
Instituto Universitário de Lisboa

Department of Information Science and Technology

Control of Robot Swarms Through
Natural Language Dialogue

A Case Study on Monitoring Fires

Nuno Miguel Amorim Mendonça

A Dissertation presented in partial fulfillment of the Requirements
for the Degree of

Master in Computer Engineering

Supervisor

Sancho Moura Oliveira, Assistant Professor, Ph.D.
ISCTE-IUL

Co-Supervisor

Ricardo Daniel Santos Faro Marques Ribeiro, Assistant Professor,
Ph.D.

ISCTE-IUL

October, 2019

“Have the courage to follow your heart and intuition.

They somehow know what you truly want to become.”

- Steve Jobs

Abstract

There are numerous environmental and non-environmental disasters happening
throughout the world, representing a big danger to common people, community
helpers, to the fauna and flora. Developing a program capable of controlling
swarms of robots, using natural language processing (NLP) and further on, a
speech to text system, will enable a more mobile solution, with no need for key-
board and mouse or a mobile device for operating with the robots. Using a well-
developed NLP system will allow the program to understand natural language-
based interactions, making this system able to be used in different contexts. In
firefighting, the use of robots, more specifically drones, enables new ways to obtain
reliable information that before was based on guesses or knowledge from someone
who had long-time experience on field. Using a swarm of robots to monitor fire
enables innumerous advantages, from the creation of a dynamic fire map, climate
information inside the fire, to finding lost firefighters on field through the gener-
ated map. This work uses firefighting as a case-study, but other situations can be
considered, like searching someone in the sea or searching for toxins in an open
environmental area.

Keywords: Natural Language Processing, Swarm robotics, Natural Language
Understanding, Multi-robot Cooperative Control

ii

Resumo

Existem muitos desastres ambientais e não ambientais em todo o mundo, represen-
tando um grande perigo para pessoas comuns, ajudantes da comunidade e para a
fauna e flora. O desenvolvimento de um programa capaz de controlar enxames de
robôs, usando Processamento Computacional da Língua (PCL) e, posteriormente,
um sistema de fala-para-texto, permitirá uma solução mais móvel, sem necessidade
de teclado e rato ou dispositivos móveis para operar com os robôs. O uso de um
sistema bem desenvolvido de PCL permitirá que o programa entenda interações
baseadas em linguagem natural, tornando-o capaz de ser usado em diferentes con-
textos. O uso de robôs (mais especificamente drones) no combate a incêndios,
permite novas maneiras de obter informações confiáveis que antes eram baseadas
em suposições ou conhecimentos de pessoas com longa experiência em campo. O
uso de um enxame de robôs para monitorizar o incêndio permite inúmeras vanta-
gens, desde a criação de um mapa dinâmico do incêndio, informações climáticas
dentro do mesmo, até encontrar bombeiros perdidos no campo, através do mapa
gerado pelos robôs. Este trabalho usa o combate a incêndios como um estudo de
caso, mas outras situações podem ser consideradas, como procurar alguém no mar
ou procurar toxinas numa área ambiental aberta.

Palavras-chave: Processamento Computacional da Língua, Robótica de Enx-
ame, Compreensão de Língua Natural, Controlo Cooperativo de Vários Robôs

iii

Acknowledgements

I would like to thank my Dad, Mom, Brother, Godmother and Grandmother, for
the unconditional support throughout all these years, not only from my bachelor’s
degree to the process of researching and writing this thesis, but for every moment
since I was born. All my accomplishments wouldn’t happen without you! Thank
You! You will always have my very profound and eternal gratitude!

I would like to thank all my close friends Diogo Baptista, Rodrigo Gomes, Carina
Abreu and João Pedro Borges for all the support you have given and still give me
every day! I know I can always count on you, as you can always count on me!
Also, to my big friends, that I met on my master’s degree, André Oliveira, Pedro
Camacho and Ruben Ribeiro, that always pushed me further to do more and gave
me strength to make this work! And all my other friends who participated in this
journey! Without you, it just wouldn’t be the same!

I would like to thank my supervisor Professor Sancho Moura Oliveira of ISCTE-
IUL and my co-supervisor Professor Ricardo Ribeiro of ISCTE-IUL, for their con-
tinuous support and counseling throughout the whole process of making this re-
search, from the very beginning, where nothing existed, to the very end. I am
gratefully indebted for your very valuable inputs and discussions on this thesis.

I would also like to express my gratitude to IT (Instituto de Telecomunicações),
where they gave me a space to work, with excellent conditions, on this research
and to my university ISCTE-IUL for all the amazing years, there is not a moment
I want to erase from my memory! Thank you for everything!

iv

Contents

Abstract ii

Resumo iii

Acknowledgements iv

List of Figures vii

Abbreviations x

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 2
1.3 Research Questions . 2
1.4 Objectives . 3
1.5 Research Methodology . 3

2 Related Work 6
2.1 Multi-Robot Communication . 6
2.2 Belief Communication Between Agents 8
2.3 Interaction Between Humans and the Swarm 9

2.3.1 How Do They Interact? . 9
2.3.2 Translation System for Natural Language to RCL 12
2.3.3 Commanding Multi-Robot Systems using Battle Manage-

ment Language . 14
2.4 Robot Swarm to Generate a Dynamic Fire Map With Pheromone . 15

3 System Architecture 17
3.1 Robotic System . 18

3.1.1 Nodes . 19
3.1.2 Bounding Box . 22
3.1.3 Actions, Formations and General Commands 22

3.1.3.1 Actions . 23
3.1.3.2 Formations . 26
3.1.3.3 General Commands 31

3.2 NLP System . 33

v

Contents

3.2.1 Natural Language Understanding (NLU) System 33
3.2.1.1 Building the Subject and the Object 35
3.2.1.2 Building the Command 38

3.2.2 Form . 39
3.2.3 Evaluator . 42

4 Results and Discussion 45
4.1 Evaluators Characterization . 46
4.2 Experiments . 49
4.3 Discussion of the Results . 51

5 Conclusion 54
5.1 Answering the Research Questions 55
5.2 Future Work . 56

Appendices 58

A Human-Machines Communication Experience 58
A.1 Introduction to the Script . 58
A.2 Actions - Related to the Commander 59
A.3 Formations - Related to the Robot Slaves 60
A.4 General Commands - Add and Remove Commanders 62
A.5 Try to mix the Actions and the Formations in one phrase! 63
A.6 Context Exercise . 63
A.7 That’s a wrap! Please provide us with anonymous information

about yourself! . 64

B Success Rate of the Experiments 66

Bibliography 69

vi

List of Figures

2.1 Different ways of spreading information for Multi-Robot cooperative
control [Guo et al., 2016]. 7

2.2 System Architecture for a robotic simulation [Thenmozhi et al., 2017]. 13

3.1 The developed working simulator. 17
3.2 Example of a Lawn Mower path by a Commander Node with five

lines. 25
3.3 Escort Formation . 27
3.4 Circulate Formation . 27
3.5 Example of the line formation with a Commander Node with a

squad of four Robot Nodes. 28
3.6 Example of the triangle formation with a Commander Node with a

squad of seven Robot Nodes. 29
3.7 Example of the retreat formation with a Commander Node with a

squad of six Robot Nodes and a Tower Node with the ID 1. 31
3.8 Example of a dependency parse of a short sentence on the Stanford.

Image downloaded from https://nlp.stanford.edu/software/nndep.html
in October 2019. 34

3.9 Dependency Parsing Tree of the sentence: Commander 1 follow
Person 4. 36

3.10 Dependency Parsing Tree of the sentence: Commander 1 change to
triangle. 37

3.11 Example of the Form Context System working in different situations. 39
3.12 Dependency Parsing Tree of the natural language commands num-

ber 6 . 41
3.13 Dependency Parsing Tree of the natural language commands num-

ber 7 . 41

4.1 Success rate after the 30 tests of each command. 50

vii

List of Tables

2.1 Use percentage of single or combined features. 11

2.2 Performance Evaluation . 14

4.1 Gender of participants. 46

4.2 Academic Level and Field of Study of the participants 46

4.3 Information about the participants work 47

4.4 Amount of replies sorted by Country 48

4.5 Success Rate of each exercise by people with 22 years old or less. . . 52

4.6 Success Rate of each exercise by people with 23 years old and more. 52

4.7 Success Rate of each exercise by native-English people. 52

4.8 Success Rate of each exercise by nonnative-English people. 52

4.9 Success Rate of each exercise by people with or taking a bachelor’s
degree. 53

4.10 Success Rate of each exercise by people with or taking a master’s
degree. 53

B.1 Complete Success Rate Table for Actions. 66

B.2 Complete Success Rate table for Formations. 67

B.3 Complete Success Rate table for General Commands. 67

B.4 Complete Success Rate table for the Double Command sentences. . 68

viii

List of Tables

B.5 Complete Success Rate table for the Context phrases. 68

ix

Abbreviations

compound Noun Compound Modifier. 36, 37

dobj Direct Object. 35, 37, 39

GUI Graphical User Interface. 4, 17

NLP Natural Language Processing. 3, 4, 6, 17, 19, 33, 40, 42, 45, 54, 55

NLU Natural Language Understanding. v, 33, 38, 39, 40, 41

nsubj Nominal Subject. 35, 36, 37, 39, 41

nummod Numeric Modifier. 36, 41

x

Chapter 1

Introduction

1.1 Motivation

Robots nowadays are essential, not only to perform tasks that are dangerous or

nearly impossible for human beings, like working in deep ocean, but also to do

simple day-to-day tasks such as vacuuming the floor. But tasks are not the focus of

everything, controlling the robots brings another complexity to the table, specially

swarms [Velagapudi et al., 2008]. Traditionally, the interaction between the user

and the robots is accomplished either by a mobile touch device or a keyboard and

mouse. Using voice commands allows more freedom to the user, like when it is

mandatory to wear gloves at the work place, the user does not need to remove

them every time an input is needed. They also make multiple tasks much easier

to achieve, as long as the interaction and cognitive capabilities are well developed

[Briggs and Scheutz, 2012]. Voice inputs, compared to manual inputs, will enable

better performance [Draper et al., 2003], especially if multiple robots / agents are

being used in the field [Velagapudi et al., 2008]. The whole system developed for

this thesis was designed to be open enough to cover different situations and to

be natural language friendly. Not only is it easy to add and remove features,

but also to be adaptable to different scenarios. The robots are programmed to

monitor the zone regardless of the mission, as long as it is on an environmental

1

Introduction

open area. For example, this can be used to search people in the sea, by changing

the environmental nodes from fire to water, or one can use this system to search

for toxins on a certain area, by changing the water to toxins.

1.2 Context

Due to the climate change and global warming, the weather has been chang-

ing its standards in a rapid pace and in a more aggressive way year by year

[Mora et al., 2013][Dey et al., 2015]. Firefighting has been gaining more impor-

tance given the increasing occurrence and severity of fires and casualties over the

years [Qian et al., 2008]. According to the European Commission in the annual

report on forest fires in 2017 [Jesús San-Miguel-Ayanz, 2018], Portugal was the

country with the most fires and the second largest area burned with 21,002 fires

and 540,630 hectares, respectively. Regarding fatalities the report shows 114 ca-

sualties: 66 in the fires of June 2017 (65 civilians and a firefighter), 46 in October

2017, plus a helicopter pilot and bulldozer operator. In addition, firefighters who

work directly in the field face immense dangers, from being surrounded in the

fire to spatial disorientation. By using robots during these disasters, firefighters

have more information about the area surrounding them due to the continuous

monitoring of the location of the fires and their sizes.

1.3 Research Questions

There were three research questions designed to conduct this study and they are

as follows:

• Is it possible to develop a System capable of controlling swarms of robots,

using Natural Language and to adapt this system to different situations?

