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With the development of automated container terminals (ACTs), reducing the loading and unloading time of operation and
improving the working efficiency and service level have become the key point. Taking into account the actual operation mode of
loading and unloading in ACTs, a mixed integer programming model is adopted in this study to minimize the loading and
unloading time of ships, which can optimize the integrated scheduling of the gantry cranes (QCs), automated guided vehicles
(AGVs), and automated rail-mounted gantries (ARMGs) in automated terminals. Various basic metaheuristic and improved
hybrid algorithms were developed to optimize the model, proving the effectiveness of themodel to obtain an optimized scheduling
scheme by numerical experiments and comparing the different performances of algorithms.*e results show that the hybrid GA-
PSO algorithm with adaptive autotuning approaches by fuzzy control is superior to other algorithms in terms of solution time and
quality, which can effectively solve the problem of integrated scheduling of automated container terminals to improve efficiency.

1. Introduction

As the global economic growth accelerates, the demand of
container transportation expands progressively. *e auto-
mated terminal plays an important role in the global supply
chain. However, energy consumption and carbon emission
increase sharply, and how to reduce the energy and costs and
how to improve the efficiency have been the goal of ports [1, 2].
In the fierce competition between ports, the automated op-
eration mode can not only reduce labor costs but also improve
the service level, whichwill attractmore customers, tomeet the
port requirements of large scale and high efficiency. So the
automated container terminals devote themselves to short-
ening the working time and advancing the economic effi-
ciency, which have become the key to sustainable development
of ports. However, due to the high cost of equipment in
automated terminals, it is hard to increase the number of
common used equipment to improve the efficiency [3], such as
quay cranes (QCs), automatic guided vehicles (AGVs), and
yard cranes (YCs). *erefore, the reasonable scheme of in-
tegrated scheduling of three kinds of equipment for loading

and unloading container operations has become the key to
improving efficiency of automated terminals.

Over the past decade, automated terminals have become
the development trend of ports in China; for example,
Xiamen Port has been gradually developed in practice op-
eration, Shanghai Yangshan Deep Water Port and Qingdao
Port have been finished and put into operation at present,
and many ports are under transformation or construction of
automated terminals. And specifically, in Xiamen Port, QCs
use double trolley to replace single trolley for operation,
AGVs have been used instead of trucks for horizontal
transportation, and automated rail-mounted gantries
(ARMGs) have almost displaced tyre cranes in yards. *e
reasonable scheduling scheme can make full use of re-
sources, reduce the berth time of ships and the waiting time
of equipment, and improve the efficiency of loading and
unloading in ports. *erefore, it is of great significance to
study the integrated scheduling of QCs, AGVs, and ARMGs
to improve the efficiency and help to save energy in ports.

Our contribution is two-fold. First, most of the research
about automated terminals is about single or two parts of
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equipment. *is paper considers the actual situation of
loading and unloading operation modes, putting forward a
method to realize the integrated scheduling of QCs, AGVs,
and ARMGs, with the objective to minimize overall oper-
ation time.*is well-thought-out model is more reliable and
realistic and has better schedule optimization.

*e second is that most of the research studies of op-
timization algorithms in solving this kind of problem use
basic metaheuristic algorithms. We perform extensive nu-
merical experiments to clearly compare the accurate algo-
rithm (branch and bound), the basic metaheuristic
algorithms (genetic algorithm, particle swarm optimization,
and bat algorithm), and the improved metaheuristic algo-
rithm (hybrid GA-PSO algorithm and hybrid BAT-GA) to
better illustrate this problem, obtaining optimum solutions
in short time. And this result shows that the hybrid GA-PSO
algorithm with a fuzzy logic controller for adaptive auto-
tuning is effective and shows significant improvement
compared with other methods.

*is paper is organized as follows. Section 2 reviews the
relevant literature. In Section 3, the integrated scheduling
problem is formulated as a mixed integer programming
(MIP) model. Several algorithms are proposed in Section 4.
Numerical experiments based on simulation optimization
are conducted to examine effectiveness of the proposed
method and the performance of different algorithms in
Section 5. Finally, some conclusions of this research are
drawn in Section 6.

2. Literature Review

Automated terminal system is very complex, involving mul-
tiple subsystems.*ere are numerous studies on the scheduling
and optimization of automated terminals such as the sched-
uling of a single equipment separately [4–7], the collaborative
scheduling between two handling equipment [8–12], and the
integrated scheduling between three handling equipment
[13–16]. Because automated terminals are a complex integrated
system, the research of single- or two-equipment scheduling is
not significant for the improvement of operation efficiency of
automated terminals, which also does not accord with the
actual situation of automated terminals.

2.1. Accurate Algorithms of Automated Terminals. For ac-
curate algorithms of container terminals, most of the research
studies focused on branch and bound algorithm (B&B) and
data envelopment analysis (DEA). For example, Pjevčević
et al. [17] studied the collaborative scheduling of QCs and
AGVs in automated terminals, used the DEA method to
analyze the operation efficiency of unloading containers, and
finally obtained the reasonable scheduling scheme. Jiang and
Jin [18] researched the integrated scheduling problem of QCs,
AGVs, and YCs, with the goal of minimizing cost of QCs, by
the B&B method to solve the built mixed integer pro-
gramming model, through numerical experiments showing
that this method can improve the efficiency of terminals.
*ere are also some comparisons of accurate algorithms and
other algorithms. Alsoufi et al. [4], based on the scheduling

problem of QCs, used the CPLEX to evaluate and compare the
B&Bmethod with the genetic algorithm, from small- to large-
scale examples, but the results showed that the genetic al-
gorithm had better performance.

