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Resumo 

Um número elevado de organizações de tecnologias de informação têm um grande 

número de problemas no momento e após lançarem os seus serviços, se juntarmos a isto 

o número elevado de serviços que estas organizações prestam diariamente, dificulta 

bastante o processo de Incident Management (IM). Um sistema de IM eficaz deve 

permitir aos decisores de negócio detetar facilmente estes problemas, caso contrário, as 

organizações podem ter de enfrentar imprevistos nos seus serviços (custos ou falhas). Esta 

tese irá demonstrar que é possível introduzir um processo de previsão que poderá levar a 

um melhoramento do tempo de resposta aos incidentes, assim como uma redução dos 

mesmo. Prevendo estes problemas estes podem alocar melhor os recursos assim como 

mitigar os incidentes. Como tal, esta tese irá analisar como prever esses incidentes, 

analisando os deployments feitos nos últimos anos e relacionando-os usando algoritmos 

de machine learning para prever os incidentes. 

Os resultados mostraram que é possível prever com confiança se um determinado 

deploymente vai ou não ter incidentes.  

 

Palavras-chave: Análise Preditiva, Incident Management, Deployment de software 
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Abstract 

A high number of information technology organizations have several problems during 

and after deploying their services, this alongside with the high number of services that 

they provide daily, it makes Incident Management (IM) process quite demanding. An 

effective IM system needs to enable decision-makers to detect problems easily. 

Otherwise, the organizations can face unscheduled system downtime and/or unplanned 

costs. This study demonstrates that is possible to introduce a predictive process that may 

lead to an improvement of the response time to incidents and to the reduction of the 

number of incidents created by deployments. By predicting these problems, the decision-

makers can better allocate resources and mitigate costs. Therefore, this research aims to 

investigate if machine learning algorithms can help to predict the number of incidents of 

a certain deployment. 

The results showed with some security, that it is possible to predict, if a certain 

deployment will have or not an incident in the future. 

 

Keywords: Predictive Analysis, Incident Management, Software Deployment 
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Chapter 1 – Introduction 

Thousands of Information Technology (IT) organizations worldwide are struggling 

with the deployment of information technology service management processes (ITSM) 

and with the deployment of services into the daily IT operations (Jäntti & Järvinen, 2011). 

The number of IT services keeps increasing in countless different types of organizations 

where IT plays a leading role (Gacenga, Cater-Steel, Tan, & Toleman, 2011). Therefore, 

IT service managers are increasingly under pressure to reduce costs and quickly deliver 

cost-effective services (Aguiar, Pereira, Vasconcelos, & Bianchi, 2018) and consequently 

make Incident Management (IM) one of the most demanding ITSM processes.  

Nowadays, many tickets are created each day (Mello & Lopes, 2015), especially in 

large-scale enterprise systems (Kikuchi, 2015; Lin et al., 2014). A recent study from Lou 

et al. (2017), and recently supported by Silva, Pereira, & Ribeiro (2018b), reported that 

about 12 billion lines of log messages are generated in their infrastructure each day for 

IM. 

Most of the tickets are created with non-structured text (Lin et al., 2014) meaning that 

they can have numerous variations on the description of it and organizations are not able 

to extract value from such data. 

An effective IM system needs to enable decision-makers to detect anomalies and 

extract helpful knowledge to solve incidents (Aguiar, Pereira, Vasconcelos, & Bianchi, 

2018). These incidents can lead to unscheduled system downtime and/or unplanned costs 

(Russo, Succi, & Pedrycz, 2015) and cause a significant impact since the recovery process 

can require time and resources that were not considered (Fulp, Fink, & Haack, 2008). 

Furthermore, if system administrators are able to predict these incidents, they can better 

allocate their resources and services to mitigate the costs (Russo et al., 2015). Predicting 

computer failures can help in mitigating the impact even when the failure is impossible 

to solve because recovery and rescue can be taken way earlier (Fronza, Sillitti, Succi, & 

Vlasenko, 2011) and allow managers to get a better response over system performance 

(Russo et al., 2015). 

Predictive Analysis can help in to predict future incidents by using retrospective and 

current data (Kang, Zaslavsky, Krishnaswamy, & Bartolini, 2010). In recent years, 

machine learning (ML), as an evolving subfield of computer science has been widely used 

in the challenging problem of predicting incidents as well as anomaly detection problems 
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(Tziroglou et al., 2018) providing information on the applications and the environments 

where the applications are deployed (Oliveira, 2017). 

As previously stated, organizations produce and report billions of incidents each day, 

making it difficult for organizations to keep up with it. Predictive analysis can be used to 

predict some of those incidents and therefore reduce their occurrence and the possible 

costs associated with them. 

Software deployments can have critical information to predict and therefore prevent 

incidents, like a feature that often causes many incidents when there is a deployment with 

it. Therefore, this research aims to analyze if it is possible to predict incidents based on 

the software deployment information of the last few years to build a predictive model 

capable of predicting those incidents and in the end answer the research question in Table 

1. 

Table 1- Research Question 

ID Description 

RQ1 Can software deployments information be used to predict incidents? 

 

This research uses the Cross-Industry Standard Process for Data Mining (CRISP-DM) 

as a research methodology. This methodology aims to create a precise process model for 

data mining projects (Chapman et al., 1999). 

This research will start by exposing what already exists in the literature and how it 

relates to this research. Then the main concepts will be shortly explained as well as the 

methodology that will be followed. On chapter 3, it is exposed what was done on this 

research and on the following chapters, a discussion of the results obtained as well as the 

conclusions will be presented. 
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Chapter 2 – Literature Review 

The Literature Review research was made between the 12th of August 2018 through 

the 30th of December 2018. 