• Can the Natural Language Processing System understand different ways of

saying the same thing, as long as, it is on the context of the system?

2

Introduction

• Can the Natural Language Processing System perceive context?

1.4 Objectives

The main goal of this thesis is to develop a generic and open system to monitor

something using robots, in a field on an open space. The way to control the robots

working in the field is through natural language by written text, but changing to a

speech based instance should not be a problem, as there are multiple libraries that

can do this with ease. The system should be able to understand the user no matter

how (s)he writes. This system must be ready to be used by non-technological

experts, and by being so, it must be able to understand natural language sentences

and take action on real time. Although the framework of this thesis is firefighting

monitoring, the system is open enough to work for multiple purposes, from hard

tasks such as firefighting monitoring to monitoring the ocean. To demonstrate the

feasibility of such system, a software simulation must be developed with multiple

robots communicating with each other, mapping the fire in a virtual map. The

Natural Language Processing (NLP) System should understand whatever the user

says and finally, it should be able to map people in the dynamic map, as well as

cars. Finally, the whole system should be ready to be linked to real-life robots,

making this whole experience possible in real life situations.

1.5 Research Methodology

The Research Methodology of this work is the Design Science Research Method-

ology Process Model. In this methodology it is necessary to identify six activities

which are as follows:

• 1 - Problem identification and motivation

Controlling multiple robots on a mission, at the same time can become

chaotic and pointless since, with a lot of robots being operated, people

3

Introduction

tend to neglect some of them either entirely or after an initial movement

[Velagapudi et al., 2008].

Using mouse and keyboard to operate can also be a problem, since there are

a lot of things happening at the same time. Selecting a group of robots to

do one thing, then selecting another can become exhausting with a keyboard

and mouse, after repeating it a lot of times.

• 2 - Define the objectives for a solution

The objectives for the solution developed were to design an open system,

capable of adapting to different missions, from monitoring fire to monitor

the sea. Everything needs to be simple enough to the user since the system

can be used by non-tech experts. More about the objectives can be found

on section 1.4.

• 3 - Design and development

This artifact will have two main components: The Robotic System and the

Natural Language Processing (NLP) System. The Robotic system will be

the one responsible to represent all the robots and calculate the next position

of each robot in the field, as well as their representation on the Graphical

User Interface (GUI). The NLP System will be responsible for understanding

what the user is writing on the chat system and take all the meaningful

information out of it. The Graphical User Interface (GUI) must be really

simple with three different compositions: the topology, meaning the map

with every robot inside it, as well as other type of information, like people

and cars. On the right of the topology there will be the chat, responsible

to show the user what is happening on the field and allowing him or her to

interact with the robots or the system in general.

• 4 - Demonstration

For the purpose of this thesis, the demonstration will be made on a virtual

basis, with the vision of bringing it to real life in future work.

• 5 - Evaluation

4

Related Work

In order to evaluate this system, an inquiry was distributed to understand

the different ways of communication considering people with different age,

nationality, academic background, gender, etc... All tests made by the re-

spondents were registered and tested on the system. There were some entries

that result in errors or were ignored by the NLP System, meanwhile, they

were solved and considered as successful. To evaluate the System different

actions, formations and general commands were created. People were shown

the different commands available and they were asked to try to say the com-

mand in the most natural way possible, like if the Commander was a person

himself. People were also asked to mix actions and formations in the same

sentence and to try to use the context system. The results were analyzed

and conclusions were drawn.

• 6 - Communication

After the submission of this thesis, an article will be prepared to present the

achieved results to the scientific community.

5

Chapter 2

Related Work

To be able to understand what the scientific community has already done, a Re-

lated Work chapter has been made. Here, there will either be concepts that sup-

port the system architecture, later on section 3, or work that is related to this

demonstration, from the robot system to the Natural Language Processing (NLP)

System, to other projects that are similar to this one. Also, some basic concepts

are written and they are not directly interconnected with the work, but, in their

own way, they influenced the work.

2.1 Multi-Robot Communication

Nowadays, single robots are not enough to perform the daily dangerous tasks that

is possible to find in our world. Compared with a single robot, multi-robot col-

laborative planning brings many advantages, specially when tasks can be broken,

where each robot of the multi-robot squad performs a single task, speeding up

the task execution efficiency. To achieve a successful interaction between robots

[Guo et al., 2016], whenever a robot is going to perform a task, one robot needs to

transmit the order to another robot, thus, making a multi-robot communication.

This communication can be classified into two main categories: Point to point

communication and point to multi-point communication [Eriksson E et al., 2015].

6

Related Work

These two categories will be used to solve different problems on the mission, such as

computer-robot control and teams of multiple robots information communication

[Guo et al., 2016].

Figure 2.1: Different ways of spreading information for Multi-Robot coopera-
tive control [Guo et al., 2016].

There are different ways of communication between devices, also known as nodes,

as one can see in Fig. 2.1. Although this is about networking, the same applies to

communication between robots [Guo et al., 2016]. Peer-to-peer communication,

also known as, Point to Point, is where there is a direct communication between

two nodes together, making the most simple communication since the data flows,

unidirectionally or bidirectionally between two points [Ray, 2018]. The Tree topol-

ogy network consists of having a central node, which is the root of the tree, having

routers to extend the network coverage to all the end devices. These end devices

can not possess children, only the router and the root can have them. The star

topology consists of the root, also known as the Coordinator, the one that starts

the network, having several end devices directly connected to him. This means

that the end devices can only communicate with the coordinator. "The disadvan-

tage of this topology is the operation of the network depends on the coordinator

7

Related Work

of the network, and because all packets between devices must go through the co-

ordinator, the coordinator may become bottlenecked. Also, there is no alternative

path from the source to the destination. The advantage of star topology is that

it is simple and packets go through at most two hops to reach their destination"

[Elahi and Gschwender, 2009]. Finally, one has the mesh network, which consists

of one coordinator, having several routers, having several end devices. This net-

work, besides being a resizable network, is a multi-hop network, this means that

packets that travel through one robot to another need to pass through multiple

nodes in order to reach their destination. If one path fails, the node will find an

alternative to reach its destination. Although this topology brings a lot of advan-

tages, it also brings the disadvantage of requiring greater overhead when compared

to the previous one, the start topology, since mesh uses a more complex routing

protocol than the star one [Elahi and Gschwender, 2009].

2.2 Belief Communication Between Agents

Natural language dialogue is the most used type of communication between hu-

mans if there is a task in common between them. Through perceived and commu-

nicated information, humans can predict the actions of their team mates based on

their tasks or destinations. This same way of thinking can be applied nowadays

to robot teams or swarms. With defined principles for belief modeling and updat-

ing for autonomous agents, spoken dialogue between humans and agents can be

achieved. Different beliefs and intentions of other agents are used to create mental

models that are rich enough to capture task-based aspects of other agents and their

own beliefs. They can also update their beliefs on other agents by communication.

Explicit rules must be added to all this equation so it is possible to represent

relationships among linguistic expressions as well as past and future beliefs. For

task-based agents, there are rules that need to be implemented that allow agents

to reason about the effects of perceptions, actions and past beliefs on new/updated

ones and the effects of different utterance types [Briggs and Scheutz, 2012].

8

Related Work

2.3 Interaction Between Humans and the Swarm

In order to establish a dialog platform to be able to cope with open domains con-

sidering the possible interactions between the embodied agent and humans, there

must be a validation and interpretation of the natural language utterances pro-

vided to the system against the knowledge structures of an intelligent agent’s

mind. Although it requires high capability for describing language at multi-

ple levels (morphosyntatic, syntactic, ontological), the algorithm described in

[Ventura et al., 2012] can solve ambiguities and acquire knowledge about unknown

entities.

The management of mobile service robot operating in different environments by

different operators brings multiple conditions to the developed systems, such as

[Drews and Fromm, 1997]:

• Fast, time deterministic reaction on commands of high priority;

• Constant interaction between the robot and the environment;

• Validation of vague geometrical information;

• Easy adaptation to the environment (especially concerning the objects, ob-

ject activities and object status available within the operation area);

• Bi-directional communication between the user and the control module.

2.3.1 How Do They Interact?

As robots are used more and more throughout the years, users that are not ex-

perts are starting to find it easier to control them, through the different types

of input, either by text, speech or mouse input. Unlike highly professional users

that work with professional-related robots, the inexperienced users need an easy

way of interaction. Since non-expert users are not familiar with Robot Command

Language (RCL), it is necessary to build a system that translates natural language

9

Related Work

commands into RCL. Before translating the spoken sentences, it is necessary to

understand them in the first place. This poses some difficulties like the acoustic

recognition of the spoken word, also known as, word recognition and the extraction

of the information contained within a frame of words, alias language processing

[Drews and Fromm, 1997].

This is achieved by using a semantic parser. The system developed in the work

[Thenmozhi et al., 2017], is able to get the natural language command from the

user and convert it into RCL using tagging approach, implemented using a Hidden

Markov Model approach. After tagging the command, the parser builds the RCL,

which is then converted to configurations.

In the article [Rossi et al., 2017], it is studied how people interact with a group of

robots, the vocabulary they use, and the multimodal interfaces for dynamic and

interactive control with them. It is also possible to visualize how robots can deviate

from certain obstacles, developing awareness of the space around them. With

speech recordings of 41 people, 60% being males and 40% females aged between

24-60, with an average age of 28.9, interacting with a graphical interface showing

different robots, spread throughout the map, people were asked to, through their

native language (Italian), control the robots in the map. There were three settings

shown to the participants with an increasing number of robots per setting: two,

four and eight robots, and a varying spatial distributions generated randomly by

the following Gestalt Principles:

• Proximity principle: elements are perceived as aggregated into groups if they

are near each other;

• Similarity principle: elements tend to be integrated into groups if they are

similar to each other;

• Continuity principle: oriented units tend to be integrated into perceptual

wholes if they are aligned with each other;

• Closure principle: elements tend to be grouped together if they are parts of

a known figure, even if the shape is not complete and closed.

10

Related Work

Single Features % Combined Features %
Name 2.6 Name/Categ + Physical 25.7
Category 7.7 Name/Category + Physical + Spatial 15.1
Physical 20.6 Name/Category + Spatial 10.1
Spatial 11.3 Physical + Spatial 2.4
Other 4.3
Neg 0.2

Table 2.1: Use percentage of single or combined features.

As shown in Table 2.1, the testers use the name of the robot 2.6% of the cases

and the category, also known as robot class/type (drone, ground, robot), 7.7% of

the cases. The most common preference was to call the robots by their physical

characteristic, with 20.6% of cases. In 11.3% of the cases the participants used

the spatial disposition as a way of communication, while 4.3% use some other

ways of expressions that were not shown above. Finally 0.2% of the people used

the negation to interact with the machines (for example: "all those that are not

..."). For those participants who decided to use combined features in the remaining

sentences, the most used one was name/category with physical aspects, with 25.7%

of the cases (for example: "the yellow drone"), while 15.1% used name/category

+ physical aspects and spatial disposition (for example: "The red Pioneer on the

right"). 10.1% used name/category + spatial, and, finally, 2.4% used physical

aspects alongside spatial disposition (for example: "the first red"). It is important

to know how people tend to interact with individual robots or various groups of

robots in order to properly prepare the system before its release.

Intelligent robots need to be able to understand natural language sentences in

an efficient and accurate way, whether it is in a complex way or in an extremely

simple way, like using keywords. Developing an agent capable of communicating

with users through natural language while learning semantic meanings from con-

versations is the goal of this paper [Thomason et al., 2015]. The agent integrates

a semantic parser, producing the logical form representations of user utterances

with a dialog manager and maintaining a belief-state for the user’s goal. When

running the agent for the first time, a few training examples are run for the parser,

11

Related Work

inducing more during natural clarification dialogues with ordinary users. To un-

derstand new ways of saying things incrementally, whenever the agent understands

the user’s goal, it pairs the logical form representing that goal with previously mis-

understood utterances in the conversation to form new training examples for the

semantic parser.

