

Department of Information Science and Technology

Predictive Analysis of Incidents based on Software Deployments

José Diogo dos Santos Messejana

Dissertation submitted as partial fulfilment of requirements for the degree of

Master in Computer Engineering

Supervisor:

Prof. Dr. Ruben Filipe de Sousa Pereira, Assistant Professor,

ISCTE-IUL

Co-supervisor:

Prof. Dr. João Carlos Amaro Ferreira, Assistant Professor,

ISCTE-IUL

August, 2019

Predictive Analysis of Incidents based on Software Deployments

Predictive Analysis of Incidents based on Software Deployments

i

Acknowledgements

First, I would like to thank the company that I worked with, that gave me all the

necessary data to do this investigation, as well as all the people from the company that

were available to clarify any doubts I had about the data that was given.

Second, I would like to thank everyone who helped and bared with me throughout this

journey, who encouraged and did not let me give up on this when I had second thoughts.

All the way from my friends who I had to skip out on sometimes, my co-workers at the

company I work with, that always incentivised me to continue, both my supervisors who

offered me the tools as well as for always being available to support me.

Finally, I would like to specially thank two group of people. First, my girlfriend, for

always being there and never let me quit and giving me strength to continue and helping

me out when I needed. Second, but most important my parents, because without them I

would never be here writing this, they made every effort to give the tools, so that I could

create my opportunities and ensured that I would never quit something after I started it.

Predictive Analysis of Incidents based on Software Deployments

ii

Predictive Analysis of Incidents based on Software Deployments

iii

Resumo

Um número elevado de organizações de tecnologias de informação têm um grande

número de problemas no momento e após lançarem os seus serviços, se juntarmos a isto

o número elevado de serviços que estas organizações prestam diariamente, dificulta

bastante o processo de Incident Management (IM). Um sistema de IM eficaz deve

permitir aos decisores de negócio detetar facilmente estes problemas, caso contrário, as

organizações podem ter de enfrentar imprevistos nos seus serviços (custos ou falhas). Esta

tese irá demonstrar que é possível introduzir um processo de previsão que poderá levar a

um melhoramento do tempo de resposta aos incidentes, assim como uma redução dos

mesmo. Prevendo estes problemas estes podem alocar melhor os recursos assim como

mitigar os incidentes. Como tal, esta tese irá analisar como prever esses incidentes,

analisando os deployments feitos nos últimos anos e relacionando-os usando algoritmos

de machine learning para prever os incidentes.

Os resultados mostraram que é possível prever com confiança se um determinado

deploymente vai ou não ter incidentes.

Palavras-chave: Análise Preditiva, Incident Management, Deployment de software

Predictive Analysis of Incidents based on Software Deployments

iv

Predictive Analysis of Incidents based on Software Deployments

v

Abstract

A high number of information technology organizations have several problems during

and after deploying their services, this alongside with the high number of services that

they provide daily, it makes Incident Management (IM) process quite demanding. An

effective IM system needs to enable decision-makers to detect problems easily.

Otherwise, the organizations can face unscheduled system downtime and/or unplanned

costs. This study demonstrates that is possible to introduce a predictive process that may

lead to an improvement of the response time to incidents and to the reduction of the

number of incidents created by deployments. By predicting these problems, the decision-

makers can better allocate resources and mitigate costs. Therefore, this research aims to

investigate if machine learning algorithms can help to predict the number of incidents of

a certain deployment.

The results showed with some security, that it is possible to predict, if a certain

deployment will have or not an incident in the future.

Keywords: Predictive Analysis, Incident Management, Software Deployment

Predictive Analysis of Incidents based on Software Deployments

vi

Predictive Analysis of Incidents based on Software Deployments

vii

Publications

The author made a paper that was accepted in the 2019 International Conference of

Data Mining and Knowledge Engineering from the World Congress of Engineering 2019

(Rank B).

Predictive Analysis of Incidents based on Software Deployments

viii

Predictive Analysis of Incidents based on Software Deployments

ix

Index

Acknowledgements .. i

Resumo ... iii

Abstract ... v

Publications ... vii

Index ... ix

Table index ... xi

Equation index ... xiii

Figure index .. xv

Abbreviations .. xvii

Chapter 1 – Introduction ... 1

Chapter 2 – Literature Review .. 3

2.1. Theoretical Background ... 4

2.1.1. Predictive Analysis ... 4

2.1.1.1 ML Algorithms types .. 5

2.1.1.2 Training and Evaluation .. 5

2.1.2. Incident Management ... 8

2.1.3. Software Deployment ... 9

2.2. Related Work ... 10

Chapter 3 – Work Methodology ... 15

3.1. Business and Data Understanding ... 17

3.2. Data Preparation .. 18

3.2.1 Initial Attribute Cleaning .. 18

3.2.2 Irrelevant Attributes .. 20

3.2.3 Irrelevant and duplicated entries .. 20

3.2.4 Efficiency Cleaning .. 20

3.2.5 Attribute Creation ... 20

3.2.6 Data Transformation ... 21

3.3. Modeling .. 22

3.4. Evaluation and Results ... 23

3.5. Deployment .. 28

Chapter 4 – Discussion ... 31

Chapter 5 – Conclusions .. 33

5.1. Research Limitation ... 33

5.2. Future Work ... 34

Bibliography .. 35

Predictive Analysis of Incidents based on Software Deployments

x

Predictive Analysis of Incidents based on Software Deployments

xi

Table index

Table 1 - Research Question ... 2
Table 2 - Selected Papers.. 3

Table 3 - Related Work .. 11
Table 4 - Deployment Analysis .. 18
Table 5 - Incident Analysis ... 18
Table 6 - Number of Incidents Distribution ... 23
Table 7 - Naive Bayes results. Original (O), Weekends and Holidays (WH), Impact

(IMP) .. 24
Table 8 - SVM results. Original (O), Weekends and Holidays (WH), Impact (IMP) 25
Table 9 - RF results. Original (O), Weekends and Holidays (WH), Impact (IMP) 26
Table 10 - CART results. Original (O), Weekends and Holidays (WH), Impact (IMP) 27
Table 11 - Algorithms best accuracy results comparison ... 28

Predictive Analysis of Incidents based on Software Deployments

xii

Predictive Analysis of Incidents based on Software Deployments

xiii

Equation index

Equation 1 - Accuracy equation I ... 7
Equation 2 - Accuracy equation II .. 7
Equation 3 - Precision equation .. 7
Equation 4 - Recall equation .. 7
Equation 5 - F-measure equation .. 7

Predictive Analysis of Incidents based on Software Deployments

xiv

Predictive Analysis of Incidents based on Software Deployments

xv

Figure index

Figure 1 - Supervised Learning Algorithms (Myatt & Johnson, 2009)............................ 5
Figure 2 - CRISP-MD Levels (Wirth & Hipp, 2000) ... 15

Figure 3 - CRISP-MD model phases (Wirth & Hipp, 2000) .. 15
Figure 4 - CRISP-MD lifecycle overview Wirth & Hipp, (2000) 17
Figure 5 - Data prepartion workflow .. 19
Figure 6 - Final set of deployment attributes .. 21
Figure 7 - Final set of Incident attributes ... 22

Figure 8 - Implementation demo design ... 29

Predictive Analysis of Incidents based on Software Deployments

xvi

Predictive Analysis of Incidents based on Software Deployments

xvii

Abbreviations

CART - Classification and Regression Trees

CRISP-DM - Cross Industry Standard Process for Data Mining

DT - Decision Trees

IM - Incident Management

IT - Information Technology

ITIL - Information Technology Infrastructure Library

ITSM - Information Technology Management Process

KNN - K-Nearest Neighbours

MDA - Multivariate Discriminant Analysis

ML - Machine Learning

NN - Neural Networks

RF - Random Forest

SVM - Support Vector Machines

Predictive Analysis of Incidents based on Software Deployments

xviii

Chapter 1 – Introduction

1

Chapter 1 – Introduction

Thousands of Information Technology (IT) organizations worldwide are struggling

with the deployment of information technology service management processes (ITSM)

and with the deployment of services into the daily IT operations (Jäntti & Järvinen, 2011).

The number of IT services keeps increasing in countless different types of organizations

where IT plays a leading role (Gacenga, Cater-Steel, Tan, & Toleman, 2011). Therefore,

IT service managers are increasingly under pressure to reduce costs and quickly deliver

cost-effective services (Aguiar, Pereira, Vasconcelos, & Bianchi, 2018) and consequently

make Incident Management (IM) one of the most demanding ITSM processes.