The acceptance criteria of the papers in Table 2 was done as follows. First based on 

the relation of the title with the three big topics, then if it had any relation, an analysis of 

the abstract would be done to see if it indeed would relate to this study and if so a quick 

analysis of the content was done to check if there was relevant content to be applied in 

this study. Only english written papers were selected. The numbers in Table 2 represent 

the papers that matched the criteria and endend being used in this document 

The research was made as follows: 

 
Table 2 – Selected Papers 

 

Keywords 

#Selected papers 

Total Google 

Scholar 
ACM Springer IEEE 

P
re

d
ic

ti
v
e 

A
n
al

y
si

s 

Predictive Analysis 3 4 1 0 8 

Incident Predictive 

Analysis 
0 3 2 0 5 

Predictive Model 0 2 0 0 2 

Support Vector Machines 0 1 0 0 1 

Prediction on software 

logs 
0 0 3 0 3 

Software logs 0 0 1 0 1 

Predicting incidents 0 1 0 0 1 

Predicting incident ticket 0 2 0 0 2 

Prediction deployment 1 0 0 0 1 

In
ci

d
en

t 

M
an

ag
em

en
t Incident Management it 1 0 0 0 1 

Incident Management itil 2 0 0 0 2 

Incident Management 0 1 0 0 1 

It Incident Management 0 1 1 2 4 

S
o
ft

w
ar

e 

D
ep

lo
y
m

en
t 

Software Deployment 

Quality 
1 0 0 0 1 

Software Deployment 1 2 0 0 3 

Software Deployment 

Process 
0 1 0 0 1 

Software Deployment 

Incident 
0 0 0 1 1 

 Total 9 18 6 3 36 

 



Chapter 2 – Literature Review 

4 

 

As seen in Table 2, the search was made around the three main concepts that will be 

explained in the following sub-chapters.  

At the end it was not found any studies relating predictive analysis and software 

deployment to predict incidents, so the scope was made wide again and started searching 

for predictive analysis related to logs which have some relation to software deployment 

messages. It was also searched for Support Vector Machines since it was one of the most 

used algorithms found in the literature. In IM, it was once again used a wide scope and 

then narrowed to only IT IM. ITIL was searched after reading it in the IM literature. 

2.1.Theoretical Background 

This research grounds on three main concepts: Predictive Analysis, Incident 

Management, and Software Deployment. The next paragraphs briefly detail each of these 

concepts. 

Predictive analysis can be defined as the act of doing predictive analytics. Predictive 

Analytics is the combination of techniques that can help to make informed decisions by 

doing an analysis of historical data (Myatt & Johnson, 2009).  

IM is said to be one of the most important ITIL process model elements for the delivery 

of IT services (Kang et al., 2010). The goal of IM is to bring normal service operation as 

fast as possible, after a service disruption (Bartolini, Stefanelli, & Tortonesi, 2010) and 

finding a resolution for the incident while minimizing business impact which has an 

important role in creating a highly scalable system. 

Software deployment can be defined as being the group of processes between the 

acquisition and execution of software (Dearle, 2007; Mukhopadhyay, 2018) and the 

connection between software components and its hardware (Medvidovic & Malek, 2007). 

2.1.1. Predictive Analysis 

Predictive analysis allows estimations of the impact of design decisions, that can help 

to get optimal operational results (Oliveira, 2017). Existing methods in the literature can 

be classified broadly into two categories: lockset analysis and feasibility guarantee 

(Wang, Kundu, Limaye, Ganai, & Gupta, 2011). While lockset analysis methods strive 

to cover all the true positives, but may also introduce many false positives, feasibility 

guarantee methods ensure all the reported bugs can happen, but they may not cover all 

the detectable errors (Wang et al., 2011).  
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The following sub-sections will review the different topics related to predictive 

analysis and ML. 

2.1.1.1 ML Algorithms types 

There can be three types of ML algorithms: 

• Supervised Learning – If the objective is to predict something based on known 

data (Bari, Chaouchi, & Jung, 2014); 

• Unsupervised Learning – If the objective is to predict something, but there is no 

data available (Kotsiantis, 2007); 

• Reinforcement Learning – Where the algorithm learns based on rewards and tries 

to maximize that reward (Bari et al., 2014). 

 

Since this research will use a supervised learning algorithm, there will not be any focus 

on the other two. 

As for supervised learning, it can be split into two categories of tasks, which are 

classification and regression.  

In classification the results are categorical variables meaning that it can only take a 

strict number of values (Myatt & Johnson, 2009), this category aims to predict the 

category of a field (Myatt, 2007) or if something will happen or not, for example, if there 

will or not be an incident for a deployment. On the other hand, in regression the results 

are continuous variables meaning that this category of the task is used to make estimations 

and predictions (Myatt & Johnson, 2009), for example, how many incidents will a 

deployment generate. 

Figure 1 shows a list of supervised learning algorithms and their corresponding task 

category. 

 
Figure 1 - Supervised Learning Algorithms (Myatt & Johnson, 2009) 

2.1.1.2 Training and Evaluation 

After the data is prepared, it is now necessary to train the model in order to better 

generalize the relation of the inputs and outputs, and then we need to evaluate the training. 

The quality of the model is based on its ability to accurately predict based on a certain 
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number of inputs. The model should neither overgeneralize or overfit the relation (Myatt, 

2007). Starting by the training phase, this phase can be done in two different ways, either 

splitting the dataset in a train set and a test set or by using cross validation. 

 Splitting the dataset in a train and test set will allow the model to ignore the data that 

was used in the test set, and so, the model will only be built with a part of the dataset 

(train set) (Myatt, 2007), the model will then produce results that will be compared with 

the test set to evaluate the model (Brownlee, 2016). The percentage of the split is different 

depending on the dataset that is being used (Myatt, 2007), although the recommended 

values throughout the literature are between 70%-30% up to 80%-20% (train-test). 

In cross-validation a model learns its weights and parameters on a training set and 

calculates its prediction performance on the new instances of a validation set (Bishop, 

1996). The dataset is split in k smaller datasets (the most used values for k are 3, 5, and 

10), but similar to the previous approach it depends on each dataset, as the k has to allow 

each dataset to be large enough (Brownlee, 2016). Each time one of the data set is used 

for testing the remaining ones are used together for training, this then iterates until every 

data set is used as a test set (Bari et al., 2014). After all the datasets are used as test sets, 

several score performances are given, which can then be interpreted by applying the mean 

and standard deviation. As the algorithm runs several times with different datasets, it ends 

being more reliable than the split approach (Brownlee, 2016).  

Identification of the best performing classifiers can be made by feature reduction 

independently from data manipulation in cross-validation. Splitting the dataset is 

beneficial to classification problems since data splitting increments the diversity of the 

sets and the strength of the classification result (Russo et al., 2015). 

After all the training, several metrics can be used to evaluate the results. 

There are four possible outcomes of the prediction (Hovsepyan, Scandariato, & 

Joosen, 2016):  

• True positive (TP) if it was predicted and was indeed an accurate prediction;  

• True negative (TN) if it was not predicted like it should not have been;  

• False-positive (FP) if it was predicted, but it should not have been; 

• False-negative (FN) if it was not predicted, but it should have been. 

