3.42)

In which:
E1 =

n∑
j=1

uij ‖ xj − v ‖ (3.43)

Dc = cmax
i,j=1

‖ vi − vj ‖ (3.44)

Jm =
n∑
j=1

c∑
i=1

(uij)m ‖ xj − vi ‖ (3.45)

3.8.3 Range applied to the internal indexes
Using the cvi function included in the R dtwclust package (Sarda-Espinosa 2019), it is possible
to calculate the internal index measures specified in Section 3.8. The value of each internal
index measure returned by the function is displayed on logarithmic scale of base 10.
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However, in validating the cluster number to be formed (k) by a given clustering model, the
values obtained by each of the internal indices will be scaled so that the best value according
to a distance measure will be 1 and the worst value of the same measure will be assigned 0.
A Total Score is also calculated based on the sum of the scaled values of the different internal
index measures obtained for the same model with k clusters. This total Score measure will
also be scaled between 1 and 0 to validate the optimal number of clusters for a given model.

The same methodology applies when validating which cluster initialization is best for a given
clustering model (this only applies to k-Means and k-Medoids clustering).

3.9 Principal component analysis (PCA)
Principal component analysis (PCA) is considered to be one of the most popular methods
of feature extraction and dimensional reduction of a dataset. This method has been used
in various areas such as image processing, machine learning and general exploratory data
analysis. For a dataset composed of p dimensional variables in Rp, PCA allows to calculate
the orthognal projection in a dimensional subspace composed of the same number or less
dimensions than the original space. The principal components that make up this subspace
will be the ones that capture the largest variance in the dataset (Seghouane et al. 2019). In
this method of linear orthognal transformation, the coordinate system is transformed so that
the largest variance occurs over the first principal component direction, the second largest
data variance occurs over the second principal component, and so on (Pandey et al. 2019).

The PCA is performed according to the following steps:

1. The dataset matrix X has the dimension n× p, where n corresponds to the number of
observations and p to the number of variables.

2. First, the empirical mean of the corresponding column is subtracted from all matrix
values in order to obtain a mean-subtracted data matrix B:

B = [xi,j − µj] (3.46)

Where xi,j and µj are an element of matrix X and the empirical mean of column j, respectively.

3. Then compute the covariance matrix of the matrix B:

C = 1
n− 1B

∗B (3.47)

In which n− 1 and ∗ are the Bessel’s correction and the conjugate transpose operator which
in case of R corresponds to regular transpose(T ), respectively.

4. The eigenvalues associated with matrix C are calculated:

det(C − λI) = 0 (3.48)

Where λ and I are the eigenvalues and the identity matrix, respectively.

5. Subsequently the eigenvectors are calculated:
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C−→ei = λi
−→ei (3.49)

In which λi and −→ei represent the eigenvalue of index i and the eigenvector corresponding to
the eigenvalue of index i, respectively.

6. Divide each eigenvector obtained by its own norm:
−→
e
′

i =
−→ei
‖ −→ei ‖

(3.50)

Where ‖ −→ei ‖ is the eigenvector norm.

7. Project data according to a principal component:
−→ai = (−→a −−→µ ) ·

−→
e
′

i (3.51)

In which −→a − −→µ and −→ai represent the centered observation and the projected observation
according to the principal component i, respectively.

In Chapter 4, this method will be used to find the first 3 principal components that explain the
greatest variability present in the dataset. These three principal components will compose a
Euclidean space in which clusters formed will be projected in order to be able to characterize
the clusters formed in each clustering algorithm tested.

3.10 Definition of clustering models and methodology
application

In this section the clustering models, that will be analyzed in chapter 4, are defined taking
into account the analysis methodology presented in section 3.2.

Figure 3.5 shows the various stages of model implementation and their integration into the
methodology.

The first step will be the characterization and pre-processing of the initial dataset with outlier
identification through Boxplots (see section 3.3). In this step a PCA will also be performed
with characterization of the principal components obtained.

The next step details the 12 clustering models to be studied according to the components
that define each model (Figure 3.5):

• Clustering approach (see section 3.5);
• Distance measure (see section 3.6);
• Prototype (see section 3.7);
• Window of comparison (see section 3.6).

In the Internal index evaluation step of Figure 3.5, the internal index evaluation methods
that will be applied to each clustering model typology are described (see section 3.8). In
this step a set of iterations will be performed for each model to evaluate the optimal number
of clusters (koptimal), by varying the number of clusters at each iteration (k = 1 to 10) and
evaluating the result of each one through the measurements of internal index.
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After obtaining the model with optimal number of clusters (koptimal), it is necessary to perform
a new set of iterations to validate the best centroid initialization (ioptimal) for it. In this case
the centroids are started randomly at each iteration (i = 1 to 20) and the results obtained
through the internal index measurements are evaluated. The iteration that obtained the best
result is chosen.

It should be noted that for the Hierarchical and Fuzzy Clustering models the second iterative
process of evaluating centroid initialization is not applicable. In the case of Hierarchical
Models, prototypes are not a necessary component for cluster formation (see section 3.5.1).
In the case of Fuzzy Clustering, this approach does not initialize centroids but rather uses a
membership matrix (U0) representing the initial degree of belonging of each object to each
cluster (see section 3.5.4).

In the PCA and centroids visualization step the best results for each clustering model are
described through the observation of the centroids of the formed clusters that characterize the
water demand profilling. By visualizing clusters according to the three principal components
obtained by the PCA method (see section 3.9) the degree of separation of clusters formed by
each clustering model is also described.

After characterizing the various clustering models, a selection of the ones that allow a better
description of the dataset is performed. Taking these models into account, a combined model
is created to assimilate the characteristics of them by combining the clusters.

In the last step the centroids of the combined model are characterized taking into account
factors such as:

• Typology of the day (working days vs. weekends / holidays);
• Geographic data (region of the country);
• Dry months vs. wet months.

These analyzes allows to characterize the water demand profiles and the existence of
anomalous behaviors that may lead to inefficient water use.
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Figure 3.5: Clustering models definition and methodology application.
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Chapter 4

Results and Discussion

4.1 Overview
Chapter 3 presented the theoretical foundation of clustering techniques, distance
measurements, prototypes, internal index evaluation measures, PCA analysis, normalization
and outlier removal methods. In the present chapter will be applied the techniques to the
dataset in order to characterize it and extract knowledge about the various identifiable
behaviors in daily mean flow patterns.

The present chapter is organized as follows:

• 4.2 Data characterization, preprocessing and PCA analysis: initial data
characterization, preprocessing, outlier removal and PCA analysis;

• 4.3 Application of clustering models with inelastic distance measures: this
section presents the method for analyzing inelastic clustering models. The application,
evaluation and characterization of clustering models with inelastic distance measures
is presented in Appendix A;

• 4.4 Application of clustering models with elastic distance measures: this
section presents the method for analyzing elastic clustering models. The application,
evaluation and characterization of the most performing clustering models with elastic
distance measures is presented in sections 4.4.1, 4.4.2 and 4.4.3. The remaining models
are presented in Appendix B;

• 4.5 Summary of clustering models analysis: comparison of clustering models and
selection of the most performing models;

• 4.7 Combined model analysis: evaluation and characterization of a combined model
consisting of a combination of clusters of the most performing models.
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4.2 Data characterization, preprocessing and PCA
analysis

In this section the characterization of the initial data and data preprocessing operations will
be performed in order to prepare the data for principal component analysis and clustering
operations. It will also be described the PCA analysis and the representativeness of the
principal components.

4.2.1 Raw dataset characterization
The dataset used in the analyzes of this chapter is a 15-minute average flow rate (m3/h)
series collected over a year. Each series corresponds to a year-round data collection from a
District Metered Area (DMA).

Figure 4.1 indicates the geographical location of each of the series:
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Figure 4.1: Geographical location.
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The dataset presents a total of 52 series from which it can be seen that most of the series
belong to the Coastal Center region, with 19 series, and the Lisbon Metropolitan Area, with
18 series. The North and South regions have 7 series each. The Interior Center region is the
least represented with only 1 series.

Figure 4.2 shows the mean flow values (m3/h) with a 15-minute time step for the months of
January, February, June July, November, and December of the 1759 series.
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Figure 4.2: Series 1759 flow data.

4.2.2 Statistical characterization of the dataset
Graphical view of the median of the annual flow series

Figure 4.3 shows the median flow rate (m3/h) of the annual series. This analysis allows to
verify the order of magnitude of the flow values.
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Figure 4.3: Meadin flow of each annual series.

Through the analysis of the median of the flow values (Figure 4.3), it is verified that most
series have a median flow value of less than 50 m3/h, with only the existence of 13 series with
values of median flow greater than 50 m3/h.

Boxplot analysis

This analysis allows us to visualize the main statistical characteristics associated with each
series, as defined in section 3.3.

Figure 4.4 shows the Boxplots for the series with a median flow rate of less than 50 m3/h.
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Figure 4.4: Boxplot of Series with median flow rate of less than 50
m3/h.

Through the analysis of Figure 4.4, the following set of observations was verified:

• 1st set: this set of series there are outliers present in all series. The series with a
median of more than 25 m3/h have distances between quartiles higher than the others,
indicating a greater variability of flow values throughout the year. Flow series less than
25 m3/h are more compact and denser in the area between quartiles;

• 2nd set: the same characteristics are observed in this set. The 2741 series stands out
by presenting outliers much higher than the distance between quartiles. In the series
2743 the presence of negative flow values is verified;

• 3rd set: this set also verifies the same patterns evidenced in the previous sets. The
5124 series has a medium flow rate of 12.5 m3/h and a maximum flow rate greater than
150 m3/h. The 6545, 5109, 2875 and 2823 series also have outliers greater than 100
m3/h and longer distances between quartiles;

• 4th set: This set verifies the same patterns evidenced in the previous sets. Most series
have a median of 12.5 m3/h or less, with the exception of series 5259 and 1546 which
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present higher median values, greater distances between quartiles and values of outliers
greater than 100 m3/h. In the series 1201 the presence of negative flow values is verified.

Figure 4.5 shows the Boxplots for the series with a median flow rate of over 50 m3/h.
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Figure 4.5: Boxplot of Series with median flow rate of over 50 m3/h.

This set of series is characterized by having a median of more than 50 m3/h. It is observed
that tendentially the series with higher median value also present larger distances between
quartiles. The 7815 and 6781 series are characterized by their maximum flow values higher
than 950 m3/h and also the series 2485 stands out for having a maximum flow rate of more
than 600 m3/h.

4.2.3 Dataset preprocessing for clustering operations
In order to prepare the dataset for clustering operations, the following set of steps must be
performed:

• Split operation: clustering and PCA analysis will focus on the formation of groups
based on the forms of daily flow series. It is necessary to split the annual flow series
into daily flow series;

• Outliers removal: based on the analysis performed in section 4.2.2, daily series with
Outliers present will be removed;

• Normalization: normalization of the flow values will be performed taking into account
the Z-normalization method described in section 3.4.

Figure 4.6 presents the preprocessing steps applied to the 1759 series:
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Figure 4.6: Series 1759 pre-processing.

The methodology of Figure 4.6 was applied to all annual series.

Regarding the Outliers removal process, after analyzing the results obtained in Section 4.2.2
with the Boxplot method, it was verified that for almost all series there are flow values above
1.5× IQR and these cases correspond to atypical values. It was decided to maintain these flow
values in order to assess how cluster analysis can be used to differentiate atypical behaviors.
In the case of negative values (correspond to inversions in the flow direction), since the focus
of the analysis is on the study of the flow rate provided to network sectors, these values
should be removed.

Table 4.1 identifies the daily flow series with negative flow values:

Table 4.1: Daily flow series with negative flow values.

Series ID Month Day Minimum Flow
(m3/h)

Number of
negative flow

values

Proportion of
negative flow
values (%)

serie1201 10 27 -1.33 20 20.83
serie1201 10 28 -1.55 12 12.50
serie1201 11 3 -1.23 12 12.50
serie1201 11 4 -0.74 12 12.50
serie2743 8 31 -4.18 68 70.83

serie2743 9 1 -0.82 1 1.04

From Table 4.1 it is verified that 6 daily series have negative flow values. These series were
removed from the datasets and not taken into account in the analysis performed in the next
sections.
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After the removal of daily series with negative flow values, the normalization process was
performed according to the Z-normalization method (see section 3.4). At the end of this
operation the Dataset is pre-processed. However the dataset has to be organized in a tidy
way in order to enable operations of Principal component analysis and Clustering in later
chapters.

The Dataset was organized as follows:

• Variables: each variable corresponds to a time instant of 15 minutes. Making a total
of 96 variables that make up a day;

• Observations: each observation corresponds to a day of the year in a DMA.

Figure 4.7 shows how the Dataset was organized for PCA and clustering operations:

Figure 4.7: Dataset organization for PCA and Clustering Operations.

4.2.4 Principal component analysis
As described in section 3.9, the principal component analysis method allows to perform an
orthogonal transformation to find the set of directions in space that allow you to describe
the greatest variability of the data, thus allowing a dimensional reduction. This technique is
particularly important for the visualization of the formed clusters and to evaluate the degree
of separation of them according to dimensional space composed by 3 dimensions that explain
the variability present in the dataset.

After applying the method and obtaining the principal components, it is necessary to evaluate
the variance that is explainable by each of the components.

Figure 4.8 shows the variance explained by the principal components:
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Figure 4.8: PCA - Variance explained by the principal components.

From Figure 4.8 it can be seen that the first 2 principal components explain about 50% of
the variability present in the data. The set of the first 3 principal components can explain
about 60%, and with the first 25 principal components it is possible explain about 90% of
the variability of the data. Finally, the set of the first 50 main components explains about
98% of the variability of the model data.

In the next sections clustering models are applied. The clusters formed will be graphically
represented according to the first 3 principal components. It should be noted that these
graphs only allow to verify the separation of the clusters formed in a dimensional space that
represents only 60% of the variability of the data.

Figure 4.9 shows the weights assigned by each of the first 3 principal components at each
time point:
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Figure 4.9: PCA - Principal Component Loads.
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Through Figure 4.9 it is possible to conclude that:

• Principal component 1 (PC1): uniformly represents all time periods, except for
time periods near 07:30 and time periods near 21:30;

• Principal component 2 (PC2): has a non-uniform distribution over all time points.
This principal component is more representative of the time periods near 7:30 and the
time periods near 21:30 (with maximum weight around 21:00);

• Principal component 3 (PC3): similar to principal component 2, has a non-uniform
distribution over all time points. However, it has a higher representation of time periods
close to 7:30 than principal component 2, and a lower representation of time periods
near 21:30 (with maximum weight close to 22:30).

Through this analysis it can be seen that PC1 is complementary to PC2 and PC3, since in
the time periods where PC1 has little representation, it corresponds to zones where PC2 and
PC3 components are more represented. Regarding the comparison between PC2 and PC3,
it is noteworthy that the maximums in the zones with greater representativeness during the
night period do not coincide. There is also a distinct behavior around 18:00, where PC2 has
a minimum weight, while PC3 has a local maximum.

4.3 Application of clustering models with inelastic
distance measures

In this section we will perform clustering operations according to the algorithms:

• K-means (hard partitioning);
• Hierarchical (hard partitioning);
• Fuzzy (soft partitioning).

The measure of distance used will be Euclidean in an inelastic way, that is, for the calculation
of distances only the values of flow belong to the same time instant in the various daily
patterns that make up the dataset will be compared.

Figure 4.10 shows the evaluation and characterization procedures of the clustering models
with inelastic distance measures.

In Appendix A the following models are evaluated and characterized:

• A.1: K-means Clustering;
• A.2: Hierarchical Clustering;
• A.3: Fuzzy Clustering.
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Figure 4.10: Characterization and evaluation workflow of cluster
models with inelastic distance measurements.

4.4 Application of clustering models with elastic
distance measures

In this section we will perform clustering operations according to the algorithms with elastic
distance measurements that allow the comparison of flow values belonging to different time
periods.

The following clustering approaches will be used:

• Partitional clustering (k-Means and k-Meadois);
• k-Shape clustering.

In order to compare the flow values at different time intervals between time series, the
following elastic distance measurements were used:

• Dynamic time warping distance with window constrains;
• Global alignment kernel distance with window constrains;
• Shape-based distance.

In order to visualize the characteristics of each formed cluster, the following alternatives of
representation of prototypes were used:

• Mean;
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• Partition around medoids;
• DTW barycenter averaging;
• Shape Extraction (only when Shape-based distance is used).

Figure 4.11 shows the evaluation and characterization procedures of the clustering models
evaluated in this section:

Figure 4.11: Characterization and evaluation workflow of cluster
models with elastic distance measurements.