Nowadays, many tickets are created each day (Mello & Lopes, 2015), especially in

large-scale enterprise systems (Kikuchi, 2015; Lin et al., 2014). A recent study from Lou

et al. (2017), and recently supported by Silva, Pereira, & Ribeiro (2018b), reported that

about 12 billion lines of log messages are generated in their infrastructure each day for

IM.

Most of the tickets are created with non-structured text (Lin et al., 2014) meaning that

they can have numerous variations on the description of it and organizations are not able

to extract value from such data.

An effective IM system needs to enable decision-makers to detect anomalies and

extract helpful knowledge to solve incidents (Aguiar, Pereira, Vasconcelos, & Bianchi,

2018). These incidents can lead to unscheduled system downtime and/or unplanned costs

(Russo, Succi, & Pedrycz, 2015) and cause a significant impact since the recovery process

can require time and resources that were not considered (Fulp, Fink, & Haack, 2008).

Furthermore, if system administrators are able to predict these incidents, they can better

allocate their resources and services to mitigate the costs (Russo et al., 2015). Predicting

computer failures can help in mitigating the impact even when the failure is impossible

to solve because recovery and rescue can be taken way earlier (Fronza, Sillitti, Succi, &

Vlasenko, 2011) and allow managers to get a better response over system performance

(Russo et al., 2015).

Predictive Analysis can help in to predict future incidents by using retrospective and

current data (Kang, Zaslavsky, Krishnaswamy, & Bartolini, 2010). In recent years,

machine learning (ML), as an evolving subfield of computer science has been widely used

in the challenging problem of predicting incidents as well as anomaly detection problems

Chapter 1 – Introduction

2

(Tziroglou et al., 2018) providing information on the applications and the environments

where the applications are deployed (Oliveira, 2017).

As previously stated, organizations produce and report billions of incidents each day,

making it difficult for organizations to keep up with it. Predictive analysis can be used to

predict some of those incidents and therefore reduce their occurrence and the possible

costs associated with them.

Software deployments can have critical information to predict and therefore prevent

incidents, like a feature that often causes many incidents when there is a deployment with

it. Therefore, this research aims to analyze if it is possible to predict incidents based on

the software deployment information of the last few years to build a predictive model

capable of predicting those incidents and in the end answer the research question in Table

1.

Table 1- Research Question

ID Description

RQ1 Can software deployments information be used to predict incidents?

This research uses the Cross-Industry Standard Process for Data Mining (CRISP-DM)

as a research methodology. This methodology aims to create a precise process model for

data mining projects (Chapman et al., 1999).

This research will start by exposing what already exists in the literature and how it

relates to this research. Then the main concepts will be shortly explained as well as the

methodology that will be followed. On chapter 3, it is exposed what was done on this

research and on the following chapters, a discussion of the results obtained as well as the

conclusions will be presented.

Chapter 2 – Literature Review

3

Chapter 2 – Literature Review

The Literature Review research was made between the 12th of August 2018 through

the 30th of December 2018.

The acceptance criteria of the papers in Table 2 was done as follows. First based on

the relation of the title with the three big topics, then if it had any relation, an analysis of

the abstract would be done to see if it indeed would relate to this study and if so a quick

analysis of the content was done to check if there was relevant content to be applied in

this study. Only english written papers were selected. The numbers in Table 2 represent

the papers that matched the criteria and endend being used in this document

The research was made as follows:

Table 2 – Selected Papers

Keywords

#Selected papers

Total Google

Scholar
ACM Springer IEEE

P
re

d
ic

ti
v
e

A
n
al

y
si

s

Predictive Analysis 3 4 1 0 8

Incident Predictive

Analysis
0 3 2 0 5

Predictive Model 0 2 0 0 2

Support Vector Machines 0 1 0 0 1

Prediction on software

logs
0 0 3 0 3

Software logs 0 0 1 0 1

Predicting incidents 0 1 0 0 1

Predicting incident ticket 0 2 0 0 2

Prediction deployment 1 0 0 0 1

In
ci

d
en

t

M
an

ag
em

en
t Incident Management it 1 0 0 0 1

Incident Management itil 2 0 0 0 2

Incident Management 0 1 0 0 1

It Incident Management 0 1 1 2 4

S
o
ft

w
ar

e

D
ep

lo
y
m

en
t

Software Deployment

Quality
1 0 0 0 1

Software Deployment 1 2 0 0 3

Software Deployment

Process
0 1 0 0 1

Software Deployment

Incident
0 0 0 1 1

 Total 9 18 6 3 36

Chapter 2 – Literature Review

4

As seen in Table 2, the search was made around the three main concepts that will be

explained in the following sub-chapters.

At the end it was not found any studies relating predictive analysis and software

deployment to predict incidents, so the scope was made wide again and started searching

for predictive analysis related to logs which have some relation to software deployment

messages. It was also searched for Support Vector Machines since it was one of the most

used algorithms found in the literature. In IM, it was once again used a wide scope and

then narrowed to only IT IM. ITIL was searched after reading it in the IM literature.

2.1.Theoretical Background

This research grounds on three main concepts: Predictive Analysis, Incident

Management, and Software Deployment. The next paragraphs briefly detail each of these

concepts.

Predictive analysis can be defined as the act of doing predictive analytics. Predictive

Analytics is the combination of techniques that can help to make informed decisions by

doing an analysis of historical data (Myatt & Johnson, 2009).

IM is said to be one of the most important ITIL process model elements for the delivery

of IT services (Kang et al., 2010). The goal of IM is to bring normal service operation as

fast as possible, after a service disruption (Bartolini, Stefanelli, & Tortonesi, 2010) and

finding a resolution for the incident while minimizing business impact which has an

important role in creating a highly scalable system.

Software deployment can be defined as being the group of processes between the

acquisition and execution of software (Dearle, 2007; Mukhopadhyay, 2018) and the

connection between software components and its hardware (Medvidovic & Malek, 2007).

2.1.1. Predictive Analysis

Predictive analysis allows estimations of the impact of design decisions, that can help

to get optimal operational results (Oliveira, 2017). Existing methods in the literature can

be classified broadly into two categories: lockset analysis and feasibility guarantee

(Wang, Kundu, Limaye, Ganai, & Gupta, 2011). While lockset analysis methods strive

to cover all the true positives, but may also introduce many false positives, feasibility

guarantee methods ensure all the reported bugs can happen, but they may not cover all

the detectable errors (Wang et al., 2011).

Chapter 2 – Literature Review

5

The following sub-sections will review the different topics related to predictive

analysis and ML.

2.1.1.1 ML Algorithms types

There can be three types of ML algorithms:

• Supervised Learning – If the objective is to predict something based on known

data (Bari, Chaouchi, & Jung, 2014);

• Unsupervised Learning – If the objective is to predict something, but there is no

data available (Kotsiantis, 2007);

• Reinforcement Learning – Where the algorithm learns based on rewards and tries

to maximize that reward (Bari et al., 2014).

Since this research will use a supervised learning algorithm, there will not be any focus

on the other two.

As for supervised learning, it can be split into two categories of tasks, which are

classification and regression.

In classification the results are categorical variables meaning that it can only take a

strict number of values (Myatt & Johnson, 2009), this category aims to predict the

category of a field (Myatt, 2007) or if something will happen or not, for example, if there

will or not be an incident for a deployment. On the other hand, in regression the results

are continuous variables meaning that this category of the task is used to make estimations

and predictions (Myatt & Johnson, 2009), for example, how many incidents will a

deployment generate.

Figure 1 shows a list of supervised learning algorithms and their corresponding task

category.

Figure 1 - Supervised Learning Algorithms (Myatt & Johnson, 2009)

2.1.1.2 Training and Evaluation

After the data is prepared, it is now necessary to train the model in order to better

generalize the relation of the inputs and outputs, and then we need to evaluate the training.

The quality of the model is based on its ability to accurately predict based on a certain

Chapter 2 – Literature Review

6

number of inputs. The model should neither overgeneralize or overfit the relation (Myatt,

2007). Starting by the training phase, this phase can be done in two different ways, either

splitting the dataset in a train set and a test set or by using cross validation.

