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Asymmetric Cherenkov emission in a topological plasmonic waveguide
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Here, we investigate the Cherenkov emission by an array of moving electric charges in the vicinity of a
topologically nontrivial gyrotropic material. It is shown that the nonreciprocal material response may result in
a robustly asymmetric Cherenkov emission, such that the spectrum of the emitted radiation and the stopping
power depend strongly on the sign of the particle velocity. It is demonstrated that the main emission channels
are determined by the unidirectional edge states supported by the topological material. We consider as examples
both magnetized plasmas and Weyl semimetals. The latter may exhibit a spontaneous nonreciprocal response
without a biasing magnetic field.
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I. INTRODUCTION

The use of topological methods in photonics opened up
a myriad of novel photonic platforms with fascinating prop-
erties [1–8]. In particular, Chern topological insulators are
nonreciprocal structures (e.g., photonic crystals) characterized
by a (nontrivial) topological invariant called the Chern number
[1,2]. The topological invariant depends on the material band
structure [1] and determines the net number of topologically
protected unidirectional edge states supported by an interface
of the material and another “mirror” with a trivial topology
and a common band gap [1,2]. The edge states are protected
against backscattering and this unique and singular prop-
erty has inspired the development of many novel photonic
platforms insensitive to imperfections and to back-reflections
[1–8]. Some reciprocal material platforms with a bianisotropic
response also have a topological classification [9–12]. More-
over, the ideas of topological photonics can be extended to a
continuum with no intrinsic periodicity [6,7], and gyrotropic
media are generically topologically nontrivial. Recently, it
was shown that the photonic Chern number has a precise
physical meaning: it can be understood as the quantum of
the thermally generated light-angular momentum in a closed
cavity filled with the photonic insulator [13].

Typically, nontrivial topological materials require some ex-
ternal biasing to break the time-reversal symmetry [1,2], e.g.,
a magnetic bias. Remarkably, it was recently predicted that
a new class of electronic topological materials called Weyl
semimetals [14–17] may exhibit a spontaneous nonreciprocal
response without any external magnetic field due to magnetic
order. Weyl semimetals have unusual properties, for example,
the electrons in a fully three-dimensional solid are described
by the massless relativistic Dirac equation [14,15].

The Cherenkov effect [18–20] occurs when a charged
particle moves inside or nearby a transparent medium with
a velocity v larger than the phase velocity of light in the
medium. In recent years, there has been a renewed interest
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in this fundamental effect, largely motivated by the discovery
of photonic crystals and metamaterials and by the fact that
such structures can lead to exotic forms of Cherenkov radi-
ation [21–23]. In particular, Veselago theoretically predicted
in 1967 that a moving particle in a left-handed material
produces both forward and reversed Cherenkov radiation [21].
More recently, the light emission by swift electrons and by
more general moving sources was investigated in plasmonic
platforms, in 2D materials such as graphene, and in metamate-
rials with a plasmonic-type hyperbolic response [24–33]. The
Cherenkov radiation has relevant applications in free-electron
lasers, biomedicine, particle detection, and nanoscale light
sources [34].

In this article, we investigate the impact of a nontrivial
material topology in the context of the Cherenkov radiation.
We consider a beam of electric charges moving in a vacuum
in the vicinity of (i) a magnetized plasma (e.g., a mag-
netized semiconductor) (ii) a Weyl semimetal characterized
by a spontaneous nonreciprocal response. We find that the
unidirectional plasmon edge waves are the main radiation
channels and lead to strongly asymmetric Cherenkov radiation
with spectrum depending on the sign of the electrons velocity.
Moreover, the studied platforms may behave as “Cherenkov
diodes” such that the amount of emitted radiation depends on
the sign of the velocity, which may useful in detectors where
it is important to discriminate the sign of the particle velocity.

The article is organized as follows. In Sec. II, we present
the theoretical formalism for a “pencil beam” of charges.
In Sec. III, we study the Cherenkov emission by charged
particles moving in the vicinity of either a magnetized plasma
or a Weyl semimetal. In Sec. IV, some of our findings are
generalized to the case of a “pointlike” beam and the stopping
power is analytically calculated. Finally, in Sec. V, the main
conclusions are drawn.

II. THEORY FOR A PENCIL OF MOVING CHARGES

For simplicity, in a first stage, we suppose that the relevant
beam of charges is shaped in the form of a “pencil”, i.e., it
corresponds to a linear array of charges moving in a vacuum
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FIG. 1. (a) A linear array of charged particles moves with a constant velocity v at a distance d from either a (i) magnetized plasma (biased
along the z direction) or a Weyl semimetal. (b) Band diagram of the natural plane-wave modes for a bulk magnetized plasma. (c) Band diagram
of the natural plane-wave modes for a bulk Weyl semimetal.

near the topological material. The charges move along the
x direction with a constant velocity v at a distance d from
a gyrotropic material occupying the negative y half-space
[Fig. 1(a)]. The current density describing this pencil beam
is je(x, y, t ) = −enzvδ(y − y0)δ(x − vt )x̂, where −e is the
electron charge, nz is the number of charges per unit of length
along the z direction, and y0 = d. The outlined problem is
effectively two-dimensional which eases the analytical devel-
opments. In Sec. IV, we generalize some of our results to the
fully 3D scenario.