2.3.2 Translation System for Natural Language to RCL

The system architecture presented in Fig. 2.2 is able to translate natural language

commands into RCL [Thenmozhi et al., 2017]. This can be achieved by multiple

components inside the whole system. "The trainer with the help of the Anno-

tations.txt and the Commands.txt is able to produce the mapped lexicons and

their frequencies with respect to the given command. These produce frequencies,

lexicons and chunks that are passed on to the parser as inputs. We use production

rules for reading the RCL from the Annotations.txt to determine the lexicons like

colour, type, event etc. Using the grammar, the lexicons are mapped and tagged.

That is, mapping the lexicons in the commands and the lexicons in the RCL.

The chunker splits the commands into unigrams, bigrams, trigrams to find the

probability of the occurrence in the commands.txt. Highest probability sequences

are obtained by Hidden Markov Model (HMM) tagger. This tagger uses Viterbi

algorithm to find the highest probability sequences." [Thenmozhi et al., 2017].

The scene manager uses the Configurations.txt in order to generate a random

scene, giving it to the Parser. The spatial planner will generate a space with a

size, for example 8 ∗ 8 ∗ 8 with different objects. The Parser uses the outputs

of the trainer and scene manager and generates a specific RCL command. The

Move Validator validates if the generated RCL by the Parser is valid or not, using

the random world generated by the Spatial Planner. "If the scene is valid, move

validator returns the moves to provide the required scene and it converts the RCL

commands to Configuration files with the help of the Configurations Generator"

12

Related Work

Figure 2.2: System Architecture for a robotic simulation
[Thenmozhi et al., 2017].

[Thenmozhi et al., 2017]. Finally, the Robotic Simulator is able to generate a sim-

ulation onto the Graphical User Interface based on everything that was managed

from the previous steps.

In order to test this system, the authors had a dataset used in SemEvel 2014 with

all the .txt files to evaluate their system. The Commands.txt had 3409 commands

including their annotated parse trees. Annotations.txt contained 3409 RCL for

the 3409 commands, and, finally, Configurations.txt contained configurations for

1000 scenes (125 worlds).

As it can be observed in Table 2.2, the commands without the "and" connector

reach a 96% accuracy, the commands with the "and" connector reach 50% accu-

racy, making the overall accuracy of 92.45%. The authors reached a conclusion

out of this information that "once RCL is generated correctly for the command,

13

Related Work

Table 2.2: Performance Evaluation

Total Number
of Statements

Number of
Commands
for which
correct RCL
was generated

Number of
Commands
for which
RCL was
not correct

Accuracy
(%)

Statements 106 98 8 92,45%
Involving two
commands
Conjugated
by "and"

10 5 5 50%

Commands
without "and" 96 93 3 96%

the robotic simulator does the action accordingly" and that "Training with a large

number of data may also increase the efficiency".

2.3.3 Commanding Multi-Robot Systems using Battle Man-

agement Language

Having multiple robots brings numerous new possibilities that would not oth-

erwise be possible with only one robot. For example, using UAVs to produce

aerial photos and UGV producing a 3D grid using laser scanners. In the work

[Remmersmann et al., 2012], it is shown how it is possible for a single user to con-

trol a multi-robot system using Battle Management Language (BML), showing

how quickly and efficiently the robots can be coordinated. A set of commands was

defined and implemented to test their approach.

The communication between humans and robots is done in a way that one node,

the master, receives the command from the user and breaks it down into sub-

commands for all the slave robots. There are two different approaches for the

Multi-Agent System (MAS) [Coppin and Legras, 2012], the first one is “control-

by-behavior”, the operator selects one of the agents. The problem of this first

approach is that it is not scalable for larger groups, since there are more complex

behaviors. The second approach is the “control-by-policy”, where the operator

14

Related Work

defines constrains or advices in a limited natural language and the agent plans

corresponding actions.

To understand what a person is saying in English, complex intelligent nodes are

needed on the lead. From the Leader node to the slave nodes, BML is used since

it is human readable and unambiguous. The BML can be used to express orders,

reports and requests between command and control systems. The main problem

of using BML is the translation between high level commands to basic orders to

robots.

As a final product, the work [Remmersmann et al., 2012] presented a system capa-

ble of receiving commands in a restricted normal English to control a Multi-Robot

System with BML. Giving the orders in natural language means having complex

intelligent nodes, capable of understanding this type of language and translating

higher level commands into basic orders to all the end nodes.

2.4 Robot Swarm to Generate a Dynamic Fire Map

With Pheromone

Dealing with a swarm of robots makes it necessary to understand the scaling

effects of multi-robot control. It is shown how the number of controlled robots in

a realistic simulated environment can affect an urban search and rescue mission.

The task performance increased in going from four to eight controlled robots but

deteriorated in moving from eight to twelve. It is necessary to have a healthy

ratio of robots and it is important to remember that more is not always better

[Velagapudi et al., 2008].

In order to control a swarm of Unmanned Aerial Vehicles (UAVs) for the purpose

of fire dynamic mapping, the paper [Howden, 2013] studies an algorithm based on

distributed (inverted) pheromone onto grid maps to effectively track a moving fire

front. The pheromone increases automatically during time by an amount that is

proportional to the required survey frequency and is reset to zero when a robot

15

System Architecture

visits a grid cell. The more pheromone available in a cell, the more attracted is

the most nearby robot. Each UAV keeps its own internal map, and broadcasts it

periodically when it resets a cell. Each cell on the grid map is initialized to the

time when the mission began. Equation 2.1 shows the quantity of pheromone at

each cell is the product of the cell’s priority and time unobserved.

pheromone = priority ×∆t (2.1)

f (x) =
pheromone2x

distance(self , x) + distance(A, x)
(2.2)

By using Equation 2.2 it is possible to represent the distance between two points:

the agent’s self position and the attraction point A. This equation will allow an

emergent swarm behaviour.

NS =
√

2(CR − AR) (2.3)

In order to calculate the optimal node separation between cells, Equation 2.3

ensures a coverage of the environment with minimum overlap. The separation

(NS) needs to be matched to the UAV’s physical specifications, where CR is the

camera’s footprint radius and AR is the Arrival radius.

The approach was tested with one and two fires simultaneously. It uses a single

heuristic to maintain a persistent search for new fires while tracking the known

ones. [Howden, 2013]

16

Chapter 3

System Architecture

To achieve the objectives it is necessary to draw the system architecture. Although

this thesis has a case-study on monitoring fire, the program itself is designed and

developed to be as open as possible to accept different types of missions with

either virtual or real-life robots. As there are two different areas covered in this

project, meaning a robotic area and an Natural Language Processing (NLP) area,

the project needs to be divided by two systems: The Robotic System and the NLP

System. The Robotic System is the representation of the robots and other types of

nodes in the software, simulating their actions virtually, and later on physically in

the field. This system also includes the Graphical User Interface (GUI). The NLP

System is responsible for capturing, understanding and translating what the user

Figure 3.1: The developed working simulator.

17

System Architecture

said/wrote or is saying/writing to the nodes and move the treated information

to the Robotic System in the form of commands. The goal of this architecture

is to create a functional system that understands what the user is writing and

linking it to a functional robotic system where it can accept actions, formations

and general commands and reproduce them in real life. The first step is to build

a robust Robotic System with different options on the formations, actions and

general commands. Also adding different intervenients like towers, people and cars

will help developing a more robust experience because it allows more interaction

between all the things inside the mission. Secondly, to develop a good Natural

Language Processing (NLP) system that is able to understand what the user is

saying. It is fundamental to make it easy to add new commands to the system.

For example, if a user needs a new type of formation, it only requires three steps

to do so, more on this can be found on sections 3.1.3.1 and 3.1.3.2. Finally, linking

both systems will result in the expected user experience with interaction between

the nodes and the user, making them both understand each other.

3.1 Robotic System

The Robotic System is one of the two systems available on this program. Its

purpose is to bring all the robotic part into the whole program, meaning, bringing

the nodes, which represent an element of the network, and everything associated

with them to the program. This element is not necessarily a machine, it can be

a person, a drone, a virtual robot, anything! It is responsible to make all the

machines move to a certain point in a certain period of time, make them stop in

place and, most importantly, to make the nodes communicate with each other.

This part of the units uses the JBotSim 1.0.0 library [Casteigts, 2015].

The Master-Slave communication architecture was chosen for the communication

between robots. Where the "Master bot decides on the path to be taken and

also supplies the slave bots with the coordinates to be reached" and "the ad-

vantage of using numerous robots are several, one being reduced cost since the

18

System Architecture

robots are physically simple others being more robust and highly scalable system"

[Anand et al., 2014].

3.1.1 Nodes

The nodes represent an element of the graph/network [Casteigts, 2015]. They

represent different types of elements in a simulation, which will be described in

the following sub-subsections as different extensions of the node class, such as:

Commander Node, Robot Node, Environmental Node, Person Node, Car Node

and Tower Node. These extensions allow the system to be organized in a way that

if someone needs to use this system as an API, it will be easy to create new types of

nodes or adapt the existing ones into different missions or purposes. For example,

the environmental node can either be fire or water, if the mission is monitoring

fire or monitoring the sea, respectively.

Commander Node

A Commander Node is the leader of the squad of robots. It is the one responsible

for receiving the information given by the NLP System and translate it into the

command itself and this node may or may not exist in real life. This is one of

the many settings available before the launch of the program. If reliability is

key on a mission, then making the Commander virtual is preferable as it avoids

various problems that may or may not happen, with the disadvantage of having one

less node searching in the field. Different types of information are assigned to the

Commander Node, such as a Bounding Box, which is responsible to restrain where

the commander can go on the map, explained on subsection 3.1.2, a name, which

is given automatically by the system to avoid user errors, a Tower Node, more

about it further ahead on subsection 3.1.1, an action (for himself), a formation

(for all the robots associated with it), described on sections 3.1.3.1 and 3.1.3.2,

respectively, and finally the number of robots that the Commander must have in

order to achieve its purpose. If no action or formation is attributed on the creation

19

System Architecture

of a commander node, it will use the action or formation defined on the variables

default_action or default_formation, in the configuration file.

The number of robots that the Commander has is defined by the user, but it is as

well limited by the number of robots available in the Commander Node’s Tower.

If the user asks for more robots than the ones that exist, then an error message

will be prompted up asking for a lower number of robots for that Commander.

The Actions are assigned to the Commander Node and they are responsible to tell

how the Commander Node will move in the field, inside its Bounding Box. To

change the formation of the Commander’s Squad, the user needs to speak to the

commander.

The communication between the Commander Node and the Robot nodes is done

in a star topology network way, where there is one coordinator, the Commander

Node, and all end devices are connected to it, the Robot Nodes, as seen on section

2.1. To solve the disadvantage of this typology, the virtual Commander method

is used, which, as previously explained, is a Commander that does not exist and

is merely representative on the map. This means that the Commander does not

have to process real-life movements or other concerns. This way, it is looser and

can handle all robots that are linked to it and exchange messages between them

when needed.

Robot Node

The responsibility of a Robot Node depends on the purpose of the mission, while

focusing on following the commander with a certain formation with its robot squad

companions. Unlike a Commander Node, a Robot Node cannot be virtual. In this

project, they are drones, looking for fires in the field. Drones where chosen because

they can rotate on themselves without executing long curves, making it easier to

maneuver and to calculate their next position in time. When called they need

to have a formation and an index, attributed by the Commander. With this

information they can know their next position in the next pulse of a clock. In

20

System Architecture

case one Robot Node fails, the index is automatically changed, making the whole

squad change their position to accommodate the new changes.