 Splitting the dataset in a train and test set will allow the model to ignore the data that

was used in the test set, and so, the model will only be built with a part of the dataset

(train set) (Myatt, 2007), the model will then produce results that will be compared with

the test set to evaluate the model (Brownlee, 2016). The percentage of the split is different

depending on the dataset that is being used (Myatt, 2007), although the recommended

values throughout the literature are between 70%-30% up to 80%-20% (train-test).

In cross-validation a model learns its weights and parameters on a training set and

calculates its prediction performance on the new instances of a validation set (Bishop,

1996). The dataset is split in k smaller datasets (the most used values for k are 3, 5, and

10), but similar to the previous approach it depends on each dataset, as the k has to allow

each dataset to be large enough (Brownlee, 2016). Each time one of the data set is used

for testing the remaining ones are used together for training, this then iterates until every

data set is used as a test set (Bari et al., 2014). After all the datasets are used as test sets,

several score performances are given, which can then be interpreted by applying the mean

and standard deviation. As the algorithm runs several times with different datasets, it ends

being more reliable than the split approach (Brownlee, 2016).

Identification of the best performing classifiers can be made by feature reduction

independently from data manipulation in cross-validation. Splitting the dataset is

beneficial to classification problems since data splitting increments the diversity of the

sets and the strength of the classification result (Russo et al., 2015).

After all the training, several metrics can be used to evaluate the results.

There are four possible outcomes of the prediction (Hovsepyan, Scandariato, &

Joosen, 2016):

• True positive (TP) if it was predicted and was indeed an accurate prediction;

• True negative (TN) if it was not predicted like it should not have been;

• False-positive (FP) if it was predicted, but it should not have been;

• False-negative (FN) if it was not predicted, but it should have been.

These outcomes can then be used to create different metrics, such as:

Chapter 2 – Literature Review

7

• Accuracy – Most used metric in classification (Brownlee, 2016). Closer to 1 means

a better result (Myatt & Johnson, 2009). Accuracy can be obtained, as shown in

Equation 1 and Equation 2.

Equation 1- Accuracy equation I

Equation 2- Accuracy equation II

• Precision – Number of correct results divided by the number of guesses (Manning,

Raghavan, & Schuetze, 2009). This is shown in Equation 3.

Equation 3- Precision equation

• Recall – Number of correct results guessed in all the possible correct results

(Manning et al., 2009). This is shown in Equation 4.

Equation 4- Recall equation

• ROC curve – Only used in classification models (Brownlee, 2016). It relates the

precision with recall (Myatt, 2007). If the curve grows quickly on the left side, it

means that the model is good (Manning et al., 2009).

• F-measure – Relates precision with recall by doing a weighted harmonic mean

between them (Manning et al., 2009). This is shown in Equation 5.

Equation 5- F-measure equation

Imbalanced data can be an issue when someone wants to evaluate the performance of

posterior probabilities. According to Hongyu Zhang & Xiuzhen Zhang (2007), the

measures introduced in Menzies, Greenwald, & Frank (2007), true and false positive rate

are not enough in case of imbalanced data. When data is imbalanced, Hongyu Zhang &

Xiuzhen Zhang (2007) prove that models can be able to detect faults (true positive rate is

Chapter 2 – Literature Review

8

high) and raise few false alarms (false positive rate is small) but still be very poor in

performance (precision is small). Precision is an unstable measure and should not be used

alone. Classification results with low precision and high true positive rate are useful and

very frequent in software engineering (Menzies et al., 2007).

Misclassification rate alone is not a good measure to compare the overall performance,

and the operational balance measure can be used instead (Russo et al., 2015). A high

number of parameters lead to poor generalization (overfitting), and a low number of

parameters can lead to inadequate learning (underfitting) (Duda, Hart, & Stork, 2001).

2.1.2. Incident Management

The goal of IM is to bring normal service operation as fast as possible, after a service

disruption (Bartolini et al., 2010) and finding a resolution for the incident while

minimizing business impact which has an important role in creating a highly scalable

system. It does this by focusing on tracking and managing all incidents, from opening

until closure (Silva et al., 2018b).

To obtain the success and efficiency of the process, there are four critical success

factors that must be achieved (Silva et al., 2018b):

• Quickly resolving incidents;

• Maintaining IT service quality;

• Improving IT and business productivity;

• Maintaining user satisfaction.

IM provides the capability of detecting an incident, locating applicable supporting

resources such as (Zhao & Yang, 2013):

• Provides the necessary data for the incident resolution process;

• Verifies resource configuration, management process, and operation quality to

achieve service objectives;

• Provides data for developing service report, service plan, cost accounting as

well as service workload assessment.

The priority of these incidents is usually calculated through evaluation of impact and

urgency (Bartolini, Salle, & Trastour, 2006).

Quantitative IM can be helpful in improving time efficiency and to focus on its nature

(Zhao & Yang, 2013). Classification, prioritization and scalability of incidents are very

Chapter 2 – Literature Review

9

important and to do that the IM process needs a correct categorization to attribute incident

tickets to the right resolution group and obtain an operational system as quickly as

possible, doing so results in a low possible impact on the business and costumers (Silva

et al., 2018b).

ITIL is a combination of concepts and policies to manage IT infrastructure,

development, and operations (Guo & Wang, 2009; Bartolini et al., 2010) and it is one of

the best practice standards for ITSM (Bartolini et al., 2010). It provides a framework of

best practices guidance for ITSM and has become one of its most accepted approaches

(Guo & Wang, 2009). It describes the best practices and standards to IM, helping

companies to improve their processes (Silva et al., 2018b) and defines it as “the process

for restoring normal service operation after a disruption, as quickly as possible and with

minimum impact on the business” (Bartolini et al., 2010).

An incident for ITIL is an alteration from the expected standard operation of a system

or a service that may or not cause an interruption or a reduction in quality of the service

(Bartolini et al., 2006; Forte, 2007; Kang et al., 2010). These should be detected as early

as possible and are related to failures, questions, or queries (Silva, Pereira, & Ribeiro,

2018a).

These are the IM processes to ITIL (Bartolini et al., 2010; Guo & Wang, 2009; Tøndel,

Line, & Jaatun, 2014):

• Incident detection and recording;

• Classification and initial support;

• Investigation and diagnosis;

• Resolution and recovery;

• Closure;

• Tracking.

There are two aspects to a ticket, the functional and the hierarchical, the first one says

who should solve the problem, and the second says who should be informed of it (Forte,

2007).

2.1.3. Software Deployment

“Software deployment may be defined to be the processes between the acquisition and

execution of software” (Dearle, 2007; Mukhopadhyay, 2018) and “the allocation of the

Chapter 2 – Literature Review

10

system’s software components (and connectors) to its hardware hosts” (Medvidovic &

Malek, 2007). Most of them use the concept of a component (Dearle, 2007).

Deployment architecture is particularly important in some environments because a

system will typically have many different execution platforms during its lifetime which

can have a significant effect on the system’s non-functional properties such as Quality of

Service (Medvidovic & Malek, 2007).

Continuous deployment guarantees that every change passes all stages of the software

production pipeline and is released to the customers without any human intervention.

Continuous deployment is an excellent way to have more feedback with the customers

and stay compatible in the market (Çalikli, Staron, & Meding, 2018).

2.2. Related Work

This section provides a critical analysis of what has been done that relates to this

study. Although there are some studies using the source code and repository information,

such as commits, there were no studies found relating deployment information similar to

what this research will use. Therefore, this section details and analyze some of the most

similar studies about incident predictions with code inspection as well as the studies that

use ML algorithms to predict incidents based on some sort of textual information. In Table

3, there is a summary of what has been done and algorithms used, and then a more detailed

explanation will be given throughout this section. The most used algorithms in Table 3

were SVM, and Naïve Bayes, K-Nearest Neighbours (KNN), Classification and

Regression Trees (CART) and logistic regression (logit) were also used, but not as much

and finally Multiple Discriminant Analysis (MDA), Random Forest (RF) and Neural

Networks (NN) were found once or twice throughout the related work.

Chapter 2 – Literature Review

11

* Used with adaptive boost

Table 3 – Related Work

Title Reference
Algorithms Goal

SVM KNN
Naïve

Bayes
CART MDA Logit RF NN

Less is More in Incident Categorization Silva et al., 2018a X X Ticket Categorization

Incident Detection in Industrial Processes

Utilizing Machine Learning Techniques

Tziroglou et al.,

2018

X* X X* X X* Comparative analysis on

classification algorithms

used in industrial processes

Is Newer Always Better? The Case of

Vulnerability Prediction Models

Hovsepyan et al.,

2016

 X How does the version of

software system influence

prediction models?

