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Abstract

This paper develops a novel analytically tractable Neumann series of Bessel functions representation
for pricing (and hedging) European-style double barrier knock-out options, which can be applied
to the whole class of one-dimensional time-homogeneous diffusions even for the cases where the
corresponding transition density is not known. The proposed numerical method is shown to be
efficient and simple to implement. To illustrate the flexibility and computational power of the
algorithm, we develop an extended jump to default model that is able to capture several empirical
regularities commonly observed in the literature.

Keywords: Finance; Double barrier options; Neumann series of Bessel functions; Sturm-Liouville
equations; Spectral decomposition; Transmutation operators

1. Introduction

In this paper we develop a novel option pricing methodology based on an analytically tractable
Neumann series of Bessel functions (hereafter, NSBF) representation. The new representation is
derived by applying the NSBF expansion to the arising Sturm-Liouville problem. To highlight
the potential of our method, we derive a new analytical tractable representation of the price (and
Greeks) of double barrier European-style knock-out options (henceforth, DBKO options), though
applications to other similar problems may be designed using this conceptual framework.

Barrier option contracts are path-dependent exotic options traded at over-the-counter markets
on several underlying assets, e.g., stocks, stock indexes, currencies, commodities, and interest rates.
They have been actively traded mainly because they are cheaper than the corresponding vanilla
options and offer an important tool for risk managers and traders to better express their market
views without paying for outcomes that they may find unlikely. Moreover, they are also used as
building blocks of many structured products.

Given their popularity in the market, a vast literature dedicated to their valuation has been
developed. For instance, alternative pricing (and hedging) schemes for DBKO options under the
classic geometric Brownian motion (hereafter, GBM) assumption have been proposed by [25], [16],
[43], [36], [41], or [5]. Such modeling framework assumes the volatility is constant throughout the
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option’s life, several attempts have been made to overcome this unrealistic assumption implicit in
the GBM diffusion.

It is well-known that the constant elasticity of variance (hereafter, CEV) diffusion model of
[9], where the volatility is a function of the underlying asset price, is able to better reproduce
two empirical regularities commonly observed in the literature, namely the existence of a negative
correlation between stock returns and realized volatility (leverage effect) and the inverse relation
between the implied volatility and the strike price of an option contract (implied volatility skew).
To accommodate these observations, the valuation of DBKO options under the CEV model have
been performed by [4] through a trinomial scheme, by [11] using a pricing framework based on the
numerical inversion of Laplace transforms, by [12] via an eigenfunction expansion approach, and
by [30] whose approach rests on the construction of an approximation based on continuous-time
Markov chains, amongst others.

More recently, [14] tackle the valuation of DBKO options (using the stopping time approach as
well as the static hedging approach) under the so-called jump to default CEV (hereafter, JDCEV)
model proposed by [7], which is known to be able to capture the empirical evidence of a positive
correlation between default probabilities (or credit default swap spreads) and equity volatility.1

Moreover, it nests the GBM and CEV models as special cases and, therefore, it also accommodates
the aforementioned leverage effect and implied volatility skew stylized facts. The importance of
linking equity derivatives markets and credit markets has thus generated a new class of hybrid
credit-equity models with the aim of pricing derivatives subject to the risk of default—for other
applications of jump to default models, see, for instance, [32], [29], [28], [40], [34], [33], and the
references contained therein. Moreover, the new algorithms recently provided by [13] for computing
truncated and raw moments of a noncentral χ2 random variable can be also used on the pricing of
barrier options under the JDCEV model considered in [14].

The main purpose of this paper is the development of a new analytically tractable NSBF
representation for pricing (and hedging) European-style DBKO options which can be applied to
the whole class of one-dimensional time-homogeneous diffusions, independently of knowing the
corresponding transition density. Similarly to [12], we solve the boundary value problem for the
parabolic partial differential equation using a classical separation of the variables method. This
technique reduces the problem to the determination of the eigenvalues and eigenfunctions of the
associated Sturm-Liouville problem. The approach based on the NSBF representation allows one
to compute large sets of eigendata with non-deteriorating accuracy. Hence, we are able to calculate
the prices for the general time homogeneous diffusion models, not relying on the knowledge of the
exact solutions as for example is done in [12] for the CEV model and [7] and [14] for the JDCEV
model. Therefore, the novel NSBF representation permits the construction of a fast and accurate
algorithm for pricing DBKO options and opens its application to other similar problems.2

We note that [7] are able to obtain closed-form solutions for European-style plain-vanilla op-
tions, survival probabilities, credit default swap spreads, and corporate bonds in the JDCEV model
by exploring the powerful link between CEV and Bessel processes. By adopting the hybrid credit-
equity JDCEV architecture modeling framework, [14] are restricted to the volatility and default
intensity specifications that are implicit in the JDCEV model. By contrast, since we do not need
to be restricted to such specific modeling assumptions we are able to quickly and accurately price
DBKO options for a larger class of models. We illustrate our numerical method on extended jump
to default constant elasticity of volatility (hereafter, EJDCEV) model, which nests the JDCEV

1See, for example, [6], [45], and [8].
2We recall that [12] considered also interest rate knock-out options in the [10] term structure model. Even though

our focus is on equity derivatives, our approach is also suitable for pricing interest rate knock-out options, even in
the absence of a closed-form solution for the transition density.
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model as a special case.
In summary, our method can be considered as an alternative powerful computational tool for

pricing DBKO options. Since we are able to quickly construct the whole value function and not just
the price, we can easily observe the behavior of the option price through time and different initial
values. Moreover, the NSBF representation also presents an easy way to calculate the derivatives
of the value function and consequently the ‘Greeks’ of the option, and thus it can be used for the
design of hedging strategies. Given its accuracy, efficiency, and easy implementation, the novel
valuation method can be used also for analyzing the empirical performance of models for barrier
option valuation under alternative underlying asset pricing dynamics, e.g. [18].