In Appendix B the following models are evaluated and characterized:

• B.1: Partitional Clustering with DTW, Mean prototype and 15 minutes time window;
• B.2: Partitional Clustering with DTW, Mean prototype and 30 minutes time window;
• B.3: Partitional Clustering with DTW, PAM prototype and 30 minutes time window;
• B.4: Partitional Clustering with DTW, DBA prototype and 15 minutes time window;
• B.5: Partitional Clustering with DTW, DBA prototype and 30 minutes time window;
• B.6: Partitional Clustering with GAK, PAM prototype and 30 minutes time window.

In the next sections will be presented the models that from the point of view of knowledge
extraction allowed to obtain more information about the behaviors existing in the daily
patterns present in the dataset. The sections are organized as follows:

• 4.4.1: Partitional Clustering with DTW, PAM prototype and 15 minutes time window;
• 4.4.2: Partitional Clustering with GAK, PAM prototype and 15 minutes time window;
• 4.4.3: K-shape Clustering.

56



4.4.1 Partitional Clustering with DTW, PAM prototype and 15
minutes time window

In this section we will analyze a clustering model using the Partitional Clustering approach
(see section 3.5.2) with the following components:

• Distance measure: DTW (see section 3.6.2);
• Prototype: PAM (see section 3.7.2);
• Comparison time window: 15 minutes (see section 3.6.2).

Clustering model internal index evaluation

Figure 4.12 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.
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Figure 4.12: Internal index evaluation for 1st iteration set of Partitional
Clustering with DTW, PAM Prototype and 15 minutes time window.

Figure 4.12 shows that the best result (Total score) was with the formation of 3 clusters.
This clustering approach needs to initially allocate centroids (see section 3.5.2), after setting
the number of clusters to be formed it is necessary to run the model with different centroid
initializations in order to evaluate which centroids initialization is best according to the
internal index measures.

Figure 4.13 shows the internal index validation of the 2nd iteration set, which aims to validate
the best centroids initialization, running the model to form 3 clusters with 20 random
centroids initializations.
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Figure 4.13: Internal index evaluation for 2nd iteration set of Partitional
Clustering with DTW, PAM Prototype and 15 minutes time window.

Figure 4.13 shows that the 1st, 4th, 9th, 14th and 17th iterations provided the best performance
in the internal indexes evaluation. In the next section the 1st iteration clustering model with
the formation of 3 clusters will be analyzed.

Clustering model characterization

Figure 4.14 shows the visualization of the clusters formed by the model according to the first
3 principal components. As can be seen from Figure 4.14, there is a distinction between
cluster 3 and the group formed by clusters 1 and 2, except in zones close to the value of -5
in the first principal component.

For clusters 1 and 2, the projection under principal components 1 and 2 allows to distinguish
between the two groups except in areas close to the value of 0 in the principal component 2.
Observing clusters 1 and 2 according to the projection on the principal components 1 and 3
it is not possible to clearly distinguish between the two clusters.
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Figure 4.14: Clusters formed through the Partition Clustering model
with DTW distance, PAM prototype and 15m window visualized
through the 3 principal components of PCA.

Figure 4.15 shows the respective centroids of the clusters formed:
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Figure 4.15: Partition Clustering model with DTW distance, PAM
prototype and 15m window centroids.

Clusters 1 and 2 present higher consumption peaks during the day period, while Cluster 3
shows higher consumption during the night time period.

Cluster 1 shows the maximum consumption value at 12:00, a local minimum near 18:00 and
a local maximum around 20:00. From this moment the consumption falls to the minimum
value registered at 04:00. The described behavior represents a typical weekend period pattern,
since the first peak of day consumption is only recorded near 12:00.
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Cluster 2 has a maximum consumption peak near 08:00, another local maximum at 12:00
and reaches a local minimum around 16:00. From this period consumption increases again
until around 20:00 which is a local maximum. Another local maximum is recorded around
21:00. After this period the consumption drops back down to 05:00 which corresponds to the
minimum value of consumption. This behavior represents a typical pattern of a working day.

Cluster 3 shows peak consumption in the midnight period and in the period near 05:00 am.
The predominance of this cluster by nocturnal consumption may be due to the use of water
is predominantly associated with irrigation of gardens.

Figure 4.16 shows the size of each of the clusters formed:
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Figure 4.16: Partition Clustering model with DTW distance, PAM
prototype and 15m window clusters sizes.

The graphic shows that most of the patterns belong to Cluster 2 with 10354 dailly flow
patterns, followed by Cluster 1 presents with 6175 daily flow patterns. Indicating that most
daily patterns have predominantly peak flows during the daytime period.

Cluster 3 has 2445 associated daily patterns that represent predominantly nocturnal
consumption.

Figure 4.17 evaluates the degree of membership of each of the annual series to the formed
clusters. It is observed that in all the annual series the daily patterns belong mostly to
Clusters 1 and 2, except the series 6545, 4781, 4610, 2379, 2150, 1546 and 1201. This
result is consistent with what was observed in the formation of 2 clusters according to the
previous clustering methods, since most clusters belong to a pattern with predominantly
diurnal consumption.
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Figure 4.17: Partition Clustering model with DTW distance, PAM
prototype and 15m window annual series membership.

Table 4.2 shows a set of statistical characteristics of the clusters formed:

Table 4.2: Partition Clustering model with DTW distance, PAM
prototype and 15m window clusters statistics.

Statistics Cluster 1
(m3/h)

Cluster 2
(m3/h)

Cluster 3
(m3/h)

Min. 0.00 0.00 0.00
1st Qu. 7.41 7.20 4.74
Median 20.28 18.47 10.43
Mean 46.40 45.95 19.24
3rd Qu. 58.90 57.69 22.21

Max. 1067.00 1207.00 530.50
IQR 51.49 50.49 17.47
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Figure 4.18 identifies the influence of weekend or holiday days have on the formation of
clusters. In Cluster 2 the percentage of weekend or national holiday patterns is around 12%,
proving that this cluster is associated with typical working day behavior. In the case of
cluster 1, the percentage of weekend or holiday patterns is around 70%, proving that this
cluster is associated with typical weekend or holiday behavior. For Cluster 3 the percentage
of weekends and holidays is around 30%. These values indicate that the formed cluster do
not allow to identify a distinct behavior between a working day and a weekend or holiday.
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Figure 4.18: Partition Clustering model with DTW distance, PAM
prototype and 15m window influence of day typology on the formation
of clusters.

Figure 4.19 allows identifying the influence of day typology in each annual series by cluster
type. As can be seen in Cluster 2, the annual series show mostly a higher percentage of
daily patterns in working days. In the case of Cluster 1 for most of the annual series, there
are a greater number of daily patterns of weekend day or national holiday type. Except for
the annual series 6587, 5259, 3863, 1765 and 1496 which present a greater number of daily
patterns associated to the working days. The annual series 6545, 4781, 4610, 2379, 2150,
1546, and 1201 also exhibit a greater number of daily patterns associated with working days,
but are poorly represented in Cluster 1. Cluster 3, which represents daily patterns with
higher nocturnal consumption, shows that in the annual series in which this cluster is the
most representative, the proportions between working days and national holiday / weekend
are indicative that typology of the day does not have significant influence on this cluster.
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Figure 4.19: Partition Clustering model with DTW distance, PAM
prototype and 15m window influence of day typology on each series by
clusters.

4.4.2 Partitional Clustering with GAK, PAM prototype and 15
minutes time window

In this section we will analyze a clustering model using the Partitional Clustering approach
(see section 3.5.2) with the following components:

• Distance measure: GAK (see section 3.6.3);
• Prototype: PAM (see section 3.7.2);
• Comparison time window: 15 minutes (see section 3.6.2).

Clustering model internal index evaluation

Figure 4.20 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.
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Figure 4.20: Internal index evaluation for 1st iteration set of Partitional
Clustering with GAK, PAM Prototype and 15 minutes time window.

Figure 4.20 shows that the best result (Total score) was with the formation of 3 clusters.
This clustering approach needs to initially allocate centroids (see section 3.5.2), after setting
the number of clusters to be formed it is necessary to run the model with different centroid
initializations in order to evaluate which centroids initialization is best according to the
internal index measures.

Figure 4.21 shows the internal index validation of the 2nd iteration set, which aims to validate
the best centroids initialization, running the model to form 3 clusters with 20 random
centroids initializations.

0.00

0.25

0.50

0.75

1.00

5 10 15 20

Internal index:

Total score

0.00

0.25

0.50

0.75

1.00

5 10 15 20
Centroids initializations iterations

Internal index:

CH

COP

D

DB

DBstar

SF

Sil

S
co

re

Figure 4.21: Internal index evaluation for 2nd iteration set of Partitional
Clustering with GAK, PAM Prototype and 15 minutes time window.
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Figure 4.21 shows that the 11th and 15th iterations provided the best performance in the
internal indexes evaluation. In the next section the 15th iteration clustering model with the
formation of 3 clusters will be analyzed.

Clustering model characterization

Figure 4.22 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure 4.22: Clusters formed through the Partition Clustering model
with GAK distance, PAM prototype and 15m window visualized
through the 3 principal components of PCA.

In Figure 4.22 it is possible to see a separation of the clusters, being that Cluster 1 tends to
be located tendentially in zones of value inferior to -12 in the principal component 1, Cluster
2 is tended in zones of value superior to -2.5 of the principal component 1. Cluster 3 is
located in the intermediate zone between clusters 1 and 2.

The results obtained with the formation of 3 clusters are quite different in the location of
the clusters compared to the results of previously presented in clustering models with DTW
distance and PAM centroid that formed 3 clusters.

Figure 4.23 shows the respective centroids of the clusters formed:
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Figure 4.23: Partition Clustering model with GAK distance, PAM
prototype and 15m window centroids.

Cluster 1 shows peak consumption in the 23:00 period and in the period near 05:00 am. The
predominance of this cluster by nocturnal consumption may be due to the use of water is
predominantly associated with irrigation of gardens.

Cluster 2 has a maximum consumption peak near 08:00, another local maximum at 12:00
and reaches a local minimum around 16:00. From this period consumption increases again
until around 20:00 which is a local maximum. After this period the consumption drops back
down to 05:00 which corresponds to the minimum value of consumption.

The centroid of cluster 3 has a constant flow rate throughout the day.

Clusters 2 present higher consumption peaks during the day period, while Cluster 1 shows
higher consumption during the night time period. Cluster 3 identifies a group of daily patterns
that exhibit a behavior of constant flow throughout the day.

Figure 4.24 shows the size of each of the clusters formed:
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Figure 4.24: Partition Clustering model with DTW distance, PAM
prototype and 15m window clusters sizes.
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Figure 4.24 shows that most of the patterns belong to Cluster 2 with 15306 dailly flow
patterns, followed by Cluster 1 presents with 1844 daily flow patterns. Cluster 3 presents
1824 daily flow patterns.

Figure 4.25 evaluates the degree of membership of each of the annual series to the formed
clusters:
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Figure 4.25: Partition Clustering model with DTW distance, PAM
prototype and 15m window annual series membership.

It was observed that in all the annual series the daily patterns belong mostly to Clusters
2, indicated that most annual series present higher consumption during the daytime period.
The exceptions are the series 6545, 4781, 4610, 2379, 1546 and 1201 that belong mostly to
Cluster 1 and therefore show higher consumption during the night time.

The annual series 2150 belongs mainly to cluster 3. Other annual series such as 6587, 2166,
2014, 1765, 1759 and 1201 show a high percentage of daily patterns belonging to cluster 3.
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Table 4.3 shows a set of statistical characteristics of the clusters formed:

Table 4.3: Partition Clustering model with GAK distance, PAM
prototype and 15m window clusters statistics.

Statistics Cluster 1
(m3/h)

Cluster 2
(m3/h)

Cluster 3
(m3/h)

Min. 0.00 0.00 0.00
1st Qu. 4.92 7.34 5.01
Median 10.37 18.82 18.01
Mean 18.18 46.15 38.09
3rd Qu. 21.60 57.76 47.20

Max. 312.25 1207.00 981.25
IQR 16.68 50.42 42.19

Figure 4.26 identifies the influence of weekend or holiday days have on the formation of
clusters:
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Figure 4.26: Partition Clustering model with GAK distance, PAM
prototype and 15m window influence of day typology on the formation
of clusters.

It is observed that the percentage of weekends and holidays for clusters is about 30%. This
distribution indicates that these Clusters do not identify a distinct behavior between working
day and weekend or holiday, since the assignment of the typology of days in a year is of the
same order of magnitude.

Figure 4.27 allows identifying the influence of day typology in each annual series by cluster
type:
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Figure 4.27: Partition Clustering model with GAK distance, PAM
prototype and 15m window influence of day typology on each series
by clusters.

As can be seen from Figure 4.27, in the most representative cluster of each annual series it is
verified that the proportions of daily patterns belonging to each day typology remains similar
to that presented in the graph of the previous section, evidencing that in general there is no
influence of the typology of the day in these cases, but in the case of the clusters with less
representation for each annual series usually there is influence of the typology of the day.

4.4.3 K-shape Clustering
In this section we will analyze a clustering model using the K-shape Clustering approach (see
section 3.5.3) with the following components:

• Distance measure: Shape-based (see section 3.6.4);
• Prototype: Shape extraction (see section 3.7.4);
• Comparison time window: All data points are compared (see section 3.6.4).
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Clustering model internal index evaluation

Figure 4.28 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.
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Figure 4.28: Internal index evaluation for 1st iteration set of k-Shape.

Figure 4.28 shows that the best result (Total score) was with the formation of 3 clusters.
This clustering approach needs to initially allocate centroids (see section 3.5.3), after setting
the number of clusters to be formed it is necessary to run the model with different centroid
initializations in order to evaluate which centroids initialization is best according to the
internal index measures. Figure 4.29 shows the internal index validation of the 2nd iteration
set, which aims to validate the best centroids initialization, running the model to form 3
clusters with 20 random centroids initializations.
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Figure 4.29: Internal index evaluation for 2nd iteration set of k-Shape.
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Figure 4.29 shows that the 20th iteration provided the best performance in the internal indexes
evaluation. In the next section the 20th iteration clustering model with the formation of 3
clusters will be analyzed.

Clustering model characterization

Figure 4.30 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure 4.30: Clusters formed through the k-Shape model visualized
through the 3 principal components of PCA.

As can be seen from Figure 4.30, there is a distinction between cluster 3 and the group formed
by clusters 1 and 2, except in zones close to the value of -5 in the first principal component.

For clusters 1 and 2, the projection under principal components 1 and 2 allows to distinguish
between the two groups except in areas close to the value of 0 in the principal component 2.
Observing clusters 1 and 2 according to the projection on the principal components 1 and 3
it is not possible to clearly distinguish between the two clusters.

This results are very similar to the one obtained by the clustering partition model with DTW
distance, PAM centroid and 15 minutes window.

Figure 4.31 shows the respective centroids of the clusters formed:
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Figure 4.31: k-Shape model centroids.

Clusters 1 and 2 present higher consumption peaks during the day period, while Cluster
3 shows higher consumption during the night time period. Cluster 1 shows the maximum
consumption value at 12:00, a local minimum near 17:00 and a local maximum around 20:00.
From this moment the consumption falls to the minimum value registered at 04:00. The
described behavior represents a typical weekend period pattern, since the first peak of day
consumption is only recorded near 12:00. Cluster 2 has a maximum consumption peak near
07:30, another local maximum at 12:00 and reaches a local minimum around 16:30. From
this period consumption increases again until around 20:00 which is a local maximum. After
this period the consumption drops back down to 04:00 which corresponds to the minimum
value of consumption. This behavior represents a typical pattern of a working day. Cluster
3 shows peak consumption at 23:00 and in the period near 05:00. The predominance of this
cluster by nocturnal consumption may be due to the use of water is predominantly associated
with irrigation of gardens.

This results are very similar to the one obtained by the clustering partition model with DTW
distance, PAM centroid and 15 minutes window.

Figure 4.32 shows the size of each of the clusters formed:
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Figure 4.32: k-Shape model clusters sizes.
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The graphic shows that most of the patterns belong to Cluster 2 with 9052 dailly flow
patterns, followed by Cluster 1 presents with 7147 daily flow patterns. Indicating that most
daily patterns have predominantly peak flows during the daytime period.

Cluster 3 has 2740 associated daily patterns that represent predominantly nocturnal
consumption.

Figure 4.33 evaluates the degree of membership of each of the annual series to the formed
clusters:
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Figure 4.33: k-Shape model annual series membership.