As mentioned above, the accurate algorithm can get the
exact solution, but when the scale is relatively large, it shows
lack of feasibility, due to the influence of computation time
and complex logic relation in program [19–21]. So more
works chose to use metaheuristic algorithms.

2.2. Basic Metaheuristic Algorithm of Automated Terminals.
For basic metaheuristic algorithms of container terminals,
most of the literature mainly used genetic algorithm (GA),
particle swarm optimization (PSO), and simulated annealing
(SA), which are usually based on the perception or expe-
rience to construct algorithms. For example, Moghaddam
et al. [22] proposed a mixed integer programming model of
QC scheduling, and it was hard to obtain the optimal so-
lution through optimization software in reasonable time, but
the GA solved this problem and showed the certain supe-
riority. Lu and Le [23] solved the collaborative scheduling
model of AGVs and YCs by using PSO algorithm, and the
results showed that this method could obtain the optimized
solution. Combining berth allocation with the QC sched-
uling problem, Salhi et al. [24] compared the results of GA
with those of the exact CPLEX and showed the rationality of
using the GA to find the optimal solution. However, in
recent years, there has been much research on the com-
parison of different algorithms of automated terminals.
Homayouni et al. [14] researched the integrated scheduling
of container terminals, adopting the GA and comparing it
with the SA, and the result indicated that with the increase in
the number of containers, the solving efficiency of the GA is
obviously better than the SA. Tominimize the delay time and
energy consumption of ships, He et al. [25] used the GA and
PSO algorithm to effectively solve this problem and dis-
cussed the solving ability of different algorithms.

Although the basic metaheuristic algorithms may not
obtain the exact solution, it can obtain the suboptimal so-
lution and the complexity of computing time is relatively
low, and comparatively, its applicability and stability are
better than those of the accurate algorithm [26–28]. How-
ever, taking more factors into consideration in automated
terminals, the model is more complex and the basic met-
aheuristic algorithm has shown up the disadvantages such as
longer computing time and slow convergence speed [29, 30].

2.3. Improved Metaheuristic Algorithm of Automated
Terminals. For the application of improved metaheuristic
algorithms to container terminals, many attempts have been
made to improve different algorithms. For example, to solve
the ship scheduling problem, Wang et al. [31] used the im-
proved discrete chaotic PSO algorithm, and the simulation
optimization results showed that this method was suitable for
this problem. Kaveshgar et al. [32] proposed that the extended
GA designed to solve the scheduling problem of QCs can find
the optimal solution of a large-scale example in a shorter time.
According to the working efficiency of QC scheduling,
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preparation time, andmakespan, Legato et al. [33] established
the mixed integer programming model, with the modi�ed
B&B method, through numerical experiments obtaining the
high quality of scheduling solution. A genetic coupling
heuristic algorithm by Gu et al. [34] was designed to solve the
problem of cooperative scheduling of yards in terminals, and
the performance of the model and proposed algorithm was
con�rmed with reference to numerous cases. Shu et al. [35]
studied the scheduling of automatic stacker cranes in auto-
mated terminals, established a mathematical model, and
proposed an improved multiobjective genetic algorithm,
which satis�ed the requirements of time sensitivity in de-
cision, improving the intelligence degree of container ter-
minals. Li et al. [36], with theminimum shipping distance and
time as a target, has set up a cooperative scheduling model of
berths and QCs, based on the improved PSO algorithm to test
the performance of the model by numerical experiments. In
order to improve the e�ciency of the berth and horizontal
transportation, Dkhil et al. [13] combined the multiobjective
optimization model with Pareto promotion, using the
modi�ed adaptive tabu search algorithm to �nd the e�ciency
index. De et al. [37], considering the scheduling and path
planning in terminals, proposed a mixed integer nonlinear
programming model by using an e�ective search algorithm
and, comparing it with PSO and genetic algorithms, illus-
trated the superiority of the proposed algorithm.

On the whole, improved metaheuristic algorithms are
obviously better than metaheuristic algorithms in conver-
gence speed and accuracy [38–41], which is mainly problem-
oriented and shows improvement according to the structure
and characteristics of the problem. So a majority of studies
still selected the improved metaheuristic algorithms to solve
this kind of problem in recent years.

3. Model Formulation

Automated container terminals have many parts, and this
paper mainly studies the seaside operation area, the hori-
zontal transport, and the storage yard, which are correlated
and constrained mutually. �e seaside operation area is
equipped with the QCs for loading and unloading con-
tainers; AGVs are used in horizontal transportation, which
can move containers from the QC to the yard; the storage
yard is equipped with ARMGs. �e yard has two ARMGs
and AGV-mates in front of each block. Figure 1 shows the
layout of a typical automated container terminal.

�e main operational process of the loading and
unloading of this problem is as follows: (1) �e AGV re-
ceived the unloading order (loading order) to transport the
container from the QC to the assigned block (to transport
the container from the AGV-mate to the assigned QC).
Firstly, the main trolley of QC unloads the container from
the ship to the transfer platform of QC and then the portal
trolley unloads the containers from the transfer platform to
the AGV, as shown in Figure 2. (2) �e AGV transports the
container to the AGV-mate in front of the speci�ed block,
which obeys the operation scheduling rules; the AGV can
provide service to any QCs and blocks, and the path of
transportation has been set. (3) �e front ARMG puts the

container from AGV-mate to the staging area in the block,
and the back ARMG puts the container to the speci�ed
location of yard or the external truck, and then, the AGVwill
do the next task. �e loading process is the opposite.

