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Factors influencing charter flight departure delay 

Abstract 

This study aims to identify the main factors leading to charter flight departure delay 

through data mining. The data sample analysed consists of 5,484 flights operated by a 

European airline between 2014 and 2017. The tuned dataset of 33 features was used for 

modelling departure delay (e.g., if the flight delayed more than 15 minutes). The results 

proved the value of the proposed approach by an area under the receiver operating 

characteristic curve of 0.831 and supported knowledge extraction through the data-

based sensitivity analysis. The features related to previous flight delay information were 

considered as being the most influential toward current flight being delayed or not, 

which is consistent with the propagating effect of flight delays. However, it is not the 

reason for the previous delay nor the delay duration that accounted for the most 

relevance. Instead, a computed feature indicating if there were two or more registered 

reasons accounted for 33% of relevance. The contributions include also using a broader 

data mining approach supported by an extensive data understanding and preparation 

stage using both proprietary and open access data sources to build a comprehensive 

dataset.  
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1. Introduction 

Change is swift at any given moment in the business world, especially in organisations 

needing to adapt to the continuous modifications of the market [1]. Nowadays, all 
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companies from all industries can create new products and services rooted in data 

analytics [2].  Thus, analysing historical business data may prove to be an enhancement 

opportunity to improve any company [3] and gain a competitive advantage over other 

competitors - a blue ocean-oriented strategy [4]. An airline business model is no 

exception; it includes several critical tasks to operate air flights successfully. These 

tasks include services associated with the aircraft turnover [5], either provided by the 

ground handling staff, such as aircraft movements [6] and loading [7], or by terminal 

passengers and luggage processing [8], while others by the technical and cabin crew 

members. An error in any of those tasks triggers a chain of events which may lead to 

departure delay, and subsequently, to unexpected financial expenses, and conducting to 

brand negative impact [9]. 

Furthermore, external factors may also affect flight operation. Some of those include the 

weather [10], air traffic [11], or even outliers such as personnel labour strike (both crew 

or airport staff) [12]. The impact of a flight delay extends well beyond the specific flight 

as the resources involved in operating flights are optimised toward operational 

efficiency [13]. Several types of resources and activities such as staff and taxiing 

aircraft need to be withheld for a more extended period to cope with the delay, resources 

which otherwise would be allocated to other flights or tasks [14]. Thus, the delay effect 

is propagated and may ultimately affect an entire network of flights, whether by 

delaying other tasks within the departure airport or by affecting arrival airport tasks if 

the aircraft arrives late at its destination [15]. Therefore, airlines can be profoundly 

affected by flight delays and incur in economic losses [16]. To address such issue, 

airlines facing successive delays tend to charge higher airfares to passengers [17]. The 

chain effect of the tasks involved in-flight operation, and the delay propagation and 

impact to both airline and airport operational management have motivated researchers 
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and practitioners toward predicting flight delay. The approaches typically consist of 

data-driven solutions based on statistical or machine learning techniques to model the 

departure delay [18]. However, most studies are focused on problems translated by a set 

of specific given features that directly characterise those problems, such as the 

departure-arrival connection [19] or the weather conditions [20]. Thus, the research 

effort is typically more dedicated to tuning the model in pursuit of the most accurate 

predictions, overlooking the critical step of data understanding and, particularly, feature 

enrichment in a data mining project [21]. Literature addresses several studies on this 

matter, although understanding the influencing factors of flight delays is an on-going 

research subject, given the myriad of factors and different perspectives that can be 

addressed [22, 17, 23]. Therefore, further studies are needed to address the 

understanding of flight delays.  

This study’s objective is to identify the main factors leading to charter flight departure 

delay (e.g., if the flight departure delayed more than 15 minutes or not) in a specific 

context. To address these research objectives, we adopted a data mining approach. This 

study takes a broader perspective of mining charter flights data to predict departure 

delay by emphasising the relevance of identifying the most meaningful features to 

model the delay using both proprietary and publicly available data to build an enriched 

dataset characterised by problem-relevant features [24]. The charter flight data is 

provided by a European-based airline operating both scheduled ahead and ad-hoc flights 

between 2014 and 2017.  

This study brings three contributions. First, this study enables to highlight the features 

of influencing flight delay in the crucial European market. Most of the empirical 

research in flight delay prediction is conducted within the US context [19], given the US 

has a less restrictive data policy when compared to Europe and promotes data sharing 
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for research purposes. Second, this study was conducted in charter flights context. 

Third, this study also provides insights on the most relevant features to a flight delay by 

opening the trained models using the data-based sensitivity analysis [25]. This approach 

has already been successfully applied in other contexts such as tourism [26] and civil 

engineering [27]. Also, this study uses a broader number of distinct sources with a-

priori known features when compared to existing literature [19, 20].  

This paper is structured in six sections, beginning with the context and research problem 

definition (section 1), followed by the theoretical background (section 2). In section 3, 

the methodological approach and data sampling are presented. Section 4 presents flight 

prediction results and, in section 5, the features relevance results are discussed. Finally, 

in the last section, we draw the conclusions, and the theoretical and practical 

implications of this study. 

2. Literature review 

Flight operations translate into complex problems to solve, highlighted by a myriad of 

possible scenarios with many internal (e.g., traffic management) and external variables 

(e.g., weather). The studied problems include planning of flight routes [28], detecting 

flight trajectory anomalies [29], air traffic management [30], recognizing aircraft events 

such as landing [31], among others. Given the chained nature of air transportation 

business processes, most of those problems are interconnected, making it challenging to 

narrow the research focus in a specific problem. The challenges inherent of such 

complexity have led researchers to devote efforts to adopting state-of-the-art techniques 

such as modern optimisation and data mining to address them. 