These outcomes can then be used to create different metrics, such as: 
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• Accuracy – Most used metric in classification (Brownlee, 2016). Closer to 1 means 

a better result (Myatt & Johnson, 2009). Accuracy can be obtained, as shown in 

Equation 1 and Equation 2. 

Equation 1- Accuracy equation I 

 

Equation 2- Accuracy equation II 

 

• Precision – Number of correct results divided by the number of guesses (Manning, 

Raghavan, & Schuetze, 2009). This is shown in Equation 3. 

Equation 3- Precision equation 

 

• Recall – Number of correct results guessed in all the possible correct results 

(Manning et al., 2009). This is shown in Equation 4. 

Equation 4- Recall equation 

 

• ROC curve – Only used in classification models (Brownlee, 2016). It relates the 

precision with recall (Myatt, 2007). If the curve grows quickly on the left side, it 

means that the model is good (Manning et al., 2009). 

• F-measure – Relates precision with recall by doing a weighted harmonic mean 

between them (Manning et al., 2009). This is shown in Equation 5. 

Equation 5- F-measure equation 

 

Imbalanced data can be an issue when someone wants to evaluate the performance of 

posterior probabilities. According to Hongyu Zhang & Xiuzhen Zhang (2007), the 

measures introduced in Menzies, Greenwald, & Frank (2007), true and false positive rate 

are not enough in case of imbalanced data. When data is imbalanced, Hongyu Zhang & 

Xiuzhen Zhang (2007) prove that models can be able to detect faults (true positive rate is 
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high) and raise few false alarms (false positive rate is small) but still be very poor in 

performance (precision is small). Precision is an unstable measure and should not be used 

alone. Classification results with low precision and high true positive rate are useful and 

very frequent in software engineering (Menzies et al., 2007). 

Misclassification rate alone is not a good measure to compare the overall performance, 

and the operational balance measure can be used instead (Russo et al., 2015). A high 

number of parameters lead to poor generalization (overfitting), and a low number of 

parameters can lead to inadequate learning (underfitting) (Duda, Hart, & Stork, 2001). 

2.1.2. Incident Management 

The goal of IM is to bring normal service operation as fast as possible, after a service 

disruption (Bartolini et al., 2010) and finding a resolution for the incident while 

minimizing business impact which has an important role in creating a highly scalable 

system. It does this by focusing on tracking and managing all incidents, from opening 

until closure (Silva et al., 2018b). 

To obtain the success and efficiency of the process, there are four critical success 

factors that must be achieved (Silva et al., 2018b):  

• Quickly resolving incidents; 

• Maintaining IT service quality; 

• Improving IT and business productivity;  

• Maintaining user satisfaction.  

IM provides the capability of detecting an incident, locating applicable supporting 

resources such as (Zhao & Yang, 2013): 

• Provides the necessary data for the incident resolution process; 

• Verifies resource configuration, management process, and operation quality to 

achieve service objectives; 

• Provides data for developing service report, service plan, cost accounting as 

well as service workload assessment. 

The priority of these incidents is usually calculated through evaluation of impact and 

urgency (Bartolini, Salle, & Trastour, 2006). 

Quantitative IM can be helpful in improving time efficiency and to focus on its nature 

(Zhao & Yang, 2013). Classification, prioritization and scalability of incidents are very 
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important and to do that the IM process needs a correct categorization to attribute incident 

tickets to the right resolution group and obtain an operational system as quickly as 

possible, doing so results in a low possible impact on the business and costumers (Silva 

et al., 2018b).  

ITIL is a combination of concepts and policies to manage IT infrastructure, 

development, and operations (Guo & Wang, 2009; Bartolini et al., 2010) and it is one of 

the best practice standards for ITSM (Bartolini et al., 2010). It provides a framework of 

best practices guidance for ITSM and has become one of its most accepted approaches 

(Guo & Wang, 2009). It describes the best practices and standards to IM, helping 

companies to improve their processes (Silva et al., 2018b) and defines it as “the process 

for restoring normal service operation after a disruption, as quickly as possible and with 

minimum impact on the business” (Bartolini et al., 2010). 

An incident for ITIL is an alteration from the expected standard operation of a system 

or a service that may or not cause an interruption or a reduction in quality of the service 

(Bartolini et al., 2006; Forte, 2007; Kang et al., 2010). These should be detected as early 

as possible and are related to failures, questions, or queries (Silva, Pereira, & Ribeiro, 

2018a). 

These are the IM processes to ITIL (Bartolini et al., 2010; Guo & Wang, 2009; Tøndel, 

Line, & Jaatun, 2014):  

• Incident detection and recording;  

• Classification and initial support; 

• Investigation and diagnosis;  

• Resolution and recovery;  

• Closure; 

• Tracking.  

There are two aspects to a ticket, the functional and the hierarchical, the first one says 

who should solve the problem, and the second says who should be informed of it (Forte, 

2007).  

2.1.3. Software Deployment 

“Software deployment may be defined to be the processes between the acquisition and 

execution of software” (Dearle, 2007; Mukhopadhyay, 2018) and “the allocation of the 
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system’s software components (and connectors) to its hardware hosts” (Medvidovic & 

Malek, 2007). Most of them use the concept of a component (Dearle, 2007). 

Deployment architecture is particularly important in some environments because a 

system will typically have many different execution platforms during its lifetime which 

can have a significant effect on the system’s non-functional properties such as Quality of 

Service (Medvidovic & Malek, 2007). 

Continuous deployment guarantees that every change passes all stages of the software 

production pipeline and is released to the customers without any human intervention. 

Continuous deployment is an excellent way to have more feedback with the customers 

and stay compatible in the market (Çalikli, Staron, & Meding, 2018). 