The remainder of the paper is structured as follows. Section 2 sets the general financial frame-
work and defines the boundary value problem. Section 3 provides the main result of the paper (in
Proposition 1): the representation of the solution to the boundary value problem and the price for
a DBKO option. Section 4 illustrates the calculation of the so-called ‘Greeks’. Next sections are
dedicated to the algorithm implementation and numerical examples. First, we present, in section
5, some recurrence formulas which are more robust and efficient for computation of the coefficients
that appear in the direct representations of the value function and its derivatives presented in
previous sections. Then, section 6 offers the conceptual algorithm for the computation of the price
of DBKO options. Section 7 presents numerical experiments for the EJDCEV framework. For
illustrative purposes, the analysis is separated into two different horizons: medium (six months)
and short (one day). The final section presents the concluding remarks and the possible directions
for further research.

2. Modelling framework

This section presents the general financial model for our pricing method and describes the
boundary value problem associated to an option contract containing two barrier (knock-out) pro-
visions. We recall that the holder of such a DBKO option has the right to receive, at the expiration
date T , a payoff f (y) = (y −K)+ in the case of a call option, or f (y) = (K − y)+ for the case
of a put option, if the underlying asset price (Y ) remains in the range (L,U). The real constants
U > L > 0 are designated by the upper and lower bounds (i.e., the knock-out trigger barrier levels),
whereas K ∈ R : L < K < U is the strike price.3

2.1. The general financial model setup

Hereafter, and during the trading interval [0, T ], for some fixed time T (> 0), uncertainty is
generated by a probability space (Ω,G,Q), where the equivalent martingale measure Q associated
to the numéraire “money market account” is taken as given. The price dynamics of the underlying
asset is assumed to be governed, under the risk-neutral measure Q, by the time-homogeneous (or
time invariant) diffusion

dYt = µ (Yt)Ytdt+ σ (Yt)YydBt, (1)

with initial value Y0 = y0, and where the functions µ (y) and σ (y) are, respectively, the (state
dependent) instantaneous drift and instantaneous volatility (whose regularity properties will be
formally defined later in Assumption 1), whereas Bt ∈ R is a standard Wiener process defined
under measure Q.

3To simplify the notation, it is assumed that the valuation date of each contract is today (i.e., the current time
t = 0). Moreover, in the case of a knock-out event it is assumed that there is no rebate. Nevertheless, the valuation
of rebates can be straightforwardly accomplished using the insights presented in Appendix A.
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To explain the development of our pricing methodology we consider a European-style DBKO
option contract whose payoff at the expiry date T is a function of the single state variable Y . Given
the contractual clauses of such derivative security, the process is considered on the interval [L,U ],
where L and U are, respectively, the lower and upper bounds of the DBKO option contract. The
end-points L and U are set to be knock-out boundaries, because if at any time between the initial
date of the contract and its expiration either the upper barrier or the lower barrier is hit, then the
option contract is canceled (i.e. it is knocked out). We are considering the case with no rebate for
the simplicity. However, it is possible to incorporate a rebate value, as shown in the note in the
appendix.

As in [12], if any of these end-points is a regular boundary, we adjoin a killing boundary
condition at that end-point, sending the process to a cemetery state {∆} at the first hitting time
of the end-point. Consequently, the hitting time for our problem (with two knock-out provisions)
is defined by

τ{L,U} = inf {s ≥ t : Ys /∈ (L,U)} .
We also consider the possibility that the process may be killed by a sudden jump to {∆}, i.e.

the spot price is allowed to jump to zero from the interior of the interval. This implies that the
default event forces the option knock-out. There is no recovery value (in the case of a DBKO put)
upon default.

This is accomplished by imposing a killing time defined as

τh = inf

{

s ≥ 0 :

∫ s

0
h (Yu) du ≥ E

}

,

where h (y) ≥ 0 is the default intensity or the hazard rate, whereas E is an exponential random
variable with unit mean, independent of Y and time. Therefore, the combined stopping time of
the process is denoted by

τ = min
{

τ{L,U}, τh
}

. (2)

Remark 1. The abuse of notation is in place; to simplify notation, the stopped process set on the
domain [L,U ] ∪ {∆} is denoted by the same letter Y as the original process. This avoids bloating
the paper with many technical details that are standard in the literature—see, for instance, [39,
Section III.3.18], [3, Section II.4], [35, Section 8.2] and [29]. We notice that the defaultable asset
price process is adapted not to the filtration F = {Ft, t ≥ 0} generated by the predefault process, but
rather to the enlarged filtration G = {Gt : t ≥ 0}, obtained as Gt = Ft ∨ Dt, where {Dt, t ≥ 0} is a
default indicator process, with Dt = 11{t>τh}.

As usual, to ensure that the constructed (killed) process remains a martingale it is necessary
to set the drift of equation (1) as

µ (y) = r̄ (y)− q̄ (y) + h (y) , (3)

where r̄ (y) and q̄ (y) are the (time-homogeneous) continuously compounded interest rate and
dividend yield.

In summary, the main purpose of this paper is to develop an efficient and flexible pricing
methodology for computing risk-neutral expectations of the form

v (y, t) = Ey

[

e−
∫ T

t
[r̄(Ys)+h(Ys)]dsf (YT ) 11{τ>T}

]

. (4)

This will be accomplished by applying the NSBF expansion to the associated Sturm-Liouville
problem.
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2.2. The boundary value problem

Let us introduce the differential operator

A =
1

2
σ2 (y) y2∂yy + µ (y) y∂y − (r̄ (y) + h (y)). (5)

Then, the value function (4) is the solution of the following boundary value problem











Av (y, t) = −vt, (y, t) ∈ (L,U)× [0, T ) ,

v (y, T ) = f (y) , y ∈ (L,U) ,

v (L, t) = v (U, t) = 0, t ∈ [0, T ] .