The departure delay prediction of a flight is a widely studied problem in air 

transportation literature [19]. The operational impact of flight delays is enormous, 
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resulting in economic losses estimated by Zou and Hansen [32] in $7.1-13.5 billion in 

2007 for US airlines when comparing the ideal operational performance to the real one. 

Ball et al. [33] corroborate that range by estimating a value of around $8.3 billion to 

airline losses. Flight delays affect passengers, causing distress, and consequently 

undermining the airline brand image. Although airlines attempt to compensate for the 

delays, travellers are unable to perceive the different services offered by the 

competition, which does not favour brand loyalty, with travellers often choosing to shift 

to another airline [34]. Delays have a more emphasised impact on high-income 

managers who frequently need to air travel, with airlines being especially concerned to 

satisfy this type of travellers [35]. Besides passengers, delays can also cause labour 

disruption by affecting personnel work period, especially in the air transportation 

business, where there is strict legislation regarding flying times and off-times [36]. 

Also, as it was previously stressed, the propagation effect of delays to the daily airline 

and airport operation can cause other flights’ delay which is difficult to overcome since 

resources are optimised to reduce slacks [13; 37; 38]. Another critical issue related to 

delay propagation is the air transportation network [39]. The complexity of such 

networks implies that a wide range of external factors (i.e., not related to the airline) can 

affect directly or indirectly flights, leading to delays [40]. As Sun et al. [41] pointed out, 

country networks are different between countries, with some of them being more 

influenced by the passenger traffic of their neighbourhood countries. 

Table 1 summarises four articles focusing on predicting flight departure delays. The 

first noteworthy common characteristic is the fact that all four studies used the US 

publicly available data. This data was supplied by the U.S. Department of 

Transportation [18], the Federal Aviation Administration - FAA [42, 19], or the Bureau 

of Transportation Statistics - BTS [20]. Table 1 stresses out (1) the open data policy of 
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the US authorities [43], and (2) the need to study other countries’ airspace and air 

transportation operations. Some studies aim to predict the delay time value, thus making 

of it a regression problem, although most of them are focused in predicting if the flight 

is delayed or not, therefore building a classifier [44]. The latter poses the challenge of 

defining the threshold above which the flight is considered delayed. Rebollo and 

Balakrishnan [19] considered a flight delayed if departures are 60 minutes after 

schedule, while Choi et al. [20] considered 15 minutes. However, the former authors 

stated that the US Department of Transportation “only counts a flight as delayed if it 

incurs a delay of more than 15 min” [19, pp. 240]. Moreover, literature acknowledges 

the 15 minutes delay published by the US Department of Transportation as a standard 

threshold definition [45, 32]. Furthermore, in Europe, the Eurocontrol [46] states that an 

“aircraft should take-off within 15 minutes of the time stated in its flight plan”. 

Managers at the European-based airline used for the empirical research also provided 

support for the 15 minutes definition which is currently used in the aviation business. 

The results achieved by the studies mentioned in Table 1 are not directly comparable 

since the cases are different (i.e., different timeframe, airports, and features considered). 

Also, the goals do not precisely match, with Balakrishna et al. [42] focusing specifically 

on taxi-out (a likely reason for better accuracy than the remaining), while the others 

aimed to predict departure delay in general, although using different metrics for 

evaluating the results. The two most recent studies [19, 20] achieved a similar accuracy 

of 81%, although considering different features. In fact, apart from Tu et al. [18], the 

remaining are too narrow in the features used, focusing on understanding a specific 

phenomenon (e.g., weather influence; or the connection - origin-destiny airport - 

influence). Also, most studies are using the features directly obtained from a single or 

two public datasets, without attempting to unveil other interesting features that may 
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influence flight delays. Thus, the focus is on improving the model’s accuracy by testing 

different models [20]. Finally, while predicting departure delay is a challenging task, it 

would be interesting to get insights from the most accurate models on the features’ 

contribution to the delay. Such knowledge may help air transportation managers to 

understand this complex problem. However, from the studies analysed, only Rebollo 

and Balakrishnan [19] provided and discussed their findings regarding understanding 

features’ contribution. 

Table 1 - Departure delay prediction studies. 

Reference Goal Case Method Features Results 

Most 

relevant 

features 

[18] 

Estimating 

flight 

departure 

delay 

distributions 

US Denver 

International 

Airport, flights in 

2000/2001 

(92,865 records) 

Genetic algorithm based 

on expectation-

maximisation (smoothing 

spline model to estimate 

the relationship 

between delay, seasonal 

trend, and daily 

propagation pattern). 

Tested with 2001 data. 

Three 

components: 

seasonal trend 

(including 

weather), daily 

propagation 

pattern, and 

random 

residual 

Predicted upper 

3.00% tail holds 

2.65% of the 

delays 

(see Tu et al. [18] 

for additional 

metrics) 

NA 

[42] 

Taxi-out 

delay 

prediction 

(mean taxi-

out time for 

the same 

quarter of 

hour) 

US Tampa Bay 

International 

Airport, June-

August 2007 

Nonparametric 

reinforcement learning 

(testing in 26th to 31st 

August flights) 

Gate OUT, 

wheels 

OFF, wheels 

ON, and gate 

IN 

ACC=93.7% NA 
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[19] 

(1) Predict if 

departure 

delay is 

above 60 

min 

(2) Predict 

the delay 

time 

US flights 

between 2007 

and 2008 - 10 

sets (4,000 

records, 3,000 

for training and 

1,000 for testing) 

Random forest; 

Kruskal–Wallis 

parametric ANOVA test 

to evaluate feature 

relevance 

origin - 

destination 

(OD) pair 

(1) ACC=81%; 

TPR=76.4% 

(2) 21 min 

median error 

DCA 

(Washington

) and JFK 

(NYC) 

departures 

[20] 

Predict if 

departure 

delay is 

above 15 

min 

US domestic 

airline traffic 

data and weather 

data from 2005 

to 2015 (8,833 

records) 

Random forest; 10-folds 

cross-validation 

5 schedule 

features (e.g., 

month) + 12 

weather 

features (e.g., 

wind speed) 

ACC=81.37% NA 

 

3. Data sampling and methods 

The empirical research presented in this study is supported on a dataset of an European-

based airline operating flights between airports around the world. The goal is to predict 

if a flight departure was delayed by more than 15 minutes and simultaneously 

understand why delays are happening. Thus, this research is aligned with the airline’s 

requirement for efficiency improvement derived from reducing and mitigating departure 

delays. As such, this study takes a single airline’s perspective instead of the broader 

flight analyses conducted by the studies cited in Table 1. In the light of previously 

supported 15 minutes delay definition, the focus is to obtain an accurate classifier of 

departure delay (i.e., classify if a flight departure will be delayed 15 or more minutes). 