3.1. Assumptions. �is paper assumes the following condi-
tions for this scheduling problem of container terminals:

(1) �e main trolley of QC loads the container to the
transfer platform or unloads the container from the
transfer platform to the ship, and its running time is
related to the position of the container in ships,
which is subjected to uniform distribution.

(2) �e portal trolley loads the container to AGV or
unloads the container from the transfer platform to
AGV and its running time is �xed, without regard to
the capacity of transfer platform and the number of
AGV-mates.

(3) �e QC and the ARMG can only load and unload
one container at a time. AGVs can only transport
one container at a time.

(4) �e time for a crane (including both QCs and
ARMGs) to release/pick up a container on/from the
AGV/block is negligible, the time for the transfer of
container from the AGV-mate to the storage yard is a
�xed value, and the time for the transfer of containers
from the storage yard to the speci�ed location of yard
or the external truck satis�es uniform distribution.

(5) In order to reduce the empty-loading ratio and
improve the utilization of AGVs, the AGV completes
a loading task and then to perform an unloading task
or after performing an unloading task to complete a
loading task.

3.2. Model Parameter
(1) Parameter set

U: set of import containers
L: set of export containers

Yard crane

Quay crane

Ship

AGV guide path

AGV-mate

Storage yard

Figure 1: Layout of automated container terminal.

Mathematical Problems in Engineering 3



N: set of containers, N � U∪L
V: set of AGVs
Q: set of QCs
B: set of blocks
S: set of dummy starting point of QCs
F: set of dummy �nishing point of QCs
Os : Os � Q∪ S
O : O � Os ∪OF
OF : OF � Q∪F

(2) Symbolic parameters

T1 is the time of unloading the container by the
portal trolley to the apron under the QC. It is also
known as the time of discharge of the container in
the apron to the transfer platform.
T2 is the time recorded when the �rst ARMG puts
the container on the storage area.
M is a very large positive number.
dik is the time when the QC k uses the main trolley
to handle the ith container from the ship to the
transfer platform. It is also known as the time when
the QC k puts the ith container from the transfer
platform to the ship.
ti is the time taken by AGV to transport the ith
container.
zik is the time when the second ARMG puts the ith
container from the storage area to the end position
after the QC k handling of the ith container.

(3) Decision variables
Not 0-1 variables:

fik is the time when the QC k has �nished the ith
container
gik is the time when the QC k starts to handle the
ith container, i ∈ Nk

pik is the time when the QC k uses the portal trolley
to get the ith container from AGV or the ith
container to be put on the AGV
zik is the time when the QC k unloads the ith
container on AGV-mate or loads the ith container
from AGV-mate

0-1 variables:

xikjl is the AGV, which just handling the ith con-
tainer of the QC k is scheduled to handle the jth
container of QC l, i ∈ U, j ∈ L or i ∈ L, j ∈ U
αikc is the AGV c to handle the ith container of QC
k, αikc � 1, otherwise αikc � 0
θikb is the ith container of QC k located in block b,
θikb � 1, otherwise θikb � 0

3.3.Model. �emathematical programming model is set up
by the above parameters, to minimize the loading and
unloading time of the ship; this integrated problem can be
formulated as follows:

min : max Fk − Sk( ). (1)

�e objective of this model is to minimize the time
di�erence between �nish of the last task and start of the �rst
task, which represents the loading and unloading time of the
ship.

Subject to constraints,

Fk � max
k∈OF

fik}{ , ∀i ∈ Nk, (2)

Sk � min
k∈OS

uik}{ , ∀i ∈ Nk. (3)

Constraint (2) means that it selects the last time from the
set of all containers task, as the the completing time of the

1
Discharging

Loading
2

Main
trolley

Portal
trolley

Figure 2: Operating modes of loading and unloading.
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last task. *e constraint expressed in (3) ensures that the
earliest time is considered from a time set of all containers as
the starting time of the first task:


l∈OF


j∈L

xikjl � 1, ∀i ∈ U, k ∈ OS,
(4)


k∈OS


i∈U

xikjl � 1, ∀j ∈ L, l ∈ OF,
(5)


c∈V

αikc � 1, ∀i ∈ Nk, k ∈ OS, (6)


i∈Nk

αikc � 1, ∀c ∈ V, k ∈ OF, (7)


b∈B

θikb � 1, ∀i ∈ Nk, k ∈ OS, (8)


i∈Nk

θikb � 1, ∀b ∈ B, k ∈ OS. (9)

Constraint expressed in (4) ensures that the same AGV
is used to complete the loading task of the QC, after it has
finished the unloading task. Constraint (5) implies that
after the QC finishes a loading task, the same AGV is used
to complete the unloading task of the QC. Constraint (4)
and Constraint (5) confirm the completion of the loading
and unloading processes. Constraint (6) indicates that
each loading and unloading task can only be performed by
one AGV. Constraint (7) implies that every AGV only
performs one task at a time. Constraint (8) means that the
ARMG transports a container to be stacked in the assigned
block of the storage yard. Constraint (9) expresses that
each ARMG in block can only load and unload one
container at a time:

gik + dik + T1 ≤pik, ∀i ∈ U, k ∈ O, (10)

pik + 
c∈V

tiαikc ≤ zik, ∀i ∈ U, k ∈ O, (11)

zik + T2 + 
b∈B

hikθikb ≤fik, ∀i ∈ U, k ∈ O. (12)

Constraints (10) to (12) represent the corresponding
relationship of time between a ship starting and finishing a
loading task. Constraint (10) represents the time when the
AGV begins to transport the container from the QC, based
on the time that the portal trolley of the QC takes to handle
the container. Constraint (11) means the relationship of the
time when the AGV starts to transport the container to the
AGV-mate. Constraint (12) signifies the relationship be-
tween the time the container transportation is finished by
the ARMG and the time the container is transported to the
AGV-mate:

zik + 
c∈V

tiαikc ≤ zjl + M 1 − xikjl ,

∀i ∈ U, j ∈ L, k ∈ OS, l ∈ OF.