2.2. Related Work 

 

This section provides a critical analysis of what has been done that relates to this 

study. Although there are some studies using the source code and repository information, 

such as commits, there were no studies found relating deployment information similar to 

what this research will use. Therefore, this section details and analyze some of the most 

similar studies about incident predictions with code inspection as well as the studies that 

use ML algorithms to predict incidents based on some sort of textual information. In Table 

3, there is a summary of what has been done and algorithms used, and then a more detailed 

explanation will be given throughout this section. The most used algorithms in Table 3 

were SVM, and Naïve Bayes, K-Nearest Neighbours (KNN), Classification and 

Regression Trees (CART) and logistic regression (logit) were also used, but not as much 

and finally  Multiple Discriminant Analysis (MDA), Random Forest (RF) and Neural 

Networks (NN) were found once or twice throughout the related work. 
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* Used with adaptive boost 

Table 3 – Related Work 

Title Reference 
Algorithms Goal 

SVM KNN  
Naïve 

Bayes 
CART MDA Logit RF NN  

Less is More in Incident Categorization Silva et al., 2018a X X       Ticket Categorization 

Incident Detection in Industrial Processes 

Utilizing Machine Learning Techniques 

Tziroglou et al., 

2018 

X*   X X*  X X*  Comparative analysis on 

classification algorithms 

used in industrial processes 

Is Newer Always Better? The Case of 

Vulnerability Prediction Models 

Hovsepyan et al., 

2016 

      X  How does the version of 

software system influence 

prediction models?  

Mining system logs to learn error 

predictors: a case study of a telemetry 

system 

Russo et al., 2015 X        Use of application logs to 

predict errors 

Prediction of Workloads in Incident 

Management Based on Incident Ticket 

Updating History 

Kikuchi, 2015   X      Predicts workload of tickets 

based on previous tickets 

Machine learning based volume diagnosis Altintas & 

Tantug, 2014 

X X X X   X  Ticket Categorization 

Software fault prediction: A literature 

review and current trends 

Catal, 2011   X X  X   LR on failure prediction 

based on code inspection 

Predicting business failure using 

classification and regression tree 

Li et al., 2010 X X  X X X   Business failures prediction 

An automated approach for abstracting 

execution logs to execution events 

Jiang, Hassan, 

Hamann, & 

Flora, 2008 

X        Abstraction of execution 

logs 

A comparative predictive analysis of 

neural networks (NNs), nonlinear 

regression and classification and 

regression tree (CART) models 

Razi & 

Athappilly, 2005 

   X    X Comparison between NN 

and CART and non-linear 

regression models 
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Zhang & Pham, (2006) did systematic literature review software fault prediction 

metrics of 106 studies to determine what are the software characteristics that contribute 

the most for the software failure. This research focused on code inspection, code history, 

context, software development lifecycle, and the person who develop the code. Another 

study that used code inspection to predict incidents was (Xu, Liu, Zhang, & Xu, 2016), 

that focus on using symbolic analysis on python code to predict possible failures. Shang, 

Nagappan, & Hassan (2015) studied the relation between system logs and code quality. 

Catal, (2011) researched 90 papers trough 1990 to 2009, like the previous research, all 

these papers used code inspection metrics to predict failures. The most used algorithms 

found here were CART (in the early years), logit and Naïve Bayes. 

In the study performed by Altintas & Tantug (2014), the authors used for incident 

tickets categorization, SVM, KNN, Decision Trees (DT), and Naïve Bayes and four 

different data sets, while in (Silva et al., 2018a) it is used incident description to extract 

keywords and their annotations as features. 

The authors Russo et al. (2015) used SVM to model the execution logs into features 

readable by the algorithm, by using for example, text mining since log messages are often 

in the free-format text. The authors then refer that, Jiang, Hassan, Hamann, & Flora 

(2008); Shang et al. (2013) divided static from dynamic information in logs and combined 

sequences by their dynamic information to standardize them. The combined sequence 

oversights any form and information from duplicates as it is said that two similar 

sequences with just different users are counted as one. The authors disagreed with this, 

and they weighted the sequences by the number of users they have, and this showed that 

weights gave sequences of different importance when classifying them. In the end, it was 

used true and false-positive rates, balance, misclassification rate, and precision to 

compare classifiers. 

Still, in the same research (Russo et al., 2015), the authors observed that the 

classification problem of log sequences is non-linear. It was concluded that linear 

regression poorly performs over data sets and performs better in case of feature spaces 

with few c-defective instances for which the separation problem is more straightforward 

and can be accomplished by a hyper-plane and when the quality of fit is set to high values, 

the multilayer perception outperforms the radial basis function and linear classifier. 
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In the study performed by Hovsepyan et al. (2016), the recall and file inspection ratio 

were used to validate the predictions, and it was said that vulnerability predictions favor 

high recall. The classifiers were evaluated using Monte-Carlo simulations for different 

values of their internal parameters, and simulation results are assessed with precision, 

recall, accuracy, and f-measure. 

In the study from Razi & Athappilly, (2005) the objective was to compare NNs, CART 

and non-linear regression algorithms using a dataset of smokers containing mostly 

categorical values by comparing the errors from the predictions where the predictor 

values are categorical, and the known variables are all continuous. They concluded that 

NN and CART clearly produced better results than non-linear regression. It was reported 

that DT based models (like CART) can scale up to large problems and can handle smaller 

data sets better than NN. Despite that performed better on large data sets but with a low 

number of attributes. 

Tziroglou et al., (2018) research made a comparison between SVM, DT, Logit and 

Naïve Bayes to predict industrial incidents by using temperature and time attributes and 

by evaluating them in the end trough cross-validation using 100 Monte-Carlo iterations 

(to reduce the bias) dividing 70% for training and 30% for testing and by applying 

Adaptive Boost in the SVM and DT algorithms. After analyzing the data, they decided to 

label the classes in two categories depending on the actual and desired temperature and a 

threshold for the difference between the two. In the end, the authors concluded that SVM 

with adaptive boost had the best results with 98% accuracy and 97% F-measure. The 

cross-validation used by the authors was custom made, since the regular cross-validation 

divides the dataset into k parts, but here the author started by doing set split and then used 

Monte-Carlo to reduce bias as they state in the research, but they do not say why they did 

not use the regular cross-validation technique that also aims to reduce the bias (Brownlee, 

2016). 

Li et al., (2010), compared five different algorithms to predict business failures using 

financial data and ordered them from best to worst as follows, based on the minimum 

result: CART, SVM, KNN, MDA, and Logit. The top three algorithms produced a value 

of 97% accuracy. The authors said that CART was the best algorithm to predict business 

failure.  