Tower Node

The Tower Node is responsible to deploy all the nodes that are machines, meaning,

where the Tower Node is, it is where all the Commander and Robot Nodes, who

are bounded to the Tower Node in question, are going to be released into the

field. The Tower Node is a mere representation of a station with all the machinery

available. It can be a tower, a car, whatever the user wants to set it as. For the

purpose of this case, the Tower Node will be represented as a Tower. It possesses

all the information about the machinery available on it and contains an ID to

differ from other available Tower Nodes. A Commander can also interact with a

Tower Node, for example, to return to it or to follow the Tower, in case it moves.

Environmental Node

The Environmental Node can be considered the most abstract node out of all of

them and it is done this way so the user can program it to the most adequate

situation depending on the mission/purpose. For the case that the system is

dealing right now, monitoring fire, the Environmental Node is considered as a fire

with automatic and different temperatures. To represent how big the fire is, a

scale from 0 to 20. 0 means no fire, 1 not a big fire on 50o Celsius, and 20 a fire

with at least 100o Celsius, is represented by the following equation y = 2
5
x − 20.

This equation is used so that only fires with temperature above 50o Celsius are

actually considered fires and are shown on the map. These temperatures are mere

supposed values and are far away from the real-life values, which tend to be around

726.85o Celsius [Qian et al., 2008]. They are used in order to better explain how it

works. The temperature also varies every pulse of a clock and, in order to maintain

a realistic simulation, the information about a fire is updated whenever a robot

has a new link with it. The maximum and minimum temperature and at what

temperature is considered a fire can be configured.

21

System Architecture

Person Node and Car Node

A Person Node and a Car Node are representations of a person and a car, re-

spectively, in the simulation or in the real-life mission. It allows the user to know

where they are in the field. If there is a need to escort or follow that person or

car, the interaction is easier by looking at the map instead of guessing where the

person or car is. It also allows the user to have a general awareness of who is on

the field. A commander can also interact with both of them.

3.1.2 Bounding Box

Bounding Boxes are the areas, defined by the user, to the Commander Nodes.

These are the limitations to where the Commander Node can possibly go, unless

the Commander Node has an action that works outside the Bounding Box, then,

it will be completely ignored, like the Follow Action (in section 3.1.3.1).

The Bounding Boxes do not possess any kind of influence on any other type of node

except for the Commander Node. More on this can be found in the sub-section of

the Formations (3.1.3.2).

3.1.3 Actions, Formations and General Commands

To aid on the missions, formations, actions and general commands were created to

control the Robot Nodes, the Commander Nodes and general things, respectively.

A formation is responsible to calculate where the whole squad of the Commander

Node will be on the map on the next pulse of clock and the actions will inform

the Commander Node how it will scan the Bounding Box linked to himself. The

general commands are responsible for the most generic tasks like creating and

removing Commander Nodes.

22

System Architecture

3.1.3.1 Actions

Actions are patterns given to the Commander Node in order to scan the Bounding

Box, or to get out of it, in a certain and specific way. They can be split into four

different commands, which are lawn mower, free, follow, and return. Most of them

do not need an object in a phrase in order to be executed, with the exception of

the Follow action because the Commander Node needs to know who he is going

to follow. In order to avoid errors in the calculations of the routes, once a new

action is given to the Commander Node, it will always go to the beginning of the

Bounding Box and then it will execute the action, with the exception of the Follow

Action.

It is possible to add new Actions according to the user’s need and there are three

steps to do it properly: First, the user needs to add the new action into the

Enumeration on the Enum_Action.java file. Second, create a new class with the

action name implementing the Action class and set it up according to user needs.

Finally, the Commander Node needs to accept this new action and this can be

done on the CommanderNode.java file on the method onClock(), in the switch

case for each action.

Free Action

The Free action consists on the Commander Node moving freely, with no rules,

inside its bounding. Whenever the Commander Node touches the Y-axis walls of

the Bounding Box, it will turn around on himself, making it go on the opposite

direction he was heading to. Unlike the behavior of the Y-axis walls, the X-axis

walls were not programmed to make the Commander Node turn around on himself.

This was done this way so it creates a better random feeling to the whole action,

so, if the Commander Node hits the X-axis walls then it will sum up 98o to the

angle of the direction he was heading to.

23

System Architecture

Lawn Mower Action

The Lawn Mower Action consists of the Commander Node walking in a zig zag

way inside its Bounding Box. When a Commander Node receives a Bounding Box,

the number of lines that the Commander has to go through is calculated with the

Equation 3.1.

numberOfLines = (int)(
BoundingBoxHeight

DefaultNodeSensingRange
) (3.1)

The DefaultNodeSensingRange is the range of all nodes that are not virtual or those

that do not have a custom range. The Sensing Range consists in the range to sense

other nodes around the node in cause. The Sensing Range of the Commander Node

can not be used since it can be virtual making this value equal to zero, so, in order

to keep the same Sensing Range throughout all the squad, the default one is used.

Next, the Commander Node needs to reach the Bounding Box starting point with

a safe value, so, if the Bounding Box is set at x1 = 200 and y1 = 100 and goes to

x2 = 400 and y2 = 500 and the safe_value = 10 then the starting point of the

Bounding Box is StartingPointBBx = 200 + 10 = 210 and StartingPointBBy =

100 + 10 = 110. The safe value is to ensure that the Commander Node does not

get out of the Bounding Box and it can be set on the General Configuration file.

24

System Architecture

Figure 3.2: Example of a Lawn Mower path by a Commander Node with five
lines.

As it can be seen on Figure 3.2, the number of lines needed to scan the whole

Bounding Box is five lines. Upon the arrival of the StartingPoint the direction of

the Commander Node is given by theWidthBoundingBox−safe_value. If there is a

new line to be scanned, then the Commander Node will go up or down depending

on the direction it is heading to. The distance of the vertical lines is given by the

following equation:

VerticalLength =
BoundingBoxHeight

numberOfLines
(3.2)

Return Action

When a Commander is released into the field, it has to be released on a Tower

Node, so the tower is considered the base location. The Return action has the

goal to simplify the process of asking a Commander Node to return to its base.

Instead of giving the coordinates, the Commander Node possesses all the infor-

mation about its tower, including its location and ID number. When a user asks

25

System Architecture

a Commander Node to return, the Commander Node will automatically ask the

Tower its position and return to it immediately. This action is almost identical to

the Retreat Formation. There is this difference so the user can send the Comman-

der to return to the base or, instead, retreat the whole squad to the linked Tower

Node, without the Commander Node.

Follow Action

The Follow Action was developed in order to allow a user to ask a Commander

Node to follow another node. It is different from the rest of the actions, because

when it is requested it needs an object, meaning, a node name to follow. It can

be a Person Node to make sure that the person arrives safely to a certain area or

to know if the person is being surrounded by an environmental node, a Car Node,

a Tower or a Commander Node. So in order to work, once the Commander Node

knows who he is going to follow, at every pulse of a clock, he will ask the position

of the node to be followed and set his direction to it.

3.1.3.2 Formations

Formations are shapes are requests by the user to the Commander Node and

from the Commander Node to its Robot Node squad. These formations will allow

to make the robots search for whatever they are meant to search in a certain

shape, alongside their robot companions from their squad, always accordingly

with the Commander’s location. Without being linked to the Bounding Box, the

Robot Nodes do not have to worry about maintaining inside it, making it possible

to create a whole different type of shapes or configurations without concerning

to much about spacing. While creating a shape or a configuration, the squad

always has the concern to be following their Commander Node, so all the shapes

and configurations are done considering one thing: its location. It is possible to

have different formations for different squads, as long as the squads do not share

the same Commander Node. There are five different formations on this system:

26

System Architecture

circulate, escort, line, retreat, and triangulate. All of them do not need an object

on the natural language command, meaning that it is only necessary to say the

Commander Node number and the formation itself.

Circulate Formation and Escort Formation

Figure 3.3: Escort Formation Figure 3.4: Circulate Formation

The Circulate Formation and the Escort Formation are very similar as shown on

Figures 3.3 and 3.4. The escort formation follows the Commander Node without

rotating around him, unlike the Circulate, which makes the whole squad rotate

around their Commander Node. The position of each robot is calculated based on

their own index and the number of robots in the squad. The following equations

will determine the position in the field of each robot:

radius = CommunicationRange − SensingRange (3.3)

angle =
360

SquadSize
∗ RobotIndex + CirculateExtra (3.4)

x = CommanderX + cos(angle ∗ 180

π
) ∗ radius (3.5)

27

System Architecture

y = CommanderY + sin(angle ∗ 180

π
) ∗ radius (3.6)

As shown on Equation 3.3, in order to calculate the radius it is necessary to have

Communication Range, which is the maximum distance within which a node can

reach other nodes and the Sensing Range, previously explained on section 3.1.3.1.

If the circulate formation is being used, then the CirculateExtra will be used on

Equation 3.4 and at every pulse of a clock, this value will be incremented, otherwise

it will always be equal to 0. Finally, the Equation 3.5 will determine the next x,

as the Equation 3.6 will determine the next y coordinate.

Line Formation

Figure 3.5: Example of the line formation with a Commander Node with a
squad of four Robot Nodes.

As shown on Figure 3.5, the Line Formation consists on creating a line of robots

behind the Commander Node and the next x and y position can be determined

by the following equations:

x = CommanderX − SensingRange (3.7)

28

System Architecture

y = CommanderY − SensingRange ∗ RobotIndex+

(SensingRange ∗
SquadSize

2)
(3.8)

Triangle Formation

Figure 3.6: Example of the triangle formation with a Commander Node with
a squad of seven Robot Nodes.

The Triangle Formation is responsible to make a triangle out of the squad available.

If the squad size is less or equal than two, then it is not possible to make this

formation. If the user asks to perform a triangle formation with the previous

squad size, an error message is shown, and the line formation is chosen instead.

If the squad size is bigger than two, then the squad is divided into three different

groups, namely: the even, the odds and the middle. As shown on the Figure 3.6,

the odd numbers will be the lower robots on the triangle, the even robots will be

the upper robots on the triangle, and, if the squad size is an odd number, the last

robot will belong in the middle end part of the triangle.

In order to know if there is going to be a middle robot on the triangle, a condition

has to be verified: if the number of robots is an odd number and the robot is the

29

System Architecture

last one on the squad list. If this condition is verified then the robot in question is,

in fact, the middle robot on the triangle. To calculate its position, the Equation

3.9 shows how to get the x coordinate. The squad size is divided by two to make

it in the middle of the triangle instead of the very end. The y coordinate is given

by the CommanderNodey. On the Figure 3.6, this robot would be the RN7.

x = CommanderX − (
SquadSize

2
) ∗ SensingRange (3.9)

To know the x position of the robots, one just needs to add to the index 1 and

divide it by 2, so when transformed into an integer the robot will be positioned

on the next vertical column on the triangle, for example 2+1
2

= 1.5 transforming

into an integer will result in 1, so, the robot number two will belong on the first

column of the triangle, as well as his companion robot number 1, with 1+1
2

= 1.

After this, multiply everything by the sensing range. An example can be found

on the Equation 3.10 for the x coordinate for either the odd number and the even

number.

xodd/even = (int)(CommanderX − (
RobotIndex + 1

2
) ∗ SensingRange) (3.10)

About y coordinate, all the odd robot nodes were positioned on a lower diagonal

position to the Commander Node and the pair robot nodes were positioned on

the opposite side, at the higher diagonal position to the Commander Node. Both

equations 3.11 and 3.12 represent the way to get the y coordinate for the odds and

for the even, respectively.

yodd = CommanderY + (
RobotIndex + 1

2
) ∗ SensingRange (3.11)

yeven = CommanderY − (
RobotIndex + 1

2
) ∗ SensingRange (3.12)

30

System Architecture

Retreat Formation

Figure 3.7: Example of the retreat formation with a Commander Node with
a squad of six Robot Nodes and a Tower Node with the ID 1.