The initial dataset compiled consists of 5,484 flights occurred from the 1st of January 

2014 to the 23rd of March 2017. By using an airline’s anonymised data, it is possible to 

access specific features such as the type of flight (scheduled ahead or ad-hoc) or the 
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type of aircraft which would otherwise be concealed. As Wong and Tsai [47] study 

suggested, weather plays a significant role in delayed flights. Also, more extensive and 

busier airports can have a higher impact on propagating delays [48]. Thus, the airline 

dataset was merged with other publicly available data sources (Table 2), which were 

chosen by assuring that an identity field existed that enabled to merge sources. Some of 

the features retrieved from those sources hold high numbers of missing values (e.g., 

“fl.arr.DST” holds 1,807 of unknown values, Table 2, “OpenFlights” source for further 

details). Those features were discarded. Nevertheless, the new data gathered through the 

features that remained added important information that is known to influence flight 

departure (e.g., weather), justifying, including those data sources. 

Table 2 - List of data sources used. 

Source Description 

Airline Data provided by the European-based airline 

OpenFlights 2017 OpenFlights Airports Database (https://openflights.org/data.html) 

OurAirports OurAirports dataset (http://ourairports.com/data/) 

Weather IOWA State University METAR data 

(https://mesonet.agron.iastate.edu/request/download.phtml) 

CountryRank Country ranking by flight volume (http://databank.worldbank.org) 

Top10Prize World Airport Awards Top 10 

(http://www.worldairportawards.com/Awards/worlds_best_airport.html) 

Top10Surface Top 10 airports by surface  

(https://www.worldatlas.com/articles/the-world-s-10-largest-airports-by-size.html) 

Table 3 shows the list of 68 initially considered features for analysis. The column 

“source” highlights the diversity of data sources used and described in Table 2. A 

“source” attribute with the value “computed” indicates that the corresponding feature 

was computed using other features. Two examples are: the month, computed based on 
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the date, and the continent, computed based on the country (both for departure and for 

arrival). Features are labelled using prefixes according to the types: “ac” for aircraft; 

“dt” for date; “fl” for flight (with “dep” for departure and “arr” for arrival data); and 

“wt” for the weather.  

The rationale for choosing the features, such as season, aircraft size, charter/regular 

flight, and longitude, is grounded in the literature [49, 50, 35]. However, there is a lack 

of a holistic model encompassing all those features to predict flight delays. Also, some 

factors such as the analysis of how previous flight delay information affects current 

delay have not been analysed to the extension here presented, i.e., by including an array 

of relevant features (those with prefix “fl.prev.fl” described in Table 3). Following a 

careful analysis of all features, some of them were discarded for being categories 

concealing too many possible values (e.g., “fl.dep.country” holds 108 different 

countries; “wt.weatherID” holds 5,431 different combinations of date, city code, and 

hour). 

Table 3 - List of features analysed. 

Feature Description 

In
cl

u
d

ed
?
 

Source 

ac.age Aircraft age (in years) Y Airline 

ac.code Aircraft internal code N Airline 

ac.max.fuel Aircraft maximum fuel capacity N Airline 

ac.max.pax Aircraft maximum PAX capacity Y Airline 

ac.model Aircraft model (e.g., Airbus A340) N Airline 

ac.msn Aircraft manufacturer serial number N Airline 

ac.nr.engines Aircraft number of engines (2 or 4) Y Airline 

ac.registered Aircraft registered country (Portugal or Malta) Y Airline 

dt.date Flight date N Airline 
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Feature Description 

In
cl

u
d

ed
?
 

Source 

dt.day.of.month Day of month (1 to 31) Y Computed 

dt.month Month (January to December) N Computed 

dt.season Season (Spring, Summer, Autumn, Winter) Y Computed 

dt.weekday Weekday (Sunday to Saturday) N Computed 

dt.weekend If the flight was on the weekend Y Computed 

dt.year Year of flight (2014 to 2017) Y Airline 

fl.arr.altitude Arrival airport altitude Y OpenFlights 

fl.arr.continent Arrival airport continent N Computed 

fl.arr.country Arrival airport country N OpenFlights 

fl.arr.DST Arrival airport Daylight Saving Time (Table 4) N OpenFlights 

fl.arr.hour Flight expected arrival hour Y Airline 

fl.arr.IATA Arrival airport IATA code N Airline 

fl.arr.latitude Arrival airport latitude Y OpenFlights 

fl.arr.longitude Arrival airport longitude Y OpenFlights 

fl.arr.night.office If arrival occurred in night office time Y Airline 

fl.arr.UTC Arrival airport Coordinated Universal Time N OpenFlights 

fl.dep.airport.type Departure airport size (medium; large) Y OurAirports 

fl.dep.altitude Departure airport altitude Y OpenFlights 

fl.dep.continent Departure airport continent N Computed 

fl.dep.country Departure airport country N OpenFlights 

fl.dep.country.flights.rank Ranking position of the country in nr. flights Y CountryRank 

fl.dep.DST Departure airport Daylight Saving Time (Table 4) N OpenFlights 

fl.dep.hour Flight expected departure hour Y Airline 

fl.dep.IATA Departure airport IATA code N Airline 

fl.dep.ICAO Departure airport ICAO code N OpenFlights 

fl.dep.is.capital If the departure airport is in a country's capital Y Computed 

fl.dep.latitude Departure airport latitude Y OpenFlights 

fl.dep.longitude Departure airport longitude Y OpenFlights 

fl.dep.night.office If departure occurred in night office time N Airline 

fl.dep.top10.airp.prize If it is one of the top 10 airports for PrizeAwards Y Top10Prize 
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Feature Description 

In
cl

u
d

ed
?
 