As said in Table 3, Kikuchi, (2015) research aimed to predict the workload of incident 

tickets, to do that the author made an analysis on incident tickets that might be useful to 
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this research. The author said that the time that a ticket takes to be closed does not 

represent difficulty or amount of workload. The author ended up using status updates to 

replace the time. In this research, there is a field that reports the predicted difficulty for 

the ticket, so the analysis made by the author will not be used in the research. The 

difficulty was then categorized into easy and difficult incidents based on the number of 

updates. To predict and evaluate, it was used TF-IDF to relate the ticket descriptions 

categorizing each ticket in easy or difficult and then using Naïve Bayes for clustering. To 

validate the results, the author split the dataset 75%-25% (training-test). 
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Chapter 3 – Work Methodology 

This chapter follows the CRISP-DM methodology, as previously stated in chapter 1. 

This chapter starts by explaining the different phases of the methodology and then use 

those phases to describe what was done in this study. 

The CRISP-DM is seen as a hierarchical process model with four levels of abstraction, 

as presented in Figure 2. 

 

Figure 2 - CRISP-MD Levels (Wirth & Hipp, 2000) 

The first level (phases) is a combination of generic tasks (second level), and these tasks 

are made to be the most complete (cover the whole possibilities and processes of data 

mining) and stable (handle unforeseen developments) as they can. The third level aims to 

describe the tasks from the previous level. The last level has the objective to register all 

decisions, actions, and results made (Chapman et al., 1999). This life cycle is then divided 

into six different phases, as shown in Figure 3. 

 
Figure 3 - CRISP-MD model phases (Wirth & Hipp, 2000) 
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These phases include (Wirth & Hipp, 2000): 

• Business Understanding - the objective is to understand the requirements and 

objectives of a project and turn that into a data mining problem. This is present 

in Chapter 1 and 1.1 of this research. 

• Data Understanding – This phase and the previous one are complementation 

of each other as to understand the data, one has to understand the context in 

which they will be used and to understand the objective of the project, one has 

to know what the type of data that will be used. In this research, a statistical 

analysis will be done to understand the data better. 

• Data Preparation - After a good understand of the business and data, data 

preparation can start. This phase is the combination of all the necessary 

activities to build the final dataset, which includes attribute selection, data 

cleaning, construction of new attributes, and data transformation.  

• Modeling - As this aims to apply different modeling techniques and parameter 

calibration, this phase must be done back and forth with the previous one. In 

this research, some of the most used algorithms found in the literature will be 

used.  

• Evaluation - After having one or two high-quality models by using data 

analysis and before deploying the model, it is needed to do an evaluation of the 

model to prove that it can achieve the objectives proposed. To do this, the 

model will be assessed by using the most used metrics in the literature, such as 

precision, recall, accuracy, and f-measure.   

• Deployment - the knowledge obtained in the model has to be presented through 

a report or presentation or both. 

 

Figure 4 shows an overview of what was said previously. 
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Figure 4 - CRISP-MD lifecycle overview Wirth & Hipp, (2000) 

3.1.Business and Data Understanding  

The data used for this research was from a company operating in the bank sector in 

Portugal (only information possible to reveal due to privacy agreement) and consisted in 

two excels, one with deployment tickets information and the other with incident tickets 

information.  

The excels had pieces of information such as date of end and start of the ticket, 

description, who made the deployment, where was the deployment assigned, since the 

organization has different headquarters across the country, different categories of the 

application or software and time it took to end the ticket. 

Both have information from 1st January of 2015 to the 28th September of 2018. The 

deployment file had initially 281091 entries, and 126 attributes, and the incident file had 

114146 entries and 161 attributes.  

The dataset did not contain information that links an incident directly to a deployment. 

The description given in the incident tickets is not enough to know what may have been 

the deployment that caused it and so the only way to relate them is by the name of the 

application or software.  
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Table 4 and Table 5 show the value that occurred the most for each dataset in a specific 

attribute. 

Table 4 - Deployment Analysis 

Attribute Value Occurrences 

Operational Categorization 

Tier 2 
Profile IBS 96 189 

Operational Categorization 

Tier 1 
Software/Applications – Production 175 927 

Operational Categorization 

Tier 3 
Request for Analysis / Clarification 22 329 

Completed Date 12th July 2017 406 
 

Table 5 - Incident Analysis 

Attribute Value Occurrences 

Operational Categorization 

Tier 2 
Software Standard – PC 14 058 

Operational Categorization 

Tier 1 
Software/Applications – Production 71 786 

Operational Categorization 

Tier 3 
Anomaly 31 372 

Reported Date 11th July 2016 634 

The detailed description average length is 184 characters. 

3.2. Data Preparation 

In order to achieve better results and to remove not necessary entries and attributes, 

several transformations were made before having the final dataset. Figure 5 shows the 

workflow of the transformations, which will then be further explained throughout this 

chapter. 

3.2.1 Initial Attribute Cleaning 

After the first analysis, it was taken out attributes that did not have any relevant 

information such as ticket ID and attributes that had repeated information of other 

attributes. 11 attributes from deployments and 6 from incidents were removed in this 

process.
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Figure 5 - Data prepartion workflow
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3.2.2 Irrelevant Attributes 

Then after checking with the company to validate the relevance of some attributes, it 

was decided to eliminate more attributes such as attributes that most of the entries were 

empty and others, such as email, phone number, breach reason, model/version and many 

others that both the company and the author agreed that would not bring much 

information. 

After this, the files went from 115 attributes to 23 in the deployment’s dataset and 

from 155 attributes to 26 in the incident’s dataset. In this process, the start date of the 

deployments and the end date of the incidents were removed as they would not be needed 

because the intention is to relate when the deployment was made, and the incident was 

created. 

3.2.3 Irrelevant and duplicated entries 

After this, it was removed tickets entries with states other than closed to avoid having 

repeated tickets with only different states due to the dataset having different entries for 

the different states of the ticket and in the end the duplicates entries were removed.  

442 entries from deployments and 1040 from incidents were removed in this process, 

leaving the dataset with 280649 entries in the deployment’s dataset and 113106 in the 

incident’s dataset. 

3.2.4 Efficiency Cleaning 

Then for efficiency purposes, it was removed the entries which did not have a match 

in the other excel making the deployment data going from 280649 entries to 199776 and 

the incident data from 113106 to 109652. The deployment dataset had deployments after 

the last incident date, making them not useful, so these were removed, there was 274 

deployments in this situation, leaving the final deployment’s dataset with 199502. After 

the first results, it was decided to remove more attributes to see if it would make the 

algorithm have better results, and so ten more attributes were removed, leaving the 

deployments dataset with 13 attributes. 