Mining system logs to learn error

predictors: a case study of a telemetry

system

Russo et al., 2015 X Use of application logs to

predict errors

Prediction of Workloads in Incident

Management Based on Incident Ticket

Updating History

Kikuchi, 2015 X Predicts workload of tickets

based on previous tickets

Machine learning based volume diagnosis Altintas &

Tantug, 2014

X X X X X Ticket Categorization

Software fault prediction: A literature

review and current trends

Catal, 2011 X X X LR on failure prediction

based on code inspection

Predicting business failure using

classification and regression tree

Li et al., 2010 X X X X X Business failures prediction

An automated approach for abstracting

execution logs to execution events

Jiang, Hassan,

Hamann, &

Flora, 2008

X Abstraction of execution

logs

A comparative predictive analysis of

neural networks (NNs), nonlinear

regression and classification and

regression tree (CART) models

Razi &

Athappilly, 2005

 X X Comparison between NN

and CART and non-linear

regression models

Chapter 2 – Literature Review

12

Zhang & Pham, (2006) did systematic literature review software fault prediction

metrics of 106 studies to determine what are the software characteristics that contribute

the most for the software failure. This research focused on code inspection, code history,

context, software development lifecycle, and the person who develop the code. Another

study that used code inspection to predict incidents was (Xu, Liu, Zhang, & Xu, 2016),

that focus on using symbolic analysis on python code to predict possible failures. Shang,

Nagappan, & Hassan (2015) studied the relation between system logs and code quality.

Catal, (2011) researched 90 papers trough 1990 to 2009, like the previous research, all

these papers used code inspection metrics to predict failures. The most used algorithms

found here were CART (in the early years), logit and Naïve Bayes.

In the study performed by Altintas & Tantug (2014), the authors used for incident

tickets categorization, SVM, KNN, Decision Trees (DT), and Naïve Bayes and four

different data sets, while in (Silva et al., 2018a) it is used incident description to extract

keywords and their annotations as features.

The authors Russo et al. (2015) used SVM to model the execution logs into features

readable by the algorithm, by using for example, text mining since log messages are often

in the free-format text. The authors then refer that, Jiang, Hassan, Hamann, & Flora

(2008); Shang et al. (2013) divided static from dynamic information in logs and combined

sequences by their dynamic information to standardize them. The combined sequence

oversights any form and information from duplicates as it is said that two similar

sequences with just different users are counted as one. The authors disagreed with this,

and they weighted the sequences by the number of users they have, and this showed that

weights gave sequences of different importance when classifying them. In the end, it was

used true and false-positive rates, balance, misclassification rate, and precision to

compare classifiers.

Still, in the same research (Russo et al., 2015), the authors observed that the

classification problem of log sequences is non-linear. It was concluded that linear

regression poorly performs over data sets and performs better in case of feature spaces

with few c-defective instances for which the separation problem is more straightforward

and can be accomplished by a hyper-plane and when the quality of fit is set to high values,

the multilayer perception outperforms the radial basis function and linear classifier.

Chapter 2 – Literature Review

13

In the study performed by Hovsepyan et al. (2016), the recall and file inspection ratio

were used to validate the predictions, and it was said that vulnerability predictions favor

high recall. The classifiers were evaluated using Monte-Carlo simulations for different

values of their internal parameters, and simulation results are assessed with precision,

recall, accuracy, and f-measure.

In the study from Razi & Athappilly, (2005) the objective was to compare NNs, CART

and non-linear regression algorithms using a dataset of smokers containing mostly

categorical values by comparing the errors from the predictions where the predictor

values are categorical, and the known variables are all continuous. They concluded that

NN and CART clearly produced better results than non-linear regression. It was reported

that DT based models (like CART) can scale up to large problems and can handle smaller

data sets better than NN. Despite that performed better on large data sets but with a low

number of attributes.

Tziroglou et al., (2018) research made a comparison between SVM, DT, Logit and

Naïve Bayes to predict industrial incidents by using temperature and time attributes and

by evaluating them in the end trough cross-validation using 100 Monte-Carlo iterations

(to reduce the bias) dividing 70% for training and 30% for testing and by applying

Adaptive Boost in the SVM and DT algorithms. After analyzing the data, they decided to

label the classes in two categories depending on the actual and desired temperature and a

threshold for the difference between the two. In the end, the authors concluded that SVM

with adaptive boost had the best results with 98% accuracy and 97% F-measure. The

cross-validation used by the authors was custom made, since the regular cross-validation

divides the dataset into k parts, but here the author started by doing set split and then used

Monte-Carlo to reduce bias as they state in the research, but they do not say why they did

not use the regular cross-validation technique that also aims to reduce the bias (Brownlee,

2016).

Li et al., (2010), compared five different algorithms to predict business failures using

financial data and ordered them from best to worst as follows, based on the minimum

result: CART, SVM, KNN, MDA, and Logit. The top three algorithms produced a value

of 97% accuracy. The authors said that CART was the best algorithm to predict business

failure.

As said in Table 3, Kikuchi, (2015) research aimed to predict the workload of incident

tickets, to do that the author made an analysis on incident tickets that might be useful to

Chapter 2 – Literature Review

14

this research. The author said that the time that a ticket takes to be closed does not

represent difficulty or amount of workload. The author ended up using status updates to

replace the time. In this research, there is a field that reports the predicted difficulty for

the ticket, so the analysis made by the author will not be used in the research. The

difficulty was then categorized into easy and difficult incidents based on the number of

updates. To predict and evaluate, it was used TF-IDF to relate the ticket descriptions

categorizing each ticket in easy or difficult and then using Naïve Bayes for clustering. To

validate the results, the author split the dataset 75%-25% (training-test).

Chapter 3 - Work Methodology

15

Chapter 3 – Work Methodology

This chapter follows the CRISP-DM methodology, as previously stated in chapter 1.

This chapter starts by explaining the different phases of the methodology and then use

those phases to describe what was done in this study.

The CRISP-DM is seen as a hierarchical process model with four levels of abstraction,

as presented in Figure 2.

Figure 2 - CRISP-MD Levels (Wirth & Hipp, 2000)

The first level (phases) is a combination of generic tasks (second level), and these tasks

are made to be the most complete (cover the whole possibilities and processes of data

mining) and stable (handle unforeseen developments) as they can. The third level aims to

describe the tasks from the previous level. The last level has the objective to register all

decisions, actions, and results made (Chapman et al., 1999). This life cycle is then divided

into six different phases, as shown in Figure 3.

Figure 3 - CRISP-MD model phases (Wirth & Hipp, 2000)

Chapter 3 - Work Methodology

16

These phases include (Wirth & Hipp, 2000):

• Business Understanding - the objective is to understand the requirements and

objectives of a project and turn that into a data mining problem. This is present

in Chapter 1 and 1.1 of this research.

• Data Understanding – This phase and the previous one are complementation

of each other as to understand the data, one has to understand the context in

which they will be used and to understand the objective of the project, one has

to know what the type of data that will be used. In this research, a statistical

analysis will be done to understand the data better.

• Data Preparation - After a good understand of the business and data, data

preparation can start. This phase is the combination of all the necessary

activities to build the final dataset, which includes attribute selection, data

cleaning, construction of new attributes, and data transformation.

• Modeling - As this aims to apply different modeling techniques and parameter

calibration, this phase must be done back and forth with the previous one. In

this research, some of the most used algorithms found in the literature will be

used.

• Evaluation - After having one or two high-quality models by using data

analysis and before deploying the model, it is needed to do an evaluation of the

model to prove that it can achieve the objectives proposed. To do this, the

model will be assessed by using the most used metrics in the literature, such as

precision, recall, accuracy, and f-measure.

• Deployment - the knowledge obtained in the model has to be presented through

a report or presentation or both.

Figure 4 shows an overview of what was said previously.

Chapter 3 - Work Methodology

17

Figure 4 - CRISP-MD lifecycle overview Wirth & Hipp, (2000)

3.1.Business and Data Understanding

The data used for this research was from a company operating in the bank sector in

Portugal (only information possible to reveal due to privacy agreement) and consisted in

two excels, one with deployment tickets information and the other with incident tickets

information.