Source 

fl.dep.top10.airp.surface If it is one of the top 10 airports by surface Y Top10Surface 

fl.dep.UTC Departure airport Coordinated Universal Time N OpenFlights 

fl.diff.altitude Altitude difference (departure and arrival) N Computed 

fl.diff.latitude Latitude difference (departure and arrival) N Computed 

fl.diff.longitude Longitude difference (departure and arrival) N Computed 

fl.diff.UTC UTC difference (departure and arrival) N Computed 

fl.duration Scheduled flight duration Y Airline 

fl.during.night.office If the flight occurred during night office N Airline 

fl.hired If it is a flight hired for another airline Y Airline 

fl.intercontinental If it is an intercontinental flight Y Computed 

fl.is.adhoc 

If it is a requested ad-hoc (as opposed to a scheduled 

ahead) flight 

Y Airline 

fl.more.10.hours If the flight is expected to last more than 10 hours N Airline 

fl.domestic 

If it is a domestic flight (i.e., departure and arrival city 

are located in the same country) 

Y Computed 

fl.prev.fl.delay.1st.reason 

Standard IATA Delay Codes (two main delay reasons 

for previous flight) 

N Airline 

fl.prev.fl.delay.1st.reason.gr N Airline 

fl.prev.fl.delay.2nd.reason N Airline 

fl.prev.fl.delay.2nd.reason.gr N Airline 

fl.prev.fl.delayed.duration 

Previous flight delay duration (negative if the flight 

arrived earlier) 

N Airline 

fl.prev.fl.delayed.reason 

Based on 1st reason: Airline (0-9); Pre-flight (31-39,61-

69); Processing (11:19,21:29); Aircraft (41-48,51:58); 

External (71-99) 

Y Computed 

fl.prev.fl.delayed.more1r If previous flight delayed for more than 1 reason Y Computed 

fl.was.prev.fl.delayed If the previous flight was delayed N Airline 

wt.dwpc Dewpoint temperature at departure city in Celsius Y Weather 

wt.relh Relative humidity in % at the departure city Y Weather 

wt.sknt Wind speed in knots at the departure city Y Weather 

wt.station Station site identifier at the departure city N Weather 

wt.tmpc Air temperature at departure city in Celsius N Weather 



13 
 

Feature Description 

In
cl

u
d

ed
?
 

Source 

wt.valid Timestamp of the observation at the departure city N Weather 

wt.vsby Visibility at departure city in miles Y Weather 

wt.weatherID 

Present weather code at the departure city, composed 

by date, city code, and hour 

N Weather 

fl.delayed.above15 Target: if the flight departure was delayed Y Airline 

Also, some features were discarded as these were used to compute other more 

aggregated features (e.g., “fl.prev.fl.delay.1st.reason” and “fl.prev.fl.delay.2nd.reason” 

were both used to compute “fl.prev.fl.delayed.more1r”). Finally, a correlation matrix 

was computed using the Pearson correlation coefficient, enabling to assess which 

features were overlapping in terms of the information held [51]. Of each pair of 

moderately to highly correlated features (i.e., ρ≥0.5), the feature holding less 

information was removed (e.g., “fl.dep.night.office” was removed, leaving 

“fl.dep.hour”, because the former has only two possible values, {“Y”, “N”}, while the 

latter has 24 possible values). Thus, modelling took as input a tuned dataset with 33 

input features and the output. Table 6 in the Appendix displays the statistics for each of 

these selected features. 

The classifier for departure delay modelled the “fl.delayed.above15” feature. Three 

modelling techniques were chosen: the neural network (NN), support vector machine 

(SVM), and random forest (RF). The first two were chosen as these have offered 

sustainably better performances when compared to other techniques (e.g., logistic 

regression) in previous studies [52, 53], while the latter was chosen as it achieved the 

best performance in the two most recent studies mentioned in Table 1 [19, 20]. For the 

NN model, the multilayer perceptron, the most popular NN architecture [54], was 

adopted. It consists of one hidden layer constituted by several hidden nodes (or neurons) 
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and one output node. The activation function of each node is computed by weighting 

previous nodes’ outputs [55]. The SVM uses a nonlinear mapping dependent on a 

kernel (the popular Gaussian kernel, which presents fewer parameters when compared 

to others, was adopted [56]) to transform the complex RM feature space in a high m-

dimensional feature space. This new space enables to find the best separating 

hyperplanes by selecting support vectors [57]. Finally, the RF is an ensemble of 

decision trees which make individual contributions to the overall model, improving the 

overall performance by benefiting from several decision trees’ heterogeneity [58]. Pal 

[59] found that RFs perform equally well when compared to SVMs and are more 

straightforward to define and require fewer parameters. The three chosen techniques can 

apprehend non-linear relations between several features, making them suitable for the 

proposed classification problem. Furthermore, the three have shown their superiority in 

training classifiers in a wide variety of problems [e.g., 53; 60]. 