In Figure 4.33 it is observed that in all the annual series the daily patterns belong mostly
to Clusters 1 and 2, except the series 6545, 4781, 4610, 2379, 2150, 1546 and 1201. This
result is consistent with what was observed in the formation of 2 clusters according to the
previous clustering methods, since most clusters belong to a pattern with predominantly
diurnal consumption.
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Table 4.4 shows a set of statistical characteristics of the clusters formed:

Table 4.4: k-Shape model clusters statistics.

Statistics Cluster 1
(m3/h)

Cluster 2
(m3/h)

Cluster 3
(m3/h)

Min. 0.00 0.00 0.00
1st Qu. 8.00 6.80 5.00
Median 23.38 16.40 11.52
Mean 52.39 41.33 22.06
3rd Qu. 67.50 52.00 25.55

Max. 1067.00 1207.00 981.25
IQR 59.50 45.20 20.55

Figure 4.34 identifies the influence of weekend or holiday days have on the formation of
clusters:
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Figure 4.34: k-Shape model influence of day typology on the formation
of clusters.

As it can be seen, for cluster 2 the percentage of weekend or national holiday patterns is
around 12%, proving that this cluster is associated with typical working day behavior.

In the case of cluster 1, the percentage of weekend or holiday patterns is around 63%, proving
that this cluster is associated with typical weekend or holiday behavior.

For Cluster 3 the percentage of weekends and holidays is around 30%. These values indicate
that the formed cluster do not allow to identify a distinct behavior between a working day
and a weekend or holiday.

These results are identical to those obtained by partition model with DTW distance, PAM
prototype and 15m window. Although in k-Shape model Cluster 2 the percentage of daily
patterns of weekend or holiday typology is lower.
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Figure 4.35 allows identifying the influence of day typology in each annual series by cluster
type:

Cluster 1 Cluster 2 Cluster 3
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Figure 4.35: k-Shape model influence of day typology on each series by
clusters.

As can be seen in Cluster 2, the annual series show mostly a higher percentage of daily
patterns in working days.

In the case of Cluster 1 for most of the annual series, there are a greater number of daily
patterns of weekend day or national holiday type.

Cluster 3, which represents daily patterns with higher nocturnal consumption, shows that in
the annual series in which this cluster is the most representative, the proportions between
working days and national holiday / weekend are indicative that typology of the day does
not have significant influence on this cluster.
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4.5 Summary of clustering models analysis
Table 4.5 summarizes the outputs and limitations of each cluster operation performed in the
previous sub-chapters.

As shown in Table 4.5 the models where the best performance iteration only forms 2
clusters, differentiate the daily patterns by presenting higher consumption at night or higher
consumption during the day. In the case of the hierarchical model (section A.2), it presents
a large mix of clusters in the boundary zones between the two clusters (Figure A.10), which
highlights the rigidity of this clustering algorithm that does not allow an element to change
clusters in later iterations. In contrast, the Fuzzy Clustering model (section A.3) presented
the best-defined boundaries (Figure A.17), highlighting the soft partitioning nature of the
algorithm. All the remaining models that formed only 2 clusters present some mix in the
cluster boundary zones although not as mixed as in the case of hierarchical clustering.

In the case of the models that in the best iteration formed 3 clusters, those are differentiated
in different ways:

1. Models that can differentiate between daily patterns with predominantly daytime
consumption from patterns with nighttime consumption. With regards to predominant
daytime consumption patterns, they can still distinguish 2 subsets that differ according
to the occurrence of daytime peak consumption. These 2 subsets can be distinguished
by their peak consumption in the morning or peak consumption around 12:00 (weekend
vs. workday pattern). This behavior presents the Partitional Clustering models with
DTW, PAM prototype and 15m time window (section 4.4.1) and k-Shape Clustering
(section 4.4.3). In the case of the Partitional Clustering model with DTW, PAM
prototype and 30 min time window. (section B.3), the 2 subsets formed from the
predominantly daytime daily consumption patterns are distinguished by patterns that
have their peak consumption in the morning or patterns where their peak consumption
near dinner time. Regarding the boundaries of the formed clusters, there is a greater
mix at the boundaries between the subsets representing the predominantly daytime
consuming patterns;

2. Models that can differentiate between predominantly nighttime consumption,
predominantly daytime consumption and also a 3rd set where daily patterns that do
not differ greatly between daytime and nighttime consumption, are inserted. The
Partitional Clustering models with GAK, PAM prototype and 15 or 30m time window
(respectively sections 4.4.2 and B.6) exhibit this behavior. Regarding the boundaries
between the clusters, it is observed that these models have a larger border mixture
between the cluster that represents the daily patterns with night consumption and the
cluster that represents the patterns that do not differ greatly between day and night
consumption.

Given the above aspects, it can be concluded that the models that form 3 clusters can provide
more information about the daily patterns present in the dataset under analysis.

Table 4.5 shows that k-Means models (section A.1), Partition Clustering with DTW, Mean
prototype and 15m or 30m time window (respectively section B.1 and B.2), differ only in the
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time window comparison (respectively 0, 15 and 30 minutes) and have the same result at the
level of formed clusters, only 2 clusters, as well as present centroids of clusters with similar
characteristics. When comparing models that differ only by using different prototypes, such
as Partition Clustering with DTW, Mean centroid and 15m time window (section B.1) and
Partition Clustering with DTW, PAM centroid and 15m time window (section 4.4.1), it is
revealed that with the use of the PAM prototype 3 clusters are formed instead of the 2 formed
by the Mean prototype model. This indicates that the time windows comparison is not as
an important factor as choosing the type of prototype to use in partition clustering models.

In Table 4.5, looking at the prototypes used in the models and the number of clusters they
produced, it was validated that the models that use as centroids the dataset objects that
minimize the distances to the other cluster members to which they belong (PAM prototype
and Shape- extraction prototype) tend to form 3 clusters as the best iteration of the model
and thus better capture the characteristics present in the dataset under study. In the case of
prototype typologies that use centroid as an arithmetic mean of the values of objects present
in the cluster to which the centroid belongs (Mean prototype and DBA prototype), they tend
to form 2 clusters as a better iteration of the model and do not capture the characteristics
so effectively.

The following models were chosen as having the best performance in dataset feature
extraction:

• Partitition Clustering with DTW, PAM prototype and 15 minutes time window (section
4.4.1);

• Partitition Clustering with GAK, PAM prototype and 15 minutes time window (section
4.4.2);

• k-Shape Clustering (section 4.4.3).

These models were chosen because they present: the formation of 3 clusters as the best
iteration, relevant model outputs to characterize the dataset (Table 4.5), make use of different
distance measurements, use prototypes that minimize distances to the remaining members of
the cluster (PAM prototype and Shape extraction prototype), and thus better representing
the cluster. Regarding the time window for Partition Clustering models, the minimum
window studied for the model (15 minutes) was chosen, since it was revealed that the
increment of the temporal window is not an important factor for feature extraction for this
particular dataset.

Regarding the Outliers, in the Boxplot analysis of Figure 4.5 it is clear that the 7815, 6871
and 2485 series had maximum flow rates greater than 600 m3/h. The decision was made not
to remove these Outliers prior to clustering operations. Analyzing the centroids obtained by
the clustering models (Figures 4.15, 4.23 and 4.31) and the degree of belonging of the series
to the clusters (Figures 4.17, 4.25 and 4.33), it appears that the presence of these Outliers
had little influence on the formation of clusters and selection of the clusters centroids.
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Table 4.5: Summary of clustering models analysis.

Section Clustering
Method

Type of
partition

Prototype Distance
Measure

Comparasion
time

window

Number
of

Clusters

Outputs Limitations

4.4.1 Partitional
Clustering
(k-Medoids)

Hard
partition

PAM DTW
(Euclidean)

15 minutes 3
• It forms 3 clusters: one represents patterns

with nocturnal consumption superior to
daytime consumption, another represents
typical working day patterns with daytime
consumption superior to nocturnal
consumption and a third cluster with typical
patterns of weekend or holiday with greater
daily consumption than nocturnal;

• The algorithm allows to compare flow values up
to a time lag of 15 minutes;

• The centroids formed correspond to actual
patterns of the dataset.

• The projection according to the principal
components 1 and 3 does not present a clear
distinction between clusters 1 and 2.

4.4.2 Partitional
Clustering
(k-Medoids)

Hard
partition

PAM GAK 15 minutes 3
• It forms 3 clusters: one represents patterns

with nocturnal consumption superior to diurnal
consumption, another represents patterns with
daytime consumption superior to nocturnal
consumption and finally a cluster that
represents daily series values without great
variability of the value of flow throughout the
day;

• The algorithm allows to compare flow values up
to a time lag of 15 minutes;

• The centroids formed correspond to actual
patterns of the dataset.

• Formed groups do not distinguish typical daily
patterns of workdays from typical weekend or
holiday patterns.

4.4.3 k-Shape
Clustering

Hard
partition

Shape
extraction

Shape based
distance

All data
points are
compared

3
• It forms 3 clusters: one represents patterns

with nocturnal consumption superior to
daytime consumption, another represents
typical working day patterns with daytime
consumption superior to nocturnal
consumption and a third cluster with typical
patterns of weekend or holiday with greater
daily consumption than nocturnal;

• The algorithm allows to compare flow values up
to a time lag of 15 minutes;

• The centroids formed correspond to actual
patterns of the dataset.

• The projection according to the principal
components 1 and 3 does not present a clear
distinction between clusters 1 and 2.

A.1 k-Means
Clustering

Hard
partition

Mean Euclidean No window 2
• It forms 2 clusters: one represents patterns

with nocturnal consumption superior to
daytime consumption and the other represents
patterns with daytime consumption superior to
nocturnal consumption.

• The algorithm only compares flow rates at the
same time instants;

• Formed groups do not distinguish typical daily
patterns of workdays from typical weekend or
holiday patterns;

• The centroids formed do not correspond to
actual patterns of the dataset.
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Table 4.5: Summary of clustering models analysis. (continued)

Section Clustering
Method

Type of
partition

Prototype Distance
Measure

Comparasion
time

window

Number
of

Clusters

Outputs Limitations

A.2 Hierarchical
Clustering

Hard
partition

Mean Euclidean No window 2
• It forms 2 clusters: one represents patterns

with nocturnal consumption superior to
daytime consumption and the other represents
patterns with daytime consumption superior to
nocturnal consumption.

• The algorithm only compares flow rates at the
same time instants;

• Formed groups do not distinguish typical daily
patterns of workdays from typical weekend or
holiday patterns;

• The projection according to the principal
components 1 and 3 and also projection
according to the principal components 1 and 2,
do not present a clear distinction between the
formed clusters, evidencing that this model is
more rigid in the formation of the clusters;

• The centroids formed do not correspond to
actual patterns of the dataset.

A.3 Fuzzy
Clustering

Soft
partition

Mean Euclidean No window 2
• It forms 2 clusters: one represents patterns

with nocturnal consumption superior to
daytime consumption and the other represents
patterns with daytime consumption superior to
nocturnal consumption;

• The projections of the clusters according to the
principal components allows to validate that
there is a clear distinction between the clusters
in the border zones. It is possible to conclude
that this soft partitioning algorithm is able to
define in a more assertive way the cluster to be
assigned in the boundary zones.

• The algorithm only compares flow rates at the
same time instants;

• Formed groups do not distinguish typical daily
patterns of workdays from typical weekend or
holiday patterns;

• The centroids formed do not correspond to
actual patterns of the dataset.

B.1 Partitional
Clustering
(k-Means)

Hard
partition

Mean DTW
(Euclidean)

15 minutes 2
• It forms 2 clusters: one represents patterns

with nocturnal consumption superior to
daytime consumption and the other represents
patterns with daytime consumption superior to
nocturnal consumption;

• The algorithm allows to compare flow values up
to a time lag of 15 minutes.

• Formed groups do not distinguish typical daily
patterns of workdays from typical weekend or
holiday patterns;

• The centroids formed do not correspond to
actual patterns of the dataset.

B.2 Partitional
Clustering
(k-Means)

Hard
partition

Mean DTW
(Euclidean)

30 minutes 2
• It forms 2 clusters: one represents patterns

with nocturnal consumption superior to
daytime consumption and the other represents
patterns with daytime consumption superior to
nocturnal consumption;

• The algorithm allows to compare flow values up
to a time lag of 30 minutes.

• Formed groups do not distinguish typical daily
patterns of workdays from typical weekend or
holiday patterns;

• The centroids formed do not correspond to
actual patterns of the dataset.
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Table 4.5: Summary of clustering models analysis. (continued)

Section Clustering
Method

Type of
partition

Prototype Distance
Measure

Comparasion
time

window

Number
of

Clusters

Outputs Limitations

B.3 Partitional
Clustering
(k-Medoids)

Hard
partition

PAM DTW
(Euclidean)

30 minutes 3
• It forms 3 clusters: one represents patterns

with nocturnal consumption superior to
daytime consumption, another represents
daytime consumption superior to nocturnal
consumption with peak consuption in the
morning and a third cluster that represents
daytime consumption superior to nocturnal
consumption with peak consuption in near
dinner time;

• The algorithm allows to compare flow values up
to a time lag of 30 minutes;

• The centroids formed correspond to actual
patterns of the dataset.

• Formed groups do not distinguish typical daily
patterns of workdays from typical weekend or
holiday patterns;

• The projection according to the principal
components 1 and 3 does not present a clear
distinction between clusters 1 and 2.

B.4 Partitional
Clustering
(k-Medoids)

Hard
partition

DBA DTW
(Euclidean)

15 minutes 2
• It forms 2 clusters: one represents patterns

with nocturnal consumption superior to
daytime consumption and the other represents
patterns with daytime consumption superior to
nocturnal consumption;

• The algorithm allows to compare flow values up
to a time lag of 15 minutes.

• Formed groups do not distinguish typical daily
patterns of workdays from typical weekend or
holiday patterns;

• The centroids formed do not correspond to
actual patterns of the dataset.

B.5 Partitional
Clustering
(k-Medoids)

Hard
partition

DBA DTW
(Euclidean)

30 minutes 2
• It forms 2 clusters: one represents patterns

with nocturnal consumption superior to
daytime consumption and the other represents
patterns with daytime consumption superior to
nocturnal consumption;

• The algorithm allows to compare flow values up
to a time lag of 30 minutes.

• Formed groups do not distinguish typical daily
patterns of workdays from typical weekend or
holiday patterns;

• The centroids formed do not correspond to
actual patterns of the dataset.

B.6 Partitional
Clustering
(k-Medoids)

Hard
partition

PAM GAK 30 minutes 3
• It forms 3 clusters: one represents patterns

with nocturnal consumption superior to diurnal
consumption, another represents patterns with
daytime consumption superior to nocturnal
consumption and finally a cluster that
represents daily series values without great
variability of the value of flow throughout the
day;

• The algorithm allows to compare flow values up
to a time lag of 30 minutes;

• The centroids formed correspond to actual
patterns of the dataset.

• Formed groups do not distinguish typical daily
patterns of workdays from typical weekend or
holiday patterns.
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4.6 Further analysis on best clustering models
In this section the characteristics of geographic distribution and the prepronderance of dry
months vs. wet months in the clusters formed by the best models will be analyzed.

The geographical distribution of the dataset comprises the following regions:

• Lisbon metropolitan area;
• North (North Coast);
• Coastal Center;
• Interior Center;
• South (Algarve).

The preponderance of dry months with humid months will have the following constitution:

• Dry months: June, July, August and September;
• Wet months: October, November, January, February, March, April and May.

The following models will be evaluated:

• Partitition Clustering with DTW, PAM prototype and 15 minutes time window (section
4.4.1);

• k-Shape Clustering (section 4.4.3);
• Partitition Clustering with GAK, PAM prototype and 15 minutes time window (section

4.4.2).

4.6.1 Evalution of Partition Clustering with DTW, PAM
prototype with 15 minutes time window

Figure 4.36 shows the centroids formed in clustering analysis performed in section 4.4.1.
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Figure 4.36: Partition Clustering model with DTW distance, PAM
prototype and 15m window centroids for further cluster analysis.

Figure 4.37 shows that Cluster 1 representing typical weekend dailly patterns and Cluster 2
representing a typical working day daily pattern have a similar distribution with respect to
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geographical location. With greater weight over the Coastal Center and Lisbon Metropolitan
Area regions.

Cluster 3, which represents daily patterns with predominantly nocturnal consumption,
belongs mainly to the South (Algarve) region. Indicating that in this location there is a
strong component of irrigation in the water use.

Figure 4.38 shows that for Cluster 1 about 25% of the daily patterns that make up the cluster
belong to dry months. In the case of Cluster 2 about 37.5% of the daily patterns that make
up the cluster belong to dry months.