The excels had pieces of information such as date of end and start of the ticket,

description, who made the deployment, where was the deployment assigned, since the

organization has different headquarters across the country, different categories of the

application or software and time it took to end the ticket.

Both have information from 1st January of 2015 to the 28th September of 2018. The

deployment file had initially 281091 entries, and 126 attributes, and the incident file had

114146 entries and 161 attributes.

The dataset did not contain information that links an incident directly to a deployment.

The description given in the incident tickets is not enough to know what may have been

the deployment that caused it and so the only way to relate them is by the name of the

application or software.

Chapter 3 - Work Methodology

18

Table 4 and Table 5 show the value that occurred the most for each dataset in a specific

attribute.

Table 4 - Deployment Analysis

Attribute Value Occurrences

Operational Categorization

Tier 2
Profile IBS 96 189

Operational Categorization

Tier 1
Software/Applications – Production 175 927

Operational Categorization

Tier 3
Request for Analysis / Clarification 22 329

Completed Date 12th July 2017 406

Table 5 - Incident Analysis

Attribute Value Occurrences

Operational Categorization

Tier 2
Software Standard – PC 14 058

Operational Categorization

Tier 1
Software/Applications – Production 71 786

Operational Categorization

Tier 3
Anomaly 31 372

Reported Date 11th July 2016 634

The detailed description average length is 184 characters.

3.2. Data Preparation

In order to achieve better results and to remove not necessary entries and attributes,

several transformations were made before having the final dataset. Figure 5 shows the

workflow of the transformations, which will then be further explained throughout this

chapter.

3.2.1 Initial Attribute Cleaning

After the first analysis, it was taken out attributes that did not have any relevant

information such as ticket ID and attributes that had repeated information of other

attributes. 11 attributes from deployments and 6 from incidents were removed in this

process.

Chapter 3 - Work Methodology

19

Figure 5 - Data prepartion workflow

Chapter 3 - Work Methodology

20

3.2.2 Irrelevant Attributes

Then after checking with the company to validate the relevance of some attributes, it

was decided to eliminate more attributes such as attributes that most of the entries were

empty and others, such as email, phone number, breach reason, model/version and many

others that both the company and the author agreed that would not bring much

information.

After this, the files went from 115 attributes to 23 in the deployment’s dataset and

from 155 attributes to 26 in the incident’s dataset. In this process, the start date of the

deployments and the end date of the incidents were removed as they would not be needed

because the intention is to relate when the deployment was made, and the incident was

created.

3.2.3 Irrelevant and duplicated entries

After this, it was removed tickets entries with states other than closed to avoid having

repeated tickets with only different states due to the dataset having different entries for

the different states of the ticket and in the end the duplicates entries were removed.

442 entries from deployments and 1040 from incidents were removed in this process,

leaving the dataset with 280649 entries in the deployment’s dataset and 113106 in the

incident’s dataset.

3.2.4 Efficiency Cleaning

Then for efficiency purposes, it was removed the entries which did not have a match

in the other excel making the deployment data going from 280649 entries to 199776 and

the incident data from 113106 to 109652. The deployment dataset had deployments after

the last incident date, making them not useful, so these were removed, there was 274

deployments in this situation, leaving the final deployment’s dataset with 199502. After

the first results, it was decided to remove more attributes to see if it would make the

algorithm have better results, and so ten more attributes were removed, leaving the

deployments dataset with 13 attributes.

3.2.5 Attribute Creation

To perfom a prediction, it was needed to add an attribute that had the number of

incidents of deployment in the following days (for this research we used 3, 7 and 10 days).

After the initial results, it was decided to create another attribute that has the average

incident impact for each deployment, leaving the deployment dataset with 15 attributes.

Chapter 3 - Work Methodology

21

3.2.6 Data Transformation

The description attribute had all sort of information on it, so it was decided to

categorize it based on the size of the text by comparing them with the average field size.

In the end, the attribute was divided into short, medium, and long description and none.

Figure 6 shows the final set of attributes used from the deployment’s dataset. Figure 7

shows the final set of attributes present in the incident’s dataset.

Figure 6 - Final set of deployment attributes

• Non-Categorical Textual attributes: Summary, Detailed Description (before

categorization);

• Non-Categorical Numeric attributes: Completed Date, Total Resolution Time,

Number of Incidents;

• Categorical Textual attributes: Priority, Assignee Support Group Name,

Request Assignee, Company, Department, Detailed Description (after

categorization), Operator, Operational Categorization Tier 1, Operational

Categorization Tier 2, Operational Categorization Tier 3;

• Categorical Numeric attributes: Average Impact of Incidents

Chapter 3 - Work Methodology

22

Figure 7 - Final set of Incident attributes

For this research, the only relevant attributes used from the incident dataset was the

Reported Date (Categorical numeric), Impact (Categorical numeric) and Operation

Categorization Tier 2 (Categorical textual).

3.3. Modeling

It was decided to apply Naïve Bayes, SVM, RF, and CART to measure the accuracy

of the prediction. The algorithms were used with the library sklearn (Pedregosa, F.,

Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., Duchesnay, E., 2011) in python with a validation size of 25%

and 7 as seed. For the library to use the algorithm all data could not have any fields of

type String or be empty, so the empty fields were filled with zeros, and the strings were

categorized by using a function from the same library. The algorithm was applied to the

Chapter 3 - Work Methodology

23

deployment file by trying to predict the number of incidents attribute that were created

based on the comparison of the two datasets.

3.4.Evaluation and Results

The number of incidents had the following distribution, as showed in Table 6.

Table 6 – Number of Incidents Distribution

Days Minimum Maximum Average Standard Deviation

3 0 562 9.1 20.2

7 0 648 19.9 37.3

10 0 679 28.7 48.5

As it can be seen, there is a good distribution of values, so it was decided to make

different types of predictions.

• First, where the number of categories is zero, meaning that the algorithm tries

to predict exactly the number of incidents.

• Second, where the number of incidents is categorized in “no accidents” and

“accidents”.

• Third in “no accidents”, “below average accidents” and “above average

accidents”.

• Finally, in “no accidents”, “residual accidents” (one or two), “below average

accidents” and “above average accidents”.

 The intention behind this categorization was not only to improve results but to

understand how well the algorithms would work with different requirements, like for

example, if the organization wants just to know if it has or not incidents or if it has a low

number of incidents or a high number.

The author started by applying Naïve Bayes and SVM as these were the most used

algorithms in the literature and then further explored algorithms such as RF and CART.

After these first results, it was decided to investigate further other possible

combinations, such as counting weekends and holidays, considering the average incident

impact for each deployment and taking both into account.

The results for the Naïve Bayes, SVM, RF and CART algorithms are present in Table

7, 8, 9, 10 respectively, with the original results, using weekends and holidays, average

impact of incidents and both.

Table 11 presents an overview of the best results from the previous tables.

Chapter 3 - Work Methodology

24

Table 7 - Naive Bayes results. Original (O), Weekends and Holidays (WH), Impact (IMP)

NUMBER OF

CATEGORIES
DAYS

ACCURACY (%) PRECISION (%) RECALL (%) F-MEASURE (%)

O WH IMP ALL O WH IMP ALL O WH IMP ALL O WH IMP ALL

0

3 22.9 19.5 34.1 27.4 12 10 29 21 23 19 34 27 23 11 28 22

7 15.4 14.8 20.9 20.1 6 6 16 16 15 15 21 20 8 7 16 16

10 13.1 11.4 17.8 15.6 5 3 14 11 13 11 18 16 6 5 14 12

2

3 69.8 76.2 84.5 87.8 68 74 85 88 70 76 85 88 68 75 84 87

7 80.5 80.8 90.4 90.7 79 79 90 90 81 81 90 91 79 80 90 90

10 82.7 84.0 92.2 93.1 81 83 92 93 83 84 92 93 82 83 92 93

3

3 58.9 62.5 75.8 76.3 53 58 73 74 59 63 76 76 54 58 73 74

7 62.3 62.8 74.6 74.9 57 57 71 71 62 63 75 75 57 58 71 71

10 62.5 61.5 73.4 73.0 56 55 69 68 61 62 73 73 55 55 69 67

4

3 43.8 53.0 59.2 64.7 38 47 63 63 44 53 59 65 36 46 53 60

7 56.1 56.7 65.9 66.3 51 52 62 62 56 57 66 66 51 51 62 62

10 56.2 56.4 65.3 65.3 51 48 61 60 56 56 65 65 51 50 61 60

Chapter 3 - Work Methodology

25

Table 8 - SVM results. Original (O), Weekends and Holidays (WH), Impact (IMP)

