

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2020-03-18

Deposited version:
Post-print

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Santos, J. P., Ramos, P., Farinha, J. & Moro, S. (2020). Business processes modelling and diagnosis.
Business Information Review. 37 (1), 38-51

Further information on publisher's website:
10.1177/0266382119891604

Publisher's copyright statement:
This is the peer reviewed version of the following article: Santos, J. P., Ramos, P., Farinha, J. & Moro,
S. (2020). Business processes modelling and diagnosis. Business Information Review. 37 (1), 38-51,
which has been published in final form at https://dx.doi.org/10.1177/0266382119891604. This
article may be used for non-commercial purposes in accordance with the Publisher's Terms and
Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1177/0266382119891604

Business Processes Modelling and Diagnosis

Abstract: The computerization of relevant information in organizations is

increasingly becoming a necessary reality in companies that want to be present

in a market that is characterized by innovation, adaptability and where bigger

amounts of information are increasingly available and accessible to everyone,

the use of Social Collaboration tools in organizations become increasingly

crucial to keep a business running (Brocke et al. 2018). In (Alter 2013), work

systems are described as systems “in which human participants and machines

perform work (processes and activities) using information, technology and other

resources to produce specific products/services for specific internal and external

customers”. The computerization of processes is not, however, so complete

because all the formal and informal relationships among employees, which

underlie each organization and have a high impact on the correct definition of

processes, are not correctly considered.

In order to mitigate this problem, this article presents a proposal for representing,

in computer systems, formal and informal relations between employees and the

consequent integration in organizational processes in order to provide automatic

diagnosis of highlighted processes.

1. Introduction

As SC (Social Collaboration) tools are becoming a crucial part of nowadays organizations,

three reasons for the rise of its popularity are defined in (Brocke et al. 2018):

• SC tools exhibit the characteristics of “malleable software”, while tradition systems like

CRMs or ERPs are developed to meet well-defined purposes;

• The impact in the organizations is achieved individually by each employee or by a

group of employees;

• Creating in organizations the need to develop elaborated collaboration strategies;

SC tools are becoming the most relevant vehicle for any organization’s success. These types

of work systems rely on human and machine interaction along with information processing to

create useful outputs to be used by organizations. The present paper’s scope focuses on

business processes automatic diagnosis and how formal and informal relations can be an

important assessment factor in said diagnosis.

Current modelling languages, although widely used for process modelling in organizations,

also have some limitations when it comes to precisely define and represent the reality of these.

In (Lara et al. 2017), the authors identify three main limitations in the existing process

modelling languages:

• The existing disconnection between operational technology and information

technology which led to the creation of operational and IT teams with completely

different skills and barely any kind of communication between them,

• The functionality limitations and lack of flexibility on modelling languages and tools,

which target are mainly business and IT domains,

• Inadequate approach of modelling languages to address specific industry verticals.

One limitation we’re focusing in this paper is the lack of an explicit and inambiguous

representation of the formal and informal relations between employees, as they represent an

important part of a company’s process alignment with its corresponding strategy (Sungur et al.

2014). Since BPMN is the most commonly used modelling language for representing all kinds

of processes, an attempt to extend this language’s specifications was performed in order to

accommodate the mentioned limitation.

Although extending BPMN’s specifications allows the graphical representation of formal and

informal relations in an organization, processing this information in order to diagnose a

process, requires the use of a different language that must be, at the same time, sustained by

OMG. Thus, the best solution to complement BPMN visual representation of processes, is OCL

based rules that will allow for the process diagnosis.

In this paper we propose a BPMN language extension (class diagram metamodel) in order to

cope explicit representation of formal and informal relations. Several rules taken from

literature, based on formal and informal relations principles, are used to test our model. We

adopted the USE tool to execute and check whether the given OCL version of rules are satisfied

or not when the class diagram is instantiated and, thus, a diagnosis is performed.