Regarding Cluster 3, it presents about 37.5% of the daily patterns that make up the cluster
as belonging to dry months. This behavior was not expected as it is a cluster that represents
daily patterns with predominantly nocturnal consumption due to water use irrigation and
should occur more in dry months than in humid months. It may indicate that in the
south (Algarve) region, to which this cluster mainly belongs, water sprinklers may not be
programmed according to the humidity of the terrain and the registered rainfall.
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Figure 4.37: Geographic distribution of the clusters formed for Part.
Clust. model with DTW, PAM prototype and 15m window.
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Figure 4.38: Distribution of wet months and dry months for Part.
Clust. model with DTW, PAM prototype and 15m window.
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4.6.2 Evalution of k-Shape Clustering
Figure 4.39 shows the centroids formed in clustering analysis performed in section 4.4.3.
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Figure 4.39: k-Shape model centroids for further cluster analysis.

Figure 4.40 shows that Cluster 1 representing typical weekend dailly patterns and Cluster 2
representing a typical working day daily pattern have a similar distribution with respect to
geographical location to the presented for Partition Clustering with DTW, PAM prototype
with 15 minutes time window. With greater weight over the Coastal Center and Lisbon
Metropolitan Area regions.

Cluster 3 also presents similar results to the Partition Clustering with DTW, PAM prototype
with 15 minutes time window. This cluster represents daily patterns with predominantly
nocturnal consumption and belongs mainly to the south (Algarve) region. Indicating that in
this location there is a strong component of irrigation in the water use.

Figure 4.41 shows that for Cluster 1 about 25% of the daily patterns that make up the cluster
belong to dry months. In the case of Cluster 2 about 37.5% of the daily patterns that make
up the cluster belong to dry months. This results are similar to the Partition Clustering with
DTW, PAM prototype with 15 minutes time window.

Regarding Cluster 3, it presents about 44% of the daily patterns that make up the cluster
as belonging to dry months. This behaviour is similar to the Partition Clustering with
DTW, PAM prototype with 15 minutes time window, and was not expected as it is a cluster
that represents daily patterns with predominantly nocturnal consumption due to water use
irrigation and should occur more in dry months than in humid months. It may indicate that
in the South (Algarve) region, to which this cluster mainly belongs, water sprinklers may not
be programmed according to the humidity of the terrain and the registered rainfall.
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Figure 4.40: Geographic distribution of the clusters formed for k-Shape
Clust. model.

0

25

50

75

100

Cluster 1 Cluster 2 Cluster 3

N
um

be
r 

of
 d

ai
ly

 ti
m

e 
se

rie
s 

(%
)

Month type:

Dry months

Wet months

Influence of month type on cluster formation

Figure 4.41: Distribution of wet months and dry months for k-Shape
Clust. model.

4.6.3 Evalution of Partition Clustering with GAK, PAM
prototype with 15 minutes time window

Figure 4.42 shows the centroids formed in clustering analysis performed in section 4.4.2.
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Figure 4.42: Partition Clustering model with GAK distance, PAM
prototype and 15m window centroids for further cluster analysis.

Figure 4.43 shows that Cluster 1 represents daily patterns with predominantly nocturnal
consumption similar to the Cluster 3 from the previous models. About 98% of this cluster
belongs to the South (Algarve) region.

Cluster 2 is represented daily patterns with predominantly daytime consumption. The regions
most represented by this cluster are Costal Center, Lisbon Metropolitan Area and North
(North Coast) regions.

The centroid of cluster 3 has a constant flow rate over time. Since centroid PAM is a
real dataset pattern with the minimum distance to the remaining cluster members, it may
represent all the patterns that have the lowest variability over time and little variation
between daytime and nighttime consumption. For this cluster it is verified that all regions are
represented, with emphasis on the South (Algarve), Lisbon metropolitan area and Coastal
Center regions.

Figure 4.44 shows that for Cluster 1 about 37.5% of the daily patterns that make up
the cluster belong to dry months. This behaviour is similar to the Cluster 3 of Partition
Clustering with DTW, PAM prototype with 15 minutes time window and the Cluster 3 of the
k-Shape clustering model. This behaviour is not expected since it is a cluster that represents
daily patterns with predominantly nocturnal consumption due to water use irrigation and
should occur more in dry months than in humid months. It may indicate that in the
south (Algarve) region, to which this cluster mainly belongs, water sprinklers may not be
programmed according to the humidity of the terrain and the registered rainfall.

In the case of Cluster 2 about 31% of the daily patterns that make up the cluster belong
to dry months. As for Cluster 3, about 44% of the daily patterns that make up the cluster
belong to dry months.
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Figure 4.43: Geographic distribution of the clusters formed for Part.
Clust. model with GAK, PAM prototype and 15m window.
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Figure 4.44: Distribution of wet months and dry months for Part.
Clust. model with GAK, PAM prototype and 15m window.

4.6.4 Summary on further analysis on best clustering models
From the subsequent analysis it was found that the Partition Clustering with DTW, PAM
prototype with 15 minutes time window and k-Shape Clustering models formed identical
clusters and presented similar distributions at the level of geographic distribution and
distribution of wet months vs. dry months.

It was also validated that the cluster that in each model represents daily patterns of
predominantly nocturnal consumption and irrigation, belongs mostly to the South (Algarve)
region and represents mostly wet months. This behavior was not expected and indicates
that there may be incorrect management of water use for irrigation, as this cluster is more
associated with wet months and it is recommended that irrigation systems be regulated to
take into account the soil humidity level and the recorded rainfall in the South (Algarve)
region.
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From the point of view of the representation of clusters formed by each model, Partition
Clustering with DTW, PAM prototype with 15m time window and k-Shape Clustering models
present the same set of clusters:

• Cluster 1: represents typical weekend daily patterns with peak consumption near 12:00;
• Cluster 2: represents typical working day daily patterns with peak consumption near

7:30;
• Cluster 3: represents daily patterns with predominantly nighttime consumption

associated with irrigation water use.

In the case of Partition Clustering with GAK, PAM prototype with 15m time window model,
the formed clusters represent:

• Cluster 1: represents daily patterns with predominantly nighttime consumption
associated with irrigation water use;

• Cluster 2: represents daily patterns with predominantly daytime consumption;
• Cluster 3: represents all the patterns that have the lowest variability over time and

little variation between daytime and nighttime consumption.

In the next section we will propose a combined model that aggregates the characteristics of
the Partition Clustering with DTW, PAM prototype with 15m time window and Partition
Clustering with GAK, PAM prototype with 15m time window models described in the present
analysis. From Partition Clustering with DTW, PAM prototype with 15m time window
model, Clusters 1 and 2 will be incorporated in the combined model, in order to assimilate
groups representing daily weekend patterns and daily working day patterns, respectively.
From the Partition Clustering with GAK, PAM prototype with 15m time window model,
Cluster 3 will be incorporated into the combined model, in order to assimilate a group that
represents all the patterns that have the lowest variability over time and little variation
between daytime and nighttime consumption.

Given that the Partition Clustering with DTW, PAM prototype with 15m time window and
k-Shape Clustering models are identical in the model outputs, only the Partition Clustering
with DTW, PAM prototype with 15m time window model was used in the combined model
since it presents the same prototype typology (PAM) as the Partition Clustering with GAK,
PAM prototype with 15m time window model.

4.7 Combined model analysis
In this section a combined model will be presented that will consist of a combination of the
clusters of the best performing models analyzed in the previous chapter:

• Partition Clustering with DTW, PAM prototype with 15m time window;
• Partition Clustering with GAK, PAM prototype with 15m time window.

Regarding the Partition Clustering with DTW, PAM prototype with 15m time window model
the following clusters will be incorporated:

• Cluster 1: represents typical weekend daily patterns with peak consumption near 12:00;
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• Cluster 2: represents typical working day daily patterns with peak consumption near
7:30;

• Cluster 3: represents daily patterns with predominantly nighttime consumption
associated with irrigation water use.

Cluster 2 of the Partition Clustering with GAK, PAM prototype with 15m time window
model, which represents daily patterns with predominantly daytime consumption, will also
be incorporated into the combined model. This cluster will overlap selected clusters from
Partition Clustering model with DTW, PAM prototype with 15m time window, which implies
a reduction of members in these clusters, being necessary to recalculate the PAM centroids
in clusters 1,3 and 4 of the combined model.

Figure 4.45 shows the process of combining clusters to create the combined model:

Figure 4.45: Characterization and evaluation workflow of cluster
models with elastic distance measurements.

Figure 4.46 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure 4.46: Clusters formed through the Combined Model visualized
through the 3 principal components of PCA.

Figure 4.46 shows a greater dispersion of the members of Cluster 2. However, looking at the
centroid of Cluster 2 and the fact that this cluster is in the zone between Cluster 1 and the
zone composed by Clusters 3 and 4, indicates that this cluster is composed of daily patterns
that do not have significant daytime and nighttime variability. In section 4.7.1 clustering will
be done on Cluster 2 to characterize the subsets present in Cluster 2.

4.7.1 Cluster 2 - Application of clustering models with elastic
distance measures

In this section clustering operations on Cluster 2 of the Combined Model will be performed
according to the algorithms with elastic distance measurements that allow the comparison
of flow values belonging to different time periods.

The following clustering approaches will be used:

• Partition Clustering with DTW, PAM prototype with 15m time window;
• Partition Clustering with GAK, PAM prototype with 15m time window.

Figure 4.47 shows the evaluation and characterization procedures of the clustering models
evaluated in this section:
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Figure 4.47: Characterization and evaluation workflow of cluster
models with elastic distance measurements applied on Cluster 2.

In Appendix C the following models are evaluated and characterized:

• C.1: Cluster 2 - Partitional Clustering with DTW, PAM prototype and 15 minutes
time window;

• C.2: Cluster 2 - Partitional Clustering with GAK, PAM prototype and 15 minutes
time window.

Summary of analysis on cluster 2

From the analysis of Figures C.5 and Figure C.13 of clustering operations on Cluster 2, it
was found that in both models there is a Cluster whose centroid is represented by a pattern
that does not show flow variation over time and that aggregates most of the daily patterns.
In Partitional Clustering with DTW model, the centroid is represented in Cluster 2.5 (see
Figure C.5) and in Partitional Clustering with GAK model, the centroid is represented in
Cluster 2.7 (see Figure C.13). These clusters group the cases of daily patterns that show
less variability between nighttime and daytime consumption compared to the daily patterns
belonging to the remaining clusters.

Figure 4.48 shows the size of clusters 2.5 and 2.7 compared to the remaining clusters formed
in their clustering models.:
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Figure 4.48: Cluster 2 - Clusters size comparison.

Figure 4.48 shows that in Partitional Clustering with DTW model, Cluster 2.5 has a smaller
size which makes the remaining formed clusters larger and more representative of the
behaviors present in the set of patterns that make up Cluster 2. In the case of Partitional
Clustering with DTW model, Cluster 2.7 has a larger size which makes the remaining
formed clusters to have fewer elements and be less representative.

In this analysis it was decided to use clusters formed through Partitional Clustering with
DTW model to represent the subsets present in Cluster 2 of the Combined Model. In the
next section the Combined Model will be presented taking into account the subsets of Cluster
2 formed through the Partitional Clustering with DTW model.

4.7.2 Combined model final representation
Clustering model characterization

Figure 4.49 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure 4.49: Combined Model final representation visualized through
the 3 principal components of PCA.

From Figure 4.49 it can be seen that Cluster 1, associated with predominantly nocturnal
consumptions, is well defined on the left according to Principal Component 1. Clusters
3 and 4, of predominantly daytime consumption, are on the right according to Principal
Component 1. The boundary separating Clusters 1 and 2 is well defined according to
Principal Component 2, with values greater than 0, in Principal component 2, being
associated with Cluster 4 which represents typical working day patterns. In the case of
values below 0, according to the principal component 2, they are associated with Cluster
3 which represents typical weekend patterns. The subsets of Cluster 2 are in the middle
zone of Principal Component 1 meaning that the differences between the predominance of
nighttime consumption versus daytime consumption in these clusters are not so evident.

Figure 4.50 shows the size of each of the clusters formed:
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Figure 4.50: Combined Model final representation of clusters sizes.

Figure 4.50 shows that Clusters 1, 3 and 4 aggregate a greater number of daily patterns.
Cluster 4, representing a typical daytime working day pattern is the largest cluster, followed
by Cluster 3 representing a typical weekend daytime pattern behavior. Cluster 1 represents
predominantly nighttime consumption patterns that are smaller in size than previously
mentioned clusters.

In the case of the subsets of Cluster 2, they are much smaller in size than Clusters 1, 3 and
4. Cluster 2.5 stands out in size, this cluster groups patterns that show little consumption
variability over time. The remaining subsets are in the same order of magnitude at the 75 to
296 member repsentatity level.

Table 4.6 shows a set of statistical characteristics of the clusters formed:

Table 4.6: Combined Model final representation of clusters statistics.

Statistics Cluster
1

(m3/h)

Cluster
2.1

(m3/h)

Cluster
2.2

(m3/h)

Cluster
2.3

(m3/h)

Cluster
2.4

(m3/h)

Cluster
2.5

(m3/h)

Cluster
2.6

(m3/h)

Cluster
2.7

(m3/h)

Cluster
2.8

(m3/h)

Cluster
3

(m3/h)

Cluster
4

(m3/h)

Min. 0.00 0.97 0.00 0.00 0.00 0.00 0.07 0.95 0.00 0.00 0.00
1st Qu. 4.92 6.86 18.40 8.75 10.13 2.35 11.12 22.00 103.61 7.52 7.27
Median 10.37 12.12 60.00 20.80 52.00 5.90 20.04 28.40 128.12 19.99 18.22
Mean 18.18 34.65 62.44 25.95 55.79 17.29 29.02 31.30 110.76 46.04 46.21
3rd Qu. 21.60 19.39 95.42 34.80 76.00 16.19 31.69 34.40 145.99 57.37 58.00

Max. 312.25 881.00 208.75 251.08 376.42 981.25 299.62 766.37 184.24 1067.00 1207.00
IQR 16.68 12.53 77.02 26.05 65.86 13.84 20.57 12.40 42.38 49.85 50.73

Figure 4.51 identifies the influence of weekend or holiday days have on the formation of
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Figure 4.51: Combined Model final representation - influence of day
typology on the formation of clusters.

Figure 4.51 shows that only Clusters 3 and 2.2 are more associated with weekend days or
national holidays. The remaining clusters are mostly associated with working days.

Figure 4.52 shows the geographic distribution of the clusters formed by the model:
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Figure 4.52: Combined Model final representation - geographic
distribution of the clusters formed.

Figure 4.52 shows that Clusters 3 and 4 show similar distribution of locations, these clusters
represent typical weekend and working day behaviors, respectively. All locations are well
represented in these clusters except the South (Algarve) region. Cluster 3, which represents
patterns with mostly nocturnal consumption, belongs mostly to the South (Algarve) region.

In the case of Cluster 2 subsets, Clusters 2.1, 2.5, 2.6 have a greater presence in the South
(Algarve) region. Clusters 2.2, 2.3, 2.4 and 2.7 have more presence in the Lisbon Metropolitan
Area. Cluster 2.8 mainly represents Costal Center region.

Figure 4.53 shows the distribution of wet months and dry months in the clusters formed by
the model:
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Figure 4.53: Combined Model final representation - distribution of wet
months and dry months in the clusters formed.

Figure 4.53 shows that Clusters 1, 3 and 4 are more associated with wet months than with
dry months. In the case of Cluster 1, which represents predominantly nighttime consumption
associated with irrigation, it was not expected that this cluster would be more associated
with wet months, which may indicate that irrigation controllers could be programmed at the
same frequency regardless of the time of year, indicating a less sustainable use of water.

For subsets of cluster 2, it is found that most clusters belong more to dry months, except for
Clusters 2.1, 2.5 and 2.8.

4.7.3 Summary of the combined model analysis
The Combined Model aggregates the clusters of the best performing models in order to
highlight the main characteristics of the consumption profiles present in the dataset.

With this model it was possible to identify clusters with predominantly nocturnal
consumption behaviour such as Cluster 1, and clusters with predominantly daytime
consumption such as Clusters 3 and 4.

Relatively to typical weekend or holiday daily patterns and typical workday patterns, this
model validates the existence of Clusters 3 and 2.3, which are predominantly associated with
typical weekend behaviors. The remaining clusters are more associated with typical workday
behaviors.

At the region level, it was found that the South (Algarve) region is closely associated with
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the Cluster 1 of predominantly nightly consumption and irrigation water use. Cluster 2.1
is also strongly associated with this region, although in this case there is high nighttime
consumption, there is also significant daytime consumption.

In the case of Cluster 2.7, this is associated with the Lisbon Metropolitan Area region, with
a large component of irrigation at 06:00 and moderate daytime consumption.