The Retreat Formation will make all the robots in the Commander Node’s squad

retreat to the Commander’s Tower Node, while the Commander is staying inside

his Bounding Box. Although there is no way to add more robots to a Commander

right now, this might be more useful to the future to send all the robots back

to base and bringing more or less on the next conversation with this specific

Commander. When the user asks for this formation, the Commander Node will

ask the Tower Node its current position, and it will inform the whole squad of

the location, making it their destination. Upon the arrival, if the user configured

the variable retreat_upon_arrival_remove_robot to true in the configurations file,

then upon the arrival of each robot, they will be stored in the tower and removed

from the field.

3.1.3.3 General Commands

General Commands are general possibilities available to the user in order to aid

the amount of Commander Nodes and Robot Nodes on the field. These are very

31

System Architecture

different from the Actions and Formations since the natural language commands

can or cannot use a subject or an object for the same command. Since these

commands are more general and it is dangerous to misspell some information,

context is blocked on these phrases so if a user wants to add a new commander,

(s)he must use a single natural language command in order to do it.

Add new Commander

Whenever a user wants to add a new Commander to the field, the user is prompted

with six questions and these are always the same, carefully protected against

misleading or wrong information. To begin with, it is necessary to know where

the user wants the Commander Node to act on, so, there are four questions just

to obtain the new commander’s Bounding Box:

1. X-axis where the Bounding Box should start;

2. Y-axis where the Bounding should start;

3. X-axis where the Bounding Box should end;

4. Y-axis where the Bounding should end.

If the user tries to enter an X-axis or Y-axis smaller than the starting ones, an

error is shown, and a new input is requested. If the user enters successfully all the

requested valid data, then it is asked the Tower ID number where the Commander

Node and Robot Nodes will spawn. If the user enters a wrong Tower ID then

an error pops up and it is requested new information, once again. Finally, it is

requested to the user the number of Robots the Commander should have. If the

user enters a bigger number of robots than there actually is, it is requested a new

possible number.

32

System Architecture

Remove Commander

In order to remove Commanders or Robots from the field, the generic remove

command must be used. It is not possible to remove Robots directly, only by

removing Commander Nodes associated with the Robots the user wants to retrieve.

This is only possible if the following variable is set to true on the configurations

file: remove_commander_removes_robots.

3.2 NLP System

The Natural Language Processing (NLP) System is the second system and it is

necessary to achieve all the remaining objectives proposed on section 1.4. This

system will not only be responsible for the understanding of what the user is saying,

but it will also be responsible for translating it into commands and transmitting

them to the Commanders or to the System itself. There are a lot of ways to

say the same thing and it is not enough to create “if” conditions on a program,

otherwise there would be a million conditions just to treat some sentences... It

is necessary to deeply understand the written sentence and all its grammar and

structure to obtain good results. In order to achieve this deep understanding, the

NLP System uses the Stanford CoreNLP library [Manning et al., 2014] in order to

make the parsing, through the dependency parser. With this library it is possible

to obtain the base forms of words, their parts of speech, mark up the structure

of sentences in terms of phrases and syntactic dependencies, indicate sentiment,

extract particular or open-class relations between entity mentions, etc.

3.2.1 Natural Language Understanding (NLU) System

As the base of the whole NLP System, the Natural Language Understanding

(NLU) is responsible for the phrase treatment. Whenever a user speaks or writes

a new sentence there is a need to treat it in order to get useful information out of

it and take some conclusions.

33

System Architecture

To treat every natural language command by the user, for this system, there is

the need to retrieve the grammatical tag of each word as well as the relationship

between the "head" words of the sentence and the words. For this purpose, the

dependency parsing from the Stanford CoreNLP library is being used. "A de-

pendency parser analyzes the grammatical structure of a sentence, establishing

relationships between "head" words and words which modify those heads. The

figure below" 3.8 "shows a dependency parse of a short sentence. The arrow from

the word moving to the word faster indicates that faster modifies moving, and the

label advmod assigned to the arrow describes the exact nature of the dependency"

[Manning et al., 2014].

Figure 3.8: Example of a dependency parse of a short sentence on the Stan-
ford. Image downloaded from https://nlp.stanford.edu/software/nndep.html in

October 2019.

The general structure of a sentence, for this system, is S-V-O, meaning Subject-

Verb-Object sentence. It is more than enough to make the whole system under-

stand what the user wants of the Commanders or the general system itself. To

use this structure, the Subject, the Object and the Command, represented by

the verb, need to be rebuilt out of the whole sentence, even if the subject or the

object are optional. The verb is represented by the Command since it is possible

to capture more than one command in a single phrase, as shown on the natural

language command example 5 (page 38). The Subject and the Object can be

optional because there are phrases like:

Commander 1 escort formation. (1)

34

System Architecture

The natural language command number 1 represents a request that can be used

in the system and does not require any object since with the subject and the

command the Escort Formation can be executed.

Add new Commander. (2)

The natural language command number 2 shows a request where there is no need

for a subject but only an object because the user is speaking to the whole system,

not a specific node.

Commander 1 follow Person 4. (3)

Finally, on the natural language command number 3 there is a need for both

since the subject “Commander 1” needs to know who it is going to follow, in this

example: “Person 4”.

Depending on the action, formation or general command this will affect the cal-

culation when evaluating the right action, formation or general command. More

of this calculation can be found later on section 3.2.3.

3.2.1.1 Building the Subject and the Object

Since there are multiple Class-types of subjects and objects, there are different

ways to detect who is the subject and who is the object. For example, on the

natural language command 2 the object does not represent an existing type of

Node, so the object is a String “new Commander”. On the other hand, on the

natural language command number 3 the object “Person 4” is a type of node so

the result is the node itself.

To generate the Subject or the Object, the system tries to get the Indexed Word,

meaning the word inside the dependency parse tree, with the tag Nominal Subject

(nsubj) or Direct Object (dobj), respectively. If there is an Indexed Word with

35

System Architecture

the tags previously mentioned, then it is necessary to complete them (if there is

something to complete).

Figure 3.9: Dependency Parsing Tree of the sentence: Commander 1 follow
Person 4.

For example, on the natural language command 3, the subject is Commander 1

and the dependency parser tree can be seen on Figure 3.9. When trying to grab

the Indexed Word of the tag nsubj, the result is Commander. Then, there is

a check if there are any children to that same Indexed Word, in this example,

there is a Numeric Modifier (nummod) which its value is going to be 1. Merging

this two will result in Commander 1. After the merging there is going to be a

check on the entire node list if there is any node type: Commander with the

number 1. If there is then the result of the method Node getSubjAsNode() or

Node getDobjAsNode() is going to be the Commander 1 if not, before returning

null, the method will try to get another result by searching for a Noun Compound

Modifier (compound) instead of a nsubj.

The subject or the object can be labeled as a compound because it is a noun that

serves to modify the head noun. In this case there is no head noun to be modified

so it is considered a wrong interpretation from the library, since Commander

can be considered a description of a head noun. Whenever there is a subject or an

object labeled as compound, the nummod that identifies who is the user speaking

to is not directly connected to the compound itself, but to the ROOT. So, every

time there is a compound, the method needs to check for the closest nummod

36

System Architecture

available near it. If the merge results in a node then this node is returned by the

same method previously mentioned, if not, it will return null if the subject is not

considered as a root, more on this on section 3.2.2.

Commander 1 change to triangle. (4)

Figure 3.10: Dependency Parsing Tree of the sentence: Commander 1 change
to triangle.

An example of a classification with a compound can be found on the natural

language command number 4 followed by its dependency parsing tree on Figure

3.10.

When there is the need to check for a string subject or a string object instead of

a node, the method String getSubjAsString() or String getDobjAsString() is run

and if the Node is null but the string has something, then it means that there

is a subject on the request but it is not a Node type subject. This situation

can be found on the example natural language command number 2, where new

Commander is the object. The previous methods simply get the Indexed Word

with either the tag nsubj or dobj and complete it with all its children and transform

the overall merge into a String. It can also return null if there is no subject or

object, respectively.

The possible types of results for the Subject or the Object are Commander Node,

Tower Node, Person Node, Car Node, and String. The Robot Node does not need

37

System Architecture

to be included in this since there is no interaction between the user and the robot

directly, but rather from the Commander Node.

3.2.1.2 Building the Command

In a first try of developing this system, the NLU System was trying to build the

subject, the command and the object at the same time without the aid of each

other. Although it was a successful try, it brought a lot of problems when trying

to build the Command part. Without the help of the subject and the object, there

is a need to build it from the root (if the root is not the subject) to all its last

children on the Dependency Parsing Tree. This means that there needs to be a lot

of exceptions to cover all situations and since it is possible to say the same thing

in a lot of different ways, this idea is not optimal.

So, to build the current system, the logic of the passwords was used: “instead of

creating exceptions for all the bad characters it is much safer and easier to only

allow certain characters”. So, instead of building multiple and countless exceptions,

it is much easier and accurate to grab the Subject and the Object and remove it

from the general sentence resulting in the Command.

Commander 1 change to escort formation and follow Commander 2 (5)

By using the system as it is, getting the Command it is pretty simple. It just needs

to obtain the Subject and the Object and remove it from the phrase, so the NLU

System can conclude the following information of the natural language command

number 5:

• Subject: Commander 1

• Command: change to escort formation and follow

• Object: Commander 2

38

System Architecture

This information will be presented and used on the Form, explained on the next

section.

3.2.2 Form

The Form is not only used to obtain all the conclusions from the NLU System in a

much cleaner way, with the information more organized and centralized, but also

to bring context to the conversation between Human-Machine, like the figure 3.11

shows. Like the NLU System, a unique Form is generated at every new sentence.

A Form only receives a NLU System and it uses all its functionalities to fill itself

up. So, whenever a Form is generated not only it automatically asks the NLU

System for the Subject, in the form of Node, String and the nsubj Indexed Word

word, but also the Object with the same types as the subject needs (Node, String

and dobj Indexed Word word) and finally the Command itself. Before finishing

the initial setup, the Form will also generate a new and unique Evaluator for this

sentence, more about it on section 3.2.3.

Figure 3.11: Example of the Form Context System working in different situ-
ations.

39

System Architecture

On the Figure 3.11, the blue represents what the user wrote, the dark gray repre-

sents a question, the context is represented by the purple color, the green color is

the successful command and finally the yellow message with a warning message.

The context was introduced in this system not only to simplify the conversation

between the user and the machine, but also to make the interaction more natural

avoiding the exhausting experience always saying the same thing like: “Comman-

der 1 change to ...”, “Commander 1 now change to ...”, “Commander 1 return”.

Instead, the user just needs to say the subject once, and then, all the next phrases

will be contextually compromised by the subject from the older form or forms. It

also works for the command, where the user can say the command and then the

subject. The search context is limited, since the information can become inade-

quate or old. This limit can be set on the variable number_of_forms_till_old on

the configuration file (by default it is six).

Bringing context to the NLP System means breaking a little bit the S-V-O struc-

ture previously introduced in section 3.2.1 and, for this reason, the way the NLU

System works needs to be a little different as well: from only detecting who is the

subject, what is the command and finally who or what is the object, to accept the

subject, the command and the object as a possible ROOT. To make this possible,

every form has a group of flags, which can be translated to a group of boolean

variables, that will trigger a new question and expectation of answer upon a new

Form. So, every form, except for the very first one, will ask the previous form

before it if there is a flag that needs to be satisfied.