2. An organization’s formal and informal structure

Before presenting the methodology behind this study, it is important to clearly understand what

is an organization, how it is formally structured and how informal structures may play a major

role in a company’s success.

According to (Pugh 1990), an organizational structure “consists of activities such as task

allocation, coordination and supervision that are geared toward organizational goals”. This

maybe a definition that, in a more simplified and unanimous way, better describes the meaning

of an organizational structure.

It is necessary for an organization, in order to put its predefined structure into practice, to make

it inambiguous and clear to what actually makes up this structure: its employees. An

organizational chart represents, in a compact and graphic way, relationships between different

parts of the business and allows for a quick analysis at the company’s structure in a more

efficient way than any other descriptive method (Alexander Hamilton Institute 1923). Visually

speaking, an organizational chart will represent the authority, responsibility and information

flow in the formal structure of an organization, depicting each one of its divisions in a box

shape, which will relate to each other by lines connecting them. These lines will also define,

based on its direction, the decision making and reporting power (downward and upward

respectively) as well as work/communication relationships.

As there are different types of organizations that require different structural needs, there also

are different types of charts to represent each one of them:

• Hierarchical charts are the most commonly used type of organizational chart. They

represent all the employees or a group of them, which have at least one superior

(excluding one, usually the CEO);

• Horizontal or flat charts are defined by the low or inexistent number of hierarchical

levels. The influence of each employee is levelled and, therefore, the authority flows

horizontally instead of vertically.

• Matrix charts group employees according to their relevant skills and projects with

which they are associated.

It is clear that formal relationships are well addressed when it comes to its graphical

representation, with the use of organizational charts. Unfortunately, this diagram lacks in the

representation of informal relations. The informal structure covers all the ‘soft’ components of

the organizational structure from the relationship between their elements, the perception and

opinion of those involved as well as their needs and emotions (Wang et al. 2002). The informal

network within an organization and the knowledge management practices are usually related,

since this network’s correct management allows for a better and more efficient knowledge

management, which has been considered in the past years a critical element to produce

sustainable competitive advantages (Wang et al. 2002).

Just like we’re able to graphically represent the formal relations within an organization, the

same type of representation for the informal relations is needed but inexistent. As a matter of

fact, different studies regarding this subject have already been conducted by several

researchers, of which (Castelfranchi et al. 1992) stands out. The author proposes a way to

operationalize social dependencies between resources and agents. Other authors made further

developments on Castelfranchi’s theory, namely in (Odell et al. 2003) where, using UML

modelling, the authors operationalize Castelfranchi’s agent’s dependence theory.

3. Graphic modelling approach

3.1. Formal relations representation

Representing the formal relations within an organization using the existing UML languages

poses a problem given that its specifications (at the light of OMG) do not postulate a way to

explicitly make this representation possible.

Using actors from Use Cases to represent the organization hierarchy is not a viable solution.

The organization hierarchy of Figure 1 is not valid by UML standards. As defined by OMG

“an actor models a type of role played by an entity that interacts with the subject (…). Actors

may represent roles played by human users, external hardware or other subjects” (Object

Management Group 2011). Although an actor could represent a certain employee or role, the

only situation when two actors are, somehow, associated is when a generalization occurs (an

actor inherits the properties of another). As it is defined in UML superstructure specification:

“An actor can only have associations to use cases, components and classes” (Object

Management Group 2011), eliminating the possibility of creating direct associations between

these.

Another possible approach to represent the formal relations in an organization would be by

using BPMN specifications. Just like in use cases, we are able to represent participants in a

process through the Pool element. A Pool is the graphical representation of a participant of an

interaction between two or more entities (Object Management Group 2013).

The use of BPMN to represent formal relations was sustained on two premises: each

employee/role would be represented by a Pool and a link to represent a formal relationship

between both entities. Representing a participant as a Pool didn’t pose any problem however,

the link between them only exists in the form of a message flow. Also, the only way a message

flow can link two Pools is when these Pools represent black boxes (blank pools) and since an

entity in the form of a Pool will have tasks associated, the use of BPMN becomes quite limited

for the purpose of operationalizing formal relations.