Model tuning is an important issue in machine learning algorithms. The best 

hyperparameters were set using grid searchers for the three cases. The SVM adopted the 

popular Gaussian kernel (i.e., K(x,x′)=exp(−γ||x-x′||2), and the search was performed 

using the following parameters: γ ∈ 2k: k ∈ {-15,-11.4,-7.8,-4.2,-0.6,3}, as 

recommended by Moro et al. [53]. The second SVM parameter was fixed using the 

heuristic C=3 proposed by Cortez [61] for standardized input data. In the case of the 

NN, the search for the optimal number of hidden nodes was set by choosing from the set 

of values: {0,2,6,8,10,12} [53]. For the RF, the number of estimators (trees) was set by 

choosing from the set of values:{10,20,30,40,50,60} [62]. 

Classifiers can be evaluated through several metrics, which essentially compare the 

predicted to the real category. Binary problems, such as the one addressed can be easily 

evaluated using a confusion matrix [63], composed of four cells: True Positives (i.e., the 
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flight is correctly predicted as delayed); False Positives (i.e., the flight is incorrectly 

predicted as delayed); True Negatives (i.e., the flight is correctly predicted as on-time); 

and False Negatives (i.e., the flight is incorrectly predicted as on-time). Model’s 

accuracy (ACC) can be computed as ACC=(TP+TN)/N, with N being the full number 

of records. Another interesting metric is the True Positive Rate, or sensitivity 

(TPR=TP/(TP+FN)). TPR emphasises the relevance of accurately predicting delayed 

flights, neglecting flights predicted as delayed but had an on-time departure. TPR is 

considered by Rebollo and Balakrishnan [19] a relevant metric for flight delay 

prediction. As opposed to TPR, the False Positive Rate (FPR) is computed by the 

following formula: FPR=FP/(FP+TN). The FPR represents the predictive performance 

of the classifier in predicting the “negative” class. Thus, the higher the FP (i.e., the cases 

when the model wrongly predicted as a “positive” class), and subsequently, the higher 

the FPR, the worse is the model. The abovementioned metrics assume a classifier’s 

output consists of two or more categories. However, it is more interesting to build a 

classifier that computes a probability of a flight being delayed, instead of just 

“yes”/“no”. Thus, by varying the possible thresholds for the considered probability 

above which the flight is considered delayed, one would obtain distinct confusion 

matrices. By plotting the TPR versus the FPR in a single graphic, it is possible to assess 

a classifier’s performance through the range of thresholds for considering the flight as 

delayed. Such graphic is named the receiver operation characteristic (ROC) curve. The 

higher the TPR, the better are the classifier’s predictions [64]. Therefore, the area under 

the ROC curve (AUC) represents a more generic metric for evaluating a classifier’s 

global performance [65]. Given the premises above (i.e., a higher TPR representing a 

better classification), an AUC of 0.5 represents a random classifier (the baseline), 

whereas an AUC of 1.0 is the perfect classifier. Thus, the higher the AUC, the better are 
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the predictions. Since the dataset built is static (i.e., it is not fed with new data), the k-

fold cross-validation was adopted. It splits the dataset into k partitions with the same 

number of records and trains the model using the first k-1 partitions and tests it by using 

the last k partition. Then, the procedure rotates the train/test partitions used until all k 

partitions have been used at least once for testing and k-1 times for training [65]. As 

recommended by Refaeilzadeh et al. [66], k was set to 10. 

After the initial feature analysis previously described, an automated feature selection 

procedure was executed [24]. Such procedure consists of training a model with all the 

previously selected features and assess its performance using the k-fold cross-validation 

scheme previously described and the AUC metric. Then, in a loop scheme, each 

individual feature was removed, and a new model was trained without that feature and 

evaluated using the same method (i.e., k-fold cross-validation and AUC). If the obtained 

AUC was the same or above the one without removing the feature, then the feature was 

removed, and the loop proceeded to the next iteration. Since the learning process of 

modelling techniques needs to be contained under a reasonable processing time, having 

a more significant number of features requires the algorithm to perform more tests to 

assess each feature’s usefulness to the model [67]. Thus, having more features can result 

in slightly more unsatisfactory performances if there are features non-related to the 

model’s target. The loop ended when removing any of the remaining features resulted in 

a decrease in performance. However, any removal of the remaining features resulted in 

more reduced performance, thus supporting the chosen features (those marked with “Y” 

in the “included” column in Table 3).  

Finally, a sensitivity analysis (SA) was adopted to unveil the most interesting features. 

The SA aims to find a model’s feature relevance by assessing the model’s results to 

input feature variation. The one-dimension sensitivity analysis procedure varies one 
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input at a time while keeping the remain constant. Therefore, it is not able to measure 

the influence of each feature on the remaining. On the opposite, the global sensitivity 

analysis consists in varying the set features simultaneously through their range of 

possible values [62]. This is a computationally very demanding alternative, which is 

only suited for small numbers of features, given the procedure needs to go through the 

combination of the values possible within each feature. Another approach that was 

proposed and is described by Cortez and Embrechts [25] is the data-based sensitivity 

analysis (DSA). The DSA is a procedure that addresses the limitation of the one-

dimension SA but without the computational effort required for a full variation of the 

whole set of features. The same authors also present two alternatives: the cluster-based 

sensitivity analysis (CSA), and the Monte-Carlo sensitivity analysis (MSA). However, 

as they recognize, CSA failed to detect the most relevant input in one of their tests, 

while MSA is more suited for cases where the data used for training the model is not 

available. Thus, we chose DSA, which uses a randomly selected sample of instances 

from the dataset and then varies the possible combinations of features only through the 

values stored in the selected instances to assess output variation (i.e., sensitivity). Cortez 

and Embrechts [25] tested DSA with four real-world datasets and concluded that their 

approach provided robust results when compared to the alternatives. All experiments 

were implemented using the open-source R statistical tool, which offers a myriad of 

packages suited for data analysis [68]. Notably, the “rminer” package was chosen as it 

implements simple-to-use data mining functions and the DSA [69]. It should be noted 

that the functions implemented by this package enable users to focus more on the data 

mining problem and less on the technical details. For example, the model training 

process can be fed using both numeric and categorical features. 