(13)

Constraint (13) gives the relationship between the time
when the same AGV finishes an unloading task and then
starts the next loading task:

gjl + 
b∈B

hjlθjlb + T2 ≤ zjl, ∀j ∈ L, l ∈ O, (14)

zjl + 
c∈V

tjαjlc ≤pjl, ∀j ∈ L, l ∈ O, (15)

pjl + T1 + djl ≤fjl, ∀j ∈ L, l ∈ OF. (16)

Constraints (14) to (16) express the relationship between
the time when the container is initially loaded from the block
and the completion of loading at each time of shipment.
Constraint (14) represents the time when the ARMG in the
back of block obtains the container, which is less than the
time needed for the AGV to obtain the container from the
AGV-mate. Constraint (15) means that the starting time of
AGV from the block does not exceed the time of the AGV
arriving at the QC. Constraint (16) implies the time taken by
the portal trolley in QC to obtain the container from the
AGV which is no more than the time when the loading task
is finished:

pjl + 
c∈V

tjαjlc ≤pik + M 1 − xjlik ,

∀i ∈ U, j ∈ L, k ∈ OS, l ∈ OF.

(17)

Constraint (17) represents the time relation between the
completion of a loading task by the AGV and start of the
next unloading task:

g(i+1)k − gik � dik + d(i+1)k, ∀i ∈ U, k ∈ O, (18)

g(i+1)k − gik � hik + h(i+1)k, ∀i ∈ L, k ∈ O, (19)

dik > 0, gik ≥ 0, hik > 0, pik > 0, fik > 0 , zik > 0,

∀i ∈ Nk, k ∈ O,

(20)

ti ≥ 0, ∀i ∈ Nk. (21)

Constraint (18) explains the time relation of the main
trolley of QC, when it starts to unload two consecutive
containers. Constraint (19) represents the time relationship
of the ARMG in the back of block, when it loads two
consecutive containers. Constraint (20) represents the range
of time parameters. Constraint (21) expresses the range of
time parameters about the AGVs’ transportation.

4. Proposed Algorithm

4.1. Hybrid GA-PSO (HGA-PSO) Algorithm with Fuzzy Logic
Controller to Adaptive Autotuning. *e genetic algorithm
(GA) and particle swarm optimization (PSO) are two well-
known metaheuristic methods of optimization [42, 43]. *e
GA takes all the individuals in the population as the research
object, which is a method to search the optimal solution by
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simulating the biological evolution process in nature. *e
solving problem of a population is according to the evolution
by natural selection (probability optimization), each sub-
sequent generation evolved better approximation. With the
aid of crossover and mutation of genetic operators, gener-
ating the new population of solution and then to select
individual by the fitness value, the selected individual will be
more adaptable to the environment.*e best individual after
decoding can be used as the approximate optimal solution of
the problem.

PSO is a parallel algorithm which is inspired by bi-
ological population characteristics and has strong robust-
ness, simulating the random searching process of birds for
hunting and extending it to multidimensional space. All
particles by evaluating their fitness function to determine the
current location, with the speed of particles to adjust the
distance and direction of their flights, and every particle has
the memory function and can remember the best searching
site.

*e flight speed of the particle can be dynamically ad-
justed by the flight experience of the particle and its com-
panions; PSO can flexibly update the position of the particle
in real-time by using equations (22) and (23), which shows
its superiority [44]. Compared with the GA, which is easier
to implement, the PSO does not require alteration of many
parameters. *e fitness of particle can be calculated as

vk(t + 1) � vk(t) + b1r1 hbestk − xk(t)  + b2r2 gbest − xk(t)( ,

(22)

xk(t + 1) � xk(t) + vk(t + 1), (23)

where vk(t) is the velocity of particle at the tth iteration; b1
and b2 are the acceleration constants; and r1 and r2 ∈ [0, 1],
which follows the uniform random distribution.

GA is an algorithm showing stability and applicability,
and its remarkable performance has been proved in many
research studies [45]. However, the metaheuristic GA
cannot guarantee the optimal solution in all cases, due to the
uncertain parameters. Yun and Gen [46] researched the
adaptive autotuning strategy by changing the average fitness
of GA, taking advantage of the mathematical optimization
method, which can adaptively update crossover and mu-
tation rates during the genetic search processes, to achieve
the fuzzy logic control in the parent and their offspring. If
this approach is applied in this problem, the average fitness
at generation t can be set as follows:

Δfavg(t) � fPs
(t) − fOs

(t) �
1
Ps



Ps

k�1
fk(t) −

1
Os



Os

k�1
fk(t),

(24)

where Ps and Os are the population size and offspring size
that satisfy the constraints, respectively, and f(t) is the
adaptability function, representing the individual fitness.