(6)

The pricing of the DBKO option will be performed by solving problem (6). For convenience,
we rewrite the operator A in the following form

A =
1

w (y)

(

d

dy

(

p (y)
d

dy

)

− q (y)

)

,

where

p(y) = exp

(∫ y 2µ(s)

sσ2(s)
ds

)

, w(y) =
2p(y)

σ2(y)y2
, and q(y) = [r̄(y) + h(y)]w(y). (7)

At this point, we can set the needed conditions for the coefficients of the process Yt through
the problem (6). In this illustration paper we are looking only at the regular case, so we will need
the following assumptions:

Assumption 1. The functions p, p′, q, w and w′ are real valued and continuous on [L,U ]. Ad-
ditionally, it is assumed that p′ and w′ are absolutely continuous and that p > 0, σ > 0 and
w > 0.

Assumption 2. The payoff function f is square integrable.

Application of Fourier’ separation of variables method to the partial differential equation in
(6)—see, for example, [31] and [37] for a general exposition of the method and [12] for financial
applications—, leads to the eigenfunction expansion of the value function (4) as

v (y, t) =

∞
∑

n=1

fnϕn (y) e
−λn(T−t), (8)

where the pairs (λn, ϕn) are solutions of the Sturm-Liouville problem

{

(p (y)ϕ′
n (y))

′ − q (y)ϕn (y) = −λnw (y)ϕn (y) , y ∈ (L,U)

ϕn (U) = ϕn (L) = 0.
(9)

The functions ϕn form a complete orthogonal basis for the space L2
w ([L,U ]). The coefficients

fn are the Fourier coefficients of the function f relative to the basis {ϕn}n∈N with scalar product

〈g1, g2〉 =
∫ U

L
g1 (s) g2 (s)w (s) ds. (10)

5



The Hilbert space L2
w ([L,U ]) with the above defined scalar product is denoted by Hw. The

function f can be explicitly decomposed as

f (y) =

∞
∑

n=1

fnϕn (y) , (11)

where fn are the Fourier coefficients of the payoff function f defined as

fn =
〈f, ϕn〉
〈ϕn, ϕn〉

.

We recall that Assumption 2 guarantees that the series converges to the function f in L2
w norm. We

note also that Assumption 1 ensures that problem (9) is a regular Sturm-Liouville problem. The
eigenvalues are real, positive and can be listed as λ1 < λ2 < .. < λn < ..., with limn→∞ λn = +∞.4

Remark 2. We further notice that for the put and call barrier options under consideration, prob-
lem (6) possesses non-consistent (discontinuous) boundary conditions. For the barrier call option
the value function is discontinuous at the point (U, T ), i.e. v (U, T ) = 0 6= limy→U v (y, T ) =
f (U) = U − K. A similar observation can be made for the point (L, T ) in the barrier put case.
Nevertheless, in both cases the value function is still in the space Hw and can be represented by its
Fourier series (11).

3. An analytical representation through NSBF of the value function

This section presents the pricing formula for the DBKO option using the NSBF representation
for the Sturm-Liouville problem (9) recently proposed by [22] for the one-dimensional Schrödinger
equation—i.e. the case with w (y) = 1—and then extended to a more general function w (y) in
[24]. In a nutshell, this powerful technique consists in the representation of the solutions of the
Sturm-Liouville problem (9) and their derivatives in terms of NSBF with explicit formulas for the
coefficients.

To extend this approach to our option pricing problem, let us first introduce the space H1,0
w .

This is the subspace of the functions u ∈ L2
w ([L,U ]× [0, T ]), that possesses the first derivative ∂xu

in the sense of distributions and ∂xu, u ∈ L2
w ([L,U ]× [0, T ])—see, for example, [31, Chapter III.2]

for further details. Next proposition provides our main theoretical result.

Proposition 1. Under Assumptions 1 and 2, the value function (4) is a solution to problem (6)
and can be represented as

v (y, t) =

∞
∑

n=1

fn

[

sin (ωnl (y))

ρ (y)
+ 2

∞
∑

m=0

(−1)m α2m+1 (y) j2m+1 (ωnl (y))

]

e−ω2
n(T−t). (12)

The series converges in the norm of the space H1,0
w .5 Moreover the series converges uniformly with

respect to y ∈ [L,U ] and t ∈ [0, T0] ⊂ [0, T ).

4Decomposition (8) and other related topics, such as properties of the eigenfunctions, can be consulted in [2,
Chapter 10] and [44, Chapter 7]. The analysis of the spectral decomposition directly applied to finance problems
may be found in [27].

5The price of the DBKO option is given by v (y0, 0) and the corresponding series converges in the norm L2
w ([L,U ]).
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Before providing a formal proof of Proposition 1 and for the sake of completeness, let us
first highlight some important details aiming to offer a better exposition. Consider the following
identities:

• The eigenfunctions, solutions to the Sturm-Liouville problem (9) are6

ϕn (y) =
sin (ωnl (y))

ρ (y)
+ 2

∞
∑

m=0

(−1)m α2m+1 (y) j2m+1 (ωnl (y)) . (13)

• The spherical Bessel functions of the first kind, jν (y), are given by

jν (y) =

√

π

2y
Jν+ 1

2

(y) ,

where Jµ (y) are the Bessel functions of the first kind shown in [17, 8.461.1].

• The function l (y) is defined by7

l (y) :=

∫ y

L

√

w (s)

p (s)
ds =

√
2

∫ y

L

1

sσ (s)
ds, y ∈ [L,U ] .

• The function ρ (y) is defined by

ρ (y) = [p (y)w (y)]1/4 =
√
2

(

p (y)

σ (y) y

)1/2

, y ∈ [L,U ] .

• The roots of the eigenvalues λn, denoted as ωn, are solutions of the equation

sin (ωl (U))

ρ (U)
+ 2

∞
∑

m=0

(−1)m α2m+1 (U) j2m+1 (ωl (U)) = 0, ω ∈ R. (14)

• The functions αn (y), n ≥ 0 are defined as

αn (y) =
2n + 1

2

(

n
∑

k=0

lk,nΦk (y)

(l (y))k
− 1

ρ (y)

)

, y ∈ (L,U ] . (15)

The efficient recursive method for computing αn will be presented in Section 5.