4. Flight prediction results and discussion 
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Table 4 shows the achieved metrics using the three abovementioned techniques. The 

trained classifier’s output is one of two classes: the flight departure was delayed (our 

target, considering the flight was delayed if its departure was more than 15 minutes of 

the scheduled hour), or the flight departure was on time (less than or equal to 15 

minutes of the scheduled hour). As stated by Hand and Till [64], the AUC measures a 

classifier’s performance through the range of values for the threshold probability above 

which a flight is deemed delayed (the target). Considering an AUC of 0.5 represents a 

random uninformed model, and a perfect model holds an AUC of 1.0, it is possible to 

observe the RF achieved the highest performance when compared to both NN and 

SVM. This result is consistent with both Rebollo and Balakrishnan [19], and Choi et al. 

[20]. Figure 1 helps to support the differences in AUC by displaying the ROC curves 

for the three models under the same graphic - the RF curve stands above the remaining 

for all cases. 

Table 4 - Modelling performance evaluation. 

 

Evaluation metric 

Modelling technique AUC ACC TPR 

Neural Network (NN) 0.789 72.85% 79.56% 

Support Vector Machine (SVM) 0.789 72.62% 82.19% 

Random Forest (RF) 0.831 76.12% 83.27% 
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Figure 1 - ROC curves (FPR=FP/(FP+TN)). 

The three computed metrics (AUC, ACC, TPR) confirm the classifier models departure 

delays with reduced errors. 

5. Feature relevance extraction results and discussion 

Considering the RF model clearly represent the best classifier for this problem, it was 

chosen for knowledge extraction. The knowledge of flight departure delay was extracted 

using the DSA, in the form of features’ relevance to the model. Thus, the DSA 

computes each feature’s contribution to the RF model. The result is a list with 

percentages distributed per feature, shown in Table 5. To avoid a lengthier table, only 

features with relevance above 1.0% are individually displayed, in a total of 21 from the 

33 used for modelling. The remaining 12 features’ aggregated relevance is shown in the 

last row, labelled “all the remaining,” summing a total of 7.33% of relevance. However, 
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it should be stressed that all features have some contribution, since removing any of 

them resulted in lower performance. 

Several interesting findings emerge from Table 5. First, the combined relevance of all 

features related to the previous flight the aircraft has made (fl.prev.fl.delayed.more1r, 

fl.prev.fl.delayed.duration, and fl.prev.fl.delayed.reason) sums around 48%. This result 

is not surprising since literature has exhaustively reflected on the propagating effect of 

flight delays [15]. However, the reason for the previous delay accounted for only 2.03% 

of relevance. Nevertheless, the most remarkable result is the fact that the feature 

indicating if there was more than one reason registered to justify the previous delay 

contributes to explaining more than 32% of the current flight being or not delayed. This 

feature is computed based on “fl.prev.fl.delay.1st.reason” and 

“fl.prev.fl.delay.2nd.reason”. Thus, the flight team can insert up to two delay reasons. If 

they did insert two reasons, then “fl.prev.fl.delayed.more1r” was computed as “Y”; 

otherwise, “N.” While managers in the business aviation industry may intuitively guess 

this was an important feature, current state-of-the-art literature has not yet raised this 

issue, nor it has quantified its relevance. Our approach is a valuable insight that scholars 

exploring the propagating effect of delays may use to weight the nodes of a directed 

graph representing a network of related flights. 

Another interesting finding raised from Table 5 is the relevance of the type of flight, 

i.e., being an ad-hoc requested or a planned flight. Literature shows little evidence of the 

flight type influence in departure delay. Aviation managers treat both types differently, 

as ad-hoc requests often occur under stressing conditions where there is a shortage in 

supply that needs to be quickly suppressed. Hence, this study is the first presenting a 

measure of such impact, corroborating with airlines and airport managers’ behaviour. 

The results also emphasise the relevance of the size of an airport and both departure and 
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arrival longitudes. Next, the five most relevant features (i.e., with relevance above 4%) 

are scrutinised. Using the results obtained through the DSA, it is possible to draw 

variable effect characteristic (VEC) curves that visually show how each feature 

influences the output (i.e., the flight departure delay) [25]. Therefore, the VEC plots the 

probability of a flight being delayed in the y-axis and the range of possible values for 

the analysed input feature in the x-axis. Explicitly, the probability in the y-axis is 

computed directly by the DSA through assessing how the outcome changes by varying 

each input feature. 

Table 5 - Individual features' relevance. 

Feature Relevance 

fl.prev.fl.delayed.more1r 32.57% 

fl.prev.fl.delayed.duration 13.22% 

fl.is.adhoc 5.62% 

fl.dep.top10.airp.surface  4.41% 

fl.dep.longitude 4.28% 

fl.arr.longitude 3.57% 

ac.max.pax 3.22% 

fl.dep.latitude 2.90% 

fl.dep.hour 2.48% 

ac.nr.engines 2.46% 

fl.dep.is.capital 2.05% 

fl.prev.fl.delayed.reason 2.03% 

ac.registered 1.96% 

wt.relh 1.96% 

fl.duration 1.63% 
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Feature Relevance 

dt.day.of.month 1.57% 

fl.arr.hour 1.50% 

fl.domestic 1.45% 

dt.year 1.44% 

ac.age 1.27% 

wt.vsby 1.10% 

all the remaining 7.33% 

 

Figure 2 shows that a previous flight of an aircraft delayed on departure for two 

registered reasons has more than 30% of probability of being delayed in current flight. It 

should be noted that although the number of flights previously delayed for two reasons 

is an unbalanced feature, 524 from the total of 5,484 (almost 10%) were in this 

condition. Such numbers emphasise the representativeness of this feature and are 

directly translated into more than 30% of relevance to the model. These results show 

that, no matter what the reasons for the previous delay are, if there are at least two of 

them, i.e., if the crew bothered to register two or more reasons, it is likely that the next 

flight will also be delayed. However, the results should be carefully interpreted, as it 

may not be a typical standard for airlines to have 10% of flights delayed for more than 

one reason per flight. Further studies in other airlines could help to shed additional light 

on this subject. Nevertheless, this discovery is relevant to this specific airline, which 

may lead to preventive actions to avoid multiple delays. 
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Figure 2 - Influence of previous flight being delayed for more than one reason. 