We proposed that this hybrid GA-PSO is an improved
metaheuristic algorithm. It not only combines the PSO
parameters with GA operators but also uses the fuzzy logic
controller with the initialization of parameters and

particles, which through the adaptive auto tuning strategy
can constantly adjust in the iteration process of population.
*e overall procedure of this method is illustrated in
Figure 3 to obtain a better solution to this problem. *e
specific reasons of using this improved hybrid GA-PSO
algorithm are as follows: (a) it has more adaptability and
compatibility, and it accords with the characteristics and
structure of this model in container terminals and is suited
for dealing with many parameters and relative complex
logic relations; (b) it makes use of advantages of different
metaheuristic algorithms (PSO and GA) and has better
global searching ability, especially in solving process; (c) it
can improve the diversity of the population and the ability
of continuous optimization. On the whole, it can promise a
better performance in solving the actual problem compared
with the other algorithms [47–49].

As discussed above, we consider the integrated sched-
uling of QCs, AGVs, and ARMGs in container terminals; the
task encoding procedure of this is as follows: (1) applying the
smallest position value (SPV) rule [48, 50]; (2) assigning the
tasks’ codes to the related particles; (3) identifying the op-
eration sequence in each task. *is paper uses integer
encoding, assuming that there are 2 QCs, each QC having 4
loading containers and 4 unloading containers, and 4 AGVs
to transport containers. *e QCs and blocks have been
matched, but the chromosomes are relatively long and
multiple-point crossover and swapping mutation are used,
as shown in Figure 4. We select multiple crossing points on
chromosomes randomly and exchange the subsequence
between the parent and the offspring. After the crossover, to
effectively improve the chromosomes, the genes in chro-
mosomes are needed to be checked and repaired by the
swapping mutation.

*e final encoded solution should estimate the objective
function, which minimizes the loading and unloading time
of the ship as given in equations (2) to (21). Equation (1) is
used to evaluate the total fitness values of this problem.

4.2. Hybrid BAT-GA (HBAT-GA). Bat algorithm (BAT) is
used to simulate the random search of bats using the sonar to
detect prey and avoid obstacle in nature, the process of
optimization and searching is also themovement and prey of
the individual bat in populations. Taking advantage of
echolocation technology of bats, using different pulse fre-
quencies and loudness, the BAT solved the problem by
evaluating the value of fitness function to judge the location.
It has the advantage of distributed and fast convergence but
is still a new swarm intelligence algorithm, due to the in-
stability of convergence and imprecise calculation in solving
problems [51, 52]. *e hybrid BAT-GA is a method which
utilizes the crossover, mutation, and selection of GA, to
increase the diversity of population and the ability of global
search. Inspired from diverse metaheuristic algorithms,
various improved kinds of BAT were designed and used to
solve many optimization problems successfully [53].

In BAT, each bat is defined by its position Xi, velocity Vi,
pulse frequency Fi, pulse loudness Ai, and pulse emission rate
Ri to search the space; each bat updates the following equations:
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Fi � Fmin + Fmax − Fmin( )β, β ∈ [0, 1],

Vt+1i � Vti + Xt
i − Xi( )Fi,

Xt+1
i � Xt

i + V
t+1
i ,

Xnew
i � Xold

i + εAi, ε ∈ [− 1, 1],

At+1i � αAti , 0< α< 1,

Rt+1i � R0
i − exp(− σt), σ > 0.

(25)

Figure 5 shows the whole pseudo code of hybrid BAT-GA.
�e process should be repeated until reaching the maximum
population.�e gene with global optimumwill be returned as
the best �tness once meeting the optimal stopping criteria.

5. Computational Experiments and Discussion

To achieve the integrated scheduling of QCs, AGVs, and
ARMG, we used the commercial software AIMMS 3.11 for
small-sized problems, which obtained branch and bound
(B&B) algorithm in CPLEX. Due to the increase in the
number of containers, it was di�cult to obtain optimal so-
lutions. �erefore, we adopted the metaheuristic algorithm
to obtain approximate optimal solution for large-sized
problems. We also provided the comparison results between

the metaheuristic algorithm and AIMMS to verify the ef-
fectiveness of the metaheuristic algorithm in small-sized
problems. We implemented the various heuristic and im-
proved heuristic algorithms in MATLAB 2018a on a com-
puter with an Intel (R) Core (Tm) CPU@3.40 i7-6700GHz
and 4GB RAM running theWindows 10 operation system. In
order to reduce the deviation caused by the randomness of the
heuristic algorithm, every problemwas solved 20 times, where
the average computation time (CPU time) and best �tness
value (BFV) were used as the �nal results.

5.1. Initial Setting

(1) �e number of loading and unloading containers
varied from 1 to 1000, where 4∼100 was considered as
the small-sized problem and 100∼1000 as the large-
sized problem. We also considered the number of
blocks and ARMGs in the ranges 2∼8 and 4∼16, while
the number of considered AGVs varied from 8 to 24.

(2) In this work, we obtained the port operation values
from the Xiamen Automated Container terminal. �e
processing time of the main trolley that placed the
container onto the transfer platform followed the
uniform distribution U (20, 40) s. �e processing time
of the portal trolley that placed the container onto the
AGV from the transfer platform was �xed at 20 s, and
the processing time of the ARMG localized in the front
of the yard, which obtained the container from the
AGV-mate and then unloaded it in the storage area, was
�xed at 25 s.�e processing time of ARMG localized in
the back of yard that moved the container from the
storage area to the assigned truck followed the uniform
distribution U (20, 30) s. �e path of horizontal
transportation is set in advance. All of these values
correspond with a real-time situation of the terminal.

(3) �e GA parameters were set based on preliminary
tests, including a crossover rate (Pc) of 0.9, mutation
rate (Pm) of 0.1, population size (Ps) of 50, and
maximum generation (Mg) of 500. �e PSO pa-
rameters included alternate rate (Pa) [0.8, 2, 2] and
precious rate (Pr) 0.05.�e BATparameters included
α of 0.95, σ of 0.9, pulse loudness Ai ∈[0, 1], and
pulse emission rate Ri ∈[0, 0.5].