Cluster 2.8 is associated with the Coastal Center region and is characterized by not having
a significant consumption in the morning.

This model also identifies 2 clusters in which water use for irrigation may not be efficient:

• Cluster 1: It has a predominantly nocturnal consumption for irrigation and is more
associated with humid months than dry months. This may show that irrigation systems
are scheduled to be operated independently of irrigation needs over the time period of
the year.

• Cluster 2.6: show instant consumption peaks throughout the day associated with
irrigation systems. Operating these irrigation systems during periods of increased heat
and sun exposure may not be effective and sustainable as some of the water evaporates
before it is absorbed into the soil.

Both clusters are associated with the southern region (Algarve). In this region, the operation
of irrigation systems should be rethought to allow more sustainable and efficient water use.
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Chapter 5

Conclusions and future developments

This dissertation intends to contribute to the study of clustering methods applicable to
medium flow time series, focusing on average daily flow patterns (m3/h) with a time step of
15 minutes.

The following methods were validated as the best performing clustering algorithms for
the studied dataset: Partitional Clustering with DTW distance, PAM centroid; k-Shape
Clustering; Partitional Clustering with GAK distance, PAM centroid.

The first two methods presented, as the best approach, the formation of three clusters in
which the respective centroids describe a mostly nocturnal consumption pattern, a typical
weekend pattern and a typical work day pattern. The k-Shape method also obtained as the
best approach the formation of three clusters, but the centroids of these clusters describe
a pattern with mostly nighttime consumption, a pattern with mostly daytime consumption
and an intermediate pattern that represents the cases where the variability between daytime
consumption and nighttime consumption is not so pronounced.

In terms of the distance measurements used, this dissertation validated that elastic distance
measurements, namely DTW, GAK and Shape distance, allow clustering approaches to
produce better results than inelastic distance measurements such as Euclidean. This result
validates that elastic measurements allow a better capture of the “shape” of the patterns
present in the dataset. Regarding the choice of the temporal window in the case of DTW
distance measurement, it was found that increasing the temporal window from 15m to 30m
had no major influence on clusters formation compared to choosing the distance measurement
or choosing the prototype.

At the prototype level, the analyzes performed validated that the prototype typologies that
represent a real dataset pattern that minimizes the distances to the other cluster members
(PAM prototype and Shape extraction prototype), when used in cluster approaches, tend
to form 3 clusters, whereas the use of prototypes that represent a medium standard (DBA
prototype and Mean prototype) in clustering approaches tend to form only 2 clusters. It was
concluded that for the analyzed dataset, the PAM and Shape extraction prototypes produce
better results in clustering operations.
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Regarding the methods of internal index evaluation, in the present study the following
measures were used in the hard partitioning approaches: Silhouette Index, Dunn Index, COP
Index, Davies-Bouldin Index, Modified Davies-Bouldin Index, Calinski-Harabasz Index and
Score Function. In the case of soft partitioning, the following measures were used: Modified
Partition Coefficient Index, Kwon Index, Improved Validation Index, Validity Function and
PBMF Index. In both cases, a majority voting approach was used to evaluate a clustering
methodology, which proved to be a robust approach, as the different points of view proposed
by the different internal index methods in assessing the degree of cohesion and separation of
clusters formed were considered.

The present work characterized the behaviors of the daily average flow pattern series present
in the dataset through prototype of clusters formed in the different approaches. In the
final combined model (see section 4.7.2), two clusters indicating inefficient water uses can be
identified (Cluster 1 and Cluster 2.6). Cluster 1 is associated with predominantly nocturnal
consumption for irrigation. This cluster is more associated with wet months than dry months,
indicating that when programming irrigation systems the time of year is not considered. In
the case of Cluster 2.6, there are maximum consumptions throughout the day, which also
indicates that irrigation systems may be operating at warmer times of day, causing further
evaporation if watering occurs during these periods. Both clusters are mostly associated with
the South (Algarve) region and corrective measures should be taken in the areas affected by
these clusters in order to program irrigation systems to take into account the time of year
and the time of day.

For future developments the following analyzes should be considered:

• Dataset clustering analysis using the best performing clustering methods considering
only the nighttime period. Restricting nighttime period, may enable the identification
of clusters associated with leakage events in the water supply systems;

• Comparison of results using various dataset normalization methodologies (e.g.: mean
vs. median);

• Application of clustering methodologies with inelastic distance measurements and a
previous dimensional reduction of the dataset using PCA. Comparison of the results
obtained with the clustering methods with elastic distance measures presented in this
dissertation;

• Application of the methodology proposed in this dissertation to a dataset composed of
time series with flow and pressure data, in order to obtain clusters that best represent
the behaviors present in water distribution systems.
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Appendix A

Clustering models with inelastic
distance measures

A.1 K-means Clustering
In this section we will analyze a clustering model using the K-means approach (see section
3.5.2) with the following components:

• Distance measure: Euclidean (see section 3.6.1);
• Prototype: Mean (see section 3.7.1).

This model is the application of a classic K-means model with Euclidean distance and without
using time comparison windows.

A.1.1 Clustering model internal index evaluation
Figure A.1 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.
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Figure A.1: Internal index evaluation for 1st iteration set of K-Means
Clustering.

Figure A.1 shows that the best result (Total score) was with the formation of 2 clusters.

This clustering approach needs to initially allocate centroids (see section 3.5.2), after setting
the number of clusters to be formed it is necessary to run the model with different centroid
initializations in order to evaluate which centroids initialization is best according to the
internal index measures.

Figure A.2 shows the internal index validation of the 2nd iteration set, which aims to validate
the best centroids initialization, running the model to form 2 clusters with 20 random
centroids initializations.
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Figure A.2: Internal index evaluation for 2nd iteration set of K-Means
Clustering.
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Figure A.2 shows that the 2nd, 10th, 13th and 15th iterations provided the best performance
in the internal indexes evaluation.

In the next section the 2nd iteration clustering model with the formation of 2 clusters will be
analyzed.

A.1.2 Clustering model characterization
Figure A.3 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure A.3: Clusters formed through the k-Means model visualized
through the 3 principal components of PCA.

In Figure A.3 it is possible to verify that most of the daily patterns belong to Cluster 2.
It is also observed that in the zone in the neighborhood of the value corresponding to -5 of
the Principal Component 1, there is no clear distinction between the two clusters formed.
Another relevant aspect is that the distinction between the two clusters is made according
only to the principal component 1.

Figure A.4 shows the respective centroids of the clusters formed:
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Figure A.4: k-Means model centroids.

Cluster 2 centroid has periods of higher consumption in the morning, lunch period and dinner
period. In contrast, the centroid of cluster 1 has the periods of highest consumption occurring
in the night period, the maximum values of flow are reached at midnight and also at 5:00.

From the previous graph we can see that the k-means algorithm with the formation of 2
clusters, has learned to group the patterns taking into account the fact that the patterns
present higher consumption in the night period or in the daytime period.

Figure A.5 shows the size of each of the clusters formed:
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Figure A.5: k-Means model clusters sizes.

Figure A.5 shows that most of the daily series belong to Cluster 2, and Cluster 1 presents
only 2718 daily flow series. Indicating that most daily series have predominantly peak flows
during the daytime period.

Figure A.6 evaluates the degree of membership of each of the annual series to the formed
clusters:
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Figure A.6: k-Means model annual series membership.

In Figure A.6 it is observed that in all the annual series the daily patterns belong mostly to
Cluster 2, except the series 6545, 4781, 4610, 2379, 2150, 1546 and 1201.

Table A.1 shows a set of statistical characteristics of the clusters formed:

Table A.1: k-Means model clusters statistics.

Statistics Cluster 1
(m3/h)

Cluster 2
(m3/h)

Min. 0.00 0.00
1st Qu. 4.82 7.28
Median 10.80 19.25
Mean 20.39 46.38
3rd Qu. 23.38 58.61

Max. 981.25 1207.00
IQR 18.56 51.33
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Figure A.7 identifies the influence of weekend or holiday days have on the formation of
clusters:

0

25

50

75

100

Cluster 1 Cluster 2

N
um

be
r 

of
 d

ai
ly

 s
er

ie
s 

(%
)

Day type:
Weekend day or
national holiday
Working day

Influence of day type on cluster formation

Figure A.7: k-Means model influence of day typology on the formation
of clusters.

As can be seen from Figure A.7, the percentage of weekends and holidays is around 31%
in both clusters. These values indicate that the formed clusters do not allow to identify a
distinct behavior between a working day and a weekend or holiday.

Figure A.8 allows identifying the influence of day typology in each annual series by cluster
type. As can be seen from Figure A.8, in the most representative cluster of each annual series
it is verified that the proportions of daily patterns belonging to each day typology remains
similar to that presented in Figure A.7, evidencing that in general there is no influence of
the typology of the day in these cases, but in the case of the clusters with less representation
for each annual series usually there is influence of the typology of the day.
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Figure A.8: k-Means model influence of day typology on each series by
clusters.

A.2 Hierarchical Clustering
In this section we will analyze a clustering model using the Hierarchical approach with the
buttom-up strategy and complete-linkage method (see section 3.5.1). The model will also
incorporate the following components:

• Distance measure: Euclidean (see section 3.6.1);
• Prototype: Mean (see section 3.7.1).

A.2.1 Clustering model internal index evaluation
Figure A.9 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.

107



0.00

0.25

0.50

0.75

1.00

2 4 6 8 10

Internal index:

Total score

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10
Number of clusters

Internal index:

CH

COP

D

DB

DBstar

SF

Sil

S
co

re

Figure A.9: Internal index evaluation for 1st iteration set of Hierarchical
Clustering.

Figure A.9 shows that the best result (Total score) was with the formation of 2 clusters. Since
the hierarchical clustering model does not require centroid initialization (see section 3.5.1),
there is no need to perform an analysis of the best centroid initialization (2nd iteration set)
as it did for K-means clustering (see section A.1). In the next section the clustering model
with the formation of 2 clusters will be analyzed.

A.2.2 Clustering model characterization
Figure A.10 shows the visualization of the clusters formed by the model according to the first
3 principal components.
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Figure A.10: Clusters formed through the Hierarchical model visualized
through the 3 principal components of PCA.
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Through Figure A.10 it is verified that Cluster 1 tends to negative zones according to the
principal component 1 and Cluster 2 tends to the positive zones according to this component.
The projection according to the principal components 1 and 3 gives a better distinction of
the clusters formed than the projection according to the principal components 1 and 2.

Comparing with the projection according to the principal components obtained with the
K-means model (see section A.1), the hierarchical model presents worse results, because the
distinction between the two clusters is not so evident in the lower density zones.

Figure A.11 shows the respective centroids of the clusters formed:
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Figure A.11: Hierarchical model centroids.

Cluster 1 presents peak consumption in the night period, the first peak of consumption occurs
around midnight and the second peak of consumption occurs around 06:00. The periods of
minimum consumption occur at 2:30 and around 18:00.

In the case of Cluster 2, consumption occurs predominantly during the daytime period with
maximum consumption in the period of 12:00 and in the period of 20:00. Among these
maximums the cluster prototype shows a local minimum at 16:30. The absolute minimum
consumption for Cluster 2 occurs around 4:00.

From the previous graph we can see that the hierarchical clustering algorithm with the
formation of 2 clusters, has learned to group the patterns taking into account the fact that
the patterns present higher consumption in the night period or in the daytime period.

Figure A.12 shows the size of each of the clusters formed. This Figure shows that most of the
daily series belong to Cluster 2, and Cluster 1 presents only 3869 daily flow series. Indicating
that most daily patterns have predominantly peak flows during the daytime period.
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Figure A.12: Hierarchical model clusters sizes.

Figure A.13 evaluates the degree of membership of each of the annual series to the formed
clusters:
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Figure A.13: Hierarchical model annual series membership.
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In Figure A.13 it is observed that in all the annual series the daily patterns belong mostly
to Cluster 2, except the series 6545, 4781, 4610, 2379, 2150, 1546 and 1201. This result is
consistent with what was observed in the formation of 2 clusters according to the K-means
clustering method, since most clusters belong to a pattern with predominantly diurnal
consumption and the patterns identified with predominantly nocturnal consumption are the
same in the two approaches.

Table A.2 shows a set of statistical characteristics of the clusters formed:

Table A.2: Hierarchical model clusters statistics.

Statistics Cluster 1
(m3/h)

Cluster 2
(m3/h)

Min. 0.00 0.00
1st Qu. 5.60 7.16
Median 14.84 18.09
Mean 29.49 46.03
3rd Qu. 36.00 57.73

Max. 981.25 1207.00
IQR 30.40 50.57

Figure A.14 identifies the influence of weekend or holiday days have on the formation of
clusters:
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Figure A.14: Hierarchical model influence of day typology on the
formation of clusters.

As can be seen, the percentage of weekends and holidays is around 30% for Cluster 2 and
around 27% for Cluster 1. These values indicate that the formed clusters do not allow to
identify a distinct behavior between a working day and a weekend or holiday.

Figure A.15 allows identifying the influence of day typology in each annual series by cluster
type:
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Figure A.15: Hierarchical model influence of day typology on each series
by clusters.

As can be seen from Figure A.15, in the most representative cluster of each annual series
it is verified that the proportions of daily patterns belonging to each day typology remains
similar to that presented in Figure A.14, evidencing that in general there is no influence of
the typology of the day in these cases, but in the case of the clusters with less representation
for each annual series usually there is influence of the typology of the day. This result is
similar to the analysis carried out for the K-means model (see section A.1).

A.3 Fuzzy Clustering
In this section we will analyze a clustering model using the Fuzzy approach (see section 3.5.4)
with the following components:

• Distance measure: Euclidean (see section 3.6.1);
• Prototype: Fuzzy-based (see section 3.7.5).
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A.3.1 Clustering model internal index evaluation
Figure A.16 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.
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Figure A.16: Internal index evaluation for 1st iteration set of Fuzzy
Clustering.

Figure A.16 shows that the best result (Total score) was with the formation of 2 clusters.

Fuzzy clustering model does not require centroid initialization (see section 3.5.4), there is no
need to perform an analysis of the best centroid initialization (2nd iteration set) as it did for
K-means clustering (see section A.1).

In the next section the clustering model with the formation of 2 clusters will be analyzed.

A.3.2 Clustering model characterization
Figure A.17 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure A.17: Clusters formed through the Fuzzy model visualized
through the 3 principal components of PCA.

In Figure A.17 it is evident a clear separation between the two formed clusters. This feature
demonstrates that in the space formed by the first 3 principal components the use of this
soft partition algorithm in the formation of two clusters achieves a sharper separation than
the hard partition algorithms (Hierarchical and k-Means).

For this soft partition algorithm, as in previous hard partition algorithms, cluster 1 tends
to negative zones according to the main component 1 and cluster 2 tends to positive zones
according to this component.

Figure A.18 shows the respective centroids of the clusters formed:
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Figure A.18: Fuzzy model centroids.
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The centroids representing the clusters according to the Fuzzy prototype definition represent
a weighted average considering the weights of the membership matrix of the Fuzzy c-means
algorithm. Consequently the presented centroids represent a form of a weighted pattern and
not of a real pattern of dataset.

Cluster 1 presents peak consumption in the night period, the first peak of consumption
occurs around 22:00 and the second peak of consumption occurs around 06:00. The periods
of minimum consumption occur at 2:30 and around 17:00.

In the case of Cluster 2, consumption occurs predominantly during the daytime period with
maximum consumption in the period of 12:00 and in the period of 20:00. Among these
maximums the cluster prototype shows a local minimum at 17:00. The absolute minimum
consumption for Cluster 2 occurs around 04:00.

Figure A.19 shows the size of each of the clusters formed:
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Figure A.19: Fuzzy model clusters sizes.

Figure A.19 shows that most of the patterns belong to Cluster 2, and Cluster 1 presents only
3208 daily flow patterns. Indicating that most daily patterns have predominantly peak flows
during the daytime period.

Figure A.20 evaluates the degree of membership of each of the annual series to the formed
clusters:
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Figure A.20: Fuzzy model annual series membership.

In Figure A.20 it is observed that in all the annual series the daily patterns belong mostly
to Cluster 2, except the series 6545, 4781, 4610, 2379, 2150, 1546 and 1201. This result is
consistent with what was observed in the formation of 2 clusters according to the previous
hard partitioning methods (k-means and hierarchical clustering), since most clusters belong
to a daily series with predominantly diurnal consumption and the patterns identified with
predominantly nocturnal consumption are the same in the two approaches.

Table A.3 shows a set of statistical characteristics of the clusters formed:
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Table A.3: Fuzzy model clusters statistics.