Change to escort Formation. (6)

Commander 1. (7)

40

System Architecture

Figure 3.12: Dependency Parsing
Tree of the natural language com-

mands number 6

Figure 3.13: Dependency Parsing
Tree of the natural language com-

mands number 7

An example is shown on the natural language commands 6 and 7 with their depen-

dency parsing trees on figures 3.12 and 3.13, respectively. When the user writes

“Change to escort Formation.”, the NLU System does not recognize any subject,

because there is in fact no subject. When there is no subject, the flag needSubj

is activated on the current form and the next Form will know that probably the

message that the user wrote is, in fact, the expected subject. If the user writes

something other than the subject, then the system will ignore the previous com-

mand and consider it canceled.

To make the NLU System accept a subject as a ROOT there is a condition verified

right before detecting a subject: if there is no nsubj tag on the phrase but there

is a nummod connected to the root and the size of the dependency parser is two,

then the root is considered the subject or the object, depending on what is asked.

This is shown on the natural language command number 7 with the dependency

parsing tree on the Figure 3.13. If the system just needs the command then if

the subject and the object are null and there is nothing to take out of the whole

sentence, it means that the user wrote the command.

41

System Architecture

There are multiple flags available to use, namely: needSubj, needCommand, need-

Dobj, needBBFirstX, needBBLastX, needBBFirstY, needBBLastY, needTower, nee-

dRobots and finally needName. Each flag can be used to ask the user whatever

information is needed to the system execute the desired order. The flags needSubj,

needCommand and needDobj are used whenever a subject, a command or an ob-

ject is needed, respectively. The flags needBBFirstX, needBBLastX, needBBFirstY

and needBBLastY are to be used whenever the system needs to have the Bounding

Box Starting point: with the needBBFirstX and needBBFirst Y and the Bound-

ing Box end point: with the needBBLastX and the needBBLastY. Finally, the

last three flags, needTower, needRobots and needName, are used when the system

needs to know a Tower, how many robots a commander should have and what

name should be given to something, respectively. The needName is not used in

the project since all the nodes have an automatic name, which is the ID, but it

was developed for future work.

3.2.3 Evaluator

The Evaluator is the last part of the NLP System and it is necessary to determine

which action, formation or general command the user wants. It can also detect

if the user instructed one or two orders in one sentence, although the general

commands need to be isolated commands, due to their impact on the operation

and to avoid a removal of a whole squad, by mistake.

Commander 1 change to Escort Formation and to Lawnmower action. (8)

The natural language command 8 shows an accepted and tested phrase by the

NLP System containing one action and one formation. This is only possible due

to correlation between the Evaluator and all the abstract factories that make

up all the actions and formations. Abstract factories were chosen because of

different benefits: firstly, it is possible to instantiate different objects out of a global

category, making all the instances have the same common methods. Secondly, it

42

System Architecture

is possible to update all the actions, formations and general command in a much

more accurate way, since changing the category implies a change in all its instances

[Jia Li et al., 2012].

After the Factory Provider, responsible for generating each new factory, creates all

three factories, namely the Formation, Action and General Command Factories,

and after each factory creates an instance of every possible type of order from

the Robotic System, each instance will calculate the probability of matching the

phrase by the user with itself.

To link a command to a sentence, the matching probability needs to be calculated

and it needs to be greater than 0.5. Each command has three variables that

attribute weight to the S-V-O, in this case, to the Subject, the Command and to

the Object. This weight changes for every type of command. For example, the

Follow Action needs to have a Subject, who will follow, a command, the follow

itself and an Object, who will be followed. So, for the follow, the weights were

distributed like 0.25 to the subject, 0.5 to the command and finally 0.25 to the

object. But, for the Escort Formation, the weights were distributed as 0.3, 0.7

and 0.0, respectively. The object is 0.0 because it is not needed. There are some

commands that need a negative weight, for example, the Follow Command, if there

is no Object, then, to ensure that the follow command is not executed, there is a

negative value of 0.4. So, if a user commands a commander to follow no one, the

probability will be: 0.25 + 0.5− 0.4 = 0.35 < 0.5. Since it is lower than 0.5, then

the command cannot be chosen and executed.

After calculating each probability, the Evaluator gets the biggest probability,

greater than 0.5, of each factory’s instances, resulting in the most likely order

of each factory. After choosing the biggest probability, the Evaluator will then

compare who has the biggest probability out of all factories. The one with the

value closer to one will win and it will be the selected action/formation/general

command.

To bring the double commands on a sentence to this Evaluator, each action/for-

mation has a method that verifies if the verb that is on its lexicon is being used.

43

Results and Discussion

If it is being used and the probability of the natural language command has val-

ues above 0.5, then the Evaluator will consider the command as a valid one. For

example, on the natural language command 8, one can deconstruct the natural

language command into two sections:

• Subject: Commander 1

• Command: change to Escort Formation and to Lawnmower action.

• Object: null

Inside the command the Escort and the Lawnmower will result in a matching

probability of 1.0, since there is a subject, no object and the verb is inside the

lexicon for the Escort and the Lawnmower.

44

Chapter 4

Results and Discussion

To test the entire program with the previously explained architecture, 30 people

were willing to participate in a short experiment, which can be seen on the at-

tached script on the appendix A. There were two ways of making the test, one

was personally, where they got the script as a paper and had to run through it

and saw their commands happening in real commands, and the other was through

a Google Form test. The google form test was equal to the paper one, the only

difference is that people could not see the commands happening to the robots /

Commander. In order to obtain the most diversified results, the Google Form test

was put on reddit1 on the sub-reddits: r/NLP, r/technology, r/SampleSize and

r/robotics. The test consisted of people writing as naturally as possible, as if they

were talking to another person, to the Commanders and to the System itself. They

tested all the possible commands, meaning, all the four actions, five formations

and two general commands, then they tried twice to mix one formation and one

action to see if the NLP System managed to understand, in one sentence, both

commands and finally they were asked to test out the context with five context

phrases.
1https://www.reddit.com.

45

https://www.reddit.com

Results and Discussion

4.1 Evaluators Characterization

Some data was collected from the participants so that a characterization of who

participated could be made.

Gender Amount %

Male 21 70

Female 6 20

N/A 3 10

Total: 30 100

Table 4.1: Gender of participants.

Like it is shown on Table 4.1, there were 30 people participating, 21 were male,

representing 70% of the respondents, six were female (20% of the respondents)

and three chose not to identify themselves (10% of the respondents). Ages range

from 16 years old to 40 years old and the average age of the participants was 23

years old, with 22 being the mode.

Academic Level Field Of Study

Level Amount % Field Amount %

High School 3 10 Computer Science 21 70

Bachelor 16 53 Nursing/Medicine 3 10

Master’s 8 27 Economy/Management 2 7

PhD 1 3 Sociology 1 3

N/A 2 7
Physics /

Mathematics
1 3

N/A 2 7

Total: 30 100 Total: 30 100

Table 4.2: Academic Level and Field of Study of the participants

As for the academic level, as shown on Table 4.2, the participants were asked to

fill in their finished academic level or if they are taking a course to write down the

46

Results and Discussion

level of that course. It is important to enroll more people from other areas outside

technology, since they will probably interact in a different way with the program.

Sixteen out of 30 are taking or finished their bachelor degree, representing more

than half, with a value of 53%, eight are taking or already took a master’s de-

gree, representing 27% of the respondents, one is taking or already took a PhD,

representing 3%, three are in high school, representing 10%, and, finally, two did

not reply representing 7%. Most courses are related to Computer Science with 21

people, representing 70% of the fields of study, next is nursing or medicine with

three people, representing 10%, followed by Economy/Management with two peo-

ple, representing 7%, next Sociology and Physics/Mathematics with one person

each representing 3% each. Finally, the two that did not reply represent 7% out

of all the fields of study.

Participant work? Field of Work

Work? Amount % Field Amount %

Yes 14 47 Computer Science 11 79

No 14 47 Management 1 7

N/A 2 7 Research 2 14

Total: 30 ≈100 Total: 14 100

Table 4.3: Information about the participants work

It is also interesting to understand if people are working and in what field, as this

might as well influence the results. On Table 4.3 it is possible to see that 47%

are working, meaning 14 people and 47% are not working, while two people did

not reply, making it 7%. Inside those 14 people that are working, 11 are working

on a Computer Science Field, representing 79% of the participants, two are in

Research, representing 14% and 1 is working in Management, representing 7%.

47

Results and Discussion

Country Information

Country Amount %

Portugal 10 33

USA 6 20

India 2 7

UK 2 7

Holand 1 3

Australia 1 3

Germany 1 3

Poland 1 3

Ireland 1 3

Canada 1 3

New Zealand 1 3

N/A 3 10

Total: 30 ≈100

Table 4.4: Amount of replies sorted by Country

Finally, the last data is about people’s nationality. Because some tests were made

through the Internet, there are people from different countries, eleven to be spe-

cific. On Table 4.4 it is understood that ten participants (33%) have Portuguese

nationality, while eight people are English and American, representing 27% of the

surveyed population. There were also two Indian people that replied to this sur-

vey, representing 7%, while the remaining countries, meaning: Holland, Australia,

Germany, Poland, Ireland, Canada and New Zealand were represented by one per-

son (3% each). Three people opted to not reply to this question, representing 10%

of the surveyed population.

48

Results and Discussion

4.2 Experiments

Overall there were five experiments made, per person. The first experiment con-

sisted of four exercises, each to say, as naturally as possible, a different action

from the four existing ones. The second experiment, very similar to the first and

third, consisted of five exercises, where in each exercise was required to change

Commander 2 squad formation in a unique way, meaning, one single formation

per exercise. The third experiment, such as the first and second, consisted of test-

ing the different General Commands, namely Add and Remove, in two different

exercises. In the fourth experiment, the participant was asked to merge an action

and a formation into one natural phrase, twice, so that there could be two mixed

phrases per person. Finally, the last exercise was to test the context capability,

where each person had to enter five different commands in separate sentences, for

example:

• Sentence one: Commander 1;

• Sentence two: Line up;

• Sentence three: Commander 2;

• Sentence four: retreat;

• Sentence five: walk freely.

49

Results and Discussion

Figure 4.1: Success rate after the 30 tests of each command.

On Figure 4.1 and on the tables of the appendix B, it is possible to see the different

results for the success rate of each exercise. The global success rate of all the 30

people’s experiments together was about 82%.

About the actions, 22 out of 30 people succeeded in commanding the Commander

2 to be free, making the success rate 73%. The Lawn Mower action had a success

rate of 77% (23 successes out of 30), the Follow action had 83% (25/30) and finally,

the highest value of all exercises, the return action with 97% (29/30) of success

rate. The average Action success rate is 83%.

On the formations, 83% of the people succeeded to make the squad escort (25/30),

the circulate formation had 70% success rate with 21 people succeeding out of

30, making it the less successful command out of all of them, due to the way

people construct the sentence and the failure of the system on building the correct

subject or object, to then extract the command. When requested to make a line,

80% (24/30) of the surveyed population succeeded, while 83% (25/30) and 73%

(22/30) managed to make the Commander 2 triangulate and retreat, respectively.

The average Formation success rate is 78%.

The General Commands had an average success rate of 80% with 73% (22/30)

and 86% (25/29) for Remove and Add commands, respectively.

50

Results and Discussion

For the double commands there was an average success of 76% and on the first

sentence with double commands there were 20 successes out of 25, making it a

80%. For the second Double Command sentence there were 15 out of 21 successes,

making the success rate go down to 71%, compared to the first double command

sentence.

Finally, the context phrases had an overall average success rate of 88%, with the

following success rate for each phrase: 95% (21/22),86% (19/22),82% (18/22), 91%

(20/22) and 86% (19/22).