3.2.5 Attribute Creation 

To perfom a prediction, it was needed to add an attribute that had the number of 

incidents of deployment in the following days (for this research we used 3, 7 and 10 days). 

After the initial results, it was decided to create another attribute that has the average 

incident impact for each deployment, leaving the deployment dataset with 15 attributes.  
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3.2.6 Data Transformation 

The description attribute had all sort of information on it, so it was decided to 

categorize it based on the size of the text by comparing them with the average field size. 

In the end, the attribute was divided into short, medium, and long description and none. 

Figure 6 shows the final set of attributes used from the deployment’s dataset. Figure 7 

shows the final set of attributes present in the incident’s dataset. 

 

 
Figure 6 - Final set of deployment attributes 

• Non-Categorical Textual attributes: Summary, Detailed Description (before 

categorization); 

• Non-Categorical Numeric attributes: Completed Date, Total Resolution Time, 

Number of Incidents; 

• Categorical Textual attributes: Priority, Assignee Support Group Name, 

Request Assignee, Company, Department, Detailed Description (after 

categorization), Operator, Operational Categorization Tier 1, Operational 

Categorization Tier 2, Operational Categorization Tier 3; 

• Categorical Numeric attributes: Average Impact of Incidents 
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Figure 7 - Final set of Incident attributes 

For this research, the only relevant attributes used from the incident dataset was the 

Reported Date (Categorical numeric), Impact (Categorical numeric) and Operation 

Categorization Tier 2 (Categorical textual).  

3.3. Modeling 

It was decided to apply Naïve Bayes, SVM, RF, and CART to measure the accuracy 

of the prediction. The algorithms were used with the library sklearn (Pedregosa, F., 

Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel M., 

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., 

Brucher, M., Perrot, M., Duchesnay, E., 2011) in python with a validation size of 25% 

and 7 as seed. For the library to use the algorithm all data could not have any fields of 

type String or be empty, so the empty fields were filled with zeros, and the strings were 

categorized by using a function from the same library. The algorithm was applied to the 



Chapter 3 - Work Methodology 

23 

 

deployment file by trying to predict the number of incidents attribute that were created 

based on the comparison of the two datasets. 

3.4.Evaluation and Results 

The number of incidents had the following distribution, as showed in Table 6. 

Table 6 – Number of Incidents Distribution 

Days Minimum Maximum Average Standard Deviation 

3 0 562 9.1 20.2 

7 0 648 19.9 37.3 

10 0 679 28.7 48.5 

 

As it can be seen, there is a good distribution of values, so it was decided to make 

different types of predictions. 

• First, where the number of categories is zero, meaning that the algorithm tries 

to predict exactly the number of incidents.  

• Second, where the number of incidents is categorized in “no accidents” and 

“accidents”. 

• Third in “no accidents”, “below average accidents” and “above average 

accidents”.  

• Finally, in “no accidents”, “residual accidents” (one or two), “below average 

accidents” and “above average accidents”. 

 The intention behind this categorization was not only to improve results but to 

understand how well the algorithms would work with different requirements, like for 

example, if the organization wants just to know if it has or not incidents or if it has a low 

number of incidents or a high number. 

The author started by applying Naïve Bayes and SVM as these were the most used 

algorithms in the literature and then further explored algorithms such as RF and CART.  

After these first results, it was decided to investigate further other possible 

combinations, such as counting weekends and holidays, considering the average incident 

impact for each deployment and taking both into account.  

The results for the Naïve Bayes, SVM, RF and CART algorithms are present in  Table 

7, 8, 9, 10 respectively, with the original results, using weekends and holidays, average 

impact of incidents and both.  

Table 11 presents an overview of the best results from the previous tables. 
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Table 7 - Naive Bayes results. Original (O), Weekends and Holidays (WH), Impact (IMP) 

NUMBER OF 

CATEGORIES 
DAYS 

ACCURACY (%) PRECISION (%) RECALL (%) F-MEASURE (%) 

O WH IMP ALL O WH IMP ALL O WH IMP ALL O WH IMP ALL 

0 

3 22.9 19.5 34.1 27.4 12 10 29 21 23 19 34 27 23 11 28 22 

7 15.4 14.8 20.9 20.1 6 6 16 16 15 15 21 20 8 7 16 16 

10 13.1 11.4 17.8 15.6 5 3 14 11 13 11 18 16 6 5 14 12 

2 

3 69.8 76.2 84.5 87.8 68 74 85 88 70 76 85 88 68 75 84 87 

7 80.5 80.8 90.4 90.7 79 79 90 90 81 81 90 91 79 80 90 90 

10 82.7 84.0 92.2 93.1 81 83 92 93 83 84 92 93 82 83 92 93 

3 

3 58.9 62.5 75.8 76.3 53 58 73 74 59 63 76 76 54 58 73 74 

7 62.3 62.8 74.6 74.9 57 57 71 71 62 63 75 75 57 58 71 71 

10 62.5 61.5 73.4 73.0 56 55 69 68 61 62 73 73 55 55 69 67 

4 

3 43.8 53.0 59.2 64.7 38 47 63 63 44 53 59 65 36 46 53 60 

7 56.1 56.7 65.9 66.3 51 52 62 62 56 57 66 66 51 51 62 62 

10 56.2 56.4 65.3 65.3 51 48 61 60 56 56 65 65 51 50 61 60 
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Table 8 - SVM results. Original (O), Weekends and Holidays (WH), Impact (IMP) 

NUMBER OF 

CATEGORIES 
DAYS 

ACCURACY (%) PRECISION (%) RECALL (%) F-MEASURE (%) 

O WH IMP ALL O WH IMP ALL O WH IMP ALL O WH IMP ALL 

0 

3 24.3 19 24.8 19.1 24 24 26 24 24 19 24 19 10 6 10 7 

7 15 14.9 15 14.9 22 23 23 24 15 15 15 15 4 4 4 4 

10 13 11.3 13 11.3 25 17 26 20 13 11 13 11 3 3 3 3 

2 

3 62.7 72.8 62.7 72.8 66 76 69 77 63 73 63 73 49 62 49 62 

7 79 79.3 79.1 79.3 82 82 83 83 79 79 79 79 70 70 70 70 

10 82.7 85.2 82.7 85.2 86 87 86 87 73 85 83 85 75 79 75 78 

3 

3 52.7 58.1 52.8 58.2 57 65 61 67 53 58 53 58 37 43 37 43 

7 60 60.5 60 60.5 69 70 69 71 60 60 60 60 45 46 45 46 

10 60.4 61.8 60.4 61.8 72 74 72 74 60 62 60 62 46 48 46 48 

4 

3 31.7 42.9 31.7 42.9 48 59 51 62 32 43 32 43 16 26 16 26 

7 49 49.7 49 49.7 63 66 65 66 49 50 49  50 33 34 33 34 

10 52.2 55.4 52.3 55.4 70 71 71 73 52 55 52 55 36 40 36 40 
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Table 9 - RF results. Original (O), Weekends and Holidays (WH), Impact (IMP) 