• lk,n is the coefficient of xk in the Legendre polynomial of order n—see, for instance, [1,
Chapter 8].

• Φk (y) are the formal powers that will be defined in Definition 1.

The formal powers Φk (y) are constructed on the basis of one non-vanishing solution g of the
equation8

(

p (y) g′ (y)
)′ − q (y) g (y) = 0, y ∈ [L,U ] , (16)

with an initial condition set as

g (L) =
1

ρ (L)
. (17)

6Note that these functions are not normalized.
7A detailed analysis of the role of this transformation in this decomposition and in the transmutation operators

theory can be found in [21].
8For p, p′ and q continuous on [L, U ] such solution exists, see [23, Remark 5].
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Definition 1. Let p, q, w satisfy Assumption 1 and let g be a non-vanishing solution of equation
(16) that satisfies condition (17). Then, the associated formal powers are defined, for k = 0, 1, 2, ...,
as

Φk (y) =

{

g (y)Y (k) (y) , k odd,

g (y) Ỹ (k) (y) , k even,

where two families of the auxiliary functions are defined as

Y (0) (y) ≡ Ỹ (0) (y) ≡ 1,

Y (k) (y) =

{

k
∫ y
L Y (k−1) (s) 1

g2(s)p(s)ds, k odd,

k
∫ y
L Y (k−1) (s) g2 (s) p (s) ds, k even,

Ỹ (k) (y) =

{

k
∫ y
L Ỹ (k−1) (s) g2 (s) p (s) ds, k odd,

k
∫ y
L Ỹ (k−1) (s) 1

g2(s)p(s)
ds, k even.

Remark 3. We note that these formal powers arise in the Spectral Parameter Power Series
(SPPS) representation for the solution of the Sturm-Liouville problem (9). The SPPS method
was introduced in [20]—see also [23] and [19].

Next we provide the formal proof of Proposition 1.

Proof (Proposition 1). The application of the Fourier separation of the variables method to
problem (6) leads to representation (8). It is a weak solution of problem (6)—see, for example, [31,
Chapter VI.2, Theorem 3] and [15, Chapter 7.1, Theorems 3 and 4]. Application of [24, Theorem
3.1] gives representation (12) and guarantees the approximation of the eigenfunctions uniformly in
ω. Let us denote by fN (y) =

∑N
n=1 fnϕn (y) the approximation of the function f of the order N .

For any ε > 0, there is a N such that ‖f − fN‖L2
w
≤ εN , where εN → 0 when N → ∞. Applying

[31, Chapter VI.2, Theorem 3], we have the following estimate

‖v − vN‖H1,0
w

≤ C ‖f − fN‖L2
w[L,U ] ≤ CεN .

The uniform convergence of the series is due to majorization by decreasing sequence e−λnT0 . �

In summary, Proposition 1 provides a powerful computational technique with the potential to
be applied in a wide range of finance applications due to the fact that the NSBF representation can
be used as a simple and efficient numerical method. Furthermore, the proposed novel representation
is applicable to a large class of option pricing models and it represents not only the price but also
the entire value function. This feature allows us to view the behavior of the option price under
different initial values for the asset (i.e., to construct the value surface as will be shown in Figure
1).

4. The analytical representation of ‘Greeks’

Since Proposition 1 presents an analytical representation of the value function, we are then
able to offer a similar representation for its derivatives, commonly known as ‘Greeks’ in the option
pricing literature. This should be a useful computational tool for both academics and practitioners,
since numerical differentiation is known to be problematic in this kind of problems.
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4.1. Delta

Let y0 ∈ (L,U). The Delta can be represented as

∆ =
∂v

∂y
(y0, 0) =

∞
∑

n=1

fnϕ
′
n (y0) e

−ω2
nT , (18)

where

ϕ′
n (y) =

√

w (y)

p (y)

(

1

ρ (y)
[G2 (y) sin (ωnl (y)) + ωn cos (ωnl (y))]+

+ 2

∞
∑

m=0

(−1)m β2m+1 (y) j2m+1 (ωnl (y))

)

−

− ρ′ (y)

ρ (y)

(

sin (ωnl (y))

ρ (y)
+ 2

∞
∑

m=0

(−1)m α2m+1 (y) j2m+1 (ωnl (y))

)

,

the functions G2 (y) and βm (y) are presented in the next section. The expressions for the ϕ′
n are

adapted from [24, Section 5]. The representation (18) is valid if the function ∂v
∂y is continuous at

(y0, 0). The conditions for this can be consulted at [26, Theorem 12.1].

4.2. Vega

For the calculation of the Vega, we assume that the instantaneous volatility σ is differentiable
and σ′ (y0) 6= 0. Then by the application of the chain rule and the derivative of the inverse function
theorem, we have

ν =
∂v

∂σ
(σ (y0) , 0) =

∂v

∂y
(y0, 0)

1

σ′ (y0)
=

∆

σ′ (y0)
. (19)

For the constant σ we cannot apply this formula.9

4.3. Theta

The direct differentiation with respect to t of (12) provides us with a formula for the Theta

θ =
∂v

∂t
(y0, 0) =

∞
∑

n=1

fnλnϕn (y0) e
−λnT . (20)

As in the case of the Delta, it is necessary to assume the continuity of ∂v
∂t at (y0, 0).

5. Recurrence formulas for the coefficients αn (y) and βn (y)

For the (efficient and robust) computation of the coefficient functions αn (y) and βn (y) it is
convenient to use recurrence formulas borrowed from [24]. These formulas increase the robustness
of the calculations by solving the numerical issue in (15) related to the fast growth of the Legendre
coefficients.

We first introduce

An (y) = ln (y)αn (y) and Bn (y) = ln (y) βn (y) . (21)

9In particular, see [42, Section 12.2] for the GBM model.
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The following formulas hold for n = 2, 3, ...