4.3 Discussion of the Results

When analyzing the different commands made by the 30 people who tested the

program, there were some that stood out for their originality. For example, one

person decided to call the triangle formation as “Mighty Duck” Formation and one

decided to be more technical and call it “delta formation”, which is a formation

flying maneuvre in the shape of a "V". There were also user inputs that did not

make much sense such as calling line formation: “Single file”. This may be because

it is a direct translation from the person’s original language. The person that wrote

this last formation did not fill in the personal information, so it will be impossible

to say where this person is originally from. The results were also influenced by the

different images that were placed in the script A, where for example some people

called the “line formation” as a “wall formation” or the “lawn mower action” as a

“zig-zag action”.

Crossing the results of the tests with the personal information given by the users

themselves it is possible to retrieve some interesting information. All those that

did not reply on the personal data will be excluded of this discussion, since there

is no data to cross with the results.

Due to the low number of female respondents, it was not possible to draw con-

clusions as to, whether or not, gender influences the results, as there are only six

51

Results and Discussion

female entries and 21 male entries, which as a percentage, means a difference from

≈22% to ≈77%. Also, as previously seen on Table 4.2, Computer Science is the

field of 70% of the participants, making it difficult to compare the results between

academic fields, as well as the working field, with 79% being on Computer Science

field, as shown on Table 4.3.

Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 Ex 7 Ex 8 Ex 9 Ex 10 Ex 11 Ex 12 Ex 13 Ex 14 Ex 15 Ex 16 Ex 17 Ex 18

Successes 12 11 12 14 13 9 12 12 11 10 12 10 6 10 10 9 10 9

Fails 3 4 3 1 2 6 3 3 4 5 2 3 4 1 1 2 1 2

Absents 0 0 0 0 0 0 0 0 0 0 1 2 5 4 4 4 4 4

Success Rate 80% 73% 80% 93% 87% 60% 80% 80% 73% 67% 86% 77% 60% 91% 91% 82% 91% 82%

Average Success Rate: 80% Number of people with 22 years old or less: 15

Table 4.5: Success Rate of each exercise by people with 22 years old or less.

Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 Ex 7 Ex 8 Ex 9 Ex 10 Ex 11 Ex 12 Ex 13 Ex 14 Ex 15 Ex 16 Ex 17 Ex 18

Successes 8 12 12 13 10 10 11 11 9 10 11 9 8 10 8 8 9 10

Fails 5 1 1 0 3 3 2 2 4 3 2 2 2 0 2 2 1 0

Absents 0 0 0 0 0 0 0 0 0 0 0 2 3 3 3 3 3 3

Success Rate 62% 92% 92% 100% 77% 77% 85% 85% 69% 77% 85% 82% 80% 100% 80% 80% 90% 100%

Average Success Rate: 84% Number of people with 23+ years old: 13

Table 4.6: Success Rate of each exercise by people with 23 years old and more.

From Table 4.5 and Table 4.6, it is possible to conclude that age is not a decisive

factor for greater success when using natural language commands, since the average

general success rate consists in 80% and 84%, respectively, although, people with

23 years old and more did get more success per exercise than the ones that were

22 years old and less, with 11 exercises with superior percentage of success rate,

versus seven exercises, respectively.

Ex1 Ex2 Ex3 Ex 4 Ex 5 Ex 6 Ex 7 Ex 8 Ex 9 Ex 10 Ex 11 Ex 12 Ex 13 Ex 14 Ex 15 Ex 16 Ex 17 Ex 18

Successes 8 9 10 11 10 8 9 8 8 9 8 7 7 4 4 4 4 4

Fails 4 3 2 1 2 4 3 4 4 3 4 2 2 1 1 1 1 1

Absents 0 0 0 0 0 0 0 0 0 0 0 3 3 7 7 7 7 7

Success Rate 67% 75% 83% 92% 83% 67% 75% 67% 67% 75% 67% 78% 78% 80% 80% 80% 80% 80%

Average Success Rate: 76% Total # English Natives: 12

Table 4.7: Success Rate of each exercise by native-English people.

Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 Ex 7 Ex 8 Ex 9 Ex 10 Ex 11 Ex 12 Ex 13 Ex 14 Ex 15 Ex 16 Ex 17 Ex 18

Successes 11 14 13 15 12 10 13 14 11 11 15 11 6 15 13 12 14 14

Fails 4 1 2 0 3 5 2 1 4 4 0 3 4 0 2 3 1 1

Absents 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0

Success Rate 73% 93% 87% 100% 80% 67% 87% 93% 73% 73% 100% 79% 60% 100% 87% 80% 93% 93%

Average Success Rate: 84% Total # non-English Natives: 15

Table 4.8: Success Rate of each exercise by nonnative-English people.

52

Results and Discussion

People from the native-English countries (Table 4.7) like Australia, Canada, Ire-

land, New Zealand, UK and USA had worse success rate, meaning, commands

that were successfully achieved, with an average of global success of 76% and only

three exercises had a superior percentage of success than the nonnative-English

countries (table 4.8) like Portugal, Poland, Germany, Holland and India, which

had average global success rate out of all exercises of 84% with 13 exercises with

superior percentage of success than the people from native-English Countries. Two

of the exercises were tied. The result might be worse for the native-English speak-

ers as they have a more complex way to say things, while those who are not native

might say the commands in a more basic way. There were 12 English native people

and 15 nonnative-English people out of all participants.

Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 Ex 7 Ex 8 Ex 9 Ex 10 Ex 11 Ex 12 Ex 13 Ex 14 Ex 15 Ex 16 Ex 17 Ex 18

Successes 10 15 14 16 14 10 13 13 11 12 15 11 9 10 10 8 9 9

Fails 6 1 2 0 2 6 3 3 5 4 1 3 2 0 0 2 1 1

Absents 0 0 0 0 0 0 0 0 0 0 0 2 5 6 6 6 6 6

Success Rate 63% 94% 88% 100% 88% 63% 81% 81% 69% 75% 94% 79% 82% 100% 100% 80% 90% 90%

Average Success Rate: 84% Number of people with/taking bachelor’s degrees: 16

Table 4.9: Success Rate of each exercise by people with or taking a bachelor’s
degree.

Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 Ex 7 Ex 8 Ex 9 Ex 10 Ex 11 Ex 12 Ex 13 Ex 14 Ex 15 Ex 16 Ex 17 Ex 18

Successes 6 7 7 8 7 6 7 7 6 6 6 5 4 7 6 7 7 7

Fails 2 1 1 0 1 2 1 1 2 2 2 1 2 0 1 0 0 0

Absents 0 0 0 0 0 0 0 0 0 0 0 2 2 1 1 1 1 1

Success Rate 75% 88% 88% 100% 88% 75% 88% 88% 75% 75% 75% 83% 67% 100% 86% 100% 100% 100%

Average Success Rate: 86% Number of people with/taking master’s degree: 8

Table 4.10: Success Rate of each exercise by people with or taking a master’s
degree.

On Tables 4.9 and 4.10 there is not a big difference between people with/taking

a Bachelor Degree and people with/taking a Master’s Degree, with an average

success rate difference of 2% only, making it 84% and 86%, respectively. The

difference between the number of exercises with biggest percentage on both aca-

demic levels is also not significance, while people that are taking/with bachelor’s

degree have four exercises with bigger percentage than the masters, where they

have seven exercises compared to the bachelor ones.

53

Chapter 5

Conclusion

There are numerous dangerous scenarios throughout this world and developing a

system to monitor and adapt to them, brings value to the whole world, specially

to those in the field. With the developed work, it is possible to control swarms

through the NLP System. It is competent enough to understand the most basic

sentences to more complex sentences with 2 commands, regardless of one’s knowl-

edge, as long as he or she can speak or write English. Although the case-study of

this thesis is monitoring fire, it is possible to adapt it into different environmental

and non-environmental scenarios like monitor fire or to check damage of an earth-

quake, through a building analysis. While the robots are monitoring, everything

that is happening on the field is shown on a dynamic map with people, cars, towers

and, of course, the robots themselves. All of this was possible to accomplish with

the Java program that was developed alongside this thesis.

The robotic system was developed to accept four actions, five formations and two

general commands. It was also developed to represent the virtual Commanders,

Robots, Cars, Towers, People and Environmental Nodes, while taking care of the

movement of all of them, at the same time. All in the scope of bringing this to

real robots in real life scenarios. The NLP system brings the easier interaction

between the user and the robotic system just by writing in a natural way, as if he

or she is talking to a normal person, but instead multiple robots. It is also capable

54

Conclusion

of bringing context to the dialogue, in order to make the whole experience less

exhausting to the user, as well as multiple commands in just one sentence.

5.1 Answering the Research Questions

This thesis aimed to answer three research questions that motivated all this work:

if the developed system is capable enough to be adaptable to different environmen-

tal or non-environmental situations, if the user says the same thing in a different

way, can the NLP System understand and finally if the previous system can work

in a context way making the experience less exhausting. The answer to this ques-

tions can be found on the following three paragraphs.

Is it possible to develop a System capable of controlling swarms of

robots, using Natural Language and to adapt this system to different

situations?

Based on the way the system was originally made, from root, to be as open as

possible to environmental or non-environmental situations and because the cre-

ation of nodes like the Environmental Node, the system is more than adaptable

to different situations and so are all the drones, as long as, they are meant to

monitor, not to act.

Can the Natural Language Processing System understand different

ways of saying the same thing, as long as, it is on the context of the

system?

The way that the NLP System was designed was to try to understand, as naturally

as possible, all the users that interact with it. As the results show, there is a

global average of success of the written commands in natural language of 82%,

which means that, all the 30 people that participated in this test, around 25 could

interact well with the program, while being completely unaware before about what

55

Conclusion

the program was and what it did. With everyday usage, this percentage could

potentially grow, specially while learning new ways of saying the same thing in a

different way. In order to add these new things, a lexicon file was developed, so,

to add it, one just needs to add to the right list, the new matching word.

Can the Natural Language Processing System perceive context?

Finally, the context work of this system works, as the results show with a success

rate of 88%, making the experience less exhausting by not repeating every time

who is the Commander that needs to receive the order, or repeating the same

command for every Commander.

5.2 Future Work

Future work will address the speech-to-text functionality, as well as, getting more

information out of a natural language sentence. Also bringing more actions, for-

mations and general commands to expand the possibilities of the robotic system,

like adding robots to a commander and, finally, test the program as a whole in a

real scenario with real drones, people and different situations, like fire monitoring

or sea monitoring.

56

Appendices

57

Appendix A

Human-Machines Communication

Experience

A.1 Introduction to the Script

Hello! Thank you for helping me out on my Master Thesis on using Natural

Language Processing to control a swarm of robots with the master-slave technique.

For this form you should reply to all the questions on a natural way. As natural

possible. As if you are having a conversation with the system!

This system works with robots (drones) and, because there are a lot of drones

operating, you need to talk to their master, the Commander. The Commander

is responsible to hear your command and to redirect your command to all his

robot-slaves. This way, you can control 20,100,2000 robots at the same time, just

by speaking to one Commander!

There are three types of Commands a user can give to the Master Robot (Com-

mander) or to the General system itself:

Actions - Which are directly related to the Master (also known as Commander or

Group) on how he will walk inside the area he is limited to.

58

Conclusion

Formations - How the slaves will position themselves around the Leader.

General Commands - to add and remove commanders and, consequently, their

robot slaves.

A.2 Actions - Related to the Commander

There are four possible actions. These actions are going to tell the Commander

(also known as the Master/Leader) how he is going to walk inside his area.

How would you ask the Commander 1 to walk freely on his

area?

How would you ask the Commander 1 to walk on a lawn-

mower way on his area?

59

Conclusion

How would you tell the Commander 1 to follow Commander

2?