NUMBER OF 

CATEGORIES 
DAYS 

ACCURACY (%) PRECISION (%) RECALL (%) F-MEASURE (%) 

O WH IMP ALL O WH IMP ALL O WH IMP ALL O WH IMP ALL 

0 

3 44.5 41.5 58.8 54.8 41 39 57 54 45 41 59 55 42 40 57 54 

7 41.1 44.7 52.5 52.3 39 43 51 51 41 45 52 52 40 43 51 51 

10 40.2 42.9 49.4 50.3 38 41 48 50 40 43 49 50 39 42 48 49 

2 

3 84.2 91.1 90.4 94.2 84 91 90 94 84 91 90 94 84 91 90 94 

7 93.9 94.2 96 96.1 94 94 96 96 94 94 96 96 94 94 96 96 

10 95.1 96 97 97.5 95 96 97 98 95 96 97 98 95 96 97 98 

3 

3 76 82.2 89.6 91.9 76 83 89 92 76 82 90 92 75 82 89 92 

7 83.8 84.5 92.6 93.2 84 85 93 93 84 85 93 93 83 84 92 93 

10 85.6 89.1 93.6 95.4 86 89 94 95 86 89 94 95 85 89 93 95 

4 

3 60.9 72.3 74.5 82.6 61 72 75 83 61 72 75 83 61 71 75 82 

7 78.9 79.1 86.7 87.5 79 79 87 88 79 79 87 88 78 78 86 87 

10 80.7 84.1 88.9 91.7 80 84 89 92 81 84 89 92 80 84 89 92 
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Table 10 - CART results. Original (O), Weekends and Holidays (WH), Impact (IMP) 

NUMBER OF 

CATEGORIES 
DAYS 

ACCURACY (%) PRECISION (%) RECALL (%) F-MEASURE (%) 

O WH IMP ALL O WH IMP ALL O WH IMP ALL O WH IMP ALL 

0 

3 86 85.4 91.2 89.9 86 85 91 90 86 85 91 90 86 85 91 90 

7 86.5 86.5 89.5 88.5 87 87 90 89 87 87 89 89 87 87 89 89 

10 86.7 84.3 89.2 88.4 87 84 89 88 87 84 89 88 87 84 89 88 

2 

3 95.1 95.9 96.2 96.7 95 96 96 97 95 96 96 97 95 96 96 97 

7 96.7 96.7 97.1 97.2 97 97 97 97 97 97 97 97 97 97 97 97 

10 96.4 97 97.5 98.1 96 97 97 98 96 97 97 98 96 97 97 98 

3 

3 91.2 93 97.4 98.8 91 93 97 99 91 93 97 99 91 93 97 99 

7 94.8 94.8 99.1 99 95 95 99 99 95 95 99 99 95 95 99 99 

10 96.3 96.8 99.2 99.5 96 97 99 99 96 97 99 99 96 97 99 99 

4 

3 89.5 91.2 94.2 96 90 91 94 96 89 91 94 96 89 91 94 96 

7 93.2 92.7 96.7 96.7 93 93 97 97 93 93 97 97 93 93 97 97 

10 94 95 96.9 97.5 94 95 97 97 94 95 97 97 94 95 97 97 
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Table 11 - Algorithms best accuracy results comparison 

NUMBER OF 

CATEGORIES 
DAYS 

NAÏVE BAYES  

(% ACCURACY)  

SVM 

(% ACCURACY) 

RF 

(% ACCURACY) 

CART 

(% ACCURACY) 

0 

3 34.1 24.8 58.8 91.2 

7 20.9 15 52.3 89.5 

10 17.8 13 50.3 89.2 

2 

3 87.8 72.8 94.2 96.7 

7 90.7 79.3 96.1 97.2 

10 93.1 85.2 97.5 98.1 

3 

3 76.3 58.2 91.9 98.8 

7 74.9 60.5 93.2 99.1 

10 73.4 61.8 95.4 99.5 

4 

3 64.7 42.9  82.6 96 

7 66.3 49.7 87.5 96.7 

10 65.3 55.4 91.7 97.5 

 

To evaluate the results, it was used accuracy, precision, recall, and f-measure. The 

precision-recall and f-measure are the weighted averages of each category, meaning it 

considers the number of samples of each category. 

As it was used cross-validation to obtain the results, the results in the table are an 

average of the results calculated by cross-validation, these results have an average 

standard deviation of 1.2%.  

The weekends and average impact of incidents had in most cases a good impact on 

results, improving in some cases the results by 22%. 

Overall CART was the algorithm with the best results. Having 2 categories is the one 

that manages to get better results, and overall using 10 days gap to relate deployments 

and incidents gets the best results also, except for when the number of incidents is not 

categorized, but further analysis will be given on the next chapter. 

3.5.Deployment 

To present the work that was made on the model and to show how the model can be 

used, it was made apart from this document, documentation for the organization from 

which the data was used, and a demo, shown in Figure 8, to show how a future 

implementation would look and how it could work. The values shown in this picture are 

just an example of what would appear. 

In this prototype, the person has completed the development and is ready to deploy, in 

which the deployment information is inserted, either manually or automatically, which 

will be used by the algorithm to make the desired prediction and later be used to improve 

the accuracy of the prediction of later deployments. The person who makes the 
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deployment can then choose the type of prediction he or she wants (the exact number of 

incidents, will or will not have incidents, will not have incidents, below average or above 

average or will not have incidents, just one or two, below average and above average). 

After this, the system would then show the user the prediction that it was made based on 

the information that was given, in this case, it was the number of incidents, as well as the 

level of confidence to which he is predicting. This level of confidence would be the 

accuracy shown in the previous chapter, and so it would not be the level of confidence 

related to that specific prediction, but to the overall accuracy of the algorithm.  