The Cherenkov radiation emitted by the linear ar-
ray of charges is determined by the Maxwell equations,
∂B/∂t + ∇ × E = 0 and ∇ × H − ∂D/∂t = je. For a pen-
cil beam, the fields are of the form H = Hz(x, y, t )ẑ and
E = Ex (x, y, t )x̂ + Ey (x, y, t )ŷ. It is convenient to work
in the frequency (Fourier transform) domain. The Fourier
transform of the electric current density [je(x, y, ω) =∫ +∞
−∞ je(x, y, t )e+iωtdt] is je(x, y, ω)=−enzsgn(v)δ(y − y0)

eikxx x̂ where kx = ω/v and y0 = d.
The electric gyrotropic material half-space is characterized

by the generic (relative) permittivity tensor ε = εt1t + εa ẑ ⊗
ẑ + iεg ẑ × 1 with 1t = 1 − ẑ ⊗ ẑ. Then, the magnetic field in
the frequency domain is of the form

Hz(x, y, ω) =
⎧⎨
⎩

Ae−γ0yeikxx, y > y0

B(e+γ0y + Re−γ0y )eikxx, 0 < y < y0

BT eγgyeikxx, y < 0
,

(1)

where γ0 =
√

k2
x − ω2/c2 = −i

√
ω2/c2 − k2

x is the free
space propagation constant, γg =

√
k2
x − εef ω2/c2 =

−i
√

εef ω2/c2 − k2
x is the propagation constant in the

gyrotropic material, and εef = ε2
11+ε2

12
ε11

is the effective
permittivity of the gyrotropic medium. Note that ε11 = εt

and ε12 = −iεg . The coefficients A, B, R, and T are
determined by the boundary conditions. At the source
plane y = y0, the frequency domain magnetic field is
discontinuous Hz|y=y+

0
− Hz|y=y−

0
= −enzsgn(v)eikxx ,

whereas Ex remains continuous. The latter condition is
equivalent to ∂Hz

∂y
|y=y+

0
− ∂Hz

∂y
|y=y−

0
= 0. These two boundary

conditions give

A = −enzsgn(v)
1

2
(e+γ0y0 − e−γ0y0R),

(2)

B = enzsgn(v)
e−γ0y0

2
.

Evidently, R and T can be identified as the reflection and
transmission coefficients for plane wave incidence at a single
interface between the vacuum and the gyrotropic material.
Using mode matching one easily finds that [7]

R =
γ0

ε0
− ( γg

εef
+ ikx

ε12

ε2
11+ε2

12

)
γ0

ε0
+ ( γg

εef
+ ikx

ε12

ε2
11+ε2

12

) , T = 1 + R. (3)

From Eq. (2), the frequency domain magnetic field may be
written in a more compact manner as

Hz(x, y, ω) = 1

2
nze sgn(v)hz(x, y, ω), hz(x, y, ω) =

{
[sgn(−y + y0)e−γ0|y−y0| + Re−γ0(y+y0 )]eikxx, y > 0

e−γ0y0T eγgyeikxx, y < 0
. (4)

Applying the inverse Fourier transform, one finds the time-
domain magnetic field:

Hz(x, y, t ) = 1

2
nze sgn(v) ωp hz(x, y, t ),

(5)

hz(x, y, t ) = 1

2π

∫ +∞

−∞
hz(x, y, ω)e−iωt dω

ωp

.

The normalization parameter ωp (with unities of frequency)
was introduced so that the function hz(x, y, t ) is dimension-

less. In the numerical examples, ωp will correspond to the
plasma frequency of the relevant material. It is simple to prove
that the dependence in time of the magnetic field is of the form
Hz(x, y, t ) = Hz(x − vt, y, t = 0). Hence the emitted fields
are characterized by a single snapshot in time.

The amount of energy extracted from the moving charges
is the so-called “stopping power.” Since the velocity of the
charges is assumed time-independent, it may be written
as Pext = − ∫

Eloc · je d3r, where Eloc represents the local
electric field that acts on the charges and je(x, y, t ) is the
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electric current density in the time domain. It can be written
explicitly as

Pext

Lz

= P0

y0

∫ +∞

−∞
G(ω)

dω

ωp

, (6)

where P0 = n2
ze

2

4πε0
c is a normalization factor (with units of

power), Lz represents the width of the current pencil along
the z direction and

G(ω) = Re

{ |v|
c

γ0y0
ωp

iω
R e−2γ0y0

}
(7)

is the (bilateral) normalized power spectral density that deter-
mines the spectrum of the emitted radiation.