NUMBER OF

CATEGORIES
DAYS

ACCURACY (%) PRECISION (%) RECALL (%) F-MEASURE (%)

O WH IMP ALL O WH IMP ALL O WH IMP ALL O WH IMP ALL

0

3 24.3 19 24.8 19.1 24 24 26 24 24 19 24 19 10 6 10 7

7 15 14.9 15 14.9 22 23 23 24 15 15 15 15 4 4 4 4

10 13 11.3 13 11.3 25 17 26 20 13 11 13 11 3 3 3 3

2

3 62.7 72.8 62.7 72.8 66 76 69 77 63 73 63 73 49 62 49 62

7 79 79.3 79.1 79.3 82 82 83 83 79 79 79 79 70 70 70 70

10 82.7 85.2 82.7 85.2 86 87 86 87 73 85 83 85 75 79 75 78

3

3 52.7 58.1 52.8 58.2 57 65 61 67 53 58 53 58 37 43 37 43

7 60 60.5 60 60.5 69 70 69 71 60 60 60 60 45 46 45 46

10 60.4 61.8 60.4 61.8 72 74 72 74 60 62 60 62 46 48 46 48

4

3 31.7 42.9 31.7 42.9 48 59 51 62 32 43 32 43 16 26 16 26

7 49 49.7 49 49.7 63 66 65 66 49 50 49 50 33 34 33 34

10 52.2 55.4 52.3 55.4 70 71 71 73 52 55 52 55 36 40 36 40

Chapter 3 - Work Methodology

26

Table 9 - RF results. Original (O), Weekends and Holidays (WH), Impact (IMP)

NUMBER OF

CATEGORIES
DAYS

ACCURACY (%) PRECISION (%) RECALL (%) F-MEASURE (%)

O WH IMP ALL O WH IMP ALL O WH IMP ALL O WH IMP ALL

0

3 44.5 41.5 58.8 54.8 41 39 57 54 45 41 59 55 42 40 57 54

7 41.1 44.7 52.5 52.3 39 43 51 51 41 45 52 52 40 43 51 51

10 40.2 42.9 49.4 50.3 38 41 48 50 40 43 49 50 39 42 48 49

2

3 84.2 91.1 90.4 94.2 84 91 90 94 84 91 90 94 84 91 90 94

7 93.9 94.2 96 96.1 94 94 96 96 94 94 96 96 94 94 96 96

10 95.1 96 97 97.5 95 96 97 98 95 96 97 98 95 96 97 98

3

3 76 82.2 89.6 91.9 76 83 89 92 76 82 90 92 75 82 89 92

7 83.8 84.5 92.6 93.2 84 85 93 93 84 85 93 93 83 84 92 93

10 85.6 89.1 93.6 95.4 86 89 94 95 86 89 94 95 85 89 93 95

4

3 60.9 72.3 74.5 82.6 61 72 75 83 61 72 75 83 61 71 75 82

7 78.9 79.1 86.7 87.5 79 79 87 88 79 79 87 88 78 78 86 87

10 80.7 84.1 88.9 91.7 80 84 89 92 81 84 89 92 80 84 89 92

Chapter 3 - Work Methodology

27

Table 10 - CART results. Original (O), Weekends and Holidays (WH), Impact (IMP)

NUMBER OF

CATEGORIES
DAYS

ACCURACY (%) PRECISION (%) RECALL (%) F-MEASURE (%)

O WH IMP ALL O WH IMP ALL O WH IMP ALL O WH IMP ALL

0

3 86 85.4 91.2 89.9 86 85 91 90 86 85 91 90 86 85 91 90

7 86.5 86.5 89.5 88.5 87 87 90 89 87 87 89 89 87 87 89 89

10 86.7 84.3 89.2 88.4 87 84 89 88 87 84 89 88 87 84 89 88

2

3 95.1 95.9 96.2 96.7 95 96 96 97 95 96 96 97 95 96 96 97

7 96.7 96.7 97.1 97.2 97 97 97 97 97 97 97 97 97 97 97 97

10 96.4 97 97.5 98.1 96 97 97 98 96 97 97 98 96 97 97 98

3

3 91.2 93 97.4 98.8 91 93 97 99 91 93 97 99 91 93 97 99

7 94.8 94.8 99.1 99 95 95 99 99 95 95 99 99 95 95 99 99

10 96.3 96.8 99.2 99.5 96 97 99 99 96 97 99 99 96 97 99 99

4

3 89.5 91.2 94.2 96 90 91 94 96 89 91 94 96 89 91 94 96

7 93.2 92.7 96.7 96.7 93 93 97 97 93 93 97 97 93 93 97 97

10 94 95 96.9 97.5 94 95 97 97 94 95 97 97 94 95 97 97

Chapter 3 - Work Methodology

28

Table 11 - Algorithms best accuracy results comparison

NUMBER OF

CATEGORIES
DAYS

NAÏVE BAYES

(% ACCURACY)

SVM

(% ACCURACY)

RF

(% ACCURACY)

CART

(% ACCURACY)

0

3 34.1 24.8 58.8 91.2

7 20.9 15 52.3 89.5

10 17.8 13 50.3 89.2

2

3 87.8 72.8 94.2 96.7

7 90.7 79.3 96.1 97.2

10 93.1 85.2 97.5 98.1

3

3 76.3 58.2 91.9 98.8

7 74.9 60.5 93.2 99.1

10 73.4 61.8 95.4 99.5

4

3 64.7 42.9 82.6 96

7 66.3 49.7 87.5 96.7

10 65.3 55.4 91.7 97.5

To evaluate the results, it was used accuracy, precision, recall, and f-measure. The

precision-recall and f-measure are the weighted averages of each category, meaning it

considers the number of samples of each category.

As it was used cross-validation to obtain the results, the results in the table are an

average of the results calculated by cross-validation, these results have an average

standard deviation of 1.2%.

The weekends and average impact of incidents had in most cases a good impact on

results, improving in some cases the results by 22%.

Overall CART was the algorithm with the best results. Having 2 categories is the one

that manages to get better results, and overall using 10 days gap to relate deployments

and incidents gets the best results also, except for when the number of incidents is not

categorized, but further analysis will be given on the next chapter.

3.5.Deployment

To present the work that was made on the model and to show how the model can be

used, it was made apart from this document, documentation for the organization from

which the data was used, and a demo, shown in Figure 8, to show how a future

implementation would look and how it could work. The values shown in this picture are

just an example of what would appear.

In this prototype, the person has completed the development and is ready to deploy, in

which the deployment information is inserted, either manually or automatically, which

will be used by the algorithm to make the desired prediction and later be used to improve

the accuracy of the prediction of later deployments. The person who makes the

Chapter 3 - Work Methodology

29

deployment can then choose the type of prediction he or she wants (the exact number of

incidents, will or will not have incidents, will not have incidents, below average or above

average or will not have incidents, just one or two, below average and above average).

After this, the system would then show the user the prediction that it was made based on

the information that was given, in this case, it was the number of incidents, as well as the

level of confidence to which he is predicting. This level of confidence would be the

accuracy shown in the previous chapter, and so it would not be the level of confidence

related to that specific prediction, but to the overall accuracy of the algorithm.

Figure 8 - Implementation demo design

Depending on both results the person can then rethink and give a better look to the

deployment or give a heads up to his or her manager that there is a probability of an

incident after that deployment is made.

Chapter 3 - Work Methodology

30

Chapter 4 - Discussion

31

Chapter 4 – Discussion

In this chapter, a detailed analysis is done, first going through each algorithm overall,

analysing which one performed better and worse, then discussing why some combination

of parameters (days and categories) worked better than others overall and analyse the

impact that taking into account the weekends, holidays and average impact had.

As shown in the previous chapter, the best result came from CART with 99.5% when

setting the number of incidents over 10 days and by categorizing them in 3 categories.

This means that the algorithm can differentiate very well between having no incidents, a

small number of incidents (below average) and a high number of incidents (above

average).

Although this was the best result, CART can overall predict very well with any

combination of categories and days, having very good results even when not categorizing

the number of incidents meaning that the algorithm is even able to predict with great

accuracy the exact number of incidents that a deployment can have.