Finally, the use of objects diagram stands as the most viable option for this representation. IBM

defines the object diagram as “a tool that provides a snapshot of the instances in a system and

the relationship between the instances” (IBM). The correct instantiation of a classes diagram

that contains a Role class and recursive association will allow the representation of hierarchical

levels between roles/employees, which will be shown further in this paper.

3.2.Informal relations representation

Representing the informal relations between employees is also imperative in order to perform

a complete diagnosis to a business process since, as was previously mentioned, the informal

relations are increasingly influencing the way the decisions are made in a business.

There are two papers that stand out when it comes to this subject: Informal Process Essentials

(Sungur et al. 2014) and Supporting Informal Processes (Sungur et al. 2014). In these

complementary articles, the authors reiterate the importance that informal relations have in any

organization and recognize the lack of tools to enable its modelling. For starters, the authors

outline the properties of an informal process and its corresponding requirements (four in total)

in order to make it operationally feasible. Afterwards, they commence a “best-fit” process in

order to find the tool that better complies with the previously inferred requirements, which

resulted in an assessment to the possible use of BPEL, petri-nets, BPEL4People, BPMN,

among others. As none of these activity-oriented approaches complied with all the

requirements previously established by the authors, they propose an approach to “describe a

set of interrelated resources which work together to achieve a collective goal” (Sungur et al.

2014). In figure 2, a conceptual meta-model of this proposal is depicted.

As it is illustrated, the authors resort to the Relationship recursive association to represent

informal relations between resources (in this case, human performers). This implementation

will also be used, later in this paper, in the proposal of the BPMN language extension,

Besides the ones mentioned, two articles that also contributed to developing the methodology

of this work were (Brambilla et al. 2011) and (Awad et al. 2009). On both papers the authors,

although with different objectives, propose an extension of BPMN notation in order to

operationalize the needs of their proposal.

In the first paper, the authors affirm that social networking is increasingly an important tool to

help organizations harness the value of informal relationships and weak ties within the

organization. This interest generates the growth of Social BPM which focuses on increasing

the organization’s performance through adding, in a controlled way, external stakeholders to

the execution of business processes. The increase in performance may be obtained through

exploiting weak ties within the organization, increasing transparency and participation to the

decision procedures and involving communities in activity execution. To cover these aspects,

business process notations require new features whereas the authors propose an extension to

the existing BPMN notation for capturing social requirements, which will enable the

description of social behaviours within BPMN diagrams.

On the second paper, the authors focus on the correct allocation of tasks of a process to

resources (in this case, human resources) using BPMN and, similar to the methodology that

will be presented in this document, they also extended the current specification of BPMN and

used OCL to allow for the corresponding restrictions to be processed and applied to processes.

The allocation rules that were used in (Awad et al. 2009) were adapted from (Russel et al.

2005) and originated: Direct Allocation, Role-based Allocation, Capability-based Allocation

and History-based Allocation. Figure 3 shows the extension made to BPMN meta-model in

order to incorporate this resource-based allocation feature.

In Figure 3, a model shows the classes added in (Awad et al. 2009) to the BPMN meta-model

besides the existing ones (represented with «Core» prefix).

The operationalization of the abovementioned task allocation constraints, as well as the BPMN

extension in Figure 3 are illustrated in Figure 4.

The authors used an open-source process modelling tool (https://www.openhub.net/p/oryx-

editor) where we are able to see a simple process in which each task has a constraint associated.

For instance, regarding a task Enter Leave Request, the allocation constraint used is the Role-

based allocation and the corresponding value is Employee, meaning that this task may only be

allocated to an employee.

An approach on how to graphically represent the informal relations between employees has

already been addressed as well as the extension of BPMN language to accommodate new

functionalities for the corresponding purposes. Although these approaches are suitable for the

purposes in view, they do not fully comply with the objectives of this paper due to existential

differences in the goals of said papers. However, using a BPMN extension as a vehicle to

represent the informal poses a solution for the problem in hand.