III. CHERENKOV EMISSION IN THE VICINITY OF A
GYROTROPIC HALF-SPACE

A. Magnetized plasma

For the particular case of a magnetized electron gas (e.g.,
a magnetized semiconductor [35]), the components of the
permittivity tensor are [36]

εt = 1 − ω2
p(i� + ω)

ω(i� + ω)2 − ωω2
0

,

εa = 1 − 1

ω

ω2
p

(i� + ω)
, (8)

εg = 1

ω

ω0ω
2
p

ω2
0 − (i� + ω)2 ,

where ωp is the plasma frequency, ω0 = −qB0/m
∗ is the

cyclotron frequency (q = −e is the negative charge of
the electrons and m∗ is the effective mass), B0 = B0ẑ is
the biasing magnetic field, and � is the collision frequency.
Note that the theory of Sec. II neglects the influence of the
magnetic field bias on the trajectory of the pencil beam. This
is acceptable if the interaction of the moving charges with the
gyrotropic material is confined to a limited spatial region, as
in the case of a real experiment. In Appendix A, it is shown
that the deflection due to the magnetic field may be negligible
for heavy charged particles (e.g., protons) even for fairly large
values of B0.

The band diagram of an unbounded (bulk) gyrotropic
medium (ω = ωbulk

k ) is found from the solution of k2 =
εef ω2/c2 (for propagation in the xoy plane, perpendicular to
the bias field), and is plotted in Fig. 1(b) for the parameters
ω0 = 0.5ωp and � = 0+. As seen, it exhibits a spectral sym-
metry such that ωbulk

kx
= ωbulk

−kx
.

The surface plasmons [see Eq. (9)] supported by the inter-
face between the vacuum and the topological material half-
space are determined by the dispersion equation [6,7,37–39],

γ0

ε0
+ γg

εef

+ ikx

ε12

ε2
11 + ε2

12

= 0. (9)

Figure 2(a) depicts the plasmons dispersion (ω = ωSPP
kx

) for
a lossless magnetized plasma with ω0 = 0.5ωp. In contrast to
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FIG. 2. (a) Dispersion diagrams of the edge (surface) plasmons
propagating at an interface between air and a magnetized plasma
with ω0 = 0.5ωp (blue thick lines). The plasmon resonance occurs
at ω = ω+, for kx > 0, and ω = ω− for kx < 0. The thin black
lines represent the curves ω = kxv for the velocities v1 = ±0.1c

and v2 = ±0.4c. Their intersection with the dispersion diagram
determines the main emission channels in the Cherenkov problem.
(b) Amplitude of the reflection coefficient (in a logarithmic scale)
for v = ±0.7c. The vertical gridlines correspond approximately to
ω/ωp ≈ 0.78ω+ (curve v = 0.7c) and ω/ωp ≈ 0.87ω− (curve v =
−0.7c). The collision frequency was taken equal to � = 0.01ωp .

the bulk states, the SPPs dispersion is strongly asymmetric
due to the inhomogeneity of space (which breaks the parity
symmetry) and the nonreciprocity inherent to gyrotropic ma-
terial. In particular, the plasmon resonance, i.e., the asymp-
totic value reached when kx → ±∞, depends on the direction
of propagation of the plasmons. It is given by [40]

lim
kx→±∞

ωSPP
kx

≡ ω± = 1
2

(∓ω0 +
√

2ω2
p + ω2

0

)
. (10)

In the Cherenkov problem, the wave number along x

and the frequency are linked by kx = ω/v. Hence a natural
(surface or bulk) mode of the system can be excited by the
moving charges when the following selection rule is satisfied
for some kx :

ωkx
= kxv. (11)

Here, ωkx
represents the dispersion of the relevant modes

(e.g., for the SPP waves ωkx
= ωSPP

kx
). Figure 2(a) depicts

the lines ω = ±kxv for two different values of the charges
velocity. As seen, when v > 0, they intersect the plasmon
dispersion at some point with ω ≈ ω+, whereas if v < 0, they
intersect the plasmon dispersion at some point with ω ≈ ω−.
Thus the Cherenkov emission spectrum may be strongly
asymmetric. For positive velocities it will be peaked near
ω ≈ ω+, whereas for negative velocities, it will be peaked
near ω ≈ ω−. The moving charges can also be coupled to
bulk modes with dispersion ωbulk

k . However, as previously
discussed, ωbulk

k is an even function of kx , and hence does not
lead to any emission asymmetry.

In the Cherenkov problem, the amplitude of the scat-
tered fields is determined by the reflection coefficient
R(ω, kx )|kx=ω/v . Figure 2(b) depicts the reflection coeffi-
cient amplitude as a function of frequency. Consistent with
Fig. 2(a), the reflection coefficients are highly asymmetric
being peaked precisely at the frequencies at which the se-
lection rule (11) is satisfied [vertical gridlines in Fig. 2(b)],
i.e., relatively near ω± depending on the sign of the electrons
velocity.
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FIG. 3. Real part of the magnetic field emission spectrum Hz(x, y, ω) (in arbitrary units) for an array of moving charges in the vicinity of
a magnetized plasma with ω0 = 0.5ωp , ωpd/c = 1, and � = 0+. (a) v = 0.4c and (i) ω = 0.94ω+, (ii) 0.7ω−, (iii) 0.97ω−. (b) Similar to (a)
but for v = −0.4c.