5.2. Results for Small-Sized Problems. �irteen small-sized
experiments were performed, where the number of con-
tainers varied from 4 to 100. Table 1 shows that for the small-
sized problems, the GA achieves approximately BFV com-
pared to the B&B in terms of speed, where the CPU time of
the former algorithm ranged from 3.46 to 12.66 s and that of
B&B ranges from 12.37 s to 11534.82 s. �e B&B cannot be
applied for experiments with more than 40 containers,
which increases the computation time exponentially. �e
results also con�rm that B&B cannot solve the large-sized
problems within a reasonable time frame. In addition, we
observe that the di�erence of BFV between the GA and the
B&B is small, where the maximum gap rate of BFV is 4.20%.

procedure: hybrid GA-PSO for the integrated scheduling in ACTs
input: problem data, PSO parameters (f(x), b1, b2, maxIter), GA parameters

output: the best solution

output: the best solution

begin

intialize (vk, xk) for each particle k;// P(t) = [xk(t)]: population
evaluate xk (t) by decoding routine and keep the best solution;
while t ≤ maxIter do

for each particle xk in swarm do
update velocity vk(t + 1) and position xk(t + 1) by (22) and (23);
find the local best position of the particle hbestk

;

find the global best position for the particle gbestk
;

evaluate xk(t + 1) by encoding routine;

if f(xk(t + 1)) < f(hbestk
) then

update hbestk
 = xk(t + 1)

end

end

end;

(Ps, Mg, Pm, Pc) and {Pc(t – 1), Pm(t – 1), ∆favg(t – 1), ∆favg (t), ε, γ}

gbest = argmin{f(hbestk
, f (gbest))}

creat offspring C(t) from xk(t + 1) by multi-point crossover routine;
creat offspring C(t) from xk(t + 1) by insertion mutation routine;
check and repair all offspring C(t) for feasible solution;
improve offspring C(t) by hill-climb method routine;
evaluate C(t) by decoding routine and update the best solution by
comparing with gbest;
select P(t + 1) from P(t) and C(t) by routine wheel selection routine;
tune parameter by the fuzzy logic controller to adaptive auto tuning by (24);

if ε ≤ ∆favg(t – 1) ≤ γ and ε ≤ ∆favg(t) ≤ γ

if –γ ≤ ∆favg(t – 1) ≤ –ε and –γ ≤ ∆favg(t) ≤ –ε

if –ε ≤ ∆favg(t – 1) ≤ ε and –ε ≤ ∆favg(t) ≤ ε

then increase Pm and Pc for next generation;

then decrease Pm and Pc for next generation;

then rapidly increase Pm and Pc for next generation;

t o, iteration number;

+ 1;t t

Figure 3: Procedure for hybrid GA-PSO and the fuzzy logic
controller for adaptive autotuning.
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�e GA can obtain the optimal �tness value for the �rst two
cases. �e BFV exhibits the same growth trend as the
number of containers increases, as shown in Table 1.

5.3. Results for Large-Sized Problems. As the CPU time in-
creases, it becomes more di�cult to use the B&B method to

solve the large-sized optimization problems. GA can gen-
erate an optimal solution in small-sized problems within a
reasonable time frame, so we used some metaheuristic al-
gorithms (PSO,BAT) to solve the large-sized problems about
the automated terminals. We considered a number of
containers in an interval of 150–1000 with 8–24 AGVs, 2–8
QCs, and 2–8 blocks to perform simulations. Table 2

procedure: Hybrid BAT-GA for the integrated scheduling in ACTs
input: Problem data, BAT parameters [position X(i), velocity V(i), pluse rates R(i), pluse loudness
A(i), emission rate R(i)] and GA parameters (Ps, Mg, Pm, Pc)
output: the best solution (fitness value)f

output: the best solution

begin

initialize [X(i), V(i)] for each bat i; //f: population
define the pulse frequency F(i) at X(i);
calculate the fitness of each initial position F(i) at X(i) by (25);
while (i < maximum number of iterations) and (optimal solution not found) do

for each bat X(i) in population do
generate the new solution by adjusting the F(i) and V(i) and adapting velocity V(i)r by (26)
and (27);
find and evaiuate a new soluton f ∗;
if (rand > R(i)) then

generate a local solution around the selected best solution
end if

end for
send the local best to genetic population;
for each genetic in population do

generate a global best solution f ∗∗ by crossover rate Pc and mutation rate Pm;

if (boundary < f ∗∗) then
generate a random solution with in the boundary

end if;
rank the chromosome to determine the best solution;

end for

end while
evaluate fitness and met the criteria rule;

end;

i i + 1

i i + 1;

t o,

Figure 5: Procedure for hybrid BAT-GA.

Parent 1 1 5 2 7 6 8 3 1 2 3 44 1 2 3 4 5 2 8 4 1 3 7 6

Parent 2

Unloading AGV number Loading

8 3 7 5 1 2 4 1 3 2 46 1 4 2 3 6 1 5 3 7 2 8 4

Offspring 1 4 2 7 5 1 8 3 1 2 4 36 1 3 4 2 8 4 5 3 7 2 8 4

Offspring 2 8 3 2 7 6 5 1 3 2 1 24 1 4 3 4 6 5 8 4 1 3 7 2

4 2 7 5 1 8 3 1 2 4 36 1 3 4 2 8 4 5 3 7 2 8 4

8 4 3 7 2 1 6 1 2 3 45 1 2 3 4 5 2 8 4 1 3 7 6

Parent

Offspring

Chromosome

Crossover 

Mutation

Figure 4: Example of crossover and mutation operations.
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presents the simulation results of PSO, GA, and BAT.
Viewed generally, we can find that the GA performs better
than others; the BFV of GA compared with PSO and BAT
shows more optimization, with less time of CPU.