How would you tell the Commander 1 to return to his base?

A.3 Formations - Related to the Robot Slaves

There are five possible formations and they are going to tell how the robots around

the Commander will position themselves around him.

How would you tell the robots of the Commander 2 to be on

an escort formation.

60

Conclusion

How would you tell the Commander 2 to make the robots

circulate on himself?

How would you tell Commander 2 to make his robots make

a line behind him?

How would you tell Commander 2 to make his robots trian-

gulate?

61

Conclusion

How would tell Commander 2 to make his robots retreat?

A.4 General Commands - Add and Remove Com-

manders

The goal of this section is to tell the system to add a new commander and remove

an existing one.

How would you naturally tell the system to add a new Com-

mander?

How would you naturally tell the system to remove the Com-

mander 2 from the map?

62

Conclusion

A.5 Try to mix the Actions and the Formations in

one phrase!

Formations: Escort, Circulate, Line, Triangle and Retreat. Actions: Free, Lawn

Mower, Follow and Return.

Commanders: Commander 1, Commander 2.

Mix actions and formations in one sentence to the Comman-

der 1

Mix actions and formations in one sentence to the Comman-

der 2

A.6 Context Exercise

The context is in this project to enrich the experience of the user. Instead of

having the same sentence format: subject, followed by the verb, followed by the

object, the user is allowed to say just one of the three grammatical forms, all by

themselves. The system will then try to connect everything in the end!

So, in this exercise you can do for example:

Context phrase 1: Commander 1

Context phrase 2: line up

[The Commander 1 will change to line formation]

Context phrase 3: follow Commander 2

[The Commander 1 will follow Commander 2]

Context phrase 4: lawnmower action

63

Conclusion

[The Commander 1 will change to lawnmower position]

Context phrase 5: Commander 2

[The Commander 2 will change to lawnmower position]

Possible choices: Formations: Escort, Circulate, Line, Triangle and Retreat. Ac-

tions: Free, Lawn Mower, Follow and Return.

Commanders: Commander 1, Commander 2.

Context phrase 1

Context phrase 2

Context phrase 3

Context phrase 4

Context phrase 5

A.7 That’s a wrap! Please provide us with anony-

mous information about yourself!

What’s your nationality?

What’s your age?

Gender

� Male

� Female

64

Conclusion

� Rather Not Say

Field of Study?

Education Level - high school, bachelor, masters, etc... (cur-

rently taking or concluded)

Are you working? If yes in which field of work?

65

Appendix B

Success Rate of the Experiments

Actions

Free Lawn Mower Follow Return

Successes 22 23 25 29

Fails 8 7 5 1

N/A 0 0 0 0

Success Rate 73% 77% 83% 97%

Mean of the Success Rate

83%

Table B.1: Complete Success Rate Table for Actions.

66

Conclusion

Formations

Escort Circle Line Triangle Retreat

Successes 25 21 24 25 22

Fails 5 9 6 5 8

N/A 0 0 0 0 0

Success Rate 83% 70% 80% 83% 73%

Mean of the Success Rate

78%

Table B.2: Complete Success Rate table for Formations.

General Commands

Remove Add

Successes 22 25

Fails 8 4

N/A 0 1

Success Rate 73% 86%

Mean of the Success Rate

80%

Table B.3: Complete Success Rate table for General Commands.

67

Conclusion

Double Command Sentences

Double Command 1 Double command 2

Successes 20 15

Fails 5 6

N/A 5 9

Success Rate 80% 71%

Mean of the Success Rate

76%

Table B.4: Complete Success Rate table for the Double Command sentences.

Context Phrases

Phrase 1 Phrase 2 Phrase 3 Phrase 4 Phrase 5

Successes 21 19 18 20 19

Fails 1 3 4 2 3

N/A 8 8 8 8 8

Success Rate 95% 86% 82% 91% 86%

Mean of the Success Rate

88%

Table B.5: Complete Success Rate table for the Context phrases.

68

Bibliography

[Anand et al., 2014] Anand, A., Nithya, M., and Sudarshan, T. (2014). Coordi-

nation of mobile robots with master-slave architecture for a service application.

In 2014 International Conference on Contemporary Computing and Informatics

(IC3I), pages 539–543.

[Briggs and Scheutz, 2012] Briggs, G. and Scheutz, M. (2012). Multi-modal belief

updates in multi-robot human-robot dialogue interactions. InMulti-modal Belief

Updates in Multi-Robot Human-Robot Dialogue Interactions.

[Casteigts, 2015] Casteigts, A. (2015). JBotSim: a tool for fast prototyping of

distributed algorithms in dynamic networks. In Proceedings of the 8nd inter-

national ICST conference on simulation tools and techniques, SIMUTools’15,

Athens, Greece.

[Coppin and Legras, 2012] Coppin, G. and Legras, F. (2012). Autonomy spectrum

and performance perception issues in swarm supervisory control. Proceedings of

the IEEE, 100(3):590–603.

[Dey et al., 2015] Dey, K. C., Mishra, A., and Chowdhury, M. (2015). Potential of

intelligent transportation systems in mitigating adverse weather impacts on road

mobility: A review. IEEE Transactions on Intelligent Transportation Systems,

16(3):1107–1119.

[Draper et al., 2003] Draper, M., Calhoun, G., Ruff, H., Williamson, D., and

Barry, T. (2003). Manual versus speech input for unmanned aerial vehicle

control station operations. Proceedings of the Human Factors and Ergonomics

Society Annual Meeting, 47(1):109–113.

69

References

[Drews and Fromm, 1997] Drews, P. and Fromm, P. (1997). A natural language

processing approach for mobile service robot control. In Proceedings of the

IECON’97 23rd International Conference on Industrial Electronics, Control,

and Instrumentation (Cat. No.97CH36066), volume 3, pages 1275–1277 vol.3.

[Elahi and Gschwender, 2009] Elahi, A. and Gschwender, A. (2009). Introduction

to the ZigBee Wireless Sensor and Control Network. In ZigBee Wireless Sensor

and Control Network, chapter 2.3 ZigBee.

[Eriksson E et al., 2015] Eriksson E, A., Ohlman, B., Persson, K., Malik, A. M.,

Ihlar, M., and Sunde, L. (2015). Scalable point-to-multipoint communication

for cloud networking using information-centric networking. In 2015 12th Annual

IEEE Consumer Communications and Networking Conference (CCNC), pages

654–662.

[Guo et al., 2016] Guo, S., Li, X., and Guo, J. (2016). Study on a multi-robot co-

operative wireless communication control system for the spherical amphibious

robot. In 2016 IEEE International Conference on Mechatronics and Automa-

tion, pages 1143–1148.

[Howden, 2013] Howden, D. J. (2013). Fire tracking with collective intelligence

using dynamic priority maps. In 2013 IEEE Congress on Evolutionary Compu-

tation, pages 2610–2617.

[Jesús San-Miguel-Ayanz, 2018] Jesús San-Miguel-Ayanz, Tracy Durrant, R. B. G.

L. A. B. D. d. R. D. F. P. M. T. A. V. H. C. F. L. P. L. D. N. A. C. A. T. L.

(2018). Forest Fires in Europe, Middle East and North Africa 2017.

[Jia Li et al., 2012] Jia Li, He Xiao, and Dong Yi (2012). Designing universal tem-

plate for database application system based on abstract factory. In 2012 Inter-

national Conference on Computer Science and Information Processing (CSIP),

pages 1167–1170.

70

References

[Manning et al., 2014] Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,

Bethard, S. J., and McClosky, D. (2014). The Stanford CoreNLP natural lan-

guage processing toolkit. In Association for Computational Linguistics (ACL)

System Demonstrations, pages 55–60.

[Mora et al., 2013] Mora, C., Frazier, A. G., Longman, R. J., Dacks, R. S., Wal-

ton, M. M., Tong, E. J., Sanchez, J. J., Kaiser, L. R., Stender, Y. O., Anderson,

J. M., Ambrosino, C. M., Fernandez-Silva, I., Giuseffi, L. M., and Giambelluca,

T. W. (2013). The projected timing of climate departure from recent variability.

Nature, 502:183 EP –.

[Qian et al., 2008] Qian, Y., Yan, G., Li, Z., Duan, S., Zhang, R., and Kong, X.

(2008). Retrieval of subpixel fire temperature and fire area using simulated hj-

1b data. In IGARSS 2008 - 2008 IEEE International Geoscience and Remote

Sensing Symposium, volume 3, pages III – 836–III – 839.

[Ray, 2018] Ray, B. (2018). Comparing Mesh, Star & Point-To-Point Topology In

IoT Networking.

[Remmersmann et al., 2012] Remmersmann, T., Tiderko, A., Langerwisch, M.,

Thamke, S., and Ax, M. (2012). Commanding multi-robot systems with robot

operating system using battle management language. In 2012 Military Com-

munications and Information Systems Conference (MCC), pages 1–6.

[Rossi et al., 2017] Rossi, A., Staffa, M., and Rossi, S. (2017). Supervisory con-

trol of multiple robots through group communication. IEEE Transactions on

Cognitive and Developmental Systems, 9(1):56–67.

[Thenmozhi et al., 2017] Thenmozhi, D., Seshathiri, R., Revanth, K., and Ruban,

B. (2017). Robotic simulation using natural language commands. In 2017

International Conference on Computer, Communication and Signal Processing

(ICCCSP), pages 1–4.

[Thomason et al., 2015] Thomason, J., Zhang, S., Mooney, R., and Stone, P.

(2015). Learning to interpret natural language commands through human-robot

71

References

dialog. In Proceedings of the 24th International Conference on Artificial Intel-

ligence, IJCAI’15, pages 1923–1929. AAAI Press.

[Velagapudi et al., 2008] Velagapudi, P., Scerri, P., Sycara, K., Lee, W.-H., , and

J, W. (2008). Scaling effects in multi-robot control. In International Conference

on Intelligent Robots and Systems (IROS’08).

[Ventura et al., 2012] Ventura, A., Diegues, N., and de Matos, D. M. (2012).

Frame interpretation and validation in a open domain dialogue system. CoRR,

abs/1207.4307.

72

	Abstract
	Resumo
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Context
	1.3 Research Questions
	1.4 Objectives
	1.5 Research Methodology

	2 Related Work
	2.1 Multi-Robot Communication
	2.2 Belief Communication Between Agents
	2.3 Interaction Between Humans and the Swarm
	2.3.1 How Do They Interact?
	2.3.2 Translation System for Natural Language to RCL
	2.3.3 Commanding Multi-Robot Systems using Battle Management Language

	2.4 Robot Swarm to Generate a Dynamic Fire Map With Pheromone

	3 System Architecture
	3.1 Robotic System
	3.1.1 Nodes
	3.1.2 Bounding Box
	3.1.3 Actions, Formations and General Commands
	3.1.3.1 Actions
	3.1.3.2 Formations
	3.1.3.3 General Commands

	3.2 NLP System
	3.2.1 tps System
	3.2.1.1 Building the Subject and the Object
	3.2.1.2 Building the Command

	3.2.2 Form
	3.2.3 Evaluator

	4 Results and Discussion
	4.1 Evaluators Characterization
	4.2 Experiments
	4.3 Discussion of the Results

	5 Conclusion
	5.1 Answering the Research Questions
	5.2 Future Work

	Appendices
	A Human-Machines Communication Experience
	A.1 Introduction to the Script
	A.2 Actions - Related to the Commander
	A.3 Formations - Related to the Robot Slaves
	A.4 General Commands - Add and Remove Commanders
	A.5 Try to mix the Actions and the Formations in one phrase!
	A.6 Context Exercise
	A.7 That's a wrap! Please provide us with anonymous information about yourself!

	B Success Rate of the Experiments
	Bibliography