The previous result suggests that the moving charges can
efficiently excite the surface plasmons. Depending on the sign
of the velocity, the spectrum of the emitted Cherenkov radi-
ation will be peaked at the plasmon resonance ω+ or ω−. To
demonstrate the plasmon excitation and the spectral asymme-
try of the emitted radiation, we depict in Fig. 3 the frequency
domain magnetic field [Eq. (4)] calculated at the frequencies
ω = 0.94ω+ [Figs. 3(ai) and 3(bi)], ω = 0.7ω− [Figs. 3(aii)
and 3(bii)] and ω = 0.97ω− [Figs. 3(aiii) and 3(biii)]. The
plots in Fig. 3(a) [Fig. 3(b)] correspond to positive (negative)
values of the charges velocity. The thin horizontal black line
(on the top) represents the trajectory of the charges and the
thick horizontal black line the interface. As seen, the SPPs are
strongly excited in the examples of Figs. 3(ai) [ω ≈ ω+ and
v > 0] and 3(biii) [ω ≈ ω− and v < 0] such that the magnetic
field is concentrated near the interface y = 0. For frequencies
far from the plasmon resonances, ω+ or ω− [Figs. 3(aii) and
3(bii)], the SPP emission is not observed, and the fields are
concentrated near the trajectory of the moving charges.

Figure 4 shows a density plot of the instantaneous magnetic
field radiated by the moving charges for different values of the
velocity and material loss. The magnetic field was calculated
using Eq. (6) for t = 0, which corresponds to the charges posi-
tion x = 0. The time-domain simulation confirms that the SPP
waves are indeed the main Cherenkov emission channels. No-
tably, a strongly asymmetric Cherenkov radiation is observed
in the plots with opposite velocity signs [e.g., Figs. 4(ai) and
4(aii)]. In the case of stronger material absorption [Figs. 4(bi)
and 4(bii)], the emitted SPPs are evidently damped after
propagating a few guided wavelengths.

Figure 5(a) depicts the normalized power spectral density
G [Eq. (7)] for � = 0.01ωp and ω0 = 0.5ωp. Clearly, the
emission spectrum is highly asymmetric being peaked near
ω± [vertical gridlines in Fig. 5(a)] depending on the sign of

the electrons velocity. This property is explained by the fact
that the density of (plasmon) states diverges at the frequen-
cies determined by limkx→±∞ωSPP

kx
, and further underscores

the relevance of plasmons in the Cherenkov problem. The
“stopping power” [Eq. (6)] is represented in Fig. 5(b) for
different values of the distance d. For increasing values of d,
the stopping power decreases because the coupling between
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FIG. 4. Time snapshot (t = 0) of the magnetic field Hz (in ar-
bitrary units) for an array of moving charges in the vicinity of a
magnetized plasma with cyclotron frequency ω0 = 0.5ωp and for
ωpd/c = 1. (ai) v = 0.7c, � = 0.001ωp and (aii) v = −0.7c, � =
0.001ωp . (b) Similar to (a) but with � = 0.1ωp .

115136-4



ASYMMETRIC CHERENKOV EMISSION IN A … PHYSICAL REVIEW B 98, 115136 (2018)

)b()a(

v cp

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.001
0.01
0.1
1
10
100

G 0

0

ext

z

P d
P L

- 1.0 - 0.5 0.0 0.5 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

FIG. 5. (a) Normalized power spectral density G as a function
of the normalized frequency for ωpd/c = 1. The vertical gridlines
indicate the points that satisfy the selection rule (11), relatively near
the plasmon resonances ω ≈ ω±. (b) Normalized stopping power
Pext as a function of the charge velocity v, for d = d0, d = 2d0, and
d = 4d0 with ωpd0/c = 1.

the self-field of the moving charges and the plasmons is
weaker. As expected, the stopping power is typically larger for
more energetic beams (with a larger v). However, after some
velocity threshold value the stopping power drops sharply.
The reason is that for large velocities the intersection of
the line ω = kxv with the plasmons dispersion ωSPP

kx
occurs

at points more distant from the “flat” parts of ωSPP
kx

[see
Fig. 2(a)], where the density of states is smaller.

B. Weyl semimetal

As a second example, we consider a linear array of charges
moving in a vacuum above a Weyl semimetal half-space. It
has been suggested that pyrochlore iridates of the generic form
A2Ir2O7, with A either yttrium or a lanthanide element, may
be topological semimetals [15,16]. The topological proper-
ties of a Weyl semimetal result in an anomalous Hall cur-
rent (chiral anomaly) and create a gyrotropic (nonreciprocal)
electromagnetic response, even without an external magnetic
bias [17]. Thus Weyl semimetals may have a spontaneous
nonreciprocal response due to magnetic ordering [15]. There
are other naturally available materials with a spontaneous
nonreciprocal response, e.g., some antiferromagnets [41–46].