An (y) =
2n+ 1

2n− 3

(

l2 (y)An−2 (y) + (2n− 1) g (y) θ̃n (y)
)

and

Bn(y) =
2n + 1

2n − 3

{

l2(y)Bn−2(y) + 2(2n − 1)

(
√

p(y)

w(y)

(

g′(y)ρ(y) + g(y)ρ′(y)
) θ̃n(y)

ρ(y)

+
η̃n(y)

ρ2(y)g(y)

)

− (2n − 1)l(y)An−2(y)

}

,

where

θ̃n (y) =

∫ y

A

(

η̃n (x)

ρ2 (x) g2 (x)
− l (x)An−2 (x)

g (x)

)

√

w (x)

p (x)
dx

and

η̃n(y) =

∫ y

A

(

l(x)(g′(x)ρ(x) + g(x)ρ′(x)) + (n − 1)ρ(x)g(x)

√

w(x)

p(x)

)

ρ(x)An−2(x)dx.

The initial values A0, A1, B0 and B1 can be calculated from

α0 (y) =
1

2

(

g (y)− 1

ρ (y)

)

or A0 (y) = α0 (y) ,

α1 (y) =
3

2

(

Φ1 (y)

l (y)
− 1

ρ (y)

)

or A1 (y) =
3

2

(

Φ1 (y)−
1

ρ (y) l (y)

)

,

and

β0 (y) =

√

p (y)

w (y)

(

α′
0 (y) +

ρ′ (y)

ρ (y)
α0 (y)

)

− G1 (y)

2ρ (y)
,

β1 (y) =
α1 (y)

l (y)
+

√

p (y)

w (y)

(

α′
1 (y) +

ρ′ (y)

ρ (y)
α1 (y)

)

− 3G2 (y)

2ρ (y)
,

with

α′
0 (y) =

1

2

(

g′(y) +
ρ′ (y)

ρ2 (y)

)

,

α′
1 (y) =

3

2







(

g′ (y)Y (1) (y) + 1
g(y)p(y)

)

l (y)− g (y)Y (1) (y)
√

w(y)
p(y)

l2 (y)
+

ρ′ (y)

ρ2 (y)






,

and
G1 (y) = h̃+G2 (y) , (22)

G2 ((y) =
1

2

∫ y

L

1

(pw)1/4

(

q

(pw)1/4
−
[

p
{

(pw)−1/4
}′
]′
)

(s) ds

=
ρρ′

2w

∣

∣

∣

∣

y

L

+
1

2

∫ y

L

[

q

ρ2
+

(ρ′)2

w

]

(s) ds, (23)
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where

h̃ =

√

ρ (L)

w (L)

(

g′ (L)

g (L)
+

ρ′ (L)

ρ (L)

)

. (24)

There is a useful practical test for the verification of the coefficients αn and βn—its details may
be consulted in [24, Equations 7.1-7.3]—, that is

∞
∑

m=0

αm (y) =
(G1 (y) +G2 (y)) l (y)

2ρ (y)
(25)

∞
∑

m=0

(−1)m αm (y) =
h̃l (y)

2ρ (y)
(26)

and

∞
∑

m=0

βm(y) = l(y)

[

q(y)

4ρ(y)w(y)
− 1

4w(y)

[

p(y)

(

1

ρ(y)

)′]′

+
h̃G2(y) +G2

2(y)

2ρ(y)

]

, (27)

∞
∑

m=0

(−1)mβm(y) = l(y)





1

4ρ(y)





q(L)

w(L)
− ρ(L)

w(L)

[

p(y)

(

1

ρ(y)

)′]′
∣

∣

∣

∣

∣

y=L



+
h̃G2 (y)

2ρ (y)



 . (28)

The relations (25) – (28) can also be used as an indicator for the optimal choice of the number
K of coefficients in the truncated series (12) and (13) to include in computations, monitoring the
differences between the right sides of equations (25) - (28) and the partial sums of these.

Remark 4. When computing the coefficients αn (y) and βn (y) it is important to properly perform
the division by l (y)n. Here we present a simple scheme that proved to be useful—the detail and
the proofs can be consulted in [24, Section 7]. Let us first note that the functions αn are crescent
functions in the neighborhood of L. Then, let {yi}1≤i≤Nǫ

be the ordered set of Nǫ points of some
neighborhood of L, [L,L+ ǫ], with y1 = L < y2 < ... < yNǫ = L+ ǫ. For each coefficient function
αn consider 10

ỹ = argmin
y∈{yi}

α (y) .

Let also k0 be the index of ỹ (i.e. yk0 = ỹ). Hence, we can set αn (y) = 0 for all n < k0. They are
larger only due to the numerical error. A similar construction can be performed for the coefficients
βn (y).

6. Implementation of the pricing algorithm

For the sake of completeness and to better describe important details of our pricing methodol-
ogy, let us now provide the conceptual steps for implementing our algorithm:

1. Compute the coefficients p, q and w of the associated Sturm-Liouville problem using (7).

2. Create or choose an indefinite integration scheme. In this paper, we have used the Newton-
Cotes six point integration rule—see [22] for discussions on the use of other possible methods.

10For a function f : X → Y , the argmin over a subset S of X is defined as argmin
x∈S⊆X

f (x) :=

{x : x ∈ S ∧ ∀y ∈ S : f (y) ≥ f (x)}.
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3. Construct or find any non-vanishing solution g to equation (16) that satisfies (17). In our
implementation, we have used the SPPS method presented in [23]. For example, if q (y) ≡ 0
(as in the case of the standard CEV model), we can choose g (y) = 1

ρ(L) as a particular
solution.

4. Construct the formal power Φ(1) using Definition 1, compute the constant h̃ and the functions
G1 (y) and G2 (y) using formulas (24), (22) and (23), respectively.

5. Compute recursively the coefficients Am (y) and Bm (y) using the representation highlighted
in Section 5.

6. Compute coefficients αm (y) and βm (y) using equations (21) and verify them using relations
(25) – (28) and Remark 4. We notice that this procedure can incorporate a test for estimating
an optimal M (truncation parameter for the series (13) and for the second sum in the series
(12)) to be used.