As the results show, RF also performs well, which demonstrates that decision trees

algorithms work very well with this type of data probably because these are better at

dealing with outliers and with nonlinear attributes.

Naïve Bayes had average results with 3 and 4 categories, good results with 2 categories

and bad results with no categories. Naïve Bayes was the most used algorithm in the

literature, but in this research, it did not perform as well as it was expected and ended up

being surpassed by the decision trees algorithms. Still, as said previously, it is still a viable

algorithm to use to predict if deployment will have or not an incident.

SVM had overall bad results and the worse of the four algorithms, this might be related

to how SVM works, as in the end the data that was used had a small number of textual

parameters and ended up being more categorical data.

As for the combination of parameters, first, the intention to use a different number of

categories was to understand with how much detail the algorithms were able to predict,

as, for the number of days, the intention was to understand the span in which the incidents

correlate with the deployments.

Having said that and by analyzing the results, when we categorize the number of

incidents the span that has the best results is the 10 days span, but when we do not

categorize the incidents the 3 days span gets the best results. This may indicate that when

we categorize and use a long span of days (such as 10 days), there is a higher probability

Chapter 4 - Discussion

32

that most of the number of incidents will fall into one category, leading to an overfit of

the results. This means that the algorithm will think it is safer to guess that the deployment

will have incidents or a specific number of incidents. When we do not categorize

incidents, this does not happen because each deployment will have a different number of

incidents and will not fall all in the same category.

So, in the end, despite the 10 days span having better results (by a small margin), the

3 days span represent better in which an incident is actually related or created by a

deployment.

As for the categories, as it was expected, having no categories ends up in having worse

results, despite the good results with the CART algorithm. Having only two categories

maximizes the results with the exception of the CART algorithm. As stated previously,

the intention with the categorization was not only to maximize the results, but to

understand the level of detail the algorithm is able to predict in order to deliver different

type of analysis (will or will not have incidents, will it have small number of incidents or

a great number of incidents or even just one or two incidents).

Finally, as said in the previous chapter, taking into account the weekends, holidays and

average impact of incident improved the results with a few exceptions such as the

weekends and holidays giving worse results when not categorizing the number of

incidents for the same reasons as having a larger day span also gives worse results. The

average impact of the incidents in most cases improved the results, except for SVM,

where it had no impact on the results. The reason could be the same as to why SVM has

the worse results of all algorithms used, since the impact is just another

statistical/categorical parameter, it does not add much to the SVM algorithm.

Chapter 5 - Conclusions

33

Chapter 5 – Conclusions

Overall the results allow us to predict if a certain type of deployment with certain types

of attributes has a high or low probability of having incidents, by raising awareness of the

deployment team to be more careful when doing the deployment. Although it does not

have the best accuracy on guessing the exact number of incidents, it does have a good

accuracy when deciding if a certain deployment has or not an incident and even when

predicting if it will have just a few or around the average incidents which allow once

again the deployer to have a better trust when deploying the application or software.

It was also found out that the decision tree algorithms such as RF and CART work very

well with this type of data.

RQ1 - Can software deployments information be used to predict incidents?

Grounded on the achieved results, it is feasible to argue that it is possible to use software

deployment information to predict incidents with some accuracy. Greater accuracy can

be achieved if we do not need to know the exact number of incidents, but instead, we just

want to know if it will or will not have incidents, or if it will have a small or high number

of incidents.

To wrap the conclusions, these were the main conclusions from this research:

• Assuming that each incident is related with each deployment made in a certain

day span, it is feasible to predict the number of incidents with some accuracy

event with low to no detail on what was done on the technical level;

• Decision Tree works very well with this type of data;

• On the professional outcome, this information can be used not only to prevent

and better allocate resources for future incidents but may be used as an overall

measurement tool as well, as the better the teams work, the fewer incidents the

system will predict;

• On the academical outcome, this study allowed to understand which algorithm

is better with this type of data, as well as, showing one of the possible ways to

predict incidents with small to no information of the technical side of the

deployment.

5.1. Research Limitation

As previously stated, specific information that enabled us to associate an incident

directly was not provided by the organization, although this type of information would

Chapter 5 - Conclusions

34

not guarantee better results, since it is very difficult to always guarantee that a specific

incident ticket is related to a specific deployment.

Plus, the deployments’ information did not specify much of what was done in the

deployment on the technical side which could have improved the results since most of the

incident prediction that was found in the literature was based on technical information of

the deployment.

5.2. Future Work

As said before this study worked with some unique type of data and so it served as a

foundation for more studies to be done. The next paragraphs are a list of what can be done

to complement this study.

Improve and add some of the attributes, like categorizing descriptions, adding the

importance of the deployment, give more detail of what was done on the technical level.

and then check if the results improve with that.

An implementation of this study as a Decision Support System to help managers

understand what is the type of deployments that have more incidents, to understand if the

number of incidents is getting worse or better and allowing them to act better and faster

on possible future incidents.

This study can also be used to know the impact that is having a prediction of the

incidents can have on the processes. How does it impact them? A good way to measure

this is to run the algorithm daily and see if the number of incidents predicted goes up or

down. Since with the use of this study, there will be bigger attention when doing a

deployment, hopefully a decrease in the number of incidents will happen and the daily

prediction will actually go down and so it can be use to evaluate the impact of the study.

35

Bibliography

Aguiar, J. F. F., Pereira, R., Vasconcelos, J. B., & Bianchi, I. (2018). An Overlapless

Incident Management Maturity Model for Multi-Framework Assessment (ITIL,

COBIT, CMMI-SVC). Interdisciplinary Journal of Information, Knowledge, and

Management, 13, 137–163. https://doi.org/10.28945/4083

Altintas, M., & Tantug, A. (2014, September). Machine learning based volume diagnosis.

Proceedings of the International Conference on Artificial Intelligence and

Computer Science (AICS 2014). 195–207.

Bari, A., Chaouchi, M., & Jung, T. (2014). Predictive analytics for dummies. Hoboken,

NJ: John Wiley & Sons, Inc.

Bartolini, C., Salle, M., & Trastour, D. (2006). IT service management driven by business

objectives An application to incident management. 2006 IEEE/IFIP Network

Operations and Management Symposium NOMS 2006, 45–55.

https://doi.org/10.1109/NOMS.2006.1687537

Bartolini, C., Stefanelli, C., & Tortonesi, M. (2010). SYMIAN: Analysis and performance

improvement of the IT incident management process. IEEE Transactions on

Network and Service Management, 7(3), 132–144.

https://doi.org/10.1109/TNSM.2010.1009.I9P0321

Bishop, C. M. (1996). Neural Networks: A pattern recognition perspective. Neural

Computing Research Group Aston University, Birmingham, UK. 23.

Brownlee, J. (2016). Machine Learning Mastery With Python. (1st Ed). 179.

Çalikli, G., Staron, M., & Meding, W. (2018). Measure early and decide fast:

transforming quality management and measurement to continuous deployment.

International Conference on Software and System Processes, 51–60.

https://doi.org/10.1145/3202710.3203156

Catal, C. (2011). Software fault prediction: A literature review and current trends. Expert

Systems with Applications, 38(4), 4626–4636.

https://doi.org/10.1016/j.eswa.2010.10.024

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R.

(1999). Step-by-step data mining guide. 76.

Dearle, A. (2007). Software Deployment, Past, Present and Future. Future of Software

Engineering (FOSE ’07), 269–284. https://doi.org/10.1109/FOSE.2007.20

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed). New

York, NY: Wiley.

Forte, D. (2007). Security standardization in incident management: the ITIL approach.

Network Security, 2007(1), 14–16. https://doi.org/10.1016/S1353-

4858(07)70007-7

Fronza, I., Sillitti, A., Succi, G., & Vlasenko, J. (2011). Failure Prediction based on Log

Files Using the Cox Proportional Hazard Model. SEKE 2011 - Proceedings of the

23rd International Conference on Software Engineering and Knowledge

Engineering, 456–461.

Fulp, E. W., Fink, G. A., & Haack, J. N. (2008). Predicting Computer System Failures

Using Support Vector Machines WASL'08 Proceedings of the First USENIX

conference on Analysis of system logs, 5-5.

 Gacenga, F., Cater-Steel, A., Tan, W.-G., & Toleman, M. (2010). IT Service

Management: Towards a Contingency Theory of Performance Measurement.