4. BPMN metamodel extension proposal

The diagram shown in figure 5 illustrates our proposal to extend the current BPMN’s

specification. It is represented as a class diagram and contains already existing relevant classes

(represented with «Core») to provide context to the added classes.

The provided diagram represents part of the solution that will allow us to operationalize the

formal and informal relations in an organization and, consequently, allowing for the process

diagnosis. It should be noted that this model only represents one organization (not a set of

organizations).

The «Core» classes represented in the model were added due to its relevance in the context of

the extension proposed. Other elements of the BPMN structure were not considered and,

therefore, represented in this model since they do not have any direct influence (or are directly

influenced) in the added elements. The added classes to the BPMN meta-model (all classes

without the «Core» indication) are: Role, Competence, Employee and Control Task. Although

all of these classes pose an important role in the process diagnosis, only the classes Role and

Employee will allow for the representation of formal and informal relations, respectively.

The Role class will be graphically represented by a Lane, hence the direct association between

them. Whenever a Role is represented as a Lane in a process, it must not appear in duplicate.

Also associated with this class, is the class Employee with a one-to-many association since, in

a given organization, an employee must necessarily perform a role even though he may have

responsibilities other than the ones imposed by its formal role. Also represented in the class

Role is the recursive association Hierarchy, which will define the formal relations within an

organization. Given that each employee plays a role in an organization, this association will

define the hierarchy level of the given employee and since each employee may only have one

direct hierarchical superior and none or many hierarchical inferiors, this is a one-to-many

association. An example on how this relationship is operationalized can be seen in figure 6

(instantiation created with software USE).

The Competence class is directly related to the Employee class and the Core class Task. The

first relationship refers to the soft/hard skills that a given employee has and that are relevant to

the organization. This association will create constraints when assigning tasks to employees

that are not skilled enough to be responsible for such tasks.

Competence and Task are related to each other by the associative class Skill. Whenever

determined task exists and has one or more required skills associated, the mandatory attribute

will define the compulsory level of such skill for that given task and it consists of a Boolean

value – true for a mandatory skill and false for a not mandatory skill. The specification of

mandatory and non-mandatory skills is indispensable to correctly assess and diagnose

processes and its task allocations, as we shall see later on the class instantiation example.

As shown in figure 7, we can see two skills as requirements for concluding a specified task

where, for this one in particular, one is mandatory and the other is not (defined by the

mandatory variable). Later in this paper, the process implications of possessing a mandatory

and/or a non-mandatory competence will be explained.

The Employee class is one of the main added features to the presented BPMN extension and

has a recursive association, Dependency, as well as other associations with the classes Task,

Role and Competence.

The Dependency association will represent the operationalization of the informal relations

between employees in an organization. Since it represents merely relations between individual

employees, it gets the shape of a recursive association in this class where an employee maybe

influenced by– influenced – or have the power to influence another – influencer.

Whenever determined task is defined, it is necessarily associated with at least one employee,

whom will be responsible for its completion meaning that no task can remain without a

responsible employee. Also, an employee that is added to the system cannot remain with no

tasks associated, it’s responsible for, at least, one task.

In figure 8 diagram, the instantiation of the formal and informal relations is presented between

three employees, each one being the detainer of a specific competence that is necessary to

successfully complete a task. In this example, the employee is responsible for the task although

he only detains one of the three skills needed. This is possible because this employee is also

Influencer to an employee (informal) that detains the second competence and hierarchically

superior (formal) to the third employee that detains the last one. These exceptions are only

conceivable through the use of OCL and its implementation will be explained further in this

paper.

Finally, the extension to the core class Task may also be defined as a Control Task. This class

was added in order to allow for the execution of a process diagnosis that assesses the allocation

of control tasks to employees. This scenario, to be presented in the next chapter, is represented

as a rule for process diagnosis based on (Lee 1988).