7. Find the eigenvalues λn = ω2
n from equation (14). Note that the values of the spherical Bessel

functions j2m+1 for varying indices m = 0, 1, . . . ,M at the same point x can be computed
efficiently using backward-recursive formula, see [1, Equation 10.1.19]

jm (x) =
2 (m+ 1)

x
jm+1 (x)− jm+2 (x) .

8. Construct the eigenfunctions of the problem (9) given by (13).

9. Decompose function f into the Fourier series (11) using the eigenfunctions ϕn.

10. Construct the function v through a truncated expression (8). By N we denote the number
of terms in the truncated series.

11. Calculate the Greeks via expressions (18) – (20).

Remark 5. Notice that the proposed algorithm can be significantly simplified if we are interested
only in the price of the option v (y0, 0). If this is the case, then in steps 4, 5 and 6 we only
need terms relative to An and αn (y). Moreover, after calculating fn we do not need to keep the
eigenfunctions, but only values at the point y0. Further, at step 10, we construct only v (y0, t) and
step 11 is not necessary.

7. Computational experiments and particular examples

In this section we apply the algorithm described in the previous section to the EJDCEV model,
whose details will be described next. For illustrative purposes, we have separated the examples
in two different time horizons, the medium (six months) and the short (one day). This particular
choice will highlight the eigendata needed for the accurate computations and the sensibility of the
model to the chosen parameters.

We note that for the regular Sturm-Liouville problems that we are considering in this paper,
the asymptotics for the eigenvalue growth is of the order of n2, e.g. [38, Section 2.13]. In the
case of the long horizon the exponential term e−λn(T−t), with T − t of order 1

2 , decays rapidly and
the representation (12) converges quickly. Hence, few eigenvalues and eigenfunctions are needed
to secure a good approximation. For the short horizon case, with T − t of order 1

360 , that is
analyzed in the second set of numerical experiments, we need more eigenvalues to have an accurate
approximation for the option value. We further note that the NSBF method calculates the required
eigendata with the same accuracy. This NSBF’s important property, of not loosing accuracy for
the highest order eigenvalues, makes it an exciting tool for applications to problems requiring large
sets of eigenvalues.
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Another computational advantage of our method is that there is no need in any two-dimensional
grid for computation. The formulas for the steps 1-9 are one-dimensional. In order to make the
integration errors negligible and to concentrate mainly on the numerical performance we have
used an overwhelming number of mesh points (10000) on the interval [L,U ] to represent all the
functions involved, moreover, even 3000 mesh points produced close results. Once all the coefficients
are obtained, the computation of the value function and Delta may be performed only for the
arguments (y, t) ∈ [L,U ]× [0, T ] required by application. E.g., option price can be obtained as the
value of v at one point (y0, 0); the value surface requires calculation of the function v on a mesh
of about 101× 101 points, etc. Even though the main purpose here is to present the ability of the
algorithm to be used in a wide variety of modeling contexts and not the optimization speed, the
very small computational burden that is required is remarkable.

All the calculations where done in Matlab R2015a.

7.1. The EJDCEV model

The volatility specification under the time-homogeneous version of the JDCEV model is given
by

σ (y) = δyβ , (29)

with δ > 0 and β ∈ R. The drift is given by expression (3), with r̄ > 0, q̄ ≥ 0 and hazard rate

h (y) := h1 (y) = b+ cσ2 (y) ,

with b > 0 and c > 0. The properties of the constructed diffusion with different parameteriza-
tions can be consulted in [7] and [29]. The nice feature of the JDCEV model is its analytical
tractability, due to the special form of the assumed hazard rate h1 (y). The advantage of the
NSBF representation is that it allows us to consider different default intensity specifications with-
out any additional effort. Following [6], we have also considered a default intensity specification
guaranteeing a positive relationship between the default probability and volatility. Hence, in our
variant of the JDCEV model, that we name as the EJDCEV, the default intensity is assumed to
be dependent of the constant parameter γ ≥ 0 as

h (y) := halt1 (y) = b+ cσγ (y) . (30)

It is important to point out that we are not restricted to functions of the form halt1 ; we can choose
any positive continuously differentiable function. This feature allows the possibility of obtaining a
wide alternative of default rates when calibrating the model to market prices.

7.1.1. Medium horizon (6 month)

For this set-up, we adopt the parameter configuration considered in [14, Table 2, Panel C], that
is y0 = 100, L = 90, U = 120, T = 0.5, r̄ = 0.1, q̄ = 0, b = 0.02, c = 0.5, and σ0 = 0.25. As usual,
the scale parameter δ is calculated, for each β value11, through the relation

σ0 = δyβ0 , (31)

while keeping the initial instantaneous volatility σ0 = 0.25.
We notice that the determination of the spectral parameters in step 7 was performed by in-

terpolation with a grid of equally distributed 100 points on the interval (0, 15) for the practical
purposes and the grid of 1000 points on the interval (0, 50) for the construction of the illustration

11Notice that our β is equivalent to the β considered in [14].
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Table 2 and graphs. The practical reasoning is to cut out the eigenvalues λn > 152 due to the
term eλn(T−t) in our formulas, this indirectly sets the parameter N somewhere around 6, as can
be observed in Table 2. Figure 1 illustrates the value function under the JDCEV model using the
aforementioned parameters coupled with K = 100, β = −1 and γ = 2. Using the same set of
parameters, Figure 2 shows the detail of the approximation of the function f (y) = (y −K)+ at
the boundary for t = T . It is possible to observe a sharp decline at the boundary U , this is the
illustration of the Remark 2.

0.5
0.4

0.3

Time

0.2
0.1

090

100

Asset Price

110

30

0

10

20

120

Value function

Option price

Payoff of the option

Figure 1: This figure illustrates the value function, the payoff and the price of a European-style DBKO call
option, with y0 = 100, K = 100, L = 90, U = 120, T = 0.5, r̄ = 0.1, q̄ = 0, b = 0.02, c = 0.5, γ = 2, β = −1,
and σ0 = 0.25.
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25

Payoff

Eigenfunction approximation

Figure 2: This figure illustrates the payoff function approximation by an eigenfunction expansion for a
European-style DBKO call option, with N = 27 eigenfunctions and y0 = 100, K = 100, L = 90, U = 120,
T = 0.5, r̄ = 0.1, q̄ = 0, b = 0.02, c = 0.5, γ = 2, β = −1, and σ0 = 0.25.