Statistics Cluster 1
(m3/h)

Cluster 2
(m3/h)

Min. 0.00 0.00
1st Qu. 4.89 7.32
Median 11.70 19.11
Mean 23.43 46.56
3rd Qu. 26.60 58.66

Max. 981.25 1207.00
IQR 21.71 51.34

Figure A.21 identifies the influence of weekend or holiday days have on the formation of
clusters:
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Figure A.21: Fuzzy model influence of day typology on the formation
of clusters.

As can be seen, the percentage of weekends and holidays is around 30% for Cluster 2 and
Cluster 1. These values indicate that the formed clusters do not allow to identify a distinct
behavior between a working day and a weekend or holiday.

Figure A.22 allows identifying the influence of day typology in each annual series by cluster
type:
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Figure A.22: Fuzzy model influence of day typology on each series by
clusters.

As can be seen from Figure A.22, in the most representative cluster of each annual series
it is verified that the proportions of daily patterns belonging to each day typology remains
similar to that presented in Figure A.21, evidencing that in general there is no influence of
the typology of the day in these cases, but in the case of the clusters with less representation
for each annual series usually there is influence of the typology of the day. This result is
similar to the analysis carried out for the previous clustering methods with formation of 2
cluster.
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Appendix B

Clustering models with elastic
distance measures

B.1 Partitional Clustering with DTW,Mean prototype
and 15 minutes time window

In this section we will analyze a clustering model using the Partitional Clustering approach
(see section 3.5.2) with the following components:

• Distance measure: DTW (see section 3.6.2);
• Prototype: Mean (see section 3.7.1);
• Comparison time window: 15 minutes (see section 3.6.2).

B.1.1 Clustering model internal index evaluation
Figure B.1 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.
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Figure B.1: Internal index evaluation for 1st iteration set of Partitional
Clustering with DTW, Mean Prototype and 15 minutes time window.

Figure B.1 shows that the best result (Total score) was with the formation of 2 clusters.

This clustering approach needs to initially allocate centroids (see section 3.5.2), after setting
the number of clusters to be formed it is necessary to run the model with different centroid
initializations in order to evaluate which centroids initialization is best according to the
internal index measures.

Figure B.2 shows the internal index validation of the 2nd iteration set, which aims to validate
the best centroids initialization, running the model to form 2 clusters with 20 random
centroids initializations.
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Figure B.2: Internal index evaluation for 2nd iteration set of Partitional
Clustering with DTW, Mean Prototype and 15 minutes time window.
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Figure B.2 shows that the 2nd, 10th, 13th and 15th iterations provided the best performance
in the internal indexes evaluation. In the next section the 2nd iteration clustering model with
the formation of 2 clusters will be analyzed.

B.1.2 Clustering model characterization
Figure B.3 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure B.3: Clusters formed through the Partition Clustering model
with DTW distance, Mean prototype and 15m window visualized
through the 3 principal components of PCA.

In Figure B.3 it is evident a clear separation between the two formed clusters. This feature
demonstrates that in the space formed by the first 3 principal components, the use of this
partition algorithm with euclidean distance and dynamic time warping in the formation of
two clusters achieves a sharper separation than the hard partition algorithms with inelastic
euclidean distance (hierarchical and k-means). Compared to soft partitioning methods, the
results allows to conclude that the performance is slightly worse at the level of cluster
separation.

For this partiton algorithm with DTW 15 minutes window constraint and mean centroid, as
in previous algorithms, cluster 1 tends to negative zones according to the principal component
1 and cluster 2 tends to positive zones according to this component.

Figure B.4 shows the respective centroids of the clusters formed:
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Figure B.4: Partition Clustering model with DTW distance, Mean
prototype and 15m window centroids.

Cluster 1 presents peak consumption in the night period, the first peak of consumption occurs
around midnight and the second peak of consumption occurs around 06:00. The periods of
minimum consumption occur at 2:30 and around 16:00.

In the case of Cluster 2, consumption occurs predominantly during the daytime period with
maximum consumption in the period of 12:00 and in the period of 20:00. Among these
maximums the cluster prototype shows a local minimum at 17:00. The absolute minimum
consumption for Cluster 2 occurs around 04:00.

Figure B.5 shows the size of each of the clusters formed:
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Figure B.5: Partition Clustering model with DTW distance, Mean
prototype and 15m window clusters sizes.

Figure B.5 shows that most of the patterns belong to Cluster 2, and Cluster 1 presents only
2769 daily flow patterns. Indicating that most daily patterns have predominantly peak flows
during the daytime period.
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Figure B.6 evaluates the degree of membership of each of the annual series to the formed
clusters:
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Figure B.6: Partition Clustering model with DTW distance, Mean
prototype and 15m window annual series membership.

In Figure B.6 it is observed that in all the annual series the daily patterns belong mostly
to Cluster 2, except the series 6545, 4781, 4610, 2379, 2150, 1546 and 1201. This result is
consistent with what was observed in the formation of 2 clusters according to the previous
hard partitioning methods (k-means and hierarchical clustering), since most clusters belong
to a pattern with predominantly diurnal consumption and the patterns identified with
predominantly nocturnal consumption are the same in the two approaches.

Table B.1 shows a set of statistical characteristics of the clusters formed:
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Table B.1: Partition Clustering model with DTW distance, Mean
prototype and 15m window clusters statistics.

Statistics Cluster 1
(m3/h)

Cluster 2
(m3/h)

Min. 0.00 0.00
1st Qu. 4.70 7.34
Median 10.62 19.37
Mean 20.13 46.50
3rd Qu. 23.15 58.80

Max. 981.25 1207.00
IQR 18.45 51.46

Figure B.7 identifies the influence of weekend or holiday days have on the formation of
clusters:
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Figure B.7: Partition Clustering model with DTW distance, Mean
prototype and 15m window influence of day typology on the formation
of clusters.

As can be seen, the percentage of weekends and holidays is around 30% for Cluster 2 and
Cluster 1. These values indicate that the formed clusters do not allow to identify a distinct
behavior between a working day and a weekend or holiday.

Figure B.8 allows identifying the influence of day typology in each annual series by cluster
type:
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Figure B.8: Partition Clustering model with DTW distance, Mean
prototype and 15m window influence of day typology on each series
by clusters.

As can be seen from Figure B.8, in the most representative cluster of each annual series it
is verified that the proportions of daily patterns belonging to each day typology remains
similar to that presented in Figure B.7, evidencing that in general there is no influence of the
typology of the day in these cases, but in the case of the clusters with less representation for
each annual series usually there is influence of the typology of the day. This result is similar
to the analysis carried out for the previous clustering methods with formation of 2 clusters.

B.2 Partitional Clustering with DTW,Mean prototype
and 30 minutes time window

In this section we will analyze a clustering model using the Partitional Clustering approach
(see section 3.5.2) with the following components:
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• Distance measure: DTW (see section 3.6.2);
• Prototype: Mean (see section 3.7.1);
• Comparison time window: 30 minutes (see section 3.6.2).

B.2.1 Clustering model internal index evaluation
Figure B.9 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.
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Figure B.9: Internal index evaluation for 1st iteration set of Partitional
Clustering with DTW, Mean Prototype and 30 minutes time window.

Figure B.9 shows that the best result (Total score) was with the formation of 2 clusters.

This clustering approach needs to initially allocate centroids (see section 3.5.2), after setting
the number of clusters to be formed it is necessary to run the model with different centroid
initializations in order to evaluate which centroids initialization is best according to the
internal index measures.

Figure B.10 shows the internal index validation of the 2nd iteration set, which aims to
validate the best centroids initialization, running the model to form 2 clusters with 20 random
centroids initializations.
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Figure B.10: Internal index evaluation for 2nd iteration set of
Partitional Clustering with DTW, Mean Prototype and 30 minutes
time window.

Figure B.10 shows that the 2nd, 10th, 13th and 15th iterations provided the best performance
in the internal indexes evaluation. In the next section the 2nd iteration clustering model with
the formation of 2 clusters will be analyzed.

B.2.2 Clustering model characterization
Figure B.11 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure B.11: Clusters formed through the Partition Clustering model
with DTW distance, Mean prototype and 30m window visualized
through the 3 principal components of PCA.
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Through Figure B.11 it is verified that the separation between clusters is identical to that
of the partition model with DTW , mean prototype with 15 minutes. For this partiton
algorithm, as in previous clustering models, cluster 1 tends to negative zones according to
the main component 1 and cluster 2 tends to positive zones according to this component.

Figure B.12 shows the respective centroids of the clusters formed:
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Figure B.12: Partition Clustering model with DTW distance, Mean
prototype and 30m window centroids.

Cluster 1 presents peak consumption in the night period, the first peak of consumption occurs
around midnight and the second peak of consumption occurs around 05:00. The periods of
minimum consumption occur at 2:30 and around 16:00. In the case of Cluster 2, consumption
occurs predominantly during the daytime period with maximum consumption in the period
of 12:00 and in the period of 20:00. Among these maximums the cluster prototype shows a
local minimum at 17:00. The absolute minimum consumption for Cluster 2 occurs around
04:00.
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Figure B.13: Partition Clustering model with DTW distance, Mean
prototype and 30m window clusters sizes.
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Figure B.13 shows that most of the patterns belong to Cluster 2, and Cluster 1 presents only
2755 daily flow patterns. Indicating that most daily patterns have predominantly peak flows
during the daytime period.

Figure B.14 evaluates the degree of membership of each of the annual series to the formed
clusters:
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Figure B.14: Partition Clustering model with DTW distance, Mean
prototype and 30m window annual series membership.

In Figure B.14 it is observed that in all the annual series the daily patterns belong mostly
to Cluster 2, except the series 6545, 4781, 4610, 2379, 2150, 1546 and 1201. This result is
consistent with what was observed in the formation of 2 clusters according to the previous
hard partitioning methods (k-means and hierarchical clustering), since most clusters belong
to a pattern with predominantly diurnal consumption and the patterns identified with
predominantly nocturnal consumption are the same in the two approaches.

Table B.2 shows a set of statistical characteristics of the clusters formed:
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Table B.2: Partition Clustering model with DTW distance, Mean
prototype and 30m window clusters statistics.

Statistics Cluster 1
(m3/h)

Cluster 2
(m3/h)

Min. 0.00 0.00
1st Qu. 4.70 7.34
Median 10.60 19.36
Mean 20.11 46.49
3rd Qu. 23.12 58.78

Max. 981.25 1207.00
IQR 18.42 51.44

Figure B.15 identifies the influence of weekend or holiday days have on the formation of
clusters:
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Figure B.15: Partition Clustering model with DTW distance, Mean
prototype and 30m window influence of day typology on the formation
of clusters.

As can be seen, the percentage of weekends and holidays is around 30% for Cluster 2 and
Cluster 1. These values indicate that the formed clusters do not allow to identify a distinct
behavior between a working day and a weekend or holiday.

Figure B.16 allows identifying the influence of day typology in each annual series by cluster
type:
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Figure B.16: Partition Clustering model with DTW distance, Mean
prototype and 30m window influence of day typology on each series by
clusters.

As can be seen from Figure B.16, in the most representative cluster of each annual series
it is verified that the proportions of daily patterns belonging to each day typology remains
similar to that presented in Figure B.15, evidencing that in general there is no influence of
the typology of the day in these cases, but in the case of the clusters with less representation
for each annual series usually there is influence of the typology of the day. This result is
similar to the analysis carried out for the previous clustering methods with formation of 2
clusters.

B.3 Partitional Clustering with DTW, PAM prototype
and 30 minutes time window

In this section we will analyze a clustering model using the Partitional Clustering approach
(see section 3.5.2) with the following components:
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• Distance measure: DTW (see section 3.6.2);
• Prototype: PAM (see section 3.7.2);
• Comparison time window: 30 minutes (see section 3.6.2).

B.3.1 Clustering model internal index evaluation
Figure B.17 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.
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Figure B.17: Internal index evaluation for 1st iteration set of Partitional
Clustering with DTW, PAM Prototype and 30 minutes time window.

Figure B.17 shows that the best result (Total score) was with the formation of 3 clusters.

This clustering approach needs to initially allocate centroids (see section 3.5.2), after setting
the number of clusters to be formed it is necessary to run the model with different centroid
initializations in order to evaluate which centroids initialization is best according to the
internal index measures.

Figure B.18 shows the internal index validation of the 2nd iteration set, which aims to
validate the best centroids initialization, running the model to form 3 clusters with 20 random
centroids initializations.
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Figure B.18: Internal index evaluation for 2nd iteration set of
Partitional Clustering with DTW, PAM Prototype and 30 minutes time
window.

Figure B.18 shows that the 1st, 8th and 15th iterations provided the best performance in the
internal indexes evaluation. In the next section the 3rd iteration clustering model with the
formation of 3 clusters will be analyzed.

B.3.2 Clustering model characterization
Figure B.19 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure B.19: Clusters formed through the Partition Clustering model
with DTW distance, PAM prototype and 30m window visualized
through the 3 principal components of PCA.
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As can be seen from the figure the results are similar to the Partition model with DTW
distance, PAM centroid and 15 minutes window contraint, there is a distinction between
cluster 3 and the group formed by clusters 1 and 2, except in zones close to the value of -5
in the first principal component.

For clusters 1 and 2, the projection under principal components 1 and 2 allows to distinguish
between the two groups except in areas close to the value of 0 in the principal component 2.
Observing clusters 1 and 2 according to the projection on the principal components 1 and 3
it is not possible to clearly distinguish between the two clusters.

Figure B.20 shows the respective centroids of the clusters formed:
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Figure B.20: Partition Clustering model with DTW distance, PAM
prototype and 30m window centroids.

Clusters 1 and 2 present higher consumption peaks during the day period, while Cluster 3
shows higher consumption during the night time period.

Cluster 1 shows maximum consumption values at 09:00, 11:00, 12:00 and 14:30. This cluster
presents a local minimum near 17:30 and a local maximum around 20:00. From this moment
the consumption falls to the minimum value registered at 04:30. This behavior can be either
associated with a weekend or working day pattern.

Cluster 2 has local maximum consumption peaks near 08:00, 11:00 and 12:00 and reaches
a local minimum around 17:00. From this period consumption increases again until around
21:00 which is the maximum flow value. After this period the consumption drops back down
to 03:00 which corresponds to the minimum value of consumption. This behavior represents
a typical pattern for working day, given that it is much higher than cluster 1 near dinner,
which is when people come home from work.

Although this model does not distinguish between weekend and working day patterns
from predominantly daytime consumption patterns. This model can distinguish between
daytime consumption patterns with maximum consumption near dinner time (Cluster 2)
and predominantly daytime consumption patterns with maximum consumption between
06:00 and 14:30 (Cluster 1).
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Cluster 3 shows peak consumption in the midnight period and in the period near 05:00 am.
The predominance of this cluster by nocturnal consumption may be due to the use of water
is predominantly associated with irrigation of gardens.

Figure B.21 shows the size of each of the clusters formed:
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Figure B.21: Partition Clustering model with DTW distance, PAM
prototype and 30m window clusters sizes.

Figure B.21 shows that most of the patterns belong to Cluster 1 with 9052 dailly flow patterns,
followed by Cluster 2 presents with 7469 daily flow patterns. Indicating that most daily
patterns have predominantly peak flows during the daytime period.

Cluster 3 has 2453 associated daily patterns that represent predominantly nocturnal
consumption.

Figure B.22 evaluates the degree of membership of each of the annual series to the formed
clusters:
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Figure B.22: Partition Clustering model with DTW distance, PAM
prototype and 30m window annual series membership.

In Figure B.22 it is observed that in all the annual series the daily patterns belong mostly
to Clusters 1 and 2, except the series 6545, 4781, 4610, 2379, 2150, 1546 and 1201. This
result is consistent with what was observed in the formation of 2 clusters according to the
previous clustering methods, since most clusters belong to a pattern with predominantly
diurnal consumption.

Table B.3 shows a set of statistical characteristics of the clusters formed:
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Table B.3: Partition Clustering model with DTW distance, PAM
prototype and 30m window clusters statistics.

Statistics Cluster 1
(m3/h)

Cluster 2
(m3/h)

Cluster 3
(m3/h)

Min. 0.00 0.00 0.00
1st Qu. 10.03 5.62 4.73
Median 28.14 12.70 10.41
Mean 55.78 34.41 19.33
3rd Qu. 67.66 44.56 22.27

Max. 1207.00 981.25 530.50
IQR 57.63 38.94 17.54

Figure B.23 identifies the influence of weekend or holiday days have on the formation of
clusters:
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Figure B.23: Partition Clustering model with DTW distance, PAM
prototype and 30m window influence of day typology on the formation
of clusters.

In the case of cluster 1, the percentage of weekend or holiday patterns is around 44%. These
values indicate that this cluster does not allow to identify a distinct behavior between a
working day and a weekend or holiday.