However, with the increase of the number of containers,
the computation time has been increased sharply; the time
was still long that we used the metaheuristic algorithm to
solve this problem, which may not meet the needs of
scheduling in current container terminals, so we tried to take
advantage of the improved heuristic algorithms to solve this
optimization problems faster and more stably. So the hybrid
GA-PSO algorithm (HGA-PSO) and hybrid BAT-GA
(HBAT-GA) were used to solve the large-sized problems,
and the results are given in Table 3.

From our experiments, uniting Tables 2 and 3, we
conclude that (1) our proposed hybrid GA-PSO algorithm
performs more stably to obtain near-optimal solutions to
large-sized problems (examples 15, 25, 30, and 31 in Ta-
ble 3); from example 31, the number of containers is 1000

and the CPU time is less than 8 minutes (452.08 s), which
comply with the requirements of scheduling operation in
terminals; (2) the BFV increases with the number of
containers, as well as it takes longer time to obtain the
solution with the increased number of QCs, AGVs, and
blocks; (3) the appropriate integrated scheduling scheme is
very important; with the sharp increase of containers, it
always choose to add the equipment number of QCs,
AGVs, and blocks, but it may not truly reduce the com-
pletion time and improve overall operational efficiency
(examples 16, 17, and 18 in Table 2; examples 17, 18, and 19
in Table 3).

Figures 6–8 show the performance comparisons for
different algorithms. Figure 6 shows the simulation of 650
containers, 18 AGVs, 6 QCs, and 6 blocks; GA and PSO
reach the convergence at the 350 and 420 generations, but
HGA-PSO achieves the convergence before 130 generations
and has a better optimal fitness value. *e HGA-PSO
combines the stability of GA and the velocity of PSO, which

Table 1: Result of computational experiments in small sizes.

No. Containers AGVs/QCs/block
B&B GA

BFV gap rate (%)
CPU (s) BFV (s) CPU (s) BFV (s)

1 4 2-2-2 12.37 157 3.46 157 0
2 8 2-2-2 21.56 338 2.74 338 0
3 10 3-2-2 18.90 280 1.88 281 0.35
4 15 4-2-3 24.67 384 4.59 386 0.52
5 20 4-2-3 244.89 433 4.36 438 1.15
6 30 5-3-4 573.78 394 8.85 405 2.79
7 40 6-3-3 11534.82 405 10.76 422 4.20
8 50 7-3-4 — — 15.95 517 —
9 60 8-3-5 — — 21.17 594 —
10 70 8-3-3 — — 10.83 643 —
11 80 9-4-4 — — 14.64 897 —
12 90 9-4-5 — — 18.98 942 —
13 100 10-4-5 — — 12.66 816 —

Table 2: Result of large-sized problems by heuristic algorithms.

No. Container AGV/QC/block
PSO GA BAT

CPU (s) BFV CPU (s) BFV (s) CPU(s) BFV (s)
14 150 8/4/3 25.39 1556 23.51 1359 22.64 1402
15 200 9/4/4 35.20 1709 29.08 1408 31.29 1469
16 250 10/4/5 56.52 1673 42.86 1426 44.57 1644
17 300 11/4/6 79.67 1526 63.56 1759 68.15 1509
18 350 12/5/3 106.77 1782 89.22 1643 88.43 1688
19 400 13/5/4 143.29 1653 120.47 1726 134.98 2093
20 450 14/5/5 184.88 1864 157.80 1831 168.49 1849
21 500 15/5/6 233.96 1926 197.31 2150 219.38 2433
22 550 16/6/7 276.49 2364 246.80 2110 267.60 2042
23 600 17/6/5 319.76 2399 305.47 2331 311.97 2483
24 650 18/6/6 348.01 2697 359.71 2509 367.49 2608
25 700 19/6/7 449.15 2907 427.06 2776 422.61 2394
26 750 20/7/7 580.67 3028 500.72 2507 508.26 3077
27 800 21/7/7 690.77 3597 584.69 3144 645.78 3384
28 850 22/7/8 830.16 3960 657.24 3820 792.48 4022
29 900 23/7/8 1197.12 4838 749.50 3643 958.64 4282
30 950 24/8/8 1438.16 4697 857.14 3926 1197.65 4308
31 1000 24/8/8 1722.52 5213 1009.26 4418 1528.06 4836
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performs surpassingly in terms of both solution time and
quality. Figure 7 shows our simulation of 700 containers, 19
AGVs, 6 QCs, and 7 blocks; the HPSO-GA reaches the
convergence at 320 generations, which has been compared
with the GA and BAT, and shows better optimization in
solving time and quality. But due to the instability of BAT, it
has limited in«uence on the time of obtaining solutions.
Figure 8 illustrates the performance of �ve algorithms.
Comparison of heuristic algorithms such as GA, PSO and
BAT shows that the GA is more stable and reliable, the
convergence speed of the PSO is the slowest and unstable,
and the BAT has certain «uctuations and slow speed in the
process of getting solutions. �e improved metaheuristic

algorithms of HGA-PSO and HBAT-GA, compared with the
basic metaheuristic algorithm (GA, BAT, and PSO), have a
faster convergence speed. �e HBAT-GA reaches the con-
vergence at 320 generations, but HGA-PSO realizes the
convergence almost at 210 generations and has a better
optimal �tness value. �e HGA-PSO outperforms the
similar HBAT-GA in terms of both solution time and
quality.