Table 1 shows the prices of European-style DBKO call and put options and the correspond-
ing Greeks under the EJDCEV model for different moneyness levels with K ∈ {95, 100, 105},
β ∈ {0.5, 0.0,−1.0,−2.0} and γ ∈ {0, 1, 2}. We further note that the six cases with γ = 2 and
β ∈ {−1.0,−2.0} originate the values of DBKO put options shown in [14, Table 2, Panel C]. A
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direct comparison reveals that the results are exactly the same (rounded to four decimal places
of accuracy), which gives further evidence on the robustness of our algorithm. More importantly,
this also allows us to test our methodology under a larger set of volatility and default intensity
specifications that until now were not possible to be tackled in the literature.

Table 1: Prices and ‘Greeks’ of European-style DBKO options.

Call Option: f (y) = (y −K)+ Put Option: f (y) = (K − y)+

Parameters Price Greeks Price Greeks

K β γ v (100, 0) ∆ ν θ v (100, 0) ∆ ν θ

95 0.5 0 0.7314 -0.0332 -26.5669 4.9860 0.0029 -0.0001 -0.1101 0.0201

95 0.5 1 1.5057 0.0179 14.3442 6.5544 0.0168 0.0002 0.1364 0.0744

95 0.5 2 1.5572 0.0417 33.3312 6.3003 0.0222 0.0006 0.4438 0.0912

95 0.0 0 0.7163 -0.0319 5.0712 0.0023 -0.0001 0.0166

95 0.0 1 1.6417 0.0251 7.0686 0.0148 0.0002 0.0652

95 0.0 2 1.7117 0.0518 6.7849 0.0198 0.0006 0.0802

95 -1.0 0 0.6905 -0.0300 12.0097 5.2996 0.0014 -0.0001 0.0263 0.0111

95 -1.0 1 1.9733 0.0432 -17.2851 8.2401 0.0114 0.0002 -0.0865 0.0496

95 -1.0 2 2.0860 0.0771 -30.8585 7.8538 0.0157 0.0005 -0.2135 0.0615

95 -2.0 0 0.6421 -0.0280 5.5973 5.3842 0.0008 0.0000 0.0078 0.0071

95 -2.0 1 2.3959 0.0675 -13.5059 9.5993 0.0087 0.0002 -0.0419 0.0375

95 -2.0 2 2.5570 0.1107 -22.1395 9.0265 0.0123 0.0005 -0.0964 0.0469

100 0.5 0 0.4568 -0.0207 -16.5434 3.1114 0.0270 -0.0013 -1.0175 0.1860

100 0.5 1 0.8695 0.0105 8.4109 3.7784 0.1307 0.0014 1.0802 0.5772

100 0.5 2 0.8778 0.0237 18.9282 3.5444 0.1655 0.0042 3.3387 0.6801

100 0.0 0 0.4561 -0.0202 3.2256 0.0218 -0.0010 0.1563

100 0.0 1 0.9700 0.0150 4.1676 0.1181 0.0016 0.5189

100 0.0 2 0.9881 0.0301 3.9064 0.1517 0.0043 0.6143

100 -1.0 0 0.4571 -0.0198 7.9187 3.5041 0.0137 -0.0006 0.2535 0.1071

100 -1.0 1 1.2159 0.0269 -10.7784 5.0594 0.0962 0.0018 -0.7382 0.4167

100 -1.0 2 1.2574 0.0469 -18.7457 4.7137 0.1272 0.0044 -1.7458 0.4979

100 -2.0 0 0.4385 -0.0190 3.8045 3.6716 0.0082 -0.0004 0.0781 0.0709

100 -2.0 1 1.5313 0.0437 -8.7342 6.1011 0.0779 0.0019 -0.3774 0.3328

100 -2.0 2 1.6006 0.0699 -13.9770 5.6109 0.1059 0.0042 -0.8350 0.4012

105 0.5 0 0.2314 -0.0104 -8.3529 1.5750 0.1004 -0.0047 -3.7580 0.6899

105 0.5 1 0.4019 0.0049 3.9499 1.7435 0.4133 0.0044 3.4963 1.8212

105 0.5 2 0.3948 0.0107 8.5777 1.5909 0.5054 0.0129 10.2860 2.0713

105 0.0 0 0.2373 -0.0105 1.6764 0.0828 -0.0038 0.5924

105 0.0 1 0.4611 0.0073 1.9763 0.3842 0.0053 1.6823

105 0.0 2 0.4570 0.0140 1.8016 0.4762 0.0137 1.9220

105 -1.0 0 0.2522 -0.0109 4.3457 1.9300 0.0544 -0.0025 0.9987 0.4244

105 -1.0 1 0.6092 0.0137 -5.4756 2.5241 0.3317 0.0065 -2.5939 1.4293

105 -1.0 2 0.6129 0.0230 -9.2182 2.2859 0.4227 0.0147 -5.8633 1.6465

105 -2.0 0 0.2536 -0.0109 2.1851 2.1184 0.0342 -0.0016 0.3217 0.2940

105 -2.0 1 0.8049 0.0233 -4.6594 3.1840 0.2853 0.0070 -1.4099 1.2092

105 -2.0 2 0.8184 0.0361 -7.2223 2.8436 0.3736 0.0149 -2.9815 1.4039

This table shows the prices of European-style DBKO call and put options and the corresponding Greeks under the
EJDCEV model, with y0 = 100, K ∈ {95, 100, 105}, L = 90, U = 120, T = 0.5, r̄ = 0.1, q̄ = 0, b = 0.02, c = 0.5,
γ ∈ {0, 1, 2}, β ∈ {0.5, 0.0,−1.0,−2.0}, and σ0 = 0.25.