As it can be seen, for cluster 2 the percentage of weekend or national holiday patterns is
around 12%, proving that this cluster is associated with typical working day behavior.

For Cluster 3 the percentage of weekends and holidays is around 30%. These values indicate
that the formed cluster do not allow to identify a distinct behavior between a working day
and a weekend or holiday.

Figure B.24 allows identifying the influence of day typology in each annual series by cluster
type:
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Figure B.24: Partition Clustering model with DTW distance, PAM
prototype and 30m window influence of day typology on each series by
clusters.

As can be seen in Cluster 2, the annual series show mostly a higher percentage of daily
patterns in working days.

In the case of Cluster 1 the highest percentage of patterns in most series is also of working
day typology but to a lesser extent than in Cluster 2.

Cluster 3, which represents daily patterns with higher nocturnal consumption, shows that in
the annual series in which this cluster is the most representative, the proportions between
working days and national holiday / weekend are indicative that typology of the day does
not have significant influence on this cluster.
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B.4 Partitional Clustering with DTW, DBA prototype
and 15 minutes time window

In this section we will analyze a clustering model using the Partitional Clustering approach
(see section 3.5.2) with the following components:

• Distance measure: DTW (see section 3.6.2);
• Prototype: DBA (see section 3.7.3);
• Comparison time window: 15 minutes (see section 3.6.2).

B.4.1 Clustering model internal index evaluation
Figure B.25 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.
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Figure B.25: Internal index evaluation for 1st iteration set of Partitional
Clustering with DTW, DBA Prototype and 15 minutes time window.

Figure B.25 shows that the best result (Total score) was with the formation of 2 clusters.

This clustering approach needs to initially allocate centroids (see section 3.5.2), after setting
the number of clusters to be formed it is necessary to run the model with different centroid
initializations in order to evaluate which centroids initialization is best according to the
internal index measures.

Figure B.26 shows the internal index validation of the 2nd iteration set, which aims to
validate the best centroids initialization, running the model to form 2 clusters with 20 random
centroids initializations.
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Figure B.26: Internal index evaluation for 2nd iteration set of
Partitional Clustering with DTW, DBA Prototype and 15 minutes time
window.

Figure B.26 shows that the 20th iteration provided the best performance in the internal
indexes evaluation. In the next section the 20th iteration clustering model with the formation
of 2 clusters will be analyzed.

B.4.2 Clustering model characterization
Figure B.27 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure B.27: Clusters formed through the Partition Clustering model
with DTW distance, DBA prototype and 15m window visualized
through the 3 principal components of PCA.
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For this partiton clustering model with DTW 15 minutes window constraint and DBA
centroid, Cluster 1 tends to negative zones according to the principal component 1 and
Cluster 2 tends to positive zones according to this component, as in previous clustering
models that formed 2 clusters.
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Figure B.28: Partition Clustering model with DTW distance, DBA
prototype and 15m window centroids.

In Figure B.28 each centroid representing the clusters in this section is obtained by computing
a mean at each point of the centroid taking into account the time points of the series that
belong to the cluster and fit into the pre-defined time window. Consequently the presented
centroids patterns represent a form of a averaged pattern and not of a real pattern of dataset.
Cluster 1 presents peak consumption in the night period, the first peak of consumption occurs
around 23:00 and the second peak of consumption occurs around 05:00. The periods of
minimum consumption occur at 2:30 and around 14:00. In the case of Cluster 2, consumption
occurs predominantly during the daytime period with maximum consumption in the period
of 12:00 and in the period of 20:00. Among these maximums the cluster prototype shows a
local minimum at 17:00. The absolute minimum consumption for Cluster 2 occurs around
04:00.
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Figure B.29: Partition Clustering model with DTW distance, DBA
prototype and 15m window clusters sizes.
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Figure B.29 shows that most of the patterns belong to Cluster 2, and Cluster 1 presents only
2779 daily flow patterns. Indicating that most daily patterns have predominantly peak flows
during the daytime period.

Figure B.30 evaluates the degree of membership of each of the annual series to the formed
clusters:
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Figure B.30: Partition Clustering model with DTW distance, DBA
prototype and 15m window annual series membership.

It was observed that in all the annual series the daily patterns belong mostly to Cluster
2, except the series 6545, 4781, 4610, 2379, 2150, 1546 and 1201. This result is consistent
with what was observed in the formation of 2 clusters according to the previous clustering
methods, since most clusters belong to a pattern with predominantly diurnal consumption.

Table B.4 shows a set of statistical characteristics of the clusters formed:
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Table B.4: Partition Clustering model with DTW distance, DBA
prototype and 15m window clusters statistics.

Statistics Cluster 1
(m3/h)

Cluster 2
(m3/h)

Min. 0.00 0.00
1st Qu. 4.72 7.33
Median 10.68 19.34
Mean 20.21 46.51
3rd Qu. 23.27 58.80

Max. 981.25 1207.00
IQR 18.55 51.47

Figure B.31 identifies the influence of weekend or holiday days have on the formation of
clusters:
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Figure B.31: Partition Clustering model with DTW distance, DBA
prototype and 15m window influence of day typology on the formation
of clusters.

As can be seen, the percentage of weekends and holidays is around 30% for Cluster 2 and
Cluster 1. These values indicate that the formed clusters do not allow to identify a distinct
behavior between a working day and a weekend or holiday.

Figure B.32 allows identifying the influence of day typology in each annual series by cluster
type:
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Figure B.32: Partition Clustering model with DTW distance, DBA
prototype and 15m window influence of day typology on each series by
clusters.

As can be seen from Figure B.32, in the most representative cluster of each annual series
it is verified that the proportions of daily patterns belonging to each day typology remains
similar to that presented in Figure B.31, evidencing that in general there is no influence of
the typology of the day in these cases, but in the case of the clusters with less representation
for each annual series usually there is influence of the typology of the day. This result is
similar to the analysis carried out for the previous clustering methods with formation of 2
clusters.

B.5 Partitional Clustering with DTW, DBA prototype
and 30 minutes time window

In this section we will analyze a clustering model using the Partitional Clustering approach
(see section 3.5.2) with the following components:
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• Distance measure: DTW (see section 3.6.2);
• Prototype: DBA (see section 3.7.3);
• Comparison time window: 30 minutes (see section 3.6.2).

B.5.1 Clustering model internal index evaluation
Figure B.33 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.
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Figure B.33: Internal index evaluation for 1st iteration set of Partitional
Clustering with DTW, DBA Prototype and 30 minutes time window.

Figure B.33 shows that the best result (Total score) was with the formation of 2 clusters.

This clustering approach needs to initially allocate centroids (see section 3.5.2), after setting
the number of clusters to be formed it is necessary to run the model with different centroid
initializations in order to evaluate which centroids initialization is best according to the
internal index measures.

Figure B.34 shows the internal index validation of the 2nd iteration set, which aims to
validate the best centroids initialization, running the model to form 2 clusters with 20 random
centroids initializations.
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Figure B.34: Internal index evaluation for 2nd iteration set of
Partitional Clustering with DTW, DBA Prototype and 30 minutes time
window.

Figure B.26 shows that the 11th iteration provided the best performance in the internal
indexes evaluation. In the next section the 11th iteration clustering model with the formation
of 2 clusters will be analyzed.

B.5.2 Clustering model characterization
Figure B.35 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure B.35: Clusters formed through the Partition Clustering model
with DTW distance, DBA prototype and 30m window visualized
through the 3 principal components of PCA.
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For this partiton algorithm with DTW 30 minutes window constraint and DBA centroid,
Cluster 1 tends to negative zones according to the principal component 1 and Cluster 2
tends to positive zones according to this component, as in previous algorithms that formed
2 clusters.
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Figure B.36: Partition Clustering model with DTW distance, DBA
prototype and 30m window centroids.

In Figure B.36 each centroid representing the clusters in this sub-chapter is obtained by
computing a mean at each point of the centroid taking into account the time points of the
series that belong to the cluster and fit into the pre-defined time window. Consequently
the presented centroids patterns represent a form of a averaged pattern and not of a real
pattern of dataset. Cluster 1 presents peak consumption in the night period, the first peak
of consumption occurs around 23:00 and the second peak of consumption occurs around
05:00. The periods of minimum consumption occur at 2:30 and around 15:00. In the case
of Cluster 2, consumption occurs predominantly during the daytime period with maximum
consumption in the period of 12:00 and in the period of 20:00. Among these maximums the
cluster prototype shows a local minimum at 16:00. The absolute minimum consumption for
Cluster 2 occurs around 04:00.
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Figure B.37: Partition Clustering model with DTW distance, DBA
prototype and 30m window clusters sizes.
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Figure B.37 shows that most of the patterns belong to Cluster 2, and Cluster 2 presents only
2824 daily flow patterns. Indicating that most daily patterns have predominantly peak flows
during the daytime period.

Figure B.38 evaluates the degree of membership of each of the annual series to the formed
clusters:

serie1201
serie1496
serie1546
serie1759
serie1765
serie1766
serie2014
serie2082
serie2091
serie2150
serie2163
serie2166
serie2289
serie2379
serie2485
serie2722
serie2725
serie2741
serie2743
serie2764
serie2802
serie2804
serie2823
serie2875
serie3128
serie3162
serie3785
serie3863
serie3881
serie3882
serie4125
serie4526
serie4562
serie4610
serie4781
serie4867
serie5109
serie5124
serie5259
serie5647
serie5842
serie6023
serie6150
serie6278
serie6315
serie6421
serie6482
serie6545
serie6587
serie6781
serie7624
serie7815

0 25 50 75 100
Number of daily series (%)

A
nn

ua
l s

er
ie

s

Cluster:

1

2

Figure B.38: Partition Clustering model with DTW distance, DBA
prototype and 30m window annual series membership.

It was observed that in all the annual series the daily patterns belong mostly to Cluster
2, except the series 6545, 4781, 4610, 2379, 2150, 1546 and 1201. This result is consistent
with what was observed in the formation of 2 clusters according to the previous clustering
methods, since most clusters belong to a pattern with predominantly diurnal consumption.

Table B.5 shows a set of statistical characteristics of the clusters formed:
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Table B.5: Partition Clustering model with DTW distance, DBA
prototype and 30m window clusters statistics.

Statistics Cluster 1
(m3/h)

Cluster 2
(m3/h)

Min. 0.00 0.00
1st Qu. 4.73 7.34
Median 10.74 19.36
Mean 20.27 46.57
3rd Qu. 23.43 58.87

Max. 981.25 1207.00
IQR 18.70 51.53

Figure B.39 identifies the influence of weekend or holiday days have on the formation of
clusters:
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Figure B.39: Partition Clustering model with DTW distance, DBA
prototype and 30m window influence of day typology on the formation
of clusters.

As can be seen, the percentage of weekends and holidays is around 30% for Cluster 1 and
Cluster 2. These values indicate that the formed clusters do not allow to identify a distinct
behavior between a working day and a weekend or holiday.h

Figure B.40 allows identifying the influence of day typology in each annual series by cluster
type:
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Figure B.40: Partition Clustering model with DTW distance, DBA
prototype and 30m window influence of day typology on each series by
clusters.

As can be seen from Figure B.40, in the most representative cluster of each annual series
it is verified that the proportions of daily patterns belonging to each day typology remains
similar to that presented in Figure B.39, evidencing that in general there is no influence of
the typology of the day in these cases, but in the case of the clusters with less representation
for each annual series usually there is influence of the typology of the day. This result is
similar to the analysis carried out for the previous clustering methods with formation of 2
clusters.

B.6 Partitional Clustering with GAK, PAM prototype
and 30 minutes time window

In this section we will analyze a clustering model using the Partitional Clustering approach
(see section 3.5.2) with the following components:
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• Distance measure: GAK (see section 3.6.3);
• Prototype: PAM (see section 3.7.2);
• Comparison time window: 30 minutes (see section 3.6.2).

B.6.1 Clustering model internal index evaluation
Figure B.41 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.
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Figure B.41: Internal index evaluation for 1st iteration set of Partitional
Clustering with GAK, PAM Prototype and 30 minutes time window.

Figure B.41 shows that the best result (Total score) was with the formation of 3 clusters.

This clustering approach needs to initially allocate centroids (see section 3.5.2), after setting
the number of clusters to be formed it is necessary to run the model with different centroid
initializations in order to evaluate which centroids initialization is best according to the
internal index measures.

Figure B.42 shows the internal index validation of the 2nd iteration set, which aims to
validate the best centroids initialization, running the model to form 3 clusters with 20 random
centroids initializations.
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Figure B.42: Internal index evaluation for 2nd iteration set of
Partitional Clustering with GAK, PAM Prototype and 30 minutes time
window.

Figure B.42 shows that the 11th and 15th iterations provided the best performance in the
internal indexes evaluation. In the next section the 15th iteration clustering model with the
formation of 3 clusters will be analyzed.

B.6.2 Clustering model characterization
Figure B.43 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure B.43: Clusters formed through the Partition Clustering model
with GAK distance, PAM prototype and 30m window visualized
through the 3 principal components of PCA.
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In Figure B.43 it is possible to see a separation of the clusters, being that Cluster 1 tends to
be located tendentially in zones of value inferior to -12 in the principal component 1, Cluster
2 is tended in zones of value superior to -2.5 of the principal component 1. Cluster 3 is
located in the intermediate zone between clusters 1 and 2.

The results obtained with the formation of 3 clusters are in line with the results obtained
for the partition model with GAK distance, PAM centroid and 15 minutes window. But are
also quite different in the location of the clusters compared to the results of other previously
presented clustering modes with formatio of 3 clusters.

Figure B.44 shows the respective centroids of the clusters formed:
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Figure B.44: Partition Clustering model with GAK distance, PAM
prototype and 30m window centroids.

Cluster 1 shows peak consumption in the 23:00 period and in the period near 05:00 am. The
predominance of this cluster by nocturnal consumption may be due to the use of water is
predominantly associated with irrigation of gardens. Cluster 2 has a maximum consumption
peak near 08:00, another local maximum at 12:00 and reaches a local minimum around
16:00. From this period consumption increases again until around 20:00 which is a local
maximum. After this period the consumption drops back down to 05:00 which corresponds
to the minimum value of consumption.The centroid of cluster 3 has a constant flow rate
throughout the day. Overall Cluster 2 present higher consumption peaks during the day
period, while Cluster 1 shows higher consumption during the night time period. Cluster 3
identifies a group of daily patterns that exhibit a behavior of less flow variation throughout
the day compared to the other clusters.

Figure B.45 shows the size of each of the clusters formed. This Figure shows that most of the
patterns belong to Cluster 2 with 15326 dailly flow patterns, followed by Cluster 1 presents
with 1845 daily flow patterns. Cluster 3 presents 1806 daily flow patterns.

153



0

5000

10000

15000

Cluster 1 Cluster 2 Cluster 3

N
um

be
r 

of
 d

ai
ly

 s
er

ie
s

Cluster sizes

Figure B.45: Partition Clustering model with DTW distance, PAM
prototype and 30m window clusters sizes.

Figure B.46 evaluates the degree of membership of each of the annual series to the formed
clusters:
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Figure B.46: Partition Clustering model with DTW distance, PAM
prototype and 30m window annual series membership.
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It was observed that in all the annual series the daily patterns belong mostly to Clusters
2, indicated that most annual series present higher consumption during the daytime period.
The exceptions are the series 6545, 4781, 4610, 2379, 1546 and 1201 that belong mostly to
Cluster 1 and therefore show higher consumption during the night time.

The annual series 2150 belongs mainly to cluster 3. Other annual series such as 6587, 2166,
2014, 1765, 1759 and 1201 show a high percentage of daily patterns belonging to cluster 3.

Table B.6 shows a set of statistical characteristics of the clusters formed:

Table B.6: Partition Clustering model with GAK distance, PAM
prototype and 30m window clusters statistics.

Statistics Cluster 1
(m3/h)

Cluster 2
(m3/h)

Cluster 3
(m3/h)

Min. 0.00 0.00 0.00
1st Qu. 4.93 7.35 4.97
Median 10.39 18.83 17.85
Mean 18.28 46.17 37.77
3rd Qu. 21.65 57.81 46.40

Max. 312.25 1207.00 981.25
IQR 16.72 50.46 41.43

Figure B.47 identifies the influence of weekend or holiday days have on the formation of
clusters:
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Figure B.47: Partition Clustering model with GAK distance, PAM
prototype and 30m window influence of day typology on the formation
of clusters.

It is observed that the percentage of weekends and holidays for clusters is about 30%. This
distribution indicates that these Clusters do not identify a distinct behavior between working
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day and weekend or holiday, since the assignment of the typology of days in a year is of the
same order of magnitude.