The effect of the delay duration of previous flights can be observed in Figure 3. The 

previous flight delay seems to mainly affect current departure delay, increasing between 

100 minutes earlier and 100 minutes late. After reaching the plateau (above 100 minutes 

delayed), the effect slightly decreases and remains steady afterwards. The observed 

effect derives from the fact that the airline only operates charter flights. When flights 

leave outside an appropriate interval of 100 minutes, the probability observed in Figure 

3 can be explained by commercial factors. If a flight leaves above 1 hour and forty 

minutes (100 minutes) behind schedule, there is an increasing probability that the 

customer hiring this airline’s flight may need to cancel or postpone future flights, thus 

updating future scheduled hours, which will become on-time. Therefore, the [-100, 

+100] minutes period is when there is a focus on solving problems, whereas outside that 

interval it is likely that the next flight for the same aircraft needs to be rescheduled. 
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Figure 3 - Influence of previous flight delay duration. 

Figure 4 exhibits the different probability of a flight departure delay dependent on being 

a requested ad-hoc or a scheduled ahead flight. Although the difference is just of around 

0.05, ad-hoc flights do not leave late as many as planned flights. In the context of this 

specific European airline, there is frequently a higher pressure in ad-hoc flights to leave 

on-time, in the result of a supply shortage. Also, ad-hoc flights are usually requested in 

known routes to the airline (both to managers and cabin crew members), by contractors 

that know the airline and have previously request its services to the same routes. Hence, 

those contractors usually have a long-term relationship with the airline and take 

advantage of that for requesting non-planned flights. Such flights create the 

abovementioned additional pressure due to lack of prior planning. On the opposite, 

planned flights are contracted in advance, with the airline flying to lesser-known 

destinations, for more extended periods, where there may occur planning constraints 

more frequently, such as maintenance tasks. Also, charter companies have usually a low 

market share, which leads to being lesser-known and often more neglected in unknown 

destinations when compared to larger airlines. 
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Figure 4 - Influence of being an ad-hoc flight. 

It is interesting to note that, from the many airport-related features included in the 

model, the size of the departure airport outstands from the remaining, being the fourth 

most relevant when modelling departure delay. This result is supported by Baluch et al. 

[70] study on US flights. The same authors also identified a strong influence of the 

airline on delays by analysing several of them. In our study, this feature is constant by 

narrowing the analysis to a single airline. The fact that a feature extracted from an open 

data source of a known ranking was deemed influential to delays corroborates the 

importance of enriching corporate data with open data sources, emphasizing the 

contribution of the proposed approach. 
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Figure 5 - Influence of being one of the top 10 airports. 

The influence of the fifth most relevant feature in departure delay is reflected in Figure 

6. As a result, that directly reflects the geographies from where the flights departed. The 

lower longitudes, where the probability of delay is higher, represent the cities in the 

American continent, with most of them located in South America and the Caribbean. 

Next, the delays are slightly higher in Central and South-Eastern geographies (50º - 

120º) when compared to Europe and Far-East Asia and Oceania. Thus, more developed 

economies, with more efficient operational setups and personnel at their airports, can be 

more efficient, resulting in less delayed departures. 
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Figure 6 - Influence of departure longitude. 

6. Conclusions, implications and future work 

Flight departure delays affect travellers, airlines, and airport management. 

Understanding what drives delays is imperative for improving air transportation 

management. In this article, we present a theoretical review of air flight studies, and we 

conducted an empirical study. The empirical part of the study adopts a charter airline 

perspective to unveil the features that influence departure delays. The used dataset 

consists of 5,484 flights worldwide between 2014 and 2017 operated by an European 

airline, including both ad-hoc requested and scheduled ahead flights. The airline dataset 

provided was enriched by merging it with online open data sources on the airports, and 

the weather. Thus, a total of 33 features related to the aircraft, the airport (both 

departure and arrival), the weather, and the flight were used for modelling. A large 

number of features justified the choice of a data mining approach and, mainly, the data-

based sensitivity analysis as suitable to extract knowledge. The model achieved a good 

performance, proving to be a valuable tool to predict unforeseen flights, as it was 

validated through a 10-fold cross-validation procedure. 
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As theoretical implications, this study is among the first studies on charter flights delay 

prediction, using both proprietary and open access data sources. This study unveiled 

insights on the most relevant features of a flight delay, via a support vector machine 

model using the data-based sensitivity analysis. When compared to commercial flights 

operated on regular schedules, charter airlines are directly pressured by unbalanced 

demand. The need to fulfil the higher possible number of contracts to assure 

profitability and make up for demand shortfall periods implies that in some cases, there 

is no slack available for compensating previous delays. As a result, our study provided 

empirical evidence of the relevance of previous delays for charter flights, in almost half 

of the total feature relevance. 

Apart from providing an accurate model for predicting departure delay, which is a 

valuable tool for the airline, the practical contributions of this study are grounded on the 

knowledge extracted from the model. By computing the features’ individual relevance, 

interesting insights could be brought to light. Although most of the results are consistent 

with the literature, combining in a single model a myriad of factors to explain departure 

delay of flights in an airline provides a deeper understanding of each factor’s 

contribution to delays. The previous flight delay features proved to be the most relevant 

information by accounting for 48% of relevance in explaining departure delay. 