At this point, it is clear how the previously mentioned authors and their work was important to

develop the theory presented in this paper. On one hand, the contribution of different authors

regarding the dependency relationships between agents and on the other hand, the extension to

the existing specification of BPMN.

5. Operationalization of process diagnosis

Although the formal and informal relations between employees can now be operationalized,

the business process diagnosis still needs to be implemented with recourse to OCL. Just like

the previously mentioned work Enabling Resource Assignment Constraints in BPMN (Awad

et al. 2009), a metamodel extension was devised in order to support the added elements and the

OCL language will provide with the mechanism to create the business process diagnosis.

This diagnosis will occur based on inferred rules that define each organization’s policies,

culture and vision. Four rules, mainly based on (Castelfranchi et al. 1992) and (Lee 1988), were

created in natural language and transformed to OCL for exemplification purposes:

1. An employee may only be associated with a task if he has all the required skills. If he

only has the mandatory ones, he must have the power of influence (either formal or

informal) over an employee who detains the non-mandatory qualifications.

2. A task and its correspondent control task (if any) cannot be associated to the same

employee.

3. No employee should be assigned a control task if the task to be controlled is assigned

to another employee who is his superior or if there is any kind of dependency relation

between them.

4. If an employee A is hierarchically superior to B, and B is, in turn, hierarchically

superior to C, then A is hierarchically superior to B.

The use of these rules in the software USE implies a transformation to OCL language and a

posterior adaptation to USE, given that this software doesn’t support all the existing OCL

functions. As defined by the developers, “USE is a system for the specification of information

systems. (…) Contains a textual description of a model using features found in UML class

diagrams. Expressions written in the Object Constraint Language (OCL) are used to specify

https://sourceforge.net/projects/useocl/
https://sourceforge.net/projects/useocl/

additional integrity constraints on the model” (The UML-based Specification Environment

2015). In Figure 9 an overview of the USE system is provided.

When validating a system, a modeller specifies its model and observes the states generated by

the given system. The simulation of a change in a system state is provided by USE and its tools

based on UML and OCL.

As was mentioned, USE relies completely on the textual description and its constraints as input

for the conception of a model. The following images contain part of the class’s description used

in the construction of the metamodel previously presented.

As we can see, both Employee and Task classes contain functions that will later be used to

create the constraints that will provide with the process diagnosis. Each one of these functions

returns a Set of objects that respects the conditions defined in the function itself:

• subordinates return a set of hierarchically inferior employees to a certain employee.

• influencedEmps return a set of employees that are influenced (informally) by another

employee.

• influencial return a set of employees that are either formally or informally influenced

by a certain employee.

• mandatory_skills return a bag (set with duplicates) of skills that are mandatory

requirements of a given task.

• optional_skills return a bag of skills that are optional requirements of a given task.

As soon as all the classes are defined, the associations between them must also be created as

shown in Figure 10.

With all these components textually specified, USE automatically generates a class diagram

based on the description created. This diagram is shown in Figure 11 along with all the names

of the associations created.

Lastly, the invariants (constraints) must be defined. Each invariant, now in OCL, is based on

the previously presented rules in natural language (Figure 10).

Note that the skillAssign invariant and the other invariants that will be shown, are defined in

order to be integrated with the USE system. These same constraints, if created under a software

which integrates all of OCL functions would have a different definition.

In Figure 12 is shown an object diagram representative of the system in a given moment in

time and the validation of all the invariants.

As it shown, the skillAssign invariant is not satisfied since the employee responsible for the

task – Joao - doesn’t have all the required skills to perform it. However, if the employee Jose,

who is hierarchically inferior to Joao, has the missing required skill, the invariant is satisfied.

Alternatively, this invariant would also be satisfied if Joao could be able to informally influence

Jose. Both cases are shown in Figure 13.

This invariant is not satisfied whenever the same employee is responsible for a certain task and

its correspondent control task, as shown in Figure 12.