 

 

Figure 8 - Implementation demo design  

Depending on both results the person can then rethink and give a better look to the 

deployment or give a heads up to his or her manager that there is a probability of an 

incident after that deployment is made. 
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Chapter 4 – Discussion 

In this chapter, a detailed analysis is done, first going through each algorithm overall, 

analysing which one performed better and worse, then discussing why some combination 

of parameters (days and categories) worked better than others overall and analyse the 

impact that taking into account the weekends, holidays and average impact had.  

As shown in the previous chapter, the best result came from CART with 99.5% when 

setting the number of incidents over 10 days and by categorizing them in 3 categories. 

This means that the algorithm can differentiate very well between having no incidents, a 

small number of incidents (below average) and a high number of incidents (above 

average). 

Although this was the best result, CART can overall predict very well with any 

combination of categories and days, having very good results even when not categorizing 

the number of incidents meaning that the algorithm is even able to predict with great 

accuracy the exact number of incidents that a deployment can have. 

As the results show, RF also performs well, which demonstrates that decision trees 

algorithms work very well with this type of data probably because these are better at 

dealing with outliers and with nonlinear attributes. 

Naïve Bayes had average results with 3 and 4 categories, good results with 2 categories 

and bad results with no categories. Naïve Bayes was the most used algorithm in the 

literature, but in this research, it did not perform as well as it was expected and ended up 

being surpassed by the decision trees algorithms. Still, as said previously, it is still a viable 

algorithm to use to predict if deployment will have or not an incident. 

SVM had overall bad results and the worse of the four algorithms, this might be related 

to how SVM works, as in the end the data that was used had a small number of textual 

parameters and ended up being more categorical data. 

As for the combination of parameters, first, the intention to use a different number of 

categories was to understand with how much detail the algorithms were able to predict, 

as, for the number of days, the intention was to understand the span in which the incidents 

correlate with the deployments.  

Having said that and by analyzing the results, when we categorize the number of 

incidents the span that has the best results is the 10 days span, but when we do not 

categorize the incidents the 3 days span gets the best results. This may indicate that when 

we categorize and use a long span of days (such as 10 days), there is a higher probability 
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that most of the number of incidents will fall into one category, leading to an overfit of 

the results. This means that the algorithm will think it is safer to guess that the deployment 

will have incidents or a specific number of incidents. When we do not categorize 

incidents, this does not happen because each deployment will have a different number of 

incidents and will not fall all in the same category.  

So, in the end, despite the 10 days span having better results (by a small margin), the 

3 days span represent better in which an incident is actually related or created by a 

deployment. 

As for the categories, as it was expected, having no categories ends up in having worse 

results, despite the good results with the CART algorithm. Having only two categories 

maximizes the results with the exception of the CART algorithm. As stated previously, 

the intention with the categorization was not only to maximize the results, but to 

understand the level of detail the algorithm is able to predict in order to deliver different 

type of analysis (will or will not have incidents, will it have small number of incidents or 

a great number of incidents or even just one or two incidents). 

Finally, as said in the previous chapter, taking into account the weekends, holidays and 

average impact of incident improved the results with a few exceptions such as the 

weekends and holidays giving worse results when not categorizing the number of 

incidents for the same reasons as having a larger day span also gives worse results. The 

average impact of the incidents in most cases improved the results, except for SVM, 

where it had no impact on the results. The reason could be the same as to why SVM has 

the worse results of all algorithms used, since the impact is just another 

statistical/categorical parameter, it does not add much to the SVM algorithm.
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Chapter 5 – Conclusions 

Overall the results allow us to predict if a certain type of deployment with certain types 

of attributes has a high or low probability of having incidents, by raising awareness of the 

deployment team to be more careful when doing the deployment. Although it does not 

have the best accuracy on guessing the exact number of incidents, it does have a good 

accuracy when deciding if a certain deployment has or not an incident and even when 

predicting if it will have just a few or around the average incidents which allow once 

again the deployer to have a better trust when deploying the application or software. 

It was also found out that the decision tree algorithms such as RF and CART work very 

well with this type of data. 

RQ1 - Can software deployments information be used to predict incidents? 

Grounded on the achieved results, it is feasible to argue that it is possible to use software 

deployment information to predict incidents with some accuracy. Greater accuracy can 

be achieved if we do not need to know the exact number of incidents, but instead, we just 

want to know if it will or will not have incidents, or if it will have a small or high number 

of incidents.  

To wrap the conclusions, these were the main conclusions from this research: 

• Assuming that each incident is related with each deployment made in a certain 

day span, it is feasible to predict the number of incidents with some accuracy 

event with low to no detail on what was done on the technical level; 

• Decision Tree works very well with this type of data; 

• On the professional outcome, this information can be used not only to prevent 

and better allocate resources for future incidents but may be used as an overall 

measurement tool as well, as the better the teams work, the fewer incidents the 

system will predict; 

• On the academical outcome, this study allowed to understand which algorithm 

is better with this type of data, as well as, showing one of the possible ways to 

predict incidents with small to no information of the technical side of the 

deployment. 

5.1. Research Limitation 

As previously stated, specific information that enabled us to associate an incident 

directly was not provided by the organization, although this type of information would 
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not guarantee better results, since it is very difficult to always guarantee that a specific 

incident ticket is related to a specific deployment. 

Plus, the deployments’ information did not specify much of what was done in the 

deployment on the technical side which could have improved the results since most of the 

incident prediction that was found in the literature was based on technical information of 

the deployment. 

5.2. Future Work 

As said before this study worked with some unique type of data and so it served as a 

foundation for more studies to be done. The next paragraphs are a list of what can be done 

to complement this study. 

Improve and add some of the attributes, like categorizing descriptions, adding the 

importance of the deployment, give more detail of what was done on the technical level.  

and then check if the results improve with that. 

An implementation of this study as a Decision Support System to help managers 

understand what is the type of deployments that have more incidents, to understand if the 

number of incidents is getting worse or better and allowing them to act better and faster 

on possible future incidents. 

This study can also be used to know the impact that is having a prediction of the 

incidents can have on the processes. How does it impact them? A good way to measure 

this is to run the algorithm daily and see if the number of incidents predicted goes up or 

down. Since with the use of this study, there will be bigger attention when doing a 

deployment, hopefully a decrease in the number of incidents will happen and the daily 

prediction will actually go down and so it can be use to evaluate the impact of the study. 
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