However, surprisingly, the reason for the previous flight delay in itself held relevance of 

2%; on the opposite, the feature indicating if the previous flight had two or more 

registered reasons accounted for around 33% of relevance. Also, interesting to note is 

the fact that differences between origin and destination (e.g., if it was an intercontinental 

or a domestic flight) had less relevance than other features such as the type of flight 

(scheduled ahead or ad-hoc requested) or the size of the airport. 
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The proposed approach and consistent results stemming from a real and up-to-date case 

of an European airline (instead of the most widely used cases based on flight data freely 

provided by the US authorities) has proven useful for predicting delays on the whole 

departure process. However, this study has important limitations that should be stated. 

First, the trained classifier only predicts if a flight departure was delayed by more than 

15 minutes, whereas predicting the delay duration itself would render additional 

relevant knowledge, since a flight delayed by 16 minutes is different from one delayed 

by 80 minutes (i.e., although a client could file a complaint in both cases, it is more 

likely to do so for the latter case). Thus, we propose as an extension of the current study 

to develop a regression model to assess which factors are contributing the most to 

different delay durations. Also, since no air traffic data was available at the hour of each 

flight for each of the analysed airports, the complex interactions within air traffic 

networks were not considered [71]. For example, congestion features are, for sure 

important for understanding delays, it is clearly an issue that can be addressed in future 

research. One possibility would be to conduct a more focused study on a small set of 

airports for which there is data available about the traffic on at least an hour-level 

granularity. Also, as an avenue for further research, this approach can be enhanced by 

modelling specific flight departure sub-problems, such as predicting the boarding 

process of passengers [5]. We conclude this approach can serve as a baseline for 

implementing an adaptive business intelligence system benefitting from several 

weighted models and including optimisation algorithms for a more accurate delay 

prediction. Additionally, we intend to collect more data from the company and train a 

new model using deep learning approaches through networks combining multiple 

layers, such as convolutional neural networks [72]. This type of networks is known to 
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outperform the traditional multilayer perceptron network, especially when handling 

large amounts of data [73]. 
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Appendix 

Table 6 - Statistics on the included features (features described in Table 3). 

Feature Description * 

ac.age {Min; Q1; Med; Q3; Max}={6; 15; 17; 19; 26}; Avg=16.3; SD=4.7 

ac.max.pax {Min; Q1; Med; Q3; Max}={10; 247; 267; 324; 330}; Avg=263.2; SD=57.7 

ac.nr.engines 2 engines = 3692; 4 engines = 1792 

ac.registered Portugal = 5285; Malta = 199 

dt.day.of.month Distribution of flights between 161 for day 17th and 218 for day 26th 

dt.season Spring=1481; Summer=1424; Autumn=1143; Winter=1436 

dt.weekend Weekend=1591; Working day=3893 

dt.year 2014=3713; 2015=1243; 2016=427; 2017=101 

fl.arr.altitude {Min; Q1; Med; Q3; Max}={-12.2; 15.0; 53.9; 119.5; 2580.4}; Avg=179.0; SD=333.2 

fl.arr.hour Distribution of flights arriving between 125 at 4 am, and 382 at 12 am 

fl.arr.latitude {Min; Q1; Med; Q3; Max}={-51.8; 22.0; 31.5; 43.7; 69.1}; Avg=28.9; SD=21.4 

fl.arr.longitude {Min; Q1; Med; Q3; Max}={-149.6; 2.0; 11.8; 39.7; 174.8}; Avg=21.1; SD=47.6 

fl.arr.night.office No=2622; Yes=2862 

fl.dep.airport.type Medium=1165; Large=4319 

fl.dep.altitude {Min; Q1; Med; Q3; Max}={-12.2; 15.0; 41.1; 116.4; 2580.4}; Avg=152.9; SD=297.3 

fl.dep.country.flights.rank {Min; Q1; Med; Q3; Max}={1; 13; 39; 53; 171}; Avg=41.5; SD=41.1 

fl.dep.hour Distribution of flights departing between 101 at 1 am, and 406 at 8 am 

fl.dep.is.capital No=3629; Yes=1855 

fl.dep.latitude {Min; Q1; Med; Q3; Max}={-51.8; 22.0; 30.1; 48.7; 69.1}; Avg=28.6; SD=21.7 

fl.dep.longitude {Min; Q1; Med; Q3; Max}={-149.6; 2.0; 17.9; 39.2; 174.8}; Avg=26.0; SD=44.7 

fl.dep.top10.airp.prize No=5314; Yes=170 

fl.dep.top10.airp.surface No=5093; Yes=391 

fl.duration {Min; Q1; Med; Q3; Max}={30; 130; 210; 390; 810}; Avg=259.3; SD=174.7 

fl.hired No=4983; Yes=501 

fl.intercontinental No=2939; Yes=2545 

fl.is.adhoc No=4135; Yes=1349 

fl.domestic No=4670; Yes=814 
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Feature Description * 

fl.prev.fl.delayed.reason Aircraft=81; Airline=3151; External=1265; Pre-flight=390; Processing=597 

fl.prev.fl.delayed.more1r No=4960; Yes=524 

wt.dwpc {Min; Q1; Med; Q3; Max}={-24; 7; 14; 20; 28}; Avg=12.7; SD=8.6 

wt.relh {Min; Q1; Med; Q3; Max}={2.7; 51.0; 69.5; 83.8; 100}; Avg=65.7; SD=23.1 

wt.sknt {Min; Q1; Med; Q3; Max}={0; 4; 6; 10; 110}; Avg=7.0; SD=4.9 

wt.vsby {Min; Q1; Med; Q3; Max}={0.03; 6; 6.2; 6.2; 30}; Avg=5.7; SD=1.5 

fl.delayed.above15 No=3113; Yes=2371 

* For numeric features: {Min; Q1; Med; Q3; Max}={Minimum; Quartile 1; Median; Quartile 3; Maximum}; 

Avg=Average; SD=Standard Deviation 