The invariant controlInfluenceAssign is not satisfied when an employee responsible for a

control task is hierarchically inferior to the employee responsible for the task to be controlled

or the first employee is informally influenced by the second.

In Figure 14 is shown a condition where the invariant is not satisfied. This happens because

the employee Joao is responsible for a task that controls another, which is allocated to an

employee that has influence (informal) over Joao. This incorrect task allocation may happen,

not only because of the existence of informal dependence between employees, but also when

there is formal dependence (Figures 15 and 16).

The last invariant follows the concept of the hierarchical chain, making sure that it is respected

when represented in the system. For instance, when three employees are represented and each

one of them is hierarchically inferior to the other, this event must be correctly defined,

otherwise the invariant will not be satisfied (Figures 17 and 18).

6. Conclusion

There are several existing tools that allow the computerization of business processes. Such

tools allow us to create and customize processes through the use of known modelling

languages, which implies dealing with the constraints these languages have. It is important for

the modeller that the system provides with a process diagnosis while it is being created given

that a simple task allocation error may compromise the given process with loss of effectiveness.

This work shows that it is possible to develop a business process modelling system, based on

existing tools/languages, that will perform an automatic diagnosis of such processes using

previously added information regarding the organization.

This added information may be a set of rules, like the ones that were used as example in this

paper. They resort to previous studies regarding not only formal and informal relations between

employees, but also good practices in business management. The correct operationalization of

said rules incur in the extension of the existing BPMN metamodel, which will allow to

accommodate the concepts underlying this subject. The transformation of these rules to an

OMG compliant language was necessary in order to enable a process diagnosis over BPMN,

hence its transformation to OCL. The role of the USE system in the development of this

methodology relied on the assessment of the successful diagnosis made on the meta-model’s

instantiation.

In addition to the rules that were used in this paper to make a process diagnosis (based on

formal and informal relations and good practices in business management), other factors such

as professional history, socioeconomic status and previous life experiences could be addressed

to enrich and consolidate the business processes diagnosis approach.

Besides the use of different factors influencing the allocation of tasks to employees, the

development of systems that put into practice the concepts addressed in this paper would also

be a valuable asset for organizations to better manage their business’s inherent processes.

References

Alexander Hamilton Institute (1923) Organization Charts. Astor Place, New York : Alexander

Hamilton Institute.

Alter S (2013) Work system theory: overview of core concepts, extensions and challenges for the

future. Journal of the Associationfor Information Systems 14(2):72-121.

Awad A et al (2009) Enabling Resource Assignment Constraints in BPMN.

Brambilla M, Fraternali P and Vaca C (2011) A Notation for Supporting Social Business Process

Modeling. In: Dijkman R, Koehler J and Hofstetter J (eds) Lecture Notes in Business Information

Processing: Preface. Milano : Politecnico di Milano, pp. 88-102.

Brocke J, Maaß W, Buxmann P et al (2018) Future Work and Enterprise Systems. Business &

Information Systems Engineering 60(4):357-366.

Castelfranchi C, Miceli M and Cesta A (1992) Dependence relations among autonomous agents.

Decentralized A.I. 13(3):14.

IBM. Object diagrams. IBM Knowledge Center. Available at:

https://www.ibm.com/support/knowledgecenter/SS8PJ7_9.1.1/com.ibm.xtools.modeler.doc/topics

/cobjdiags.html (accessed 01 Oct 2018).

Katzenbach J and Khan Z (2010) Leading Outside the Lines: How to Mobilize the Informal

Organization, Energize Your Team, and Get Better Results. San Francisco : Jossey-Bass.

Lara P, Sánchez M and Villalobos J (2017) OT Modelling: The Enterprise Beyond IT. Business &

Information Systems Engineering OnlineFirst:1-13.

Lee R (1988) Bureaucracies as Deontic Systems. ACM Transactions on Information Systems 6(2):87-

108.