Figure 3 shows prices of European-style DBKO call options for different initial asset values S0.
The left-hand side plot sets γ = 1 for different β values. The right-hand side plot sets β = −1 for
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different γ values. We note that with the chosen parametrization for this model, the term eλnT

decays very rapidly and thus we only need to compute few eigenvalues to obtain accurate prices.
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Figure 3: This figure prices European-style DBKO call options for different initial asset values y0. The
left-hand side plot sets γ = 1 for different β values. The right-hand side plot sets β = −1 for different γ
values. The remaining parameters are: K = 100, L = 90, U = 120, T = 0.5, r̄ = 0.1, q̄ = 0, b = 0.02,
c = 0.5, and σ0 = 0.25.

7.1.2. Short horizon (1 day)

In the case of the short horizon, the time is of the order 1
360 and, hence, the term e−λn(T−t) decays

much slower as n grows. For this case, in step 7, we have used 1000 points for the interval (0, 100).
Some values are presented in Table 2. In order to illustrate the convergence and the necessity of
calculating accurately a significant number of eigenvalues, we introduce the contribution of the
partial sum from equation (8), defined as

Contrib (n1, n2) =

n2
∑

n=n1

fnϕne
−λn(T−t). (32)

We observe, in Table 3, that the value of the parameter β under the short horizon does not have
much influence on the price. However, the γ parameter associated with default intensity is relevant.
It is important to note that although the prices of the options for different β values differ slightly,
the corresponding Sturm-Liouville problems are very different. This can be observed in Tables 2
and 4. The observation of the Table 4 induces the choice of N around 45.

Table 2: Eigenvalues.

Parameters

n β = 1, γ = 1 β = 1, γ = 2 β = −2, γ = 1 β = −2, γ = 2

1 4.4047 4.1314 4.0997 3.6155

6 144.3068 144.0338 112.8959 112.4098

11 484.0679 483.7949 377.105 376.6189

16 1023.6885 1023.4155 796.731 796.2449

21 1763.1687 1762.8956 1371.7741 1371.288

26 2702.5083 2702.2352 2102.2343 2101.7481
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31 3841.7073 3841.4343 2988.1115 2987.6253

36 5180.7659 5180.4929 4029.4057 4028.9196

41 6719.684 6719.411 5226.117 5225.6309

This table shows the eigenvalues for different γ and β parameters, with y0 = 100, K = 100, L = 90, U = 120,
T = 0.5, r̄ = 0.1, q̄ = 0, b = 0.02, c = 0.5, and σ0 = 0.25.

Table 3: Prices for one-day to maturity European-style DBKO calls.

γ = 3 γ = 2 γ = 1 γ = 0

β = −2 0.54297 0.54622 0.55950 0.61518

β = 1 0.54300 0.54634 0.55976 0.61516

This table shows prices for one-day to maturity European-style DBKO call options for different γ and β parameters,
with y0 = 100, K = 100, L = 90, U = 120, T = 1/360, r̄ = 0.1, q̄ = 0, b = 0.02, c = 0.5, and σ0 = 0.25.

Table 4: Contribution values for one-day to maturity European-style DBKO calls.

n β = −2, γ = 2 β = −2, γ = 1 β = 1, γ = 2 β = 1, γ = 1

1-5 -0.94494 -1.60020 1.54180 1.77004

6-10 1.81670 2.60534 -1.15441 -1.41771

10-15 -0.23014 -0.31208 0.19023 0.24668

16-20 -0.10622 -0.14909 -0.03420 -0.04298

21-25 0.00934 0.01343 0.00311 0.00400

26-30 0.00157 0.00224 -0.00021 -0.00026

31-35 -0.00010 -0.00014 0.00001 0.00001

36-40 -0.00001 -0.00001 0.00000 0.00000

41-45 0.00000 0.00000 0.00000 0.00000

>45 0.00000 0.00000 0.00000 0.00000

Price 0.54622 0.55950 0.54634 0.55976

This table shows the value of the contribution defined in equation (32) for one-day to maturity European-style DBKO
call options for different γ and β parameters, with y0 = 100, K = 100, L = 90, U = 120, T = 1/360, r̄ = 0.1, q̄ = 0,
b = 0.02, c = 0.5, and σ0 = 0.25.

8. Concluding remarks and future research

This paper provides a new methodology for pricing (and hedging) European-style DBKO op-
tions via the application of the NSBF decomposition of the Sturm-Liouville equation associated
to the corresponding boundary value problem. The illustration of the method was done through
the EJDCEV model. The modeling techniques applied in this paper open several avenues for fu-
ture research. For instance, it should be possible to apply the NSBF decomposition and similar
constructions to other singular problems that naturally appear in many financial applications, e.g.
plain-vanilla options (unbounded domains), default cases (singularities in the coefficients) and oth-
ers. It would also be interesting to apply the method to calibrate a parametric curve of parameters
to real market data. Finally, it has also the potential to be applied to stopping time problems and
related subjects.
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Appendix A. Pricing rebates

Consider the case of the call option with rebate R > 0. The upper boundary condition for the
problem (6) changes to

v (U, t) = R.

The boundary conditions (6) become non-homogeneous. For the direct application of the presented
method we have to first transform our value function. Let us define the new function

ṽ (y, t) = v (y, t)− y − L

U − L
R,

which satisfies the following boundary problem











(i) Aṽ +A
(

y−L
U−LR

)

= −ṽt, y × t ∈ (L,U)× (0, T )

(ii) ṽ (L, t) = ṽ (U, t) = 0, t ∈ [0, T ]
(iii) ṽ (y, T ) = d (y) , y ∈ (L,U)

, (A.1)

with homogeneous boundary conditions. The details can be consulted in [37, Ch. 6.6]. The
interesting observation is that from a mathematical point of view the solution v (y, t) becomes
smoother if R = U −K, i.e. the boundary conditions become consistent.
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