Figure B.48 allows identifying the influence of day typology in each annual series by cluster
type:
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Figure B.48: Partition Clustering model with GAK distance, PAM
prototype and 30m window influence of day typology on each series by
clusters.

As can be seen from Figure B.48, in the most representative cluster of each annual series it is
verified that the proportions of daily patterns belonging to each day typology remains similar
to that presented in the graph of the previous section, evidencing that in general there is no
influence of the typology of the day in these cases, but in the case of the clusters with less
representation for each annual series usually there is influence of the typology of the day.
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Appendix C

Cluster 2 - Clustering models with
elastic distance measures

C.1 Cluster 2 - Partitional Clustering with DTW,
PAM prototype and 15 minutes time window

In this section Cluster 2 subsets will bo analyzed using the Partitional Clustering approach
(see section 3.5.2) with the following components:

• Distance measure: DTW (see section 3.6.2);
• Prototype: PAM (see section 3.7.2);
• Comparison time window: 15 minutes (see section 3.6.2).

C.1.1 Clustering model internal index evaluation
Figure C.1 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.
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Figure C.1: Cluster 2 - Internal index evaluation for 1st iteration set of
Partitional Clustering with DTW, PAM and 15m time window.

Figure C.1 shows that the best result (Total score) was with the formation of 8 clusters.
This clustering approach needs to initially allocate centroids (see section 3.5.2), after setting
the number of clusters to be formed it is necessary to run the model with different centroid
initializations in order to evaluate which centroids initialization is best according to the
internal index measures.

Figure C.2 shows the internal index validation of the 2nd iteration set, which aims to validate
the best centroids initialization, running the model to form 3 clusters with 20 random
centroids initializations.
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Figure C.2: Cluster 2 - Internal index evaluation for 2nd iteration set
of Partitional Clustering with DTW, PAM and 15m time window.
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Figure C.2 shows that the 10th iteration provided the best performance in the internal indexes
evaluation.

In the next section the 10th iteration clustering model with the formation of 3 clusters will
be analyzed.

C.1.2 Clustering model characterization
Figure C.3 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure C.3: Cluster 2 - Clusters formed through the Partition
Clustering model with DTW, PAM and 15m window visualized through
the 3 principal components of PCA.

From Figure C.3 it can be seen that there are no well defined boundaries between clusters
formed according to the space represented by the first 3 principal components, this finding
may result from the fact that these clusters may not be well represented in time periods with
greater weight on principal components (see Figure 4.9).

Figure C.4 shows the respective centroids of the clusters formed:
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Figure C.4: Cluster 2 - Partition Clustering model with DTW, PAM
and 15m window centroids.

Figure C.4 shows that these clusters do not have a significant variability between day and
night consumption as seen in cluster 1, 3 and 4 of the Combined Model. Clusters 2.3
and 2.4 are an exception as they have higher daytime consumption compared to nighttime
consumption.

Through the centroids represented in Figure C.4 it was possible to characterize the clusters
as follows:

• Cluster 2.1: shows peak consumption at 04:00, 09:00 and 22:00 and minimum
consumption at 01:00 and 19:30. The maximum consumption levels recorded for this
cluster are all of the same order of magnitude, which shows that this cluster has water
consumption for irrigation (4:00 peak) but is no higher than domestic consumption
for other purposes that typically exists in maximum consumption periods recorded at
09:00 and 22:00;

• Cluster 2.2: it has peak consumption at 22:00, 00:00, 06:00 and a high water
consumption zone between 10:00 and 14:00. Similar to cluster 2.1 the maximum
consumptions recorded for this cluster are all roughly the same order of magnitude
except the maximum of 00:00, which shows that the watering demand for irrigation is
higher than in cluster 2.1;

• Cluster 2.3: this cluster has a minimum consumption at 00:00 and from that moment
the consumption will grow until 12:00, from that moment the consumption will decrease
again. In this cluster the consumption derived from irrigation is not significant, since
there is no maximum consumption during the night, and the highest consumption
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occurs during the lunch period;
• Cluster 2.4: shows consumption peaks at 00:00, 03:00, 06:00, 08:00 and 21:00. The

maximum consumption associated with the period of 08:00 is a maximum consumption
significantly higher than the remaining local maximums, indicating that in this cluster
the consumption associated with irrigation is lower than the domestic consumption
used for other purposes;

• Cluster 2.5: presents the same centroid as cluster 2 of the Combined Model, meaning
cluster 2.5 encompasses daily patterns in which the variation between day and night
consumption is still less significant than that recorded in the other subclusters of cluster
2;

• Cluster 2.6: this cluster behaves quite differently from the others, the variations
in consumption are more instantaneous which can reveal irrigation consumptions
throughout the day. This behavior has been detected in this cluster because there may
not be significant water consumptions in this cluster for other uses. This fact indicates
that instant variations of irrigation consuptions are not diluted in consumptions of
other typologies. The behavior represernted by this cluster may not be desirable as it
indicates that there is irrigation at times of day with the most sun exposure and some
of the water used for these purpose evaporates and is not absorbed by the soil at those
times with the most sun exposure;

• Cluster 2.7: its consumption tends to decrease between 09:00 and 00:00. In the period
from 00:00 to 09:00, it shows local maximums at 01:00 and 03:00 and an absolute
maximum at 06:00 associated with irrigation consumptions;

• Cluster 2.8: this cluster has a peak consumption at 07:30 which decreases until it
reaches a local low at 09:00. Consumption then tends to increase between 09:00 and
14:30, from that moment consumption shows little variability until 01:00, from that
moment consumption decreases to the absolute minimum at 04:00.

Figure C.5 shows the size of each of the clusters formed:
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Figure C.5: Cluster 2 - Partition Clustering model with DTW, PAM
and 15m window clusters sizes.

Figure C.5 shows that the largest cluster is Cluster 2.5, which has about 696 daily patterns.
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The remaining clusters are in the range of 100 to 200 daily patterns. Except for cluster 2.1
which has 75 daily patterns and cluster 2.3 with 260 daily patterns.

Table C.1 shows a set of statistical characteristics of the clusters formed:

Table C.1: Cluster 2 - Partition Clustering model with DTW, PAM
and 15m window clusters statistics.

Statistics Cluster
2.1

(m3/h)

Cluster
2.2

(m3/h)

Cluster
2.3

(m3/h)

Cluster
2.4

(m3/h)

Cluster
2.5

(m3/h)

Cluster
2.6

(m3/h)

Cluster
2.7

(m3/h)

Cluster
2.8

(m3/h)

Min. 0.97 0.00 0.00 0.00 0.00 0.07 0.95 0.00
1st Qu. 6.86 18.40 8.75 10.13 2.35 11.12 22.00 103.61
Median 12.12 60.00 20.80 52.00 5.90 20.04 28.40 128.12
Mean 34.65 62.44 25.95 55.79 17.29 29.02 31.30 110.76
3rd Qu. 19.39 95.42 34.80 76.00 16.19 31.69 34.40 145.99

Max. 881.00 208.75 251.08 376.42 981.25 299.62 766.37 184.24
IQR 12.53 77.02 26.05 65.86 13.84 20.57 12.40 42.38

Figure C.6 identifies the influence of weekend or holiday days have on the formation of
clusters:
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Figure C.6: Cluster 2 - Partition Clustering model with DTW, PAM
and 15m window influence of day typology on the formation of clusters.

As it can be seen, most of the clusters are associated with typical workday behavior. Except
in the case of cluster 2.2, the percentage of weekend or holiday patterns is around 70%,
proving that this cluster is associated with typical weekend or holiday behavior.

Figure C.7 shows the geographic distribution of the clusters formed by the model:
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Figure C.7: Cluster 2 - Partition Clustering model with DTW, PAM
and 15m window - geographic distribution of the clusters formed.

Figure C.7 shows that Clusters 2.1, 2.5 and 2.6 belong mainly to the South (Algarve) region.
In the case of Clusters 2.2, 2.3, 2.4 and 2.7, they mainly belong to the Lisbon metropolitan
area. Cluster 2.8 mainly belongs to the Costal Center region. The Interior Center region has
little representation in these clusters, and is present in clusters 2.3, 2.4, 2.5, 2.7 and 2.8.

It should be noted that Cluster 2.7 that was previously identified as having poor management
of irrigation periods is associated with the South (Algarve) region.

Figure C.8 shows the distribution of wet months and dry months in the clusters formed by
the model:
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Figure C.8: Cluster2 - Partition Clustering model with DTW, PAM
and 15m window - distribution of wet months and dry months in the
clusters formed.

Figure C.8 shows that most of these clusters belong mostly to the dry months typology. With
the exception of Clusters 2.1, 2.5 and 2.8 which mostly belong to the wet months typology.
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C.2 Cluster 2 - Partitional Clustering with GAK, PAM
prototype and 15 minutes time window

In this section we will analyze a clustering model using the Partitional Clustering approach
(see section 3.5.2) with the following components:

• Distance measure: GAK (see section 3.6.3);
• Prototype: PAM (see section 3.7.2);
• Comparison time window: 15 minutes (see section 3.6.2).

C.2.1 Clustering model internal index evaluation
Figure C.9 shows the internal index validation of the 1st iteration set, which aims to validate
the optimal number of clusters to form within the range of 2 to 10 clusters.
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Figure C.9: Cluster 2 - Internal index evaluation for 1st iteration set of
Partitional Clustering with GAK, PAM and 15m time window.

Figure C.9 shows that the best result (Total score) was with the formation of 8 clusters.

This clustering approach needs to initially allocate centroids (see section 3.5.2), after setting
the number of clusters to be formed it is necessary to run the model with different centroid
initializations in order to evaluate which centroids initialization is best according to the
internal index measures.

Figure C.10 shows the internal index validation of the 2nd iteration set, which aims to
validate the best centroids initialization, running the model to form 2 clusters with 20 random
centroids initializations.
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Figure C.10: Cluster 2 - Internal index evaluation for 2nd iteration set
of Partitional Clustering with GAK, PAM and 15m time window.

Figure C.10 shows that the 14th iteration provided the best performance in the internal
indexes evaluation. In the next section the 14th iteration clustering model with the formation
of 3 clusters will be analyzed.

C.2.2 Clustering model characterization
Figure C.11 shows the visualization of the clusters formed by the model according to the first
3 principal components:
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Figure C.11: Cluster 2 - Clusters formed through the Partition
Clustering model with GAK, PAM and 15m window visualized through
the 3 principal components of PCA.
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From Figure C.11 it can be seen that there are no well defined boundaries between clusters
formed according to the space represented by the first 3 principal components, this finding
may result from the fact that these clusters may not be well represented in time periods with
greater weight on principal components (see Figure 4.9).

Figure C.12 shows the respective centroids of the clusters formed:
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Figure C.12: Cluster 2 - Partition Clustering model with GAK, PAM
and 15m window centroids.

Figure C.12 shows that these clusters do not have a significant variability between day and
night consumption as seen in cluster 1, 3 and 4 of the Combined Model. Clusters 2.3
and 2.4 are an exception as they have higher daytime consumption compared to nighttime
consumption.

Through the centroids represented in Figure C.12 it was possible to characterize the clusters
as follows:

• Cluster 2.1: shows peak consumption at 06:00, 12:00, 17:00 and 20:00 and minimum
consumption at 01:30, 08:00, 10:30, 15:00, and 21:00. The maximum consumption
levels recorded for 06:00 period is significantly higher than the remaining consumption
maximums, which shows that in this cluster the use of water for irrigation is significant;

• Cluster 2.2: its consumption tends to decrease between 09:00 and 00:00. In the period
from 00:00 to 09:00, it shows local maximums at 01:00 and 03:00 and an absolute
maximum at 06:00 associated with irrigation consumptions;

• Cluster 2.3: shows consumption peaks at 00:00, 06:00, 08:30 and 22:30. The
maximum consumption associated with the period of 08:30 is a maximum consumption
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significantly higher than the remaining local maximums, indicating that in this cluster
the consumption associated with irrigation is lower than the domestic consumption
used for other purposes;

• Cluster 2.4: shows consumption peaks at 03:30, 07:30, 15:00. The maximum
consumption levels recorded for this cluster are all of the same order of magnitude,
which shows that this cluster has water consumption for irrigation (03:30 peak) but
is not higher than domestic consumption for other purposes that typically exists in
maximum consumption periods recorded at 07:30 and 15:00;

• Cluster 2.5: this cluster has a peak consumption at 07:30 which decreases until it
reaches a local low at 09:00. Consumption then tends to increase between 09:00 and
14:30, from that moment consumption shows little variability until 01:00, from that
moment consumption decreases to the absolute minimum at 04:00;

• Cluster 2.6: this cluster behaves quite differently from the others, it has a low
consumption between 00:00 and 16:30, from this period consumption increases rapidly
and only decreases after 21:00;

• Cluster 2.7: presents the same centroid as cluster 2 of the Combined Model, meaning
cluster 2.7 encompasses daily patterns in which the variation between day and night
consumption is still less significant than that recorded in the other subclusters of cluster
2;

• Cluster 2.8: this cluster has a minimum consumption at 00:00 and from that moment
the consumption will grow until 09:30, from that moment the consumption will decrease
again. In this cluster the consumption derived from irrigation is not significant, since
there is no maximum consumption during the night, and the highest consumption
occurs during the morning period.

Figure C.13 shows the size of each of the clusters formed:
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Figure C.13: Cluster 2 - Partition Clustering model with GAK, PAM
and 15m window clusters sizes.

Figure C.13 shows that the largest cluster is Cluster 2.7, which has about 971 daily patterns.
The remaining clusters are in the range of 100 to 200 daily patterns. Except for Cluster 2.1
which has 36 daily patterns and cluster 2.6 with 53 daily patterns.
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Compared to Figure C.5 of the Partitional Clustering with DTW model, PAM prototype and
15 minutes time window, it appears that Cluster 2.7 of the present model has more daily
patterns than Cluster 2.5 of the Partitional Clustering with model. DTW, PAM prototype
and 15 minutes time window. In the case of the remaining clusters of this model it is
found that in general they aggregate less daily patterns than the clusters of the Partitional
Clustering with DTW, PAM prototype and 15 minutes time window. Indicating that in the
present model Cluster 2.7 aggregates more dailly patterns and the remaining Clusters are
less representative than those of Figure C.5.

Table C.2 shows a set of statistical characteristics of the clusters formed:

Table C.2: Cluster 2 - Partition Clustering model with GAK, PAM and
15m window clusters statistics.

Statistics Cluster
2.1

(m3/h)

Cluster
2.2

(m3/h)

Cluster
2.3

(m3/h)

Cluster
2.4

(m3/h)

Cluster
2.5

(m3/h)

Cluster
2.6

(m3/h)

Cluster
2.7

(m3/h)

Cluster
2.8

(m3/h)

Min. 0.31 0.95 0.00 0.00 0.00 0.00 0.00 0.00
1st Qu. 2.41 22.40 15.30 9.23 112.88 1.10 3.30 12.70
Median 3.94 28.40 53.03 17.45 132.32 6.12 9.35 31.20
Mean 15.16 31.97 56.84 27.07 121.71 23.18 24.08 35.67
3rd Qu. 6.76 34.40 76.00 23.30 147.54 19.91 25.80 48.80

Max. 530.50 766.37 376.42 881.00 184.24 340.00 981.25 503.75
IQR 4.35 12.00 60.70 14.07 34.66 18.80 22.50 36.10

Figure C.14 identifies the influence of weekend or holiday days have on the formation of
clusters:
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Figure C.14: Cluster 2 - Partition Clustering model with GAK, PAM
and 15m window influence of day typology on the formation of clusters.

As it can be seen, all clusters are associated with typical workday behavior.

Figure C.15 shows the geographic distribution of the clusters formed by the model:
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Figure C.15: Cluster 2 - Partition Clustering model with GAK, PAM
and 15m window - geographic distribution of the clusters formed.

Figure C.15 shows that Clusters 2.1 and 2.7 belong mainly to the South (Algarve) region.
In the case of Clusters 2.2, 2.3, 2.4 and 2.8, they mainly belong to the Lisbon metropolitan
area. Clusters 2.5 and 2.6 mainly belongs to the Costal Center region. The Interior Center
region has little representation in these clusters, and is present in all clusters, except for the
Cluster 2.1.

Figure C.16 shows the distribution of wet months and dry months in the clusters formed by
the model:
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Figure C.16: Cluster 2 - Partition Clustering model with GAK, PAM
and 15m window - distribution of wet months and dry months in the
clusters formed.

Figure C.16 shows that Clusters 2.1, 2.5, 2.6 and 2.7 belong mostly to the dry months
typology. Clusters 2.2, 2.3, 2.4 and 2.8 belong mainly to the wet months typology.
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