Object Management Group (2013) Business Process Model and Notation (BPMN). [Online] 2013.

http://www.omg.org/spec/BPMN/2.0.2/PDF.

Object Management Group (2011) Unified modelling language (OMG UML) superstructure. [Online]

2011. https://www.omg.org/spec/UML/2.4.1/Superstructure/PDF.

Odell J, Parunak H and Fleischer M (2003) Modeling Agent Organizations using Roles. Software &

Systems Modeling 2(2):76-81.

Pugh S (1990) Organization Theory: Selected Readings. Harmondsworth : Penguin.

Ramos P and Fiadeiro J (1999) Diagnosing Process Design: A Formal Approach. In: Reengineering in

Action. s.l. : Imperial College Press, pp. 131-155.

Russel N et al (2005) Workflow Resource Patterns: Identification, Representation and Tool Support.

In: O Pastor and J Falcão e Cunha (eds) Advanced Information Systems Engineering. Berlin : Springer,

pp. 216-232.

Sungur T, Kopp O and Leyman F (2014) Supporting Informal Processes. In: The 6th Central European

Workshop on Services and their Composition (ZEUS 2014). Stuttgart, Germany : CEUR-WS.org.

Sungur T et al (2014) Informal Process Essentials. In: Proceedings of the 18th IEEE Enterprise

Distributed Object Conference (EDOC 2014). Stuttgart : IEEE.

The UML-based Specification Environment (2015) The UML-based Specification Environment. USE

OCL. 1 7, 2015. Available at: http://useocl.sourceforge.net/w/index.php/Main_Page (accessed 15

September 2018).

Wang C and Ahmed P (2002) The Informal Structure: hidden energies within the organisation. s.l. :

Management Research Centre Wolverhampton Business School.

Figure 1 - Org Chart built with Actors

Figure 2 - Conceptual meta-model (Sungur et al. 2014)

Figure 3 - Extend BPMN metamodel (Awad et al. 2009)

Figure 4 - Task allocation constraints (Awad et al. 2009)

Figure 5 - BPMN extension proposal

Figure 6 - Hierarchy and Role classes operationalization

Figure 7 - Competence class operationalization

Figure 8 - Employee class operationalization

Figure 9 - USE approach - an overview1

Figure 10 - Associations between classes

1 Image source: http://useocl.sourceforge.net/w/index.php/Main_Page

association Hierarchy between
 Role [0..1] role superior
 Role [0..*] role inferior
end

association Position between
 Role [1..1] role plays
 Employee [0..*] role played_by
end

association Competent between
 Employee [0..*] role competent
 Competence [1..*] role capacity
end

association Accounting between
 Employee [1..*] role accountable
 Task [1..*] role accountability
end

Figure 11 - USE Auto-generated class diagram

Figure 12 - SkillAssign invariant not satisfied

Figure 13 - Rule one: SkillAssign

Figure 14 - ControlAssign invariant not satisfied

An employee may only be associated with a task if he has all the required skills. If he only

has the mandatory ones, he must have the power of influence (either formal or informal)

over an employee who detains the non-mandatory qualifications.

constraints

context Employee

 inv skillAssign:

self.capacity->includesAll(self.accountability.mandatory_skills())
and self.influencial().capacity->
includesAll(self.accountability.optional_skills())

Figure 15 - ControlInfluenceAssign invariant not satisfied (hypothesis 2)

Figure 16 - ControlInfluenceAssign invariant satisfied

Figure 17 - Rule 4 HierarchyCheck

Figure 18 - HierarchyCheck invariant not satisfied

If an employee A is hierarchically superior to B, and B is, in turn, hierarchically superior

to C, then A is hierarchically superior to B.

constraints

context Employee

 inv hierarchyCheck: Employee.allInstances->

forAll(e1, e2, e3 | e1.subordinates()->
includes(e2) and e2.subordinates()->
includes(e3) implies e1.subordinates()->includes(e3))