Following Ref. [17], a Weyl semimetal has a permittivity
tensor of the form ε = εt1 + iεg ẑ × 1 with permittivity com-
ponents

εt = ε∞

(
1 − ω2

p

ω2

)
, εg = ε∞

ωb

ω
, (12)

where ε∞ is the high-frequency permittivity, ωp denotes the
bulk plasma frequency, and ωb is a parameter with units of
frequency which is nontrival for topological Weyl semimetals
[17]. Here, the z axis is taken as the direction of the wave
vector b that links the two Weyl points in the 1st Brillouin
zone [17]. Figure 1 shows the band diagram of a bulk Weyl
semimetal for the case ε∞ = 1 and ωb = 0.5ωp. Similar to the
magnetized plasma case, the band diagram exhibits spectral
symmetry.

The plasmon dispersion diagram is plotted in Fig. 6(a) for
the parameters ε∞ = 1 and ωb = 0.5ωp showing a behavior
qualitatively similar to that of the magnetized plasma case.
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FIG. 6. (a) Dispersion diagrams of the edge (surface) plasmons
propagating at an interface between air and a Weyl semimetal (purple
thick lines). The plasmon resonance occurs at ω+ ≈ 0.59ωp , for kx >

0, and ω− ≈ 0.84ωp , for kx < 0. The thin black lines represent the
curves ω = kxv for the velocities v1 = ±0.1c and v2 = ±0.4c. (b)
Amplitude of the reflection coefficient (in a logarithmic scale) for
v = ±0.3c. The vertical gridlines correspond approximately to ω ≈
0.99ω+ (curve v = 0.3c) and ω ≈ 0.98ω− (curve v = −0.3c).

Now, the dispersion curves saturate at the plasmon resonances

lim
kx→±∞

ωSPP
kx

≡ ω± = ε∞
2(1 + ε∞)

×
(

∓ωb +
√

1 + ε∞
ε∞

4ω2
p + ω2

b

)
. (13)

Similar to Fig. 2(b), the reflection coefficient is typically
peaked near the plasmon resonances ω± [see Fig. 6(b)].

Furthermore, the magnetic field emission spectrum (not
shown) and the instantaneous magnetic field (Fig. 7) have
features qualitatively very similar to the magnetized plasma
examples. They confirm the selective emission of plasmons
with spectrum concentrated near ω±, depending if the pencil
beam travels along the +x or −x direction, and that plasmons
are typically the main emission channels.

The power spectral density G [Fig. 8(a)] and the stopping
power [Fig. 8(b)] also have features qualitatively similar to the
magnetized plasma case. For example, the power spectral den-
sity is resonant near ω±, depending on the sign of v. However,
it must be highlighted that the nonreciprocal response of the
Weyl semimetal is spontaneous and hence it does not require
an external magnetic bias.

In the previous examples, it was assumed that ε∞ = 1
but it may be more realistic to take ε∞ > 1 in the material
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FIG. 7. Time snapshot (t = 0) of the magnetic field Hz (in arbi-
trary units) for an array of moving charges in the vicinity of a Weyl
semimetal with ε∞ = 1, ωb = 0.5ωp , and ωpd/c = 1. (ai) v = 0.7c

and (aii) v = −0.7c.
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response model [17]. The reason for using ε∞ = 1 is that
in the Cherenkov problem the high-frequency response is of
a crucial importance. For example, taking ε∞ 
= 1 when the
charged particles move inside a material leads to divergences
and to an infinite stopping power [26]. Hence, usually, it
is essential to consider realistic dispersive models that fully
satisfy the Kramers-Kronig relations with ε∞ = 1 [20]. In
our case, the beam of charges moves outside the material
and in this situation the distance d to the material provides a
natural cutoff, which avoids the aforementioned divergences.
However, taking ε∞ 
= 1 may overestimate the amount of
radiation emitted in the form of bulk states. With this note
of caution, we represent in Fig. 9 the instantaneous mag-
netic field calculated for different values of ε∞. As seen,
for increasingly larger values of ε∞ the amount of radiation
emitted in the form of bulk states increases, and the overall
importance of the surfaces plasmons decreases. Indeed, a
well-defined Cherenkov cone becomes visible in the region
y < 0 when ε∞ 
= 1. The cone becomes more tilted as ε∞

increases. Evidently, even when ε∞ 
= 1, the surface plasmons
remain the main emission channels in the spectral windows
near ω±.

IV. ANALYTICAL SOLUTION
FOR THE STOPPING POWER

If the charge velocity satisfies |v| � c, and, if in addition
the electrons move sufficiently close to the surface of the topo-
logical material (ωpd/c � 1), the effects of time retardation
can be neglected. In such a case, the light-matter interactions
are essentially quasistatic and in particular it is possible to
characterize the power extracted from the moving beam using
a quasistatic approximation.