In order to test the stability of each algorithm in dealing
with the �tness value in terms of iterations, the CPU time is
reported and compared in Figure 9. It shows that the HGA-
PSO outperforms the other algorithms in terms of execution
time, which ensures to yield quality solution in reasonable
runtime.�e performance trend of 31 examples with the �ve
algorithms in Tables 1–3 is depicted in Figure 10. �ere are
some gaps between the �tness values of GA and HGA-PSO;

Table 3: Result of large-sized problems by improved heuristic
algorithm.

No. Container AGV/QC/
block

HGA-PSO HBAT-GA
CPU
(s)

BFV
(s)

CPU
(s)

BFV
(s)

14 150 8/4/3 14.38 1355 21.67 1286
15 200 9/4/4 17.26 1285 23.58 1312
16 250 10/4/5 21.64 1310 26.11 1461
17 300 11/4/6 26.55 1309 32.09 1606
18 350 12/5/3 32.49 1391 38.77 1477
19 400 13/5/4 38.86 1328 49.62 1521
20 450 14/5/5 44.91 1696 73.81 1397
21 500 15/5/6 51.13 1548 101.22 1653
22 550 16/6/7 58.76 1613 154.34 1797
23 600 17/6/5 70.41 1683 213.07 1768
24 650 18/6/6 82.37 1856 246.08 1932
25 700 19/6/7 106.55 1838 317.64 2288
26 750 20/7/7 138.84 2027 382.69 2711
27 800 21/7/7 182.43 2068 430.55 2486
28 850 22/7/8 236.11 2262 499.70 2864
29 900 23/7/8 340.05 2737 562.78 2688
30 950 24/8/8 396.71 3094 659.07 3808
31 1000 24/8/8 452.08 3275 766.04 3989
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Figure 6: Typical convergence of PSO, GA, and HGA-PSO al-
gorithms for example with 650 containers, 18 AGVs, 6 QCs, and 6
blocks.
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Figure 7: Typical convergence of GA, BAT, and HBAT-GA for
example with 700 containers, 19 AGVs, 6 QCs, and 7 blocks.
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Figure 8: Performance of the �ve algorithms for 800 containers, 21
AGVs, 7 QCs, and 7 blocks.
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the gap is less in the small-sized problems. However, the
increase of gap as the number of containers increases in the
large-sized problems has become a signi�cant problem. In
other words, the HGA-PSO is markedly superior to GA,
PSO, BAT, and HBAT-GA in solving these large-scale
calculation problems. �ese promising results are due
mainly to the hybrid that balances disadvantages of the
algorithm and enhances the ability and diversi�cation in
HGA-PSO.

To clarify the e�ciency and robustness of the improved
algorithms, taking example 31 as a case of statistical analysis
data in Table 4, according to mean optimal �tness and CPU
time, we compared the results of di�erent algorithms with the
actual operation (in Xiamen Port) and performed the Pareto
optimization for the percent of deviation and improvement,
that weighs the optimization in terms of solution time and
quality. �e result shows that the HGA-PSO has the least
value in the percent of deviation and improvement compared

with the actual operation. Although the advantages of HGA-
PSO are reduced through the comprehensive balance in
solving time and quality, the value of Pareto optimization of
HGA-PSO is 18.98, which is smaller than the others and
closer to the actual operation. We fully demonstrate that the
proposed HGA-PSO has better robustness and e�ectiveness
compared with other algorithms in solving this problem.

Taken together, our simulation experiments indicate that
the proposed HGA-PSO is reliable in solving this problem of
varying scales and can be readily applied to the integrated
scheduling of QCs, AGVs, and ARMGs in current auto-
mated terminals.

6. Conclusion

An integrated scheduling of QCs, AGVs, and ARMGs was
proposed in this paper for improving the working e�ciency
and service level of automated terminals. We established an
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Figure 9: Evaluation of CPU time in terms of the number of iterations in �ve algorithms.
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Figure 10: Performance trends of �ve algorithms with 31 examples.
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MIP model with the goal of minimizing the loading and
unloading time of ships and then using the accurate algorithm
(B&B), the basic metaheuristic algorithm (PSO, GA, and
BAT), and the improved metaheuristic algorithm (HGA-PSO
and HBAT-GA) to check the validity of the model.

We improved the HGA-PSO with adaptive autotuning
approaches by fuzzy control and compared with the other
algorithms (PSO, GA, BAT, and HBAT-GA) to validate the
favorable convergence speed of HGA-PSO. *rough a series of
numerical experiments, we show that the proposed HGA-PSO
has better robustness and effectiveness compared with other
algorithms in terms of solution time and quality of this problem.
When the number of containers was 1000, the best fitness value
was 3275 s, the computation time was 452.08 s, and the value of
pareto optimization was the smallest with 18.98. It illustrated
this method can effectively reduce the working time and ad-
vance the operating efficiency in automated terminals.

As future work, the computation time of HGA-PSO is
still relatively lengthy in solving large-sized experiments,
rendering it inapplicable to dynamic real-time scheduling
problems. We can try using GPU parallel computing to
reduce the computation time. We also believe that applying
other new improved metaheuristic algorithms, such as ar-
tificial intelligence or machine learning, may yield even
better results than this HGA-PSO. Besides, the following
research of automated terminals on the balance of
throughput and energy, the AGVs path planing and effiency
optimizationwill be more meaningful.
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