Service Science, 19.

36

Guo, W., & Wang, Y. (2009). An Incident Management Model for SaaS Application in

the IT Organization. 2009 International Conference on Research Challenges in

Computer Science, 137–140. https://doi.org/10.1109/ICRCCS.2009.42

Hongyu Zhang, & Xiuzhen Zhang. (2007). Comments on “Data Mining Static Code

Attributes to Learn Defect Predictors.” IEEE Transactions on Software

Engineering, 33(9), 635–637. https://doi.org/10.1109/TSE.2007.70706

Hovsepyan, A., Scandariato, R., & Joosen, W. (2016). Is Newer Always Better?: The

Case of Vulnerability Prediction Models. Proceedings of the 10th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement -

ESEM ’16, 1–6. https://doi.org/10.1145/2961111.2962612

Jäntti, M., & Järvinen, J. (2011). Improving the Deployment of IT Service Management

Processes: A Case Study. In R. V. O‘Connor, J. Pries-Heje, & R. Messnarz (Eds.),

Systems, Software and Service Process Improvement (Vol. 172, pp. 37–48).

https://doi.org/10.1007/978-3-642-22206-1_4

Jiang, Z. M., Hassan, A. E., Hamann, G., & Flora, P. (2008). An automated approach for

abstracting execution logs to execution events. Journal of Software Maintenance

and Evolution: Research and Practice, 20(4), 249–267.

https://doi.org/10.1002/smr.374

Kang, Y.-B., Zaslavsky, A., Krishnaswamy, S., & Bartolini, C. (2010). A knowledge-rich

similarity measure for improving IT incident resolution process. SAC '10

Proceedings of the 2010 ACM Symposium on Applied Computing, 1781-1788.

https://doi.org/10.1145/1774088.1774466

Kikuchi, S. (2015). Prediction of Workloads in Incident Management Based on Incident

Ticket Updating History. UCC '15 Proceedings of the 8th International

Conference on Utility and Cloud Computing, 333-340.

Kotsiantis, S. B. (2007). Supervised Machine Learning: A Review of Classification

Techniques. Informatica 31, 249-268.

Li, H., Sun, J., & Wu, J. (2010). Predicting business failure using classification and

regression tree: An empirical comparison with popular classical statistical

methods and top classification mining methods. Expert Systems with Applications,

37(8), 5895–5904. https://doi.org/10.1016/j.eswa.2010.02.016

Lin, D., Raghu, R., Ramamurthy, V., Yu, J., Radhakrishnan, R., & Fernandez, J. (2014).

Unveiling clusters of events for alert and incident management in large-scale

enterprise it. Proceedings of the 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining - KDD ’14, 1630–1639.

https://doi.org/10.1145/2623330.2623360

Lou, J.-G., Lin, Q., Ding, R., Fu, Q., Zhang, D., & Xie, T. (2017). Experience report on

applying software analytics in incident management of online service. Automated

Software Engineering, 24(4), 905–941. https://doi.org/10.1007/s10515-017-

0218-1

Manning, C., Raghavan, P., & Schuetze, H. (2009). Introduction to Information Retrieval.

Language Engineering, 16(1), 100-103.

Medvidovic, N., & Malek, S. (2007). Software deployment architecture and quality-of-

service in pervasive environments. ESSPE '07 International workshop on

Engineering of software services for pervasive environments: in conjunction with

the 6th ESEC/FSE joint meeting, 47–51.

https://doi.org/10.1145/1294904.1294911

Mello, T. D. F. de, & Lopes, E. C. (2015). Using case-based reasoning into a decision

support methodology for the incident resolution control in IT. 2015 10th Iberian

https://www.acm.org/conferences/sac/sac2010
http://www.idt.mdh.se/esec-fse-2007/

37

Conference on Information Systems and Technologies (CISTI), 1–6.

https://doi.org/10.1109/CISTI.2015.7170448

Menzies, T., Greenwald, J., & Frank, A. (2007). Data Mining Static Code Attributes to

Learn Defect Predictors. IEEE Transactions on Software Engineering, 33(1), 2–

13. https://doi.org/10.1109/TSE.2007.256941

Mukhopadhyay, A. (2018). Incident Prediction and Response Optimization. AAMAS '18

Proceedings of the 17th International Conference on Autonomous Agents and

MultiAgent Systems, 1758-1760.

Myatt, G. J. (2007). Making sense of data: a practical guide to exploratory data analysis

and data mining. Hoboken, N.J: Wiley-Interscience.

Myatt, G. J., & Johnson, W. P. (2009). Making sense of data II: a practical guide to data

visualization, advanced data mining methods, and applications. Hoboken, N.J:

John Wiley & Sons.

Oliveira, P. A. D. (2017, May). Predictive Analysis of Cloud Systems. 2017 IEEE/ACM

39th International Conference on Software Engineering Companion (ICSE-C).

https://doi.org/10.1109/ICSE-C.2017.39

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. (2011). Scikit-learn:

Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-

2830

Razi, M., & Athappilly, K. (2005). A comparative predictive analysis of neural networks

(NNs), nonlinear regression and classification and regression tree (CART)

models. Expert Systems with Applications, 29(1), 65–74.

https://doi.org/10.1016/j.eswa.2005.01.006

Russo, B., Succi, G., & Pedrycz, W. (2015). Mining system logs to learn error predictors:

a case study of a telemetry system. Empirical Software Engineering, 20(4), 879–

927. https://doi.org/10.1007/s10664-014-9303-2

Shang, W., Jiang, Z. M., Hemmati, H., Adams, B., Hassan, A. E., & Martin, P. (2013).

Assisting developers of Big Data Analytics Applications when deploying on

Hadoop clouds. 2013 35th International Conference on Software Engineering

(ICSE), 402–411. https://doi.org/10.1109/ICSE.2013.6606586

Shang, W., Nagappan, M., & Hassan, A. E. (2015). Studying the relationship between

logging characteristics and the code quality of platform software. Empirical

Software Engineering, 20(1), 1–27. https://doi.org/10.1007/s10664-013-9274-8

Silva, S., Pereira, R., & Ribeiro, R. (2018a). Less is More in Incident Categorization. 7th

Symposium on Languages, Applications and Technologies (SLATE 2018), 6.

Silva, S., Pereira, R., & Ribeiro, R. (2018b). Machine learning in incident categorization

automation. 2018 13th Iberian Conference on Information Systems and

Technologies (CISTI), 1–6. https://doi.org/10.23919/CISTI.2018.8399244

Tøndel, I. A., Line, M. B., & Jaatun, M. G. (2014). Information security incident

management: Current practice as reported in the literature. Computers & Security,

45, 42–57. https://doi.org/10.1016/j.cose.2014.05.003

Tziroglou, G., Vafeiadis, T., Ziogou, C., Krinidis, S., Voutetakis, S., & Tzovaras, D.

(2018). Incident Detection in Industrial Processes Utilizing Machine Learning

Techniques. In A. Burduk & D. Mazurkiewicz (Eds.), Intelligent Systems in

Production Engineering and Maintenance – ISPEM 2017 (Vol. 637, pp. 43–53).

https://doi.org/10.1007/978-3-319-64465-3_5

https://ieeexplore.ieee.org/xpl/conhome/7961434/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7961434/proceeding

38

Wang, C., Kundu, S., Limaye, R., Ganai, M., & Gupta, A. (2011). Symbolic predictive

analysis for concurrent programs. Formal Aspects of Computing, 23(6), 781–805.

https://doi.org/10.1007/s00165-011-0179-2

Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a Standard Process Model for Data

Mining. 11.

Xu, Z., Liu, P., Zhang, X., & Xu, B. (2016). Python predictive analysis for bug detection.

FSE 2016 Proceedings of the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, 121–132.

https://doi.org/10.1145/2950290.2950357

Zhang, X., & Pham, H. (2006). Software field failure rate prediction before software

deployment. Journal of Systems and Software, 79(3), 291–300.

https://doi.org/10.1016/j.jss.2005.05.015

Zhao, G., & Yang, S. (2013). IT service incident management model decision based on

ELECTRE III. 2013 6th International Conference on Information Management,

Innovation Management and Industrial Engineering, 1, 514–517.

https://doi.org/10.1109/ICIII.2013.6702987

http://www.cs.ucdavis.edu/fse2016/