To this end, we rely on the formalism of Appendix B,
which gives the stopping power in terms of the electromag-
netic modes of the system [Eq. (B10)]. In the quasistatic limit,
the main radiation channels are determined by the surface
plasmons. For simplicity, we restrict the analysis to the case
of a gyrotropic material with dispersion as in Eq. (8). It was
recently shown that the (short-wavelength) surface plasmons
at an air-gyrotropic material interface are of the form Ek ≈
−∇φk, Hk ≈ 0 with

φk = Ake
ik·r

{
e−k||y, y > 0
e+k̃||y, y < 0

, (14)

with k = (kx, 0, kz) the transverse wave vector (parallel to

the interface), k|| = √
k2
x + k2

z , k̃|| =
√

k2
x + εa

εt
k2
z , and Ak a

normalization constant. Furthermore, the dispersion of the
short-wavelength plasmons satisfies (the formulas of this ar-
ticle differ slightly from those of Ref. [40] due to a different
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FIG. 9. Time snapshot (t = 0) of the magnetic field Hz(x, y, t ) (in arbitrary units) radiated by a linear array of moving charges for ωb =
0.5ωp and ωpd/c = 1. (a) The charges velocity is v = 0.7c and the high-frequency permittivity is (i) ε∞ = 3, (ii) 5, and (iii) 13. (b) Similar to
(a) but with v = −0.7c.
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FIG. 10. (a) Comparison between the exact stopping power
(solid line) and the stopping power obtained with the quasistatic
approximation [Eq. (16)] (dashed line) for a “pencil” beam. (b) Stop-
ping power obtained with the quasistatic approximation [Eq. (17)]
for a “pointlike” beam. In both plots we use ωpd/c = 0.1 and
ω0/ωp = 0.4.

choice of the coordinate axes) [40]

ωk ≡ ωϕ = −ω0

2
cos ϕ +

√
ω2

p

2
+ ω2

0

4
(1 + sin2ϕ), (15)

with ϕ the angle of the SPP wave vector k with respect
to the x axis. As discussed in detail in Ref. [40], one has
limk→+∞ωSPP

k(cos ϕ,0,sin ϕ) ≡ ωϕ and in particular ωϕ=0,π = ω±.
Thus the quasistatic approximation describes the plasmon
resonances with a large wave vector. The plasmon resonances
are direction dependent due to the magnetic bias.

In Appendix C, we use the quasistatic model to determine
the stopping power. For the case of a pencil beam, it is found
that

Pext

Lz

= P0
4π

ω±
c

e−2 ω±y0
v

[1 + ∂ω(εtω) − ∂ω(εgω)sgn(v)]
ω=ω±

, (16)

with P0 = n2
ze

2

4πε0
c. The “+” sign (“−” sign) is chosen for

positive (negative) velocities. A comparison between this
quasistatic result and the exact theory of Sec. II is reported in
Fig. 10(a). As seen, the agreement is excellent for velocities
|v|/c < 0.3. For large velocities, the quasistatic approxima-
tion breaks down because the effects of time retardation
become relevant (as previously discussed, for large velocities,
the excited plasmons have long wavelengths, i.e., a small k;
hence they cannot be modeled by Eq. (15), which describes
the dispersion of the short-wavelength plasmons).

Furthermore, in Appendix C, we also determine the stop-
ping power for the case of a “pointlike” beam described by
the current density je(x, y, t ) = −evδ(z)δ(y − y0)δ(x − vt )x̂
(this current density corresponds to a single moving electron).
The quasistatic solution of this fully three-dimensional radia-
tion problem is

Pext = P0

∫
v cos ϕ>0

dϕ
ω2

ϕy2
0

|cv cos ϕ|aϕe
−2

ωϕ

v cos ϕ
y0 , (17)

where the normalization factor is now P0 = e2c
4πε0

1
y2

0
and y0 =

d. In the above, ωϕ is defined by Eq. (15) and aϕ = ε0k|||Ak|2
with |Ak|2 given by Eq. (C3). The integration range is over
−π/2 < ϕ < π/2 for positive velocities and over π/2 < ϕ <

3π/2 for negative velocities. The computed stopping power
is shown in Fig. 10(b) as a function of the charge velocity.
As seen, the results are qualitatively similar to the pencil

beam case and exhibit a pronounced asymmetry such that the
stopping power depends strongly on the sign of the velocity.

V. CONCLUSIONS

In this work, it was demonstrated that the main radiation
channels for the Cherenkov energy emitted by charged par-
ticles moving near to a topological material half-space are
the edge states (plasmons) supported by the interface. It was
shown that the emission spectrum is highly asymmetric, being
peaked near a plasmon resonance that depends on the sign
of the charge velocity. The theory was applied to magnetized
plasmas and Weyl semimetals. In particular, it was found
that Weyl semimetals offer the opportunity to obtain strongly
asymmetric Cherenkov emissions with no biasing magnetic
field. The platforms described in this work offer the possibility
to discriminate particles travelling in opposite directions of
space in a simple manner, which can have applications in
particle detection and biomedicine.
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APPENDIX A: EFFECT OF THE MAGNETIC FIELD ON
THE MOVING CHARGES

In this appendix, we discuss the influence of the static
magnetic field on the moving charges. It is supposed that the
moving particles have the same charge (in absolute value)
as the electron, but not necessarily the same mass, e.g., the
moving charges may be protons [47]. A moving charge will
follow a circular trajectory under the action of a uniform
magnetic field B0, with cyclotron radius R = |m v/(qB0)|
(the magnetic field is assumed perpendicular to the velocity
v). It can be readily checked that the vertical deflection �

suffered by the moving charges as they travel the distance D

along the horizontal direction is � ≈ D2/(2R). In order that
the vertical deflection is negligible, it is necessary that � � d,
with d the distance to the interface, let us say � < d/4, or
equivalently D <

√
Rd/2. Using the formula of the cyclotron

radius we get

D

d
<

√
1

2

m

m∗
v

|ω0|d , (A1)

where ω0 = −qB0/m
∗ is the cyclotron frequency of the gy-

rotropic material. This condition may be rewritten as

D

d
<

√
m

m∗

√
ωp

2|ω0|
√

v

c

c

ωpd
. (A2)

In the simulations of the main text, the last square root
has values on the order of 1. Hence, to have a large trav-
elling distance D/d 
 1 with a small perturbation of the
charge trajectory, one either needs (i) a weak magnetic field
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(|ω0|/ωp � 1), or alternatively (ii) a large value for m/m∗.
The latter option is feasible when the moving charges are
protons [47]. Indeed, in such a case m = 1835me, with me

the rest mass of the electron. Furthermore, the effective mass
of the electrons that determine the gyrotropic response can be
on the order of m∗ = 0.025me for narrow gap semiconductors
such as InSb [35]. Thus the factor

√
m/m∗ can be as large as

271 for protons, and thereby with heavy charged particles it
may be possible to neglect the trajectory deflection, even with
a large static magnetic field.

APPENDIX B: MODAL EXPANSION OF THE RADIATED
FIELDS AND STOPPING POWER

In this appendix, we obtain explicit formulas for the fields
emitted by a moving charge distribution and for the stopping
power in terms of a modal expansion [27,48,49]. The derived
formulas are exact and the only assumption is that the material
loss is negligible.

To begin with, we determine the fields emitted by a generic
current density. For simplicity, we use six-vector notations and
denote the electromagnetic fields as f (r, t ) = (E H)T and the
excitation currents as j(r, t ) = (je jm)T . Here, je is the instan-
taneous electric current density and jm is the instantaneous
magnetic current density, which will be taken identical to zero.
Furthermore, we introduce a 6 × 6 frequency-domain Green
tensor (with a time-harmonic variation e−iωt ) defined as the
solution of [48,49]

N̂ · G(r, r0, ω) = ωM(r, ω) · G(r, r0, ω) + i1δ(r − r0)
(B1)

with N̂ = ( 0 i∇ × 13×3
−i∇ × 13×3 0

)
, 1 the identity matrix of di-

mension six, and M = (
ε0 ε̄(r, ω) 0

0 μ013×3

)
the material matrix

that determines the electromagnetic response of the relevant
materials.

Let jω(r) be the Fourier transform of the generalized
current vector j(r, t ). Then, the Fourier transform of the fields
satisfies

fω(r) =
∫

d3r′ G(r, r′, ω)·jω(r′). (B2)

In the limit of vanishing material loss, the Green function has
the modal expansion [48,49]

G = i

2

∑
n

1

ωn − ω
fn(r) ⊗ f∗

n (r0). (B3)

Here, fn(r) represents a generic electromagnetic
mode with oscillation frequency ωn and is normal-
ized as (V stands for the volume of the relevant
region) 1

2

∫
V

d3r f∗
n (r) · ∂

∂ω
[ωM(r, ω)]ω=ωn

· fn(r) = 1. The
summation is over all the electromagnetic modes with either
positive, zero, or negative frequencies [48,49].

For the geometry of interest [Fig. 1(a)], the modes are
of the form fn(r) → 1√

Atot
Fnq(y)eiq·r with q = (qx, 0, qz) the

transverse wave vector (which is a good quantum number due
to the translational invariance along the x and z directions)
and Atot the transverse area (section parallel to the inter-
face). Taking into account that the modes form a continuum

(Atot → ∞), it follows that

G = i

2

∑
n

1

(2π )2

∫
d2q

1

ωnq − ω
Fnq(y) ⊗ F∗

nq(y0)eiq·(r−r0 )

(B4)

with d2q = dqxdqz and the envelopes Fnq normalized as

1

2

∫
dy F∗

nq(y) · ∂

∂ω
[ωM(y, ω)]ω=ωnq

· Fnq(y) = 1. (B5)

Hence, the radiated field in the spectral domain is

fω(r) = i

2

∑
n

1

(2π )2

∫
d2q

1

ωnq − ω
Fnq(y)

×
∫

d3r′ F∗
nq(y ′)eiq·(r−r′ ) · jω(r′). (B6)

Let us now suppose that the time-dependence of the current
is of the form j = j0(y, z)δ(x − vt ) as in the Cherenkov
problem. Then, jω = 1

|v| j0(y, z)eikxx , where kx = ω/v. From
here, we can write (after carrying out the integration in x ′)

fω(r) = i

2|v|
∑

n

1

2π

∫
d2q eiqxxδ

(
qx − ω

v

) 1

ωnq − ω
Fnq(y)

×
∫

dy ′dz′ F∗
nq(y ′) · j0(y ′, z′)eiqz (z−z′ ). (B7)

Calculating the inverse Fourier transform in time f =
1

2π

∫
dω fωe−iωt (the integration contour is slightly above the

real-frequency axis), we obtain the following modal expan-
sion for the radiated field:

f (r, t ) = i

2

∑
n

1

(2π )2

∫
d2q eiqx (x−vt ) 1

ωnq − qxv − i0+

× Fnq(y)
∫

dy ′dz′ F∗
nq(y ′) · j0(y ′, z′)eiqz (z−z′ ).

(B8)

From the above result, one may write the stopping power
(Pext = − ∫

dV j · f) in terms of the electromagnetic modes.
Using again j = j0(y, z)δ(x − vt ) and noting that j0(y, z) is
real-valued, one obtains

Pext = −i

2

∑
n

1

(2π )2

∫
d2q

1

ωnq − qxv − i0+

×
∣∣∣∣
∫

dydz eiqzzFnq(y) · j0(y, z)

∣∣∣∣
2

. (B9)

Clearly, the stopping power must be a real-valued number. On
the other hand, the integrand is pure imaginary except for the
contributions of the i0+ term near the poles. Using 1

x−i0+ =
PV 1

x
+ iπδ(x) (PV stands for the “principal value”), we find

that

Pext = 1

4π

∑
ωnq>0

∫
d2q δ(ωnq − qxv)

×
∣∣∣∣
∫

dydz eiqzzFnq(y) · j0(y, z)

∣∣∣∣
2

. (B10)

Consistent with the selection rule (11) only modes that
satisfy ωnq = qxv contribute to the stopping power. The
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summation was restricted to positive frequency modes be-
cause the modes with ωnq < 0 give the same contribution as
the modes with ωnq > 0.

APPENDIX C: STOPPING POWER IN A QUASISTATIC
APPROXIMATION

In this Appendix, we derive explicit analytical for-
mulas for the stopping power using the quasistatic
approximation discussed in Sec. IV. We analyze both the
cases of a pencil beam and of a pointlike beam.

1. Pencil beam

We consider first a pencil beam with j0(y, z) =
−enzvδ(y − y0)û1 with û1 = (x̂

0
)
. Within the quasistatic ap-

proximation, there is a single branch of positive-frequency
modes and hence the summation over n can be dropped in
Eq. (B10). Denoting the wave vector of the surface plasmons
with the symbol k (nq → k), it follows that the stopping
power is

Pext

Lz

= (evnz)2

2

∫
d2k δ(ωk − kxv)δ(kz)|Fk(y0) · û1|2.

(C1)

Furthermore, from Eq. (15), one has ωk = ω+ for kx > 0
and kz = 0 and ωk = ω− for kx < 0 and kz = 0. This obser-
vation leads to

Pext

Lz

= (enz)2|v|
2

|Fk(y0) · û1|2 kx=ω±/v

kz=0
, (C2)

where the “+” sign (“−” sign) is chosen for positive (neg-
ative) velocities. To proceed, we use the fact that within
the quasistatic approximation the fields have an electrostatic
nature such that Fk ≈ (Ek

0

) ≈ (−∇φk
0

)
[40], with φk given by

Eq. (14). The constant Ak is determined by the normalization
condition (B5). It can be written explicitly as (the difference

compared to Ref. [40] is again due to the different coordinate
system) [40]

|Ak|2 = 2

ε0

[
k|| + 1

2k̃||

(
∂ω(εtω)

(
k̃2
|| + k2

x

)

+ ∂ω(εaω)k2
z − ∂ω(εgω)2kxk̃||

)]−1

. (C3)

Using these results to simplify (C2), one obtains

Pext

Lz

= (enz)2

ε0

ω±e−2 ω±y0
v

[1 + ∂ω(εtω) − ∂ω(εgω)sgn(v)]
ω=ω±

. (C4)

In particular, the stopping power may be written as in Eq. (16)
of the main text.

2. Pointlike beam

For a pointlike beam, we have j0(y, z) = −evδ(z)
δ(y − y0)û1. Therefore, by applying the quasistatic approxi-
mation to Eq. (B10), it is found that

Pext = (ev)2

4π

∫
d2k δ(ωk − kxv)|Ek(y0) · x̂|2. (C5)

Using Ek ≈ −∇φk and Eq. (14) it follows that

Pext = e2v2

4π

∫
d2k δ(ωϕ − kxv)k2

x |Ak|2e−2k||y0

= e2v2

4πε0

∫
v cos ϕ>0

dϕ
1

|v cos ϕ|
× (k|| cos ϕ)2aϕe−2k||y0

∣∣
k||= ωϕ

v cos ϕ

. (C6)

In the second identity, we switched to polar coordinates
[(kx, kz) = k||(cos ϕ, sin ϕ)] and introduced aϕ = ε0k|||Ak|2,
which only depends on the angle of the transverse wave
vector, not on the amplitude. From the above result, one
readily obtains Eq. (17) of the main text.
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